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Brookhaven iiational Laboratory (BNL) is carryin; out a comprehensive conceptual de- 

sign study called WFIIlE of a commercial fusion Tokamek reactor, high-temperature electrolysis 

system. The study is placing particular emphasis on the adaptability of the STARFIRE power 

reactor to  a synfuel application. The EXFIRE blanket must perform three functions: a) pro- 

vide high-temperature (%l40OaC) process steam a t  mderate pressures (in the range of 10 to 30 

a m )  t o  the high-temperature elactrolysis (HTE) units; b) provide high-temperature (*700° to 

800°C) heat to a thermal power cycle for  generation of e lect r ic i ty  to  the  HTE units; and C) 

breed enough tritium to  sustain the D-T fuel  cycle. In addition to  thermal energy for the de- 

composition of steam fato its constituents, Ii2 and 02, e lec t r ica l  input is required. Fourteen 

hundred degree steam coupled with 40% power cycle efficiency resul ts  in a process efficiency 

(conversion of fusion energy to  hydrogen chemical energy) of 50%. 

1. INTBODUCTIOEl 

Brookhaven National Laboratory is carrying out a comprehensive conceptual des$gn 

study called HPFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis (HTE) 

system. The purpose of the study is t o  provide a mechanism to further assess the commercial 

potential of fusion v ie  a T o b k  reactor for  the production of synthetic fuel. The BYFIRE re- 

actor design is based on the Tokhak corm~ercial power reactor, STARPIBE [ I ] ,  the primary dif- 
- ference residing in  the  type of blanket b e t e e n  the two reactors aa w e l l  as power cycle design. 

In addit ion50 exploring a range of blanket and power cycle options to  determine thoee best 

suited for E2 'productitan, the study is placing particular emphasie on the adaptability of a 

Tokaraak pover reactor to  a synfuel application. 

Details of the STABFIRE reactor study a re  documented in ref.  2. The key technical 

objective of the STABFIRE study has been to  develop an a t t rac t ive  aPbadiBlant of the Tokamak a s  

a commercial'power reactor consistent with credible engineering solutionrr to design problemis. 

This same philosophy is carried over to  the BYFIRE study with an eye towards assessing what 

major changes a r e  required for  the synfuel reactor. HPFIRE is based on the deuterium/ttitium/ 

1 lithium fuel  cycle. 

The primary c r i t e r i a  for  commercial attractiveness emphasized i n  the s ~ R E  study 

a r e  economic, safety, and environmental impact. These c r i t e r i a  are, of course, of equal con- 

cern for  RYFIRE where economics must include the economics of producing hydrogen and safety 

and environmental hapiset include the production of hydrogen and oxygen. 

Section 2 ie an overview of the  reactor concept. Section 3 covers blanket design 

of the synfuel process modules as  well as tritium breedhg/power cycle modules. Section 4 is 

an overview of the  ETE process and design of the electrolyzer, inc-uding soate aspects of pro- 

duct conditioning. Section 5 covers the overall process design including the thermal power 

cycle for  e lect r ica l  power generation and coupling the HTE process. Section 6 presents the 

key conclusions based on preliminary analysis. 
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W L+oxuaEN(vomD a 2. OVERVIEW OF REACTOR CONCEPT 
~z%g%F - + ~ - O I ( I ,  Figure 1 shows a simpli- 
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? f i ed  flow sheet  f o r  an HTE/fusion 

4 \a synthet ic  f ue l  plant .  A l l  e l e c t r i -  
I 

! c a l  production goes t o  t he  HTE 
i c e l l s  (and t o  operat ion of t he  fu- I 

m~muamm - -  sion reactor)  t o  make hydrogen/ 
SQU)CE 

NSK~WREIC~R e l e c t r i c i t y  f o r  sa le ,  depending on 

market demand. Two blanket types 

a r e  inferred;  t he  f i r s t  type hea ts  

steam t o  high temperatures 

(%l00O0C) f o r  del ivery to  t he  HTE 

c e l l s ,  while the  second heats  a 
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working f l u i d  f o r  t he  thermal 
GENERALm#aOc05mCON~ALPowERCIQE power cycle and e l ec t r i c i t ygene r -  

Fig. 1. 
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Fig. 2. 

a t i o n  a s  well a s  f o r  t r i t i um 

breeding. 

