
LA-11812-MS

JUL 1 0 1990

CAVEAT-GT: A 'General

Topology Version of the CAVEAT Code

DO NOT MICROFILM
THIS PAGE

Los Alamos National Laboratory is operated by the University of California for
the United States Department of Energy under contract W-7405-ENG-36.

_BISTRIBUTIO,l OF THIS DOCUMENT IS U~JUMI E

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

-· · t ,·

An Affimza'ive Action/Equal OpJ10rtunitv Employer

Tlus rqx'rt wa~ prepared as an account of work sponsored by an agency of the
Umted Stales Government Neither the United Stales Government nor any agency thereof,
nor any of thl'lr employee , makes anv warranty. express or implied, or assumes any legal
lrabillty or 1esponsibzlity for tlu: accuracy, completeness, or usefulr~e.;s of ar111 in(ormatio11,
apparatus, pratiuct, or proces~ di. closed, or rt>prest'llls that its use would not infrznge
prirJtclv owned rights Reference herein to any .;pecific commercial pratiuct, process, or
sen IcC 1nt tmde name, tmdemark, manufacturer, or otherwise, doe, notnecessaril11 constitute
01 imply its endorsement, n•commendation, or favoring by the United States Government
"' m't/ ageuc"t(thereof. Tht• views and opiuions of authors expre~sed hemu t.W not uecessarily
-tatl! or reflect those nf the Unrted Statt!,; GoPernmt'ltt or any agenCtf thereof.

CAVEAT-GT: A General
Topology Version of the CAVEAT Code

Michael C. Cline
John K. Dukowicz
Frank L. Addessio

(
I

LA--11812-MS

DE90 013201

n@~ 0 n0lfll'lll@~ Los Alamos National Laboratory
lS ~ ~U(gJU U U ~ Los Alamos,New Mexico 87545

_DISTitiBUTION OF TillS DOCUMENT IS UH!IIfll~

 ii iv

TABLE OF CONTENTS

ABSTRACT 1

1. INTRODUCTION ... · 1

2. GENERAL DESCRIPTION 3
2.1. Mesh and Data Structure .. . 3

2.1.1. Mesh .. . 3
2.1.2. Geometrical Properties
2.1.3. "Z,. Data Structure

5
10

2.2. flydrodynamics .. .
2.2.1. Finite-Volume Method

.12
12

2.2.2. Godunov Method 14
2.2.3. Gradients .. . 15
2.2.4. Timestepping 18

2.3. Interfaces 18
2.3.1. Interface Propagation
2.3.2. Resolving Singularities

18
20

2.3.3. Triple Pointl:i and Fixed Points 22
2.3.4. Boundary Conditions 23

2.4. Rezoning 23
2.4.1. Interior Algorithms 23

2.4.1.1. "Near Lagrangian,. Algorithm ·
2.4.1.2. General Rezoning Algorithm

24
26

2.4.2. Boundary Algorithms : 29
2.4.3. Mesh Restructuring 32

2.4.3.1. ·Interior Mesh Restructuring 32
2.4.3.2. Boundary Point Addition/Deletion · 34
2.4.3.3. Interior Point Addition/Deletion 36

2.5. Remapping .. · .. . 37
2.5.1. Advection : 38
2.5.2. General Remapping 39

2.6. Equation of State ·
2.7. Setup Code .. .

44
44

2.8. Graphical Output · 46

3. COMPUTER PROGRAM 46
3.1. Data Structure, Storage, and Masking 46

3.1.1. Interior .. . 46
3.1.2. External/Interface Boundaries 48
3.1.3. Flags .. . 50
3.1.4. Regions/Materials 51

3.2. Code Structure .. . 51
3.2.1. File Naming Conventions 51
3.2.2. Flow Diagram .. . 52
3.2.3. Subroutine Description 57
3.2.4 .. Arrays and Variables
3.2.5. Work Arrays ... ·

61
69

3.3. Setup Procedure 70
3.3;1. Mesh · 70
332 H. d d y ro ynam1cs .. . 72
3.3.3. Equation of State .. . 72

v

3.4. Updating, Compiling, and Execution . 72
3.5: Debugging Graphics ... , ~.................................. 74
3.6. DumpsandRestarts ... 74

4. EXAMPLE CALCULATIONS ~ 75
4.1. Shock Tube ; ~................................... 75
4.2. Blast Wave . 75
4.3. Taylor Anvil :· ·. 77

5. ·FUTURE WORK ~ . 80
5.1. Physical Models .. 80
5.2. Vectorization . 81
5.3. Post-Processor Code · : ~ .. ;.............. 81

ACKNOWLEDGMENTS , 81

REFERENCES . 82

M-1~
-~. vi

CA VEAT-GT: A GENERAL TOPOLOGY VERSION

OFTHECAVEATCODE

by

Michael C. Cline, John K. Dukowicz, and FrankL. Addessio

ABSTRACT

We describe a numerical technique for solving two-dimensional,
compressible, multimaterial problems using a general topology
mesh. Multimaterial problems are characterized by the presence of
interfaces whose shapes may become arbitrarily complex in the
course of dynamic evolution. Computational methods based on
more conventional fixed-connectivity quadrilateral meshes do not.
have adequate flexibility to follow convoluted interface shapes and
frequently fail due to excessive mesh distortion. The present meth­
od is based on a mesh of arbitrary polygonal cells. Because this
mesh is dual to a triangulation, its topology is unrestricted and it is
able to accommodate arbitrary boundary shapes. Additionally, this
mesh is able to quickly and smoothly change local mesh resolution,
thus economizing on the number of mesh cells, and it is able to
improve mesh isotropy because in a region of uniform mesh the cells
tend to become regular hexagons. The underlying algorithms are
based on those of the CAVEAT code. These consist of an explicit,
finite-volume, cell-centered, arbitrary Lagrangian-Eulerian (ALE)
technique, coupled with the Godunov method, which together are
readily adaptable to a general topology mesh. Several special tech­
niques have been developed for this extension to a more general
mesh. They include an interface propagatiop ·scheme based on
H uygens' construction, a "near-Lagrangian" mesh rezoning algo­
rithm that minimizes advection while enhancing mesh regularity, an
efficient global remappin~ algorithm that is capable of conserva­
tively transferring quantities from one general mesh to another and
various mesh restructuring algorithms, such as mesh reconnection,
smoothing, and point addition and deletion. ·

1. INTRODUCTION

TheCA VEAT code [1] was developed as an efficient and effective method for comput­

ing problems containing multimaterial interfaces and internal slip. One of its main fea- ·

tures is that all variables are cell centered, a fact made possible by the use of the Godunov

method. CAVEAT has been successfully used on a remarkable variety of probiems. How­

ever, it still has inherent g~ometrical mesh limitations that cause the code to lose accuracy,

1

'

or even to break down due to unresolved mesh distortion. This is not the common umesh

tangling" of Lagrangian codes, but a mesh distortion associated with large and irregular

·changes of the original material interfaces, which define the boundaries of the mesh.

The two-dimensional CAVEAT code makes use of general quadrilateral cells [1],

while the three-dimensional version uses hexahedral cells with uruled" surfaces [2]. This

choice implies a simple underlying topology of the mesh, and the corresponding ulogical"

(i,j) or (i,j,k) data structure common to most finite-difference or finite-volume codes. This
• t

simple data structure has many advantages and itis entirely adequate for many problems.

A common topological configuration of this type of mesh is a rectangular block (or hexahe-­

dral block) in logical space, and the aspect ratio of this block as well as the total number of

cells is chosen and fixed at the initial setup stage. This is typical ofmost codes, including

CAVEAT. Now, for those problems in which the mesh boundary can evolve into. complex

and unpredictable shapes, such a choice, made at the initial time, will not be adequate and

may quickly result in an unacceptable mesh, in spite of efforts to regu~arize or smootli the

internal mesh. This difficulty is a symptom of the lack of flexibility in the topology of the

mesh. Thus, the experimental development of a two-dimensional code, called CAVEAT -G'l',

was undertaken primarily as a project.intended to investigate a solution· of this problem by

the use of a general topology mesh.

CA VEAT-GT was conceived as a code using the same hydrodynamics method as the

CAVEAT code, but utilizing a mesh of arbitrary p~lyhedral cells (not necessarily ~on vex).

Since such a mesh is dual to a triangulation, its topology is unrestricted. Such a mesh

readily adapts to arbitrary and dynamically changing boundary shapes. Further, it has

the property of being able to smoothly and rapidly change local mesh resolution, such as in .
regions oflarge boundary curv~ture. Since the cells are expected to become locally regular

. . . .
(regular pentagons, hexagons, etc.) away from the perturbing influence of the boundaries,

the resulting mesh is expected to have greater rotational isotropy as compared to a mesh of

quadrilaterals.

There has been relatively little experience with similar, general topology methods.

In this regard, one may mention Free-Lagrange methods [3], as well as finite-element

methods. Generally, however, either the underlying hydrodynamics technique is differ­

ent, or else ~dynamically evolving mesh is not considered. Therefore, the development of

CA VEAT-GT has been necessarily experimental. Nevertheless, the development of the

code has been taken to the stage where nontrivial problems may be attempted successfully.

The project is not completed, however. To be useful as a working code, additionaJ features

must be added, and further work on robustness and improved speed must be undertaken.

This, we hope, will be possible in the future.

2

Since CA VEAT-GT shares the basic finite-volume Godunov method with CAVEAT,

we will minimize discussio_n of the common aspects, which are available in theCA VEAT

r~port fll, in~t~ad concentrating on the unique features and techniques developed for this

code.

2. GENERAL DESCRIPTION

2.1. Mesh and Data Structure

2.1.1. Mesh. The general topology mesh is the primary feature of theCA VEAT-GT

code. We will therefore describe it in some detail. The mesh, as well as the associated hy- ·

drodynamics method, is two-dimensional and can represent either pt~ar axisymmetric

geometry. . ~
The mesh is divided into a number of nonoverlapping blocks or regions. These re­

gions are typically, but not necessarily, associated with different materials. The regi9ns

can adjoin and interact along their boundaries, in which case they form interfaces. The

region boundaries are defined by straight line segments joining points (vertices) located

along the boundary. Thus, the r~gion boundaries may have arbitrar.y shape, constrained

only by the requirement that there be no intersections. The regions may be m.ultiply con­

nected, so that a region may have several disjoint boundaries. Along interfaces, corre­

sponding vertices, associated with different regions, are constrained to be coincident.

Thus, along interfaces there is a double line of coincident vertices and straight line seg­

ments joining them. At certain points, called triple points, there may Qe more than two

regions in contact. At such points there will be more than two coinciden~ vertices. Symme­

try lines, although not separating different materials, are treated as interfaces.

The boundary vertices, arranged in some order, define the shape and the interior of

the region. The region interior contains a number of interior vertices. These interior ver­

tices, together with the boundary vertices, form the vertices of a regular triangulation.

The triangulation, which connects the vertices, is arbitrary in general, except that there

can be no overlapping triangles. This triangulation is not the mesh used directly in the

hydrodynamics calculation, but it is very useful in describing the topology (connectivity) of

the mesh and the associated ·data structure. The straight-line segments defining the

region boundaries are triangle sides in this triangulation.

U::;t:!ful t.upulugical rdaliutt::;hip:s fur a :slritply cuiiiit:!clt:!d rt:!giun are

T=2V-Vb-2,

s = 3V- vb- 3,

3

n

where S, T, and V are the total number of sides, triangles, and vertices, respectively, and

Vb is the number of boundary vertices. That is, V = Vi+ Vb, where Vi is the number of in­

terior vertices; Thus, for a large mesh, unperturbed by boundary effects, there will be an

average of two triangles and three sides per vertex, and each vertex will have an average

of six neighbors.

For each boundary triangle side Qf a region we a~sociate a fictitious boundary trian­

gle, as illustrated in Fig. 1. These boundary triangles facilitate inter-region communica­

tion and storage of boundary quantities. They have no geometrical significance.

Associated with this triangulation is a dual mesh. This is the mesh actually used for

hydrodynamics. Thus, associated with each triangle is.a point called the ·cell vertex. Ini­

tially, when a n/[~~W~sh is constructed, the cell vertex is placed at the triangle centroid.
· The algorithm is,slfeli that subsequently the cell vertex will always remain at the centroid

of its associated triangle. Cell v~rtices of neighboring triangles are connected, as illustrat­

ed in Fig. 2, to form closed polygonal cells. Each cell is then associated with a triangle ver­

tex or a cell point. These are the computational cells for the hydrodynamics method. Such

cells need not be convex.

Computational cells that lie along a region boundary are somewhat different since

the region boundary forms part of the cell boundary. Thus, boundary vertices are also cell

points, and there are also cell vertices, associated with the fictitious boundary triangles,

which are placed, by convention, midway along the associated boundary segments. This is

illustrated in Fig. 3.

The above describes only the general properties and characteristics of our mesh.

Such a mesh is capable.ofzoning arbitrarily shaped regions and dynamically changing its

topology as the shape of the regions c4anges. The specific algorithms for defining and

changing the mesh will be described subsequently.

Fig. 1. A typical triangulation of a region, showing fictitious boundary triangles.

4

triangle vertex
or cell point

Fig. 2. An internal computationa-l cell and the associated (dual) triangulation.

Boundary cell vertex

Boundary triangle
vertex or boundary

cell point

Bow1da:ry cell

Fig. 3. Boundary cells and cell vertices.

2.1.2. Geometrical Properties. The CA VEAT-GT computational regions are com,..

posed of closed polygonal cells with an arbitrary number of sides. It is from. this mesh that

the code derives its flexibility. The mesh geometry in the vicinity of an interface between

two regions is provided in Fig. 4. It may be seen from Fig. 4, that the boundary contours

and points along interfaces are doubly defined. That is, there is a unique interface associ­

ated with each region. Cell quantities are defined at three locations; at cell centers, cell

faces, and cell vertices. These locations are denoted using the index notation k, m, and n,

5

cell boundary

Fig. 4. Interface mesh geometry.

respectively. Primary-extensive quantities (mass, momentum, and total energy), as well

as average-intensive quantities (density, velocity, internal energy, and pressure) are asso­

ciated witb cell centers. Gradients of these quantities also are associated with the cell cen­

ters for the higher order approach. Variables necessary to evaluate surface integrals (ve­
locity and pressure) are assigned to the cell sides. Vertex quantities include the coordinate

positions necessary to dete~ine the mesh.

CA VEAT-GT may be used to analyze problems in either Cartesian (x,y) or cylindri­

cally symmetric (r,z) coordinates. For cylindrical coordinates, all equations are expressed

on a per radian basis. The two coordinate representations are modeled by introducing
pseudo-Cartesian (x,y) coordinates through the use of a pseudo-radius:

R(x) = (1 - P> + Px ,

where P = 0 or 1 for Cartesian or cylindrical coordinates, respectively. In the cylindrical

coordinate system, x is the radial coordinate and y is the axial coordinate. (In the code,

1 - p = CART and p = CYLN.)

During the course of each computational cycle, it is necessary to calculate the geo­

metrical properties for each cell .. These properties include the cell area, centroid, and a

minimum cell distance. The cell areas are calculated by summing up the areas of the tri­

angles that comprise each cell (Figs. 5 and 6):

1
A = 2: 2 [(x2 - x 0) X (x1 - x 0) • e)n . (2.1)

n

6

Fig. 5. Interior computational cell and
the associated triangles.

boundary

cell point

Fig. 6. Boundary computational cell and
the associated triangles.

This is equivalent to summing the areas of all triangles whose vertices include the end

points of each side an:d the origin. The number of triangles (n) associated with each cell is

of course equal to the number of sides of the cell. For interior cells, the cell center (xo) can­

cels out (Fig. 5) when the sum is performed in Eq. (2.1)

A 1 = ~ L [(x2 X x1)·e)n. (2.2)
n

The cell center does not cancel for boundary cells (Fig. 6). Consequently, boundary cell

areas are obtained by first calculating the sum provided in Eq. (2.2) and then adding in the

terms involving the cell center location

(2.3)

The volume of a computational cell is the sum of the volumes of the triangles that

comprise the cell

(2.4)

7

where <R > k is the average pseudo-radius:

(2.5)

and for a boundary cell

(2.6)

In CAVEAT-GT, all cell-centered variables are associated with the cell centroid (xc).

When cell side values .are needed, for example, the variable, its gradient, and the distance

from the side·to the cell centroid are used. By definition

(2.7)

For convenience, consider only the .x-component. To simplify Eq. (2.7), define the vector

function F = t x 2ex. Then V · F = x:and using the divergence theorem

1 f 2 x = ·- x e ·n dS,
c 2A .x (2.8)

where Sis the contour around the cell area A and n is the unit outward normal to S. For

each cell boundary segment (x2 - XI), a parametric representation is used

(2.9)

where 0 ·~ s ~ 1. Substituting this parametric representation into Eq. (2.8) and perform:.

ing the integration results in the equations (Fig. 5)

.x ·=
c

8 .

(2.10)

The area is obtained using Eq. (2.2). The sums are taken over all sides enclosing the cell.

For a cell adjacent to a region boundary (Fig. 6), the two boundary segments lxB2 - xol and

lxo- XBtl must be included in the sum of Eq. (2.10).

CA VEAT-GT is an explicit code. That is, new time variables are obtained using

source terms expressed as functions of old time variables. For this reason, there is a

Lagrangian stability limit on the time-step size (.!\t). The stability limit is a function of the

minimum characteristic size of the computational cell (.1Xmin>· This characteristic· size is

obtained b~ fitting an.ellipse to the cell which is done by first determining the moments of

inertia of each cell about the cell's centroid

I I. 2 2
lx = y dA -A yc ,

(2.11)

- . . .

where the area integrals are the cell moments of inertia about the. origin (/x0 , I yo •. lxy0). For

example,

/xu= f f /dA.

Defining F = t y3ey, then V · F = y2. Using the divergence theorem, substituting in the

parametric representation Eq. (2.9), and integrating one obtains

(2.12)

Similarly,

(2.13)

where the sum again is taken over all of the sides which comprise the cell. Therefore, the

smaller of the two principal moments of inertia of the cell is

9

/ ,.

I .jl . 2 2
I . =-(!+I)- -(!-I) +I .
mwc 2 x y 4 x y . xy

(2.14)

For an ellipse, .whose major and minor axes are 2a and 2b respectively, tlie area and

minimum moment of inertia about its centroid are

and

A = 11 ab,
"

I .
ll 3

=- ab .
4 nun

e

Therefore, the minor axis is

(2.15)

(2.16)

Because the ellipse approximates the shape of the cell, the minimum cell distance is there­

fore

IS .

!::i:x . '""4 --
nun A '

where the area (A) is obtained from Eq. (2.2).

2.1.3. "Z" Data Structure. Within the code, certain data are associated with trian­

gles, triangle sides, and vertices. For example, cell vertices are associated with triangles,

cell faces with triangle sides, and cells with triangle vertices. Vertices, sides, and triangles

are sequentially numbered and the associated data are stored in arrays according to this

numbering. The numbering is essentially random, except that boundary sides and trian­

gles are numbered last and therefore data associated with them will appear at the end of

the corresponding arrays.

The relationship of the vertices, sides, and triangles among themselves and their

neighbors is described by the data structure. The data structure allows one to reconstruct

the mesh by specifying which vertices are connected, by which sides, and in which order.

