LA-11812-MS

Receives by OSTI

JUL 1 01990

CAVEAT-GT: A General
Topology Version of the CAVEAT Code

DG NCT MICROFILM
THIS PAGE

Los Alamos

Los Alamos National Laboratory is operated by the University of California for
the United States Department of Energy under contract W-7405-ENG-36.

BISTRIBUTION OF THIS COCUMENT 1S UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

g 88 BY LT
A

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the

Linited States Government. Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Government

or any agency thereof. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

R e, et

LA-=11812-MS
DE9O 013201

CAVEAT-GT: A General :
Topology Version of the CAVEAT Code

Michael C. Cline
~ John K. Dukowicz
" Frank L. Addessio

LOS AlBIMIOS L5 Ao Newviesco 57565
| BiSTRIBUTION oF 7 o

IS DGCUMENT 45 URLINITER

PAGES 11 to 1V

WERE INTENTIONALLY
LEFT BLANK

TABLE OF CONTENTS

AB ST R A CT .. i i e e et it i e 1
LLINTRODUCTION ... ittt ittt tte e iineeeeaerennancnnanns 1
2. GENERAL DESCRIPTION ittt ittt iieinecnnnnanans 3
2.1. Mesh and Data Structureccoioii.t. e, 3
21,1, Mesh ... i ettt e e e 3
2.1.2. Geometrical Propertiesccoiiiiiiiiiiiiiiiiiinn, 5

2.1.3. "Z”Data Structurec..iiiiiiiiiiiiii 10

2.2. Hydrodynamicscciuiiuniuniiniineinnnernearenenneneanns 12
2.2.1. Finite-Volume Method, 12

2.2.2. GodunovMethod, e 14

2.23. Gradientsi il i i it e 15
2.2.4. TimestepPINg ... ittt ittt ittt ittt ineneeananann 18

2.3, Interfacesiiiiiiiii i e e 18
o 2.3.1. Interface Propagation cciiiiiiiiiin.n. 18
2.3.2. Resolving Singularitiesccciiiiiiiiiiiii... 20

2.3.3. Triple Points and FixedPoints 22

2.3.4. Boundary Conditionsiiiiiiiniinniinennnann. 23

2.4, ReZOMING ... i i e e e ettt 23
2.4.1. Interior Algorithmsot iiiiiinennn. 23
2.4.1.1. “Near Lagrangian” Algorithm e e 24

2.4.1.2. General Rezoning Algorithm 26

2.4.2. Boundary Algorithms i, 29
2.4.3. Mesh Restructuringciiiiiiiiiiiiiinnnnn. 32
2.4.3.1. Interior Mesh Restructuringooou.... 32

2.4.3.2, Boundary Point Addition/Deletion - 34

2.4.3.3. Interior Point Addition/Deletion PP 36

2.5. RemappIingot e i e e 37
2.5.1. Advectionl e e i e 38
2.5.2. General Remapping ittt 39

2.6. Equationof State T 44
2.7. SetupCode ... e et e e e 44
2.8. GraphicalOutput e e eeeieaa 46
3. COMPUTERPROGRAMccovtnn. ottt eeeeenna et 46
3.1. Data Structure, Storage, and Masking e 46
.11 Interior ..o e e et e 46
3.1.2. External/Interface Boundaries 48

B.1.8. Flags ...t e e e e e 50
3.1.4. Regions/Materialsot 51

3.2. Code Structurecoiiiiiiiiin ittt 51
3.2.1. File NamingConventionsccciviiiueenennnn. 51

3.2.2. Flow Diagramiiuiierininnennenennanecnenenans 52
3.2.3. Subroutine Description ittt 57

3.2.4. Arraysand Variablesl - 61

3.2.5. WOLK ATTAYS ... \ovvitnett ettt et eiereeneenaenenanss 69

3.3. SetupProcedurec. ... i i et 70
331. Meshilll, ettt 70
3.3.2. Hydrodynamics P 72

3.3.3. EquationofState ...t it 72

3.4. Updating, Compiling, and Execution ... 72

3.5. Debugging Graphicsc.ciiiiiiiiiiiiiiiii ittt 74

3.6. DumpsandRestarts IR 74

4. EXAMPLE CALCULATIONS e aeaas 75
41.ShockTubec.iiiviiiiiinnnn et 75

4.2 Blast Wave it i i i e i e 75

43. Taylor Anvil i e PP 71

5. FUTUREWORK e, 80
5.1. PhysicalModels it 80

5.2. Vectorizationc.iiiiiiiriiiieiie it iieteetteneneenenennns 81

- 53. Post-Processor Code S, A, e e i 81
ACKNOWLEDGMENTS ettt 81
REFERENCES e eee 82

CAVEAT-GT: AGENERALTOPOLOGY VERSION
OF THE CAVEAT CODE

by |
Michael C. Cline, John K. Dukowicz, and Frank L. Addessio

ABSTRACT

Wedescribe a numerical technique for solving two-dimensional,
" compressible, multimaterial problems using a general topology
mesh. Multimaterial problems are characterized by the presence of
interfaces whose shapes may become arbitrarily complex in the -
course of dynamic evolution. Computational methods based on
more conventional fixed-connectivity quadrilateral meshes do not.
have adequate flexibility to follow convoluted interface shapes and
frequently fail due to excessive mesh distortion. The present meth-
od is based on a mesh of arbitrary polygonal cells. Because this
mesh is dual to a triangulation, its topology is unrestricted and it is
able to accommodate arbitrary boundary shapes. Additionally, this
mesh is able to quickly and smoothly change local mesh resolution,
thus economizing on the number of mesh cells, and it is able to
improve mesh isotropy because in a region of uniform mesh the cells
tend to become regular hexagons. The underlying algorithms are
based on those of the CAVEAT code. These consist of an explicit,
finite-volume, cell-centered, arbitrary Lagrangian-Eulerian (ALE)
technique, coupled with the Godunov method, which together are
readily adaptable to a general topology mesh. Several special tech-
niques have been developed for this extension to a more general
mesh. They include an interface propagation scheme based on
. Huygens’ construction, a “near-Lagrangian” mesh rezoning algo-
rithm that minimizes advection while enhancing mesh regularity, an
efficient global remapping algorithm that is capable of conserva-
tively transferring quantities from one general mesh to another and
various mesh restructuring algorithms, such as mesh reconnection,
smoothing, and point addition and deletion.

1. INTRODUCTION

The CAVEAT code [1] was developed as an efficient and effective method for comput-
ing problems containing multimaterial interfaces and internal slip. One of its main fea-
tures is that all variables are cell centered, a fact made possible by the use of the Godunov
method. CAVEAT has been successf'ully used on a remarkable variety of problems. How-
ever, it still has inherent geometrical mesh limitations that cause the code to lose accuracy,

1

or even to break down due to unresolved mesh distortion. This is not the common “mesh
tangling” of Lagrangian codes, but a mesh distortion associated with large and irregular
‘changes of the original material interfaces, which define the boundaries of the mesh.

The two-dimensional CAVEAT code makes use of general quadrilateral cells [1],
while the three-dimensional version uses hexahedral cells with “ruled” surfaces [2]. This
choice implies a simple underlying topology of the mesh, and the corresponding “logical”
(i, or (i,j,k) data structure common to most finite-difference or finite-volume codes. This
simple data structure has many advantages and it is entirely adequate for many problemnis.
A common topological configuration of this type of mesh is a rectangular block (or hexahe-
dral block) in logical space, and the aspect ratio of this block as well as the total number of
cells is chosen and fixed at the initial setup stage. This is typical of most codes, including

CAVEAT. Now, for those problems in which the mesh boundary can evolve into complex
and unpredictable shapes, such a choice, made at the initial time, will not be adequate and
may quickly result in an unacceptable mesh, in spite of efforts to regularize or smooth the
internal mesh. This difficulty is a symptom of the lack of ﬂexibility in the topology of the
mesh. Thus, the experimental development of a two-dimensional code, called CAVEAT-GT,
was undertaken primarily as a project intended to investigate a solution of thls problem by
the use of a general topology mesh. ' :

CAVEAT-GT was conceived as a code using the same hydrodynamics method as the

CAVEAT code, but utilizing-a mesh of arbitrary polyhedral cells (not necessarily convex).

Since such a mesh is dual to a triangulation, its topology is unrestricted. Such a mesh

' readily adapts to arbitrary and dynamically changmg boundary shapes Further, it has
the property of being able to smoothly and rapldly change local mesh resolution, such asin
regions of large boundary curvature. Slnce the cells are expected to become locally regular
(regular pentagons, hexagons, etc.) away from the perturbing influence of the boundarles,

the resulting mesh is expected to have greater rotational isotropy as compared to a mesh of

" quadrilaterals.

There has been relatively little experience with similar, general topology methods.

In this regard, one may mention Free-Lagrange methods [3], as well as finite-element

methods. Generally, however, either the underlying hydrodynamics technique is differ-
ent, or else'a dynamically evolving mesh is not considered. Therefore, the development of

CAVEAT-GT has been necessarily expenmental Nevertheless the development of the
code has been taken to the stage where nontrivial problems may be attempted successfully.
The project is not completed, however. To be useful as a working code, additional features
must be added, and further work on robustness and improved speed must be undertaken.

This, we hope, will be possible in the future. '

Since CAVEAT-GT shares the basic finite-volume Godunov method with CAVEAT,
we will minimize discussion of the common aspects, which are available in the CAVEAT
report [1], instead concentrating on the unique features and techniques developed for this
code. ' ‘

2. GENERAL DESCRIPTION

2.1. Mesh and Data Structure
2.1.1. Mesh. The general topology mesh is the primary feature of the CAVEAT-GT
code. We will therefore describe it in some detail. The mesh, as well as the associated hy- -

drodynamics method, is two-dimensional and can represent either p%gné‘_:or axisymmetric

iy
regions. These re-

geometry.

The mesh is divided into a number of nonoverlapping blocks or
gions are typically, but not necessarily, associated with different materials. The regions
can adjoin and interact along their boundaries, in which case they form interfaces. The
region boundaries are defined by straight line segments joining points (vertices) located
along the boundary. Thus, the region boundaries may have arbitrary shape, constrained
only by the requirement that there be no intersections. The regions may be multiply con-

nected, so that a region may have several disjoint boundaries. Along interfaces, corre-
sponding vertices, associated with different regions, are constrained to be coincident.
Thus, along interfaces there is a double line of coincident vertices and straight line seg-
ments joining them. At certain points, called triple points, there may he more than two
regions in contact. Atsuch points there will be more than two coincident vertices. Symme-
try lines, although not separating different materials, are treated as interfaces.

The boundary vertices, arranged in some order, define the shape and the interior of
the region. The region interior contains a number of interior vertices. These interior ver-

tices, together with the boundary vertices, form the vertices of a regular triangiilation.
The triangulation, which connects the vertices, is arbitrary in general, except that there
can be no overlapping triangles. This triangulation is not the mesh used directly in the
hydrodynamics calculation, but it is very useful in describing the topology (connectivity) of
the mesh and the associated data structure. The straight-line segments defining the

region boundaries are triangle sides in this triangulation.

Uselul opolugical relationships fur a simply connected region are

T=2V_-Vy,-2,
S=3V-Vy-3,

where S, T, and V are the total number of sides, triangles, and vertices; respectively, and
V is the number of boundary vertices. Thatis, V = V;+ V}, where V; is the number of in-
terior vertices: Thus, for a large mesh, unperturbed by boundary effects, there will be an
average of two triaﬁgles and three sides per vertex, and each vertex will have an average
of six neighbors.

For each boundary triangle side of a region we associate a fictitious boundary trian-
gle, as illustrated in Fig. 1. These boundary triangles facilitate inter-region communica-
tion and storage of boundary quantities. They have no geometrical significance.

Associated with this triangulation is a dual mesh. This is the mesh actually used for
hydrodynamics. X}’lgts, associated vyith each triangle is a point called the cell vertex. Ini-
tially, when a ng;vlfr}esh is constructed, the cell vertex is placed at the triangle centroid.
" The algorithm isisilch that subsequently the cell vertex will always remain at the centroid
of its associated triangle. Cell vertices of neighboring triangles are connected, as illustrat-
ed in Fig. 2, to form closed polygonal cells. Each cell is then associated with a triangle ver-
tex or a cell point. These are the computational cells for the hydrodynamics method. Such
cells need not be convex.

Computational cells that lie along a region boundary are somewhat different since
the region boundary forms part of the cell boundary. Thus, boundary vertices are also cell
points, and there are also cell vertices, associated with the fictitious boundary triangles,
which are placed, by convention, midway along the associated boundary segments. Thisis
illustrated in Fig. 3. ,

The above describes only the general properties and characteristics of our mesh.
Such a mesh is capable of zoning arbitrarily shaped regions and dynamically changing its
topology as the shape of the regions changes. The specific algorithms for defining and
changing the mesh will be described subsequently.

Fig.1. A typical triangulation of a region, showing fictitious boundary triangles.

4 &

triangle vertex
or cell point

cell
\ vertex

computational
cell

Fig.2. Aninternal computational cell and the associated (dual) triangulation.

Boundary triangle

Boundary cell vertex

Boundary uimgle
vertex or boundary
cell point

Boundary cell

Fig.3. Boundary cells and cell vertices.

2.1.2. Geometrical Properties. The CAVEAT-GT computational regions are com-
posed of closed polygonal cells with an arbitrary number of sides. It is from this mesh that
the code derives its flexibility. The mesh geometry in the vicinity of an interface between
two regions is provided in Fig. 4. It may be seen from Fig. 4, that the boundary contours
and points along interfaces are doubly defined. That is, there is a unique interface associ-
ated with each region. Cell quantities are defined at three locations; at cell centers, cell
faces, and cell vertices. These locations are denoted using the index notation k, m, and n,

5

B i

Fig. 4. Interface mesh geometry.

respectively. Primary-extensive quantities (mass, momentum, and total energy), as well
as average-intensive quantities (density, velocity, internal energy, and pressure) are asso-
ciated with cell centers. Gradients of these quantities also are associated with the cell cen-
ters for the higher order approach. Variables necessary to evaluate surface integrals (ve-
locity and pressure) are assigned to the cell sides. Vertex quantities include the coordinate
positions necessary to determine the mesh.

CAVEAT-GT may be used to analyze problems in either Cartesian (x,y) or cylindri-
cally symmetric (r,z) coordinates. For cylindrical coordinates, all equations are expressed
on a per radian basis. The two coordinate representations are modeled by introducing
pseudo-Cartesian (x,y) coordinates through the use of a pseudo-radius:

Rx)=Q -B) + fx,

where p = 0 or 1 for Cartesian or cylindrical coordinates, réspectively. In the cylindrical
coordinate system, x is the radial coordinate and y is the axial coordinate. (In the code,
1 - B =CARTandf = CYLN.)

During the course of each computational cycle, it is necessary to calculate the geo-
metrical properties for each cell.. These properties include the cell area, centroid, and a
minimum cell distance. The cell areas are calculated By summing up the areas of the tri-
angles that comprise each cell (Figs. 5 and 6):

1
A= 5 [, —x) X (x —x)-e] . (2.1)

n

cell point X

1
Fig. 5. Interior computational cell and Fig. 6. Boundarycomputational cell and
the associated triangles. the associated triangles.

This is equivalent to summing the areas of all triangles whose vertices include the end
points of each side and the origin. The number of triangles (n) associated with each cell is
of course equal to the number of sides of the cell. For interior cells, the cell center (xg) can-
cels out (Fig. 5) when the sum is performed in Eq. (2.1)

1 : ,
AI = -2_ Z l("2 X Xl)'ez]n) ' : (2.2)

The cell center does not cancel for boundary cells (Fig. 6). Consequently, boundary cell
areas are obtained by first calculating the sum provided in Eq. (2.2) and then adding in the
terms involving the cell center location

I < , -
Ag=3 2 ['-(xz_xl)'ezHlxoxxaz_xoxxm]'ez L ‘ (2.3)

The volume of a computational cell is the sum of the volumes of the triangles that
comprise the cell -

V=2 <K>A,, - (2.4)
k

where <R >} is the average pseudo-radius:

1
(R)k =1 -B+B 3 (x2 + xl)k . (2.5)

and for a boundary cell
1 o : ' '
Ry =0 =B+ B 2 Gyt 25), - (2.6)

In CAVEAT-GT, all cell-centered variables are associated with the cell centroid (x¢).
When cell side values are needed, for example, the variable,its gradient, and the distance
from the side to the cell centroid are used. By definition

wm 2 [[xan. | @

c

For convenience, consider only the .x-com_ponent. To simplify Eq. (2.7), define the vector
function F = } x 2e,. Then V- F = x.and using the divergence theorem ‘

x, = frern ds, . A (2.8)

where S is the contour around the cell area A and n is the unit outward normal to S. For
-each cell boundary segment (x2 — x}), a parametric representation is used

ndS = [y, — y)e, (x, — x2)ey]ds , : (2.9)
x=x + s(nc2 - xl) ,

where 0 = s < 1. Substituting this parametric representation into Eq. (2.8) and perform-
ing the integration results in the equations (Fig. 5)

_ 1 2 2
%= o Z [y — ¥) (x5 + 2%, + xl),]m ,
m
and
1 - 2 2
Vo= = o 2 =205+ +)], (2.10)
~ ‘

The area is obtained using Eq. (2.2). The sums are taken over all sides enclosing the cell.
For a cell adjacent to a region boundary (Fig. 6), the two boundary segments |xB2 — xo| and
|x0 - xp1| must be included in the sum of Eq. (2.10).

CAVEAT-GT is an explicit code. That is, new time variables are obtained using
source terms expressed as functions of old time variables. For this reason, there is a
Lagrangian stability limit on the time-step size (At). The stability limit is a function of the
minimum characteristic size of the computational cell (Ax,,in). This characteristic size is '
obtained by fitting an ellipse to the cell which is done by first determining the moments of
inertia of each cell about the cell’s centroid

I = J J‘yZdA-A v
I = J [1*dA — Ax, (2.11)

[xy:[nydA—Axcyc.

where the area integrals are the cell moments of inertia about the origin (I, Iy;,,_ Ixyo); For
example,

_ 2
lm_”ydA.

Defining F = } y3e,, then V - F = y2. Using the divergence theorem, substituting in the
parametric representation Eq. (2.9), and integrating one obtains

12 2 fay - xl)b'g+y§"1 +y2’?+y?]}m . ' (2.12) -
Similarly,
1
L= 15 2 (0= 7) G+ s+ xpl + 51,
m
1
Lo = 57 2 0y = 3)[5 By, +) + 222, 0, + 3) + 110, + 391, (2.13)
m) .

where the sum again is taken over all of the sides which comprise the cell. Therefore, the
smaller of the two principal moments of inertia of the cell is

min
[

1 2,2 ‘
I -5(’x+’y)—‘/z(’x—’y)+’xy- | (2.14)

For an ellipse, whose major and minor axes are 2a and 2b respectively, the area and
minimum moment of inertia about its centroid are

Ae =nab,
and

= = abd. ' (2.15)

Because the ellipse approximates the shape of the cell, the minimum cell distance is there-
fore :

I

min

Ax =4 .

min A

where the area (A) is obtained from Eq. (2.2).