Major systems of HYFIRE 

a r e  shown in f i g .  2. Ae in STAR- 

FIRE, RYFIRE operates  i n  a steady- 

s t a t e  mode with t he  plasma cur ren t  

driven by lower hybrid r f .  The 

plaaana impurity cont ro l  and ex- 

haust system is based on t he  l imi t -  

er/vacuum concept. The reactor  
has a 7-m major radius and pro- 

duces 4000 m of thermal power 

with an average neutron wall  load 
2 

of 3.6 W/m . This t r an s l a t e s  in- 

t o  -1050 MT of hydrogen produced 

Per day 
A l l  superconducting equilDrium f i e l d  c o i l s  a r e  located ou ts ide  t he  

f i e l d  c o i l s  and 4 small segmented copper c o i l s  a r e  located ins ide  f o r  plasma s t a b i l i t y  con- 

t r o l .  The sh ie ld  provides neutron- and gamma-ray at tenuat ion and serves a s  the  primary vac- 

uum boundary f o r  t h e  plasma. Twelve sh ie ld  access doors a r e  provided t o  permit removal of 2 

to ro ida l  blanket sect ions.  Twelve e lec t ro lyzer  u n i t s  and associated heat  exchangers a r e  hous- 

ed in a bui lding circurnferentially surrounding t h e  reactor .  I n  addit ion,  t he  power generating 

u n i t s  a r e  shown. 

Steady-state operat ion of t h e  Tokamak is assumed. A s  t h e  STARFIRE study indicates ,  

and which is equally applicable t o  HYFIRE, t h e r e  a r e  a number of technological and engineering 

benef i t s  f o r  a commercial reac tor  t h a t  would be derived from steady-state operation. Among 
these a r e  (1) component and system r e l i a b i l i t y  is increased; (2) mterial f a t i gue  is eliminat- 

ed a s  a se r ious  concern; (3) higher neutron wal l  load is acceptable; (4) thermal energy stor-  

age is not  required; (5) the  need f o r  an intermediate coolant loop is reduced; (6) e l e c t r i c a l  

energy s torage  is s ign i f ican t ly  reduced o r  eliminated; and (7) an ohmic heating solenoid is 

not  needed, and ex te rna l  placement of t h e  equilibrium-field c o i l s  is simplified. It has been 

estimated t ha t  t h e  combined benef i t s  of steady s t a t e  can r e s u l t  in  a saving in t he  cost  of 

energy a s  l a rge  a s  25 t o  30%. 



A l l  f u s i o n  a p p l i c a t i o n s  w i l l  probably r e q u i r e  reasonably  high p l a n t  a v a i l a b i l i t i e s  

( f r a c t i o n  of t h e  t i m e  t h e  p l a n t  is  on- l ine) ,  on t h e  o rde r  of  0.5 t o  0.8,  due t o  t h e  high-capit-  

a 1  investment f o r  t h e  r e a c t o r .  As wi th  any e l e c t r i c  gene ra t ion  system, fus ion  r e a c t o r s  con- 

nected t o  t h e  g r i d  w i l l  have t o  have high r e l i a b i l i t y ,  w i th  r e l a t i v e l y  few outages  per  year .  

R e l i a b i l i t y  requirements  f o r  a syn fue l  p l a n t  w i l l  be l e s s  demanding, though, s i n c e  t h e  product 

can r e a d i l y  be s t o r e d  o f f - l i n e .  F luc tua t ions  i n  p l a n t  output  can thus  be r e a d i l y  smoothed ou t  

by us ing a v a i l a b l e  s t o r a g e  t o  meet demand requirements i f  t h e  p l a n t  s h u t s  down. While high- 

c a p i t a l  c o s t  r e a c t o r s  w i l l  have t o  have high p l a n t  f a c t o r s  f o r  economic r easons ,  they could be 

allowed t o  shu t  down unexpectedly f a i r l y  o f t e n  f o r  s h o r t  pe r iods  ( i . e . ,  t o  s t a r t  up t h e  plasma),  

i f  t hey  were not  connected t o  an  e l e c t r i c a l  g r i d .  

