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ABSTRACT 

A pa rame t r i c  s tudy  of p o s s i b l e  t u r b i n e  systems f o r  
compressed a i r  energy s t o r a g e  (CAES) p l a n t s  i s  made. The 
p l a n t  cons idered  i s  d iv ided  i n t o  f o u r  subsystems: a  t u r -  
b i n e  system, compressor system, r e v e r s i b l e  motor /genera tor ,  . . 
and an underground a i r  s t o r a g e  r e s e r v o i r .  The t u r b i n e  s y s - .  
t e m  comprises a  h igh-pressure  gas  t u r b i n e ,  a low-pressure 
gas  tu rb ' ine ,  two combustors,  and a  r ecupe ra to r .  The com- 
p r e s s o r  system c o n s i s t s  of a  low-pressure compressor,  a 
boos t e r  compressor,  an  i n t e r c o o l e r ,  and an a f t e r c o o l e r . .  
A water-compensated mined cavern i s  t h e  underground reser- 
v o i r .  

. Thermodynamic a n a l y s e s  of subsystem components are . 
inade, and p l a n t  performance i s  eva lua t ed .  The r e s u l t s  a r e  
given i n  terms of t h e  f i v e  pa rame te r s : '  s p e c i f i c  a i r  f low 
r a t e ,  s p e c i f i c  s t o r a g e  volume, s p e c i f i c  hea t  r a t e ,  s p e c i f i c  
compression r a t e ,  and o v e r a l l  p l a n t  e f f i c i e n c y .  The e f f e c t s  
on p l a n t  performance of des ign  parameters  such a s , i n l e t  gas.  
temperature  and p r e s s u r e  t o  each t u r b i n e  were analyzed.  
Also cons idered  i s  t h e  e f f e c t  of us ing  cool ing  a ir  f o r t u r -  
b i n e  b l ades  and vanes.  

SUMMARY , 

E f f e c t s  of f o u r  t u r b i n e  system des ign  parame.ters on t h e  performance of 

a  CAES p l a n t  were determined: i n l e t  p r e s s u r e s  and i n l e t  gas  tempera tures  t o  

t h e  high-pressure gas  t u r b i n e  (HGT) and t h e  low-pressure gas  t u r b i n e  (LGT). 

Also s t u d i e d  was t h e  e f f e c t  on p l a n t  performance o f  t u r b i n e  coo l ing  a i r ,  

which i s  r equ i r ed  f o r  h ighe r  i n l e t  g a s  tempera ture  t o  t h e  t u r b i n e s .  , T h e  re- 

.suits a r e  g i v e n ' i n  , . terms of f i v e  performance parameters :  s p e c i f i c  a i r  f low 

r a t e  (lb/kWh) , s p e c i f i c  s t o r a g e  volume ( f t  3/kWh), s p e c i f i c  hea t  r a t e  (Btu/kWh) , 
s p e c i f i c  compression r a t e  ( ~ t u / k W h ) ,  and o v e r a l l  p l a n t  e f f i c i e n c y .  The f o u r  

s p e c i f i c  parameters  a r e  based on a  k i l o w a t t  of power genera ted  by t h e  t u r b i n e  



system. Overa l l  p l a n t  e f f i c i e n c y  i s  de f ined  a s  t h e  t o t a l  power output  of t h e  

t u r b i n e s  d iv ided  by t h e  sum of t h e  f u e l  energy inpu t  r a t e  t o  t h e  combustors 

and off-peak power i n p u t  t o  the'  compressors. 

For t u r b i n e s  t h a t  do n o t  r e q u i r e  .cooling a i r ,  t h e  'f ol.lowing per f  otmance 

t r e n d s  w e r e  observed i n  terms of t h e  s p e c i f i c  parameters  and o v e r a l l - p l a n t  
.. , 

e f f i c i e n c y :  

1. A s  t h e  i n l e t  gas  temperatures  i n c r e a s e ,  t h e  h e a t  r a t e  and 
o v e r a l l  e f f i c i e n c y  a l s o  i n c r e a s e ,  and t h e  a i r  flow r a t e ,  
s t o r a g e  volume, and compression r a t e  decrease .  

2. The h e a t  r a t e  i s  inf luenced  s t r o n g l y  by t h e  i n l e t  tempera- 
t u r e  t o  t h e  low-pressure t u r b i n e  and only  weakly by t h e  - .  
temperature t o  the high-pressure turbine' .  

3.  A s  t h e  i n l e t  p r e s s u r e  t o  t h e  high-pressure t u r b i n e  i n c r e a s e s ,  
the  compression rare i n c r e a s e s  s l i g h t l y  and c l ~ e  s p e c i f i c  a i r  
flow and h e a t  ra . tes  as w e l l  a s  t h e  o v e r a l l  e f f i c i e n c y  decrease  
s l i g h t l y ,  whereas t he  s t o r a g e  volume decreases  s i g n i f i c a n t l y .  

4. The o u t l e t  p r e s s u r e  from t h e  high-pressure t u r b i n e  has  a  
minor e f f e c t  on performance. 

Thus, t h e  h ighes t  i n l e t  gas  tempera tures  p o s s i b l e ,  wi thout  r e q u i r i n g  

cool ing  a i r ,  should be  used. The i n l e t  p r e s s u r e  t o  t h e  high-pressure t u r b i n e ,  

which is  determined by t h e  s t o r a g e  p r e s s u r e ,  should be a s  h igh  as possible. 

  or t u r b i n e s  t h a t  r e q u i r e  cool ing  a i r ,  t h e  performance t r e n d s  observed 

were a s  fo l lows:  

1. Uncooled high-pressure t u r b i n e  and cooled low-pressure t u r b i i ~ e :  

As t h e  flow r a t e  of cool ing  a i r  i n c r e a s e s ,  t h e  s p e c i f i c  
a i r  flow r a t e ,  s t o r a g e  volume, and compression r a t e  

. i n c r e a s e .  These va lues  a r e  l e s s  than  f o r  equ iva l en t  
uncooled t u r b i n e s  when t h e  r a t i o  of LGT cool ing-a i r  
flow t o  main-air flow ( rc2)  i s  l e s s  than  0.2.  

The s p e c i f i c  h e a t  r a t e  i s  always g r e a t e r  than  f o r  t h e  
equ iva l en t  uncooled tu rb ine .  

The o v e r a l l  e f f i c i e n c y  decreases  w i t h  cool ing-a i r  flow. 
For rc2 < -0.1, it i s  g r e a t e r  than  f o r  uncooled t u r b i n e s ;  
b u t  f o r  r > -0.1, i t  i s  less. 

C2 

2. Both t u r b i n e s  a i r -cooled:  

A s  t h e  r a t i o  of HGT coo l ing -a i r  flow t o  main-air flow 
( r c  ) i n c r e a s e s ,  t h e  s p e c i f i c  a i r  flow, s t o r a g e  volume, 1 
and compression r a t e  decrease  when t h e  r a t i o  of LGT 
coo l ing -a i r  flow t o  main-air flow ( r c2 )  is  g r e a t e r  than  
-0.2. 



These va lues  i n c r e a s e  f o r  r < -0.2 b u t  are l e s s  than  C2 
f o r  an equ iva l en t  uncooled t u r b i n e  f o r  most r a t i o s  con- 
s i d e r e d .  

A s  rcl i n c r e a s e s ,  t h e  h e a t  rate i n c r e a s e s  f o r  r < -0.45 
C2 

b u t  decreases  f o r  rc > -0.45. This  r a t e  is  always 
2 

g r e a t e r  than  f o r  t h e  equ iva l en t  uncooled t u r b i n e .  

. . A s  r i n c r e a s e s ,  t h e  o v e r a l l  e f f i c i e n c y . d e c r e a s e s  f o r  
r ' 2'-0.3 bu t  i n c r e a s e s  f o r  r >; -0.3. For most cooling-. . C 2 2 a i r  r a t i o s ,  t h e  o v e r a l l  e f f i c i e n c y  is g r e a t e r  than  t h e  
equ iva l en t  uncooled t u r b i n e  when T = T5 = 2400°F, bu t  i t  
i s  l e s s  when T = T5 = 2000°F. 3 

- .  
The above t r e n d s  i n d i c a t e  t h a t  t h e  amount of cool ing  a i r  has  a major 

e f f e c t  on t h e  performance parameters .  Cooling a i r  can e i t h e r  i n c r e a s e  o r  

decrease  t h e  performance parameters  a s  compared t o  equ iva l en t  uncooled t u r -  

b ines .  However, u s ing .h igh  i n l e t  gas  tempera tures ,  which r e q u i r e  cool ing  a i r ,  

always i n c r e a s e s  t h e  use  of premium f u e l .  