2.1.3. “Z” Data Structure. Within the code, certain data are associated with trian- |
gles, triangle sides, and vertices. For example, cell vertices are associated with triangles,
cell faces with triangle sides, and cells with triangle vertices. Vertices, sides, and triangles
are sequentially numbered and the associated data are stored in arrays according to this

numbering. The numbering is essentially random, except that boundary sides and trian-
gles are numbered last and therefore data associated with them will appear at the end of
the corresponding arrays. | _

The relationship of the vertices, sides, and triangles among themselves and their
neighbors is described by the data structure. The data structure allows one to reconstruct
the mesh by specifying which vertices are connected, by which sidés, and in which order.
In CAVEAT-GT the data structure is based primarily on triangle sides.

10

Consider two neighboring triangles, associated with side m, as illustrated in Fig. 7.
We pick the two sides connected to side m that form the two arms of the letter “Z” (as op-
posed to the letter “S”). We label the vertex associated with the lower corner of the “Z” as
k1, the side connected to this vertex as m1, and the triangle located between sides m and
m1 as nl. Similarly, we label the corresponding quantities associated with the upper cor-
ner as k2, m2, and n2. Thus, for each side m we store and associate the six quantities k1,
k2, m1, m2, n1, and n2. The choice of orientation of the “Z” (rightside up or upside down)
is arbitrary. ‘

The information contained in the “Z’s” is sufficient to reconstruct the mesh. It con-
tains not only information on connectivity but also on the ordering (or sequence) of the
sides or vertices around a given vertex. Additional information would be redundant.

This data structure is not unique. It does have the advantage of being compact and
economical since it stores precisely six quantities per triangle side. Other schemes, such as
those based on vertices, have the disadvantage of having to store an unspecified number of
quantities per vertex (the number of vertex neighbors is unspecified, although the average
is six). ’

The boundary “Z’s” differ from the interior ones because there are no real neighbor-
ing triangles outside the mesh associated with a boundary side m. We have adopted the

following convention: Triangle n1 or n2 will be the fictitious boundary triangle associated

with the boundary side m. If the boundary side m is part of an interface, then the corre-
sponding coincident boundary side of the adjoining region is stored for m1 or m2. If the
boundary side m is not on an interface, then there is no coincident side, and a zero is stored
for m1 or m2. This convention is the means for logically connecting different regions’
together. o

Although redundant, we have found it convenient and useful to also store, for each
triangle, the three triangle sides in counterclockwise order. This facilitates intercommu-
nication between triangles and sides. It has also been found useful to define boundary and
interface based data structures. A full description is givenin Sec. 3.1.

-

- -
m nl / Fig.7. “Z” data structure associated
n2 with side m and the triangula-
- ml tion.

-
-.
-

11

2.2. Hydrodynamics .
~2.2.1, Finite-Volume Method. CAVEAT-GT, like CAVEAT, uses the finite-volume
or control-volume formulation of the conservation equations. In this formulation, the con-

servation equations are integrated over an arbitrary moving control volume V(). The gen-
eral conservation equations in this formulation become

Mass Conservation

pdV + J p(u—uv)-ndS=0,

dt [Vit S(t)

Momentum Conservation

d

il ds+[
dt pn

J pudV + I puu —u)-ndS = - J
170} S0y Y . 110)

S St

Energy Conservation

pEdV + J pE(u—uv)-ndS=—‘J pu-ndS + j n-I-udS

dt IV([) S(¢t)

S@) S(o

—J h-ndS+I ApF~udV+l QdV .
St vy 0

In these equations, S(2) is the surface of the control volume V(t), which moves with the lo-
cal surface velocity u, , and n is the unit normal vector directed outward from the surface.
The operator d/dt indicates time rate of ‘change following the motion of the control volume
V(t). Note that the control volume V(t) may be arbitrary in shape and so this method is di-
rectly applicable to the multi-sided cells of CAVEAT-GT. Continuing the definitiohs, pis
the mass density, u is the material velocity, E = e + } u - uis the specific total enei‘-gy, and
eis the specific internal energy. The pressure p is given as a function of p and e by an equa-
tion of state. In general, there will exist a deviatoric stress tensor II, a specific body force
F, a heat flux vector h, and an energy release rate per unit volume Q.

The above equations may be supplemented by the equation for conservation of
volume:

dve) '
dat [o Wy S d (2.18) -

which also may be represented in kinematic form as

12

\

=y (2.19)
E. = uv , . .

where x, is the coordinate defining the surface of the control volume.
CAVEAT-GT uses an Arbitrary Lagrangian-Eulerian (ALE) method to solve these
equations. In this method the calculation is divided into a Lagrangian and a remapping

phase. In the Lagrangi-an phase we set the control volume velocity equal to the material
velocity (uy = u) to obtain ‘

d
—J pdV =0,
v,

dt
d J dv I ds + I I1dS + [Fdv | |
- pu == pn n- p ’ (220)
dt VL SL . SL VL
d
d_J pEde—J pu-ndS+J n-ﬂ-udS—[h~ndS+J pF-udV+J Qdv ,
tlv, 5, S, S, v, v,

where V7, is the Lagrangian control volume, Sy, is its surface, and d/dt is the Lagrangian
(material) time derivative. Following the Lagrangian phase we may wish to transfer
quantities to a different mesh (i.e., we wish to transfer from V7, to a new mesh volume V).
This is performed in the remapping phase. The equations that accomplish this are

d .
z I" qdV — J" qu-ndS =0, (2.21)

where g represents the quantities p, pu, and pE, and vg is a mesh velocity relative to the
material velocity. It is clear, however, that we can alternatively obtain the final control
volume quantities directly . ' '

Qk = l? qdV . (2.22)
k

The use of Eq. (2.21) is known as advection or continuous remapping, and this is used when
mesh changes are gradual, while the use of Eq. (2.22) is known as integral or global remap-
ping, and this is useful when mesh changes are large or when the mesh topology changes.

18

In CAVEAT-GT the Lagrangian mesh is never explicitly calculated (i.e., using
- Eq. (2.19)), except for the normal motion of the interfaces and boundaries, which is done
-using a Huygens-like construction in subroutine INTFACE, and described in Sec. 2.3. In-
stead, a “near Lagrangian” mesh is constructed in the rezone phase (in subroutines
REZTANG and REZLAGR, described in Sec. 2.4) and an advection algorithm, based on
Eq. (2.21); is used for remapping quantities Q. The “near Lagrangian” algorithm is such
that the cells of the new mesh attempt to have the same mass as the corresponding cells of
the old mesh, as would be the case of Lagrangian cells, but they are less distorted than
Lagrangian cells would be. Thus, this algorithm minimizes the magnitude of the relative
velocity vp in Eq. (2.21) and hence reduces advection errors. Nevertheless, even this “near
Lagrangian” mesh can become distorted in time and must be replaced by a new mesh.
Also, when the mesh topology is changed, for example when points are added or deleted to
maintain resolution, an entirely new mesh must be constructed. A new mesh is produced
by subroutine REZONE, and described in Sec. 2.4.1. ' When an entirely different mesh is
introduced, the remapping is carried out using the global algorithm of Eq. (2.22). This is
done in subroutine REMAPPER, and explained in Sec. 2.5.2. In general, the advection al-)
gorithm is much cheaper than the global remapping algorithm, and so we attempt to run
with the “near Lagrangian” mesh for as long as possible before resorting to mesh restruc-
turing and the use of a global remapping.

2.2.2. Godunov Method. The Lagrangian phase equations, Eqs. (2.20), require the

pressure and normal velocity at the control volume surface. We use a version of the
Godunov method in which these quantities, denoted by p* and w*, respectively, are ob-
tained from the solution of a local Riemann problem at the surface. An approximate
Riemann solver is used [4], which is based on the following approximate shock Hugoniot:

p* — p, = ps[as + Aslw* - wsl,l(w* - ws) . . (2.23)

where the subscript s refers to the state on the left or right of the surface, and as and Ag
are two material dependent parameters, defined as follows:

3 ap |?
a = the local isentropic speed of sound = [4 + L £]

w7 (2.24)

’
§

A = limit of a strong shock = [

P, /P,
o (2.25)

pz/pl -1

14

Thus, the strong shock parameter A is given in terms of the density ratio across a shock,
in the strong shock limit. Typically this parameter does not depart greatly from unity, be-
cause of all materials with p = p(p) it can be shown that A; = 1, while for polytropic (ideal
gas) equations of state, A; = 1/2 (y + 1). Thus, 1 < A < 4/3 for the physically realistic -
range of y (1 < y < 5/3). Further details may be obtained in [1] and [4].

2.2.3. Gradients. CAVEAT-GT employs a Godunov numerical method to obtain so-
lutions to the fluid dynamic equations. Consequently, the primary-extensive quantities

such as mass, momentum, and energy, as well as the primary-intensive properties derived
from them are associated with the centers of the polygonal cells. The computational proce-
dure requires intensive quantities at the cell-faces. Cell-face intensive quantities are re-
quired to obtain left and right states for the Riemann solution and for advection and
remapping.

The accuracy of the computation depends on the assumed spatial variation of a fluid
dynamic quantity ¢(x) about the centroid of the cell x,,

$lx) = p(x) + V- (x = x) + 0(Ax") . (2.26)

The computational procedure is considered “first order” if ¢(x) = ¢(x.), that is, if all vari-
ables are assumed constant within a cell. It is considered “second order” if V¢, exists, that
is, a linear variation is used for the flow variables.

Three options are available in CAVEAT-GT for computing the cell-centered gradi-

ents Vo.. All three options first require computing trial gradients about the cell vertices :. .~

xn (Figs. 8 and 9), which are obtained as follows:

(2.27)

.using the divergence theorem. For an interior-cell vertex (Fig. 8), A, is the area of the tri-
angle whose vertices are located at the cell centroids (x¢). For an exterior vertex (Fig. 9),
A, is the quadrilateral constructed using the boundary cell centroids and the boundary
points located at the intersections of the boundary segments. Cj is the contour of integra-
tion around the area A, and n is the unit-outward normal to C,,, Values of ¢ are available
at the cell centroids (¢.) from the solutions to the conservation equations and at the bound-
ary points from the appropriate boundary conditions. A piecewise linear variation of ¢ is

16

boundary

cell point

acel
¢ centroid

cell vertex
g
Fig.8. Gradient calculation for an inte- Fig.9. Gradient calculation for a bound-
" rior computational cell. ary computational cell.

% assumed along the contour (Cp) consistent with the assumption that $(x) is a linear
function.

Cell-centered gradients may be computed directly from the trial gradients of
r’\ Eq. (2.27) by simply taking an area average of the trial gradients at the cell vertices sur-
g ? \roundlng the cell centroid (xz), V40 = <Vip0>, where

).

t;@ Z An <Vn¢>

A n
<Vk¢> = -

——i_f‘__ . (2.28)

n

This gradient is available in CAVEAT-GT as an option (igrad =1). It uses no limiting to
preserve local monotonicity. Consequently, in the vicinity of steep gradients, severe over-
shoots or undershoots may result when compared to neighboring data. For this reason,

(>\ this option should be used with caution (negative densities may result, for example). How-

\ _ever, its use can provide valuable insight into the diffusiveness of the other options.

v :3 _ To preserve monotonicity, the value of the gradient must be limited. When limiting
“is employed the accuracy of the computation is reduced and additional dissipation is intro-
duced into the calculation. Two methods are available in CAVEAT-GT for limiting the
gr@dl;ents. They include a van Leer (igrad =2) and a monotone limiter (igrad =3).

e

16

»

In the multidimensional extension to van Leer’s one-dimensional limiter, a limiting
coefficient a (0 < ai < 1) is obtained for each cell. Cell centered gradlents may then be
obtained

V,o=a, <V,0>, (2.29)

where <V;9> are the nonlimited cell-centered gradients available from Eq. (2.28). The
value of a;, is determined by enforcing local monotonicity. That is, the value of ¢(x) within
the cell is ensured to be bounded by the average values of ¢ in the neighboring cells.

Therefore
a, =min(l,a, ,'ak .') ,
max min
where
a, = max {0. ’[Ek - min(¢k,‘$k)V[(bk - (Dkl} ’
max max max max

a, =maz{0, [ak L maz (q’k’ak Wig, -—o.h

min min max min
ok, Pk, are the maximum and minimum values of ¢(x.) in the neighboring cells.
Ok Ok ATE the maximum and minimum values of ¢ in the cell obtained using
Eq.(2.26) with V), = <Vipd>.

The van Leer limiting procedure permits the steepest possible gradients w1thout ex-
cessive oscillations. However, this limiter is not guaranteed to be monotone because it can
result in a “sawtooth” distribution of ¢ at cell boundaries. Consequently, a more conserva-
tive and therefore a more diffusive limiter is available in CAVEAT-GT. This last hmltmg
procedure is referred to as the monotone limiter (igrad =3):.

(vk(p)min ! (vkq)) >0,

mlﬂ
Vo= (vkq))ma.:‘ , k¢)mm

0 , oOtherwise ,
where

(thp)m =max{<Vn<p> , n . cellvertices},

v, =min{<vn¢> , n : cellvertices} ,

min

and <V _{>> are the trial gradients obtained from Eq. (2.27).
17

2.2.4. Timestepping. Time differencing in CAVEAT-GT is explicit. Thus, in the
Lagrangian phase, for any conserved cell quantity @ p» Such as volume, momentum, or total

energy, we have

Q=@+ Q;, (2.30)
where n is the current cycle index, At" = t**! — ¢", is the current time-step, and Q " is the
Lagrangian phase rate of change of Q , (i.e., the right-hand-side of Egs. (2.20), calculated in
subroutine LAGRATES).

The time-step At" is determined in subroutine TIMESTEP. Currently, there are four
criteria for limiting the time-step incorporated into this subroutine. The first (subroutine
argument LIMIT = 1) is based on the explicit CFL limit for a Lagrangian method. A mini-
mum cell dimension dp,in is determined in subroutine CELLGEOM, and described in
Sec. 2.1.2. The time-step is then

At = min d_. la,),
where aj is the sound speed in cell k, and the minimum is taken over all cells k.

There are two limits on the time-step imposed by the Huygens construction used to
advance interfaces and boundaries, described in Sec. 2.3. The first (LIMIT = 2) is called
into effect when the construction creates a “loop” (i.e., a topological anomaly) in the bound-
ary or interface shape. Thisis called the “bowtie” limit. The second restriction (LIMIT = 3)
is involved if the interface segment is required to rotate by more than 90° relative to its
original orientation (a physical impossibility). In both cases, the time-step is halved and
the construction is repeated for all segments from their original position. Finally, there is
an explicit accuracy limit (LIMIT = 4) that limits the Lagrangian volume change to 50%.

The time-step also is constrained to lie between the limits DTMIN and DTMAX,
specified at the problem setup time.

2.3. Interfaces

2.3.1. Interface Propagation. Referring to Fig. 3, region boundaries are composed of

straight line segments joining two cell points. Midway along a segment is a cell vertex sep-

arating the two cells. The above is true also for the coincident segment in case the boundary
is part of an interface. Thus, for each such segment there will be two subsegmen‘ts that
separate two different boundary cells across the interface. The same is true for those
boundary segments that represent free surfaces, except that the boundary represents an
interface with a vacuum region. Each such subsegment defines a Riemann problem that
is solved toobtain a normal velocity w = (u - n)n associated with the subsegment. This

18

normal velocity is assumed to be located midway along the subsegment, or a quarter-
length along the segment from each of the cell points. Boundary segments that represent
symmetry boundaries, or specified velocity or pressure boundaries, also may be formulated
in terms of Riemann problems, as described in Sec. 2.3.3, to determine the corresponding
normal velocities on the subsegments.

The two normal velocities and their location along the segment define a linear distri-
bution of normal velocity along that segment. We assume that the segment propagates
with the local normal velocity. This is analogous to the propagation of a wavefront with a
specified local wavefront velocity. The propagation of a wavefront is properly described by
an Eikonal equation, whose solution may be obtained by the Huygens construction. In the
present case, the Huygens construction predicts that the straight line segment will remain
linear, as illustrated in Fig. 10.

Assuming that normal velocities w; and ws are located at points 1 and 2 along the
original location of the segment, we draw circles of radius wiAt and waAt , centered at
points 1 and 2, respectively, indicating the progress of “wavefronts” originating at points 1
and 2 during the time-step At. The new location of the segment will be along the envelope
of all the circles centered at intermediate points, or, more simply, along the line tahgent to
both circles at points 3 and 4, respectively. These two points, defining the location of the
new line, are given by

w
_ ! 2 a2
r3_r1+w—w —Brm-f-[} 1-8 k><r21 ,
2 1
Yo 2 2 ‘
r,=r,+ - B, + BV - B kX, |, (2.31)
w, — w
2 1 .
. . . n+1 n
.., , line segment att =t + At

- . wwww

wlA; \ - :
7 I '
line segment at t" \ f
n+l

"wavefront" at t

Fig.10. Huygens construction for a boundary line segment.

19

and

B=(w,—w)Athryl,

where r; = (x;,y;) are the coordinates of point i, rg; = rg - rj, and k is the unit vector in
the coordinate direction orthogonal to the (x,y) plane. ‘

Note that, as previously mentioned in Sec. 2.2;4, the time-step must be limited such
that B < 1. This limits the new line to rotating by an angle of less than 90° or, from an-
other point of view, it prevents the larger circle from engulfing the smaller one (a physical
impossibility for a wavefront).

Given the collection of new boundary lines, we define the new segments to be the seg-
ments delimited by the intersection points of neighboring lines. Thus, given two neighbor-
ing lines with defining points 3, 4 and 3t, 41, respectlvely, the intersection point r* is
given by the solution of the linear system

k-[* —r)Xr, 1=0,

kL = e X rtgl =0, | . , (2.32)
which is
r*=r,+ ke lrt, X (cty —r)r D, (2.33)
where

D'=k-(rt43xr43).

This intersection point exists provided D = 0, that is, provided the two lines are not
parallel. .

Assuming all intersection points exist, they define the new shape of the boundary,
unless a “loop” ora boundary intersection is created. This is illustrated in Fig. 11. Such a
topological anomaly can be created if the time-step is too large. These loops are detected in
subroutine BOWTIES, and if they eiist then the time-step is reduced, as described in
Sec. 2.2.4, until all are eliminated.

2.3.2. Resolving Singularities. The algorithm described in the previous section fails
when two consecutive segments become parallel or collinear. In such a case an intersection
point does not exist, and mathematically, the linear system of equations to be solved for
the intersection point becomes éingular. In order for the algdrithm to be meaningful we

20

improper boundary
intersection
new position /‘(o"
of the boundary & initial position
of the boundary

Fig.11. An anomalous “loop” or “bowtie” created as a result of too large a time-step during
the Huygens construction of the boundary shape.

-

must have a method for resolving this singularity. In practice, this situation will always
arise along symmetry boundaries, where all segments are collinear, and occasionally dur-
ing the dynamic evolution of the boundary when two consecutive segments become nearly
parallel or collinear causing the intersection i)oint to shoot off dramatically in either
direction.

The procedure to resolve singularities is based on using a weighted average of two
trial solutions. One solution is the side intersection points, r*, which was discussed in the
previous section, while the second is the average of the new Riemann velocity points, r,
that are adjacent to the new intersection point as shown in Fig. 12. The new boundary
point location is given by '

. r¥, if w=1,

r = ' (2.34)

€ wr*+(1—w)ra,if w<l,

where

d, is the distance between the two new Riemann velocity points, and d; is the distance from
the new intersection point to the old cell point.
This algorithm is implemented in subroutine INTFACE.

. . . *
new mtersection point, r

N
\\‘\\\
Y
tt4s,, : \\\\‘ average of the
) ttss, P RO new Riemann
new Riemann <., velocity points,
1 N y
velocity point \‘m\\ oL e)
RS m/, 4ss,, a
o 7424

old Riemann
velocity point

Fig.12. Resolving boundary singularities.