3. BLANKET DESIGN 

The HYFIRE b lanke t  must perform t h r e e  func t ions :  a )  provide  high-temperature 

(?1O0O0C) p rocess  steam a t  moderate p r e s s u r e s  ( i n  t h e  range of 10  t o  30 atm) t o  t h e  high-temper- 

a t u r e  e l e c t r o l y s i s  u n i t s ;  b) provide  high-temperature (%700° t o  800°C) hea t  t o  a thermal power 

i c y c l e  f o r  gene ra t ion  of  e l e c t r i c i t y  t o  t h e  HTE u n i t s ;  and c )  breed enough t r i t i u m  t o  s u s t a i n  

i t h e  D-T f u e l  cyc le .  The d u a l  requirements ,  gene ra t ion  of high-temperature process  steam f o r  

t h e  HTE's and high-temperature hea t  f o r  t h e  thermal power c y c l e ,  d i f f e r e n t i a t e s  t h e  HYFIRE and 
! 

STARFIRE b lanke t  system. 

S e t t i n g  t h e  requirements  t h a t  t h e  g l o b a l  breeding r a t i o  equal  1.1 t o  a l low f o r  dou- 

b l i n g  t ime requirements ,  p e r t u r b a t i o n s ,  e t c . ,  f o r  HYFIRE p l a c e s  a premium on space,  i . e . ,  i t  

w i l l  probably be necessa ry  t o  breed t r i t i u m  in reg ions  of t h e  process  steam b lanke t  modules. 

T r i t i um from t h e  power c y c l e  p a r t  of t h e  b l anke t  must make up t h e  t r i t i u m  de f i c i ency .  

The two-temperature-zone blanket  [3 ]  approach is mandatory f o r  t h e  process  steam 

por t ion  of  t h e  energy supply.  The modules w i l l  have r e l a t i v e l y  coo l  s h e l l s  (%300°C) wi th  the r -  

mal i n s u l a t i o n  between t h e  s h e l l  and t h e  high-temperature ( ~ 1 4 0 0 ~ C )  i n t e r i o r .  The two-temper- 

a t u r e  des ign  concept is  a l s o  c a r r i e d  ove r  f o r  t h e  power c y c l e  modules. As in STARFIRE, t h e  

f i r s t  wa l l /b l anke t  s t r u c t u r e  o r  s h e l l  is PCA s t a i n l e s s  s t e e l .  

Three b l anke t  o p t i o n s  a r e  under s tudy f o r  HYFIRE. Each op t ion  has  an  HTE steam mod- 

u l e  r eg ion  and a power c y c l e  module r eg ion  wi th  t r i t i u m  breeding in each region.  Tr i t ium breed- 

ing  is t o  b e  accomplished w i t h  s o l i d  b reede r s ,  and t r i t i u m  inventory  i n  t h e  b lanket  should be 

minimized. A p o s s i b l e  problem with  t r i t i u m  holdup i n  Li20 has  been r a i s e d  by t h e  STARFIRE 

s tudy.  This  can be  circumvented e i t h e r  by us ing  neutron m u l t i p l i e r s  (Be, Pb) and a s o l i d  

b reede r  ( e i t h e r  LiZO o r  LIA1O2), by scavenging wi th  D2 o r  H2 i n  t h e  He purge c i r c u i t ,  o r  by 

us ing  a l i q u i d  breeder  m a t e r i a l  (e.g. ,  PbBiL imix tu re ) .  Tr i t ium w i l l  be r e l eased  t o  He purge 

s t reams,  and no t  t o  t h e  main c i r c u i t .  Module arrangement a long  t o r o i d a l  f i e l d  l i n e s ,  a s  i n  

STARFIRE, is  p r e f e r r e d ,  s i n c e  t h i s  minimizes d i f f e r e n c e s  i n  maintenance procedures between 

HYFIRE and STARFIRE. The inboard blanket-shie ld  r eg ion  w i l l  probably be used f o r  HTE steam 

modules, w i th  a t h i n  secondary zone behind f o r  t r i t i u m  breeding. 

For t h e  HTE modules r e f r a c t o r y  oxides ,  e.g. ,  Zr02 o r  A1203, from t h e  high-temperature 

r eg ion  of  t h e  b l anke t  must be  s t a b l e  under exposure t o  t h e  steam o r  steam/hydrogen 

p rocess  s t ream under r a d i a t i o n  and thermal cyc l ing  cond i t ions ,  a l though t h e  l a t t e r  may be 

m i t i g r a t e d  due t o  s t e a d y - s t a t e  performance by HYFIRE. Such m a t e r i a l s  w i l l  f i l l  t h e  i n t e r i o r  

of t h e  b l anke t  a s  s o l i d  rods  o r  b a l l s ,  and w i l l  a l s o  be used a s  a low-density s o l i d  b lock o r  

f i b r o u s  thermal i n s u l a t i o n  between t h e  high-temperature i n t e r i o r  and t h e  s t r u c t u r a l  s h e l l .  