InCA VEAT-GT the data structure is based primarily on triangle sides.

10

Consider two neighboring triangles, associated with side m, as illustrated in Fig. 7.

We pick the two sides connected to side m that form the two arms of the letter "Z" (as op­

posed to the letter "8"). We l_abel the vertex associated with the lower corner of the "Z" as

k1, the side connected to this vertex as m1, and the triangle located between sides m and

ml as nl. Similarly, we label the corresponding quantities associated with the ripper cor­

ner as k2, m2, and n2. Thus, for each side m we store and associate the six quantities k1,

k2, ml, m2, nl, and n2. The choice of orientation of the "Z" (rightside up or upside down)

is arbitrary.

The information contained in the "Z's" is sufficient to reconstruct the mesh. It con­

tains not only information on connectivity but also on the ordering (or sequence) of the

sides or vertices around a given vertex. Additional information would be redundant.

This data structure is not unique. It does have the advantage of being compact and

economical since it stores precisely six quantities per triangle side. Other schemes, such as

those based on vertices, have the disadvantage of having to store an unspecified number of

quantities per vertex (the number of vertex neighbo:f'S is unspecified, although the average

is six).

The boundary "Z's" differ from the interior ones because there are no real neighbor­

ing triangles outside the mesh associated with a boundary side m. We have adopted the

following convention: Triangle n1 or n2 will be the fictitious boundary triangle associated

with the boundary side m. If the boundary side m is part of an interface, then the corre­

sponding coincident boundary side of the adjoining region is stored for m1 or m2. If the

boundary side m is not on an interface, then there is no coincident side, and a zero is stored

for m1 or m2. This .convention is the means for logically connecting different regions

together.

Although redundant, we have found it convenient and useful to also store, for each
triangle, th~ three triangle sides in counterclockwise order. This facilitates intercommu­

nication between triangles and sides. It has also been found useful to define boundary and

interface based data structures. A full description is given in Sec. 3.1.

k2

···•··•····· ...

nl

·kl

..
Fig. 7. "Z" data structure associated

with side m and the triangula­
tion.

11

2.2. Hydrodynamics
2.2.1. Finite-Volume Method. CAVEAT-GT, like CAVEAT, uses the finite-volume

or control-volume formulation of the conservation equations. In this formulation, the con­

servation equations are integrated over an arbitrary moving control volume V(t). The gen­

eral conservation equations in this formulation become

Mass Conservation

~ I pdV + J p(u - u) · ndS = 0 ,
dt V(t) S(t) . v

Momentum Conservation

!!:_ J pudV + J pu(u - u) · ndS = - J pndS + J n · lldS + J pFdV ,
dt V(t) S(t) v . S(t) Sl tl V(t) (2.17)

Energy Conservation

d J pEdV + I pE(u - u) · ndS = - J pu · ndS + J n · n · udS
dt V(t) S(t) v S(t) S(t)

- J h · ndS + J . pF · udV + J QdV .
S(t) V(t) V(t)

In these equations, S(t) is the surface of the control volume V(t), which moves with the lo­

cal surface velocity Uv, and n is the unit normal vector directed outward from the surface.

The operator dldt indicates time. rate of change follpwing the motion of the control volume

V(t). Note that the control volume V(t) may be arbitrary in shape and so this method is di­

rectly applicable to the multi-sided cells ofCA VEAT-GT. Continuing the definitions, pis

the mass density, u is the material velocity, E = e + t u · u is the speCific total energy, and

e is the specific internal energy. The pressure pis given as a function ofp and e by an equa­

tion of state. In general, there will exist a deviatoric stress tensor n, a specific body force

F, a heat flux vector h, and an energy release rate per unit volume Q.
The above equations may be supplemented by the equation for conservation of

volume:

dV(t) J -- = u ·ndS,
dt S<O v .

(2.18)

which also may be represented in kinematic form as

12

•

dx
v

-=u
dt v'

where Xv is the coordinate defining the surface of the control volume.

(2.19)

CA VEAT-GT uses an Arbitrary Lagrangian-Eulerian (ALE) method to solve these

equations. In this method the calculation is divided into a Lagrangian and a remapping

phase. In the Lagrangian phase we set the control volume vel,ocity equal to the mate,rial

velocity (uv = u) to obtain

!!_ I pdV = 0 '
dt . v

L

!!:.... I pudV = - I pndS + I n · lldS + I pFdV ,
dt V L SL , SL V L

!!:._ I pEdV = - I pu. ndS + I n· n. udS - I h. ndS + I pF. udV + I QdV '
dt V L SL SL SL V L V L

(2.20)

where VL is the Lagrangian control volume, SL is its surface, and dldt is the Lagrangian

(material) time derivative. Following the· Lagrangian phase we may wish to transfer

quanti ties to a different mesh (i.e., we wish to transfer from V L to a new mesh volume V k).

This is performed in the remapping phase. The equations that accomplish this are

(2.21)

where q represents the quantities p, pu, and pE, and VR is a mesh velocity relative to the

material velocity. It is clear, however, that we can alternatively obtain the final control

volume quantities directly

Qk = I"' qdV.
vk

(2.22)

The use ofEq. (2.21) is known as advection or continuous remapping, and this is u·sed when

mesh changes are gradual, while the use ofEq. (2.22) is known as integral or global remap­

ping, and this is useful when mesh changes are large or when the mesh topology changes.

13

In CA VEAT-GT the Lagrangian mesh is never explicitly calculated (i.e., ustng

Eq. (2.19)), except for the normal motion of the interfaces and boundaries, which is done

·using a Huygens-like construction in subroutine INTF ACE, and described in Sec. 2.3. In­

stead, a "near Lagrangian" mesh. is constructed in the rezone phase (in subroutines

REZTANG and REZLAGR, described in Sec. 2.4) and an advection algorithm, based on

Eq. (2.21); is used for remapping quantities Qk. The "near Lagrangian" algorithm is such

that the cells of the new mesh attempt to have the same mass as the corresponding cells .of

the eld mesh, as would be the case of Lagrangian cells, but they are less distorted than

Lagrangian cells would be. Thus, this algorithm minimizes the magnitude of the relative

velocity VR in Eq. (2.21) and hence reduces advectionerrors. Nevertheless, even this "near

Lagrangian" mesh can become distorted in time and must be replaced by a new mesh.

Also, when the mesh topology is changed, for example when points are added or deleted to

maintain resolution, an entirely new mesh must be constructed. A new mesh is produced

by subroutine REZONE, and described in Sec. 2.4.1. ·When an entirely different mesh is

introduced, the remapping is carried out using the global algorithm of Eq. (2.22). This is

done in subroutine REMAP PER, and explained in Sec. 2.5.2. In general, the advection al­

gorithm is much cheaper than the global remapping algorithm, and so we attempt to run

with the "near Lagrangian" mesh for as long as possible before resorting to mesh restruc­

turing and the use of a global remapping.

2.2.2. Godunov Method. The Lagrangian phase equations, Eqs. (2.20), require the

pressure and normal velocity at the control volume surface. We use a version of the

Godunov method in which these quantities, denoted by p* and w*, respectively, are ob­

tained from the solution of a local Riemann problem at the surface. An approximate

Riemann solver is used [4], which is based on the following approximate shock Hugoniot:

p*- p = p [a +A lw*- w ll(w*- w),
S S S 8 II 8

(2.23)

where the subscripts refers to the state on the left or right of the surface, and as and As

are two material dependent parameters, defined as follows:

[
ap P ap jt

a = thelocalisentropicspeedofsound = - + - - ,
s - ap P2 ae s

(2.24)

(2.25)

14 •

Thus, the strong shock parameter As is given in terms of the density ratio across a shock,

in the strong shock limit. Typically this parameter does not depart greatly from unity, be­

cause of all materials with p = p(p) it can be shown that As = 1, while for polytropic (ideal .

gas) equations of state, As = 112 (y + 1). Thus, 1 ::; A 5 .::; 4/3 for the physically realistic •·

range of y (1 ::; y ::; 5/3). Further details may be obtained in [1] and [4].

2.2.3. Gradients. CA VEAT-GT employs a Godunov numerical method to obtain so­

lutions to the fluid dynamic equations. Consequently, the primary-extensive quantities

such as mass, momentum, and energy, as well as the primary-intensive properties derived

from them are associated with the centers of the polygonal cells .. The computational proce­

dure requires intensive quantities at the cell-faces. Cell-face intensive quantities are re­

quired to obtain left and right states for the Riemann solution and for advection and

remapping.

The accuracy of the computation depends on the assumed spatial variation of a fluid

dynamic quantity cp(x) about the centroid ofthe cell Xc,

<}>(x) = <J>(x) + V<J> • (x - x) + 0(6.x2) •
c c c

The computational procedure is considered ufirst order" if cp(x) = cp(xc), that is, if all vari­

ables are assumed constant within a cell. It is considered usecond order" ifVct>c exists, that

is, a linear variation is used for the flow variables.

Three options are available inCA VEAT-G_T for computing the cell-centered gradi­

ents Vcl>c- All three options first require computing trial gradients about the cell vertices
-;;:.-'

" Xn (Figs. 8 and 9), which are obtained as follows: _,,..

<V 4>> = -
1 I V<t>dA'

n A A
n n

= f- f <t>n de ,
n C n

(2.27)

.using the divergence theorem. For an interior-cell vertex (Fig. 8), An is the area of the tri-..

angle whose vertices are located at the cell centroids (xk). For an exterior vertex (Fig. 9),

An is the quadrilateral constructed using the boundary cell centroids and the boundary

points located at the intersections of the boundary segments. Cn. is the contour of integra­

tion around the area An and n is the unit-outward normal to Cn. Values of 4> are available

at the cell centroids <ct>c> from the solutions to the conservation equations and at the bo~nd­

ary points from the appropriate boundary conditions. A piecewise linear variation of ct> is

. 15

.·

cell

~
' .

' boundary

~

' . cell
point

. .•.

Fig. B .. Gradient ccdculation for an inte­
rior computational cell.

Fig .. 9. Gradient calculation for a bound­
ary computational cell .

e\: assumed along the contour (Cn) consistent with the. assumption that 4>(x) is a linear

h~,if function.
~~):; Cell-centered gradie~ts may be computed directly from the trial gradients of
·1 j~ Eq. (2.27) by simply taking an area average of the trial gradients at the cell vertices sur-

\ '?\~oundingthecellcentroid(xk), Vk4> = <Vk4>>,where
.JU

, . ·!.) I
t-{') A <V 4>>

n n ,,
n < v k 4> > = __ L _____ A_n __ (2.28)

n

This gr,adient is available in CAVEAT-GT as an option (igrad = 1). It uses no limiting to
preserve local monotonicity. Consequently, in the vicinity of steep gradients, severe over­
shoots or undershoots may result when compared to neighboring data. For this reason,

(\ this option should be used with caution (negative densities may result, for example). How­

~\ \,ever, its use can provide valuable insight into the diffusiveness of the other options.

\.} . To preserve monotonicity, the value of the gradient must be limited. When limiting

·\s~mployed, the accuracy of the computation is reduced and additional dissipation is intro-
• ~.

duce~ into the calculation. Two methods are available in CA VEAT-GT for limiting the

gr~d~ents. They include a van Leer (igrad = 2) and a monotone limiter (igrad = 3).
I

~
16 .;.

In the multidimensional extension to van Leer's one-dimensional limiter, a limiting

coefficient ak (0 s Ok s 1) is obtained for each cell. Cell-centered gradients may then be

obtained

(2.29)

where <Vkcp> are the nonlimited cell-centered gradients available from Eq. (2.28). The
value of ak is determined by enforcing local monotonicity. That is, the value of cp(x) within

the cell is ensured to be bounded by the average values of cp in the neighboring cells.
Therefore

a k = min (1., a k ! a k) ,
nuu m1n

where

ak =max{O.,[<l>k -min(<t>k,<l>k)]/[<l>k -<t>k]},
nuu nuu nuu nuu

ak. =max{O.,[<l>k. -max(<l>k,<l>k)V[<l>k. -<t>k]}.
m1n mm ma:t m1n ·

ii>kmax'ii>kmin are the maximum and minimum values of· cp(xc) in the neighboring cells.

cllkmax'cllkmin are the maximum and minimum values of cp · in the· cell obtained using
Eq. (2.26) with Vcp~ = <Vkcp>.

The van Leer limiting procedure permits the steepest possible gradients without ex­
cessive oscillations. However, this limiter is not guaranteed to be monotone because it can

result in a "sawtooth" distribution of <1> at cell boundaries. Consequently, a more conserva­
tive and therefore a more diffusive limiter is available inCA VEAT-GT. This last limiting
procedure is referred to as the monotone limiter (igrad = 3):.

(Vk<l>) . ' (Vk<t>) . > 0 ' mm mm

0 otherwise
where

cell vertices} ,

(Vk<l>) . =min{ <V 4>> , n m1n n ceU vertices} ,

and < V n<P > are the trial gradients obtained from Eq. (2.27).

17

2.2.4. Timestepping. Time differencing in CA VEAT-GT is explicit. Thus, in the

Lagrangian phase, for any conserved cell quantity Qk, such as volume, momentum, or total

energy, we have

(2.30)

where n is the current cycle index, atn = tn+l - tn, is the current time-step, and Qt is the

Lagrangian phase rate of change of Qk (i.e., the right-hand-side ofEqs. (2.20), calculated in

subroutine LAGRATES).

The time-step atn is determined in subroutine TIMESTEP. Currently, there are four

criteria for limiting the time-step incorporated into this subroutine. The first (subroutine

argument LIMIT = 1) is based on the explicit CFL limit for a Lagrangian method. A mini­

mum cell dimension dmin is determined in subroutine CELLGEOM, and described in

Sec. 2.1.2. The time-step is then

tl.tn = mink(d . /ak) ,
m1n

where ak is the sound speed in cell k, and the minimum is taken over all cells k.

There are two limits on the time-step imposed by the Huygens construction used to

advance interfaces and boundaries, described in Sec. 2.3. The first (LIMIT = 2) is called

into effect when the construction creates a "loop" (i.e., a topological anomaly) in the bound­

ary or interface shape. This is called the "bowtie" limit. The second restriction (LIMIT = 3)

is involved if the interface segment is required to rotate by more than 90° relative to its

original orientation (a physical impossibility). In both cases, the time-step is halved and

the construction is repeated for all segments from their original position. FinaUy, there is

an explicit accuracy limit (LIMIT = 4) that limits the Lagrangian volume change to 50%.

The time-step also is constrained to lie between the limits DTMIN and DTMAX,

specified at the problem setup time.

2.3. Interfaces

2.3.1. Interface Propag-ation. Referring to Fig. 3, region boundaries are composed of

straight line segments joining two cell points. Midway along a segment is a cell vertex sep­

arating the two cells. The above is true also for the coincident segment in case the boundary

is part of an interface. Thus, for each such segment there will be two subsegments that

separate two different boundary cells across the interface. The same is true for those

boundary segments that represent free surfaces, except that the boundary represents an

interface with a vacuum region. Each such subsegment defines a Ri~mann problem that

is solved to obtain a normal velocity w = (u · n)n associated with the subsegment. This

18

normal velocity is assumed to be located midway along the subsegment, or a quarter­

length along the segment from each of the cell.points. Boundary segments that represent

symmetry boundaries, or specified velocity or pressure boundaries, also may be formulated

in terms of Riemann problems, as described in Sec. 2.3.3, to determine the corresponding

normal velocities on the subsegments.

The two normal velocities and their location along the segment define a linear distri­

bution of normal velocity along that segment. We assume that the segment propagates

with the local normal velocity. This is analogous to the propagation of a wavefront with a

specified local wavefront velocity. The propagation of a wavefront is properly described by

an Eikonal equation, whose solution may be obtained by the Huygens construction. In the

present case, the Huygens construction predicts that the straight line segment will remain

linear, as illustrated in Fig. 10.

Assuming that normal velocities WI and w2 are located at points 1 and 2 along the

original location of the segment, we draw circles of radius wtdt and w2dt , centered at

points 1 and 2, respectively, indicating the progress of "wavefronts" originating at points 1

~nd 2 during the time-step dt. The new location of the segment will be along the envelope

of all the circles centered at intermediate points, or, more simply, along the line tangent to

both circles at points 3 and 4, respectively. These two points, defining the location of the

new line, are given by

. n+l n ¥ hne segment at t = t + L\t

n+l
"wavefront" at t

Fig.lO. Huygens construction fora boundary line segment.

(2.31)

19

and

where ri = (xi,Yi) are the coordinates of point i, r21 = r2- r1, and k is the unit vector in
the coordinate direction orthogonal to the (x,y) plane.-

Note that, as previously mentioned in Sec. 2.2.4, the time-step must be limited such

that .(3 :s; 1. This limits the new line torotating by an angle of less than 90° or, from an­
other point of view, it prevents the larger circle from engulfing the smaller one (a physical

impossibility for a wavefront).

Given the collection of new boundary lines, we define the new segments to be the seg­

ments delimited by the intersection points of neighboring li.nes. Thus, given two neighbor­

ing lines with defining points 3, 4 and 3t, 4t, respective~y, the intersection point r* is
given by the solution of the linear system

k • L (r* - rt
3

) X rt 43J = 0 , (2.32)

which is

r* = r 3 + k · I rt 43 X (rt 3 -. r 3) J r d 0 , (2.33)

where

D = k · (rt
43

X r
43

) •

This intersection point exists provided D ~ 0, that is, provided the two lines are not

parallel.

Assuming all intersection points exist, they define the new shape of the boundary,

unless a .. loop" or a boundary intersection is created. This is illustrated in Fig. 11. Such a

topological anomaly can be created if the time-step is too large. These loops are detected in

subroutine BOWTIES, and if they exist then the time-step is reduced, as described in
Sec. 2.2.4, until all are eliminated.

2·.3.2. Resolving Singularities. The algorithm described in the previous section fails

when two consecutive segments become parallel or collinear. In such a case an intersection

point does not exist, and mathematically, the linear system of equations to be solved for

the intersection point becomes singular. In order for the algorithm to be meaningful we

20

'

1

..

4

.. • 4*
.,.. ,

: initial position
/ of the boundary

. .. • .,,~· 3* •,.,,.
2*

Fig. 11. An anomalous "loop" or "bowtie" created as a result of too large a time-step during
the Huygens construction of the boundary shape.

must have a method for resolving this singularity. In practice, this situation will always

arise along symmetry boundari"es, where all segments are collinear, and occasionally dur­

ing the dynamic evolution of the boundary when two consecutive segments become nearly
parallel or collinear causing the intersection point to shoot off dramatically in either

direction.

The procedure to resolve singularities is. based on using a weighted average of two

trial solutions. One solution is the side intersection points, r*, which was discussed in the

previous section, while the second is the average of the new Riemann velocity points, ra

that are adjacent to the new intersection point as shown in Fig. 12. The new boundary

point location is given by

r* if w ~ 1 ,
r·- { ,

c wr* + (1 - w)r , if w < 1 ,
a

(2.34)

where

d2
a

w = -···. '
2d~

I

dais the distance between the two new Riemann velocity points, and di is the distance from

the new intersection point to the old cell point.

This algorithm is implemented in subroutine lNTFACE.

21

. . . * new mtersect10n pomt, r

~
old Riemann
velocity point

old cell point

Fig. 12. Resolving boundary singularities.

