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FOREWORD

The Community Systems Program of the Division of Buildings and Commu-
nity Systems, Office of Energy Conservation, of the United States Departﬁent
of Energy (DOE), is concerned with conserving energy and scarce fuels through
new methods of satisfying the energy needs of American Communities. These
programs are designed to develop innovative ways of combining current, emerg-
ing, and advanced technologies into Integrated Community Energy Systems (ICES)
that could furnish any, or all, of the energy-~using services of a community.
The key goals of the Community System Program then, are to identify, evaluate,
develop, demonstrate, and deploy energy systems and community designs that

will optimally meet the needs of various communities,

The overall Community Systems effort is divided into three main areas:
(a) Integrafed Systems, (b) Community Planning & Design, -and (¢) Implementa=
tion Mechanisms. The Integrated Systems work is intended to develop the tech-
nology component and subsystem data base, system analysis methodology, and
evaluations of various system conceptual designs which will help those inter-
‘ested in applying integrated systems to communities. Also included in this
program is an active participation in demonstrations of ICES. The Community
Plarming & Design effort is designed to develop concepts, tools, and method-
ologies that relare urban form aud eumeiryy utilization. This may then be uscd
to optimize the design and operation of community energy systems. Implementa-
tion Mechanisms activities will provide déta'aﬁd develop strategies to accel-
erate the acceptance and implementation of community energy éystems and

energy-conserving community designs.

This report, prepared by Oak Ridge National Laboratory, is part of a
series of Technology Evaluations of the performance and costs of components
and subsystems which may be included in community energy systems and is part
of the Integrated Systems effort. The reports are intended to provide suf-
ficient data on current, emerging and advanced technélogies so that they may
be used by consulting engineers, architect/engineers, plannetq, developers,
and others in the development of conceptual designs for community energy sys-
tems. Furthermore, sufficient detail is provided so that calculational models
of each component may be devised for use in couwmputer codes for the design of

Integrated Systems. Another task of the Technology Evaluation activity is to

ICES TECHNOLOGY EVALUATION

iv




devise calculational models which will provide paft-load performance and
costs of components suitable for use as subroutines in the computer codes
being developed to analyze community énergy systems. These will be published

as supplements to the main Technology Evaluation reports.

It should be noted that an extensive data base already exists in tech-
nology evaluation studies completed by Oak Ridge National Laboratory (ORNL)
for the Modular Integrated Utility System (MIUS) Program sponsored by the
Departﬁent of Housing and Urban Development (HUD). These studies, however,
were limited in that they were: (a) designed to characterize mainly off-the-
shelf technologies up to 1973, (b) size limited to meet community limitations,
(¢) not desighed to augment the development of computer subroutines, (d) in-
tended for use as general information for city officials and keyed to residen-
tial communities, and (e) designed specifically for HUD-MIUS needs. The pre-
sent documents are founded on the ORNL data base but are more technically ori-
ented and are designed to be upgraded periodically to reflect changes in cur-
rent, emerging, and advanced technologies, Furthermore, they will address the
complete range of component sizes and their application to residential, com-
mercial, light industrial, and institutional communities.  The overall intent
of these documents, however, is not to be a complete documentation qf a given
technology but will provide sufficient data for ﬁonceptual design application

by a technically knowledgeable individual.

Data presentation 1s essentially in two forms. The main report in-
cludes a detailed description of the part-load performance, capital, operating
and maintenance costs, availability, sizes, environmental effects, material
and energy balances, and reliability of each component along with appropriate
reference material for further study. Also included are concise data sheets
which may be removed for filing in a notebook which will be supplied to inter-
ested individuals and organizations. The data sheets are colored and are
perforated for ease of removal. Thus, the data sheets can be upgraded period-

ically while the report itself will be updated much less frequently.

Each document was reviewed by several inividuals from industry, re-
search and development, utility, and consulting engineering organizations and
the resulting reports will, hopefully, be of use to those individuals involved

in community energy systems.
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ABSTRACT

The scope of this technology evaluation on room and unitéry air
conditioners covers the initial investment and performance éharacteristics‘
needed for estimating the operating cost of air conditioners installed in
an ICES community. Cooling capacities of commercially available room air
conditioners range from 4,000 Btu/h to 36,000 Btu/h; unitary air conditioners
cover a range from 6,000 Btu/h to 135,000 Btu/h. The information presented
is in a form useful to both the computer programmer in the éonstruction of
a computer simulation of the packaged air-conditioner's performance and to
the design engineer, interested in selecting a suitably sized and designed

packaged ailr conditioner.
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TECHNOLOGY EVALUATION
SUMMARY SHEET
o .

TCES

UNITARY AND ROOM AIR CONDITIONERS . COMAUNITY

ENERGY
SYSTEMS

By: J. E. Christian, ORNL September, 1977

1 INTRODUCTION

A room air conditioner is defined as a single packaged unit which
discharges cooled air directly into the conditioned space; by comparison,
the unitary air conditioner generally is designed with fan capability for .

duct work.

Commercially available room air-conditioner units range in cooling
capacity from 4,000 to 36,000 Btu/h. Unitary air conditioners covered
here range in cooling capacity from 6,000 to 135,000 Btu/h.

Figure DS-1 shows a schematic of the variables needed to describe
the full- and part-load performance of packaged air conditioéners.
conrroL_wmssues
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Fig. DS-1 Schematic of Packaged Air-Conditioning quipment
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Size selection is based on the following:

outdoor design temperature,

indoor design temperature,

total estimated cooling 1load,
condensing medium and temperature,
air delivery requirements, and
external static pressure.

anNnpPpwWwN =
e e & o o o

Other selection criteria which should be considered are:

1. humidity control, and :
2, efficiency (Energy Efficiency Ratio, EER, is the

total Btu/h of cooling capacity per input power

expressed in watts).