2.3.3. Triple Points and Fixed Points. Usually there are certain points where a

boundary is not smooth, i.e.; where the boundary shape has a kink or a corner. The algo-
rithm described above would inevitably smooth such kinks, which is undesirable. We
therefore flag these points as special and obtain their coordinates by the Huygens construc-
tion, which preserves the kink. There are three types of such points. One type is classified
as a triple point, and there are two types that are classified as fixed points.

| Triple points occur, in general, when three regions adjoin at a point. The Huygens

construction is indeterminate in such a case since there are three possible intersections.
Since there is not enough physical information to resolve this inconsistency, we currently
use a density weighted average of the three intersection points. The above is true even if
one of the three regions represents a vacuum. However, if one of the i'egi'ons is a symmetry
half plane, then there is no iflconsistency since the problem reduces to the intersection of a
single pair of straight lines.

There are two types of fixed points. One type occurs because of the presence of sym-
metry boundaries. A fixed point of this type occurs where a region boundary (not an inter-
face) intersects a symmetry line, or when two symmetry lines intersect (typically at right
angles). The second type is a specific kink or corner in the boundary shape, present at the
initial time, which is expected to persist during the solution. Such points are specified and
flagged at the problem setup stage (Sec. 2.7).

22

The coordinates of triple and fixed points are calculated in subroutine TRIPLPT and
they are flagged in subroutine BSTRUCT, except for the last type of fixed point, which is
flagged in the setup code.

2.3.4. Boundary Conditions. Applying boundary conditions in a Godunov code is

straightforward. Boundaries are treated in the same manner as interfaces, or even cell
boundaries, by solving local Riemann problems. We identify six types of boundary
conditions: ‘

1) vacuum,

2) symmetry (reflecting),

3) specified pressure,

4) specified normal velocity,

5) specified inflow, and

~ 6) outflow.
The case of the vacuum boundary is really a special case of the specified pressure bound-
ary, with the pressure specified to be zero.

The symmetry or reflecting boundary condition uses the solution of a symmetric, but
otherwise standard, Riemann problem in which the left and right hand states are identical
except for the normal velocities, which are mirror images.

The specified pressure and veiocity boundary conditions use a special Riemann solu-
tion obtained from the Hugoniot given by Eq. (2.23). If either p* or w* is specified, then this
equation may be solved for the other quantity. Further details are available in Ref. [1].

- The specified inflow boundary condition uses the specified velocity boundary condi-
tion to first move the inflow boundary with the inflow velocity, i.e., the specified inflow ve-
locity is used in the Riemann solution. Next, the inflow boundary is moved back to its
original location. Finally, the changes to the flow quantities necessitated by this non-
Lagrangian motion of the inflow boundary are accounted for by local advection using the
specified inflow density and internal energy. If the inflow velocity is supersonic, then the
pressure is set equal to the specified inflow pressure. A

The outflow boundary condition uses the specified pressure boundary condition to
move the outflow boundary by using the specified outflow pressure in the Riemann solu--
tion. Next, the procedure follows that of the inflow boundary condition where now the
local density and internal energy are used in the advection. If the outflow velocity is
supersonic, then the local pressure is used in the Riemann solution.

The boundary conditions are computed in subroutine BOUNDARY.

2.4, Rezoning

2.4.1. Interior Algorithms. Rezoning refers to the process of creating a new mesh. In

CAVEAT-GT we use two different rezoning algorithms to construct a mesh in the interior

23

of regions. The “near Lagrangian” algorithm constructs a mesh whose cells have nearly
the same mass as the cells of the Lagrangian mesh, but with reduced distortion. This algo-
rithm is useful to minimize advection errors when the mesh topology does not change. On
the other hand, the general rezoning algorithm aftempts to construct an entirely new
mesh, regardless of topology, which is reasonably smooth and regular. Both algorithms
manipulate the triang’ﬁlation, rather than the computational mesh. '

2.4.1.1. “Near Lagrangian” Algorithm. We start with a vector identity, which may
be written as ‘ ‘ '

V2u=VD—wa,

where D = V - uisthe divergence, and ® = V x u is the vorticity, if the vector field u is con-
sidered to be a velocity field. Now, divergence is related to rate of change of Lagrangian
cell volumes by

D = 1/vdvidt, (2.35)

where v is a specific Lagrangian volume, and vorticity, particularly nonuniform vorticity,
is related to shear and mesh distortion. We now define a mesh velocity u,, by

m

viu =VD. B , (2.36)

Taking the divergence and curl of this equation, we obtain

vip =v?D, ' .

m

where D, and o, are the divergence and vorticity of the mesh velocity, respectively. We
conclude, given that D, and D satisfy the same boundary conditions, that D, = D. Fur-
ther, w,, is a smooth function in the interior. Thué, Eq. (2.36) is suitable as the mesh gen-
erating equation with the property of preserving Lagrangian volumes, as suggested by
Eq. (2.35). In practice, we modify Eq. (2.36) by defining

8‘} = er -r, = Atum,k .

8Vk/Vk = (V’rk - Vk)/Vk = At <Dk> .

24

where rj, represents the position of cell point k, V} is the cell volume, <Djp> is the average
cell divergence, and rf; and Vi are the new position and volume, respectively, as a result
of rezoning. Thus, the equation solved is Eq. (2.36) in the form

2 _ : .
v 8rk =V (8Vk/Vk) , (2.37)

where we have canceled a common factor of At.

In a Lagrangian computation the cell mass does not change (M, = My°, where M’ is
the original cell mass, i.e., at the time of the last global remapping). We would like the re-
zoning to have a similar property; therefore, assuming that local density is nearly uniform,
we set '

_ ag0xrl
VTk = Mka/Mk ,

where V! is the cell volume as a result of a Lagrangian time-step.' Rewriting this, we
obtain

— g0 ’ .
SVk/Vk = Mk(l + At(({V/dt)l/Vk)Mk -1, (2.38)

which is the expression used for the effective divergence in Eq. (2.37).

- Equation (2.37) is a linear Poisson equation. Thisisin contrast to the nonlinear equa-
tions obtained with most other rezoning methods. Because 8r; is known on the boundary,
boundary conditions are simple, specified (Dirichlet) conditions. The discretization on the
triangular mesh follows straightforward finite element practice, using linear elements [5],
by minimizing the functional

= J [V6r :V8r, +28r, -V(@BV./V.)]dA) (2.39)
0 k k k Kk .

with respect to 8rg. Using this procedure we obtain two uncoupled matrix equations for
6x, and 8y, respectively, The matrix so obtained is common to both equations and is sym-.
metric and positive definite. It is therefore suitable for solution by a conjugate gradient-
type method. We use the diagonally-scaled conjugate residual method [6] independently in
each region, because the regions are decoupled by the boundary conditions.

Given the triangle vertex positions 8rj, we linearly interpolate to find the change in
location of cell vertices within each triangle. This implies that a cell vertex will always re-
main at the centroid of its respective triangle, assuming it started at the centroid.

25

The solution of Eq. (2.37) may produce negative area (inverted) triangles. However,
. even though such a situation may produce an acceptable computational mesh, inverted tri-
.angles will destroy the discretization of Eq. (2.37) on the following cycle. We therefore de-
tect inverted triangles and trigger a general rezone if they are present.

The above rezoning procedure is implemented in subroutine REZLAGR, and the con-
jugate residual algorithm is implemented in subroutine REZCJRS.

24.1.2 General Rezoning Algorithm. The general rezoning algorithm is intended to

produce a smooth mesh within specified boundaries. Because we work with a triangula-
tion we cannot directly use established techniques such as the Brackbill-Saltzman [7] re-
zoning method, which are based on quadrilateral meshes. The use of a triangular mesh,
however, gives us an extra degree of freedom in that we are able to change mesh connec-
tions, as well as the position of mesh vertices.

We follow the general ideas of the varlatlonal method [7] by specifying a composite
functlonal

S I=1+alg, : (2.40)

where Ig and Is are separate measures of mesh distortion and a is a relative weight that
also performs a scaling function.

The functional Ig measures the departure of the triangle angles from 60°. Referring
to Fig. 13, Igis defined by

NP S S
2 (Irml + Irml + Irml)/Ak .

no,

Iy

= Z (cotel + OOtez + oot93) , . (2.41)
n . : .

~ where the summation is over all triangles n, and A is twice the area of triangle k: Ap =
k- ri2x r13. The functional is obviously insensitive to the area of each triangle and is
minimized when each angle is 60°. This functional is closely related to the smoothness
functional of Brackbill-Saltzman [7].

The functional I measures the departure of the length of the sides of a triangle from
equilateral. Itis defined by

= Z Ir'12|2 R
m

26

2 i
Fig. 13. Notation for the general rezoner.

where the sum is over all triangle sides. This functional measures the “elastic potential” of
a system of springs coninecting the triangle vertices, and is minimized when the lengths of
all triangle sides are equal. '

We can combine both functionals in a single summation over triangles as follows

— 2 2 2
I= (r 2 +1r 2+ 1r) /A, +al2) .
n

This suggests that the proper scaling may be obtained by

a=2N,/> A,

n

where N, is the number of triangles. We usually wish independent control over the rela-
tive magnitude of the two terms in the functional and so we actually set

a=BN,/D> A,, (2.42)

where f} is an arbitrary dimensionless factor whose nominal value is 2.

The complete functional (Eq. 2.40) is minimized with respect to r;, the triangle vertex
coordinates. However, the boundary vertices are specified and so the only free parameters
are the interior vertices. Because boundary vertices are specified, the different regions are
uncoupled. Thus it makes sense to define a different a, for each region r, where the sum-
mation in Eq. (2.42) is now over all triangles in a given region r.

Differentiating the functional with respect to the coordinates of an interior point r;,
and collecting terms associated with a particular side connecting points i and j, we can "
write the equation associated with point i as

27.

DIC . —r)+D kx@. —r)=0,
r i i ij J i ‘

where

€=~ WA+ VA, +a),

DI.J. = (rh. T + r.r, +r, -rﬂ)/Al - (rk‘. T + LSy +r,: rjk)/Ak . (2.43)

and where the subscripts ! and k refer to triangles on either side of side ij as illustrated in
Fig. 13, and the summation is over all points j which are connected to point i. When writ-
ten in the above form, Eq. (2.43) represents a matrix system for the vertex coordinates
ri = {xi,yi} whose coefficients are 2 X 2 blocks of the form

C ' -D..
ij ij
’D.. C.. l

y)

The resulting matrix is symmetric.
Notice that the coefficients C;j, Djj are functions of the coordinates, and therefore, in
contrast to the equations of the previous section, Eq. (2.43) represents a coupled nonlinear

system for the coordinates x; and y;. Consequently, the solution procedure is much more
complicated and difficult. Further, Eq. (2.43) is written for a particular mesh topology, and
S0, as the solution changes, not only the matrix coefficients but also the mesh topology may
change. We therefore view Eq. (2.43) as providing information on the direction of the de-
sired changes in r; and not necessarily on their magnitude, except in the vicinity of the
fixed point or the converged solution. »

We summarize the solution procedure as follows: .

(1) freeze the coefficients of Eq. (2.43) and take two steps of the same diagonally-
scaled conjugate residual algorithm as used in connection with the “near
Lagrangian” rezoning algorithm,

(2) retain the direction but limit the magnitude of the step taken so that the maxi-
mum triangle side length or triangle area change is less than 20%,

(3) restructure the mesh to obtain the Voronoi connectivity as described in Sec.
2.4.3,

(4) if the mesh does not require reconnection and the maximum step size is below a
preset criterion then terminate, otherwise recompute coefficients and start from
step (1). '

28

We have found that usually convergence is rapid. However, the algorithm can send
‘points outside the boundary of the mesh, and indeed converge in such a situation. The so-
lution of this problem seems to be to restructure the mesh on the boundary by adding
points or reducing point spacing so that interior points are prevented from penetrating.
The job of ensuring a satisfactory point distribution on the boundary is handled by subrou-
tine REZBNDY.

The smoothness and regularity of the resulting mesh is sometimes not very good.
The use of functional Ig alone sometimes produces large variations in cell size. Results
may be improved by varying the parameter p in Eq. (2.42), but this is an ad hoc procedure.
The capability to add or subtract interior vertices clearly improves the situation.

This general rezoning algorithm is implemented in subroutine REZONE.

2.4.2. Boundary Algorithms. Advancement of the interfaces and boundaries that enclose

each subdomain (region) in the calculation is provided by a geometric construction
(Sec. 2.3). This construction uses the velocities normal to each segment (i.e., the Riemann
velocity) to advance the boundary, but not to locate the cell points along the boundary seg-
ments. It remains to position the cell points tangentially along the boundary. This is ac-
complished through the use of either a *near Lagrangian” placement or a global rezone
along the interface contour in addition to a configurational rezone to eliminate excessive
curvatures if prescribed.

The “near Lagrangian” placement of the boundary points is intended to move the
points in a manner that preserves the mass between the points in an effort to minimize ad-
vection across the cell sides that intersect the boundary. The approach used for this pur-
pose is equivalent to the method that keeps the interface propagation algorithm well de-
fined along symmetry boundaries (Sec. 2.3). However, because the interfaces are now
known, the problem is one-dimensional in the arc length (s). The boundary points are -
placed at locations s, that minimize the variational functional

=3 wm(Asfn>2 , (2.44)

where Asy, = sp — sp—1. The weight @, is defined as (p/p,As) m, where .=+, + Pp_1)
p, and As, are the initial average density and boundary segment length obtained following
the last global rezone, and the sum is taken over the boundary segments which lie between
two “fixed” points. Minimizing the functional in Eq. (2.44),

(5,,,—9)}=0, (2.45)

= 2{mm(sk - sk_l) -—w

m+ 1%+ 1

& | &

k.

29

results in a tri-diagonal system for s;. This system of equations is solved using the Thomas
- algorithm [14]. Solutions (s;) to Eq. (2.45) are bounded by the values of sp_1 and sp+1
from the previous time-step to ensure that a Courant-like condition is not violated.

An advantage of the general topology feature of CAVEAT-GT is the ability to add
cells in regions demanding better resolution and eliminating cells where they no longer
are required. Along the boundary, this amounts to placing boundary points where they are
most needed. This is accomplished by calculating the point distribution parameter N,
which is the solution to the ordinary differential equation

dN
;Zd-s— =f(s,x.V9,..), (2.46)

where fis the point distribution density function. This function can be chosen to equally
distribute the boundary points along the interfaces in the absence of any distinguishing
features. However, the point density function also should force boundary points to migrate
into regions that require increased resolution. Such regions may be characterized by large
values of thebouhdary curvature (x) or the gradient (V) of a prescribed variable such as
pressure (i.e., adaptivity). The point density function has been defined at each boundary
point as

AsVo

¢k ! | (2.47)
AsVo \ As_
k

¢

1+ aK(As K)k + a,

f

1+a (Ask), +a
4 k a

mux mux

where x is the boundary curvature, defined by inscribing a circle through the kth boundary
point and its two neighbors, As;4x is a user supplied maximum spacing for each region of
the problem, and ax and a, are user supplied constants. Finally, a;(m and aq,,, are de-

30

fined as
As .
mn
a = a,
max Qs
.and (2.48)
As .
min
a, = a, .,
max Asma:c

where Asp;, is a minimum spacing set internal to the code as a fraction of Aspqx. The
above formulation equally spaces the boundary points at intervals of Aspqy in the absence
of curvature or gradients, i.e.,

im W __1 (2.49)
ds As .

Kk—0 max.

V-0

Furthermore, in reglons of large curvature the boundary pomts are more closely spaced to
provide better resolution, i.e.,

. dN 1
lim — =
koo dS As

(2.50)

min

A result identical to Eq. (2.50) applies to regions of large gradients for the variable ¢.

To ensure that the boundary points are placed at identical locations along the con-
tours defining interfaces, it is necessary that the point density functions are identical
along the doubly defined contours bounding each region. Consequently, at multiply de-
ﬁned points along the boundaries, the maximum value of fis used.

Finally, the values of f should be smooth along the boundary contours. This ensuresa
smooth variation for the locations of the boundary points around the interfaces. Without
smoothing, a large variation for the point spacing would result where regions of large cur-
vature intersected lines of symmetry (i.e., across “fixed” points), for example. Smoothing is
accomphshed by solvmg the diffusion equation

N
4 _ 24! (2.51)

where ¢2 At = 10 Aspqx2. Equation (2.51) is differenced using an implicit, centered differ-
encing technique. A tri-diagonal system results that is solved using the Thomas algorithm
[14].

Having defined the point density function, Eq. (2.45) now is integrated along con-
tours between “fixed” points. A linear distribution for fis assumed between boundary .
points. The resulting values of N are then scaled to ensure the final value of N(s=L) is an
integer; that is, the positions of “fixed” boundary points are not altered. In addition, the
value of N(s=L) is limited to guarantee that no more than one point is added on each
houndary segment, nor fewer than every other point is eliminated (N” - int(N"/2) < N**! <
2N" — 1). ‘

31

Equation (2.45) is solved for N(s) around the boundary contours every time-step. Itis
then tested to determine if the.existing boundary point distribution is sufficient to resolve
the existing boundary configuration. If point addition or deletion or gross point migration
is unnecessary, boundary point locations resulting from the “near Lagrangian” description

“are used. If the "near Lagrangian” positions are inadequate to resolve the boundary, the
boundary points are located according to Eq. (2.45) and a global rezoning of the mesh is re-
quired. When a global remap is performed there is no need to limit the relative motion of
the boundary points. _

In an effort to control excessive boundary oscillations derived from either physical or
numerical effects, the option to smooth the boundary contour has been included. The con-
figurational rezone of points along the boundary is accomplished by computing an approxi-
mate radius of curvature at each point. The radius of curvature (R) is obtained by con-
structing a circle through each point and its nearest neighbors (Fig. 14). If the radius of
curvature is less than a minimum radius of curvature (R,;,), the boundary point (x2) is
displaced a fraction (a,) of the distance between its current location and the midpoint be-
tween its two neighboring points (x, = % Ix2 - x11):

x2' =x,+ta, Ixo - le . ' (2.52)

Both R,,;n, and a, are user specified.

The algorithms to rezone the boundaries and interfaces are implemented in subrou-
tine REZBNDY.

2.4.3. Mesh Restructuring
2.4.3.1. Interior Mesh Restructuring. When cell points are moved, as in the general

rezoning algorithm, a mesh reconnection or restructuring can be used to produce a more
regular mesh. A mesh restructuring produces a new triangulation, or alternatively, cell
points change neighbors. It is therefore a mesh topology change. This provides additional
freedom for the rezoning algorithm in its attempt to improve the mesh. We have chosen to
use the connectivity associated with the Voronoi mesh [12]. The corresponding triangula-

Fig. 14. Configuration rezone.