Ma te r i a l s  c o m p a t i b i l i t y  t e s t s  [41 i n  steam and steam/hydrogen i n d i c a t e  t h a t  Zr02 and A1203 a r e  

s u i t a b l e  f o r  long-term s e r v i c e  up t o  %1500°C ( t h e  p resen t  t e s t i n g  l i m i t  a t  BNL). Test3  wi th  

S i c  and MgO i n d i c a t e  t h e s e  m a t e r i a l s  a r e  r e s t r i c t e d  t o  somewhat lower temperatures .  
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Representa t ive  process  (HTE) and 

I LUY powerf t r i t ium blanket  modules a r e  shown i n  f i g s .  
urs* rmn "*f 

m.oawr 3a and 3b. A l l  of t h e  l a r g e r  modules ( ' ~ 4 0  t o  
rnI*mm ~~ao+.rnr-t 50 cm diameter) a r e  of t h e  two-temperature type  
MUD,*. WNrn -0 ulu 

'U ".my. I*RII 
with s t e a m  cool ing of t h e  hot i n t e r i o r  f o r  HTE 

-9 AT I N ~ D  w 
modules, primary He cool ing (1.20 atm) of t h e  

hot i n t e r i o r  f o r  t r i t i u m  breeding modules wi th  

heat  exchange t o  a  secondary He (1.70 atm) 

r , s t r e a m i n s m a l l h e a t e x c h a n g e r s d i r e c t l y b e h i n d  - O . C & U m D l l  - the blanket  and water coo l ing  of t h e  module 
~ U L E S  n m m  RZW 

s h e l l s .  
MARK I HTE PROCESS STEAM BLANKET 

Representa t ive  t r i t i u m  breeding r a t i o s  

Fig. 3a. 
f o r  t h e  t h r e e  blanket  op t ions  a r e  shown i n  t a b l e  

1. A l l  op t ions  a r e  v i a b l e  from t h e  s t andpo in t  

Fig .  3b. 

- - -- - - . . - . - - of neu t ron ics  and thermal hydraul ics .  There is 

L 
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MARK 11. MARK I is a  p re fe r red  design s i n c e  

t r i t i u m  is r a d i o a c t i v e l y  i s o l a t e d  from t h e  main 

He coolant  s t r e a m ,  s t r e s s  on t h e  module s t r u c t u r e  

is low due t o  low primary coolant  p ressu re ,  and 

no leakage of s t e a m  from t h e  s t e a m  generator  in- 

t o  t h e  blanket  is p o s s i b l e  because of t h e  i n t e r -  

mediate He-to-He hea t  exchanger. 

CLUI. 

-9 SECTlW OF MARK I BREEDING BLUl l (n  lOOULE 
4. HTE PROCESS 

The e lect rochemical  decomposition of 

no t  adequate  energy depos i t ion  i n  t h e  hot blan- 

water i n t o  hydrogen and oxygen is  an  endotherm- 

i c  r e a c t i o n  requ i r ing  both hea t  and e l e c t r i c i t y .  

ke t  i n t e r i o r  f o r  t h e  HTE'S and power c v c l e  i n  

-- - - The e f f i c i e n c y  of production of e l e c t r i c i t y  from 

MARK I MARK I11 MARK I1 

Breeding Breeding 
b lanke t  b lanket  

1 . 2  t o  1 .6  1 . 0  t o  1 .4  1.1 t o  1.3 

HTE breeding HTE breeding 

.3 t o  .5 (no . 3  t o  .5 (no 
f r o n t  breeding) f r o n t  breeding) 

TABLE I fus ion  r e a c t o r  heat  is  l i m i t e d  by t h e  Carnot re-  

Representa t ive  Tr i t ium Breeding Results l a t i o n s h i p  and va r ious  i r r e v e r s i b i l i t i e s  i n  t h e  