2 MATERIAL AND ENERGY BALANCE

The average Energy Efficiency Ratio (EER) for both room and unitary
air conditioners, presently available, is about 7.0 Btu/Wh. EER ‘values
vary with the manufacturer, and there is no apparent correlation of EER vs

capacity. Units are available with EERs ranging from 4.8 to 11.6.

The nameplate EER for air-cooled, packaged air conditioners is
estimated by testing the units at room air temperatures of 80°F db and
67°F wb, and outside air of 95°F db and 75°F wb. The EFR varies as a

function of the environmental control variables.

‘2.1 EFFECT OF VARYING THE DRY-BULB TEMPERATURE

: The EER at various ambient dry-bulb temperatures for a typical air
conditioner can be estimated by Eq. DS-1 and DS-2. The unit is assumed to
have a nameplate EER of 7.0 Btu/Wh. Equation DS-1 approximates the EER of
an air conditioner with a coﬁtinuously operating fan; Eq. DS-2 approximates
the EER of a unit with an automatic cycling fan.

% of nominal EER = -31,317.4 + 1408.9 (T)

-23.754 (T)? + 0.17836 (T)® - 0.000503 (T)"* (Eq. DS-1)
% of nominal EER = 1352,] - 39.45 (T)
+0.4243 (T)? - 0.001555 (T)? (Eq. DS-2).

Where:

T = ambient temperature, °F db

ICESTECHNOLOGYEVALUAUON
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2.2 EFFECT OF VARYING THE INDOOR WET-BULB TEMPERATURE

If the indoor wet-bulb temperature is higher or lower than 67°F,
|the correction factors shown in.Table DS-1 can be used to adjust the EER
&accordingly. '

Table DS-1 Correction Factors for Various Wet-Bulb Temperatures

Correction Factors

‘Entering

Indoor Air Total Sensible

Wet-Bulb Cooling Total Cooling

Temp. (°F) Capacity Capacity EER
63 0.93 1,26 0.96
67 1.0 ' 1.0 1.0
71 _ : 1.06 0.75 1.02

2.3 EEFECi OF VARYING THE NOMINAL EXTERNAL STATIC PRESSURE

Ihe higher the external st#tic pressure on the indoor fan of unitary
ajr conditioners, the more electrical power will be required to provide the
Fame améunt of cooling.. The external static pressure varies according to
the amount of resistance resulting from the duct arrangement. Equation DS-3
pproximates the increasing amount of electric power required by a unitary
air conditioner indoor fan. The nominal external static pressure varies
from 0.1 to 0.3 in. of water, depending on the capacity of the individual
unit.. The electric fan consumes about 10% of the total air-conditioner

power requirement.

P_= PFo (0.856 + 0.00144 EP) _ (Eq. DS-3)

F
vhere :
PF = fan power, Watt,
PFo = nominal fan power, Watt .
EP = % of nominal external static pressure.

D .4 EFFECT OF VARYING FAN OPERATION

The seasonal EERs of models with éontinuously operating fans were, on
the average, 8.57% below the nameplate EER; whereas, the seasonal EER of mod-

Pls with automatic fans were, on the average, 10.2% above the nameplate value.|
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3 OPERATING CONSIDERATIONS

3.1 CAPACITY CONTROL |

Room and unitary air conditioners generally are operated by an
on-off switch controlled by a built-in, adjustable thermostat.

3.2 ENVIRONMENTAL IMPACT

The major environmental concern in the installation and operation of
an air-conditioning unit is noise that could be unacceptable in sensitive
areas.

4 COST CONSIDERATIONS

The economic life of a room or unitary air conditioner is estimated
to be 10 years. The equipment cost can be estimated by Eq. DS-4 for foom
air conditioners with cooling capacities from 4,000 to 36,000 B;u/h and
for unitary models from 6,000 to 135,000 Btu/h. |

-

. desired

FOB | capacity' (Eq. DS-4)
equipment = 710 { Btu/h -
(3) . 24,000 _

The installed cost of room air conditioners is estimated to be $31/ton
plus the FOB cost obtained from Eq. DS-4. The total installed cost of unitary
pir conditioners can be estimated by Eq. DS-5 (all costs are in 1976 dollars)

| desired i.aa

Total . capacity | (Eq. DS-5)
installed = 1,290 | Btu/h | . ,
($) L 24,000

Maintenance costs for both room and unitary air conditioners can be
. pstimated by Eq. DS-6. .

Maintenance = 109

Btu/h (Eq. DS-6)
S/year

[Ccapacity |+ 38
i
|. 74,000 =

5 POTENTIAL FOR IMPROVEMENT

It has been suggested that, as a current state oféthe—art limit, the
industry may be able to produce room air conditioners with an EER of about
3.5 Btu/Wh.
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TECHNOLOGY EVALUATION OF

UNITARY AND ROOM AIR CONDITIONERS

Prepared by J.E. Christian, ORNL INTEGRATED

Date

ENERGY
September, 1977 SYSTEMS

1 INTRODUCTION

1.1 DESCRIPTION

This technology evaluation considers commercially available room

and unitary air conditioners. Room air conditioners -- defined as single

packaged units, mounted in windows or through outside walls -- discharge

cooled air directly into the conditioned space.

Unitary air conditioners are designed with fan capability for use

with ducts, although some units may be applied to provide direct diséharge

into the conditioned space.