2.3.3. Triple Points and Fixed Points. Usually there are certain points where a

boundary is not smooth, i.e.; where the boundary shape has a kink or a corner. The algo­

rithm described above would inevitably smooth such kinks, which is undesirable. We

therefore flag these points as special and obtain their coordinates by the Huygensconstruc­

tion, which preserves the kink. There are three types of such points. One type is classified

as a triple point, and there are two types that are classified as fixed points.

'friple points occur, in general, when three regions adjoin at a point. The Huygens

construction is indeterminate in such a case since there are three possible intersections.

Since there is not enough physical information to resolve this inconsistency, we currently

use a density weighted average of the three intersection points. The above is true even if

one of the three regions represents a vacuum. However, if one of the regi.ons is a symmetry

half plane, then there is no inconsistency since the problem reduces to the intersection of a

single pair of straight lines.

There are two types of fixed points. One type occurs because of the presence of sym­

metry boundaries. A fixed point of this type occurs where a region boundary (not an inter­

face) intersects a symmetry line, or when two symmetry lines intersect (typically at right

angles). The second type is a specific kink or corner in the boundary shape, present at the

initial time, which is expected to persist during the solution. Such points are specified and

flagged at the problem setup stage (Sec. 2.7).

22

The coordinates of triple and fixed points are calculated in subroutine TRIPLPI' and

they are flagged in subroutine BSTRUCT, except for the last type of fixed point, which is

flagged in the setup code.

2.3.4. Boundary Conditions. Applying boundary conditions in a Godunov code is

straightforw~rd. Boundaries are treated in the same.manner as interfaces, or even cell

boundaries, by solving local Riemann prob~ems. We identify six types of boundary

conditions:

1) vacuum,

2) symmetry (reflecting),

3) specified pressure,

4) specified normal velocity,

5) specified inflow, and

6) outflow.

The case of the vacuum boundary is really a special case of the specified pressure bound­

ary, with the pressure specified to be zero.

The symmetry or reflecting boundary condition uses the solution of a symmetric~ but

otherwise standard, Riemann problem in which the left and right hand states are identical

except for the normal velocities, which are mirror images.

The specified pressure and velocity boundary conditions use a special Riemann solu­

tion obtained from the Hugoniot given by Eq. (2.23). If either p* or w* is specified, then this

equation may be solved for the other quantity. Further details are available in Ref. [1].

The specified inflow boundary condition uses the specified velocity boundary condi­

tion to first move the inflow boundary with the inflow velocity, i.e., the specified inflow ve­

locity is used in the Riemann solution. Next, the inflow boundary is moved back to its

original location. Finally, the changes to the flow quantities necessitated by this non­

Lagrangian motion of the inflow boundary are accounted for by" local advection using the

specified inflow density and internal energy. If the inflow velocity is supersonic, then the

pressure is set equal to the specified inflow pressure.

The outflow boundary condition uses the specified pressure boundary condition to

move the outflow boundary by using the specified outflow pressure in the Riemann solu- ·

tion. Next, the procedure follows that of the inflow boundary condition where now the

local density and internal energy are used in the advection. If the outflow velocity is

supersonic, then the local pressure is used in the Riemann solution.

The boundary conditions are computed in subroutine BOUNDARY.

2.4. Rezoning

2.4.1. Interior Algorithms. Rezoning refers to the process of creating a new mesh. In
CA VEAT-GT we use two different rezoning algorithms to construct a mesh in the interior

23

of regions. The ••near Lagrangian" algorithm constructs a mesh whose cells have nearly

the same mass as the cells of the Lagrangian mesh, but with reduced distortion. This algo­

rithm is useful to minimize advection errors when the mesh topology does not change. On

the other hand, the general rezoning algorithm attempts to construct an entirely new

m~sh, regardles_s of topology, which is reasonably smooth and regular. Both algorithms

manipulate the triangulation, rather than the computational mesh.

2.4.1.1. "Near Lagrangian" Algorithm. We start with a vector identity, which may

be written as

2 Vu=VD-Vxw,

where D = v. u is the divergence, and U) = v Xu is the vorticity, if the vector field u is con­

sidered to be a velocity field. Now, divergence is related to rate of change of Lagrangian

cell volumes by

D = 1/v dvldt , (2.35)

where vis a specific Lagrangian volume, and vorticity, particularly nonuniform vorticity,

is related to shear and mesh distortion. We now define a mesh velocity Um by

(2.36)

Taking the divergence and curl of this equation, we .obtain

V2
w = 0

m '

where Dm and Ulm are the divergence and vorticity of the mesh velocity, respectively. We

conclude, ¢v·en that Dm and D satisfy the same boundary conditions, that Dm =D. Fur­

ther, Ulm is a smooth function in the interior. Thus, Eq. (2.36) is suitable as the mesh gen­

erating equation with the property of preserving Lagrangian volumes, as suggested by

Eq. (2.35). In practice, we modify Eq. (2.36) by defining

or k = rt k - r k = ~tu m,k •

24

where rk represent~ the position of cell point k, V k is the cell volume, <Dk > is the average

cell divergence, and rtk and Vtk are the new position and volume, respectively, as a result·

of rezoning. Thus, the equation solved is Eq. (2.36) in the fonn

(2.37)

where we have canceled a common factor of !l.t.

In a Lagrangian computation the cell mass does no~ change (Mk = Mk0
, where Mk0 is

the original cell mass, i.e., at the time of the last global remapping). We would like there­

zoning to have a similar property; therefore, assuming that local density is nearly uniform,

we set

where V kt is the cell volume as a result of a Lagrangian time-step. Rewriting this, we

obtain

(2.38)

which is the expression used for the effective divergence in Eq. (2.37).

· Equation (2.37) is a linear Poisson equation. This is in contrast to the nonlinear equa­

tions obtained with most other rezoning methods. Because 8rk is known on the boundary,

boundary conditions are simple, specified (Dirichlet) conditions. The discretization on the

triangular mesh follows straightforward finite element practice, using linear elements [5],

by minimizing the functional

(2.39)

with respect to 8rk. Using this procedure we obtain two uncoupled matrix equations for

fixh and Byk, respectively, The matrix so obtained is common to both equations and is sym­

metric and positive definite. It is therefore suitable for solution by a conjugate gradient­

type method. We use the diagonally-scaled conjugate residual method [6] independently in

each region, because the regions are decoupled by the boundary conditions.

Given the triangle vertex positions 8rk, we linearly interpolate to find the change in

location of cell vertices within each triangle. This implies that a cell vertex will always re­

main at the centroid of its respective triangle, assuming it started· at the centroid·.

25

-The solution ofEq.·(2.37) may· produce negative area (inverted) triangles. However,

. even though such a situation may produce an acceptable computa~onal mesh, inverted tri­

-angles will destroy the discretization ofEq. (2.37) on the following cycle. We therefore de­

tect inverted triangles and trigger a general rezone if they are present.

The above rezoning procedure is implemented in subroutine REZLAGR, and the con­

jugate residual algorithm is implemented in subroutine REZCJRS.

2.4.L2. General Rezoning Algorithm. The general rezoning algorithm is intended to

produce a smooth mesh within specified boundaries. Because we work with a triangula­

tion we cannot directly use established techniques such as the Brackbill-Saltzman [7] re-
. .

zoning method, which are based on quadrilateral meshes. The use of a·triangular mesh,

however, gives us an extra degree of freedom in that we are able to change mesh connec­

tions, as well as the position of mesh vertices.

We follow the general ideas of the variational method [7] by specifying a composite

functional

(2.40)

where Ie and Is are separate·measures of mesh distortion and a is a relative weight that

also performs a scaling function.

The functional Ie measures the departure of the triangle angles from 60°. Referring

to Fig. 13, Io is defined by

= 2: (cot0 1 + cot02 + cot03), (2.41)
n.

where the summation is over all triangles n, and Ak is twice the area of triangle k: Ak =
k · r12x .r13. The functional is obviously insensitive to the area of each triangle and is

minimized when each angle is 60°. This functional is closely related to the smoothness

functional ofBrackbill-Saltzman [7].

The functional Is me.asures the departure of the length of the sides of a triangle from

equilateral. It is defined by

26

k

1

2

Fig. 13. Notation for the general rezoner.

wh~re the sum is over all triangle sides. This functional measures the "elastic potential"of

a system of springs connecting the triangle vertices, and is minimized when the lengths of

all triangle sides are equal.

We can combine both functionals in a single summation over triangles as follows

I= L (lr1/ + lr1/ + lr2/Hl1Ak + a/2).
n

This suggests that the proper scaling may be obtained by

where N 1 is the number of triangles. We usually wish independent control over the rela­

tive magnitude of the two terms jn the functional and so we actually set

a=PN1iLAk, (2.42)
·n

where .(1 is an arbitrary dimensionless factor whose nominal value is 2.

The complete functional (Eq. 2.40) is minimized with respect tori, the triangle vertex

coordinates. However, the boundary vertices are specified and so the only free parameters

are the interior vertices. Because boundary vertices are specified, the different regions are

uncoupled. Thus it makes sense to define a different ar for each region r, where the sum­
mation in Eq. (2.42) is now over all triangles in a given region r.

Differentiating the functional with respect to the coordinates of an interior point ri,
and collecting terms associated with a particular side connecting points i and j, we can

write the equation associated with point i as

27 . .-

""[C .. (r.-r.)+D .. kx(r.-r.)]=O,
L... lJ J ' l) J '
j

where

. C .. = - (11A1 + 1/Ak + a) ,
lJ r

D .. = (r1.·r .. + r .. ·r1. + r.1·r.1)!A1 - (rki•r .. + r .. •r~,; + r.k•r.k)/Ak,
l) ' Jl l) J ' J Jl l) 'V ' J (2.43)

and where the subscripts l and k refer to triangles on either side of side ij as illustrated in

Fig. 13, and the summation is over all pointsj which are connected to point i. When writ­

ten in the above form, Eq. (2.43) represents a matrix system for the vertex coordinates
ri = {xi,Yil whose coefficients are· 2 X 2 blocks of the form

[
cii. -Dii] .

D .. C ..
lJ l)

The resulting.matrix is symmetric.

Notice that the coefficients Cij, Dij are functions of the coordinates, and therefore, in
contrast to the equations of the previous section, Eq. (2.43) represents a coupled nonlinear

system for the coordinates Xi and Yi· Consequently, the solution procedure is much more
complicated and difficult. Further, Eq. (2.43) is written for a particular mesh topology, and
so, as the solution changes; not only the matrix coefficients but also the mesh topology may
change. We therefore view Eq. (2.43) as providing information on the direction of the de­

sired changes in ri and not necessarily on their magnitude, except in the vicinity of the

fixed point or the converged solution.

28

We summarize the solution procedure as foilows:.

(1) freeze the coefficients of Eq. (2.43) and take two steps of the same diagonally­

scaled conjugate residual algorithm as used in connection with the "near
Lagrangian" rezoning algorithm,

(2) retain the direction but limit the magnitude of the step taken so that the maxi­
mum triangle side length or triangle area change is less than 20%,

(3) restructure the mesh to obtain the Voronoi connectivity as described in Sec.
2.4.3,

(4) if the mesh does not require reconnection and the maximum step size is below a

preset criterion then terminate, otherwise recompute coefficients and start from
step (1).

We have found that usually convergence is rapid. However, the algorithm can send

·points outside the boundary of the mesh, and indeed converge in such a situation.· The so­

lution of this problem seems to be to restructure the mesh on the boundary by adding

points or reducing point spacing.so that interior points are prevented from penetrating.

The job of ensuring a satisfactory point distribution on the boundary is handled by subrou­

tine REZBNDY.

The smoothness and regularity of the resulting mesh is sometimes not very good.

The use of functional Ie alone sometimes produces large variations in cell size. Results

may be improved by varying the parameter .Pin Eq. (2.42), but this is an ad hoc procedure.

The capability to add or subtract interior vertices clearly improves the situation.

This general rezoning algorithm is implemented in subroutine REZONE.

2.4.2. Boundary Algorithms. Advancement of the interfaces and boundaries that enclose
each subdomain (region) in the calculation is provided by a geometric construction

(Sec. 2.3). This construction uses the velocities normal to each segment (i.e., the Riemann

velocity) to advance the boundary, but not to locate the cell points along the boundary seg­

ments. It remains to position the cell points tangentially along the boundary. This is ac­

complished through the use of either a "near Lagrangian" placement or a global rezone

along the interface contour in addition to a configurational rezone to eliminate excessive

curvatures if prescribed.

The "near Lagrangian" placement of the boundary points is intended to move the

points in a manner that preserves the mass between the points in an effort to minimize ad­

vection across the cell sides that intersect the boundary. The approach used for this pur­

pose is equivalent to the method that keeps the interface propagation algorithm well de­

fined along symmetry boundaries (Sec. 2.3). However, because the interfaces are now

known, the problem is one-dimensional in the arc length (s). The boundary points are

placed at locations sk• that minimize the variational functional

(2.44)

where ~sm = Sk- Sk-1· ·The weightwm is defined as (p/p0~s0)m, where Pm = -!(pk + pk_ 1),

p0 and ~s0 are the initial average density and boundary segment length obtained following

the last global rezone, and the sum is taken over the boundary segments which lie between

two "fixed" points. Minimizing the functional in Eq. (2.44),

(2.45)

29

results in a tri-diagonal system for Sk. This system of equations is solved using the Thomas

. algorithm [14]. Solutions (sk) to Eq. (2.45) are bounded by the values of Sk-1 and Sk+ 1

·from the previous time-step to ensure that a Courant-like condition is not violated.

An advantage of the general topology feature of CA VEAT-GT is the ability to add

cells in regions demanding better resolution and eliminating cells where they no longer

are required. Along the boundary, this amounts to placing boundary points where they are
most needed. This is accomplished by calculating the point distribution parameter N,

which is the solution to the ordinary differential equation

dN
·ds = f(s, K. V <P •.. .). , (2.46)

where {is the point distribution density function. This function can be chosen to equally

distribute the boundary points along the interfaces in the absence of any distinguishing

features. However, the point density function also should force boundary points to migrate

i~to regions that require increased resolution. Such regions may be characterized by large
values of the boundary curvature (K) or the gradient (V<)>) of a prescribed variable such as

pressure (i.e., adaptivity). The point density function has been defined at each boundary

point as

1 + a (~s K)k + a 1-~s_V_<J> I
K a <I> k 1

f = ----.,----------
1 + aK (~sK)k + aa ~-~s_V_<J> I ~smax

rTUJX mux <I> k

(2.47)

where K is the boundary curvature, defined by inscribing a circle through the kth boundary

point and its two neighbors, dsmax is a user supplied maximum spacing for each region of

the problem, and aK and aa are user supplied constants. Finally, a~max and aamax are de­
fined as

~s .
mm

a =--a
K ~ K' max smax

.and

30

~s .
mln

a =--a
a ~ a' max smax

(2.48)

where dsmin is a minimum spacing set internal to the code as a fraction of dsmax· The

above formulation equally spaces the boundary points at intervals of dsmax in the absence

of curvature or gradients, i.e.,

lim
K--+0

V«t>--+0

dN 1 -=--
ds !l.s

max

(2.49)

Furthermore, in regions of large curvature the boundary points are more closely spaced to

provide better resolution, i.e.,

dN 1
lim----
K-+"" ds !l.s . m1n

(2.50)

A result identical to Eq. (2.50) applies to regions oflarge gradients for the variable'}>.
To ensure that the boundary points are placed at identical locations along the con­

tours defining interfaces, it is necessary that the point density functions are identical

along the doubly defined contours bounding each region. Consequently, at multiply de­

fined points along the boundaries, the maximum value of {is used.

Finally, the values of {should be smooth along the boundary contours. This ensures a

smooth variation for the locations of the boundary points around the interfaces. Without

smoothing, a large variation for the point spacing would result where regions oflarge cur­

vature intersected lines of symmetry (i.e., across "fixed" points), for example. Smoothing is.

accomplished by solving the diffusion equation

df 2 d2f
-=c-
dt 2 ' ds

(2.51)

where c2 6.t = 10 6.smax2. Equation (2.51) is differenced using an implicit, centered differ­

encing technique. A tri-diagonal system results that is solved using the Thomas algorithm
[14].

Having defined the point density function, Eq. (2.45) now is integrated along con­

tours between "fixed" points. A linear distribution for f is assum~d between boundary .

points. The resulting values of N are then scaled to ensure the final value of N(s =L) is an

integer; that is, the positions of "fixed" boundary points are not altered. In addition, the

value of N(s=L) is limited to guarantee that no more than one point is added on each

boundary segment, nor fewer than every other point is eliminated (Nn- int(Nn/2) s; Nn+ 1 s;

2N,.- 1).

31

Equation (2.45) is solved for N(s) around the boundary contours every time-step. It is

then tested to determine if the existing boundary point distribution is sufficient to resolve

the existing boundary configuration. If point addition or deletion or gross point migration
is unnecessary, boundary point locations resulting from the "near Lagrangian" description

· are used. If the ''near Lagrangian" positions are inadequate tO resolve the boundary, the

boundary points are located according to Eq. (2.45) and a global rezoning of the mesh is re­

quired. When a global remap is performed there is no need to limit the relative motion of

the boundary points.
In an effort to control excessive boundary oscillations derived from either physical or

numeric~.l effects, the option to smooth the boundary contour has been inclQ.ded. The con­
figurational rezone of points along the boundary is accomplished by computing an approxi­
mate radius of curvature at each point. The radius of curvature (R) is obtained by con­
structing a circle through each point and its nearest neighbors (Fig. 14). If the radius of

curvature is less than a minimum radius of curvature (Rmin), the boundary point (x2) is

displaced a fraction (an) of the distance between its current location and the midpoint be­

tween its two neighboring points (x0 = t lx2- xtl):

(2.52)

Both Rmin and an are user specified.
The algorithms to rezone the boundaries and interfaces are implemented in subrou­

tine REZBNDY.

2.4.3. Mesh Restructuring

2.4.3.1. Interior Mesh Restructuring. When cell points are moved, as in the general

rezoning algorithm, a mesh reconnection or restructuring can be used to produce a more

regular mesh. A ·mesh restructuring produces a new triangulation, or alternatively, cell
points change neighbors. It is therefore a mesh topology change. This provides additional
freedom for the rezoning algorithm in its attempt to improve the mesh. We have chosen to

use the .connectivity associated with the Voronoi mesh [12]. The corresponding triangula-

Fig.14. Configuration rezone.

32

tion is called the Delaunay triangulation [13]. The Voronoi mesh is a unique subdivision

of space into convex polygonal cells (in two dimensions) associated with an arbitrary distri­

bution of cell points. The associated dual Delaunay triangulation has the following proper­

ty: the diagonal of every quadrilateral formed by two neighboring triangles connects the

two vertices whose angles sum to more than 180°. We use this property in an iterative pro­

cedure to generate the required connectivity quickly and very efficiently.
Consider Fig. 15 which represe:p.ts the two triangles that are associated with side m

as the diagonal. We form the quantity

(2.53)

which can be rewritten as

(2.54)

Thus,

(2.55)

Hence, if Km. < 0 we wish to switch diagonals. When diagonals are switched, the "Z, data

structures associated with sides m, m1, m2, m3, and m4 are restructured.