1 BACKGROUND . 

Compressed a i r  energy s t o r a g e  (CAES) i s  a near-term technology f o r  t h e  

l o a d  l e v e l i n g  and peak shaving s t r a t e g i e s  being considered by e l e c t r i c  . u t i l i -  

ties. Assessments of t h e  t e c h n i c a l  and economic f e a s i b i l i t y  of t h i s  s t o r a g e  

system i n d i c a t e  t h a t . i t  i s  economically compet i t ive  wi th  convent ional  gas- 

t u r b i n e  peaker u n i t s .  ' 

A CAES p l a n t  comprises f o u r  subsystems ( see  Fig. 1 .1 ) :  a t u r b i n e  sys- 

t e m , .  compressor system, r e v e r s i b l e  motor /genera tor ,  and an  underground a i r -  

s t o r a g e  r e s e r v o i r .  The CAES concept i s  based on a s p l i t . B r a y t o n  cyc le  w i t h  

an  accompanying underground a i r  r e s e r v o i r .  During pe r iods  of off-peak power 

demand, a i r  i s  compressed w i t h  base-plant  power and s t o r e d  i n  t h e  underground 

r e s e r v o i r .  The a i r  i s  d ischarged ,  f o r  power genera t ion ,  through a combustion 

t u r b i n e  during t h e  peak demand per iod .  

1.1 AIR STORAGE RESERVOIR 

Because t h e  s t o r a g e  r e s e r v o i r  i s  u s u a l l y  t h e  most c o s t l y  s i n g l e  compo- 

n e n t  i n  a CAES p l a n t ,  i t s  volume i s  a s e n s i t i v e  design parameter .  The volume 

r equ i r ed  is  a f f e c t e d  by s t o r a g e  p re s su re  and temperature,  power l e v e l ,  and 

gene ra t ion  t i m e ;  and ( l e s s  obviously)  by. t h e  r e s e r v o i r  type ,  a i r  q u a n t i t y  

r equ i r ed  by the  t u r b i n e  system, and p re s su re  ranges permi t ted  by t h e  turbo- 

machinery ( t u r b i n e s  and cpmpressors).  

Compressed a i r  can be s t o r e d  underground i n  caverns ( n a t u r a l  o r  mined) ' . 

o r  i n  t h e  pore space  of porous rock formations.  Caverns may be  mined by con- 

v e n t i o n a l  mining, n u c l e a r  exp los ives ,  o r  solution-mining, as f o r  s a l t  s t r u c -  

t u r e s .  Many of t h e  porous rock formations a r e  a q u i f e r s  ( i . e . ,  they  con ta in  

wa te r ) .  To use an a q u i f e r  f o r  gas  s t o r a g e ,  a s  has  been done f o r  many y e a r s  

i n  t h e  n a t u r a l  gas  i n d u s t r y ,  t h e  water  must be d i sp l aced .  

2.2 COMPRESSOR SYSTEM 

The compressor system comprises an  a x i a l  compressor, c e n t r i f u g a l  boos- 

t e r  compressors,  i n t e r c o o l e r s ,  and an a f t e r c o o l e r  ( s e e  Fig.  1 .2) .  I n t e r c o o l i n g  

i s  r equ i r ed  t o  o p e r a t e  t h e  compressors w i t h i n  temperature l i m i t s  t o l e r a b l e  f o r  

s t anda rd  m a t e r i a l s  (about  600°F maximum a i r  t empera ture) .  An a f t e r c o o l e r  i s  

used t o  coo l  t h e  a i r  t o  avoid  p o s s i b l e  thermal -s t ress  damage t o  t h e  s t o r a g e  
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r e s e r v o i r .  The a x i a l  compressors are u n i t s  modified from conventional gas- 

t u r b i n e  peakers. Seve,ral commercially a v a i l a b l e  a x i a l  compressors have a 

nominal pressure  r a t i o  of 11: 1, and a 16: 1 u n i t  is' availaGle t h a t  comprises 

two 4 : l  co&resbors wi th  intermediate in te rcoo l ing .  One o r  more c e n t r i f u g a l  

booster  compressors; i n  s e r i e s  o r  i n  p a r a l l e l ,  a r e  used t o , r a i s e  the  p ressure  

t o  t h e  des i red  s to rage  l e v e l .  These compressors a r e  d i r e c t l y  connected o r  

geared t o  the  ma in ' sha f t  of the  a x i a l  compressor. 

1 . 3  TURBINE SYSTEM . .., 

The tu rb ine  system c o n s i s t s  of a low-pressure tu rb ine  (LGT), a high- 
. .. , 

pressure  tu rb ine  (HGT) , two combustors, and a recupera tor  (see  Fig. 1.3) . 
The LGT i s  a tu rb ine  modified from a conventional gas-turbine peaker u n i t .  



Seve ra l  commercially a v a i l a b l e  t u r b i n e s  have a  nominal p r e s s u r e  r a t i o  of 11:1, 

and one manufacturer  sells a 1 6 : l  u n i t .  For t h e  LGT, two d i f f e r e n t  de s igns  

a r e  a v a i l a b l e :  one, w i t h  i n t e r n a l  a i r  coo l ing ,  t o  o p e r a t e  a t  i n l e t  gas  t e m -  

p e r a t u r e s  of 1600'-2400°F; and t h e  o t h e r  i s  f o r  a  s imp le r ,  uncooled tu rb ine , '  

f o r  ga s  tempera tures  below about  1600°F. 

For proposed CAES p l a n t s ,  t h e  HGT is  a modif ied steam t u r b i n e  ope ra t i ng  

a t  gas  tempera tures  of about 1000°F. Optimized des igns  f o r  compressed-air  

t u r b i n e s ,  which o p e r a t e  a t  h igh  tempera tures ,  are being i n v e s t i g a t e d .  The 

r equ i r ed  p r e s s u r e  r a t i o  a c r o s s  t h e  HGT is  determined by t h e  r e s e r v o i r  s t o r a g e  

p r e s s u r e  and t h e  i n l e t  p r e s s u r e  t o  t h e  LGT. 

The combustors can be  des igns  modif ied from convent iona l  gas - turb ine  

peaker  u n i t s .  Pre l iminary  s t u d i e s  i n d i c a t e  t h a t  r e c u p e r a t o r s  can be  designed 

t h a t  a r e  economically f e a s i b l e  f o r  CAES a p p l i c a t i o n ;  they  w i l l  d i f f e r  from a 

convent iona l  gas - turb ine  peaker  u n i t  because of t h e  high-pressure a i r  l e av ing  ' 

t h e  r e s e r v o i r .  Recuperators  f o r  convent iona l  peakers  a r e  designed and b u i l t  

on a  one-of-a-kind b a s i s ,  and a p p l i c a t i o n  of r e c u p e r a t o r s  t o  l a r g e - s c a l e  

peaking u n i t s  (having t h e  capac i ty  of proposed CAES p l a n t s )  is  r e l a t i v e l y  

r ecen t .  I n  t h e  summer of 1974, Ph i l ade lph ia  E l e c t r i c  Company pu t  i n t o  ser- 

v i c e  t h e  f i r s t  l a rge - sca l e  i n s t a l l a t i o n  of r e c u p e r a t o r s  t o  be  sub jec t ed  t o  

many s t a r t i n g  c y c l e s ,  a s  i s  expected i n  CAES p l an t s ;  1 

The motor /genera tors  i n  most CAES p l a n t s  do n o t  r e q u i r e  s p e c i a l  des ign  

f e a t u r e s .  Seve ra l  U.S. and f o r e i g n  manufacturers  market synchronous u n i t s ,  

ope ra t i ng  a t  3600 spm, which could be  used.  For example, t h e  Brown Boveri  

Corporat ion sells a  nominal 200-MW motor /genera tor  r a t e d  a t  225 MVA, 17  kV, 

w i t h  hydrogen coo l ing  and s t a t i c  e x c i t a t i o n .  

1.5 PERFORMANCE PARAMETERS 

T h e  perfntmance of a CAES p l a n t  can be  c h a r a c t e r i z e d  i n  terms of f i v e  

parameters :  s p e c i f i c  a i r  f low, s p e c i f i c  h e a t  r a t e ,  s p e c i f i c  s t o r a g e  volume, 

s p e c i f i c  compression r a t e ,  and o v e r a l l  p l a n t  e f f i c i e n c y .  

S p e c i f i c  a i r  f low i s  t h e  m a s s  f low r a t e  of  a i r  supp l i ed  t o  the t u r b i n e  

system p e r  k i l o w a t t  power genera ted  ( l b  of air/kWh). It is  t h e  major f a c t o r  
. . 



i n  de te rmin ing  t h e  s i z e  of t h e  t u r b i n e s ,  compressors,  and a i r - s t o r a g e  reser- 

v o i r .  