References 1 and 2 provide descriptive discussions of the many types

of available unitary air-conditioner designs. A list of design variations

found in unitary air conditioners is given below:

1. heat rejection — air-cooled, evaporative condenser, water
cooled;

-2, unit exterior design — decorative, functional for equipment

room and ducts, weatherproofed for outside protection from
the elements;

3. style — floor standing, wall-mounted, ceiling suspended,
roof mounted, window; :

4. 4ndoor air — vertical upflow, downflow, horizontal, 90° and
180° turns, with fan or for use with forced-air furnace;

5. locations — (1) indoor unit (in duct work, concealed in
. closets, attics, basements, garages, utility rooms, or
equipment rooms) ; (2) outdoor unit (rooftop, wall-mounted,
or on concrete slab adjacent to the building).
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Figure 1.1 shows a schematic of the variables necessary to describe
the performance of packaged air-conditioning equipment. The relationships
among the control, design, input, and output variables are presented in

Sect. 2, Material and. Energy Balance.

CONTROL VARIABLES

CONDENSER

WRTER

fLow

RATE INSIDE
(orm) R

FLow
AMBIENT RATE
ORY-BULD wsiog (SFV)
TEwP. AR
(*F) TEWP.
(°F)
ENTERING
COROENSER
WATER
TEWP
ree)®
COOLING LOAD FROM CONDITIONED MEAT REJECTION (Bia/dr) o
5| sree et UNITARY OR ROOM [ =
o 4
S AIR CONDITIONER  [oie <
!

FuLL
LOAD
SENSIBLE
HEAT
FULL AxD REMOVAL
PART LOAD | capaciTy
COO0LING

capaciTy | fere/and

EXTERNAL
STATIC
PRESSURE

DESIGN PARAMETERS

*APPLIES TO WATER COOLED UNITS ONLY

Fig. 1.1 Schematic of Packaged Air Conditioning Equipment

1.2 AVAILABLE STZE RANGE

The cooling capacity of commercially available room air-conditioning
units ranges from 4,000 to 36,000 Btu/h. The cooling capacity of unitary
air conditioning units covered here ranges from 6,000 to 135,000 Btu/h.
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1.3 SELECTION CRITERIA

1.3.1 Size

The required cooling capacity of an air-conditioning unit is deter-
mined by the following design conditions:

1. Jutdoor design temperature:
(a) Wet-bulb for water-cooled and evaporative condenser units.
(b) Dry-bulb for air-cooled condensers.

(A map of the wet-bulb design temperatures for heat
rejection from air conditioning units is provided in
the ICES Technology Evaluation of heat rejection
equipment.) 3

2. Indoor design temperatures: ASHRAE Standard 90-75
recommends 78°F for the indoor design condition where
comfort air-conditioning is required.

3. Total cooling load at design conditions.
4, Céndensing medium and temperature.

5. Air delivery requirements.

6. Erternal static pressure.

To select an air-conditioning unit, an estimate must be made of the
design cooling load for the space to be be conditioned. The cooling load
is baséd on the design ambient temperature and the desired indoor conditions.
After a cooling capacity is determined for design indoor and outdoor tempera-
tures, the correlations of capacity vs operating variables can be used to
convert the design cooling capacity to nominal rated capacity for a suitably

sized unit that will meet the design conditions.

1.3.2 Humidity.Control

Fréh a humidity standpoint, a slightly undersized unit is preferable
_to-an oversized unit. The undersized unit will keep.the evaporator cold
longer; this is necessary for good latent heat removal. An oversized unit
cycles even during the hottest weatﬁer and will reevaporate moisture into

|the air while the compressor is off.
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1.3.3 Efficiency

Room air conditioners. The Association of Home Appliance Manu-

- facturers (AHAM) sponsors a certification program for room air conditiomers,

and almost all manufacturers and marketers of such units participate. The
energy efficiency ratio (EER), which is defined as the unit's cooling ca-
pacity (Btu/h) divided by its power requirements (watts), for each room

air conditioner listed is provided in the Directory of Certified Room Air

Conditioners." The test conditions used to measure EER are:
room air temperature 80°F db, 67°F wb; and
outside air temperature 90°F db, 75°F wb.

These test conditions are in compliance with American National

Standard 2234.1 (AHAM Standard RAC-1).

The spread of EERs (efficiencies) found in the April 1976 Association
of Home Appliance Marufacturers' Directnry of Room Air Conditioners, rauges
from 4.8 to 11.6 Btu/Wh. The high-efficiency unit would consume only 41%
[as much power as the low-efficiency unit to accomplish the same amount of
cooling. Although there are numerous exceptions, most units have efficien-
cies between 6 and 8 Btu/ih.

Tt has been shown >

that there is no strong trend toward either higher
or lower efficiency with increasing capacity and, except for two grouplugs
of units, there is no marked difference in efficiencies for 115-volt vs
230—olt units. The two exceptions are units designed with 115 volts, 7.5
amps and 115 volts, 12 amps. The groupings result from manufacturers'
efforts to produce units having large cooling capacity ratings that can be
used with existing or easily added electrical circuits and still comply

with the requirements of the National Electric Code (NEC).®

The smallest branch circuit rating permitted by NEC is 15 amps. The
NEC requires that the amp rating of an air conditioner shall not exceed 50%
of the circuit rating if lighting units or other appliances are also supplied
by the circuit, and that the amp rating of an air conditioner shall not ex-

ceed 80% of the circuit rating if the circuit supplies nothing else.®
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Unitary air conditioners. The efficiencies of most unitary air con-

lditioners are listed in the Air Conditioning and Refrigeration Institute

(ARI) Directory of Certified Unitary Air Conditioners.7 All test conditions
are in compliance with ARI Standard 210-75; room air temperature of 80°F db,

_|67°F wb, and outside air temperature of 95°F db and 75°F wb. The standard

rating conditions for unitary air conditioners are the same as the AHAM
tests for air conditioners.