32

tion is called the Delaunay triangulation [13]. The Voronoi mesh is a unique subdivision
of space into convex polygonal cells (in two dimensions) associated with an arbitrary distri-
bution of cell points. The associated dual Delaunay triangulation has the following proper-
ty: the diagonal of every quadrilateral formed by two neighboring triangles connects the
two vertices whose angles sum to more than 180°. We use this property in an iterative pro-
cedure to generate the required connectivity quickly and very efficiently. ’
Consider Fig. 15 which represents the two triangles that are associated with side m |
as the diagonal. We form the quantity '

K_=k -[r'm-rm)(r13 X fm) +(r v, X r)l, | (2.53)

which can be rewritten as

K_=ir,jic M i, isin®,+86). . (2.54)

Thus,
6,+6,>180° iff K_<0. ' » ' (2.55)

Hence, if K;,, < 0 we wish to switch diagonals. When diagonals are switched, the “Z” data
structures associated with sides m, m1, m2, m3, and m4 are restructured. ‘ ‘

We anticipate that in many cases no restructuring will be necessary. We therefore
‘organize the algorithm into two parts. First, sweep over all interior sides in a fast vectoriz-
able loop and evaluate criterion Eq. (2.55) to determine if any sides need to be switched.
We also note the first and last side in the loop that needs to be switched. Since switching a
side may affect the status of other sides, therefore, once any side is switched all the affected
sides need to be rechecked. Hence, once we find a side that needs to be switched then all
subsequent sides are checked and switched as needed. Thus, if there is at least one side

Fig.15. Mesh restructuring by the
switching of diagonals. -

3

‘that requires to be switched we repeat the sweep, and switch sides as required, except that

we start the sweep either in the forward direction from the first side needing to be
-switched, or in the reversed direction from the last side needing to be switched, the choice
being determined by which case requires the fewest sides to be considered. The procedure
is repeated until no more sides need to be switched. We have found in practice that conver-
gence is very rapid, and the method always works, provided that the startmg triangulation
is regular (i.e., provided there are no side intersections).

When the parameter K, is equal to zero then both diagonals are acceptable. Thisisa
degenerate case that occurs in rectangular meshes, for example. In order to eliminate a lot
of random flipping in such a case, we modify the criterion Eq. (2.55)to K,, < —¢, where ¢
is a very small number.

This restructuring algorithm is implemented in subroutine MESH.

2.4.3.2. Boundary Point Addition/Deletion. Boundary point addition/deletion’con-
sists of adding or deleting cell points on the boundary (external and interface) segments of
the triangular mesh. Once the triangular mesh has been modified, the local data structure
for the modified part of the mesh is updated. The number of points added is limited by the
size of the data structure arrays. The deletion process is limited by the “fixed points” that
are the boundai'y segment end points. The method for determining the location of the
added/deleted cell points is discussed in Sec. 2.4.2. :

Boundary point addition consists of adding a cell point on a boundary side midway

between two existing points as shown in Fig. 16. Because no interior points are added,
only one new boundary and one new interior side are produced. The new interior side is
stored as the last interior side that causes the boundary sides to be shifted by one. The new
boundary side is then stored as the last side. If the original boundary side is on an inter-
face, then a point also is added on the opposite side of the interface.

new boundary point

new boundary side
original boundary side

Fig. 16. Boundary pointaddition.
new interior side

34

The deletion of a boundary. point is a more difficult problem because there can be ahy
" number of connections with internal points. The case with no internal connections is
shown in Fig. 17. In this case both adjacent boundary sides are removed. The one internal
connection case is shown in Fig. 18. In this case, as well.as the following cases, one bound-
ary and one interior side are deleted. The remaining boundary side is reconnected as
shown in Fig. 18. The two interior connection case is shown in Fig. 19. Here again one
boundary and one interior side are deleted, while now the remaining boundary side and an
interior side are reconnected. The three interior connection case is shown in Fig. 20. Here
again one boundary and one interior side are subtracted; while now the remaining bound-
ary side and two interior sides are reconnected. _
For cases with more than three interior connections, the number of connections is
systematically reduced to three connections. This is accomplished by reconnecting one in-
terior side as shown in Fig. 21. This process is continued until the number of interior con-
nections is three and the point then is deleted. One could continue this interior side recon-
nection until the number of interior connections is zero and then delete the point. This
would simplify the coding in that the one, two, and three interior connection cases would
not be needed. However, the no interior connection case requires approximately the same
amount of computational effort as the other cases. This is because two sides are removed
as in the other cases and a former interior side becomes a boundary side, which requires
shifting the data in the same manner as deleting an interior side does. Therefore, reducing
the number of interior connections one at a time until there are no interior connections and

point to be deleted ‘ point to be deleted
S o side to be reconnected

sides to be deleted | sides to be deleted
(a) before (a) before
(b) after (b) after
Fig. 17. Boundary point deletion with Fig.18. Boundary point deletion with
no internal connections. oneinternal ¢connection.

35

point to be deleted point to be deleted
~ r 4

sides to be sides to be! sides to be

sides to be

reconnected deleted reconnected deleted
(a) before ’ (a) before
(b) after _ (b) after
Fig.19. Boundary point deletion with Fig.20. Boundary point deletion with

two internal connections. three internal connections.

then deleting the point would be computationally slower than using the special cases.
Therefore, it was decided to directly delete the cases more likely to occur, and reduce and
then delete the cases that rarely occur in order to i 1mprove the code efficiency. ‘

2.4.3.3. Interior Point Addition/Deletion. Interlor pomt addition/deletion consists of
adding or-deleting cell pomts to the interior parts of the triangular mesh. Once the trian-
gular mesh has been modified, the local data structure for the modified part of the mesh is
updated. The number of points added is limited by the size of the data structure arrays.
The deletion process is.limited to cell points with exactly five side connections. This five
connection case was selected because of the observation that whenever a group of small tri-
angles formed in the mesh, they were typically centered around a cell point with five con-
nections. "

Interior point addition consists of adding a cell point on an interior side midway be-
tween two existing points (Fig. 22) when the length of that side becomes larger than the
average side length for that region by a user specified amount. This produces three new in-
terior sides. These new interior sides are stored as the last interior sides, which causes the
boundary sides to be shifted by three. ‘

Interior point deletion occurs only for cell points with five side connections as dis-
cussed above, and when one of the connected sides’ length becomes smaller than the aver-
age side length for that region by a user specified amount. As shown in Fig. 23, the cell
point deletion causes 3 interior sides to be deleted and two sides reconnected. Because the
three sides are deleted some of the interior and all boundary sides are shifted by three. "

36

point to be deleted
V

side to be
reconnected

new interior point

(a) before 3 internal

connections
Y A new inten’dr sides
original interior side
(b) after
Fig.21. Boundary point deletion with - Fig.22. Interior pointaddition.
four or more internal connec-
tions.
sides to be deleted
A\

point to be sides to be
deleted reconnected

(a) before o (b) after

Fig.23. Interior point deletion with five connections.

Both the boundary and interior cell point addition/deletion are implemented in sub-
routine NEWMESH. Once all cell point and side data structure has been updated, all tri-
angle data structure is recalculated in subroutine NEWTRI.

2.5. Remapping

In order to accurately resolve material interfaces and to prevent nonphysical mixing
and shear impedance, CAVEAT-GT follows the boundaries in a Lagrangian fashion. The
normal material velocities are used to advance region boundaries. However, in the interi-

" or there will be, in general, a difference between the material velocity and the velocity
used to move the mesh. In other words, the new mesh will differ from the Lagrangian

37

mesh. It is necessary, therefore, to remap the variables onto the new mesh for each time-
_step. If the difference between the material and mesh velocities is small enough to main-
tain the stability of the numerical algorithm, then the variables may be advected to the
new mesh. Otherwise, a general remapping scheme must be employed. CAVEAT-GT con-
tains both an advection and a general remapping algorithm. .

2.5.1. Advection. Consider the intensive-variable pd (i.e., momentum). The remép-

ping of this variable by advection from its position following a pure Lagrangian motion to
its position on the new mesh is determined from the equation

p .
% J ppdvV = — f p(b(uf—ug)'ndS .

In discrete form, for each cell,
*= =5 R>¢ | (2.56)
(pd)* = (pd) - v 2 [<pq>>(uf—ug)-n< >]m, .

where p¢ is the appropriate intensive quantity (i.e., mass, momentum, and energy) follow-
ing a pure Lagrangian motion from the original grid (x») to the new grid (x»+1), The vari-
able (pd)* is the intensive quantity at the new mesh position. The variables u f and ug are
the fluid and grid velocities, respectively. Finally, n is the unit outward normal to the cell
side £, and <R > is the pseudo-radius.

_ The normal fluid or material velocity (uf-n), in Eq. (2.56), is simply the cell side nor-
mal velocity obtained from the Riemann solution (w*). The quantity At ug-n<R>{€is the
volume swept out by the motion of the grid (Fig. 24). It may be obtained as the sum of two
triangular areas

1
Atu-n<R>€=_{of - oy =y - 0F -y GGt - X)) <R >

1 n+1 n+ly, n n+1 n+1 n+l . n n+1

P I AR A A Rl VAR G E A R B (2.57)
1 .

where <R >=Q B+ oGy +x+ %, " "), with a similar expression for <R ,>.

The difference between the volumes swept out by the material velocity and the grid
velocity is the advection volume

Vf=At (uf—ug)-n <R>¢. (2.58)

38

(a) Volume swept out by fluid motion (b) Volume swept out by grid motion

Fig.24. Advection volumes.

The quantity <p¢$> in Eq. (2.56) is the average value of the intensive variable (p¢)
fluxed across the cell boundary. Its value is determined from the upstream side of the cell
side € (i.e., donor cell). The upstream side is determined by the sign of the advection vol-
ume (Vy). If the advection volume is positive, then the kth cell loses mass. That is, the rela-
tive material motion is out of the kth cell and <p¢ > is determined by the kth cell. If the
advection volume is negative, then the kth cell gains mass; the relative motion is into the
cell and <p¢ > is determined by the neighboring cell.

Once the side of the cell boundary (£) has been determined then <p$> may be deter-
mined from a Taylor expansion about the cell centroid

<pp> =(pd) +V (pd)- (x —x), 4 _ (2.59)

where the quantity (pd), is a cell centered quantity (i.e., evaluated at the cell centroid) and
Xn, is the center of the cell boundary segment (£). A spatially first order approach
(IORDER=1) is obtained with zero values for the gradient in Eq. (2.59) [i.e.,, <p$> =
(pd)ol. This method is very diffusive. An improved advection scheme is obtained when
nonzero gradients are used in Eq. (2.59) IORDER =2 or 3). The methods available for de-
termining the gradients are discussed in Sec. 2.2.3. The least diffuse technique is obtained
when no limiting is used to obtain the gradient (IGRAD =1). However, this option tends to
produce numerical oscillations.
The above advection algorithm is 1mplemented in subroutine ADVECT.

2.5.2. General Remapping. General remapping refers to the process of transferring

conserved information from one arbitrary mesh to another. This procedure is related to
the process of advection, except that there is no time-step limitation and there is no restric-
tion on the topology of the meshes. In general, we use this type of remapping when the
mesh topology changes, either because of the addition or deletion of points or because of a

mesh reconnection.

39

The techniques of this type of remapping for quadrilateral meshes have been well de-
- veloped [8,9,10,11]. For the purposes of CAVEAT-GT, however, we have had to develop
new techniques that allow for general topology meshes. In general, the method seeks to
compute -

Q, = [V g)dv , (2.60)
k

where q(r) is the known distribution on the old mesh of a generic conserved quantity such
as p, pu, or pE, and V} is the volume of cell k of the new mesh. The problem, then, is to
 compute such integrals in the presence of arbitrary overlapping of the cells of the two
meshes. This problem is simplified by converting the volume integrals to surface integrals:

Q, = [S Feonds, . | (2.61)
k

where V - F = q(r) in each old cell], and S; is the surface of new cell k. We generally re-
strict g/(r) to be at most linear within a cell: '

qr=¢q,+G,-(r-r), | _ (2.62)

‘where r, is the centroid and q, is the average value of g in cell], and G] is the gradient of ¢
in that cell, obtained as described in Sec. 2.2.3. Incorporatmg the case of cylmdrlcal sym-
metry in a quasi-Cartesian coordinate system, we can write in general

V-F=A+B:'r+r-CD-r,

where A, B, CD are cell dependent quantities. The flux function F is not unique and many
choices are possible, but the following is the simplest and most natural [11]:

=(1/2A + /3B r + 1/4r-CD-Pr.

In a two-dimensional mesh the integration of Eq. (2.61) includes a sweep over the cell .
edges of both the old and the new mesh. The sweep over the edges of the old mesh is neces-
sary because in general the flux function F will be discontinuous at the cell edges and it is
necessary to subtract out the contributions of these discontinuities. One great advantage
of quadrilateral meshes is that the cell edges form mesh lines that extend right across the
- mesh. It is therefore possible, starting from one boundary of the mesh, to trace the mesh
lines of one mesh continuously through the other mesh, thus eliminating the need for a

40

search to locate the points of one mesh within the cells of the other. Such a search is obvi-
ously very costly if the meshes are not regular. For the general topology mesh of
CAVEAT-GT it is not obvious that a corresponding procedure exists. It is fortunate that
one can indeed define continuous and unique lines thrbugh a triangulation that, taken to-
gether, cover the mesh with no gaps (in this case, they cover the mesh twice over). These
lines are either continuous closed curves or they begin and terminate at the boundaries.
Consider the “Z’s” described in Sec. 2.1.3. First, we note that to each of the triangle
sides that compose the arms and body of the “Z” there corresponds a cell edge. We desig-
nate the body of the “Z” as the “direct” segment and the arms as the “indirect” segments.
Putting neighboring “Z’s” arm-to-arm, as illustrated in Fig. 25, creates a continuous path
through the mesh. Because of the one-to-one relationship between triangle sides and cell
edges, this also creates a continuous path along cell edges. Notice that the direct segments
exactly alternate with the indirect segments. Combining all such paths that intersect a
given triangle, as in Fig. 26, we see that after tracing all such lines, each triangle side (cell

Individual data structure direct segment

"Z" connecting tnangle
R 1des .
L) L]
. ~Q .Q
[Q (3
N S .‘ .0’
A S
A . ;
0 ‘: ::: . ¢
Q’ v
L3 Q .

- indirect segment

O

. (a) Connecting "Z"s to form a continuous path

continuous line connecting
cell edges

indirect segment

(b) Corresponding diagram illustrating continuous
path connecting cell edges

Flg 25. Constructing a continuous path along the cell edges of the CAVEAT-GT general
topology mesh.

41

cb ¢

‘»
¢
¢
“
b ““c [. Y]

Fig.26. Tracing through the mesh: For a typical triangle, all sides are traced exactly
twice, once by a direct segment and once by an indirect segment.

edge) in the mesh is traced exactly twice, once by a direct segment and once by an indirect
segment. We choose to update the integral (Eq. 2.61) only when tracing the direct seg-
ment. Thus, while sweeping over cell edges of a mesh,we go over each edge twice but we up-
date only once.

We start by tracing all the lines that originate (and therefore terminate) at the
boundaries. Since each edge is traced twice, we set a flag on each boundary edge when it
has been traced, both as a direct segment and as an indirect segment. When both flags on
each boundary segment have been set, then we know that all lines starting and terminat-
ing at boundaries have been traced. For a topologically regular mesh, such as a mesh of
quadrilaterals or hexagons, we know that this would be exhaustive. For the more general
meshes of CAVEAT-GT we have found that in the great majority of cases this also ex-
hausts all such lines. However, it is p(;ssible in such a mesh, as we have found very infre-
quently, that there are continuous closed loops in the interior of the mesh that do not inter-
sect the boundary, and therefore would not be traced starting from boundary sides. To de-
tect these loops we increment a counter whenever a side is traced. If this count does not
equal twice the total number of sides after all the boundary-intersecting lines have been
traced, then at least one internal loop must exist. We then locate a starting side on such a
loop and proceed to trace along the loop until the trace closes on itself. We proceed in this
way until all sides have been counted twice.

The process of tracing a cell side of one mesh through a cell of the other mesh is very
similar to the corresponding procedure in a quadrilateral mesh [10]. All intersections of
the straight line corresponding to the cell side being traced with the straight lines corre-
sponding to the extensions of all the sides of the cell being traversed are checked to find the

42

“legal” intersections. These are the intersection points that lie in the interior of both sides.
For a convex cell there will be at most two such intersection points. If there is only one,
then the line terminates or originates within the cell, and if two, then the line crosses the
cell. The side being crossed determines the new cell thatis being entered by the traversing
line. In CAVEAT-GT, we have made an improvement that reduces by approximately a
factor of two the number of intersections that need to be checked. Because we know the
tangential vector to the traversing line in the direction being traced (t) as well as the vec-
tor pointing in the outward normal direction to the side being checked (n) then we need
only check that t points to the outside of the cell (i.e., t - n > 0) to determine if an intersec-
tion needs to be found. This is substantially cheaper than computing and checking the ac-
tual intersection.

One feature of the CAVEAT-GT remapper is that we have arranged that both meshes
exactly coincide along the boundaries and interfaces of the old mesh. This means that
there will be no artificial losses or gains due to an inaccurate representation of the old
boundary by the straight line segments of the new boundary. However, this also means
that potentially a cell side of the new mesh along a region boundary could be composed of a
number of straight line segments. This would considerably complicate the logic of finding
the exiting intersection for such a cell. Fortunately, we are able to circumvent this prob-
lem by checking interior sides only for intersections, since if no such intersection is found
then this means that the traversing line must terminate at the boundary in that cell.

Previously [8-11], it was always assumed that mesh cells were convex. This limita-
tion is too restrictive for the meshes anticipated with CAVEAT-GT. We therefore found it
necessary to generalize the method to handle concave cells. Since concave cells are rela-
tively infrequent we do not wish to perform the extra work involved if it is not necessary.
We therefore check both meshes and set a flag if the mesh contains concave cells. If the
mesh does contain concave cells, then intersections in a concave cell are checked by going
around the sides of the traversed cell both in the clockwise and anticlockwise direction.
Aside from the entering intersection, this will find two possible exiting intersections. In

most cases these intersections will coincide. However, when there are multiple re-entries,
the intersections will differ and the one closer to the entering point is selected. This is il-
lustrated in Fig. 27.

A known difficulty with this algorithm is the problem of coincidences between seg-
ments of the old and new mesh [9-11]. Coincidences require special treatment and they
must be detected reliably on both the old and the new mesh. We sidestep this problem by
destroying all potential coincidences by randomly displacing the cell vertex points of the
new mesh. Since each vertex point is associated with a triangle, we determine the radius
of the inscribed circle for scaling the displacement, and then randonily perturb the coordi-

43

SAR000

| c
ﬂ):l:vise sweep

B Entering intersection
® Exiting intersection

Anticlockwise
sweep

Fig.27. Tracing a line through a concave cell: Entering at point (a), point (b) is found on
the anticlockwise sweep and point(c) on the clockwise sweep. Point(b) is selected.

nates of the vertex point within a square whose dimensions are a very small fraction of the
inscribed circle radius.

This algorithm is implemented in subroutine REMAPPER. Line segments are traced
through cells of the old and new mesh in subroutines REMOLDSG and REMNEWSG, re-
spectively, and the line integral contributions are evaluated in subroutine REMLNINT.

2.6. Equation of State

The equation of state package in the CAVEAT-GT code is the same one that is in the
CAVEAT code. It consists of seven analytic and one tabular equations of state. The ana-
lytic equations of state are Linear, Quadratic (Osborne), Gamma Law, Stiffened Gas,
Mie-Gruneisen (HOM), Becker-Kistiakowsky-Wilson (BKW), and Jones-Wilkins-Lee
(JWL). The tabular equation of state is the Los Alamos National Laboratory (LANL)
SESAME tables. For a further discussion of these equations of state, see the CAVEAT
report [1]. '

2.7. Setup Code

The setup code was designed to be an interface between the user and the
CAVEAT-GT code. The typical user is assumed to have a good knowledge of the problem
he wishes to solve, but not a detailed knowledge of the CAVEAT-GT code. The setup code
leads the user through each phase of setup in an interactive fashion. Upon completion of
the setup, an input file for the CAVEAT-GT code is written. The first and most important
part of the setup is specifying the geometry, boundary conditions, and generating a suit-
able initial triangular mesh.