power cycle .  With convent ional  s t e a m  power cy- 

c l e s ,  e l e c t r i c a l  generat ion e f f i c i e n c y  w i l l  be  

on t h e  o rde r  of 40%. Since t h e  hea t  input  com- 

ponent f o r  water decomposition is used d i r e c t l y  

a t  e s s e n t i a l l y  100% e f f i c i e n c y ,  t h e r e  is a  de- 

f i n i t e  advantage t o  make t h e  r a t i o  of t h e  

d i r e c t  hea t  input  t o  t h e  e l e c t r i c a l  energy in- 

put  a s  l a r g e  a s  poss ib le .  A t  a  temperature,  T, 

t h e  input  thermal energy equa l s  TAS, where AS 

is  t h e  entropy change f o r  t h e  r eac t ion .  The 

e l e c t r i c a l  energy inpu t  equa l s  t h e  Gibb's f ree .energy change, AF, f o r  t h e  r eac t ion ,  and t h e  

sum of t h e s e  energy changes equa l s  t h e  r e a c t i o n  enthalpy,  AH. 

A s  temperature  inc reases  t h e  r e a c t i o n  enthalpy remains v i r t u a l l y  cons tan t .  The Gibb's 

f r e e  energy o r  e l e c t r i c a l  energy inpu t ,  however, decreases  wi th  inc reas ing  temperature and t h e  

thermal energy inpu t ,  TAS, inc reases .  The r a t i o  of thermal energy (TAS) t o  e l e c t r i c a l  energy 

(AF) inc reases  wi th  e l e c t r o l y s i s  temperature; t h i s  r e s u l t s  i n  higher  process  e f f i c i e n c y  so 

t h a t  more hydrogen production can be generated f o r  a  given fus ion  energy inpu t .  For HYFIRE, 



. - - ._.. . 

7 /- 
INTERCONNECTION OXIDE t h e  design temperature of i n t e r e s t  is  

14OO0C. 

The heat  input ,  TAS, absorbed by 

t h e  HTE c e l l s  d u r i n g , e l e c t r o l y s i s  is sup- - p l i e d  from t h e  s e n s i b l e  hea t  content  of t h e  
POROUSSUPPORT STRUCTURE 

\ / 

process  streams. For p r a c t i c a l  e l e c t r o l y z e r  

des igns ,  t h e  steam/H2 stream w i l l  coo l  by 

100' t o  200°C a s  i t  proceeds through t h e  

e l e c t r o l y z e r  . 
H 20 - Hz + HP 

IN CUT A schematic of t h e  Westinghouse 

f u e l  c e l l  is shown i n  f i g .  4.  This des ign 
- -  -- - 

HTE CELL DESIGN 
(WESTINGHOUSE FUEL CELL) 

a l s o  se rves  a s  t h e  b a s i s  f o r  t h e  high-tem- 

p e r a t u r e  e l e c t r o l y z e r  s i n c e  an  e l e c t r o l y z e r  
Fig. 4  is  a  f u e l  c e l l  i n  reverse .  High-temperature : 

e l e c t r o l y s i s  uses  a r r a y s  of tubes  of r e l a t i v e l y  small  d iameter  ($1 cm), thick-walled porous 

ceramic (e.g. ,  s t a b i l i z e d  ZrO ) on which a  success ion of t h i n  e l e c t r o d e  l a y e r s  of su i t ab ly -  2  
doped ceramics a r e  deposi ted.  The H and 0  ceramic e l e c t r o d e s  a r e  separated by a  t h i n  (sev- 

2  2  
e r a 1  mi l s )  e l e c t r o l y t e  l a y e r  of y t t r i a - s t a b i l i z e d  Zr02. Elect rodes  a r e  e l e c t r i c a l l y  connect- 

5 
ed i n  s e r i e s  a long each tube t o  minimize I R  l o s s e s .  A l a r g e  number (%I0 ) of e l e c t r o l y z e r  

tubes  a r e  then connected i n  p a r a l l e l  in a  l a r g e  p ressu re  v e s s e l .  Typical steam pressu res  i n  a  

high-temperature e l e c t r o l y z e r  a r e  on t h e  o rde r  of 1 0  t o  20 atm. 

Previous  s t u d i e s  [5] of HTE processes  have assumed that s t e a m  is  d i r e c t l y  heated i n  

t h e  hot i n t e r i o r  of t h e  HTE process  hea t  modules, and then passes  i n t o  t h e  HTE e l e c t r o l y z e r .  