The spread of EER ratings found in the June 30, 1977 ARI’'s Directory
for Air-Cooled Units ranges from 4.9 to 10.3, and for the water-cooled units
from 8.0 - 11.0.- Figure 1.2 shows the spread of efficiencies of unitary
air conditioners taken from the ART D'l:rectory.8 Visual inspection of Fig.,
1.2 indicates the average EER of unitary air conditioning equipment is
around 7 Btu/Wh. For some purposes, a more appropriate average might

be one that is weighted by sales of each unit, but sales data were ﬁot
available at the time of this report.
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Fig. 1.2 Relative Efficiencies of Unitary Air Conditioners®
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1.3.4 Location

In general, the unitary air conditioner is positioned where space
is available and where adverse aesthetic and noise impacts will be minimized.
If possible, the air conditioner should be located in a shaded area so as to
improve the actual EER.
1.4 DIMENSIONS AND WEIGHT

Tables 1.1 and 1.2 show the dimensions and shipping weights, respec-
tively, for various room and unitary air conditioners. The room air-con-
ditioning units shown are all single-package and air-cooled; whereas, the
unitary air conditioners shown are for both single-package and split systems.
The split systems usually consist of: (1) the compressor and condenser con-
tained in the outside component, placed on the roof or concrete slab adjacent
to the building; and (2) the evaporator and indoor fan, contained in the in-
side component.

Table 1.1 Room Air-Conditioner Dimensions
and Shipping Weights

‘ Shipping
Nominal capacity Depth x width x height weight
(Btu/h) (£t) (1b)
4,000 1.6 x 1.6 x 1.1 75
6,000 1.7 x 1.7 x 1.1 87
12,000 2.0x 2,0 x 1.3 147
18,000 2.3x 2.2x 1.6 220
24,000 2.3 x 2.2x 1.6 220
30,000 3.0 x 2.3 x 1.7 287
36,000 3.1 x 2.3 x 1.7 330

1.5 ELECTRICAL REQUIREMENTS
1.5.1 Room Air Conditioners

Room air conditioners usually come equipped with 1line cords that may
be plugged into standard or special electric circuits. Most units are de-
signed to operate at 115, 208, 230, or 230/208 volts, single-phase, 60-cycle
power. The maximum rating of a ll5-volt unit generally is limited to either
7.5 or 12 ampere. Therefore, room air conditioners larger than 12,000 --
14,000 Btu/h are designed as 208, 230, or 230/208-volt units with proper line
cord and plug cap to plug into a 230-or 208-volt circuit.
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Table 1.2 Unitary Air-Conditioner Dimensions
and Shipping Weights

Shipping
Nominal capacity Length % Width x Height Air(a) . Weight
(Btu/h) (ft) Flow (1b)
Single Package - air cooled
24,000 3.3 x3.3x 2.0 H 375
36,000 3.8 x 3.2 x 1.8 H 430
48,000 3.9 x 3.8 x 2.7 H 515
60,000 3.9 x 3.8 x 2.7 H 540
84,000 4.5 x 3.8 x 2.7 H 850
2.5x 4.4 x 5.9 \ 850
120,000 2.7 x 4.4 x 5.9 \ 1,000
Single Package - water cooled
141,000 1.8 x 3.1 x 6.9 v 510
60,000 4.0 x 3.8 x 2.7 H 670
96,000 4.0x 4.9 x 7.4 v 800
132,000 2.0x 4.9x 7.5 v 1,010
Split System - air cooled
36,000
Indoor unit 4,0 x 3.5 x 5.0 A 100
Outdoor unit 2.5 x 2.2 x 2.3 210
60,000
Indoor unit 4.0 x 4.0 x 5.0 v 200
Qutdoor unit 2,5x 2.2 x 2.9 260

(a)

H = horizontal; V = vertical

1.5.2 Unitary Air Conditioners

Unitary air conditioners usually are designed for 208, 230, or
230/208 volts; single- or three-phase; 60-cycle power. Generally, units
under 50,000 Btu/h of cooling capacity are wired for single phase. Unitary
air conditioners with capacities exceeding about 65,000 Btu/h usually are

wired for three-phase current,
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2 MATERIAL AND ENERGY BALANCE

With any given installations, the type of data required to determine
seasonal performance varies significantly with the method of analysis. The
simplest approach to estimate total power consumption would be to use an
estimated seasonal EER for a ''typical' application in the climate of in-
terest along with seasonal cooling requireﬁents. The seasonal EER is defined
as the average efficlency of an installed unit operating over one complete
cooling season. The electrical input includes power delivered to fans, con-

trols, and the compressor.

Computer simulations could be used to obtain hourly performance based
on heat gain within the conditioned space (the cooling load) and aif con-
ditioner capacity and EER based on actual indoor and outdoor temperatures.

A more detailed computer simulation might distinguish between seﬁsible
and latent heat removal. With some installations, fan and compressor
power may need to be determined separately. This section provides the
detailed and seasonal performance data needed to meet the requirements of

various methods of analyses.