We anticipate that in many cases no restructuring will be necessary. We therefore
organize the algorithm into two parts. First, sweep over all interior sides in a fast vectoriz­
able loop and evaluate criterion Eq. (2.55) to determine if any sides need to be switChed.
We also note the first and last side in the loop that needs to be switched. Since switching a

side may affect the status of other sides, therefore .• once any side is switched all the affected
sides need to be rechecked. Hence, once we find a side that needs to be. switched then all
subsequent sides are checked and switched as needed. Thus, if there is at least one side

4

Fig . .15. Mesh restructuring· by the
switching of diagonals.

a a

·that requires to be switched we repeat the sweep, and switch sides as required, except that

we start the sweep either in the forward direction from the first side needing to be

·Switched, or in the reversed direction from the last side needing to be switched, the choice

being determined by which case requires the fewest sides to be considered. The procedure

is repeated until no more sides need to be switched. We have found in practice that conver­

gence is very rapid, and the method always works, provided that the starting triangulation

is regular (i.e., provided there are no side intersections).

When the parameter Km is equal to zero then both diagonals are acceptable. This is a

degenerate case that occurs in rectangular meshes, for example. In order to eliminate a lot

of random flipping in such a case, we modify the criterion Eq. (2.55) to Km < -e, where e

is a very small number.

This restructuring algorithm is implemented in subroutine MESH.

2.4.3.2. Boundary Point Addition/Deletion. Boundary point addition/deletion·con­

sists of adding or deleting cell points on the boundary (external and interface) segments of
)

the triangular mesh. Once the triangular mesh has been modified, the local data structure

for the modified part of the mesh is updated. The number of points added is limited by the
size of the data structure arrays. The deletion process is limited by the ccfixed points" that

are the boundary segment end points. The method for determining the location of the

added/deleted cell points is discussed in Sec. 2.4.2.

Boundary point addition consists of adding a cell point on a boundary side midway

between two existing points as shown in Fig. 16. Because no interior points are added,

only one new boundary and one new interior side are produced. The new interior side is
stored as the last interior side that causes the boundary sides to be shifted by one. The new

boundary side is then stored as the last side. If the original boundary side is on an inter­

face, then a point also is added on the opposite side of the interface.

new boundary point

new boundary side

Fig.16. Boundary point addition~

34

The deletion of a boundary point is a more difficult problem because there can be any

number of connections with internal points. The case with no in'ternal connections is

shown in Fig. 17. In this case both adjacent boundary sides are removed. The one internal

connection case is shown in Fig. 18. In this case, as well ..as the following cases, one bound­

ary and one interior side are deleted. The remaining boundary side is reconnected as

shown in Fig. 18. The two interior connection case is shown in Fig. 19. Here again one

boundary and one interior side are deleted, while now the remaining boundary side and an

interior side are reconnected. The three interior connection case is shown in Fig. 20. Here

again one boundary and one interior side are subtracted; while now the remaining· bound­

ary side and two interior sides are reconnected.

For cases with more than three interior connections, the number of connections is

systematically reduced to three connections. This is accomplished by reconnecting one in­

terior side as shown in Fig. 21. This process is continued until the number of interior con­

nections is three and the point then is deleted. One could continue this interior side recon­

nection until the number of interior connections is zero and then delete the point. This

would simplify the coding in that the one, two, and three interior connection cases would
not be needed. However, the no interior connection case requires approximately the same

amount of computational effort as the other cases. This is because two sides are removed

as i:p the other cases and a former interior side becomes a boundary side, which requires

shifting the data in the same manner as deleting an interior side does. Therefore, reducing

the number of interior connections one at a time until there are no interior connections and

point to be deleted

¥

sides to be deleted

(a) before

(b) after

Fig. 17. Boundary point deletion with
no internal connections.

point to be deleted

(a) before

~1'
(b) after

Fig.l8. Boundary point deletion with
one internal connection.

35

point to be deleted
¥'

(a) before

(b) after

Fig.l9. Boundary point deletion with
two internal connections.

point to be deleted
¥'

(a) before

(b) after

Fig. 20. Boundary point deletion with
three internal connections.

then deleting the point would b~ computationally slower than using the special cases.

Therefore, it was decided to directly delete the cases more likely to occur, and reduce and

then delete the cases that rarely occur in order to improve the code efficiency.

2.4.3.3. Interior Point Addition/Deletion. Interior point addition/deletion consists of
adding or·deleting cell points to the interior parts of the triangular mesh. Once the trian­

gular mesh has been modified, the local data structure for the modified part of the mesh is

updated. The number of points added is limited by the size of the data structure arrays.

The deletion process is.linlited to cell points with exactly five side connections. This five

connection case was selected because of the observation that whenever a group of small tri­

angles formed in the mesh, they were typically centered around a cell point with five con­

nections.

Interior point addition consists of adding a cell point on an interior side midway be­

tween two existing points (Fig. 22) ~hen the length of that side becomes larger than the

average side length for that region by a user specified amount. This produces three new in­

terior sides. These new interior "sides are stored as the last interior sides, which causes the

boundary sides to be shifted by three.

Interior point deletion occurs only for cell points with five side connections as dis­

c~ssed above, and when one of the connected sides' length becomes smaller than the aver­

age side length for that region by a user specified amount. As shown in Fig. 23, the cell

point deletion causes 3 interior sides to be deleted and two sides reconnected. Because the
three sides are deleted some of the interior and all boundary sides are shifted by three.

36

(a) before

(b) after

3 internal
connections

Fig. 21. Boundary point deletion with
four or more internal connec­
tions.

sides to be deleted·

(a) before

Fig. 22. Interior point addition.

(b) after

Fig .. 23. Interior point deletion with five connections.

Both the boundary and interior cell point addition/deletion are implemented in sub­

routine NEWMESH. Once all cell point and side data structure has been updated, all tri­
o.nglc data structure is recalculated in subroutine NEWTRI.

2.5. Remapping

In order to accurately resolve material interfaces and to prevent nonphysical mixing

and shear impedance, CA VEAT-GT follows the boundaries in.a Lagrangian fashion. The
normal material velocities are used to advance region boundaries. However, in the interi­

or there will be, in general, a difference between the material velocity and the velocity

used to move the mesh. In other words, the new mesh will differ from the Lagrangian

37

mesh. It is necessary, therefore, to remap the variables onto the new. mesh for each time-

. step. If the difference between the material and mesh velocities is small enough to main­

tain the stability of the numerical algorithm, t!ten the variables may be advected to the

new mesh; Otherwise, a general remapping scheme must be employed. CA VEAT-GT con­
tains both an advection and a general remapping algorithm.

2.5.1. Advection. Consider the intensive-variable pcJ> (i.e., momentum). The remap­

ping of this variable by advection from its position following a pure Lagrangian motion to
its position on the new meshis determined from the equation

!!:_ f P<l> dV = - f pq>(uf - u) • n dS • dt . g

In discrete form, for each cell,

!1t L (pcj>)*=(p<l>)-- [<p<l>>(uf-u)·n<R>e) • V g m
(2.56)

m

where pcJ> is the appropriate intensive quantity (i.e., mass, momentum, and energy) follow­

ing a pure Lagrangian motion from the original grid (xn) to the new grid (xn+ I). The vari­

able (pcJ>)* is the intensive quantity at the new mesh position. The variables ufand Ug are

the fluid and grid velocities, respectively. Finally, n is the unit outward normal to the cell
side e, and <R > is the pseudo-radius.

The normal fluid or material velocity <urn), in Eq. (2~56), is simply the cell side nor­

mal velocity obtained from the Riemann solution (w*). The quantity ll.t ug ·n <R >lis the

volume swept out by the motion of the grid (Fig. 24). It may be obtained as the sum of two

triangular areas

+ .!_ {(n+l _ n+l)· 1.,n _ n+l) _ (yn+l_ n+l)(n _ n+l)} <R >
2 X2 XI '-"1 Y1 2 yl XI XI u ' (2.57)

1
where <RL> = 0- .13> + .13 3 <x; + x; + x;+ 1

>, with a similar expression for <Ru>.

The difference between the volumes swept.out by the material velocity and the grid

velocity is the advection volume

(2.58)

38

(a) Volume swept out by fluid motion

xn+l
1

(b) Volume swept out by grid motion

Fig. 24. Advection volumes.

The quantity <p<}>> in Eq. (2.56) is the average value of the intensive variable (p<}>)

fluxed across the cell boundary. Its value is determined from the upstream side of the cell

side e (i.e., donor cell). The upstream side is determined by the sign of the advection vol­

ume (Vr>· If the advection volume is positive, then the kth cell loses mass. That is·, the rela­

tive material motion is out of the kth cell and <p<}>> is determined by the kth cell. If the

advection volume is negative, then the kth cell gains mass; the relative motion is into the

cell and < p<}> > is determined by the neighboring cell.

Once the side of the cell boundary (l) has been determined then < p<}> > may be deter­

mined from a Taylor expansion about the cell centroid

<p<t>> = (p<f>) + V (p<f>)· (x - x),
o o m o

(2.59)

where the quantity (p<}>)0 is a cell centered quantity (i.e., evaluated at the cell centroid) and

Xm is the center of the cell boundary segment (l). A spatialiy first order approach

(!ORDER= 1) is obtained with zero values for the gradient in Eq. (2.59) [i.e., <p<t>> =

(p<}>)0]. This method is very diffusive. An improved advection scheme is obtained when

nonzero gradients are used in Eq. (2.59) (!ORDER= 2 or 3). The methods available for de­

termining the gradients are discussed in Sec. 2:2.3. The least diffuse technique is obtained

when no limiting is used to obtain the gradient (IGRAD = 1). However, this option tends to

produce numerical oscillations.

The above advection algorithm is implemented in subroutine ADVECT.

2.5.2. General Remapping. General remapping refers to the process of transferring

conserved information from one arbitrary mesh to another. This procedure is related to

the process of advection, except that there is no time-step limitation and there is.no restric­

tion on the topology of the meshes. In general, we use this type of remapping when the

mesh topology changes, either because of the addition or deletion of points_ or because of a

mesh reconnection.

39

The techniques of this type of remapping for quadrilateral meshes have been well de­

. veloped [8,9,10,11]. For the purposes of CA VEAT-GT, however, we have had to develop

new techniques that allow for general topology meshes. In general, the method seeks to
compute

(2.60)

where q(r) is the known distribution on the old mesh of a generic conserved quantity such

as p, pu, or pE, and V k is the volume of cell k of the new mesh. The problem, then, is to
· compute such integrals in the presence of arbitrary overlapping of the cells of the two

meshes. This problem is simplified by converting the volume integrals to surface integrals:

Q = f . F· n dS,
k s

k

/

•(2.61)

where V · F = q1(r) in each old celll, and Skis the surface of new cell k. We generally re­

strict q1(r) to be at most linear within a cell:

(2.62)

where r 1 is the centroid and q1 is the average value of q in celll, and G~ is the gradient of q

in that cell, obtained as described in Sec. 2.2.3. Incorporating the case of cylindrical sym­

metry in a quasi-Cartesian coordinate system, we can write in general

V · F =A + B · r + r ·CD· r,

where A, B, CD are cell dependent quantities. The flux function F is not unique and many

choices are possible, but the following is the simplest and most natural [11]:

F = {1/2 A + 1/3 B · r + 1/4 r · CD· r) r .

In a two-dimensional mesh the integration ofEq. (2.61) includes a sweep over the cell .

edges of both the old and the new mesh. The sweep over the edges of the old mesh is neces­

sary because in general the flux function F will be discontinuous at the cell edges and it is

necessary to subtract out the contributions of these discontinuities. One great advantage
. .

of quadrilateral meshes is that the cell edges form mesh lines that extend right across the

mesh .. It" is therefore possible, starting from one houndary of the mesh, to trace the mesh

lines of one mesh continuously through the other mesh, thus eliminating the need for a

40

search to locate the points of one mesh within the cells of the other~ Such a search is obvi­

ously very costly if the meshes are not regular. For the general topology mesh of

CA VEAT-GT it is not obvious that a corresponding procedure exists. It is fortunate that

one can indeed define continuous and unique lines through a triangulation that, taken to­
gether, cover the mesh with no gaps (in this case, they cover the 'mesh twice over). These
lines are either continuous closed curves or they begin and terminate at the boundaries. ·

Consider the uz's" described in Sec. 2.1.3. First, we note that tO each of the triangle

sides that compose the arms and body of the "Z" there corresponds a cell edge. We desig­

nate the body of the "Z" as the "direct" segment and the arms as the "indirect" segnientS.

Putting neighboring "Z's" arm-to-arm, as illustrated in Fig. 25, creates a continuous path

through the mesh. Because. of the one-to-one relationship between triangle sides and cell

edges, this also creates a continuous path along cell edges. Notice that the direct segments
exactly alternate with the indirect segments. Combining all such paths that intersect a
given triangle, as in Fig. 26, we see that after tracing all such lines, each triangle side (cell

Individual data structure
"Z" connecting triangle
, , Jl' sides .:•:
' . . • • • ' .. ' .. ' ' . ' ' . ' ' . ' ' ' ' ' . ' .. ' . ' ' •

direct segment

indirect segment

(a) Connecting "Z"s to forii]. a continuous path

continuous line connecting
cell edges

indirect segment

(b) Corresponding diagram illustrating continuous
path connecting cell edges

ti

Fig. 25. Constructing a continuous path along the cell edges of" the CAVEAT-GT general
topology mesh. · · ·

41

~r:::-b

b.

-b

Fig. 26. Tracing through the mesh: For a typical triangle, all sides are traced exactly
twice, once by a direct segment and once by an indirect segment.

edge) in the mesh is traced exactly twice, once by a direct seginent and once by an indirect

segment. We choose to update the integral (Eq. 2.61) only when tracing the direct seg­

ment. Thus, while sweeping over cell edges of a mesh.we go over each edge twice but we up­
date only once.

We start by tracing all the lines that originate (and therefore terminate) at the

boundaries. Since each edge is traced twice, we set a flag on each boundary edge when it

has been traced, both as a direct segment and as an indirect segment. When both flags on
each boundary segment have been set, then we know that all lines starting and terminat­
ing at boundaries have been traced. For a topologically regular mesh, such as a mesh of

quadrilaterals or h~xagons, we know that this would be exhaustive. For the more general

meshes of CA VEAT-GT we have fou~d that in the great majority of cases this also ex­
hausts all such lines. However, it is possible in such a mesh, as we have found very infre­
quently, that there are continuous closed loops in the interior of the mesh that do not inter­

sect the boundary, and therefore would not be traced starting from boundary sides. To de­
tect these loops we increment a counter whenever a side is traced. If this count does not

equal twice the total number of sides after all the boundary-intersecting lines have been

traced, then at least one internal loop must exist. We then locate a starting side on such a

loop and proceed to trace along the loop until the trace closes on itself. We proceed in this

way until all sides have been counted twice.

The process of tracing a cell side of one mesh through a cell of the other mesh is very

similar·to the corresponding procedure in a quadrilateral mesh [10]. All intersections of

the straight line corresponding to the cell side being traced with the straight lines corre­
sponding to the extensions of all the sides of the cell being traversed are checked to find the

42

"legal, intersections. These are the intersection points that lie in the interior ofboth sides.

For a convex cell there will be at most two such intersection points. If there is only one,

then the line terminates or originates within the cell, and if two, then the line crosses the

cell. The side being crossed determines the new cell that-is being entered by the traversing

line. In CA VEAT-GT, we have made an improvement that reduces by approximately a

factor of two the number of intersections that need to be checked. Because we know the
tangential vector to the traversing line in the direction being traced (t) as well as the vec­

tor pointing in the outward normal direction to the side being checked (n) then we need

only check that t points to the outside of the cell (i.e., t · n > 0) to determine if an intersec­

tion needs to be found. This is substantially cheaper than computing and checking the ac­

tual intersection.

One feature of theCA VEAT-GT remapper is that we have arranged that both meshes

exactly coincide along the boundaries and interfaces of the old mesh. This means that
there will be no artificial losses or gains due to an inaccurate representation of the old

boundary by the straight line segments of the new boundary. However, this also means

that potentially a cell side of the new mesh along a region boundary could be composed of a

number of straight line segments. This would considerably complicate the logic of finding

the exiting intersection for such a cell. Fortunately, we are able to circumvent this prob­

lem by checking interior sides only for intersections, since if no such intersection is found

then this means that the traversing line must terminate at the boundary in that cell.

Previously [8-11], it was always assumed that mesh cells were convex. This limita­
tion is too restrictive for the meshes anticipated with CA VEAT-GT. We therefore found it

necessary to generalize the method to handle concave cells. Since concave cells are rela­

tively infrequent we do not wish to perform the extra work involved if it is not necessary.
We therefore check both meshes and set a flag if the mesh contains concave cells. If the
mesh does contain concave ce1ls, then intersections in a concave cell are checked by going

around the sides of the traversed cell both in the clockwise and anticlockwise direction.

Aside from the entering intersection, this will find two possible exiting intersections. In

most cases these intersections will coincide. However, when there are multiple re-entries,

the intersections will differ and the one closer to the entering point is selected. This is il­

lustrated in 14'ig. 27.

A known difficulty with this algorithm is the problem of coincidences between seg­

ments of the old and new mesh [9-11]. Coincidences require special treatment and they

must be detected reliably on both the old and the new mesh. We sidestep this problem by

destroying all potential coincidences by randomly displacing the cell vertex points of the

new mesh. Since each vertex point is associated with a triangle, we determine the radius

of the inscribed circle for scaling the displacement, and then randomly perturb the coordi-

43

. Entering intersection

e Exiting intersection

Fig. 27. Tracing a line through a concave cell: Entering at point (a), point (b) is found on
the anticlockwise sweep _and point (c) on the clockwise sweep: Point (b) is selected.

nates of the vertex point within a square whose dimensions are a very small fraction of the

inscribed circle radius. ·
This algorithm is implemented in subroutine REMAPPER. Line segments are traced

through cells of the old and new mesh in subroutines REMOLDSG and REMNEWSG, re­

spectively, and the line integral contributions are evaluated in subroutine REMLNINT.

2.6. Equation of State
'I,'he equation of state package in theCA VEAT-GT code is the same one that is in the

CAVEAT code. It consists of seven analytic and one tabular equations of state. The ana­
lytic equations of state are Linear, Quadratic (Osborne), Gamma Law, Stiffened Gas,

Mie-Gruneisen (HOM), Becke:r-Kistiakowsky-Wilson (BKW), and Jones-Wilkins-Lee
(JWL). The tabular equation of state is the Los Alamos National Laboratory (LANL)

SESAME tables. For a further discussion of these equations of state, see the CAVEAT

report [1].

2.7. Setup Code
The setup code was designed to be an interface between the user and the

CA VEAT-GT code. The typical user is. assumed to have a good knowledge of the problem

he wishes to solve, but not a detailed knowledge of theCA VEAT-GT code. The setup code
leads the user through each phase of setup in an interactive fashion. Upon completion of
the setup, an input file for theCA VEAT-GT code is written. The first and most important

part of the setup is specifying the geometry, boundary conditions, and generating a suit­

able initial triangular mesh.