The steam is  cooled a s  it passes  through t h e  e l e c t r o l y z e r  by t h e  endothermic e l e c t r o l y s i s  pro- 

cess .  I n  o rde r  t o  keep t h e  e l e c t r o l y z e r  temperature a t  a  h igh average value,  it is necessary 

t o  e l e c t r o l y z e  only a  smal l  f r a c t i o n  (-10%) of t h e  steam dur ing its passage and r e t u r n  t h e  

s t e a m - H  mixture  f o r  r e h e a t  t o  another  s e c t i o n  of t h e  blanket .  The optimum number of s e r i e s  
2  

of r e h e a t s  and e l e c t r o l y z e r s  depend on va r ious  parameters.  For reasons  of duct ing and con- 

nec t ions  t o  t h e  24-blanket s e c t o r s  of &FIRE, t h e  number of e l e c t r o l y z e r s  a r e  f ixed  a t  12 ,  

one f o r  each two blanket  s e c t o r s ,  and process  parameters a r e  ad jus ted  t o  r e f l e c t  t h e  f ixed  

numbers. 

Th i s  type  of e l e c t r o l y s i s  p rocess  arrangement i s  cha rac te r i zed  by: 1. Steam-H2 mix- 

t u r e s  flow through t h e  b lanke t ,  w i th  t h e  H /steam r a t i o  varying from 0 f o r  t h e  f i r s t  e l e c t r o l y -  
2  

z e r s  t o  $1011 a t  t h e  e x i t  of t h e  e l e c t r o l y z e r  s t r i n g .  The r e f r a c t o r y  in t h e  hot b lanket  in- 

t e r i o r  must thus  wi ths tand s t e a m / H  mixtures  a t  temperatures  of "1400°C. 2. Radioactive 2  
i so topes  picked up by t h e  s t e a m - H 2  s t r e a m  w i l l  go a long wi th  t h e  H2 product ,  n e c e s s i t a t i n g  

cleanup by f i l t r a t i o n  o r  absorp t ion  (e.g. ,  i n  ion exchange r e s i n s ) .  

Other types  of HTE process  arrangements a r e  p o s s i b l e  t o  m i t i g a t e  a c t i v a t i o n  of t h e  H 
2  

product.  Rather than c i r c u l a t i n g  steam through t h e  blanket  t o  remove hea t ,  i n s t ead ,  i t  passes  

s t r a i g h t  through t h e  e l e c t r o l y z e r s ,  e i t h e r  i n  s e r i e s  o r  p a r a l l e l  flow, e x i t i n g  a s  almost pure  

H2. Heat is  provided t o  t h e  e l e c t r o l y z e r s  (and removed from t h e  blanket)  by c i r c u l a t i n g  O2 

p lus  i n e r t  gas  (e.g. ,  He) from t h e  s h e l l  s i d e  of t h e  e l e c t r o l y z e r .  Oxygen would be separated 

from t h e  i n e r t  gas  a t  t h e  end of t h e  process  and discharged t o  t h e  atmosphere o r  whatever 

market was a v a i l a b l e .  

Another des ign approach would be  t o  make t h e  HTE e l e c t r o l y z e r  s l i g h t l y  longer  (e .g . ,  

about 10% l o n g e r ) ,  wi th  a  s e p a r a t e  s h e l l - s i d e  zone t o  t r a n s f e r  hea t  from t h e  He blanket coolant  

t o  t h e  steam-H2 mixture  flowing i n s i d e  t h e  nonporous Zr02 HTE tube. A sepa ra t ion  p a r t i t i o n  



between t h e  0 s h e l l - s i d e  zone and t h e  He s h e l l - s i d e  zone is  requ i red ,  wi th  a flowing gas 2 
sweep t o  p r w e n t  s l i g h t  mixing of gases  i n  t h e  two zones. 

4.1 Wdrogen recovery 

I f  t h e  conversion of steam t o  hydrogen i n  t h e  high-temperature e l e c t r o l y z e r s  is t o  be 

l imi ted  to  10% ( t o  minimize e l e c t r i c a l  requirements) s t e p s  must be taken t o  s e p a r a t e  t h e  pro- 

duct  hydrogen from t h e  waste steam. One way t o  accomplish t h i s  sepa ra t ion  is  t o  cool  t h e  pro- 

c e s s  stream and condense out t h e  water .  A product hydrogen s t ream i n  excess of 99% p u r i t y  can 

be achieved i n  t h i s  way based on recoupera t ive  hea t  exchange a t  t h e  high-temperature end of 

t h e  process  and normal cool ing tower water a t  t h e  low-temperature end of t h e  process.  