The geometry is input by first making a simple sketch as shown in Fig. 28. In Fig. 28,
the geometry is specified by the smallest number of straight or curved line segments
(sides) that adequately describe the geometry. All sides and vertices (points where two

44

2,1.1)

((.4,51.2) (.6,1.2) (8.1.1)
specified pressure ¢ 4 8 7 speci
Y P pecified pressure
0,1) 3 73 5 v ~ !
specified pressure) 8 (LD
symmetry ~g 19 Region 2 3| o~ Symmetry
11
©,.5) 2 LF #9 1,.5)
symmetry -7 10 Region 1 2%~ symmetry
0,0) 1 &= 1 410 (1,0)
specified velocity

Fig.28. Input geometry.

adjacent sides intersect) are numbered consecutively beginning with the number one. The
ordering of the sides and vertices is arbitrary. The desired boundary condition on each side
and the x and-y location of each vertex is specified and each separate region is numbered.
Extra regions can be specified to force a particular mesh point distribution and later re-

.moved. Regions containing holes must be initially treated as two half regions and not as a
single region with a “cut.” This is a requirement of the setup code only. Once the mesh has
been generated, this extra region can be removed. The maximum number of regions that
can meet at a vertex is three. After the above information has been organized in the
sketch, the user can run the setup code that will request this information in a straightfor-
ward manner. The user can vary the maximum mesh size and triangle area smoothness
until a satisfactory mesh is obtained.

Namelists CNTRL, PLOT, and GRID contain the parameters for controlling the cal-
culation itself as well as input and output. These Namelists are written into the CAVEAT-
GT code input file using all default values for each parameter. The definition of all param-
eters in these Namelists can be listed by the setup code if desired. The default values can
be changed in the CAVEAT-GT code input file using a text editor. |

The initial conditions then are specified for each region. While these conditions may
vary from region to region they are constant inside each region. If specified pressure or ve-
locity boundary conditions are employed, the values to be specified are requested.

All input required for a given problem is generated by the setup code except for de-
sired changes to the Namelists CNTRL, PLOT, and GRID discussed above and desired
changes to the equation of state (EOS) information. The EOS information is input using

. the same Namelist format as in the CAVEAT code. A default Namelist for a gamma law
gas (y = 1.4) is provided. If the user wishes a different EOS then he must prepare the
Namelist EOSIN using the CAVEAT code report [1] and then replace the default EOSIN. -

45

Note that because there is no burn model in CAVEAT-GT, the array BURNC in Namelist
EOSIN is not used. Note also that the CAVEAT-GT codes use the SI system of units and
-not those used in CAVEAT,

In conclusion, the CAVEAT-GT code setup requires running the setup code and then
making any desired changes to the parameters in the Namelists CNTRL, PLOT, and GRID
as well as'the EOS parameters.

2.8. Graphical Output
The graphical output consists of mesh plots (both triangular mesh and computational

cells); velocity vector plots; contour plots of pressure, density, and energy; plots of bound-
ary values of pressure, density, and energy vs x or y; and special mesh plots providing the
local data structure (Sec. 3.5). These special mesh plots are used for debugging purposes.
All plots are generated using the DISSPLA library of subroutines.

3. COMPUTER PROGRAM

3.1. Data Structure, Storage, and Masking

The “Z” data structure, discussed in Sec. 2.1.3, and other integer mesh parameters
necessary to efficiently describe the mesh, require a large amount of storage. In order to
decrease this storage, these integer quantities have been packed into arrays using the con-
cept of masking. In this procedure, one first decides how many bits of a 64 bit word are re-

quired to store all expected values of a particular integer parameter. Next, one allocates
this number of bits in a 64 bit word for storing this integer parameter by masking off the
rest of the 64 bits. One can then move the mask to allow other integers to be stored in the
same 64 bit word and thus greatly reduce the total amount of storage. A discussion of the
parameters, the masks, and how to save/get these quantities is provided in the sections be-
low. In what follows, the k integers denote the cell points or vertices of the triangular
mesh, the m integers denote the sides of the triangular mesh, and the n integers denote the
triangles themselves. The storage partitions for all data structure arrays that use mask-
ing are shown in Fig. 29.

3.1.1. Interior. The arrays nsl and ns2, shown in Fig. 29, store the “Z” data dis-
cussed in Sec. 2.1.3 and, therefore, are based on triangle sides. The integers k1, m1, and
nl are stored in ns1 while k2, m2, and n2 are stored in ns2. The k integers use the right-
most 20 bits, the m integers use the next 20 bits to the left and the n integers use the next
20 bits to the left of the m integers. The integers in the ns2 array are stored in the same
manner. The leftmost 4 bits in the nsl array are used to store the boundary condition in-

dex. There are nsd total sides and nsdi interior sides or “Z’s.” The nts array is used to
store the three side numbers of each triangle. Side m1 uses the rightmost 20 bits, side m2

46

_4 Bits 20 Bus 20 Bits 20 Bits

NSI1(M) IBC N1 Ml K1
1 1 1 1 20 20 20
NS2(M Remapger [Misd o
M) %lagsﬁ Flag N2 M2 K
4 20 20 20
NTS(N) M3 M2 M1
3 5 1 1 1 1 1 11 -~ 20 20
INFOA(K) |TYP{NR|ID | KD |ADDDELICCV M2 Ml
_ 4 20 20 : 20
INFOB(K) KNEXT K2 K1

Fig.29. Masking locations of the data structure arrays.

uses the next 20 bits to the left, and m3 uses the next 20 bits to the left of m2. There are
ntr total triangles and ntri interior triangles. The location of the cell points, which are the
triangular mesh vertices (k1 and k2, discussed above), is stored in the xc (x.value) and yc
(y value) arrays. The fluid cell vertex points, which are the triangle centroids, are stored in
the xv and yv arrays. The locations of the cell and vertex points after the Lagrangian.
phase of a time cycle are stored in the xcl, yel, xvl, and yvl arrays, respectively. The cen-
troids of the fluid cells (indexed by the k1 and k2 values discussed above) are stored in ar-
rays xcd and yed. These values are the same as xc and yc if the cells are regular poly-
gons, and then only in the interior. For the boundary cells, the xc¢ and yc values always lie
on the boundary. There are np cell points.

The data structure parameters may have different names in different subroutines
and, therefore, listing them by name would not be very useful. However, the mask that
specifies the storage location of each parameter does not change and, therefore, can be used
to identify the parameters. The masks are scalar variables whose names start with MASK
and are stored in common block MASKS. Corresponding to each mask is a shift count that
tells how many bit positions the mask must be shifted so that the right-most bit of the pa-
rameter resides in the lowest order bit of a computer word. These shift counts are not
stored as variables, but instead are coded directly in all masking statements.

47

. Following is a list of the data structure parameter masks, the bit positions used for
‘storage and a brief description of the parameter. For this discussion the bits are numbered
from the right beginning with one. '

MASK BITS DESCRIPTION
MASKi 1-20 Used to obtain k1 from ns1, k2 from ns2, m1 from nts,
‘ m1l from infoa, and k1 from infob.
MASK2 21-40 Used. to obtain m1 from nsl,— n2 from nts, m2 from
_ infoa, and k2 from infob. ,
MASK3 41-60 Used to obtain n1 from ns1, n2 from ns2, m3 from nts,
and knext from infob.
MASKBC 61-64 Used to obtain tﬁe side boundary condition index from
o nsl. '

MASKNR 57-61 Used to obtain the cell point region number from
' infoa. .

MASKTYP 62-64 Used to obtain the cell point type as shown in Fig. 28.

To obtain a parameter

An example of this procedure for the case where a shift is not required is the follow-
ing: , ‘ ' ' '
K1 = NS1(M).AND.MASK1.

This gives one of the k values for side m. An example of this procedure for the case .
where a shift is required is the following:

M1 = SHIFTR(NS1(M).AND.MASK2,20).

To store a parameter

To store the above two parameters requires the following:
NS1(M) = K1.0R.(NS1(M).AND..NOT.MASK1)
and '

 NS1(M) = SHIFTL(M1,20).OR.(NSI(M).AND..NOT.MASK2).

3.1.2. External/Interface Boundaries. On boundary sides (m > nsdi), the middle
side and both cell points of each “Z” lie on the boundary. One side is ini the mesh interior
~ while the other side is external to the mesh. If the boundary is an external boundary then
the m value for the external side is zero. If the boundary is an interface boundary then the

48

m value is equal to the m value of the opposite side. The n value always is equal to the
boundary triangle number (discussed below). There are no Z's defined external to the
mesh. However, there are boundary triangles (n > ntri) that are external to the mesh.
One of the m values in the nts array is equal to the side on the boundary while the remain-
ing two m values are zero for external and interface boundaries.

Two additional arrays called infoa and infob, shown in Fig. 29, also are used in de-
fining the boundary data structure. These arrays are defined for cell points (k values). The
m1 and m2 values in infoa are the two adjacent boundary sides to cell point k. The kd and
id integers are flags that are discussed in the next section. The nr integer is the region
number and the itype integer denotes the seven posmble types of interface/boundary
points, shown in Fig. 30. The k1 and k2 integers in infob are the other two cell points

Regular: e 1

A S U UL W WY *
Vacuum: O-...

w' vac. 2

L 2. 2 9 ¥ \\\\‘S m.
Symmetry: © y

Mixed: vac. -==>==Qw.._,

Triple: \\r.T': 5
‘ "'0,"0“‘s“AVac-

Vacuum Triple: \T r— 6

rrereDeores SYm,
Symmetry Triple: —r T— 7

* also specified velocity or pressure

.

Fig.30. Typesofinterface/boundary points.
49

(itype=5), shown in Fig. 30, that occupy the same location in physical space as point k. If

-only two points are present (itype =1, 6, or 7), then one of the k’s will be zero. If only one
point is present (itype =2, 3, or 4), then both k’s are zero. The knext integer is the k value
of the next point on the boundary in the direction of increasing k. (If k is not on the bound-
ary then knext equals zero.) knext is used in subroutine BSTRUCT to generate the kl ar-
ray that is'a linked-list of cell points around the boundaries beginning with the first region
and continuing for all regions. Points that begin and therefore end a region appear twice
in the kl array. The ldbl (nr,i) array tells which element of the kl array begins (i=1) and
ends (i=2) region nr.

3.1.3. Flags. The term flag refers to single bit integers that can take on values of ei-
ther O or 1. All but three of these flags are assoclated with cell points and are stored in the
infoa arrays. The remaining three are associated w1th 51des of the triangular mesh and
are stored in ns2. :

~ The following is a list of the flag masks, the bit position used for storage and a brief
description of the flag use. For this discussion the bits are numbered from the right begin-
ning with one.-All flags are stored in infoa except as noted.

FLAG MASK BIT FUNCTION .

maskadd 54 When nonzero, this flag denotes that a cell

' | point has been added.

maskdel - 53 When nonzero, this flag denotes that a cell
point has been deleted.

maskcev . 52 ' When nonzero, this flag denotes that a fluid

cell is concave. This information is required by
the remapper because the new mesh may enter
and exit a concave cell in the old mesh more

than once.
maskid- ‘ 56 When nonzero, this flag denotes that a specific
cell point operation has been completed.
maskkd 55 . Same as maskid.
maékrev 51 When nonzero, this flag denotes that the ramp

as opposed to the table part of the SESAME
equation of state package is being used to cal-
culate the pressure. For more information see
the CAVEAT report[1].

50

mask61 61(ns2) When nonzero, this flag denotes that a triangle
side has been checked for intersection with a
contourline in subroutine PLTCONTR.

mask62 : 62(ns2) - When nonzero, this flag denotes that a specific
triangular mesh side operation has been com-
pleted in the general remapper subroutines.

mask63 63(ns2) Same as mask62.
mask64 64(ns2) Same as mask62.

3.1.4. Regions/Materials. The region number of each cell point is stored in the infoa

array using the mask masknr discussed above. The material number for this region is ob-
tained from the nrmn array in common block EOS. These material numbers must begin
with one and increase by one for each different material. These numbers are not the SES-
AME equation of state material numbers. Several regions may have the same material
and, therefore, the same material number. The ordering of the regions and materials is ar-
bitrary. The maximum allowable number of different regions is 31 while the maximum al-
lowable number of materialsis 30.

3.2. Code Structure : o
The CAVEAT-GT code package consists of the following nine files: the setup code
source file, the run code source file, the compilation controller file, along with three update

and three input files for the three example cases. Information pertinent to understanding
the structure and use of the CAVEAT-GT code is contained in this section while the exam-
ple cases are discussed in Sec. 4. Included here are the naming conventions of the codes,
files, subroutines, and variables. Variable definitions and subroutine functions also are
described. The organization of the CAVEAT-GT code is provided. Finally, working array
assignments are detailed.

3.2.1. File Naming Conventions. Early in the CAVEAT-GT development effort, it
was recognized that three distinct codes were necessary to provide a user convenient and
efficient method (Fig. 31). The three codes include a setup code (CAVGTS), the main code
(CAVGTR), and a post-processor (CAVGTP). The setup code (CAVGTS) is a user interac-
tive codc that generates the initial mesh, flow variables, equation of state parameters, and

data structure (Sec. 2.7). Output from the setup code is available as input to the main code
(CAVGTR). The main code contains the hydrodynamics algorithms. Because of the great-
er geometrical complexity, graphical output may be expensive. Furthermore, the need to
manipulate data provided by the main code suggests the need for a post-processor
(CAVGTP). Output from the main code could be used directly as input to the post-:

51

tty

DMPGTS p ‘ OUTGTS

v CAVGTS » PLTGTS

RSTGTS e DSPGTS
INPGTR .

DMPGTR v OUTGTR

v CAVGTR »| PLTGTR

RSTGTR * DSPGTR

INPGTP

* OUTGTP

tty ‘ { CAVGTP » PLTGTP

~ DSPGTP

Fig.31. File naming convention.

processor. The post-processor should also be a user interactive code. Its fundamental func-
tion would be to alter data from the main code and provide the desired graphics. At the
~ present time, the post—prdcessor code has not been written [Sec. 5.3].

A file-naming convention was conceived in an effort to easily identify the file type
and its code affiliation. Files associated with the setup, main, and post-processor codes
have a GTS, GTR, and GTP designation, respectively. Input, output, dump, restart, plot,
and DISSPLA message files begin with INP, OUT, DMP, RST, PLT, and DSP, respectively.
The executable files begin with CAV. Finally, the source files are named CGTSSRC,
CGTRSRC, and CGTPSRC, respectively. A summary of the above convention is provided
in Fig. 31. It should be observed that the dump files (DMPGTx) must be renamed
(RSTGTx) to restart each of the codes. Output from setup code is used as input to the main
code INPGTR). Output from the main code could be used as input to the post-processor
(INPGTP). Currently, OUTGTS contains the z-data structure information for the problem,
and OUTGTR contains messages that also are sent to the user terminal (tty).

3.2.2. Flow Diagram. Flow diagrams for the subroutine calling sequence of the
CAVEAT-GT computer program are provided in Figs. 32-35. The diagrams are intended
to illustrate where in the computational cycle each subroutine is used and not to provide a
detailed diagram of the logic inherent to a cycle. Descriptions of the function of each sub-
routine are found in Sec. 3.2.3.

52

INITIAL
TIMESTEP —J/ TERMNATE
»(ncyc=ncyc+1) GRADBNDR

LAGRATES GRAD

100 ‘ ncount=0) RIEMANN
—"

TIMESTEP L—{ sounoary |-{RiEMANN
o TRIPLPT
TERMNATE | —{ INTSECT
INTFACE

I
BOWTIES

yes

*Bold outlined subroutines
are further edpanded in
the following figures

ncount=
ncount+1

100

T " | REZBNDY
B
REZLAGR REZCJRS TERMNATE
AOUECT GRADBNDA
GRAD
REMOLDFD i
iremap
-1 REMPREP REMNEWFD
REMNELWSG
, ~ » TERMNATE
no ¢&——— REMAPPER REMOLDSG
_ REMLNINT
INFLOW UPDTURRS
TERMNRATE
CELLGEOM

OUTPUT

| EOSDRIVE | [EosP SESURLP

TERMNRATE l

Fig.32. CAVEAT-GT flow diagram.

I SETUP |—— grid

yes 4 EOSINPUT

feeen

TERMNATE

SESSET

VES

TERMNATE

EQSSET

| EOSINPUT | || TERMNATE
- BSTRUCT TERMNRATE
[TERMNATE |—— sesser |
REZONE CELLURTH
TERMNATE EOSP
—— | SESUALP |
- initialize
variables
OUTPUT

Fig.33. Subroutine INITIAL.

54

CELLGEOM

calculate extensive

MESH

NELWCD

variables
yes
Io)rder GRADBNDA
2
no GRAD
store old data
structure
NEWADDI
NEWDELI
NEWADDB
NEWMESH
NELWWDELB
NEWTRI
EOSMAT
BSTRUCT TERMNATE.
MESH
REZONE CELLURTH
l TERMNRATE

Fig.34. Subroutine REMPREP.

TERMNRATE

-89

PLTDEBUT

yes nxtoutp
=nKtoutp+1
ioutp=1

]

tout=
toutp+dtoutp
ioutp=1

|

yes

yes nxtdump=
nxtdump+1
idumpp=1

]

‘yes tdump=
tdump+dtdump
idumpp=1

PLTSET

" PLTMESH °

PLTCONTR
PLTUELUC

PLTHY

0

Fig.35. Subroutine OUTPUT.

The fundamental architecture of a CAVEAT-GT cycle is provided in Fig. 32. The cy-
cle is initiated by obtaining cell side variables (u*,p*) by solving a Riemann problem.
These variables are used to obtain the surface integrals necessary to compute the time
rates of change of volume, momentum, and energy (LAGRATES). Fixed points and bound-
aries and interfaces are then advanced (TRIPLPT and INTFACE). Boundary vertices are
displaced along the boundary segments in an effort to provide optimal resolution and
boundary contours with excessive curvature are smoothed (REZBNDY). The interior
mesh is rezoned in a near Lagrangian fashion (REZLAGR) and the flow variables are ad-
‘vected to this new mesh (ADVECT). If it has been determined that a global remap is nec--
essary, the data structure is modified and a new mesh is constructed (REMPREP). The
flow variables then are remapped onto this mesh (REMAPPER). The variables are updat-
ed (UPDTVARS) and output is provided (OUTPUT).

The calling sequences of the subroutines INITIAL, REMPREP, and OUTPUT are
provided in Figs. 33, 34, and 35, respectively.

3.2.3. Subroutine Description. Subroutine names in CAVEAT-GT are selected to re-
flect their function. Furthermore, the CAVEAT-GT subroutines are grouped into three ba-
sic sections. Subroutines are ordered alphabetically within each section. The first section

of subroutines represents the main body of the code. Problem setup, output, and the algo-
rithms necessary to advance the problem one tilile-step are contained in this section. An
attempt has been made to use the first three or four characters of a subroutine name as an
indication of its function. For example:

GRADxxx , aresubroutinesused in the calculation of the cell gradients.

INTxxx , areinterface related subroutines.

NEWxxx , are subroutines used to generate a new data structure when a glo-
| bal remap is required.

REMxxx , aresubruutines used by the global remapping algorithm.

REZxxx , arerezoning or mesh generation subroutines.

PLTxxx . are plotting subroutines.

EOSxxx , are equatibns of state subroutines.