2.1 FULL-LOAD PERFORMANCE AT NOMINAL CONDITIONS

‘There appears to be no strong trend toward either higher or lower
efficiency with increasing capacity or when comparing room air conditioners
with unitary air conditioners. An average EER presently available for
both room and unitary air conditioners is about 7.0 Btu/Wh.’ ‘The FEA (now
part of DOE) by law, was required to prescribe energy efficiency improvement

targets for various appliance categories. The average energy efficiency

targets to be achieved by 1980 for unitary and reom air-conditioners are:1°

FEA Avg.
EER Target
for 1980
1. Unitary central air conditioner
a) Single package 7.44
b) Split systems 8.64
2. Room air conditioners . 8.46
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It is likely that there will be an improvement in the efficiency of the
{packaged air conditioner by 1980 resulting in én average EER of between

8.0 and 10.5. The more efficient units usually may have a higher initial
capital cost; this incremental cost is discussed in Sect. 5, Cost Consider-

ations.

The nominal test conditions used to assign EERs to all air-condition-
ing units consist of: ' ' '
— 80°F db; 67°F wb indoor air;

— 95°F db; 75°F wb outside air for air-cooled units, and
75°F entering, 95°F exiting water for water-cooled units;

— Air flow across both evaporator and condenser not to exceed
37.5 cfm/1000 Btu/h; -

-— minimum external resistances.

Table 2.1 shows minimum external resistances at various standard

cooling ratings.

Table 2.1 Minimum External Resistances at Various
Standard Cooling Ratings

Standard Cooling Rating Minimum External Resistance

(Btu/h) ' (in. of water)
Up through 28,000 o 0.10
29,000 through 42,000 . 0.15
43,000 through 70,000 . 0.20
71,000 through 105,000 0.25
106,000 through 134,000 ' 0.30

At nominal test conditions, the fan motor requires about 107 of the
total power requirement for an average unitary and room air-conditioner

unit.

. Sensible heat removal capacity at nominal conditions for most air
.conditioning appears to be about 70 -- 757 of the total rated cooling
capacity; this ratio holds relatively fixed for varying outdoor air dry-

bulb temperatures.
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The performance of the water-cooled unitary air conditioners will
vary with the temperature of the condenser water. The relationship be-
tween off-nominal conditions and the unit EER ¢an be found in the ICES

technology evaluation of Compressive Chillers.l?

2.2 PERFORMANCE AT VARIOUS AMBIENT DRY~-BULB TEMPERATURES

Figure 2.1 shows the EER variation with outdoor temperatures for

air-conditioning units with continuous and automatic fan operation.!?

140 NOMINAL EER (Breswn)

(% OF NOMINAL)

€ER
4

E0) 73 80 85 “90 95 100

OUTDOOR TEMPERATURE (°F db)

Fig. 2.1 Percent of the Nameplate EER (Btu/Wh) Vs Outdoor Temperature
for Continuous and Automatic Fan Operation*

*Indoor Temperature = 78°F DB; 67°F WB

The lower set of curves represents typical air conditioners with a contin-
uously operating fan. As the temperature drops, the cooling load inside

the conditioned space decreases, and the compressor operates less frequently;
yet the fan continues to operate and draws the same amount of power as when

the compressor is running the full hour.

The top range of curves in Fig. 2.1 shows the EER of air-conditioning
units with automatic fans that shut off when the thermostat trips off the

compressor. The overall efficiency of units with automatic fans increases
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Jas the outside.temperature decreases. The spread shown in this figure
"lindicates that units with higher EERs are more adversely affected by the
fan power requirements during the compressor off cycle than are the lower

2

efficiency models.!? Nameplate EER values corresponding to each edge of

the curve bands are noted in Fig. 2.1.

Table 2.2 shows a set of coefficients of the generalized Eq. 2.1
which may be used to estimate the percent of nominal EER (Y) at various
ambient dry-bulb temperatures (X, °F) for six representative air condi-

tioners.

Y = A + BX + cx? + px® + Ex* (Eq. 2.1)

Table 2.2 Generalized Equation Coefficients - Percent of Nominal
EER (Y) Vs Outdoor DB Air Temperature (X, °F)*

Nameplate Fan Coefficients

EER Operation A B C D E
Automatic 2,036.1 -63.90 0.71143 -0.0026666 0.0

3.93 Continuous <38,513.8 1,740.53 -29.43770 0.2213540 -0.00062424
Automatic 1,352,1 ~39.45 0.42430 -0.0015555 0.0

7.0 Continuous -31,317.4 1,408.9 -23.754 0.17836 -0.000503
Automatic 804.3 -19.764 0.19333 -0.0006666 0.0

?.49 Continuous -25,936.5 1,156.3 -19.350 0.1445 -0.000406

%70 < X < 100

The units listed have nameplate EERs of 5.93, 7.0, and 9.49 and have
ewo cbntrol schemes for operating the indoor blower: continuous 6peration

and automatic shutoff.
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Figure 2.2 shows that at lower outdoor dry-bulb temperatures, the

capacity of the air conditioner increases. This increased capacity, along

;tJ % OF NOMINAL CAPACITY:= 97.05+0.6302(°F)-0.0063(°F) 2
= 120 B :

3

= Ho

S 100 b

(-d

S 9}

> s}

T

=X ] ] 1 1 J
g 70 80 90 100 110 120

OUTDOOR TEMPERATURE (°F db)

Fig. 2.2 Effect of Outdoor Temperature (°F DB) on Cooling
Capacity of Various Room and Unitary Air Conditioners*

*Based on Fedders CTF 524-973 and Westinghouse UB-B2 performance data.

with a reduction in the cooling load with a lower outdoor DB temperature,
means that the machine will cycle on and off more frequently. As the cool-
ing load is decteased from 100%, the alr couditlioner will cycle more fre-
quently, until the 507 load point; then the cycling on and off will decrease
as the load falls below 50%. The effect of cycling (heat pump) compressors
on and off has been investigated by Parken, Beausoliel, and Kelly at the
National Bureau of Standards.}® Their data suggest that with a cooling load
of 15%, the EER is approximately 70% of the steady-state value at the same
indoor and outdoor conditions. These results were obtained by experimenting
with a heat pump operating in the ;ooling mode. However, it is believed
that the results are applicable to reciprocating-type air conditioners as

well. The performance curves shown In this sectlon are based on several

manufacturers' data.
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2.3 PERFORMANCE AT VARIOUS INDOOR CONDITIONS
2.3.1 Wet-Bulb Variations

The performance curves shown in Figs. 2.1 and 2.2 are based on 67°F

indoor wet-bulb temperature.lu

Table 2.3 provides correction factors for
estimating the air conditioner total cooling capacity, sensible heat ca-

pacity, and EER at three different indoor wet-bulb temperatures.