Since t h e  conversion per  pass  is so low, t h e  r e c y c l e  r a t i o  is q u i t e  high, i . e . ,  i t  

t akes  1 0  passes  through t h e  HTE system befo re  a mole of steam is completely converted t o  hydro- 

gen, and s i n c e  t h a t  steam must be  brought up t o  process  cond i t ions  then completely condensed 

i n  each pass  through t h e  system, much a t t e n t i o n  must be paid  t o  energy conservat ion i f  t h e  

process  is t o  be a v i a b l e  one. One way t o  conserve energy would be  t o  use  t h e  high-tempera- 

t u r e  steam leav ing  t h e  HTE system t o  d r i v e  a t u r b i n e  thereby producing e l e c t r i c i t y  which can 

be  recycled t o  t h e  process .  I n  t h i s  scheme, t h e  process  s t ream leav ing  t h e  HTE would f i r s t  be 

cooled recoupera t ive ly  t o  about 538°C. a temperature  compatible wi th  steam t u r b i n e  b lade  

m a t e r i a l s .  It would then pass  through t h e  t u r b i n e  (which would not  have any e x t r a c t i o n  

streams) e x i t i n g  a t  about 1.5 p s i a  and approximately s a t u r a t e d .  Based on a t u r b i n e  e f f i c i e n c y  

of 81%, 19 kwh of e l e c t r i c i t y  can be  recovered pe r  lb-mole of hydrogen. Only about 70% of t h e  

s t e a m  can  be  condensed out of t h i s  stream using cool ing tower water.  The r e s u l t i n g  low pres- 

s u r e  wet hydrogen steam must be  compressed t o  some s u i t a b l e  product d i scha rge  p ressu re  ( t h e  

a c t u a l  p r e s s u r e  w i l l  depend on t h e  end use  intended f o r  t h e  hydrogen), This compression would 

be done in s e v e r a l  s t a g e s  wi th  in te rcoo l ing  between s t ages .  Each i n t e r c o o l e r  w i l l  remove some 

of t h e  remaining water  vapor thus  making a product stream of 98 t o  99% dry  hydrogen poss ib le .  

Based on assumed compressor e f f i c i e n c i e s  of 80% and a f i n a l  d i scha rge  p ressu re  s l i g h t l y  above 

1 atm, approximately 3 kWh of compressor work a r e  r equ i red  l eav ing  a n e t  of about 16  kWh/mole 

of hydrogen product.  It should be  noted t h a t  t h e  above is based on a reasonable  s e l e c t i o n  of 

process  parameters w i t h  v i r t u a l l y  no e f f o r t  a s  y e t  t o  opt imize t h e s e  process  cond i t ions .  

5. BLANKETIPOWER CYCLE/PROCESS COUPLING 

Depending on whether steam is d i r e c t l y  t r anspor ted  t o  t h e  e l e c t r o l y z e r  o r  an  i n t e r -  

mediate hea t  exchanger i s  int roduced between t h e  e l e c t r o l y z e r  and b lanke t ,  o r  whether only  a 

small f r a c t i o n  ( ~ 1 0 % )  of t h e  s t e a m  is  converted t o  hydrogen i n  a s i n g l e  pass  and ex t rac ted  o r  

a s t r i n g  of e l e c t r o l y z e r s  a r e  placed i n  s e r i e s ,  coupl ing between t h e  b lanke t ,  e l e c t r o l y z e r  and 

power c y c l e  can be  q u i t e  d i f f e r e n t .  Each c a s e  must be analyzed sepa ra te ly .  

- - -  

A s  an  example of a d i r e c t l y  heated e l e c t r o l y z e ~ ,  t h e  blanket  ( a l r eady  discussed)  has  

t h r e e  d i s t i n c t l y  d i f f e r e n t  hea t  generat ion zones,  each wi th  i t s  own process  f l u i d  and with  

d i f f e r e n t  process  parameters.  

One zone which involves  t h e  f r o n t  wa l l  of a l l  modules ope ra tes  a t  t h e  r e l a t i v e l y  

modest temperature of 320°C and is kept cool  by t h e  c i r c u l a t i o n  of h igh p ressu re  (1000 t o  

2000 p s i )  water.  The heat  generat ion i n  t h i s  zone is about 43.5% of t h e  t o t a l  r e a c t o r  hea t  

output  which amounts t o  1740 MW(t). The p ressu r i zed  water coo lan t  from t h i s  zone is c i r cu -  

l a t e d  through a s t e a m  genera to r  in which 1000 p s i a  s a t u r a t e d  steam is generated on t h e  

secondary s ide .  