The geometry is input by first making a simple sketch as shown in Fig. 28. In Fig. 28,

the geometry is specified by the smallest number of straight or curved line segments

(sides) tha~ adequately describe the geometry. All sides and vertices (points where two

44

symmetry

(0,.5)

symmetry Region 1

1
(0,0) 1 ---------r.:.---------' 10 (1 ,0)

specified velocity

Fig. 28. Input geometry.

adjacent sides intersect) are numbered consecutively beginning with the number one. The
ordering of the sides and vertices is arbitrary. The desired boundary condition on each side

and the x and-y location of each vertex is specified and each separate region is numbered.
Exira regions can be specified to force a particular mesh point distribution and later re-

. moved. Regions containing holes must be initially treated as two half regions and not as a

single region with a ncut." This is a requiremen_t of the setup code only. Once the mesh has

been generated, this extra region can be removed. The maximum number of regions that

can meet at a vertex is three. After the above information has been organized in the
sketch, the user can run the setup code that will request this information in a straightfor­
ward manner. The user can vary the maximum mesh size and triangle area smoothness

until a satisfactory mesh is obtained.
Namelists CNTRL, PLOT, and GRID contain the parameters for controlling the cal­

culation itself as well as input and output. These Namelists are written in~ theCA VEAT­
GT code input file using all default values for each parameter. The definition of all param-. .
eters in these N amelists can be listed by the setup code if desired. The default values can

be changed in theCA VEAT-GT code input file using a text editor.
The initial conditions then are specified for each region. While these conditions may

vary from region to region they are constant inside each region. IT specified pressure or ve­

locity boundary conditions are employed, the values to be specified are requested.

All input required for a given problem is generated by the setup code except for de­

sired changes to the Namelists CNTRL,-PLOT, and GRID discussed abov~ and ~esired
changes to the equation of state (EOS) information. The EOS information is input using

the same N amelist format as in the CAVEAT code. A default N amelist for a gamma law

gas (y =. 1.4) is provided. If the user wishes a different EOS then he must prepare the

Namelist EOSIN using the CAVEAT code report [1] and then replace the default EOSIN. ·

45

Note that because there is no burn model in CAVEAT-GT, the array BURNC in Namelist

EOSIN is not used. Note also that the CA VEAT-GT codes use the SI system of units and

-not those used in CAVEAT.

In conclusion, theCA VEAT-GT code setup requires running the setup code and then

making any desired changes to the parameters in the Namelists CNTRL, PLOT, and GRID

as well as·the EOS parameters.

2.8. Graphical Output

The graphical output consists of mesh plots (both triangular mesh and computational

cells); velocity vector plots; contour plots of pressure, density, and energy; plots of bound­

ary values of pressure, density, and energy vs x or y; and special mesh plots providing the

local data structure (Sec. 3.5). These special mesh plots are used for debugging purposes.

All plots are generated using the DISSPLA library of subroutines.

3. COMPUTER PROGRAM

3.1. Data Structure, Storage, and Masking

The "Z" data structure, discussed in Sec; 2.1.3, and other integer mesh parameters

necessary to efficiently describe the mesh, require a large amount of storage. In order to

decrease this storage, these integer quantities have been packed into arrays using the con­

cept of masking. In this procedure, one first decides how many bits of a 64 bit word are re­
quired to store all expected values of a particular integer parameter. Next, one allocates

this number of bits in a 64 bit word for storing this integer parameter by masking off the

rest of the 64 bits. One can then move the mask to allow other integers to be stored in the

same 64 bit word and. thus greatly reduce the total amount of storage. A discussion of the

parameters, the masks, and how to save/get these quantities is provided in the sections be­
low. In what follows, the k integers denote the cell points or vertices of the triangular

mesh, the m integers denote the sides of the triangular mesh, and the n integers denote the

triangles themselves. The storage partitions for all data structure arrays that use mask­

ing are shown in Fig. 29.

3.1.1. Interior. The arrays nsl and ns2, shown in Fig. 29, store the "Z" data dis­

cussed in Sec. 2.1.3 and, therefore, are based on triangle sides. The integers kl, ml, and

nl are stored in nsl while k2, m2, and n2 are stored in ns2. The k integers use the right­

most 20 bits, them integers use the next 20 bits to the left and then integers use the next

20 bits to the left of them integers. The integers in the ns2 array are stored in the same
manner. The leftmost 4 bits in the nsl array are used to store the boundary condition in­

dex. There are nsd total sides and nsdi interior sides or "Z's." The nts array is used to

store the three side numbers of each triangle. Side ml uses the rightmost 20 bits, side m2

46

4 Bits 20 tlltS 20 Bits 20 Bits
NS1(M) me N1 M1 K1

1 1 1 1 20 20 20
NS2(M) N2 M2 K2

4 20 20 20

NTS(N) M3 M2 M1

3 5 1 1 1 1 1 11 20 20
M2 M1

4 20 20 20

INFOB(K) KNEXT K2 K1

Fig. 29. Masking locations of the data structure arrays.

uses the next 20 hits to the left, and m3 uses the next 20 hits to the left of m2. There are
ntr total triangles and ntri interior triangles. The location of the cell points, which are the
triangular mesh vertices (kl and k2, discussed above), is stored in the xc (x. value) and yc .
(y value) arrays. The fluid cell vertex points, which are the triangle centroids, are stored in

the xv and yv arrays. The locations of the cell and vertex points after the Lagrangian
phase of a time cycle are stored in the xcl, ycl, xvl, and yvl arrays, respectively. The cen­

troids of the fluid cells (indexed by the kl and k2 values discussed above) are stored in ar­

rays xed and ycd. These values are the same as xc and yc if the cells are regular poly­
gons, and then only in the interior. For the boundary cells, the xc and yc values always lie

on the boundary. There are np cell points.
The data structure parameters may hav~ different names in different subroutines

and, therefore, listing them by name would not be very usefu'I. However, the mask that
specifie~ the storage location of each parameter does not change and, therefore, can be used

to identify the parameters. The masks are scalar variables whose names start with MASK

and are stored in common block MASKS. Corresponding to each mask is a shift count that

tells how many bit positions the mask must be shifted so that the right-most bit of the pa­

rameter resides in the lowest order bit of a computer word. These shift counts· are not

stored as variables, but instead are coded directly in all masking statements.

47

Following is a list of the data structure parameter masks, the bit positions used for

·storage and a brief description of the parameter. For this discussion thebits are numbered

from the right beginning with one.

MASK

MASK1

MASK2

MASK3

MASKBC

MASKNR

BITS

1-20

21-40

41-60

61-64

57-61

DESCRIPTION

Used to obtain kl from nsl, k2 from ns2, ml from nts,
ml from infoa, and kl from info b.

Used. to obtain ml from nsl, n2 from nts, m2 from

info a, and k2 from info b.

Used to obtain nlfrom ns1, n2 from ns2, m3 from nts,

and knext from info b.

Used to obtain the side boundary condition index from

nsl.

Used to obtain the cell point region number from

info a.

MASKTYP 62-64 Used to obtain the cell point type as shown in Fig. 28.

To obtain a parameter

An example of this procedure for the case where a shift is not required is the follow­
ing:

K1 = NS1(M).AND.MASK1.

This gives one of the k values for side m. An example of this procedure for the case

where a shift is required is the following:

M1 = SHIFTRCNS1(M) . .AND.MASl{2,20).

To store a parameter

To store the above two parameters requires the following:

NSl(M) = Kl.OR.(NS1(M).AND .. NOT.MASK1)

and

NS1(M) = SHIFI'L(M1,20).0R.(NS1(M).AND .. NOT.MASK2).

3.1.2. External/Interface Boundaries. On boundary sides (m > nsdi), the middle

side and both cell points of each "Z" lie on the boundary. One side is iri the .mesh interior

while the other side is ex~rnal to the mesh. If the' boundary is an external boundary then

the m value for the external side is zero. If the boundary is an interface boundary then the

48

m value is equal to the m value of the opposite side. The n value always is equal to the
boundary triangle number (discussed below). There are no Z,s defined external to the

mesh. However, there are boundary triangles (n > ntri) that are external to the mesh.

One of them values in the nts array is equal to the side on the boundary while the remain­

ing two m values are zero for external and interface boundaries.

Two additional arrays called infoa and infob, shown in Fig. 29, also are used in de-.
fining the boundary data structure. These arrays are defined for cell points (k values). The

ml and m2 values in infoa are the two adjacent boundary sides to cell point k. The kd and

id integers are flags that are discussed in the next section. The nr integer is the region
number and the itype integer denotes the seven possible types of interface/boundary
points, shown in Fig. 30. The kl and k2 integers in infob are the other two cell points

Regular:

Vacuum:

Symmetry:

Mixed:

Triple:

Vacuum Triple:

Symmetry Triple:

* vac.

• •
.... , , o , * ----4e.._ __ vac.

~

•
................... o,· . .. ,,

. e ''• sym.
~

* ,, .. ,,
0

.................. vac.

II
· · ... "'o--............ sym.

* also specified velocity or pressure

. ~
Fig. 30. Types of interface/boundary points_.

2

. 3

4

5

6

7

49 .

(itype :_ 5), shown in Fig. 30, that occupy the same location in physical space as point k. If

. only two points are present (itype = 1, 6, or 7), then one of the k's will be zero. If only one

point is present (itype = 2, 3, or 4), then both k's are zero. The knext integer is the k value

of the next point on the boundary in the direction of increasing k. (If k is not on the bound­

ary then knext equals zero.) knext is used in subroutine BSTRUCT to generate the kl ar­

ray that is· a linked-list of cell points around the boundaries beginning with the first region

and continuing for all regions. Points that begin and therefore end a region appear twice

in the kl array. The ldbl (nr,i) array tells which element of the kl array begins (i = 1) and

ends (i = 2) region nr.

3.1.3. Flags. The term flag refers to single bit integers that can take on values of ei­

ther 0 or 1. All but three of these flags are associated with cell points and are stored in the
~

infoa arrays. The remaining three are associated with sides of the triangular mesh and

are stored in ns2.

The following is a list of the flag masks, the bit position used for storage and a brief

description of the flag use. For this discussion the bits are numbered from the right begin­

ning with one. All flags are stored in infoa except as noted.

FLAG MASK

maskadd

maskdel
~

maskccv

maskid·

maskkd

maskrev

50

BIT

54

53

52

56

55

51

FUNCTION.

When nonzero, this flag denotes that a cell

point has been added.

When nonzero, this flag denotes that a cell

point has been deleted.

When nonzero, this flag .denotes that a fluid

cell is concave. This information is required by

the remapper because the new mesh may enter

and exit a concave cell in the old mesh more

than once.

When nonzero, this flag denotes that a specific

cell point operation has been completed.

Same as maskid.

When nonzero, this flag denotes that the ramp

as opposed to the table part of the SESAME

equation of state package is being used to cal­

culate the pressure. For more information see

theCA VEATreport [1].

mask61

mask62

mask63

mask64

61(ns2)

62(ns2)

63(ns2)

64(ns2)

When nonzero, this flag denotes that a triangle

side has been checked for intersection with a
contourline in subroutine PLTCONTR.

· When nonzero, this flag denotes that a specific

triangular mesh side operation has been com­

pleted in the general remapper subroutines.

Same as mask62.

Same as mask62.

3.1.4. Regions/Materials. The region number of each cell point is stored in the infoa
array using the mask masknr discussed above. The material number for this region is ob­

tained from the nrmn array in common block EOS. These material numbers must begin
with one and increase by one for each different material. These numbers are not theSES­

AME equation of state material numbers. Several regions may have the same material
and, therefore, the same material number. The ordering of the regions and materials is ar­

bitrary. The maximum allowable number of different regions is 31 while the maximum al­
lowable number of materials is 30.

3.2. Code Structure
The CA VEAT-GT code package consists of the following nine· files: . the setuP. code

source file, the run code source file, the compilation controller file, along with three update
and three inp'ut files for the three example cases. Information pertinent to understanding

the structure and use of theCA VEAT-GT code is contained in this section while the exam­

ple cases are discussed in Sec. 4. Included here are the naming conventions of the codes,
files, subroutines, and variables. Variable definitions and subroutine functions also are
described. The organization of theCA VEAT-GT code is provided. Finally, working array
assignments are detailed.

3.2.1. File Naming Conventions. Early in theCA VEAT-GT development effort, it

was recognized that three distinct codes were n~cessary to provide a user convenient and
efficient method (Fig. 31). The three codes include a setup code (CAVGTS), the main code

(CA VGTR), and a post-processor (CA VGTP). The setup code (CA VGTS) is a user interac­

tive code that generates the initial mesh, flow variables, equation of state parameters, and

data structure (Sec. 2.7). Output from the setup code is available as input to the main code

(CAVGTR). The main code contains the hydrodynamics algorithms. Because ofthe great­

er geometrical complexity, graphical output may be expensive_. Furthermore, the ne~d to
manipulate data provided by the main code suggests the need for a post-processor

(CAVGTP). Output from the main code could be used directly as input to the post-

51

OUTGTS

PLTGTS

DSPGTS

OUTGTR

PLTGTR

DSPGTR:

OUTGTP

PLTGTP

DSPGTP

Fig. 31. File naming convention.

processor. The post-processor should also be a user interactive code. Its fundamental func­

tion w~uld be to alter data from the main code and provide the desired graphics. At the
· present time, the post-processor code has not been written [Sec. 5.3].

A file-naming convention was conceived in an effort to easily identify the file type

and its code affiliation. Files associated with the setup, main, and post-processor codes
have a GTS, GTR, and GTP designation, respectively. Input, output, dump, restart, plot,
and DISSPLA message files begin with INP, OUT, DMP, RST, PLT, and DSP, respectively.

The executable files begin with CAV. Finally, the source files are named CGTSSRC,

CGTRSRC, and CGTPSRC, respectively. A summary of the above convention is provided
in Fig. ·31. It should ·be observed that the dump files (DMPGTx) must be renamed

. '

(RSTGTx) to restart each of the codes. Output from setup code is used as input to the main

code (INPGTR). Output from the main code could be used as input to the post-processor

(INPGTP). Currently, OUTGTS contains the z-data structure information for the problem,
and OUTGTR contains messages that also are sent to the user terminal (tty).

3.2.2. Flow Diagram. Flow diagrams for the subroutine calling sequence of the

CA VEAT-GT computer program are provided in Figs. 32-35. The diagrams are intended

to illustrate where in the computational cycle each subroutine is used and not to provide a

detailed diagram of the logic inherent to a cycle. Descriptions of the function of each sub­

routine are found in Sec. 3.2.3.

52

100

yes

100

INFLOW

no

iNITIAL
TIMESTEP

REZCJRS

GRADBNDA

GRAD

CELLGEOM

EOSORIUE

yes

TERMNATE

RIEMANN

•Bold outlined subroutines
are further eHpanded In
the following figures

TERM NATE

REMOLDFD

REMNEWFD

REMNEWSG
TERM NATE

REMOLOSG ·

REMLNINT

TERM NATE

SESUALP

TERM NATE

Fig. 32. CAVEAT-GT flow diagram.

53

TERMNRTE

TERMNRTE

54

no

BSTRUCT

initialize
uariables

•

Fig. 33. Subroutine INITIAL.

MESH

calculate eHtensiue
uorlobles

yes

store old doto
structure

NEW MESH

NEWADDI

NEWDELI

NEWADDB

NEWDELB

NEWTRI

EOSMAT

BSTRUCT TERMNATE

MESH

REZONE CELLURTH

TERM NATE

Fig. 34. Subroutine REMPREP.

NEW CD

TERM NATE

·55

..

56

no

yes

yes

yes

·yes·

yes

ldebug
. =0

nHtoutp
=nHtoutp+l

loutp=l

tout=
toutp+dtoutp

loutp= 1

nHtdump=
nHtdump+l
ldumpp=l

tdump=
tdump+dtdump

ldumpp=l

TRPEWR

Fig. 35. Subroutine OUTPUT.

PLTMESH ·

PLTCONTR

PLTUELUC

PLTHY

The fundamental architecture of a CA VEAT-GT cycle is provided in Fig. 32. The cy­
cle is initiated by obtaining cell side variables (u*,p*) by solving a Riemann problem.

These variables are used to obtain the surface integrals necessary to compute the time

rates of change of volume, momentum, and energy (LAGRATES). Fixed points and bound­

aries and interfaces are then advanced (TRIPLPr and INTF ACE). Boundary vertices are

displaced along the boundary segments in an effort to provide optimal resolution and

boundary contours with excessive curvature are smoothed (REZBNDY). The interior
mesh is rezoned in a near Lagrangian fashion (REZLAGR) and the flow variables are ad­

vected to this new mesh (ADVECT). If it has been determined that a global remap is nee-·
essary, the data structure is modified and a new mesh is constructed (REMPREP). The
flow variables then are remapped onto this mesh (REMAPPER). The variables are updat­

ed (UPDTV ARS) and output is provided (OUTPUT).

The calling sequences of the subroutines INITIAL, REMPREP, and OUTPUT are
provided in Figs. 33, 34, and 35, respectively.

3.2.3. Subroutine Description. Subroutine names inCA VEAT-GT are selected tore­
flect their function. Furthermore, theCA VEAT-GT subroutines are grouped into three ba­
sic sections. Subroutines are ordered alphabetically within each section. The first section
of subroutines represents the main body of the code. Problem setup, output, and the algo­
rithms necessary to advance the problem one time-step are contained in this section. An

attempt has been made to use the first three or four characters of a subroutine name as an

indication of its function. For example:

G RADxxx are subroutines used in the calculation of the cell gradients.

INTxxx

NEWxxx

REMxxx
REZxxx
PLTxxx

EOSxxx

SESxxx

are interface related subroutines.
are subroutines used to generate a new data structure when a glo­
bal remap is required.
. .

are l:iuhruuiines used by the global remapping algorithm.

are rezoning or mesh generation subroutines.
are plotting subroutines.
are equations of state subroutines.

are equations of state subroutines involving the SESAME library.

A brief description concerning the function of each of the subroutines in this first section,

in alphabetical order, is provided.

ADVECT updates the cell mass, momentum, and energy based on the Lagrangian cell­
centered rates of change. The conserved quantities then are modified to reflect
a stability limited (i.e., Courant condition) remapping (advection) of the exten­
.sive variables from positions that would result from a pure Lagrangian motion
to the near Lagrangian mesh (Sec. 2.5.1).

57

BOUNDARY

BOWTIES

BSTRUCT

CELLGEOM

CELLVRTX

GRAD

GRADBNDA

GRADBNDR

INFLOW

INITIAL

INTFACE

INTSECT

LAG RATES

MESH

NEWADDB

NEWADDI

NEW CD

58

determines solutions to the Riemann problem along boundaries. The appro­
priate boundary conditions along each segment are included.

detects when the existing time-step size is too large such that boundary seg­
ments intersect or cross each other (Sec. 2.3.1).

provides boundary data structures. Information containing variables and bits
necessary for the specification of boundary segment or vertex conditions, near­
est neighbor definition, and boundary vertex ordering also are set.

computes the mesh geometric properties. Included are the cell area, volume,
centroids, and the moments of inertia necessary for calculation of a minimum
cell characteristic length (Sec. 2.1. 2).

calculates the cell vertex locations. For interior vertices, these locations are
the centroids of the triangles determined by the three neighboring cell centers.
On boundaries they are the averages of the boundary cell centers lying .on ei­
ther side of the vertex position.

computes the cell-centered gradients for the "second order" computations (Sec.
2.2.3).