SESxxx , are equations of state subroutines involving the SESAME library.

A brief description concerning the function of each of the subroutines in this first section,
in alphabetical order, is provided.

ADVECT updates the cell mass, momentum, and energy based on the Lagrangian cell-
centered rates of change. The conserved quantities then are modified to reflect
a stability limited (i.e., Courant condition) remapping (advection) of the exten-
sive variables from positions that would result from a pure Lagrangian motion
to the near Lagrangian mesh (Sec. 2.5.1).

57

BOUNDARY
BOWTIES

BSTRUCT
CELLGEOM
CELLVRTX
GRAD
GRADBNDA
GRADBNDR

INFLOW
INITIAL

INTFACE

INTSECT

LAGRATES

MESH

NEWADDB
NEWADDI

NEWCD

58

determines solutions to the Riemann problem along boundaries. The appro-
priate boundary conditions along each segment are included.

detects when the existing time-step size is too large such that boundary seg-
ments intersect or cross each other (Sec. 2.3.1). ‘

provides boundary data structures. Information containing variables and bits
necessary for the specification of boundary segment or vertex conditions, near-
est neighbor definition, and boundary vertex ordering also are set.

computes the mesh geometric properties. Included are the cell area, volume,
centroids, and the moments of inertia necessary for calculation of a minimum
cell characteristic length (Sec. 2.1.2).

calculates the cell vertex locations. For interior vertices, these locations are
the centroids of the triangles determined by the three neighboring cell centers.
On boundaries they are the averages of the boundary cell centers lying on ei-
ther side of the vertex position.

computes the cell-centered gradients for the “second order” computations (Sec.
2.2.3).)

"loads the boundary value arrays necessary for the calculation of cell gradients

of mass, momentum, and total energy densities along region boundaries. The
values are used by the global remap and advection subroutines.

loads the boundary value arrays necessary for the calculation of cell gradients
of the primary-intensive quantities (density, velocity, ...) along region bound-
aries. The values are required for the solution to the Riemann problem.

applies the inflow and outflow boundary conditions.

initializes the calculation. It drives the subroutines that read input files
(SETUP) and dumps (TAPERD) as well as subroutines that set up the data
structure (BSTRUCT) and compute the mesh geometry (CELLGEOM).

Primary-extensive quantities also are initialized in this subroutine. :

computes the new interface/boundary positions (Sec. 2.3). It relies on a
Huygens construction based on the velocities obtained from the Riemann prob-
lem. An equidistribution term is used to remove the singularity encountered
along lines of symmetry. '

computes the intersection of the projected locations of two neighboring bound-
ary segments. The projected segment locations are obtained from a Huygens
construction using the two Riemann velocities associated with each segment.

determines a provisional Courant-limited time-step (through a call to TIMES-
TEP), calculates and stores solutions to the Riemann problem (u* and p*), and
computes the Lagrangian cell-centered rates of change for momentum, energy,
and volume.

sweeps through the dual triangulation defined by the cell-centered positions
and determines if a reconnection of the mesh is necessary. If the reconnection
criterion is satisfied, then the reconnection is made.

controls the addition of boundary cell points to the data structure and the
modification of the information containing variables.

controls the addition of interior cell points to the data structure and the modi-
fication of the information containing variables.

changes the diagonal of a quadrilateral formed by two adjacent triangles in or- -
der to simplify deleting a cell point.

NEWDELB
NEWDELI

NEWMESH

NEWTRI

OuUTPUT

REMAPPER

REMLNINT

REMNEWFD

REMNEWSG

REMOLDFD

REMOLDSG

REMPREP
REZBNDY

REZCJRS
REZLAGR
REZONE
RIEMANN
SETUP

TAPERD
TAPEWR

TERMNATE

controls the deletion of boundary cell points from the data structure and the
modification of the information containing variables. : :

controls the deletion of interior cell points from the data structure and the
modification of the information containing variables.

is the driving subroutine that controls the addition and deletion of boundary
cell points from the date structure and modifies the information containing
variables appropriately.

modifies the triangle information containing variables to reflect the results of
adding or deleting boundary cell points from the problem.

determines at which cycle numbers or computational time output is. demand-
ed. It also drives the subroutines that provide prmted and graphical output as
well as dumps.

is the driving subroutine for the global remap algorithm (Sec. 2.5.2). Based on
conservation principles, variables are transferred (or remapped) from one
mesh to another.

evaluates the line integfals over the cell sides necessary for the global remap
algorithm (Sec. 2.5.2).

locates the new mesh cell into which an old mesh segment is directed and the
new mesh side the segment crosses.

" traces a new mesh line segment through the old mesh. It determines which of

the old cells it enters and exits and which sides it crosses.

locates the old mesh cell into which a new mesh segment is directed and the

old mesh side the segment crosses.

traces an old mesh lin€ segment through the new mesh. It determmes which
of the new cells it enters and exits and which sides it crosses.

is the set up subroutine for the global remap algorithm (Sec. 2.5.2). It saves
variables associated with the old mesh and calls subroutines that compute the
mesh geometry, modify the data structure, and define the new mesh. - »

repositions, as well as adds and deletes, boundary cell points in an effort to ac-
curately resolve the boundary contour as it evolves during the calculation
(Sec. 2.4.2).

solves a system of linear equations using the diagonally scaled conjugate re-
sidual technique. This subroutine is called by REZLAGR. :

computes a “near Lagrangian” motion of the mesh (Sec. 2.4.1). That is, a new
mesh that approximately preserves the original cell volumes is determined.

constructs a new mesh based on the specified boundary vertex locations. The

“algorithm attempts to construct a regular mesh based on the uniformity of an-

gles and sides of the dual triangulation (Sec. 2.4.1).
obtains the solution to the Riemann problem.

reads from the mput file INPGTR) and initializes the equation of state vari- .
ables.

reads a dump from the restart file (RSTGRT).
writes dumps to the dump file (DMPGTR).

is called to terminate the problem under both normal (i.e., end of problem) and
abnormal (i.e., code failure) conditions.

59

TIMESTEP

TRIPLPT

UPDTVARS

VORPTS

computes the time-step size based on a Courant stability condition or halves
the time-step size if it has been determined that a boundary construction will
fail for the existing time-step size. The time-step size also is halved if cell vol-
ume changes are too large.

computes the new locations of boundary triple points and “fixed” points. A
Huygens-like construction using the Riemann velocities of the sides that form
the triple point is used to advance these boundary vertices to their new posi-
tions. :

updates the mesh geometry, the cell intensive quantities, and the equation of
state variables following a successful time-step.

computes the cell vertex positions for Voronoi cells. (This subroutine current-
ly is not used.)

“The above subroutines advance the fluid state and mesh each time cycle. The following
subroutines provide graphics output. The plot subroutines use the DISSPLA graphics
package. A list of these subroutines, as well as a brief description of their function, is

included.
PLTCONTR

PLTDEBUG

PLTMESH'
PLTSET

PLTVELVC
PLTXY

" provides contour plots of the flow variables. Currently, contour plots of pres-

sure, density, and internal energy may be obtained.

generates mesh plots when the debug option (IDEBUG =1) has been enabled
(Sec. 3.5) while under the dynamic debugging tool (DDT). Four plots are pro-
vided by this subroutine. The first providesthe entire mesh and indicates the
window in which the debug plots are provided as set by the variables
XWIND1, YWIND1 and XWIND2, YWIND2. The next three plots provide the
labeled mesh sides, vertices, and triangles.

provides a plot of the CAVEAT-GT mesh.

is a utility subroutine that calculates minimum and maximum values re-
quired by the plotting package.

provides a plot of the velocity vectors.

provides a two-dimensional plot of a flow variable versus the x- or y-coordinate
along the problem boundary. Currently, pressure, density, or internal energy
plots are available.

The equation of state subroutines follow the plotting subroutines. Given the density and
either the pressure or internal energy, these subroutines provide the temperature and
either the internal energy or pressure. A diverse set of analytic and tabular equations of
" state is available. The user speciﬁes the desired state equation for each region through the
input file INPGTR). A detailed discussion of the available models is provided in Sec. 2.6
or Ref. [1]. A brief description of each equation of state subroutine is provided.

EOSBKW

EOSDRIVE
EOSE

60

calculates the state variables and their derivatives using the analytic BKW
equation of state.

is the driver subroutine for the equation of state calculation.

is used to obtain the state variables when density and pressure are provided
(i.e., internal energy and temperature are calculated). Depending on the user

EOSHOM

EOSINPUT

EOSJWL

EOSMAT

EOSP

EOSSET
SESSET

SESVALE

SESVALP

specified equation of staté, this subroutine either calculates the state variables
or accesses those subroutines that provide the necessary computations. Eight
equations of state are available.

calculates the state variables and their denvatlves using the analytic HOM
equatlon of state.

initializes the equatlon of state variables and reads the equation of state speci-
fications (namelist EOSIN) from the input file INPGTR).

calculates the state variables and their derivatives usmg the analytic JWL
equation of state.

loads the equation of state arrays that allow vectorization in the computatlons
of the state variables.

is used to obtain the state variables when density and internal energy are pro-
vided (i.e., pressure and temperature are calculated). Depending on the user
specified equation of state, this subroutine either calculates the state variables
or accesses those subroutines that provide the necessary computations. Eight
equations of state are available.

is the driver subroutine for the initialization of the state variables.

initializes the equation of state variables when the SESAME tabular data are
accessed.

is called to obtain the state variables and their derivatives when density and
pressure are provided (i.e., internal energy is calculated) using the SESAME
tabular data.

is called to obtain the state.variables and their derivatives when density and
internal energy are provided (i.e., pressure is calculated) using the SESAME
tabulardata.

3.2:4. Arrays and Variables. A brief description of the important variables used in

the CAVEAT-GT code is provided in this section. The variables are listed alphabetically.
For arrays, the appropriate dimensions are included in parentheses following the variable
name. Array dimensions specifying the number of cells (nv), triangles (nt), sides (ns), and
work storage (nwk) are provided by parameter statements. Currently, the number of re-
gions (ir) is fixed at a value of 30. An asterisk following the variable indicates that it is
specified by input. Variables followed by a double asterisk are temporary parameters in
the work storage array (Sec. 3.2.5). The common block that contains the variable is pro-
vided in brackets following the variable description.

aamax

adsmx(ir)*

akmax

alpa*

is the normalizing weight factor (refer to a, __ in Sec. 2.4.2) applied to the
adaptive term in the interface rezoning algorxthm [REMAP]

is an array specifying the ratio of side length to the region maximum side
length above which an interior cell point is added on the side. [REMAP] -

is the normalizing weight factor (refer to ay, _ in Sec. 2.4.2) applied to the cur-
vature term in the interface rezoning algonm‘m [REMAP]

is the weight factor (refer to a, in Sec. 2.4.2) applied to the adaptive term in the
interface rezoning algorithm. Currently, this term is absent from the code.
[REMAP]

61

alpe*
alpk*
alpn*

ama(ir)
area(nv)
atnr(ir)

bmass(nv)**
cang*
cart*

curv(nv)**

curvmax*
cyln*

dendt(nv)**
dens(nv)*
dmxdt(nv)**

dmydt(nv)**
dsmax
dsmin
dsmx(ir)*

dsmxmn
dt
dtdump*

dtmax‘

dtmin* -

dtoutp*
dvmdt(nv)**

dvn(ns)**

62

is the weight factor controlling the spacing on the boundary (1.0 denotes equal
spacing and 0.0 denotes the previous cycle spacing). [REMAP]

is the weight factor (refer to a, in Sec. 2.4.2) applied to the curvature term in '
the interface rezoning algorithm. [REMAP}

is the weight factor (refer to a, in Sec. 2.4.2) used in the configurational rezon-
ing algorithm. This parameter should be limited 0 < a, = 1. [REMAP]

is the material strong shock parameter for the region ir. [FLUX1]
is the area of a cell. It also is used as temporary storage. [FLUX1]
is the sum of the area of the triangles in each region (Sec. 2.4.1.2). [MESH1]

is the product of density times the boundary segment length required by the
near Lagrangian rezone along the boundaries (Sec. 2.4.2).

is an argument used by the DISSPLA graphics package that controls the num-
ber of labels on a contour curve. [PLOT]

is-set equél to 0 or 1 for a problem in cylindrical or Cartesian coordihates, re-
spectively. [FLUX2]

is the curvature of the boundary contour at a boundary point.

is the maximum curvature (refer to R,,;, = 1/curvmax in Sec. 2.4.2) allowed
by the configurational rezone algorithm. [REMAP]

is set equal to 1 or 0 for a problem in cylindrical or Cartesian coordinates, re-
spectively. [FLUX2]

is the cell-centered Lagrangian rate of change of total energy.
is the density of a cell. [FLUX1] .

is the cell-centered Lagrangian rate of change of the x-component of momen-
tum.

is the cell-centered Lagrangian rate of change of the y-component of momen-
tum.

is the maximum spacing for a boundary segment used by the interfacial rezon-
ing algorithm (refer to AS,,,,, in Sec. 2.4.2). [REMAP]

is the minimum spacing for a boundary segment used by the interfacial rezon-
ing algorithm (refer to AS,,;, in Sec. 2.4.2). [REMAP]

is the maximum distance allowed for a boundary segment (refer to AS 4, in
Sec. 2.4.2)in region ir. [REMAP]

is the average dsmx over all the regions and is used for scaling. [REMAP]
is the computational time-step size. [FLUX2]

is the computational time increment for providing dufnps to file DMPGTR.
[FLUX2]

is the maximum time-step size allowed by the calculation. [FLUX2]

is the minimum time-step size allowed by the calculation. If the predicted
time-step size falls below this value, the calculation will terminate. [FLUX2]

is the computational time increment for providing output. [FLUX2]
is the cell-centered Lagrangian rate of change of volume;

is the product of the cell-side normal velocity resulting from the Riemann solu-
tion and the cell-side length.

dx2,dy2

dxmn(nv)**
e(nv)*
ebnd(nv)**

eostab(20000)

eps*
es(100,ir)

eschng*

esif*

esnew?*

forthpi

fv(ns)**

gascn(25,ir)* -

gex(nv),gey(nv)**
. gradqx(nt),gradqy(nt)**
grx(nv),gry(nv)**
gux(nv),guy(nv)**

gvx(nv),gvy(nv)**

halfpi
idebug

idump*

igrad*

ihuyg
ilogo*
imesh

incdump®*

incoutp*

are the averages of xmin and xmax, and ymin and ymax, respectively. These
variables are used by the graphics subroutmes [PLOTI] '

is the minimum characteristic length for the computational cell.
is the specific internal energy of a cell. [FLUX1]
is used to store the total energy at the region boundaries.

is a working storage array used by the SESAME equation of state subroutines.
[BLANKD]

is a generic small parameter (epsilon), specified through input. [FLUX2]

is a real array containing the equation of state parameters for each material
region. [EOS]

an array used to input the equation-of-state parameters into the es array (see
the CAVEAT report [1]).

is the inflow internal energy used in the specified inflow boundary condition.

TFLUX2)

an array used to input the equation-of-state parameters in the es array (see
the CAVEAT report[1])

is equal to n/4. [FLUX2]

is the advection flow volume or the difference between the material and mesh
velocities times the time-step size and cell side length (Sec. 2.5.1).

is a real array containing parameters for the BKW and JWL equatxon of state
for each material region. [EOS]

are the cell-centered gradients for pressure or total energy.

are trial cell-vertex gradients (Sec. 2.2.3).

are the éell-cenﬁéred gradients for density or mass.

are the ceil-centered gradients for the x-component of velocity or momentum.
are the cell-centered gradients-for the y-component of veAlocity or momentum.
is equal to /2. [FLUX2]

is an integer that when nonzero enables the debugging graphics option (Sec.
3.5). [PLOT] :

is an integer that if nonzero equals the dump number to be read in for a re-
start.

specifies the gradient limiting technique used by the higher order computa-
tional method (Sec. 2.2.3). A value of 1, 2, or 3 results in no limiting, van Leer
limiting, or monotone limiting, respectively. [FLUX2]

is an integer used to denote the failure of the Huygens construction used to
propagate the boundary (Sec. 2.3.1). [TERMN]

-is an input flag. A value of 1 provides the Los Alamos logo on all plots, and of

0 eliminates the logo. [PLOT}

is a counter that accumulates the number of calls made to subroutine MESH
within an iteration from subroutine REZONE. [TERMN]

is the cycle increment for providing dumps to file DMPGTR. [FLUX2]
is the cycle increment for providing output. [FLUX2]

infoa(nv),infob(nv)

infoaold(nv)**
inout

iorder*

ipdens*
ipeher*
ipmesh*
ippres*
ipve*
ipvelv*
ipxy*

iremap
irezone*

isegend

- isetp*

iskipf*

iswitch

iter

ivec*

64

w N = O

are information containing arrays associated with the boundary cell centers.
They contain references to nearest sides and vertices on boundaries, as well as
bits indicating, for example, region number and boundary conditions (Sec. 3).
[MESH1]

is an information containing array associated with cell centers of the old mesh
prior to a general remap.

is a flag used in subroutine REMAPPER to indicate whether or not a cell seg-
ment is exiting a cell. [REMAP]

controls the approximate order of accuracy of the calculation. Allowed values
are:)

; ‘ a first-oxjder Riemann solution, advection, and global remap.

; asecond-order Riemann solution, first-order advection and global remap.
; afirst-order Riemann solution, second-order advection and global remap.

; a second-order Riemann solution, second-order advection and global re-
map. [FLUX2]

is an input flag. A nonzero value provides plots of density contours to the
graphics file. [PLOT] ‘

is an input flag. A nonzero value provides plots of specific internal energy con-
tours Lo the graphics file. [PLOT] '

is an input flag. A nonzero value provides mesh plots to the graphics file.
[PLOT] ' - :

is an input flag. A nonzero value provides plots of pressure contours to the
graphics file. [PLOT]

is an input flag. A nonzero value includes the mesh with the velocity vector
plots. {PLOTI |

is an input flag. A nonzero value provides velocity vector plots to the graphics
file. [PLOT]

is an input flag. A nonzero value provides two-dimensional plots of pressure,
density, and specific internal energy versus x (ipxy =1) or y (ipxy = 2). [PLOT]

is a flag that indicates if a global remap of the mesh is necessary. [REMAP]
is a flag that indicates if the boundary of the mesh is to be rezoned. [REMAP]

is a flag used in subroutine REMAPPER: that indicates when a segment has
been traced to its end. [REMAP]

is an input flag used to indicate whether the initial pressure (isetp =0) or spe-
cific internal energy (isetp=1) is calculated by the equation of state subrou-
tines during initialization. [EOS]

‘is an integer hsed to specify the number of frames skipped on the graphics file

following each time-step. This allows, for example, similar plots to be posi-
tioned on horizontal lines when microfiche copies of the plot file are produced.
[PLOT]

is a variable used in subroutine MESH that accumulates the number of recon-
nections. [MESH2]

is an integer used as an iteration counter. [TERMN]

is an argument used by the DISSPLA graphics package that specifies the size
and type of an arrowhead used on velocity vector plots. [PLOT)

ko
kfirst
ki(nv)

klast

" klo(nv),klold(nv)**

kmat(nv)
kmatpnt(ir)
ktabs
lefrst
Iclast

l1dbl(ir,i)

ldblold(ir,i)

Is(ns)**

mask1
mask2
mask3

mask61
mask62
mask63
mask64
maskadd

maskbc

maskccv

is an integer denoting a fatal error number. [TERMN]
is the smallest cell number that is a boundary cell. [MESH2]

is a vector containing the boundary cell point numbers as one proceeds in order
from a logically fixed point around the region boundaries. Its contents change
dynamically as cells are added/deleted. [MESH1]

is the largest cell number that is a boundary cell. [MESH2]

are vectors containing the boundary cell numbers, as one proceeds in order .
around each region, prior to a general remap.-

is an integer array containing the cell numbers (k) ordered by material num-
ber. [EOS] . '

is an integer array containing pointers that provide the starting location of
cells in each material group. [EOS]

is the location of the first word in the storage block for the SESAME equation
of state tables. [EOS]

isa dummiy variable used by the dump subroutines to locate the beginning of
the storage arrays. [FIRST]

is a dummy variable used by the dump subroutines to locate the end of the
storage arrays. [LAST]

contains the location in the kl array of the first (i=1) and last (i=2) boundary
cell point for region ir. [FLUX1]

contains the location in the kl array of the first (i=1) and last (i=2) boundary
cell point for region ir in the old mesh prior to a global remap. [FLUX1]

is an index that provides the segment number and orientation for the Riemann
velocities alohg boundaries and interfaces.

is a mask used to extract information in the first 20 bits of a'word (Sec. 3.1). It
is used to obtain cell-center numbers from the nsl, ns2, and infob arrays, and
cell-side numbers from the infoa array. [MASKS]

is a mask.usqd to extract information from bits 21 through 40 of a word
{Sec. 3.1). It is used to obtain cell-side numbers from the ngl, ns2, and infoa
arrays, and cell-center numbers from the infob array. [MASKS]

is a mask used to extract information from bits 41 through 60 of a word (Sec.