- S p e c i f i c  h e a t  rate i s  d i r e c t l y  p r o p o r t i o n a l  t o  f u e l  consumption and is  

e q u a l  t o  t h e  product  of s p e c i f i c  f u e l  consumption and t h e  lower h e a t i n g  va lue  

of  t h e  f u e l  (BtuIkWh). It t h e r e f o r e  a f f e c t s  t h e  o p e r a t i n g  c o s t  of t he '  t u r -  

b  i n e s  . 
S p e c i f i c  s t o r a g e  volume; t h e  volume of r e s e r v o i r  r e q u i r e d  pe r  k i l o w a t t  

of power genera ted  (f t3/kWh),  i s  dependent on t h e  s p e c i f i c  a i r  f low r a t e  and 

t h e  tempera ture  and p r e s s u r e  of s t o r e d  a i r .  

S p e c i f i c  compression r a t e  i s  t h e  energy equ iva l en t  of t h e  power sup- 

p l i e d  t o  t h e  compressors p e r  k i l o w a t t  of power genera ted  (Btu/kWh). This  

parameter  i s  t h e  amount of off-peak energy r equ i r ed  t o  o p e r a t e  t h e  compressors.  

The o v e r a l l  p l a n t  e f f i c i e n c y  i s  equa l  t o  t h e  t o t a l  energy ou tpu t  from 

t h e  t u r b i n e s  d iv ided  by t h e  sum of t h e  energy i n p u t  from t h e  f u e l  and off-peak 

energy t o  t h e  compressor system. Th i s  e f f i c i e n c y  d e f i n e s  t h e  a b i l i t y  of a  

CAES p l a n t  t o  s t o r e  off-peak energy and r e t u r n  energy t o  t h e  power g r i d  dur ing  

peak hours .  

1.6 DESIGN PARAMETERS 

A CAES p l a n t  can be  designed w i t h  many combinations of s u r f a c e  equip- 

ment. The des ign  o f ,  t h e  compressor system us ing  commercial equipment i s  

s t r a i g h t f o r w a r d  and depends 'on  t h e  r e q u i r e d  r e s e r v o i r  p r e s s u r e  and flow r a t e  

needed f o r  t h e  t u r b i n e  system f o r  which a  v a r i e t y  of equipment o p t i o n s  a r e  

p o s s i b l e .  

S ince  t h e  o b j e c t i v e  o f  a  CAES p l a n t  is  t o  gene ra t e  peak power, t h e  t u r -  

b i n e  system r e p r e s e n t s  t h e  heart  of t h e  p l a n t ;  and s t u d i e s  of CAES p l a n t s  have 

focused on t h i s  system.' The performance of t h e  t u r b i n e  system, and of t h e  

complete p l a n t ,  i s  a  f u n c t i o n  of t h e  i n l e t  p r e s s u r e  t o  t h e  HGT ( t h e  r e s e r v o i r  

p r e s s u r e ) ,  t h e  i n t e r m e d i a t e  p r e s s u r e  between t h e  t u r b i n e s ,  and t h e  i n l e t  ga s  

tempera ture  t o  each t u r b i n e .  I n  a d d i t i o n ,  t h e  s e l e c t e d  i n l e t  gas  tempera tures  

d i c t a t e  whether i n t e r n a l  a i r  cool ing  i s  necessary .  



1.7 SCOPE OF REPORT 

The r e s u l t s  of a  pa rame t r i c  s tudy  of t u r b i n e  systems f o r  CAES p l a n t s  

a r e  presen ted .  The e f f e c t  of t h e  des ign  parameters  on o v e r a l l  p l a n t  pe r fo r -  

mance were cons idered ,  w i t h '  p a r t i c u l a r  emphasis on t h e  e f f e c t  of  t u r b i n e  

cool ing  a i r  r equ i r ed  f o r  h igh  i n l e t  ga s  temperatures  t o  t h e  t u r b i n e s  on p l a n t  

performance. 

The r e p o r t  is  d iv ided  i n t o  t h r e e  chap te r s  and an appendix. I n  Chapter 

2 ,  a  thermodynamic a n a l y s i s  of each subsystem and t h e  complete p l a n t  i s  pre- 

s en t ed .  The appendix c o n t a i n s  t h e  d e t a i l e d  development of t h e  equa t ions .  

Chapter 3 p r e s e n t s  and d i s c u s s e s  t h e  r e s u l t s  of t h e  s tudy .  Given f i r s t  i s  

t h e  performance of t h e  p l a n t  wi thout  t h e  use  of t u r b i n e  coo l ing  a i r  and nex t  

t h e  e f f e c t  of t u r b i n e  cool ing  a i r .  The conc lus ions  and recommendations re- 

s u l t i n g  from t h i s  s tudy  a r e  given i n  Chapter 4.  



2 THERMODYNAMIC ANALYSIS 

A thermodynamic a n a l y s i s  w a s  c a r r i e d  out  on each of t h e  f o u r  systems of 

a  CAES p l a n t ,  and t h e  r e s u l t s  were combined t o  e v a l u a t e . t h e  performance.of t h e  

p l a n t .  Parameters  considered include:  i n l e t  gas  temperature t o  t h e  high- 

p r e s s u r e  gas  t u r b i n e  (HGT) and low-pressure gas t u r b i n e  (LGT); i n l e t  and out- 

l e t  gas  p r e s s u r e s  of t h e  HGT; and t h e  amount of cool ing  a i r .  

The fo l lowing  assumptions were made: 

The gas  flow is  s t eady  and t h e  s t a t e  a t  each p o i n t  i n  t h e  
c o n t r o l  volume does n o t  vary  w i t h  t i m e .  

D i f f e rence  i n  k i n e t i c  energy and p o t e n t i a l  energy ac ros s  
each component a r e  n e g l i g i b l e .  

Heat l o s s  t o  t h e  ambient from each component i s  n e g l i g i -  
b l e  ( a d i a b a t i c  c o n t r o l  volume). 

The gas  mixture  behaves a s  a  p e r f e c t  gas .  

Natura l  gas  i s  t h e  f u e l .  

2.1 TURBINE SYSTEM 

The t u r b i n e  system chosen c o n s i s t s  of two t u r b i n e s  (HGT and LGT), two 

combustors, and a  r ecupe ra to r  (Fig.  1 .3 ) .  The s e l e c t i o n  of t h e  t u r b i n e  system 

evolved from t h e  r e s u l t s  of a previous  s t u d y Y 2  which included comparison of 

s e v e r a l  p o s s i b l e  t u r b i n e  systems f o r  CAES. 

I n  ana lyz ing  t h e  performance of t h e  t u r b i n e  system, t h e  followifig va l -  

ues  of system parameters  were considered:  

'l'urbine ef f i c l e n c i e s  : - - 
"LGT 'IHGT 

= 0.85, 

Combustor e f f i c i e n c i e s :  - ncl - Qc2 = 1 .0 ,  

Recuperator  e f f e c t i v e n e s s :  E = 0.8 ,  

Temperatures : = 1 2 ~ ~ ~  

Pressures :  Pg = 50, 70, 100 atm, 

P4 = 11, 16 ,  30 a t m ,  and 

Power olitput of LGT: wLGT = 200 MW. 



Subsc r ip t s  given i n  t h e  above parameters  correspond t o  t h e  components o r  sta- 

t i o n s  i n  Fig.  1.3.  The e f f i c i e n c i e s  of t u r b i n e s  and combustors a r e  based on 

t h e  s ta te -of - the-ar t  va lues  of a v a i l a b l e  equipment. Recuperator e f f e c t i v e n e s s  

i s  a func t ion ,  of t h e  h e a t  exchanger s p e c i f i c a t i o n s .  Because t h e  temperature'  

of t h e  i n l e t  gas  t o  t h e  tu rb ines  must be kept  low enough t o  avoid thermal dam- 

age t o  t h e  t u r b i n e  b l ades  and vanes, cool ing  a i r  :is requi red  f o r  h ighe r  i n l e t  

gas  temperatures .  Temperature T is  f i x e d  by t h e  cond i t i on  of t h e  underground 1 
ai r - s torage .caver .n ;  and p re s su re  p depends on t h e  p re s su re  drops a c r o s s  t h e  3 
recupera tor  and t h e  f i r s t  combustor, and p re s su re  of t h e  cavern a ir .  The 

thermodynamic a n a l y s i s  of t h e  t u r b i n e  system is  given i n  d e t a i l  i n  t h e  re  en- 
d ix .  

Governing equat ions  were w r i t t e n  f o r  each component. Mass-balance 

equat ions  were formulated by cons ider ing  a d d i t i o n  of f u e l  t o  t h e  combustors 

and cool ing  a i r  t o  t h e  t u r b i n e s .  In s t ead  of momentum equa t ions ,  equat ions  

t h a t  r ep re sen t  t h e ' p r e s s u r e  v a r i a t i o n s  a c r o s s  each component were used. 

Energy-balance equat ions  were w r i t t e n  f o r  t h e  r ecupe ra to r ,  t h e  t u r b i n e s ,  and 

t h e  combustors. The d e f i n i t i o n s  of r ecupe ra to r  e f f e c t i v e n e s s  and thermal 

e f f i c i e n c y  of t u r b i n e s  were a l s o  used. 