Table 2.3 Correction Factors for Various Wet-Bulb Temperatures

Entering Correction Factors

Indoor Air Total ' Sensible

Wet -Bulb Cooling Total Cooling

Temp. (°F) Capacity Capacity EER
63 0.93 1.18 0.96
67 1.0 . 1.0 1.0
71 1.06 0.75 1.02

2.3.2 Dry-Bulb Variations

Figure 2.3 shows that the alr conditioner sensible cooling capacity
increases as the indoor dry-bulb temperature setting increases. The shaded
area represents the variation found over six representative air-condition-

ing units. %15
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Fig. 2.3 Effect of Indoor Dry-Bulb Temperature on Sensible
Cooling Capacity of Air-Conditioning Unit
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2.4 FAN POWER

2.4.1 External Static Pressure

The nominal external static pressure, resulting from impelling air
through an air duct and used to rate performance of the unitary air-con-
ditioning unit, varies according to the unit cooling capacity as shown in
Sect. 2.1. However, some installations may require a larger or smaller

external static pressure on the evaporator fan.

Figure 2.4 shows a typical relationship between fan power and

exlernal static pressuress1°®

150 . OF NOMINAL % OF NOMINAL EXTERNAL
%m powgn 3600 [ STATIC PRESSURE

130 |
120 |

ne L

FAN POWER (% OF MOMINAL)

EXTERNAL STATIC PRESSURE (% OF NOMINAL)

Fig. 2.4 Effect of External Static Pressure on Various
Representative Evaporative Fans Installed in
Unitary Air Conditioners

Assuming that the cooling capacity remains relatively constant, the
EER can be adjusted for various external static pressures on the evaporator
fan by assuming the fan power to be 10% of the total air-conditioner power
requirement. The shaded area shown in Fig. 2.4 indicates the range found
by examining a variety of‘representative air conditioner manufacturers'

performance data.
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2.4.,2 Variable Speed Fan Motors

Figure 2.5 shows a repreéentative relationship between fan speed and
both fan power requirements and air flow.l5 The curve is based on one manu-

facturer's fan performance data.

- »
-3 ft - - 2 =
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FAN SPEED (X, % OF NOMINAL)

Fig. 2.5 Representative Effect of Fan Speed on Fan
. Power and Air Flow in a Unitary Alr Conditioner
Figure 2.6 shows the effect on the air conditioner's EER of lower
air flows past the evaporative coil.l5 At lower air flows, the EER drops.
Thus, even though some fan motor electrical power is saved by operating
the indoor fan at lower speeds, fhe total unitary air conditioner EER is
reduced because the overall cooling capacity is reduced: However, lower

fan speeds provide better humidity control and reduce noise.
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Fig. 2.6 Representative Effect on EER of Unitary Air
Conditioner Indoor Air Flowrate

ICES TECHNOLOGY EVALUATION

15




2.5 SEASONAL EERs

The performance has been simulated for four room air conditioners
with various rated EERs installed in a typical single-family home in ten

cities.}?

Table 2.4 shows the resulting seasonal EERs from the computer
simulation for installations where the conditioned space is naturally ven-
tilated at outdoor temperatures between 75° and 78°F and air conditioned

at 78°F (and above).

Pable 2.4 B8easonal EFR for Several Citlesl?

Unte A (5.45) Unit B (9.22) Unit € (5.93) Unit D _(9.49)

Continuous Automatic Continuous Automatic Continuous Automatic Continuous Automatic
City Fan Fan Fan Fan Fan Fan Fan Fan
Atlanta 5.2 6.0 8.3 10.5 5.8 6.6 8.8 10.9
Chicago 5.0 5.9 7.8 10.2 5.5 6.4 8.3 10.5
nallas 5.1 S.A R.1 0.0 S.h £ 1 8 A m.A
Miami 5.3 6.0 8.5 10.5 5.9 . 6.6 9.0 10.8
Minneapolis 4.9 . 5.8 7.5 10.1 5.4 6.4 8.0 10.4
New Orleans 5.3 6.0 8.5 10.5 5.9 6.6 9.0 10.9
New York 5.2 6.0 8.3 10.4 5.8 6.5 8.8 10.7
Phoenix 4.9 5.7 7.6 9.7 5.4 6.2 8.1 10.0
San Diego 5.1 6.1 8.0 10.6 5.7 6.7 8.6 11.0
Topeka 5.0 5.9 7.8 10.2 5.5 6.5 8.3 10,5
(a)

Nameplate EER is given in parenthesges.

The seasonal EERs of models with continuously operating fans were
found to average 8.5% below the nameplate EER (listed in the AHAM Direc-
tory*), and the seasonal EER of models with automatic fans were on the

average 10.2% above the nameplate value,
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3 OPERATING DATA

3.1 CAPACITY CONTROL

Room and unitary air conditioners generally are operated by an on-
off switch controlled by a built-in adjustable thermostat. Although the
air circulation blower usually runs without interruption, many unitary a{ir
conditioners allow-operation of the blower only when the compressor is '
operating. Some units provide for optional cycling of the blower in a two-

step sequence? when the compressor is off.