·loads the boundary value arrays necessary for the calculation of cell gradients
of mass, momentum, and total energy densities along region boundaries. The
values are used by the global remap and advection subroutines.

loads the boundary value arrays necessary for the calculation of cell gradients
of the primary-intensive quantities (density, velocity, ...) along region bound­
aries. Tlw values are required for the solution to the Riemann problem.

applies the inflow and outflow boundary conditions.

initializes the calculation. It drives the subroutines that read input flies
(SETUP) and dumps (TAPERD) as well as subroutines that set up the data
structure (BSTRUCT) and compute the mesh geometry (CELLGEOM).
Primary-extensive quantities also are initialized in this subroutine.

computes the new interface/boundary positions (Sec. 2.3). It relies on a
Huygens construction based on the velocities obtained from the Riemann prob­
lem. An equidistribution term is used to remove the singularity encountered
along lines of symmetry.

computes the intersection of the projected locations of two neighboring bound­
ary segments. The projected segment locations are obtained from a Huygens
construction ~sing the two Riemann velocities associated with each segment.

determines a provisional Courant-limited time-step (through a call to 'l'lM~S­
TEP), calculates and stores solutions to the Riemann problem (u* and p*), and
computes the Lagrangian cell-centered rates of change for momentum, energy,
and volume.

sweeps through the dual triangulation defined by the cell-centered positions
and determines if a reconnection of the mesh is necessary. If. the reconnection
criterion is satisfied, then the reconnection is made.

controls the addition of boundary cell points tO the data structure and the
modification of the information containing variables.

controls the addition of interior cell points to the data structure and the modi­
fication of the information containing variables.

changes the diagonal of a quadrilateral formed by two adjacent triangles in or­
der to simplify deleting a cell point.

NEWDELB

NEWDELI

NEWMESH

NEWTRI

OUTPUT

REMAPPER

REMLNINT

REMNEWFD

REMNEWSG

REMOLDFD

REMOLDSG

REMPREP

REZBNDY

REZCJRS

REZLAGR

REZONE

RIEMANN

SETUP

TAPERD

TAPEWR

TERM NATE

controls the deletion of boundary cell points from the data structure and the
modification of.the information containing variables.

controls the deletion of interior cell points from the data structure and the
modification of the information containing variables.

is the driving subroutine that controls the addition and deletion of boundary
cell points from the date structure an<:f modifies the information containing
variables appropriately. ·

modifies the triangle information containing variables to reflect the results of
adding or deleting boundary cell points from the problem.

determines at which cycle numbers «;)r computational time output is· demand­
ed. It also drives the subroutines that provide printed and graphical output as
well as dumps. ·

is the driving subroutine for the global remap algorithm (Sec. 2.5.2). Based on
conservation principles, variables are transferred (or remapped) from one
mesh to another.

evaluates the line integrals over the cell sides necessary for the global remap
algorithm (Sec. 2.5.2).

locates the new mesh cell into which an old mesh segment is directed and the
new mesh side the segment crosses.

traces a new mesh line segment through the old mesh. It determines which of
the old cells it enters and exits and which sides it crosses.

locates the old mesh cell into which a new mesh segment is directed and the
old mesh side the segment crosses.

traces an old mesh line segment through the new mesh. It determines which
ofthe new cells it enters and exits and which sides it crosses. ·

is the set up subroutine for the global remap algorithm (Sec. 2.5.2). It saves
variables associated with the old mesh and calls subroutines that compute the
mesh geometry, modify the data structure, and define the new mesh.

repositions, as well as adds and deletes, boundary cell points in an effort to ac­
curately resolve the boundary contour as it evolves during the calculation
(Sec. 2.4.2).

solves a system of linear equations using the diagonally scaled conjugate re­
sidual technique. This subroutine is called by REZLAGR.

computes a "near Lagrangian" motion of the mesh (Sec. 2.4.1). That is, a new
mesh that approximately preserves the original cell volumes is determined.

constructs a new mesh based on the specified boundary vertex locations. The
algorithm attempts to construct a regular mesh based on the uniformity of an­
gles and sides ofthe dual triangulation (Sec. 2.4.1).

obtains the solution to the Rieman11 problem.

reads from the input file (INPGTR) and initializes the equation of state vari­
ables.

reads a dump from the restart file (RSTGRT).

writes dumps to the dump file (DMPGTR).

is called to terminate the problem under both normal (i.e., end of problem) and
abnormal (i.e., code failure) conditions.

59

TIMESTEP

TRIPLPT

UPDTVARS

VORPTS

computes the time-step size based on a Courant stability condition or halves
the time:step size if it has been determined that a boundary construction will
fail for the existing time-step size. The time-step size also is halved if cell vol­
ume changes are too large.

computes the new locations of boundary triple points and "fixed" points. A
Huygens-like construction using the Riemann velocities of the sides that form
the triple point is used to advance these boundary vertices to their new posi­
tions.

updates the mesh geometry, the cell intensive quantities, and'the equation of
state variables following a successful time-step.

computes the cell vertex positions for Voronoi cells. (This subroutine current­
ly is not used.)

·The above subroutines advance the fluid state and mesh each time cycle. The following

subroutines provide graphics output. The plot subroutines use the DISSPLA. graphics

package. A list of these subroutines, as well as a brief description of their function, is

included.

PLTCONTR

PLTDEBUG

PLTMESH·

PLTSET

PLTVELVC

PLTXY

provides contour plots of the flow variables. Currently, contour plots of pres­
sure, density, and internal energy may be obtained.

generates mesh plots when the debug option (IDEBUG= 1) has been enabled
(Sec. 3.5) while under the dynamic debugging tool (DDT). Four plots are pro­
vided by this subroutine. The first provides "the entire mesh and indicates the
window in which the debug plots are provided as set by the variables
XWINDl, YWINDl and XWIND2, YWIND2. The next three plots provide the
labeled mesh sides, vertices, and triangles.

provides a plot of the CAVEAT -GT mesh.

is a utility subroutine that calculates minimum and maximum values re-
quired by the plotting package. ·

provides a plot of the velocity vectors.

provides a two-dimensional plot of a flow variable versus the x- or y-coordinatc
along the problem boundary. Currently, pressure, density, or internal energy
plots are available.

The equation of state subroutines follow the plotting subroutines. Given the density and
either the pressure or internal energy, these subroutines provide the temperature and

either the internal energy or pressure. A diverse set of analytic and tabular equations of

state is available. The user specifies the desired state equation for each region through the
input file (INPGTR). A detailed discussion of the available models is provided in.Sec. 2.6

or Ref. [1]. A brief description of each equation of state subroutine is provided.

EOSBKW calculates the state variables and their derivatives using the analytic BKW
equation of state.

EOSDRIVE
EOSE

60

is the driver subroutine for the equation of state calculation.

is used to obtain the state variables when density and pressure are provided
(i.e., internal energy and temperature are calculated). Depending on the user

EOSHOM

EOSINPUT

EOSJWL

EOSMAT

EOSP

EOSSET

SESSET

SESVALE

SESVALP

specified equation of state, this subroutine either calculates the state variables
or accesses those subroutines that provide the necessary computations. Eight
equations of state are available.

calculates· the state variables and their derivatives using the analytic HOM
equation of state.

initializes the equation of state variables and reads ~he equation of state speci-
fications (name list EOSIN) from the input file (INPGTR). ·

calculates the state variables .and their derivatives u~ing the analytic JWL ·
equation of state.

loads the equation of state arrays that allow vectorization in the computations
of the state variables.

is used to obtain the state variables when density and internal energy are pro­
vided (i.e., pressure and temperature are calculated). Depending on the user
spe<:ified equation of state, this subroutine either calculates the state variables
or accesses those subroutines that provide the necessary computations. Eight
equations of state are available.

is the driver subroutine for the initialization of the state variables.

initializes the equation of state variables when the SESAME tabular data are
accessed.

is called to obtain the state variables and their 'derivatives when ·density and
pressure are provided (i.e., internal energy is calculated) using the SESAME
tabular data.

is called to obtain the state. variables and their derivatives when density and
internal energy are provided (i.e., pressure is calculated) using the SESAME
tabular"data.

3.2:4. Arrays and Variables. A brief description of the important variables used in
theCA VEAT-GT code is provided in this section. The variables are listed alphabetically.
For arrays, the appropriate dimensions are included in parentheses following the variable
name. Array dimensions specifying the number of cells (nv), triangles (nt), sides (ns), and
work storage (nwk) are provided by·para.meter statements. Currently, the number of re­

gions (ir) is fixed at a value of 30. An asterisk following th~ variable indicates that it is
specified by input. Variables followed by a double asterisk are temporary parameters in

the work storage array (Sec. 3.2.5). The common block that contains the variable is pro­

vided in brackets following the variable description.

aamax

adsmx(ir)•

akmax

alpa•

is the normalizing weight factor (refer to a0 """' in Sec. 2.4.2) applied to the
adaptive term in the interface rezoning algorithm. [REMAP]

is an array specifying the ratio of side length to the region maximum side
length above which an interior cell point is added on the side. [REMAP] ·

is the normalizing weight factor (refer to aK in Sec. 2.4.2) applied to the cur-
vature term in the interface rezoning algorithm. [REMAP] ·

is the weight factor (refer to a0 in Sec. 2.4.2) applied to the adaptive term in the
interface rezoning algorithm. Currently, this term is absent from the code.
[REMAP] .

61

alpe*

alpk*

alpn*

ama(ir)

area(nv)

atnr(ir)

bmass(nv)**

cang*

cart*

curv(nv)**

curvmax•

cyln*

dendt(nv)**

dens(nv)*

dmxdt(nv)**

dmydt(nv)**

dsmax

dsniin

dsmx(ir)*

dsmxmn

dt

dtdump*

dtmax•

dtmin*·

dtoutp*

dvmdt(nv)**

dvn(ns)**

62

is the weight factor controlling the spacing on the boundary (1.0 denotes equal
spacing and 0.0 denotes the previous cycle spacing). [REMAP]

is the weight factor (refer to-oK in Sec. 2.4.2) applied to the curvature term in
the interface rezoning algorithm. [REMAP]

is the weight factor (refer to On in Sec. 2.4.2) used in the configurational rezon­
ing algm;-ithm. This parameter should be limited 0 ~ On ~ 1. [REMAP]

is the material strong shock parameter for the regi9n ir. [FLUX1]

is the area of a cell. It also is used as temporary storage. [FLUX1]

is the sum of the area of the triangles in each region (Sec. 2.4.1.2). [MESH 1]

is the product of density times the boundary segment length required by the
near Lagrangian rezone along the boundaries (Sec. 2.4.2).

is an argument used by the DISSPLA graphics package that controls the num­
ber oflabels on a contour curve. [PLOT]

is-set equal to 0 or 1 for a problem in cylindrical or Car~esian coordinates, re­
spectively. [FLUX2]

is the curvature of the boundary contour at a boundary point.

is the maximum curvature (refer to Rmin = 1/curvmax in Sec. 2.4.2) allowed
by the configurational rezone algorithm. [REMAP]

is set equal to 1 or 0 for a problem in cylindrical or Cartesian coordinates, re­
spectively. [FLUX2]

is the cell-centered Lagrangian rate of change of total energy.

is the density of a cell. [FLUX 1]

is the cell-centered Lagrangian rate of change of the x-component of momen­
tum.

is the cell-centered Lagrangian rate of change of the y-component of momen­
tum.

is the maximum spacing for u boundary segment used by the interfacial rezon­
ing algorithm (refer to 6.Sm~x in Sec. 2.4.2). [REMAP]

is the minimum spacing for a boundary segment used by the interfacial rezon­
ing algorithm (refer to llSmin in Sec. 2.4.2). [REMAP] .

is the maximum distance allowed for a boundary segment (refer to llSmax in
Sec. 2.4.2) in region ir. [REMAP]

is the average dsmx over all the regions and is used for scaling. [REMAP]

is the computational time-step size. [FLUX2]

is the computational time increment for pro~iding du~ps to file DMPGTR.
[FLUX2]

is the maximum time-step size allowed by the calculation. [FLUX2]

is the minimum time-step size allowed by the calculation. If the predicted
time-step size falls below this value, the calculation will terminate. [FLUX2]

is the computational time increment for providing output. [FLUX2]

is the cell-centered Lagrangian rate of change of volume:

is the product of the cell-side normal velocity resulting from the Riemann solu­
tion and the cell-side length.

dx2,dy2 are the averages ofxmin and xmax, and ymin and ymax·, respectively. These
variables are used by the graphics subroutines. [PLOT]

dxmn(nv)** is the minimum characteristic length for the computational cell.

e(nv)* is the specific internal energy of a cell..: [FLUX1]

ebnd(nv)** is used to store the total energy at the region boundaries.

eostab(20000) is a working storage array used by the SESAME equation of state subroutines.
[BLANKD]

eps* is a generic small parameter (epsilon), specified through input. [FLUX2]

es(IOO,ir) is a real array containing the equation of state parameters for each material
region. [EOS] ·

eschng* an array used to input the equation-of-state parameters into the es array (see
the CAVEAT report [1]).

esif* is the inflow internal energy used in the specified inflow boundary condition.
[FLUX2)

esnew* an array used to input the equation-of-state parameters in the es array (see
the CAVEAT report [I])

forth pi is equal to n/4. [FLUX2]

fv(ns)** is the advection flow volume or the difference between the material and mesh
velocities times the time-step size and cell side length (Sec. 2.5.1).

gascn(25,ir)* is a real array containing parameters for the BKW and JWL equation of state
for each material region. [EOS]

gex(nv),gey(nv)** are the cell-centered gradients for pressure or total energy .

. gradqx(nt),gradqy(nt)** are trial cell-vertex gradients (Sec. 2.2.3).

grx(nv),gry(nv)** are the cell-centered gradients for density or mass.

gux(nv),guy(nv)** are the cell-centered gradients for the x-component of velocity or momentum.

gvx(nv),gvy(nv)** are the c.ell-center.ed gradients for they-component of velocity or momentum.

halfpi is equal to n/2. [FLUX2]

idebug is an integer that when nonzero enables the debugging graphics option (Sec.
3.5). [PLOT]

idump* is an integer that if nonzero equals the dump number to.be read in for are­
start.

igrad* specifies the gradient limiting technique used by the higher order computa­
tional method (Sec. 2.2.3). A value of 1, 2, or 3 results in no limiting, van Leer
limiting, or monotone limiting, respectively. [FLUX2]

ihuyg is an integer used to denote the failure of the Huygens construction used to
propagate the boundary (Sec; 2.3.1). [TERMN]

ilogo* ·is an input flag. A value of 1 provides the Los Alamos logo on all plots, and of
0 eliminates the logo. [PLOT]

imesh is a counter that accumulates the number of calls made to subroutine MESH
within an iteration from subroutine REZONE. [TERMN]

incdump* is the cycle increment for providing dumps to file DMPGTR. [FLUX2]

incoutp• is the cycle increment for providing output. [J<'LUX2]

. 63

infoa(nv),infob(nv)

infoaold(nv)**

in out

iorder*

ipdens*

ipener*

ipmesh*

ippres*

ipvc*

ipvelv*

ipxy*

ire map

irezone*

isegend

isetp*

iskipf*

is witch

iter

ivec*

64

are information containing arrays associated with the boundary cell centers.
They contain references to nearest sides and vertices on boundaries, as well as
bits indicating, for example, region number and boundary conditions (Sec. 3).
[MESH1]

is an information containing array associated with cell centers of the old mesh
prior to a general remap.

is a flag used in subroutine REMAPPER to indicate whether or not a cell seg­
ment is· exiting a cell. [REMAP]

controls the approximate order of accuracy of the calculation. Allowed values
are:

0; a first-order Riemann solution, advection, and global remap.

1; a second-order Riemann solution, first-order advection and global remap.

2; a first-order Riemann solution, second-order advection and global remap.

3; a second-order Riemann solution, second-order advection and global re-
map. [FLUX2]

is an input flag. A nonzero value provides plots of density contours to the
graphics file. [PLOT] ·

is an input flag. A nonzero value provides plots of specific internal energy con­
tours Lo t.he graphics file. [PLOT]

is an input flag. A nonzero value provides mesh plots to the graphics file.
[PLOT]

is an input flag. A nonzero value provides plots of pressure contours to the
graphics file. [PLOT]

is an input flag. A nonzero value includes the mesh with the velocity vector
plots. [PLO'l'J.

is an input flag. A nonzero value provides velocity vector plots to the graphics
file. [PLOT]

is an input flag. A nonzero value provides two-dimensional plots of pressure,
density, and specific internal energy versus x (ipxy= 1) or y(ipxy=:::2). ·[PLOT]

is a flag that indicates if a global remap of the mesh is necessary. [REMAP]

is a flag that indicates if the boundary of the mesh is .to be rezoned. [REMAP]

is a flag used in subroutine REMAPPER t.hat indicates when a segment has
been traced to its end. [REMAP]

is an input flag used to_indicate whether the initial pressure (isetp= 0) or spe­
cific internal energy (isetp= 1) is calculated by the eq~ation of state subrou­
tines during initialization. [EOS]

·is an integer used to specify the number of frames skipped on the graphics file
following each time-step. This allows, for example, similar plots to be posi­
tioned on horizontal lines when microfiche copies of the plot file are produced.
[PLOT]

is a variable used in subroutine MESH thataccumulates the number ofrecon­
nections. [MESH2]

is an integer used as an iteration counter. [TERMN]

is an argument used by the DISSPLA graphics package that specifies the size
and type of an arrowhead used on velocity vector plots. [PLOT]

kO

kfirst

kl(nv)

klast

klo(nv),klold(n v)••

kmat(nv)

kmatpnt(ir)

ktabs

lcfrst

I clast

ldbl(ir,i)

ld blold(ir ,i)

ls(ns)••

mask!

mask2

mask3

mask61

mask62

mask63

mask64

maskadd

mask be

maskccv

is an integer denoting a fatal error number. [TERMN]

is the smallest cell number that is a boundary cell. [MESH2]

is a vector containing the boundary cell point numbers as one proceeds fn.order
from a logically fixed point around the region boundaries. Its contents change
dynamically as cells are added/deleted. [MESH I]

is the largest cell number that is a boundary cell. [MESH2]

are vectors containing the boundary cell numbers,· as one· proceeds in order
around each region, prior to a general remap.·

is an integer array containing the cell numbers (k) ordered by material num­
.ber. [EOS]

is an integer array containing pointers that provide the starting location of
cells in each material group. [EOS]

is the location of the first word in the storage block for the SESAME equation
of stitte tables. [EOSJ .

is a dummy variable used by the dump subroutines to locate the beginning of
the stor~ge arrays. [FIRST]

is a dummy variable used by the dump subroutines to locate the end of the
storage arrays. [LAST]

contains the location in the kl array of the first (i = 1) and last (i = 2) boundary
cell point for region ir. [FLUX!]

contains the location in the kl array of the first (i= 1) and last (i= 2) boundary ·
cell point for region ir in th~ old mesh prior to a global remap. [FLUX I]

is an index· that provides the segment number and orientation for the Riemann
velocities along boundaries and interfaces.