- 3.1). Itis used to obtain cell-vertex numbers from the nsl and ns2 arrays, and
- cell-center numbers from the infob array. [MASKS]

is a mask used to extract bit 61 from a variable. [MASKS]
is a mask used to extract bit 62 from a variable. [MASKS]
is a mask used to extract bit 63 from a variable. [MASKS]
is a mask used to extract bit 84 from a variable. [MASKS]

is a mask used to extract or set bit 54 from the variable infoa(k) (Sec. 3.1).
The result indicates if the kth cell has been added to the mesh. [MASKS]

is a mask used to extract bits 61 through 64 from the variables nsl1(m) and
ns2(m) (Sec. 3.1). The results’are the boundary condition type number applied
to the mth cell side. [MASKS] .

is a mask used to extract bit 52 from the variable infoa(k). The result denotes
if the cell is convex or concave. [MASKS]

65

maskdel

" maskid -
~maskk-d
maskrev
masknr
masktyp
mass(nv)
mnew(nt)**

mnses

mntot

mold(nt)**
libowts
ncelmat(ir)

ncyc*
ncycstop*

ndump
nl

nin
np*

npn
nrd*

nrez

nrmn(ir)*

‘nsl(ns),ns2(ns)

nslold(ns),ns20ld(ns)**

66

is a mask used to extract or set bit 53 from the variable infoa(k) (Sec. 3.1).
The result indicates if the kth cell has been deleted from the mesh. [MASKS]

is a mask used to extraqt bit 56 from the variable infoa(k) (Sec. 3.1). [MASKS]
is a mask used to extract bit 55 from the variable infoa(k) (Sec. 3.1). [MASKS]

is a mask used to extract bit 54 from a word. It is required by the SESAME
equation of state subroutine EOSP.

is a mask used to extract bits 57 through 61 from the variable infoa(k)
(Sec. 3.1). The result is the region number of the kth cell. [MASKS]

is a mask used to extract bits 62 through 64 from the variable infoa(k)
(Sec. 3.1). The result is the type of interface on which the kth cell lies.
[MASKS}

is the mass of a cell. It also is used as temporary storage. [FLUX1]

stores the new mesh boundary side associated with an old mesh boundary tri-
angle.

is an integer specifying the number of materials that are described using the
SESAME equationof state tables. {[EOS]

is an integer specifying the total number of materials. [EOS]

stores the old meéh boundary side associated with a new mesh boundary
triangle. T

is an integer specifying the number of bowties or loops in the boundary
(Sec. 2.3.1). [TERMN]

is an integer array containing the number of cells in each material region.

[EOSY
is the beginning or current computational cycle number. [FLUX2]
is the cycle number at which the calculation is terminated. [FLUX2]

is the number of the dump read from the restart file (RSTGRT) and compared
withidump. [FLUX2]

is the total number of cells on the boundaries (i.e., the active length of the vari-
able kl). Its value changes dynamically as cells are added/deleted. [MESH2]

is the total number of cells on the boundary (i.e., the active length of the vari-
able k_l) folldwing the rezoning of the mesh. [REMAP]

is the total number of cells. Its value changes dynamically as cells are ad-
ded/deleted. [MESH2]

is the total number of cells following the rezoning of the mesh. [REMAP]

" is the total number of regions in the problem. [MESH2]

accumulates the number of times matrix coefficients have been recomputed in
subroutine REZONE. [TERMN]

is an integer array containing the material number of each region. [EOS]

are information containing arrays associated with the cell sides. They contain
information pertinent to the Z-data structure (Sec. 2.1.3) such as neighboring
cell centers, sides, and vertices, as well as boundary condition information.
[MESH1]

are information containing arrays associated with cell vertices of the old mesh
prior to a general remap.

nsd*

nsdi*
nsdiold
nsdold
nsold(nt)**
ntabs

ntnr(r)

ntr*
ntri*
ntriold

nts(nt)

nxtdump*

nxtoutp*

oldmass(nv)
pﬁnd(nv)**
pc(nv)¥

pi

pn(ns)**

psif*, psof*

pspec*
ptdens(nv)**
r(nv)**
rbnd(n.v)**
rhoe(nv)**
rhosif*
rhou(nv)**

rhov(nv)**

is the total number of cell sides (interior plus boundary). Its value changes dy-
namically as cells are added/deleted. [MESH2] -

is the number of interior cell sides. Its value changes dynamically as cells are -
added/delcted. [MESH2]

is the number of interior cell sides prior to the change in the data structure re-
sulting from rezoning the mesh. [REMAP]

is the total number of cell sides (interior plus boundary) prior to the change in
the data structure resulting from rezoning the mesh. [REMAP]

is the location of the new mesh boundary cell vertex relative to the old mesh
boundary index klold.

is an integer specifying the storage requirements for the SESAME equation of
state tables. [EOS]

is the number of triangles in each region (Sec. 2.4.1.2). [MESH1]

is the total number of triangles (interior plus boundary). Its value changes dy-
namically as cells are added/deleted. [MESH2]

is the number of interior triangles. Its value changes dynamically as cells are
added/deleted. [MESH2]

is the number of interior triangles prior to the change in the data structure re-
sulting from rezoning the mesh. [REMAP]

contains information associated with triangles (Sec. 3). It contains the three
side numbers forming the triangle that connects the three neighboring cell
centers. [MESH1]

is the next cycle number at which a dump to file DMPGTR is to be made. On
input, this variable specifies the cycle number of the first dump. [FLUX2]

is the next cycle number at which output is provided to the terminal (tty),
print file (OUTGTR), and graphics file (PLTGTR). On input, this variable
specifies the cycle at which output is initially supplied. [FLUX2]

is the-mass of a cell following the last global remap. [FLUX1]

is used to store pressure at the region houndaries.

is the pressure of a cell. It also is used as temporary storage. [FLUX1]
iseqnal tn r=23.1415 [FLUX2]

is the cell-side pressure resulting from the Riemann solution.

are the inflow and outflow pressure, respectively, for the specified inflow and
outflow boundary conditions. [FLUX2]

is the pressure applied to specified pressure boundaries. [FLUX2]

is the region boundary point density function (Sec. 2.4.2).

is the pseudo-radius (Sec. 2.1.2).

is used to store the density or mass at the region boundaries.

is the product of the density and total energy at the cell center.

is the inflow density used in the specified inflow boundary condition. [FLUX2]
is the product of the density and x-component of velocity at the cell center.

is the product of the density and y-component of velocity at the cell center.

67

s(nv)**
sdsmx(ir)*.

sixth .
sloc(nv),lold(nv)**
s;(n\;)“
soﬁdcn(25,ir)*
ss(nv)

switch

tarea(nt)**

tau
tdump*

third
thknss*

.time*
title(10)*

. tmass(nv)

- tote(nv)
toutp*
tstop*
ubnd(nv)**

uc(nv)*

umom(nv)

unsif*

68

is the arclength at a boundary point as one proceeds around the region follow-
ing the relocation of boundary cell points.

is an array specifying the ratio of side length to the region maximum side
length below which an interior cell point is deleted on one end of that side.
{(REMAP]

is equal to 1/6. [FLUX2]

identifies the location of cell points along the boundary as a function of the lo-
cation in the old (before remap) kl array. This is necessary for a global remap.

is the arclength at a boundary point as one proceeds around the region prior to
relocating boundary cell points.

is a real array containing parameters for the HOM equation of state for each

material region. [EOS]

is the local isentropic speed of sound for a cell. It also is used as temporary
storage. [FLUX1]

is a logical variable used in subroutine MESH to indicate when reconnections
of the dual triangulation are necessary. [MESH2]

are the areas of the triangles constructed by connecting cell centers.

is the smoothing coefficient c2At (Sec. 2.4.2) used in the interfacial rezoning al-
gorithm. [REMAP]

is the computational time beyond which the next dump is made to file
DMPGTR. On input, this variable specifies the computational time of the first
dump. [FLUX2]

" isequal to 1/3. [FLUX2]

is an argument used by the DISSPLA graphics package that controls the
thickness of contours specifying external boundaries and interfaces in the
mesh plots. [PLOT]

is the beginning or current computation time. [FLUX2]
isa character string containing the problem title. [PLOT]

is the inverse of the density times the length of a boundary cell side (p,As,). It
is required by the near Lagrangian interfacial, rezoning algorithm (Sec. 2.3.4
and 2.4.2). [FLUX1]

is the total energy of a cell. It also is used as temporary storage. [FLUX1]
is the computational time at which output is provided to the terminal (tty),

print file (OUTGTR), and graphics file (PLTGTR). On input, this variable

specifies the first computational time at which output is provided. [FLUX2]

" is the computational time beyond which the calculation is terminated.

(FLUXZ2)

is used to store the x-component of velocity or momentum at the region bound-
aries.

is the x-component of velocity of a cell. [FLUX1]

is the x-component of momentum of a cell. It also is used as temporary storage
[FLUX1]

is the normal inflow velocity used in the specified inflow boundary condition.
[FLUX2]

unspec*
uvtx(nv),vvtx(nv)**
vbnd(nv)**

ve(ne)*

vmom(nv)

vol(nv)

vsf*

work(10000)

works(n wk_)

wsl(nv),ws2(nv)**

xa,ya

xaray(nv),yaray(nv) .

xe(nv),ye(nv)*
xed(nv),ycd(nv)

xcl(nv),ycl(nv)

xcn(nv),ycn(ny)**

xmax,ymax,xmin,ymin

xnmo(nv)**

xv(nt),yv(nt)
xvi(nt),yvl(nt)**

xwindl, xwind2

xxe(nv),yye(nv),xyc(nv)**

ywindl, ywind2

is the normal velocity applied to épeciﬁed velocity boundaries. It is positive in
the direction of the unit outward normal to the boundary. [FLUX2]

are the cell-centered x- and y-component of velocities, respectively, that result
from the near Lagrangian rezoning of the mesh (Sec. 2.4.1).

is used to store the y-component of velocity or momentum at the region bound-
aries.

is the y-component of velocity of a cell. [FLUX1]

is the y-component of momentum of a cell. It also is used as temporary storage.
[FLUX1]

is the volume of acell. [FLUX1]

is a parameter used to specify the length of the maximum velocity vector rela-
tive to the average cell dimension. [PLOT)

is a working storage array used by the contour blot subroutine. [BLANKD]

is working storage. Temporary storage is provided by this array (Sec. 3.2.5).
[WORKC]

are the Riemann velocities along boundaries and interfaces.
are the plot frame length and height, respectively, in plotting Space. [PLOT]

are temporary storage arrays used for plotting abscissa and ordinate values.
[PLOTI]

are the cell point positions. [MESH1]
are the cell centroid positions. [MESH1]

are the “near Lagrangian” cell center positions. They also are used as dummy
variables in subroutine INTFACE. [MESH1]

are temporary positions of the cell centers.

are the minimum and maximum plot frame coordinates in physical space.
(PLOT!

results from integrating the point density function around the region bound-
ary (refer to N in Sec. 2.4.2).

~ are the cell vertex positions. [MESH1]

are the “near Lagrangian®” cell verlex positions.

are the minimum and maximum abscissa values, respectively, of the debug-
ging graphics window (Sec. 3.5). [PLOT]

are the area moments of inertia of the computatibna] cells (Sec. 2.1.2).

are the minimum and maximum ordinate values, respectively of the debug-
ging graphics window (Sec. 3.5). [PLOT]

3.2.5. Work Arrays. The CAVEAT-GT code employs a work array (works) to store

temporary arrays as they are required in the calculational procedure. The size of this ar-
ray is 33*nv, where nv is the number of cells required by the problem. The work array is
used in blocks. The size of each block being nv. Consequently, there are 33 blocks of avail-
able storage for the use as work arrays. Each block of storage may be accessed using the

69

parameter nwky, where x=1, 2, ..., 33. In order to use a block of work storage for a tempo-
rary array phi for example, one simply must equivalence phi(1) to works (nwky).

Because many of the temporary arrays are calculated in one subroutine and used in
another, it is useful to know when each block of the work array is being utilized. This pre-
vents the accidental overwriting of a temporary array prior to its use. The allocation of
each block (nwky) of the work array (works) is provided in Table I for one cycle of a calcu-
lation. Temporary arrays based on the number of cells (k) in the problem require one block
of storage of size nv. Information based on the number of triangles (n) and sides (m) require
2 and 3 blocks of storage, respectively. Consequently, some of the temporary arrays are
observed to use multiple blocks in Table I. '

In an effort to obtain additional storage, some of the permanent arrays also are used
as temporary storage in the code. In subroutine INTFACE, the arrays xcl and ycl are used
as temporary variables. The arrays pc, ss, and area also are used as temporary storage.
Their temporary values (rhou, rhov, and rhoe) are calculated in REMPREP and used
later in REMLINIT. Finally, mass, umom, vmom, and tote are used as temporary stor-
age in the subroutine REZONE.

3.3. Setup Procedure

The setup code CAVGTS generates all required input for the run code CAVGTR and
writes this input to a file called INPGTR that is read by CAVGTR. Any parameters that
are not specified during the CAVGTS run are set to their default values. All parameters

except the initial mesh data structure are written in namelist format. The value of any
parameter can be changed using a standard text editor. Therefore, it is not necessary to
run CAVGTS every time CAVGTR is used. The definition and default value of each
parameter is given by the CAVGTS code and, therefore, is not listed here.

3.3.1. Mesh. The initial triangular mesh is generated using the TRIGEN package of
subroutines from the PLTMG code [14].

The main program of CAVGTS requests the required data following the procedure
discussed in Sec. 2.7. Then TRIGEN uses these data to generate a triangular mesh that is
plotted by subroutine PLTMESH. The user then can vary the maximum triangle side
length and adjacent triangle area smoothness to optimize the mesh. Next, subroutine
GZDS is called to convert the TRIGEN data structure to the required *Z” data structure
(Sec. 2.1.3). All internal interfaces are doubly defined and all Boundary (external and
interface) sides are moved to the end of the side arrays. Finally, all triangle data is gener-
ated. Then subroutine GFILE compacts the “Z” data using masking and writes these data
into the INPGTR file. All additional mesh parameters are in Namelist $GRID and are
written into the INPGTR file using default values.

70

1L

TABLE1
WORK ARRAY ALLOCATION*

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | 17 18 19
1 r coupl sloc : sloc €old
grx diagl 50 grx da.dxc grx grx |dadxc
gry diag?2 [gry da,dxc gry gry |dadxc
rbnd gux diag3 | xnmo,ei,curv| resx | rbnd gux dadxc| rbnd gux gux |dadxc
5 guy fi resy guy dv.dyc guy guy |ldvdyc
ubnd gvx scf uvtx | ubnd gvx dv,dyc| ubnd gvx gvx |dvdye
gvy kltmp uvty gvy dv,dyc gvy gvy |dvdyc
€s &s (43 xcn xcn | resx
€s [£] s ycn ycn | resy
10 [£] (£ €s rhou dxx nslold nslold{ dxx
wsl |wsl| wsl rhov dxx nslold nslold| dxx
ws2 | ws2| ws2 bmass coef | rhoe dxx nslold nslold] dxx
vbnd gex ptdens coef | vbnd gex dyy | vbnd gex gex dyy
: gey coef gey dyy gey gey | dyy
15 pdnd diag | ebnd dyy | ebnd infoaold infoold]| dyy
| fv dxy | ns2o0ld ns20ld{ dxy
fv dxy ns2old ns2old| dxy
fv dxy ns2o0ld ns2old| dxy
klo klold
20 pn pp.xvl xvl xvl
pn ap.x}l xvl xvl
pn yv'(yvt yvt
yvé vl yvi
tarea,gcmin,cymin |dvmdt dvmdt tarea,qcmin,qymin | xxc tarea,qcmin,qymin coefl | mold | xcc
25 tarea,gcmax,cymax|{dmxdt dmxdtitarea,gqcmax,gymax| yyc tarea,gcmax,gymax coefl | mold | yyc
sarea dmydt dmydt sarea xyc sarea coefl | nsold | xyc
] gqmin,qxmin dendt dendt gmin,qxmin gmin,qxmin coef2 | nsold
| dzmn gmax,gxmax dvn dvn qmax,qxmax dxmn gmax,qxmax coef2 | mnew | dxmn
] gradqy dvn dvn | | gradqy gradqy coef2 | mnew
30| gradqy dvn dvn gradqy gradqy diag)
gradqx gradgx gradgx arx,qx
gradgx gradqx gradgx ary,qy

*The first column refers to a block of storage in the work array (works). Columns 2-19 refer to the following subroutines in the computational cycle.

12. CELL GEOM
13. GRADBNDA
14. GRAD

TIMESTEP
GRADBNDR
GRAD

Sopwe

LAGRATES, BOUNDARY
TRIPLPT, INTSECT

7. INTFACE
8. REZBNDY

9. REZLAGR, REZCJRS

10. ADVECT

11. GRAD, GRADBNDA

15. REMPREP
16. NEWMESH

17. REZONE
18. REMAPPER

19. UPDTVARS, CELLGEOM

The CAVGTS code also writes a dump file called DMPGTS. This file contains all of
the geometry data. By switching the file name to RSTGTS and using the CAVGTS code re-
start option the user can avoid reading in these data again when he wishes to change the
spatial resolution of the mesh or any nonmesh parameters. In addition, many geometry
parameters can be changed in the RSTGTS file. This allows the user to correct mistakes or
change the geometry. A description of the contents of this file is contained in comment
statements in the main program.

If desired, the “Z” data structure can be written in the OUTGTS file for high speed
printing. The PLTGTS file contains a plot of the triangular mesh while the DSPGTS file
contains any messages generated by the DISSPLA graphics routines.

3.3.2. Hydrodynamics. The hydro data consists of the initial conditions for all flow
variables as well as the parameters that control the time-step, output, and numerical

method. The initial conditions consist of the velocity, density, pressure, and internal ener-
gy for each flow region. These values are assumed to be constant in each region. The ini-
tial conditions are written into the INPGTR file in Namelist $IC.