Siﬁgle—cbmpressor systems, larger than five tons, may offer capacity
reduction through the use of ¢ylinder-unloading compressors. At full-load
operation, efficiency is unimpaired. However, reduced-capacity operation
generally results in a reduction in efficiency.2 A part-load efficiency
curve for a reéiprocating;type air conditioner is shown in the ICES tech-

nology evaluation of Compressive Chillers.!!

3.2 INSTALLATION IN AN ICES COMMUNITY

| In an ICES community, fixed storm windows are energy consumers dur-
ing the cooling season. They prohibit the use df natural ventilation cool-
ing. Outdoor noise and polluted air are two environmental conditions to
be avoided because these adverse conditions would tend to limit the use of
natural ventilation.

Natural ventilation at outdoor temperatures between 75° and 78°F

12 Far the ten cities

Investigated, air conditioning combined with natural ventilation reduced’
lair-conditioning requirements by 12% in Phoenix to 73% in San Diego.!?

Some units have openQair cycling, which is a device that compares

the outside wet-bulb temperature to the inside wet-bulb temperature and then
activates a vent to permit the use of outside air rather than return air
when the ratio is léss.than 1. This feature is said to be most useful for -
energy conservation in geographical areas that have high humidity and cool

nighttime températures.16
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When the outside air enthalpy 1s lower than the return air, it
becomes advantageous to vent the return air and use outside air for the
cooler intake. A control device is required to compare outside with
return éir wb temperatures. When the outside wb falls below the return
air wb, a vent is actuated to permit the use of outside air rather than

the return air.

3.3 MULTIPLE UNIT INSTALLATIONS

Multiple unitary air-conditioner installations can be operated with
a central control panel, This panel can include controls for: (1) starting
and stopping unit fans, (2) fresh air damper adjustment, (3) ﬁanual summer-
winter switches, (4) fan-speed control switches, (5) remote adjustment of

thermostat set points, and (6) remote space temperature readings.

3.4 SAFETY

Following is a list of relevant national safety codes and standards

which apply both to room and to unitary air-conditioning equipment:

American National Standards Institute
ANSI B 9.1 — Safety Code for Mechanical Refrigeration.
ANSI B315 — Code for-Pressure Piping (Refrigeration Piping).
ANST Cl = Nuliovnul Eleclrical Code (NEFA 75).

ANSI C 84.1 — Voltage Ratzngs for Electric Power Systems and
Equipment (60 Hz).
National Fire Protection Association

NEPA #90A — Installation of Air Conditioning and Ventilating
Systems (1975).

Undexwriters Laboratories, Inc.

UL 207 — Refrigerant-Containing Components.

UL 303 — Refrigeration and Air Conditioning Condensing and
Compressor Units.

UL 484 — (ANSC 33.14) Standards for Room Air Conditioners.

UL 873 — ANSI B131.1-1972, Temperature Indicating and Regulating
Equipment.
UL 984 — ANSI B143.1-1972, Sealed (Hermetic Type) Motor-Compressors.
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3.5 ENVIRONMENTAL CONSIDERATIONS

Noise is the major environmental concern in the installation and
operation of an air-conditioning unit. Much attention 1is given to the design
of the unitary air conditioners for noise control, and published results

of noise tests on most models are available from manufacturers.’

The applicable noise standards deveIOped for rating individual air
conditioners operating noise levels are listed below:

ASHRAE Standard 36-72, Methods of Testing for Sound Rating
Heating, Refrigerating & Air Conditioning Equipment.

ARI 270-67, Standard for Sound Rating of Outdoor Unitary
Equipment. '

ARI 275-69, Standard for Application of Sound-Ratio Outdoor
Unitary Equipment.

AHAM RAC-2SR, Standards for Sound Rating of Room Air Conditioners.
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4 MAINTENANCE AND RELIABILITY

4.1 MAINTENANCE REQUIREMENTS

The efficiency of an air conditioner deteriorates somewhat with
age and use. This deterioration 1s due largely to the accumulation of
foreign material (dust, lint, leaves, spider webs, etc.) in the finned
evaporator and condenser coils. Such accumulation partially blocks the
flow of air through the coils and also tends to insulate the surfaces

against ready transfer of heat.

Frequent changes or cleaniﬁg of the filter retards the accumula-
tion of dirt in the evaporator and allows free air flow through the filter
itseltf. However, because the filters used in room air conditioners gen-
erally are not too effective, periodic cleaning of the evaporator, as well
as the condenser, is beneficial. Preferahly, the air-conditioner chacsis
should be removed from its cabinet for cleaning. Cleaning may be accom-
plished by the application of a mild detergent solution with a soft, long-
bristle brush, followed by a thorough flushing with clean water. Elec-
trical parts and controls should be protected by covering them with plas-
tic, and the unit should be allowed to dry before use. Fins that have

been bent should be straightened to allow free passage of air.5

4.2 ECONOMIC LIFE

The 1973 ASHRAE Systems Handbook give Internal Revenue Service deter-

mined values for minimum depreciation periods for air conditioning systems

as:1’?
Years
Under 5 tons 10
5-15 tons 5-15%

These minimum depreciation periods are assumed equal to the economic life

of the equipment,
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5 COST CONSIDERATIONS