is a mask used to extract information in the first 20 bits of a·word (Sec. ;3.1). It
is used to obtain cell-center numbers from the ns1, ns2, and infob arrays, and
cell-side numbers from the infoa array. [MASKS]

is a mask used to extract information from bjts 21 through 40 of a word
(Sec. 3.1). It is used to obtaiJ} cell-side numbers from the ns1, ns2, and infoa
arrays, and cell-center numbers from the infob array. [MASKS]

is a mask used to extract information from bits 41 through 60 of a word (Sec.
· 3.1). It is used to obtain cell-vertex numbers from the nsl and ns2 arrays, and

cell-center numbers from the infob array.· [MASKS]

is a mask used to extract liit 61 from a variable. [MASKS]

is a mask used to extract bit 62 from a variable. [MASKS]

is a mask used to extract bit 63 from a variable. [MASKS]

is a mask used to extract bit 64 from a variable. [MASKS]

is a mask used to extract or set bit 54 from the variable infoa(k) (Sec .. 3.1).
The result indicates if the kth cell has been added to the mesh. [MASKS]

is a mask used to extract bits 61 through 64 from the variables nsl(m) and
ns2(m) (Sec. 3.1). The results·are the boundary condition type number applied
to the mth cell side. [MASKS]

is a mask used to extract bit 52 from the variable infoa(k). The result denotes
if the cell is convex or concave .. [MASKS]

65

maskdel

maskid •

maskkd

maskrev

masknr

masktyp

mass(nv)

mnew(nt)**

mnses

mntot

mold(nt)**

nbowts

ncelmat(ir)

ncyc*

ncycstop*

ndump

nl

nln

np*

npn

nrd*

nrez

nrmn(ir)*

· nsl(ns),ns2(ns)

ns lold(ns),ns2old(ns)**

66

is a mask used to extract or set bit 53 from the variable infoa(k) (Sec. 3.1).
The result indicates if the kth cell has been deleted from the mesh. [MASKS]

is a mask used to extract bit 56 from the variable infoa(k) (Sec. 3.1). [MASKS]

is a mask used to extract bit 55 from the variable infoa(k) (Sec. 3.1). [MASKS]

is a mask used to extract bit 54 from a word. It is required by the SESAME
equation of state subroutine EOSP.

is a mask used to extract bits 57 through 61 from the variable infoa(k)
(Sec. 3.1). The result is the region number of the kth cell. [MASKS]

is a mask used to extract oits 62 through 64 from the variable infoa(k)
(Sec. 3.1). The result is the type of interface on which the kth cell lies.
[MASKS]

is the mass of a cell. It also is used as temporary storage. [FLUX!]

stores the new mesh boundary side associated with an old mesh boundary tri­
angle. ·

is an integer specifying the number of materials that are described using the
SESAME equation of state tables. [EOS]

is an integer specifying the total number of materials. [EOS]

stores the old me~h boundary side associated with a new mesh boundary
triangle. · ·

is an integer specifying the number of bowties or loops in the J>oundary
(Sec. 2.3.1). [TERMN]

is an integer array containing the number of cells in each material region.
[EOSJ.

is the beginning or current computational cycle number. [FLUX2]

is the cycle number at which the calculation is terminated. [FLUX2]

is the number of the dump read from the restart file (RSTGRT) and compared
with idump. [FLUX2]

is the total number of cells on the boundaries (i.e., the active length of the vari­
able kl). Its value changes dynamically as cells are added/deleted. [MESH2]

is the total number of cells on the boundary (i.e., the active length of the vari­
able kl) following the rezoning of the mesh. [RE~AP]

is the total number of cells. Its value changes .dynamically as cells are ad­
ded/deleted. [MESH2]

is the total number o(cells following the rezoning of the mesh. [REMAP]

is the total number of regions in the problem. [MESH2]

accumulates the number of times matrix coefficients have been recomputed in
subroutine REZONE. [TERMN] .

is an integer array containing the material number of each region. [EOS]

are information containing arrays associated with the cell sides. They contain
information pertinent to the Z-data structure (Sec. 2.1.3) such as neighboring
cell centers, sides, and vertices, as well as boundary condition information.
[MESHI] .

are information containing arrays associated with cell vertices of the old mesh
prior to a general remap.

nsd*

nsdi*

nsdiold

nsdold

nsold(nt)**

ntabs

ntnr(ir)

ntr*

ntri*

ntriold

nts(nt)

nxtdump*

nxtoutp*

oldmass(nv)

pbnd(nv)**

pe(nv)*

pi

pn(ns)**

psif*, psof*

pspec*

ptdens(nv)**

r(nv)**

rbnd(nv)**

rhoe(nv)**

rhosif*

rhou(nv)**

rhov(nv)**

is the total number of cell sides (interior plus boundary). Its value .changes dy­
namically as cells are added/deleted. [MESH2]

is the number of interior cell sides. Its value changes dynamically as cells are
added/deleted. [MESH2]

is the number of interior cell sides prior to the change in the data structure re­
sulting from rezoning the mesh. [REMAP]

is the total number of cell sides (interior plus boundary) prior to the change in
the data structure resulting from rezoning the mesh. [REMAP]

is the location of the new mesh boundary cell vertex relative to the old mesh
boundary index klold.

is an integer specifying the storage requirements for the SESAME equation of
state tables. [EOSJ

is the nu':Ilber of triangles in each region (Sec. 2.4.1.2). [MESH I]

is the tot.al number of triangles (interior plus boundary).· Its value changes dy-
namically as cells are added/deleted. [MESH2] · ·

is the number of interior triangles. Its value changes dynamically as cells are
added/deleted. [MESH2]

is the number of interior triangles prior to the change in the data structure re-
sulting from rezoning the mesh. [REMAP] · ·

contains information associated with triangles (Sec~ 3). It contains the three
side numbers forming the triangle that connects the three neighboring cell
centers. [MESHI]

is the next cycle number at which a dump to file DMPGTR is to be made. On
input, this variable specifies the cycle number of the first dump. [FLUX2]

is the next cycle number at which output is provided to the terminal (tty),
print file (OUTGTR), and graphics file (PLTGTR). On input, this variable
specifies the cycle at which output is initially supplied. [FLUX2]

is the-mass of a cell following the last global remap. [FLUX I]

is used to store pressure at the region boundari~s.

is the pressure of a cell. It also is used as temporary storage. [FLUX I]

is~qnAlt.on=iU4Hi [FLUX21

is the cell-side pressure resulting from the Riemann solution.

are the inflow and outflow pressure, respectively, for the specified inflow and
outflow boundary conditions. rFLUX2]

is the pressure applied to specified pressure boundaries. [FLUX2]

is the region boundary point density function (Sec. 2.4.2).

is the pseudo-radius (Sec. 2.1.2).

is used to store the density or mass at the region boundaries.

is the product of the density and total energy at the cell center.

is the infl.ow density used in the specified inflow boundary condition. [FLUX2]

is the product oft.he density and x-component of velocity at the cell center.

is the product of the density andy-component of velocity at the cell center.

67

s(nv)**

sdsmx(ir)*

sixth

sloc(n v),lold(nv)**

so(nv)**

S9lidcn(25,ir)*

ss(nv)

switch

tarea(nt)**

tau

tdump*

third

thknss•

time*

title(lO)*

tmass(nv)

· tote(nv)

toutp*

tstop*

ubnd(nv)**

uc(nv)*

umom(nv)

unsif*

68

is the arclength at a boundary point as one proceeds around the region follow­
ing the relocation of boundary cell points.

is an array specifying the ratio of side length to the region maximum side
length below which an interior cell point is deleted on one end of that side.
[REMAP]

is equal to 116. [FLUX2]

identifies the location of cell points along the boundary as a function of the lo­
cation in the old (before remap) kl array. This is necessary for a global remap.

is the arclength at a boundary point as one proceeds around the region prior to
relocating boundary cell points. ·

is a real array containing parameters for the HOM equation of state for each
material region. [EOS]

is the local isentropic speed of sound for a cell. It also is used as temporary
storage. [FLUXl]

is a logical variable used in subroutine MESH to indicate when reconnections
ofthe dual triangulation are necessary. [MESH2]

are the areas of the triangles constructed by connecting cell centers.

is the smoothing coefficient c2£\t (Sec. 2.4.2) used in the interfacial rezoning al­
gorithm. [REMAP]

is the computational time beyond which the next dump is made to file
DMPGTR. On input, this variable specifies the computational time of the first
dump. [FLUX2]

is equal to 113. [FLUX2]

is an argument used by the DISSPLA graphics package that controls the
thickness of contours specifying external boundaries and interfaces in the
mesh plots. [PLOT]

is the beginning or current computation time. [FLUX2]

is a character string containing the problem title. [PLOTJ

is the inverse of the density times the length of a boundary cell side (p0 L\s0). It
is required by the near Lagrangian interfacial, rezoning algorithm (Sec. 2.3.4
and 2.4.2). [FLUXl] '

is the total energy of a cell. It also is used as temporary storage. [FLUXl]

is the computational time at which output is provided to the terminal (tty),
,print file (OUTGTR), and graphics file (PLTGTR). On input, this variable
specifies the first computational time at which O';Itput is provided. [FLUX2]

is the computational time beyond which the calculation is terminated.
[FLUX2]

. .
is used to store the x-component of velocity or momentum at the region bound-
aries.

is the x-component of velocity of a cell. [FLUX 1]

is the x-component of momentum of a cell. It also is used as temporary storage.
[FLUXl]

is the normal inflow velocity used in the specified inflow boundary condition.
[FLUX2]

unspec*

uvtx(nv),vvtx(nv)**

vbnd(nv)**

vc(nc)*

vmom(nv)

vol(nv)

vsf*

work(IOOOO)

works(nwk)

wsl(nv),ws2(nv)**

xa,ya

xaray(n v),yaray(n v)

xc(nv),yc(nv)*

xcd(nv),ycd(nv)

xcl(n v),ycl(n v)

xcn(nv),ycn(nv)**

xmax,ymax,xmin,ymin

xnmo(nv)**

xv(nt),yv(nt)

xvl(nt),yvl(nt) ..

xwindl, xwind2

xxc(n v),yyc(n v),xyc(n v)**

ywind 1, ywind2

is the normal velocity applied to specified velocity boundaries. It is positive in
the direction of the unit outward normal to the boundary. [FLUX2]

are the cell-centered x- andy-component of velocities, respectively, that result
from the near Lagrangian rezoning of the mesh (Sec. 2.4.1).

is used to store they-component of velocity or moment.um at the region bound­
aries.

is they-component of velocity of a cell. [FLUX!]

is they-component of momentum of a cell. It also is used as temporary storage.
[FLUX!]

is the volume of a cell. [FLUX!]

is a parameter used to specify the length of the maximum velocity vector rela­
tive to the average cell dimension. (PLOT]

is a working storage array used by the contour plot subroutine. [BLANKD]

is working storage. Temporary storage is provided by this array (Sec. 3.2.5).
[WORK C)

are the Riemann velocities along boundaries and interfaces.

are the plot frame length and height, respectively, in plotting space. [PLOT]

are tempo.rary storage arrays used for plotting abscissa and ordinate values.
[PLOT]

are the cell point positions. [MESH!]

are the cell centroid positions. [MESH!]

are the "near Lagrangian" cell center positions. They also are used as dummy
variables in subroutine INTFACE. [MESHl]

are temporary positions of the cell centers.

are the minimum and maximum plot frame coordinates in physical space.
[PLOT] .

results from integrating the point density function around the region bound­
ary (refer toN in Sec. 2.4.2).

are the cell vertex positions. [MESH!]

are lhe "near· Lagrangian" cell vt:i.'Lt:A ·positions.

are the minimum and maxi~um abscissa values, respectively, of the debug­
ging graphics window (Sec. 3.5). [PLOT]

are the area moments of inertia of the computational cells (Sec. 2.1.2).

are the minimum and maximum ordinate values, respectively of the debug­
ging graphics window (Sec. 3.5). [PLOT]

3.2.5. Work Arrays. The CA VEAT-GT code employs a work array (works) to store

temporary arrays as they are required in the calculational procedure. The size of this ar­
ray is 33*nv, where nv is the number of cells required by the prqblem. The work array is

used in blocks. The size of each block beingnv. Consequently, there are 33 blocks of avail­

able storage for the use as work arrays. Each block of storage may be accessed using the

69

parameter nwkx, where x= 1, 2, ... , 33. In order to use a block of work storage for a tempo­

rary array phi for example, one simply must equivalence phi(I) to works (nwkx).

Because many of the temporary arrays are calculated in one subroutine and used in

another, it is useful to know when each block of the work array is being utilized. This pre­

vents the accidental overwriting of a temporary array prior to its use. The allocation of

each blocK. (nwkx) of the work array (works) is provided in Table I for one cycle of a calcu­
lation. Temporary arrays based on the number of cells (k) in the problem require one block

of storage of size nv. Information based on the number of triangles (n) and sides (m) require

2 and 3 blocks of storage, respectively. Consequently, some of the temporary arrays are

observed to use multiple blocks in Table I.

In an effort to obtain additional storage, some of the permanent arrays also are used

as temporary storage in the code. In subroutine INTFACE, the arrays xcl and ycl are used

as temporary variables. The arrays pc, ss, and area also are used as temporary storage.

Their temporary values (rhou, rhov, and rhoe) are calculated in REMPREP and used

later in REMLINIT. Finally, mass, umom, vmom, and tote are used as temporary stor­
age in the subroutine REZONE.

3.3. Setup Procedure

The setup code CA VGTS generates all required input for the run code CA VGTR and

writes this input to a file called INPGTR that is read by CA VGTR. Any parameters that

are not specified during the CA VGTS run are set to their default values. All parameters

except the initial mesh data structure are written in namelist format. The value of any

parameter can be changed using a standard text editor. Therefore, it is not necessary to

run CA VGTS every time CA VGTR is used. The definition and default value of each

parameter is given by the CA VGTS code and, therefore, is not listed here.

3.3.1. Mesh. The initial triangular mesh is generated using the TRIGEN package of
subroutines from the PLTMG code [14].

The main program of CA VGTS requests the required data following the procedure

discussed in Sec. 2. 7. Then TRIG EN uses these data to generate a triangular mesh that is

plotted by subroutine PLTMESH. The user then can vary the maximum triangle side

length and adjacent triangle area smoothness to optimize the mesh. Next, subroutine

GZDS is called to convert the TRIGEN data structure to the required "Z" data structure

(Sec. 2.1.3). All internal interfaces are doubly defined and all boundary (external and

interface) sides are moved to the end of the side arrays. Finally, all triangle data is gener­

ated. Then subroutine GFILE compacts the "Z" data using masking and writes these data

into the INPGTR file. All additional mesh parameters are in Namelist $GRID and are

written into the INPGTR file using default values.

70

TABLE I

WORK ARRAY ALLOCATION*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I r coupl sloe sloe fold
grx diagl so grx da,dxc grx grx da.dxc
gry diag2 s gry da.dxc gry gry da,dxc

rbnd gux diag3 xnmo,ei,c~r,· resx rbnd gux da,dxc rbnd gux gux da.dxc
5 guy fi resy guy d,·,dyc guy guy dv,dyc

ubnd gVI scr uvtx ubnd gvx dv,dyc ubnd gvx gvx dv,dyc
gvy kltmp uvty gvy d,•,dyc g''Y g\")' d,·,dyc
fs fs ls xcn xcn resx
fs ls fs yen yen resy

10 ts ts ts rbou d:IX ns1old ns1old dxx
ws1 ws1 wsl rbov dxx ns1old ns1old dxx
ws2 ws2 WS~ bmass coef rboe dxx ns1old ns1old dxx

,·bnd gex ptdens coer vbnd gex dyy vbnd gex gex dyy
gey coef gey dyy gey gey dyy

15 pdnd diag ebnd dyy ebnd infoaold lnfoold dyy
fv dxy ns2old ns2old dxy
fv dxy ns2old ns2old dxy
fv dxy ns2old ns2old dxy

klo klold
20 pn pp,xvt xvl xvl

I pn ap,~,H xvl xvl
pn yvl yvl yvl

yvt ~~ yvl
tarea,qcmin,c;ymin d,·mdt dvmdt tarea.qcmin,qymin xxc tarea.qcmin,qymln coen mold xcc

25 tarea,qcmax,c_ymax dmxdt dmxdt tarea.qcmax,qymax yyc tarea,qcmax,qymax coen mold yyc

i sarea dmydt dmydt sarea xyc sarea coen nsold xyc

I qmin,qxmin dendt dendt qmin,qxmin qmln,qxmin coef! nsold
: dxmn qmax,qxmax dvn dvn qmax,qxmax dxmn qmax,qxmax coef! mnew dxmn

gradqy d\'ll dvn . gradqy gradqy coef! mnew
:

30 gradqy d\'ll dvn gradqy gradqy diag
gradqx gradqx gradqz arx,qx
gradqx gradqx gradqz ary,qy

*The first column refers to a block of storage in the work array (works). Columns 2-19 refer to the following subroutines in the computational cycle.

2. TIMES'I'IEP 7. INTFACE 12. CELLGEOM 17. REZONE
3. GRADBNDR 8. REZBNDY 13. GRADBNDA 18. REMAPPER
4. GRAD 9. REZLAGR, REZCJRS 14. GRAD 19. UPDTVARS, CELLGEOM
5. LAGRATES, BOUNDARY 10. ADVECT 15. REMPREP
6. TRIPLPT, INTSECT 11. GRAD, GRADBNDA 16. NEWMESH

The CA VGTS code also writes a dump file called DMPGTS. This file contains all of

the geometry data. By switching the file name to RSTGTS and using theCA VGTS code re­
start option the user can avoid reading in these data again when he wishes to change the

spatial resolution of the mesh or any nonmesh parameters. In addition, many geometry

parameters can be changed in the RSTGTS file. This allows the user to correct mistakes or

change the geometry. A description of the contents of this file is contained in comment

statements in the main program.

If desired, the "Z" data structure can be written in the OUTGTS file for high speed

printing. The PLTGTS file contains a plot of the triangular mesh while the DSPGTS file
contains any messages· generated by the DISSPLA graphics routines.

3.3.2. Hydrodynamics. The hydro data consists of the initial conditions for all flow

variables as well as the parameters that control the time-step, output, and numerical

method. The initial conditions consist of the velocity, density, pressure, and internal ener­
gy for each flow region. These values are assumed to be constant in each region. The ini­

tial conditions are written into the INPGTR file in Namelist $IC.

The parameters that control the output and numerical method are written into the

INPGTR file in Namelist $CNTRL. The definition and default value for each parameter

are given by the CAVGTS code and, therefore, are not listed here.

3.3.3. Eguation.ofState. The equation of state (EOS) parameters are written into the

INPGTR file in two namelists, $EOS and $EOSIN. The $EOS namelist contains the array
nrmn, which gives the material numbers as a functi9n of region number. All other EOS

parameters are contained in the $EOSIN namelist. This namelist is the same as the one in

theCA VEAT code [1] and, therefore, is not discussed in detail here. The setup code· writes

a default $EOSIN into the INPGTR file assuming a gamma law gas (y = 1.4). If the user

wishes to employ another EOS, then he should generate the appropriate $EOSIN namelist

following the instructions in theCA VEAT report. This new $EOSIN namelist would then

replace the default namelist.

3.4. Updating. Compiling. and Execution

To compile the setup code use the LANL utility XEQ to compile the source code

CGTSSRC by typing

XEQ CGTSSRC ,

which generates an executable code called CAVGTS. (The XEQ utility treats all state­

ments at the beginning of the source code that have a * in column one as though they were

typed in at a terminal.) To execute this code type

CAVGTS

72

and follow the instructions. The CA VGTS code then generates the input file INPGTR for

the run code.