The parameters that control the output and numerical method are written into the
INPGTR file in Namelist §CNTRL. The definition and default value for each parameter
are given by the CAVGTS code and, therefore, are not listed here.

3.3.3. Equation.of State. The equation of state (EOS) parameters are written into the
INPGTR file in two namelists, $EOS and $EOSIN. The $EOS namelist contains the array
nrmn, which gives the material numbers as a function of region number. All other EOS
parameters are contained in the $EOSIN namelist. This namelist is the same as the one in
the CAVEAT code [1] and, therefore, is not discussed in detail here. The setup code writes
a default $EOSIN into the INPGTR file assuming a gamma law gas (y=1.4). If the user
wishes to employ another EOS, then he should generate the appropriate $EOSIN namelist
following the instructions in the CAVEAT report. This new $EOSIN namelist would then
replace the default namelist.

3.4. Updating, Compiling, and Execution
To compile the setup code use the LANL utility XEQ to compile the source code
CGTSSRC by typing

XEQ CGTSSRC,

which generates an executable code called CAVGTS. (The XEQ utility treats all state-
ments at the beginning of the source code that have a * in column one as though they were
typed in at a terminal.) To execute this code type

CAVGTS

72

and follow the instructions. The CAVGTS code then generates the input file INPGTR for
the run code. ' "

The procedures to update, compile, and execute the run code are very similar to the
corresponding procedures in CAVEAT [1]. Updating and compililig is done using the
LANL command language interpreter called CTL. This utility allows one to invoke a con-
troller (a sequence of commands) that automates the procedures required to update, com-
pile, and print listings. The controller file, called PRCVGT, is an improved version of the
CAVEAT controller PRCV. ,

Updating and compiling is simply a matter of invoking PRCVGT under CTL by typing

-PRCVGT

and responding to the appropriate prompts. A response of “abort” to any of the questions
will cause the controller to terminate. The controller will normally ask for the name of the
source file (CGTRSRC) in order to create an OLDLIB file. However, if this is a repeat ses-
sion and an OLDLIB already exists, it will ask if one wants to use the existing OLDLIB (or
else change to a new source file).. PRCVGT then asks for the name of the update file and
stores it in UPDECK. If an UPDECK file already exists, PRCVGT asks if one wants to use
it or change to’a different update file. If no update or modification of the code is desired,
then generate a dummy UPDECK file containing the single line

*ID DUMMY .

PRCVGT then compiles the updated code and produces an executable code called
CAVGTR. Following compilation, PRCVGT asks if a listing is desired and if so, it asks for
a title of the listing. To execute the code type ’ ~

CAVGTR .

The following is a sample of a typical interactive session:

——— ctl ver 03/01/83 latest news 03/01/83
*get ctllibc

----- 090 did not find default procedure library
/-prcvgt .
*select ttyecho=nocommands
type abort to exit this procedure
no oldlib-- enter historian source file name
? cgtrsre
input update file name
? updkst
CFr000 - CFT VERSION - 1.14i Edition 003 BUILT: : : :
CF001 - COMPILE TIME = 15.1033 SECONDS LT 03/07/89 - AT: 14:26:01
CF002 - 13143 LINES, 8589 STATEMENTS
controllee name is cavgtr +load length= 01370400
30 you wisb to produce and print an update listing? y or n
? n ’ v
/end

73

3.5. Debugging Graphics
Subroutine PLTDEBUG is included to generate a small window of the triangular
mesh with all sides, cell points, and triangles labeled. This routine can only be accessed

using the LANL routine DDT or some other dynamic debugging routine.

To activate PLTDEBUG, one sets a breakpoint at the beginning of subroutine
OUTPUT on the desired time cycle (note that OUTPUT is called on every time cycle).
Once the code has stopped at the beginning of OUTPUT, use the “set” or similar command
to change the values of the variables idebug, xwind1, xwind2, ywind1, and ywind2.
idebug is set equal to 1 while xwind1 and xwind2 denote the left and right x-values of the
window, respectively. Similarly YWIND1 and YWIND2 denote the lower and upper
y-value of the window, respectively. The code will then make the following four plots: the
entire triangular mesh showing the window and three plots of the mesh in the window with
the sides, cell points, and finally the triangles labeled. The mesh locations plotted are from
the xcd and ycd arrays. These values are used in place of xc and yc so that a gap between
regions is present, which allows easier viewing of the labels. These plots are produced re-
gardless of whether the standard output plots are scheduled to be generated. After these
four plots are generated, idebug is automatically set to 0 and no more debug plots are
produced until once again the user stops the code at subroutine OUTPUT and resets
idebug=1.

3.6. Dumps and Restarts
The dump file (DMPGTR) contains all of the computational variables necessary to

uniquely define the state of the calculation at a specified time cycle. This gives the user
the ability to restart the calculation in a consistent fashion simply by using the dump file
of a previous calculation as a restart file.

The initial time at which a dump is written to file DMPGTR is specified by the input
variable tdump. Time increments at which dumps are taken thereafter are provided by
dtdump. Alternatively, the user may specify dumps at input specified cycle numbers.
The first dump cycle being nxtdump and cycle increments thereafter by incdump.

When a dump is written to the file DMPGTR, a message is written to both the termi-
nal (tty) and the output file (OUTGTR). The message provides the dump number as well as
the cycle number and computational time at which the dump was provided.

To restart the problem from a specified dump, one must first rename the dump file
RSTGTR. Then use the existing input file INPGTR) with the user specified dump number
(idump) set to the dump from which a restart is desired. If the appropriate dump is found
on RSTGTR; a message is provided to the terminal and the output file indicating dump cy-
cle number and computational time of the restart. If the correct dump is not located on the
restart file, a message indicating the failed attempt is provided to the terminal. This last

74

message includes the user specified dump number and the last dump number encountered
on the restart file. The code then will terminate. '

4. EXAMPLE CALCULATIONS

Presented here are the following three calculations: the shock tube problem present-
ed in [15], as well as the blast wave and Taylor anvil problems discussed in [16] and [17].
Due to several modifications to the CAVEAT-GT code, there are small differences between
these results and those in [16] and [17].

4.1. Shock Tube
This example is the shock tube problem as specified by Sod [15]. In this problem high-
pressure gamma-law gas is located in the left end of a tube and low-pressure gamma-law

gas in the right. Initially the high- and low-pressure gas are separated by a diaphragm
that is broken at a time ¢ = 0. For ¢ > 0, a shock wave travels to the right followed by the
contact surface or interface and an expansion wave travels to the left. The initial condi-
tionsare p,, = p = 1, pg = 0.125, pgr = 0.1,y = 1.4, Ax = 0.01, and a total length L = 1.

Because this is a one-dimensional problem in the x-direction, there is only one trian-
gle in the y-direction and 200 (adjacent triangles for a square) in the x-direction. As a re-
sult there are two fluid or computational cells in the y-direction and 100 in the x-direction.
The two cells in the y-direction are both boundary cells, that is, there.are no interior cells.

The pressure and density, as a function of x, are shown in Fig. 36 for a time ¢ = 0.143.
These results are for the “second-order” scheme with van Leer limiting. The pressure re-
sults agree well with the exact solution. However, while the density results are excellent’
for the shock and expansion waves, the results for the contact are not as good. This is due
to the fact that as the shock and expansion waves are formed at early time, there is not suf-
ficient mesh resolution, causing numerical error. This error shows up at the contact sur-
face for early time and then persists without change for later time. This type of error is
also present in the CAVEAT code [1]. Note that the computed results curve in Fig. 36 is
actually two curves, one for the top row of fluid cells and one for the bottom.

This problem uses an update to set the minimum ordinate value to zero and plot the
exact solution on the p versus x and p versus x plots. Therefore, this problem will execute
correctly without the update. The update file is UPDKST and the input file is INPGTRST.
The cpu time for this problem is 17s on a Cray X-MP computer.

4.2. Blast Wave

This example is the blast wave problem presented in Ref. [16]. The problem domain
is a 2X2 square, occupied by a gamma-law gas (y = 5/3), with an “obstacle” located in the
lower left corner as shown in Fig. 37. The mesh is relatively coarse, containing 593 fluid or

75

il
3 -
= 7]
5 3
V 0
5 e
3 3
..w ~
= L .
3 £
3 e
(st)
£o
g E'S
-2) o
sy VY
. 3 £3
o p V
Q £
= a ~
e mx Sa
3 =
R 23
. D ~
Fo u 3
b .
~ 20
L2 5 8 Ry
R~
- 7]
Lz ®
-~
-3
Lo ke
&
[E
o o -~
w)
e .
- - O]
o 2= d
. <
p e =
01 s0 @0 20 9o SO0 0 £0 z0 10 o0 01 §0 60 40 80 S0 40 £0 20 10 00 g
JUNSSIYd) RLISNIC \w..
Q9
e d
-~
V
| N8
3
«
3
1
A,

solution).

Fig. 36.

76

computational cells, with a characteristic cell dimension of approximately 0.08. Initially,
the fluid is uniform and quiescent with density and specific internal energy of 1 and 1.5 X
10~'% (dimensionless units), respectively. Att = 0, a source of energy is applied to the cell
located at approximately x = y = 0.95. This cell instantaneously acquires an internal en-
érgy of 10.

As the calculation evolves, a cylindrical shock wave emanates from the energy source. . -
The evolution of the pressure profiles for the “first-order” calculation is shown in Fig. 38.
It may be observed that the wave is not propagated preferentially in any one direction on
the internal mesh. This demonstrates the improved isotropy anticipated for this method,
as compared to the related CAVEAT code [1], based on a quadrilateral mesh, that typically
shows differences in shock propagation in directions that are skew to the mesh directions.
For more results see Ref. [16].) ' A

This problem uses an update to add the initial energy to initiate the blast wave.
Therefore, this problem needs the update to execute correctly. the update file is UPDKBW
and the input file is INPGTRBW. The cpu time for this problem is 105s on a Cray X-MP
computer. Like the resultsin Ref. [16], this problem did not employ interior cell point ad-
dition/deletion, therefore adsmx was set equal to a large number (1000.0) and sdsmx was
set equal to zero.

4.3. Taylor Anvil
This example is the Taylor anvil or impact problem presented in Ref. [16]. This prob-

lem consists of a plate with dimensions 0.4 by 2.0, a density of 8.9, and traveling at a uni-
form velocity of 0.196 in the vertical (downward) direction. Att = 0 the plate enéounters a
rigid wall. The phenomena that one observes are that a shock wave propagates vertically
from the point of impact and is then overtaken by a rarefaction wave as the plate “splat-
ters” against the rigid wall. The initial mesh, shown in Fig. 39a is fairly coarse with 123
fluid or computational cells. The cell characteristic dimension is 0.1, The left and bottom
boundaries are symmetry boundaries. The right boundary is a free surface (p = 0), while .
the top boundary is a specified velocity boundary (v = —0.196). The material obeys the
Chaplygin equation of state, :

.pzkz(_l_-_l)
Py P

where k£ = 3.49 and pg = 8.9. The initial velocity corresponds to a Mach number of 0.5,
based on the undisturbed sound speed. (Note this equation of state is not included in the
CAVEAT-GT code and is added for this problem by updating the code. This equation of
state was used to allow the computed solution to be compared to an exact solution in

77

Ref.[18].) The evolution of the mesh for a “second order,” vaﬁ Leer limited calculation is
.shown in Fig. 39. The ability of the technique to smoothly add and delete computational

eells along the boundaries, as well as in the interior, can be observed. For more results see
Ref. [16].

.

2.0

2.0

(b) 4 : ()

Fig.38. Pressure contours for the blast wave example problem: (a) t=0.5; (b) t=1.0;
(c)t=2.0;(d) = 2.5. .

78

0's

0°'s

Sagisssuatescy
@ e 0930
1995005200500 0000

O N N Y Yl Y Y Y

§'1

(c)

(a)

©og

Evolution of the mesh for the Taylor anvil example problem: (a) initial mesh;

79

5.0;(d)t=17.5.

(b)t=2.5;(c)t

Fig.39.

This problem uses an update to fix the plot limits so the plots are not rescaled during
the run and to add the Chaplygin equation of state. Therefore, this problem will execute
without the update, but will use the linear equation of state instead of the Chaplygin equa-
tion of state. The update file is UPDKTA and the input file is INPGTRTA. The cpu time
for this problem is 25s on a Cray X-MP computer.

5. FUTURE WORK

5.1. Physical Models .
With the exception of the available equations of state, CAVEAT-GT currently lacks
“many of the physical models found in CAVEAT [1]. Because of the similarity of the two
codes, no difficulties are envisioned in adapting the physical models contained in the
CAVEAT code to the general topology version. This will simply require modifying the

models so that they are compatible with cells having arbitrary numbers of sides. Here we
have in mind the high expldsive (HE), molecular and turbulence viscosity, and strength
models.

There are three high explosive models available in CAVEAT. They include a
programmed-burn, the Chapman-Jouget (CJ) volume, and the Forest Fire burn models.
These models simulate the energy released from high explosive materials in the presence
of a propagating shock wave. The programmed-burn model is the most empirical of the
three. It would be the first model implemented into CAVEAT-GT. By specifying a detona-
tion speed based on data, the arrival time of the detonation front at a computational cell
may be inferred. In CAVEAT, the effects of obstacles (i.e., shadowing) are included. As
the wave sweeps over each computational zone, energy is deposited into the cell. This en-
ergy deposition combined with the equation of state for the material results in a pressure
pulse in the cell. There is, however, no feedback between the material motion caused by
the energy release and the wave propagation in this model. The BKW and JWL equations
of state typically are used with this model. These equations of state already have been im-
plemented into CAVEAT-GT. The CJ Volume Burn and Forest Fire burn models are reac-
tive burn models. ,

Including a molecular viscosity in CAVEAT-GT would require the addition of the ap-
propriate terms in the momentum and energy equations. Turbulence may be simulated
using the simplest representation for the turbulent shear in the form of a constant eddy
viscosity. A more sophisticated representation, using transport equations for the turbu-
lent kinetic energy and dissipation length scale (TKE model), also has been implemented
in the CAVEAT code. No difficulty is anticipated in transferring the turbulent models
available in CAVEAT into the general topology version of the code.

80

. Material strength effects have been combined with the Godunov numerical method
in CAVEAT. An elastic-plastic model using a bilinear stress-strain response curve has
been implemented, with both kinematic and isotropic hardening effects included. The
modifications require solving differential equations for the stress field, as well as the back
stresses and yield surface radius at the cell centers. The Riemann solution then is modi-
fied to'include the cell-side normal and shear stresses. The implementation of this model
into CAVEAT-GT should be straightforward. . |

Implementation of additional physical models such as heat conduction and diffusion-
al radiation heat transfer has been under consideration for the CAVEAT code, and there-
fore might also be included in CAVEAT-GT.

5.2. Vectorization
Because the current code is more of a development than a production code, no special

procedures to allow vectorization have been implemented. From the timing routines
‘included in this code, it is seen that around half of the computer time is spent in the two
rezone procedures. Therefore, several modifications to imprové the vectorization of sub-
routines REZLAGR, REZONE, REZCJRS, and MESH have been proposed, but as yet they
have not been implemented.

' 5.3. Post-Processor Code _

At the present time, the post-processor code has not been written. Therefore, the
main code CAVGTR does not currently write the INPGTP file as shown in Fig. 31. Be-
cause of the general topology of the CAVEAT-GT code, some of the graphic routines (for ex-

ample, contour plots) are time consuming. Therefore, it would be ‘desirable if the main
code could write results to a disk file instead of stopping to generate graphic output. The
. post-processor code could then read this disk file and generate the graphical output after
the main code has completed the calculation. This would greatly speed up the main code
for cases where large amounts of graphical output are desired. It would also allow the user
to generate additional graphical output without rerunning the main code.

ACKNOWLEDGMENTS

The authors wish to extend their appreciation to Hans Ruppel, who provided the en-
couragement and support for this endeavor. Gratitude also is extended to Adrienne Rosen
for providing assistance in the preparation of this manuscript. '

81

"REFERENCES

1]

2]
[3]

(4]
(5]
(6]

[7]
(8]

9]

[10]
(11]
[12]
(13]
[14]

[15]
(16]
(17]

(18]

82

F. L. Addessio, D. E. Carroll, J. K. Dukowicz, F. H. Harlow, J. N. Johnson,
B. A. Kashiwa, M. E. Maltrud, and H. E. Ruppel, “CAVEAT: AComputer Code for
Fluid Dynamlcs Problems with Large Distortion and Internal Slip,” Los Alamos
National Laboratory report LA-10613-MS (1986).

J. R. Baumgardner, Los Alamos National Laboratory, private communication,
1988.

“The Free-Lagrange Method,” Proceedings, 1st Int. Conf. on Free-Lagrange
Methods, Hilton Head Island, ‘South Carolina, 1985, M. J. Fritts, W.P. Crowley,
and H. Trease, Eds. (Sprmger-Verlag, Berlin, 1985)

J. K. Dukowicz, J. Comput. Phys. 61, 119-137 (1985).

A. M. Winslow, J. Comput. Phys. 2,149-172 (1967).

R. Chandra, “Conjugate Gradient Methods for Partial Differential Equations,”
Yale University Thesis, University Mlcroﬁlms, Ann Arbor, Michigan (1978)

J. U. Brackbill and J. S. Saltzman, J. Comput Phys. 46,342-368 (1982).

J. K. Dukowicz, J.Comput. Phys. 54,411-424 (1984).

J.D.Ramshaw, J. Comput. Phys. 59,193-199 (1985).

J.K.Dukowicz and J. W. Kodis, SIAM J. Sci. Stat. Comp. 8, 305-321 (1987).
J.D. Ramshaw, J. Comput. Phys. 67,214-221 (1986).

G. Voroﬁoi, J. Reine Angew. Math. 134,198 (1908).

'B:Delaunay, Bull. Acad. Sci. USSR (VII), Classe Sci. Mat. Nat., p. 793 (1934).

R. E. Bank, “PLTMG Users Guide,” Edition 4.0, University of California at San
Diego, La Jolla, CA (1985).

G. A.Sod, J. Comput. Phys. 27, 1-31 (1978). _
J. K. Dukowicz, M. C. Cline, and F. L. Addessio, J. Comput. Phys. 82, 29-63 (1989).

F. L. Addessio, M. C. Cline, and J. K. Dukowicz, “A General Topology, Godunov

Method,” Proceedmgs, Particle Methods in Fluid Dynamics and Plasma Physics,
Computer Physzcs Communications 48, 65-73 (1988).

R. R. Karp, Los Alamos Scientific Laboratory report LA-8371 (1980).

*U.S. GOVERNMENT PRINTING OFFICE: 1990-0-773-034/20048

This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
the Offfice of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
prices available from
(615) 576-8401, FTS 626-8401

Available to the public from
the National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Rd.
Springfield, VA 22161
Microfiche AO1
NTIS NTIS NTIS
Page Range _Price Code Page Range Price Code Page Range _ Price Code
001-025 A2 151-175 A08 301-325 Al4
026-050 A03 176-200 A9 326-350 AlS
051-075 A04 201-225 Al0 351-375 Al6
076-100 A0S 226-250 All 376-400 Al7
101-125 A06 251-275 Al2 401-425 AlS
126-150 A07 276-300 Al3 426450 Al9

*Contact NTIS for a price quote.

NTIS

Page Range Price Code
451475 A20
476-500 A21
501-525 AR
526-550 A23
551-575 A2
576-600 A25
601-up* A%

W g T et

Los AlBMOS (25 pamss Natioral Laborstony