5.1 ESTIMATED F.0.B. CAPITAL COST

The equipment cost for room and unitary air conditioning equipment
is shown in Fig. 5.1. The lower solid 1ine represents the cost from a
variety of manufacturers' and cost estimating manuals,?®,1%,2° and the
dashed lines reflect the range of values found for the equipment. A few
manufacturers offer a variety of chassis stylings in room air-conditioner
models with the same cooling capacity, but the EER and retail prices vary
significantly; thus the cosf estimating curve shown in Fig. 5.1 should be
used only with caution. Increasing the EER of a room air conditioner
from 6 to 10 Btu/Wh results in increasing the equipment cost from 13 to

29%.° 100
80} DESIRED | 0.83 /-’
TOTAL £ 1290 CAPACITY
6.0 T_ IN?T‘A)LLED- \ Ble/ ™ . . _
a0 22,000 . _

30

20}
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o8l
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F.0.8.- CAPITAL COST (1034)
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CAPACITY

Btu/ N
24,000

L 11 I W L
6 810 20 3040 6080100 200

04 I

COOLING CAPACITY (103 Btu/hr)
Fig. 5.1 Equipment and Total Installation Costs of Air
Conditioners, in 1976 Dollars

5.2 ESTIMATED TOTAL INSTALLATION COST

The total installed cost of unitary air conditioners also is shown
in Fig. 5.1 The top line represents the total installed costffound by

using the procedures and cost estimating values from Ref. 18 and 19.
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The labor rate is assumed to be $13.55/h. The installation cost
of room air conditioners, estimated at about $31/ton,19 is not reflected
in the installation costs shown in Fig. 5.1. The installed cost applies

to those units installed by the dealer, not the portable, customer-installed
air conditioners. .

5.3 MAINTENANCE COST

Figure 5.2 shows the estimated maintenance cost for an installa-
tion having more than one air conditioner. The costs reflect total main-

tenance which includes six inspections per_year.l8
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Fig. 5.2 Annual Maintenance Cost in 1976 Dollars for Unitary
Conditioners Ranging from 4000 to 120,000 Btu/h
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6 STATUS OF DEVELOPMENT AND POTENTIAL FOR IMPROVEMENT

6.1 IMPROVED PART-LOAD EFFICIENCY

Most air conditioner units available today meet part-load require-
ments. by cycling on and off as needed. Efforts to improve the EER of most
classes of equipmént have consisted of adjusting the heat transfer surface
and configuration of the condenser and evaporator in amounts that may
vreduce condensing temperature by 10° to 20°F and raisé evaporator tempera-
ture by some 55°F at design conditions. An alternative approach is to
adjust the capacity of the compression equipment itself to more nearly

match the load, such as by use of variable-speed or dual compressors.

In 1976, a computer simulation was run to compare the seasonal per-
formance of a typical 3-ton air conditioner with that of two 1-1/2-ton
air-conditioner units, satisfying a typical residence cooling require-

ments. 2! The typical residence was located in Harrisburg, Pennsylvania.

I+ was found that the use of dual compressors — arranged so that
one compressor alone carried the load when both were not needed — resulted

in a 77 improvement in the seasonal EER.

6.2 ELECTRIC MOTOR IMPROVEMENT

"It has been standard practice to use the least expensive fan
motor that will fulfill the requirements. Emphasis on ef-
fietency eliminates the shaded pole type of fan motor from
consideration. Permanent split capacitor (PSC) motors normally
‘operate at approximately 50-55% efficiency. Through optimiza-
tion of windings, rotor characteristics, and capacitor micro-
farads, PSC fan motor efficiency can be increased to over 60%."°

6.3 COMPRESSOR EFFICIENCY IMPROVEMENT

Compressor efficiency can be improved by improving valve designs,

reducing bearing friction, and improving volumetric efficiency.22
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6.4 HEAT EXCHANGER EFFICIENCY IMPROVEMENT

From a practical design standpoint, minimum temperature difference
between evaporator and condenser is also the minimum pressure difference
or compression ratio across the compressor. The reduced compression
ratio is the main factor that contributes to a reduction in power. Thus,
to obtain the smallest compression ratio in any given air conditioner,
it is necessary to use tﬁat largest, yet practical, evaporator and con-

denser available.

Compressor efficiency reportedly improves 0.10 Btu/Wh for each
1“F increase in evaporator temperature and 0.13 Btu/Wh for each 1°F de-

crease in condenser temperature.’

Figure 6.1 indicates the approximate response of air conditioner
heat exchanger size and cost when the inside refrigerant-evaporating heat
exchanger is changed, when the outside refrigerent-condensing heat ex-
changer is changed, and when both heat exchangers are changed simultane-
ously. It is obvious from this'graph that the condensing séction repre-
sents the better design trade-off of size and costs for improved effi~

ciency,?3

EQUAL CHANGES OF

EVAPORATOR AND
CONDENSERS

CONDENSER CHANGE ONLY

EER

EVAPORATOR CHANGE ONLY

6

i 7

RELATIVE SIZE.OF HEAT EXCHANGERS
(TO COMMON BASE+BESIGN) -

Fig. 6.1 Effect of Heat-Exchanger Size on Air-Conditioner EER*

*The size increase in relative to a common base design.
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6.5 TOTAL POTENTIAL EER IMPROVEMENT

It has been suggested that as a curren; state-of~the-art limit,
the room air-conditioner industry may be able to produce room air con-
-ditioners with an EER of about 13.5.2* A room air-conditioning unit
with a theoretical EER of 13.5 is based on a marginal ability to satisfy
human comfort needs, because no water would be extracted. >Moreover,
| the heat exchanger technology, cost, weight, and fan'development
assumed is beyond present capability. The best practical machine,
developed to date by‘the industry, has yielded an EER of approximately 12,
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