The equat ions  f o r  mass, momentum, and energy ba lances  were so lved  by 

use  of a  s imula t ion  computer program w i t h  which t h e  fol lowing were ca l cu la t ed :  

t u r b i n e  o u t l e t  temperatures ,  T4  and T6; r ecupe ra to r  o u t l e t  temperatures ,  2 
and T7; and f u e l - a i r  r a t i o s  f o r  t h e  combustors, f l  and f  The r a t e  of a i r  

2 '  . 
flow from t h e  'underground s t o r a g e  r e s e r v o i r  i s  then  obta ined  from t h e  energy- 

balance equat ion  f o r  t h e  LGT. From these  r e s u l t s ,  t h e  power output  of HGT is  

ca l cu la t ed .  F i n a l l y ,  t h e ' t o t a l  power output  of t h e  t u r b i n e  system, spe . c i f i c  

a i r  flow r a t e ,  and s p e c i f i c  hea t  r a t e  a r e  c a l c u l a t e d .  

2.2 UNDERGROUND AIR STORAGE SYSTEM 

The underground a i r  s t o r a g e  r e s e r v o i r  considered i s  a water-compensated 

cavern. Therefore ,  t h e  p re s su re  v a r i a t i o n  i n  t h e  cavern during t h e  ope ra t ing  

cyc le  is  n e g l i g i b l e .  Two f a c t o r s  i n f luence  t h e  p re s su re  v a r i a t i o n  i n  t h e  a i r  

s h a f t :  s t a t i c  head and f r i c t i o n .  V a r i a t i o n  i n  s t a t i c -head  p re s su re  is  a 

func t ion  of t h e , a i r  p r e s s u r e  i n  t h e  cavern,  and v a r i a t i o n  i n  f r i c t i o n a l ' p r e s -  

s u r e  is  a func t ion  of a i r  flow r a t e .  



A i r  p 'ressure i n  t h e  s t o r a g e  cavern was c a l c u l a t e d  from t h e  o u t l e t  a i r  

p r e s s u r e  of t h e  cavern,  w i t h  p re s su re  v a r i a t i o n  due t o  t h e  change i n  t h e  s t a -  

t i c  head and t h a t  due t o  f r i c t i o n  being considered.  The s p e c i f i c  s t o r a g e  

volume' could then  be obta ined  from t h e  cavern p re s su re  and t h e  s p e c i f i c . a i r  

flow r a t e .  (See.Appendix f o r  t h e  c a l c u l a t i o n a l  procedures.)  

2.3 COMPRESSOR SYSTEM 

The s tudy  was extended t o  t h e  compressor system i n  o rde r  t o  complete 

t h e  a n a l y s i s  of t h e  CAES p l a n t .  The compressor system s e l e c t e d  i s  composed 

of two compressors (low-pressure,  LPC, and boos t e r ,  BC), and i n t e r c o o l e r  and 

an  a f t e r c o o l e r ,  as shown i n  Fig.  1 .2.  The fol lowing parameters  were assumed 

co be known o r  s p e c i f i e d :  

- Adiabat ic  e f f i c i e n c y  of compressors: nLPC - nBc = 0.85; 

Temperatures: T1l 
= 77OF, T13 = 100°F, T15 = 120°F; and 

P res su res :  - '1.1 - 'atmy P12 = 16 atm. 

The r equ i r ed  output  i nc ludes  t h e  compressor o u t l e t  temperatures  (T and TI$, 12 
from which t h e  power inpu t  t o  t h e  compressors may'be obta ined .  (See Appendix 

f o r  t h e  d e t a i l e d  a n a l y s i s . )  

The r a t e  of a i r  flow i n t o  t h e  compressor system was based on flow from 

t h e  s t o r a g e  cavern i n t o  t h e  t u r b i n e  system, wi th  t h e  fol lowing being consi-  

dered:  l o s s  of a i r  i n  t h e  cavern;  p re s su re  drops ac ros s  t h e  i n t e r c o o l e r  and 

a f t e r c o o l e r ;  and t h e  f r i c t i o n a l  l o s s  i n  t h e  cavern s h a f t .  a he compressor out- 

l e t  temperatures  could then be c a l c u l a t e d  by use of t h e  a d i a b a t i c  e f f i c i e n -  

c i e s  of t h e  compressors. By us ing  these  r e s u l t s ,  t h e  power i n p u t s  t o  t h e  com- 

p r e s s o r s  could b e . c a l c u l a t e d  wi th  t h e  energy-balance equat ions .  S p e c i f i c  com- 

p r e s s i o n  energy was then  eva lua ted  from t h e  inpu t  of t h e  compressor system and 

t h e  output  of t h e  t u r b i n e  system. 

2.4 COMPRESSED A I R  ENERGY STORAGE PLANT 

By using t h e  r e s u l t s  from t h e  a n a l y s i s  of t h e  t u r b i n e  system, under- 

ground s t o r a g e  cavern,  and compressor system, t h e  o v e r a l l  performance of t h e  

CAES p l a n t  was eva lua ted .  The o v e r a l l  p l a n t  e f f i c i e n c y  (?loverall ) was def ined  

a s  , 



- Y - wout (2.1) 
'overal l  . 

. . 'conp + ' fuel .  

where : 

. 
= power output  of t h e  t u r b i n e  system, 

. . . 'out . .- . . 
= power inpu t  t o  t h e  compressor system, 

. Wcomp,, , 

. ..'fuel = r a t e  of f u e l  supply t o  t h e  combustors. 
. . 

I n  t h e - r a t e  form of t h i s  equat ion ,  t h e  charging time of t h e  r e s e r v o i r  i s  

assumed t o  equal  t h e  power-generation time of t h e  t u r b i n e  system. 



3 RESULTS AND DISCUSSION 

R e s u l t s  of t h i s  pa rame t r i c  s tudy  a r e  p re sen t ed  i n  terms of t h e  f i v e  

performance parameters :  s p e c i f i c  a i r  f low ( l b / k ~ h ) ,  s p e c i f i c  s t o r a g e  volume 

( f t  3/kWh) , s p e c i f i c  h e a t  rate (~ tu /kWh)  , s p e c i f i c  compression rate ( ~ t u l k ~ h ) ,  
.. . 

and o v e r a l l  p l a n t  e f f i c i e n c y ;  a n d ' a r e  g iven  as a , - f u n c t i o n  of t u r b i n e  i n l e t  

t empera tures  (T and T  ) and i n l e t  and o u t l e t  p r e s s u r e s  of HGT (p3 and p4 ) .  3 5 
Given f i r s t  a r e  a set of  r e s u l t s  f o r  which turb ine-b lade  coo l ing  is  n o t  con- 

s i d e r e d .  The e f f e c t  of  cool ing  a i r  on r e s u l t s  i s . d i s c u s s e d  in -Sec :  3 . 2 .  

3.1 PERFORMANCE WITHOUT CONSIDERING COOLING A I R  

S p e c i f i c  a i r  f low,  t h e  flow r a t e  ( l b / h r )  of a i r  coming o u t  of t h e  s t o r -  

age  cavern pe r  u n i t  ou tpu t  of t h e  system (kW), is  d i r e c t l y  p r o p o r t i o n a l  t o  t h e  

t u r b i n e  and compressor s i z e s .  Thus, i t  is  important  i n  determining t h e  c o s t  

of t h e  above-ground f a c i l i t y .  

S p e c i f i c  s t o r a g e  volume, t h e  r equ i r ed  s t o r a g e  cavern volume p e r  u n i t  

work o u t p u t ,  is  d i r e c t l y  r e l a t e d  t o  t h e  c o s t  of t h e  underground f a c i l i t y  f o r  

a  CAES p l a n t .  Th i s  s t o r a g e  volume depends on t h e  r equ i r ed  s p e c i f i c  a i r  f low 

r a t e  as w e l l  a s  on cavern c o n d i t i o n s ,  such a s . p r e s s u r e  and tempera ture  of 

s t o r e d  a i r .  Consequently,  r e s u l t s  f o r  t h e  s t o r a g e  volume show a t r e n d  s i m i -  

l a r  t o  t hose  f o r  a i r  flow. A p l o t  of s p e c i f i c  a i r  £,low and s p e c i f i c  s t o r a g e  

volume a g a i n s t  HGT i n l e t  t empera tures  a t  d i f f e r e n t  LGT i n l e t  t empera tures  

(Fig.  3.1) shows t h a t  t h e  a i r  f low and volume decrease  a s  i n l e t  t empera ture  

of e i t h e r  HGT o r  LGT i n c r e a s e s .  Shown i n  F igs .  3.2 and 3.3 a r e  t h e  e f f e c t s  

of HGT i n l e t  p r e s s u r e  and o u t l e t  p r e s s u r e ,  r e s p e c t i v e l y ,  on t h e  s p e c i f i c  a i r  

f l ow ' and  t h e  s p e c i f i c  s t o r a g e  volume. Smaller  a i r  f low and s t o r a g e  volume 

a r e  r e q u i r e d  f o r  a  h i g h e r  HGT i n l e t  p r e s s u r e ,  and t h e  e f f e c t  of  HGT o u t l e t  

p r e s s u r e  i s  almost  n e g l i g i b l e .  