The procedures to update, compile, and execute the run code are very similar to the

corresponding procedures in CAVEAT [1]. Updating and compiling is done using the

LANL command language interpreter called CTL. This utility allows one to invoke a con­

troller (a sequence of commands) that automates the procedures required to update, com­
pile, and print listings. The controller file, called PRCVGT, is an improved version of the
CAVEAT controller PRCV.

Updating and compiling is simply a matter of invoking PRCVGT under CTL by typing

-PRCVGT

and responding to the appropriate prompts. A response of "abort" to any of the questions
will cause the controller to terminate. The controller will normally ask for the name of the
source file (CGTRSRC) in order to create an OLDLIB file. However, if this is a repeat ses­

sion and an OLD LIB already exists, it will ask if one wants to use the existing OLD LIB (or
else change to a new source file) .. PRCVGT then asks for the name of the update file and

stores it in UPDECK. If an UPDECK file already exists, PRCVGT asks if one wantS to use

it or change to_' a different update file. If no update or modification of the code is desired,

then generate a dummy UPDECK file containing the single line

*IDDUMMY.

PRCVGT then compiles the updated code and produces an executable code called
CA VGTR. Following compilation, PRCVGT .asks if .a listing is desired and if so, it asks for
a title of the listing. To execute the code type

CAVGTR.

The following is a sample of a typical interactive session:

ctl

*get ctllibc
ctl ver 03/01/83 latest news 03/01/83

----- 090 did not find default procedure library
/-prcvgt
*select ttyecho-nocommands
type abort to exit this procedure
no oldlib-- enter historian source file name
? cgtrs:rc
·input update file name
? updkst
CFOOO - CFT VERSION - 1.14i Edition 003 BUILT: 03/07/89 AT: 14:26:01
CF001 - COMPILE TIME = 15.1033 SECONDS
CF002 - 13143 LINES, 8589 STATEMENTS
controllee name is cavgtr ,load length= 01370400
~o you wish to produr._e and pr.i nt <~on update listing? y or n
. n
/end

73

3.5. Debugging Graphics

Subroutine PLTDEBUG is included to generate a small window of the triangular

mesh with all sides, cell points, and triangles labeled. This routine can only be accessed

using the LANL routine DDT or some other dynamic debugging routine.

To activate PLTDEBUG, one sets a breakpoint at the beginning of subroutine

OUTPUT on the desired time cycle (note that OUTPUT is called on every time cycle).

Once the code has stopped at the beginning of OUTPUT, use the "set, or similar command

to change the values of the variables idebug, xwindl, xwind2, ywindl, and ywind2.

idebug is set equal to 1 while xwindl and xwind2 denote the left and rightx-values of the

window, respectively. Similarly YWINDl and YWIND2 denote the lower and upper

y-value of the window, respectively. The code will then make the following four plots: the

entire triangular mesh showing the window and three plots of the mesh in the window with

the sides, cell points, and finally the triangles labeled. The mesh locations plotted are from

the xed and ycd arrays. These values are used in place ofxc and yc so that a gap between

regions is present, which allows easier viewing of the labels. These plots are produced re­

gardless of whether the standard output plots are scheduled to be generated. After these

four plots are generated, idebug is automatically set to 0 and no more debug plots are

produced until once again the user stops the code at subroutine OUTPUT and resets

idebug=l.

3.6. Dumps and Restarts

The dump file (DMPGTR) contains all of the computational variables necessary to

uniquely define the state of the calculation at a specified time cycle. This gives the user

the ability to restart the calculation in a consistent fashion simply by using the dump file

of a previous calculation as a ·restart file.

The initial time at which a dump is written to file DMPGTR is specified by the input

variable tdump. Time increments at which dumps are taken thereafter are provided by

dtdump. Alternatively, the user may specify dumps at input specified cycle numbers.

The first dump cycle being nxtdump and cycle increments thereafter by incdump.

When a dump is written to the file DMPGTR, a message is written to both the termi­

nal (tty) and the output file (OUTGTR). The message provides the dump number as well as

the cycle number and computational time at which the dump was provided.

To restart the problem from a specified dump, one must first rename the dump file

RSTGTR. Then use the existing input file (INPGTR) with the user specifi~d dump number

(idump) set to the dump from which a restart is desired. If the appropriate dump is found

on RSTGTR; a message is provided to the terminal and the output file indicating dump cy­

cle number and computational time of the restart. If the correct dump is not located on the

restart file, a message indicating the failed attempt is provided to the terminal. This last

74

message includes the,user specified dump number and the last dump number encountered
on the restart file. The code then will terminate. . .

4. EXAMPLE CALCULATIONS

Presented here are the following three calculations: the shock tube problem present­
ed in [15], as well as the blast wave and Taylor anvil problems discussed in [16] and [17].

Due to several modifications to theCA VEAT-GT code, there are small differences between

these results and those in [16] and [17].

4.1. Shock Tube

This example is the shock tube problem as specified by Sod [15]. In this problem high­

pressure gamma-law gas is located in the left end of a tube and low-pressure gamma-law

gas in the right. Initially the high- and low-pressure gas are separated by a diaphragm

that is broken at a timet= 0. Fort> 0, a sho<:;k wave travels to the right followed by the
contact surface or interface and an expansion wave travels to the left. The initial condi­

tions are PL = PL = 1, PR = 0.125, PR = 0.1, y = 1.4, Llx = 0.01, and a total length L = 1.
Because this is a one-dimensional problem in the x-direction, there is only one trian­

gle in the y-direction and 200 (adjacent triangles for a square) in the x-direction. As a re­

sult ther~ are two fluid or computational cells in the y-direction and 100 in the x-direction.

The two cells in the y-direction are both boundary cells, that is, there are no interior cells.

The pressure and density, as a function of x, are shown in Fig. 36 for a timet= 0.143.
These results are for the ''second-order" scheme with van Leer limiting. The pressure re­

sults agree well with the exact solution. However, while the density results are excellent·

for the shock and expansion waves, the results for the contact are not as good. This is due

to the fact that. as the shock and expansion waves are formed at early time, there is not suf­
ficient mesh resolution, causing numerical error. This error sh~ws up at the contact sur­

face for early time and then persists without change for later time. This type of error is

also present in theCA VEAT code [1]. Note that the computed results curve in Fig. 36 is

actually two curves, one for the top row of fluid cells and one for the bottom.

This problem uses an update to set the minimum ordinate value to zero and plot the

exact solution on the p versus x and p versus x plots. Therefore, this problem will execute

correctly without the update .. The update file is UPDKST and the input file is INPGTRST.
The cpu time for this problem is ·17s on a Cray X-MP computer.

4.2. Blast Wave

This example is the blast wave problem presented in Ref. [16]. The problem domain

is a 2 X 2 square, occupied by a gamma-law gas (y = 5/3), with an "obstacle" located in the
lower left corner as shown in Jl'ig. 37. The mesh is relatively coarse, containing 593 fluid or

75

"
~

0

..
0

h

" ..
0

"' a:
~"!
cno

"' a:
a..d

~

0

...
0

0

" 0

"
~

" ..
"
h

0

..
0 ,... =.,,

~c:i
~ .

0

~

0

...
"
0

" "

0.0

0.0

0.1 0.2 O.:S 0.4 0.5 0.6 0.7 0.8 0.9 1.0
X

.. _1
:L_

0~1 0.2 0.3 0.4 0.5 0.6 0.7 D.B 0.9 1.0
X

Fig. 36. Pressure (top) and density for the shock tube example problem (dashed line-exact
solution).

76

Fig. 37. Initial mesh geometry for the blast
wave example proble'm.

computational cells~ with a characteristic cell dimension of approximately 0.08. Initially,

the fluid is uniform and quiescent with density and specific internal energy of 1 and 1.5 X

10- 10 (dimensionless units), respectively. At t_ = 0, a source of energy is applied to the cell

located at approximately x = y = 0.95. This cell instantaneously acquires an internal en~

ergy of10.

As the calculation evolves, a cylindrical shock wave emanates from the energy souf'ce ..
The evolution of the pressure profiles for the "first-order" calculation is shown in Fig. 38.

It may be observed that the wave is not propagated preferentially in any one direction on

the internal mesh. This demonstrates the improved isotropy anticipated for this method,

as compared to the related CA VEATcode [1], based on a quadrilateral mesh, that typically

shows differences in shock p~opagation in directions that are skew to the mesh directions.

For more results see Ref. [16].

This problem uses an update to add the initial energy to initiate the blast wave.

Therefore, this problem needs the update to execute correctly. the update file is UPDKBW
and the input file is INPGTRBW. The cpu tinie for this problem is 105s on a Cray X-MP

computer. Like the results in Ref. [16], this problem did not employ interior cell point ad­

dition/deletion, therefore adsmx was set equal to a large number (1000.0) and sdsmx was

set equal to zero.

4.3. 'Taylor Anvil

This example is the Taylor anvil or impact problem presented in Ref. [16]. This prob­

lem consists of a plate with dimensions 0.4 by 2.0, a density of 8.9, and traveling at a uni­

form velocity of0.196 in the vertical (downward) direction. At t:::::::: 0 the plate encounters a

rigid wall. The phenomena that one observes are that a shock wave propagates vertically

from the point of impact and is then overtaken by a rarefaction wave as the plate "splat­

ters" against the rigid wall. The initial mesh, shown in Fig. 39a is fairly coarse with 123
fluid or computational cells. The cell characteristic dimension is 0.1. The left and bottom

boundaries are symmetry boundaries. The right boundary fs a free surface (p = 0), while .

the top boundary is a specified velocity boundary (v = -0.196). The material obeys the

Chaplygin e·quation of state,

2(1 . 1) 'p=k ---
Po P

where k = 3.49 and PO = 8.9. The initial velocity corresponds to a Mach number of 0.5,

based on the undisturbed sound speed. (Note this equation of state is not included in the

CA VEAT-GT code and is added for this problem by updating the code. This equation of

state was used to allow the computed solution to be compared to an exact solution in

77

Ref. [18].) The evolution of the mesh for a "second order," van Leer limited calculation is

-shown in Fig. 39. The ability of the technique to smoothly add and delete computational

eells along the boundaries, as well as in the interior, can be observed. For more results see

Ref. [16].

D

.Or-----~--------------------------,

D
c:i

D ...

D
,.._:

D

c:i

0.0

0.0

1.0 z.o
X

(a)

1.0 z.o
X

(b)

"

"!

0.0

D ...

D

c:i
o.o

,, _.-.- , ..
\

·····

1.0
X

(c)

1.0
X

(d)

' J,'

2.0

2.0

Fig. 38. Pressure contours for the blast wave example problem: (a) t=0.5; (b) t=l.O;
(c) t=2.0; (d) = 2.5.

78

0
.;

"' ... _:

0

c::i

0
.;

0

c::i

0.0

0.0

1.5
X

(a)

1.5
X

(b)

0

c::i
J.O 0.0 1.5 J.O

X

(c)

0
.;

J.O 0.0 1.5 J.O
X

(d).

Fig. 39. Evolution of the mesh for the Taylor anvil example problem: (a) initial mesh;
(b) t=2.5; (c) t=5.0; (d) t=7.5.

79

This problem uses an update to fix the plot limits so the plots are not rescaled during

the run and to add the Chaplygin equation of state. Therefore, this problem will e~ecute

without the update, but will use the linear equation of state instead of the Chaplygin equa­
tion of state. The update file is UPDKTA and the input file is INPGTRTA. The cpu time

for this problem is 25s on a Cray X-MP computer.

5. FUTURE WORK

5.1. Physical Models

With the exception of the available equations of state, CAVEAT -GT currently lacks
· many of the physical models found in CAVEAT [1]. Because of the similarity· of the two
codes, no difficulties are envisioned in adapting the physical models contained in the

CAVEAT code to the general topology version. This will simply require modifying the

models so that they are compatible with cells having arbitrary numbers of sides. Here we
have in mind the high explosive (HE), molecular and turbulence viscosity, and strength

models.
There are three high explosive models available in CAVEAT. They include a

progranuned-burn, the Chapman-Jouget (CJ) volume, and the Forest Fire burn models.

These models simulate the energy released from high explosive materials in the presence
of a propagating shock wave. The programmed-burn model is the most empirical of the

three. It would be the first model implemented into CA VEAT-GT. By specifying a detona­
tion speed based on data, the arrival time of the detonation front at a computational cell

may be inferred. InCA VEAT, the effects of obstacles (i.e., shadowing) are included. As

the wave sweeps over each computational zone, energy is deposited into the cell. This en­

ergy deposition combined with the equation of state for the material results in a pressure
pulse in the cell. There is, however, no feedback between the material motion caused by
the energy release and the wave propagation in this model. The BKW and JWL equations
of state typically are used with this model. These equations of state already have been im­

plemented into CAVEAT -GT. The CJ Volume Burn and Forest Fire burn models are reac­
tive burn models.

Including a molecular viscosity inCA VEAT-GT would require the addition of the ap­

propriate terms in the momentum and energy equations. Turbulence may be simulated

using the simplest representation for the turbulent shear in the form of a constant eddy

viscosity. A more sophisticated representation, using transport equations for the turbu­
lent kinetic energy and dissipation length scale (TKE model), also has been implemented

in the CAVEAT code. No difficulty is anticipated in transferring the turbulent models
available inCA VEAT into the general topology version of the code.

80

. Material strength effects have been combined with the Godunov numerical method

in CAVEAT. An elastic-plastic model using a bilinear stress-strain response curve has

been implemented; with both kinematic and isotropic hardening effects included. The

modifications require solving differential equations for the stress field, as well as the back

stresses and yield surface radius at the cell centers. The Riemann solution then is modi­
fied to ·include the cell-side normal and shear stresses. The implementation of this model

into CA VEAT-GT should be straightforward.
Implementation of additional physical models such as heat conduction and diffusion­

al radiation heat transfer has been under consideration for theCA VEAT code, and there­

fore might also be included inCA VEAT-GT.

5.2. Vectorization
Because the current code is more of a development than a production code, no special

procedures to allow vectorization have been implemented. From the timing routines
·included in this code, it is seen that around half of the computer time is spent in the two
rezone procedures. Therefore, several modifications to improve the vectorization of sub­
routines REZLAGR, REZONE, REZCJRS, and MESH have been proposed, but as yet they

have not been implemented.

· 5.3. Post-Processor Code

At the presenttime, the post-processor code has not been written. Therefore, the

main code CA VGTR does not currently write the INPGTP file as shown in Fig. 31. Be­

cause of the general topology of theCA VEAT-GT code, some of the graphic routines (for ex­
ample, contour plots) are time consuming. Therefore, it would be ·desirable if the main
code could write results to a disk file instead of stopping to generate graphic output. The
post-processor code could then read this disk file and generate the graphical output after

the main code has completed the calculation. This would greatly speed up the main code
for cases where large amounts of graphical output are desired. It would also allow the user
to· generate additional graphical output without rerunning the main code.

ACKNOWLEDGMENTS

The authors wish to extend their appreciation to Hans Ruppel, who provided the en­

couragement and support for this endeavor. Gratitude also is extended to Adrienne Rosen

for providing assistance in the preparation of this manuscript.

81
I'

·REFERENCES

[1] F. L. Addessio, D. E. Carroll, J. K. Dukowicz, F. H. Harlow, J. N. Johnson,
B. A. Kashiwa, M. E. Maltrud, and H. E. Ruppel, "CAVEAT: A Computer Code for
Fluid Dynamics Problems with Large Distortion and Internal Slip," Los Alamos
N~tional Laboratory report LA-10613-MS (1986).

[2] J. R. Baumgardner, Los Alamos National Laboratory, private communication,
1988. .

[3] "The Free-Lagrange Method," Proceedings, 1st Int. Conf. on Free-Lagrange
Methods, Hilton Head Island, South Carolina, 1985, M. J. Fritts, W. P. Crowley,
and H. Trease, Eds. (Springer-Verlag, Berlin, 1985).

[4] J. K. Dukowicz, J. Comput. Phys. 61, 119-137 (1985).

[5] A.M. Winslow, J. Comput. Phys. 2, 149-172 (1967).

[6] R. Chandra, "Conjugate Gradient Methods for Partial Differential Equations,"
Yale University Thesis, University Microfilms, Ann Arbor, Michigan (1978).

[7] J. U. Brackbill and J. S. Saltzman, J. Comput. Phys. 46,342-368 (1982).

[8] J. K. Dukowicz, J. Comput. Phys. 54,411-424 (1984).

[9] J.D. Ramshaw, J. Comput. Phys. 59, 193-199 (1985).

[10] J. K. Dukowicz and J. W. Kodis, SIAM J. Sci. Stat. Comp. 8, 305-321 (1987).

[11] J.D. Ramshaw, J. Comput. Phys. 67,2.14-221 (1986).

[12] G. Voronoi, J. Reine Angew. Math. 134, 198 (1908).

[13] B~ Delaunay, Bull. Acad. Sci. USSR (VII), ClasseBci. Mat. Nat., p. 793 (1934).

[14] R. E. Bank, "PLTMG Users' Guide," Edition 4.0, l)niversity of California at San
Diego, La Jolla, CA (1985). . ·

[15] G. A. Sod, J. Comput. Phys. 27, 1-31 (1978).

[16] J. K. Dukowicz, M. C. Cline, and F. L. Addessio, J. Comput. Phys. 82, 29-63 (1989).

[17] ·F. L. Addessio, M. C. Cline, and J. K. Dukowicz, "A General Topology, Godunov
Method," Proceedings, Particle Methods in Fluid Dynamics and Plasma Physics,
Computer Physics Communications 48, 65-73 (1988).

[18] R. R. Karp, Los Alamos Scientific Laboratory report LA-8371 (1980).

82
•U.S. GOVERNMENT PRINTING OFFICE: 1990-0-773-034/20048

NTIS
Paa•Rane Price Code

001-02!! A02

026-C.50 A03
051...()7~ A04
076--100 A05
101-1~ A06
126--1.50 A07

•Contac! NTIS for • price quocc.

This report has been reproduced directly from
the best available copy.

Available 10 DOE and DOE contractors from

the OffiCe of Scientific and Technicallnfonnation
P.O. Box62

Oak Ridge, TN 37831
.,. ica •vii table rrom

(61S) ~76-8401, Fl'S 626-8401

Available to the public from
the National Technicallnfonnatioo Service

U.S. Department of Commerce
'28~ Port Royal Rd.

Springfield, VA 22161

MiaoficheAOI

NTIS NTIS
PaaeRane Price Code PaeRane Price Code

1~1 - 17~ A08 301-32.~ Al4
176--200 A09 326--3.50 AI~
201-2~ AIO 3~1-37S Al6
226--2.50 All 376--400 Al7
~l-21S Al2 401-4~ AIS
276--300 AIJ 426-4.50 Al9

NTIS
PaR• Ran(e Pricr.C"...t.

4~1-47S A20
476--SOO A21
.501-S~ A22
S26--S.50 A23
SSI-S7~ A24
S76--600 ~

601-up• A99

n@CQ? 0 n 0J rriril@CQ? Los Alamos National ~aboratory
l.b ~ ~UC9JU U U ~ Los Alamos,New Mex1co 87545