Another zone, which w i l l  l i e  behind t h e  f r o n t  wa l l  of about 507, of a l l . b l a n k e t  

modules, is  optimized f o r  t r i t i u m  breeding. This zone w i l l  ope ra te  a t  8 0 0 ' ~  and i s  cooled 



- - - - 
by p res su r i zed  (70 atm) helium gas  which w i l l  be used t o  superheat  t h e  steam r e f e r r e d  t o  

above. The heat  genera ted i n  t h i s  zone i s  about  35% of  t h e  t o t a l  r e a c t o r  h e a t  output  which 

amounts t o  1400 MV(t). 

The t h i r d  and f i n a l  zone, which w i l l  l i e  behind t h e  f r o n t  wa l l  of t h e  remaining 

50% of  a l l  b lanket  modules, is  designed wi th  t h e  needs  of t h e  high-temperature e l e c t r o l y z e r s  

in mind. This  zone w i l l  o p e r a t e  in excess  of 1400°C and s e r v e s  t o  resuperheat  r e l a t i v e l y  

low p res su re  (10 atm) steam t o  1400°C be fo re  it goes on t o  t h e  e l e c t r o l y z e r s .  The hea t  gen- 

e r a t i o n  i n  t h i s  zone is 21.5% of t h e  t o t a l  r e a c t o r  hea t  ou tpu t  which amounts t o  860 MW(t). 

Looking a t  t h e  steam c i r c u i t ,  make up water is  added t o  r e c y c l e  water and toge the r  

they e n t e r  a steam b o i l e r  n o t  u n l i k e  t h a t  of a PWR-type f i s s i o n  r e a c t o r .  The 1000 p s i a  sa tu -  

r a t e d  steam so produced i s  superheated t o  about 760°C, by means of t h e  hot helium mentioned 

above, a t  which cond i t ion  it e n t e r s  t h e  high-pressure steam t u r b i n e ,  e x i t i n g  a t  10  atm and 

about 482OC a t  which c o n d i t i o n s  it e n t e r s  t h e  t h i r d  zone of t h e  b l anke t  mentioned above. I t  

l e a v e s  t h e  b l anke t  a t  1400°C and goes d i r e c t l y  t o  t h e  high-temperature e l e c t r o l y z e r s  where 

approximately  10% is conver ted  t o  hydrogen and oxygen. The oxygen is wasted a f t e r  pass ing 

through hea t  exchangers t o  recover  i t s  hea t  con ten t .  The hydrogen toge the r  wi th  t h e  unre- 

ac t ed  steam is passed on t o  t h e  hydrogen recovery p o r t i o n  of t h e  f low shee t  which i s  de- 

s c r ibed  i n  Sec t ion  4 .  --- - 

Prel iminary  s t u d i e s  and c a l c u l a t i o n s  i n d i c a t e  t h a t  g ross  power c y c l e  e f f i c i e n c y  i n  t h e  

40 t o  45% range  appear ach ievab le  i n  HYFIRE us ing  STARFIRE power r e c i r c u l a t i n g  parameters and 

He power requirements .  Corresponding H product ion e f f i c i e n c y  ( t o t a l  fu s ion  energy t o  t h e  2 
chemical energy of t h e  hydrogen produced) is i n  t h e  50 t o  55% range wi th  t h e  p o t e n t i a l  of 

reaching 60%. 

6. CONCLUSIONS 

Based on HYFIRE s t u d i e s  t o  d a t e ,  t h e  fo l lowing obse rva t ions  a r e  made: a )  t h e  IYARK I 

b lanke t  appea r s  more a t t r a c t i v e  (s imul taneously  meets g loba l  t r i t i u m  breeding requirements  

and r equ i red  energy s p l i t s  between p rocess  s t e a m  and helium, p o t e n t i a l  high-ehermal e f f i c i e n -  

c y ) ;  b) a t t r a c t i v e  t r i t i u m  b reede r s  such a s  LiAlO and l i q u i d  l e a d  wi th  d i s so lved  l i t h i u m  have 2 
been i d e n t i f i e d ;  c )  g r o s s  power c y c l e  e f f i c i e n c i e s  in t h e  40 t o  45% range appear achievable ;  

and d )  high H2 product ion e f f i c i e n c i e s  in t h e  50 t o  55% range appear  achievable .  
- . -. - -- 

P. 
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