S p e c i f i c  h e a t  r a t e  i s  a  measure of premium-fuel usage f o r  t h e  combus- 

t o r s  p e r  u n i t  power ou tpu t  of  t h e  system. The e f f e c t  of t u r b i n e  i n l e t  t e m -  

p e r a t u r e s  on t h e  s p e c i f i c  h e a t  r a t e  i s  g iven  i n  F ig .  3.4: h ighe r  LGT i n l e t  

t empera ture  r e q u i r e s  more f u e l  and t h e  hea t  r a t e  dec reases  and then  i n c r e a s e s  

a s  t h e  HGT i n l e t  t empera ture  i n c r e a s e s .  F igu re  3.5 shows t h a t  t h e  s p e c i f i c  

h e a t  rate s lowly dec reases  as t h e  HGT i n l e t  p r e s s u r e  i n c r e a s e s .  F igure  3.6 
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shows t h a t  t h e  s p e c i f i c  hea t  r a t e  decreas'es bono ton ica l ly  a s  HGT o u t l e t  pres-  

s u r e  i nc reases .  

S p e c i f i c  compression r a t e ,  t h e  f u e l  equ iva l en t  of t h e  energy input  t o  
, . 

t h e  compressors as. def ined  i n  ~ q .  ( C .  11) . of t h e  ~ ~ ~ e n d i x ,  depends on t h e  a i r  

flow and i n l e t  and o u t l e t  temperatures  of bo th  .compressors. .FigurL 3.7 shows 
. . 

t h a t  t h e  com$ression . r a t e  decreases  w i t h  inc reas ing  t u r b i n e  i n l e t  temperatures  

i n  a  p a t t e r n  s i m i l a r  t o  t h a t  f o r  t h e  a i r  flow (Fig. 3.1).  This  s i m i l a r i t y  

r e s u l t s  because t h e  compression r a t e  i s  d i r e c t l y  p.roportiona1 t o  t h e  a i r  flow. 

A h ighe r  compression r a t e  i s  r equ i r ed  f o r  h igher  HGT i n l e t  p re s su re  (Fig.  3 .8) .  

This  t r e n d  is  oppos i t e  t o  t h e  r e l a t i o n s h i p  between s p e c i f i c  a i r  flow and HGT. 
. . 

i n l e t  p re s su re .  The h ighe r  s t o r a g e  p r e s s u r e  induces h igher  compressor o u t l e t  

temperatures ,  which r e q u i r e  a  h ighe r  compression r a t e .  The HGT o u t l e t  pres-  

s u r e ,  a s  shown i n  Fig.  3.9, does n o t  a f f e c t  t h e  s p e c i f i c  compression r a t e  

apprec iab ly .  

The o v e r a l l  p l a n t  e f f i c i e n c y ,  t h e  r a t i o  of t u r b i n e  power output  t o  t h e  

sum of t h e  power input  t o  t h e  compressors and t h e  power equ iva l en t  of f u e l  

energy, ranges 'from 0.48 t o  0.58 f o r  t h e  cond i t i ons  s p e c i f i e d  . i n  t h i s  s tudy .  

The e f f e c t s  or? t h e  o v e r a l l  p l a n t  e f f i c i e n c y . a r e  given i n  F igs .  3.10-3.12. 

Higher t u r b i n e  i n l e t  temperatures  i n c r e a s e  e f f i c i e n c i e s  (Fig. 3.10) . . 'However, 

f o r  t h i s  s e t  of r e s u l t s ,  the .  e f f e c t  of cool ing  a i r ,  which w i l l  be  r equ i r ed  f o r  

h igh  t u r b i n e  i n l e t  temperatures  is  neglec ted .  The o v e r a l l  e f f i c i e n c y  decreases  

wi th  inc reas ing  HGT i n l e t  p re s su re  (P ig .  3 ,11) ,  bu t  t h e  v a r i a t i o n  i s  considered 

i n s i g n i f i c a n t .  Figure.3. ,12 shows t h e  e f f e c t  of HGT o u t l e t  p r e s s u r e  o n , o v e r a l l .  

p l a n t  e f f i c i e n c y ;  t h e  v a r i a t i o n  i n  p l a n t  e f f i c i e n c y  d i f f e r s  from c a s e  t o  ca se  

according to ,  t u r b i n e  i n l e t  temperatures ,  b u t  t h e  e f f e c t  of HGT o u t l e t  p ressure  

i s  i n s i g n i f i c a n t .  

. .. 

3.2 EFFECT OF COOLING A I R  

Turbine b l ades  and vanes must be  cooled t o  keep them w i t h i n  a  tempera- 

t u r e  range to, accommodate m e t a l l u r g i c a l  l i m i t a t i o n s  when h igh  t u r b i n e  i n l e t  

temperatures  a r e  t o  be used. A i r  coo l ing  i s  t h e  most common and p r a c t i c a l  

method, a l though l i t t l e  d e t a i l e d  information on i t  appears  i n  t h e  open l i t e r a -  

t u r e .  Two d a t a  p o i n t s  were a v a i l a b l e .  Giramonti e t  a1. considered a  c a s e  

f o r  an i n l e t  gas  temperature t o  t h e  t u r b i n e  of 2000°F and a  coo l ing -a i r  t u r -  

b i n e  a i r  r a t i o  of 0 .21 f o r  t h e  t u r b i n e  p re s su re  r a t i o  of 14.2. Ayers and 
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~ o o v e r ~  used a r a t i o  of coo l ing  a i r  t o  t u r b i n e  a i r  of 0.085 f o r  a t u r b i n e  in-  

l e t  gas  tempera ture  o f  1850°F and a t u r b i n e  p r e s s u r e  r a t i o  of 10.  

We assumed t h a t  cool ing  a i r  i s  r equ i r ed  f o r  t u r b i n e  i n l e t  a i r  tempera- 

t u r e s  above 1600°F and t h a t  mixing of coo l ing  a i r  w i t h  ' the main tu rb ine .  flow 

is completed i n  t h e  e a r l y  s t a g e s .  The second assumption may n o t  be  t r u e  i n  

p r a c t i c a l  a p p l i c a t i o n s ,  s i n c e  coo l ing  a i r  was fo&d t o  be  needed f o r  more 

s t a g e s  f o r  such h ighe r  gas  tempera tures  a s  2400°F. However, t h i s  s imple  

coo l ing  model p r e d i c t s  t h e  performance of t u r b i n e s  w i t h  reasonable  accuracy;  

e .g . ,  i t  p r e d i c t s  a t u r b i n e  o u t l e t  t empera ture  of 821°F f o r  a c a s e  i n  t h e  

UTRC r e p o r t ,  where t h e  stage-by-stage model i n  t h e  r e f e r e n c e  gave 774°F. 

Before t h e  s tudy  of e f f e c t  of coo l ing  a i r  on t h e  system performance, 

a c a s e  from Ref. 3 w a s  examined t o  compare w i t h  r e s u l t s  of t h e  a n a l y s i s  i n  

t h i s  r e p o r t .  The c a s e  was based on an i npu t  parameter  d i f f e r e n t  f r o m ' t h e  

o t h e r s  c i t e d  i n  t h e  r e p o r t ;  power i n p u t  t o  t h e  compressor system was spec i -  

f i e d  a s  200 MW. I n  Table  3.1, i n  which r e s u l t s  from t h e  p re sen t  a n a l y s i s  

a r e  compared w i t h  t h d s e  i n  Ref.  3,  s p e c i f i c  t u r b i n e  flow does n o t  i n c l u d e  t h e  

coo l ing  a i r .  The t a b l e  shows t h a t  t h e  p r e s e n t  a n a l y s i s  p r e d i c t s  t h e  pe r fo r -  

mance of t h e  CAES p l a n t  w i t h  a c c e p t a b l e  accuracy,  even though a very  s imple  

a i r - c o o l i n g  model was used. 

a 
Table 3.1. Comparison of R e s u l t s  on a Case 

P re sen t  
Analys i s  k e f .  3 

S p e c i f i c  Turb ine  Flow (lb/kWh) 8.47 8.46 

S p e c i f i c  S to rage  Volume ( f t  3/kWh) 1.87 1.86 

S p e c i f i c  Heat Rate  (~ tu /kWh)  4,040 4,130 

Power Output (MW) 258 254 

O v e r a l l  P l a n t  E f f i c i e n c y  0 .51  0.50 

a 
Cavern pre.ssure = 70 atm; 

HGT i n l e t  t empera ture  = 1000"; LGT i n l e t  temperature  = 2000°F; . . 
Cooling a i r - t u r b i n e  a i r  r a t i o  (LGT) = 0.23; and 

Power i npu t  t o  compressors = 200 MW. 



Because t h e  cool ing  a i r  i s  suppl ied  from t h e  underground a i r - s t o r a g e  

cavern, it i n c r e a s e s  t h e  a i r  flow r a t e  and a f f e c t s  t h e  r e s u l t s .  The s tudy  

inc ludes  t h e  e f f e c t  of cool ing  a i r  on t h e  fol lowing s p e c i f i c  parameters:  a i r  

flow, s t o r a g e  volume, h e a t  r a t e ,  compression r a t e ,  and .on o v e r a l l  p lan t .  e f f i c -  

iency.  Four c a s e s  were examined: 
. - 

HGT I n l e t  LGT I n l e t  
. Case Temperature, OF Temperature, OF 

( 4  1000 2000 

(b 1600 2000 

For c a s e s ' ( a )  and ( b ) ,  cool ing  a i r  i s  needed f o r  t h e  LGT only ,  wh i l e  both  t u r -  

b ines  r e q u i r e  cool ing  i n  ca ses  (c )  and ( d ) .  Since t h e r e  is  l i t t l e  informa- . 

t i o n  on t h e  amount of cool ing  a i r  r equ i r ed  a s  a  func t ion  of t u r b i n e  i n l e t  

temperature,  a  s tudy  was made by us ing  t h e  r a t i o  of cool ing-a i r  flow t o  main- 

t u r b i n e  flow a s  a  parameter.  Resu l t s  were obta ined  f o r ' f l o w  r a t i o s  of 0-0.5. 

The e f f e c t  of cool ing  a i r  on t h e  a ir  flow and s t o r a g e  volume is  g iven  

i n  F igs .  3.13a ( cases  a and b) and 3.13b ( cases  c  and d ) .  For a l l  c a ses ,  a i r  

flow and s t o r a g e  volume inc rease  by as much a s  35% a s  t h e  r a t i o  of cool ing  a i r  

t o  t u r b i n e  a i r  i n c r e a s e s  from 0  t o  0.5. Also shown i n  t h e  f i g u r e s  a r e  r e f e r -  
. . 

ence p o i n t s  r ep re sen t ing  t h e  cases  i n  i h i c h  t h e  h ighes t  a l lowable  t u r b i n e  'in- 

l e t  temperatures  wi thout  b lade  cool ing  (1600°F) a r e  used. Comparison w i t h . .  

t h e s e  r e f e rence  d a t a  g ives  t h e  l i m i t s  on t h e  r a t i o  of cool ing  a i r  t o  t u r b i n e  

a i r  w i t h i n  which lower s p e c i f i c  a i r  flow and s t o r a g e  volume than t h e  r e f e r -  

ence cases  would. be. requi red :  
rc2 

< 0.22 f o r  c a s e  ( a ) ,  rC2 < 0.18 f o r  c a s e  

( b ) ,  rc2 ( 0 . 2 9  - 0.45 depending on r f o r  c a s e . ( c ) ,  and r < 0.6 f o r  a l l  
1 C2 - 

r c l  
f o r  ca se  i d ) .  

The e f f e c t s  of cool ing  a i r  on s p e c i f i c  h e a t  r a t e  a r e  given i n  Figs.  

3.14a ( cases  a and h )  and 3.14b ( cases  c  and d ) :  t h e  s p e c i f i c  hea t  r a t e  in-  

c r e a s e s  f o r  a l l  c a ses  r e g a r d l e s s  of t h e  cool ing  a i r  r a t e .  The i n c r e a s e s  i n  

s p e c i f i c  h e a t  r a t e  a r e  g r e a t e r  f o r  t h e  r e f e rence  case  by no more than  6 ,  14,  

and 1 7 %  f o r  ca ses  ( a )  and (b) , ( c )  , and ( d l ,  r e s p e c t i v e l y .  



Fig;  3.13a 

E f f e c t  of Cooling A i r  
on S p e c i f i c  A i r  Flow and 
S p e c i f i c  S to rage  Volume 
(T =1000; T5=20000F and 

3 ~ 3 = 1 6 ~ ~ ;  T5=2O0O4F) 
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Fig .  3.13b 

c E f f e c t  of Cooling A i r  
P C on S p e c i f i c  A i r  Flow and 
5 

1 . 3  - S p e c i f i c  S torage  Volume 
-2 (T 3 =T 5 =2000°F and T 3 =T 5 =2400°F) 



, Fig .  -3.14a 

E f f e c t  of  Coo'l'ing A i r  - ' . ' 3,900 k 
on S p e c i f i c  Heat Rate  a 

(T =1000; T5=20000F and k w 
3 ~ 3 = 1 6 ~ ~ ;  T5=20000F) x 3,800 

0 

T3 =1000, T5 = 2000 F 

/+------- 

/00~3 = 1600; T5 '2000 F 
- /' 

// 

/ ' 
13 - 1000, T5 = I600 F (uncooled) - 

---------- ----- 
T3= T5 = 1600F (uncooled) 

- P3 = 70, P4 = 16 o t m  

I I I I I I 

- \ 

\ \ \ \\COOLING AIR / HGT AIR, 

t 3,800 
T3=T5  = 1600F 

( uncooled] 

Fig.  3.14b 

E f f e c t  of Cooling A i r  
on S p e c i f i c  Heat Rate  

(T3=T5=20000F and T3=T5=24000F) 

COOLING AIR / LGT AIR, r,, 



E f f e c t s  o f  cool ing '  a i r  on s p e c i f i c  compression r a t e  (F igs .  3.15a and 

3.15b) resemble t h o s e  of s p e c i f i c  a i r  flow: compression energy i n c r e a s e s  mono- 

t o n i c a l l y  a s  coo l ing  a i r - t u r b i n e  a ir  r a t i o  becomes l a r g e r .  Comparison w i t h  

t h e  r e f e r e n c e  c a s e s  shows t h e  l i m i t s  o n . t h e  cool ing  a i r - t u r b i n e  a i r  r a t i o  ' 

w i t h i n  which l e s s  compression energy is  requ i r ed  f o r  h ighe r  t u r b i n e  i n l e t  

t empera tures .  The l i m i t s  are very  c l o s e  t o  t hose  f o r  a i r  flow and s t o r a g e  

volume . 
Shown i n  F igs .  3.16a and 3.16b a r e  t h e  e f f e c t s  of cool ing  a i r  on over- 

a l 1 , p l a n t  e f f i c i e n c y :  i n  gene ra l ,  o v e r a l l  p l a n t  e f f i c i e n c y  decreases  w i t h  

i n c r e a s i n g  r a t i o  of cool ing  a i r  t o  t u r b i n e  a i r .  Data f o r  t h e  r e f e r e n c e  c a s e s  

a r e  a l s o  shown f o r  comparison. It i s  found that plant ef f$c iency  can be in-  

c r eased  over  t h a t  i n  t h e . r e f e r e n c e  cases  hy using h ighe r  t u r b i n e  i n l e t  t e m -  

p e r a t u r e s  under t h e  fo l lowing  condi t ions :  
rc2 

< 0 .1  f o r  ca ses  ( a )  and ( b ) ;  

r c l  < 0.27 and r < 0.17 f o r  ca se  ( c ) ;  and r < 0 . 4 8 a n d  rC2 < 0.34 f o r  
c2 C1 

c a s e  ( d ) .  



Fig.  3.15a 
u 

. a  
' E f f e c t  of Cooling A i r  9,000 

on S p e c i f i c  Compression Rate  o 
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Fig .  3.15b 

E f f e c t  of Cooling A i r  ' 

on S p e c i f i c  Compression Rate  
(T =T =2000°F and T -T -34000F) 

3 5 3- 5-' 

COOLING AIR / L G T  A IR ,  r,, 



Fig .  3.16a 

. Effec t  of Cooling A i r  
on Overa l l  P l a n t  E f f i c i ency  

(T =1000; T5=20000P and 
3 . ~  =1600; T5=20000F) 
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Fig. 3.16b 

E f f e c t  of Cooling A i r  
on Overa l l  P l an t  Eff ic iency  

(T3=T5=?000YF and T3=~5=24000F) ' 
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. 4 CONCLUSIONS AND RECOMMENDATIONS 

For uncooled t u r b i n e s ,  t h e  fo l lowing  performance t r e n d s  were observed: 

1. A s  i n l e t  gas  temperatures  t o  t h e  t u r b i n e  i n c r e a s e ,  s p e c i f i c  ' 

a i r  flow, s t o r a g e  volume, and compression r a t e  decrease ;  
s p e c i f i c  h e a t  r a t e  and o v e r a l l  e f f i c i e n c y  inc rease .  . . 

2. s p e c i f i c  h e a t  r a t e  i s  s t r o n g l y  i n f luenced  by' i n l e t  tempera- 
- . t u r e  t o  t h e  low-pressure t u r b i n e  (T5 i n  F ig .  1 . 3 ) ,  bu t  on ly  

weakly a f f e c t e d  by t h e  i n l e t  t empera ture  t o  t h e  h igh-pressure  
t u r b i n e  . 

3. A s  i n l e t  p r e s s u r e  t o  t h e  high-pressure t u r b i n e  (p3) in -  
c r e a s e s ,  s p e c i f i c  s t o r a g e  volume s i g n i f i c a n t l y  decreases . ; .  

, s p e c i f i c  a i r  f low, hea t  r a t e ,  and o v e r a l l  e f f i c i e n c y  s l i g h t l y  
decrease ;  and s p e c i f i c  compression r a t e  s l i g h t l y  i n c r e a s e s .  

4. O u t l e t  p r e s s u r e  from t h e  h igh  p r e s s u r e  t u r b i n e  (p4) a f f e c t s '  
performance only  s l i g h t l y .  

I 
Thus, i t  is  recommended t h a t  t h e  h i g h e s t  p o s s i b l e  i n l e t  ga s  tempera- 

t u r e s  wi thout  r e q u i r i n g  cool ing  a i r  should be  used. The i n l e t  p r e s s u r e  t o  

t h e  high-pressure t u r b i n e ,  which de t e rmines ' t he  s t o r a g e  p r e s s u r e  should be  

a s  h igh  a s  pos s ib l e .  S ince  t h e  o u t l e t  p r e s s u r e  from t h e  h igh-pressure  t u r -  

b i n e  has  a minor e f f e c t  on,performance,  convent iona l  low-pressure t u r b i n e s .  

(from gas- turb ine  peaker  u n i t s )  having a  nominal p r e s s u r e  r a t i o . o f  10-16:l 

can be  used. 

For t u r b i n e s  t h a t  r e q u i r e  coo l ing  a i r ,  t h e  fo l lowing  performance 

t r e n d s  were observed: 

1. Uncooled High-Pressure Turbine and Cooled Low-Pressure Turbine 

a )  A s  r i n c r e a s e s ,  s p e c i f i c  a i r .  f low,  s t o r a g e  volume, 
c2 

and compression r a t e  i n c r e a s e .  They . a r e  less than  
f o r  equ iva l en t  uncooled t u r b i n e s  f o r  r -0.2. 

2  
b) The s p e c i f i c  hea t  r a t e  i s  always g r e a t e r  than t h a t  

f o r  equ iva l en t  uncooled t u r b i n e s .  

c )  The o v e r a l l  e f f i c i e n c y  dec reases  w i t h  r C 2 .  For rc 
< -0.1, t h e  e f f i c i e n c y  is  g r e a t e r  than f o r  uncoolea 
t u r h i n e s ;  b u t ,  f o r  rc > -0.1, i t  i s  less. 2  

2. Both Turbines  Air-Cooled 

a )  A s  rcl i n c r e a s e s ,  s p e c i f i c  a i r  f low, s t o r a g e  volume, 
and compression r a t e  decrease  f o r  r > -0.2, bu t  

c2 
they i n c r e a s e  f o r  r < -0.2. These va lues  a r e  less c2 
than  f o r  an equ iva l en t  uncooled t u r b i n e  f o r  most 
cool ing  a i r  r a t i o s  cons idered .  



b) There i s  an i n f l e c t i o n  p o i n t  a t  r " 0.45 f o r  t h e  
c2 s p e c i f i c  h e a t  r a t e :  a s  r inc reases ,  t h e  h e a t  r a t e  

c  1 
i n c r e a s e s  f o r  r < 0.45 b u t  decreases  f o r  r > 0.45. 

c2 C 2 
This  r a t e  i s  always g r e a t e r  than  f o r  t h e  equivalent 
uncooled tu rb ines .  

c )  There i s  an i n f l e c t i o n  p o i n t  a t  r " 0.3 f o r  t h e  
C2 o v e r a l l  e f f i c i e n c y :  a s  r i n c r e a s e s ,  t h e  o v e r a l l  c  1 

e f f i c i e n c y  decreases  f o r  r < 0 .3  b u t  i n c r e a s e s  f o r  
C2 

rc2 
> 0.3. The o v e r a l l  efficiency is  g r e a t e r  than  

f o r  equ iva l en t  uncooled t u r b i n e s  f o r  most cool ing-a i r  
r a t i o s  when T3 = T5,= 2400°F, bu t  i t  ' i s  l e s s  f o r  most 
cool ing-a i r  r a t i o s  when T3 = T5 = 2000°F. 

The above t r e n d s  i n d i c a t e  t h a t  t h e  amount of cool ing  a i r  has  a  s i g n i f i -  

c a n t  e f f e c t  on t h e  performance parameters.; cool ing  a i r  can' e i t h e r  i n c r e a s e  o r  

dec rease  performance parameters  compared w i t h  equ iva l en t  uncooled tu rb ines .  

However, using h igh  i n l e t  gas  temperatures ,  which r e q u i r e  cool ing  a i r ,  always 

incre ,ases  premium f u e l  usage. De ta i l ed  information on. t u r b i n e  cool ing  is  

t h e r e f o r e  e s s e n t i a l  t o  a c c u r a t e l y  e v a l u a t e  d i f f e r e n t  t u r b i n e  systems. 

The United Technologies Research Center i s  completing a  subcont rac t  

w i t h  ANL ( t h e  expected completion d a t e  is.November 1, 1977) t o  e v a l u a t e  t h e  

performance and c o s t  of s e l e c t e d  turbomachinery components f o r  CAES p l a n t s .  

This  work w i l l  p rovide  t h e  neces sa ry  d a t a  on t u r b i n e  cool ing .  completing t h e  

e v a l u a t i o n  given h e r e  i n  t h i s  r e p o r t  i s  planned f o r  FY 1978. 



-11. AJALYSIS OP IL'URBINE SYSTEM 
. . 

~ o v e r n i n g  e q u a t i o n s  were  w r i t t e n  fo'r e a c h  .cornponefit.' Mass-balance . .  

e q u a t i o n s  were f o r m u l a t e d  f i r s t  a s  . fo l lows  : . . 

Ii12 = il 
1 . (A.1) 

f, = A  
3 2 + I i l f l  (A.2) 

- , 1  :, 7 

lil = i13 + hC1 4  (A. 3) 

Iil = Ii14 + h f 2  (A. 4) 5  
- 

Ii15 - Ii15 + Iilc2 (A. 5 )  

. . . .  . 
m7 = i16 ' . . . . . (A. 6) 

. : 
I n  t h e  above e q u a t i o n s ,  Iil i s  mass f low r a t e  and s u b s c r i p t s  1-7 d e n o t e  t h e  s t a -  

t i o n s  shown i n  F i g .  1 .3.  The symbols ifl and if 2 r e p r e s e n t  t h e  r a t e s  of f u e l  

g a s  s u p p l y  t o  combustor 1 and combustor 2 ,  r e s p e c t i v e l y .  A l s o ,  mC1 and 61 C2 ' 
r e s p e c t i v e l y ,  d e n o t e  t h e  mass f low r a t e s  of  c o o l i n g  a i r  i n t o  t h e  HGT and LGT. 

The f u e l - . a i r  r a t i o s  a r e :  

. . 
- -  and (A.7) 

R a t i o s  o f .  c o o l i n g  a i r  t o  t u r b . i n e . a i r  a r e  d e f i n e d  a s  f o l l o w s :  

mc 1 
= -  

r c l  ill and 

. , . . . . 
Bcz 

= -  
rc2 &I 

Then Eqs. (A.2)-(A.5) can b e  w r i t t e n  . a s ,  , 

Iil- = x i 4  + i  f  
1 2  

, and 
3 

(A.9) 

(A. 1 0 )  



Pres su re  l o s s e s  through t h e  p ip ing  were n o t  considered s e p a r a t e l y  b u t  

. were included i n  t hose  a c r o s s  t h e  components. The decrease  i n  gas  p r e s s u r e  

was assumed t o  b e  5% a c r o s s  t h e ' r e c u p e r a t o r  and 6% ac ros s  t h e  combustors. 

These va lues  were based on d a t a . i n  Ref. 3. The fol lowing equations.,  which 

r e p r e s e n t  t h e  p r e s s u r e  v a r i a t i o n s  ac ros s  each component, r e p r e s e n t  t h e  momen- 

tum equat ions .  

P 2 = o . 9 5 P 1  Y (A. 11) 

P3 = 0.94 P2 Y (A. 12) 

p5 = 0 . 9 4 ~ ~  , and ( A .  13) 

p 7 = 0 . 9 5 p 6  . (A. 14)  

Equations f o r  energy balance were then w r i t t e n  f o r  each component. 

From the d e f i n i t i o n  of r ecupe ra to r  e f f e c t i v e n e s s ,  

(A. 15) 

where E i s  the  r e c u p e r a t o r  e f i e c t i v e n e s s  and h  is  t h e  enthalpy a t  d i f f e r e n t  ' 

s t a t e s .  Eq. (A.15) can be r e w r i t t e n ,  w i t h  the.  use of t h e  approximate method 

desc r ibed  i n  Ref. 2,  a s  

(A. 16) 

where c  and T a r e  t h e  s p e c i f i c  h e a t s  a t  cons tan t  p re s su re  and temperature a t  
P  

d i f f e r e n t  s t a t e s .  The energy ba lance  i s  formulated f o r  t h e  r e c u p e r a t o r - a s :  

(A. 17) 

2 With use  of t h e  approximate method of a n a l y s i s ,  Eq. (A.17) becomes: 

h1 cp2 (T2 - TI) = fi6 Cp6 (T6 - T7) ( A .  18) 

Thermal e f f i c i e n c i e s  of t h e  t u r b i n e s  a r e  def ined  a s :  

- - h3  - h4 ; and 
n~~~ hg  - hqs 

(A. 20) 



I n  Eqs. (A.19) and ( ~ . 2 0 ) ,  nHGT and rl a r e  t h e  thermal e f f i c i e n c i e s  of high- 
LGT 

p res su re  and low-pressure gas t u r b i n e s ,  r e s p e c t i v e l y .  Symbols his and h6s a r e  

t h e  e n t h a l p i e s  a t  t h e  t u r b i n e  o u t l e t s  when expansion through t h e  t u r b i n e s  is  

i s e n t r o p i c .  By us ing  t h e  approximate method, Eqs . (A. 19) 'and (A. 20) become: 
. . 

(A. 21) 

(A. 22) 

. . 

- and where a  = - 
' k 

I n  t h e  above equat ions ,  c  i s  t h e  s p e c i f i c  h e a t  a t  cons tan t  volume; t h e  sub- 
v 

s c r i p t s  torrespond t o  t h e  s t a t i o n s  i l l u s t r a t e d  i n  Fig.  1.3.  

An energy-balance equat ion  i s  w r i t t e n  f o r  HGT a s  fol lows:  

where c i s ' t h e  power output  of ' the HGT and s u b s c r i p t  c  r e p r e s e n t s  t h e  HGT 
cool ing  a i r .  S i m i l a r l y ,  f o r  t h e  LGT:. 

= fi 5 C ~ 5  (Ts - T6) + ic2 'p6 (Tc - T6) 9 (A. 24) 

. 
, where. W i s  t h e  power output  of LGT. L ti's 

The fol lowing equat ions  r ep re sen t  energy ba lances  based on t h e  combus- 
. . . . 

t o r s .  For combustor 1: 



where qc i s  t h e  e f f i c i e n c y  of combustor 1 and AHL is  t h e  lower h e a t i n g  va lue  1 
of f u e l .  Equat ion (A.25) can be  reduced to :  

' cp3 (T3 - T2) = f i  [cP3 ( T f i  -. T3) + w1AHL I (A. 26). 

S i m i l a r l y ,  f o r  combustor 2: 

L where f 2 '  = l + f  + r  
1 c 1  

The equa t ions  f o r  mass, momentum, and energy ba lances  w e r e  so lved  

s imul taneous ly  w i t h  a  s imu la t i on  computer program w r i t t e n  f o r  t h i s  purpose. 

The fo l lowing  r e s u l t s  were c a l c u l a t e d :  t u r b i n e : o u t l e t  t empera tures ,  T4 and 

T6; r ecupe ra to r  o u t l e t  t empera tures ,  T and T7; and f u e l - a i r  r a t i o s  f o r  t h e  2 
combustors,  f l  and f  The r a t e  of a i r  f low from t h e  underground s t o r a g e  

2 ' 
cavern  is  then obta ined  from: 

From t h e s e  r e s u l t s ,  ' t h e  power ou tpu t  of HGT can be  c a l c u l a t e d  a s  fol lows:  

The t o t a l  power ou tput  of .  t h e  t u r b i n e  system is  then:  

S p e c i f i c  a i r  f low r a t e  and h e a t  r a t e  a r e  ob ta ined  from 

A' a = 6 1 ( 1  + rcl + r c 2 ) l i o u t  ; and 

(A. 30) 

(A. 31) 

(A. 32) 

B.  ANALYSIS OF UNDERGROUND AIR STORAGE SYSTEM 

P r e s s u r e  v a r i a t i o n  i n  t h e  a i r  s h a f t  of an underground s t o r a g e  cavern 

i s  due t o  changes i n  s t a t i c  head and  f r i c t i o n .    he v a r i a t i o n  i n  s t a t i c -head  

p r e s s u r e  is a func t ion  of t h e  cavern p r e s s u r e .  From Ref. 3: 



where Ap and p  r e s p e c t i v e l y ,  denote v a r i a t i o n  i n  s t a t i c -head  p r e s s u r e  and s ca  ' 
t h e  cavern p re s su re  i n  atmospheres. The p r e s s u r e  l o s s  due t o  f r i c t i o n  is  

known a s  a  func t ion  of a i r  f l o w ' r a t e ,  bu t  i t  is  considered i n s i g n i f i c a n t  com- 

pared w i t h  t h e  v a r i a t i o n  i n  s t a t i c -head  p re s su re .  Var i a t ion  . i n . f r i c t i a n a l  ' 

pres su re  (Apf) i s  about 0.07 - 0.20 atm a t  a i r  f l o w s  of 500 - 1000 l b l s .  

Based on t h i s  f a c t ,  a  p re s su re  drop of 0.15 atm was taken f o r  t h e  f r i c t i o n a l  

l o s s  i n  t h e  p re sen t  s tudy .  The a i r  p re s su re  i n  t h e  cavern i s  r e l a t e d , t o  t h a t  

a t  t h e  cavern o u t l e t  (pl) a s  fol lows:  

- 
Pea - '1 - A p S + A p f  

S p e c i f i c  s t o r a g e  volume (V;) i s  obta ined  from: 

where R i s  t h e  g a s . c o n s t a n t  and T  i s  t h e  a i r '  temperature i n  t h e  cavern.  
c  a  

C. ANALYSIS OF COMPRESSOR SYSTEM 

The r a t e  of a i r  flow i n t o  t h e  compressor system should match t h a t  from . . 
t h e  s t o r a g e  cavern i n t o  t h e  t u r b i n e  system. A 1 o s s . o f  4% of t h e  a i r . f l o w  i n  

t h e  cavern was assumed. The r a t e  of a i r  flow i n f o  t h e  compressor system 

.(ill) can t h e r e f o r e  be r e l a t e d  t o  t h e  t u r b i n e  flow r a t e  (16 ) a s :  1 

I f  a  n e g l i g i b l e  l o s s  of a i r  i n  t h e  compressor system i s  assumed: 

The s u b s c r i p t s  r ep re sen t  t h e  s t a t i o n s  given i n  F i g . . l . 2 .  

The p re s su re  drops a c r o s s  t h e  i n t e r c o o l e r  and a f t e r c o o l e r  were assumed 

t o  be 7.3% and 2%, r e s p e c t i v e l y ,  based on Ref. 3. Therefore: 

P13 
= 0.927 p12 ; and (C .3) 

S ince  t h e  p re s su re  of a i r  e n t e r i n g  the  cavern is h igher  than t h a t  l eav ing  by 

about 0 .3 atm because of t h e  f r i c t i o n a l  l o s s  i n  t h e  s h a f t ,  then:  



Adiabat ic  e f f i c i e n c i e s  of t h e  compressors a r e -  def ined  a s  : 

; and 

lc - L 
whora 3 = - li - 

, and 

Figure  1 . 2  g ives  t h e  s u b s c r i p t s  i n  t h e  above equat ions .  

The compressor o u t l e t  temperatures ,  T12 and T14, can be c a l c u l a t e d  

from Eqs. C .  6 and C .  7 .  The power i n p u t s  i n t o  t h e  compressors, iLPC and i 
. . BC ' 

can b e  obta ined  as fol lows:  

. ' - 
: WLpC - ill CP12 ( 5 2  - Tll) 

; and (C. 8) 

The t o t a l  power i n p u t  t o  t h e  compressors i s  then:  

S p e c i f i c  compression energy ( I )  i s  de f ined  a s  t h e  f u e l  energy equ iva l en t  of 
C 

compressor i npu t  pe r  u n i t  t o t a l  power ou tpu t ,  i . e . ,  

w 
E' = comp - , - 

C 

Wout 

(C. 11)  

where A s  i s  t h e  off-peak h e a t  r a t e  of t h e  power p l a n t ,  inc luding  e l e c t r i c a l  

and mechanical l o s s e s .  
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