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ABSTRACT

The calculation of the surface temperature and surface heat flux

from a measured temperature history at an interior point of a body is

identified in the literature as the inverse heat conduction problem.

This paper presents, to the author's knowledge, the first application

of a solution technique for the inverse problem that utilizes a finite

element heat conduction model and Beck's nonlinear estimation procedure.

The technique is applicable to the one-dimensional nonlinear model with

temperature-dependent thermophysical properties. The formulation is

applied first to a numerical example with a known solution. The example

treated is that of a periodic heat flux imposed on the surface of a rod.

The computed surface heat flux is compared with the imposed heat flux

to evaluate the performance of the technique in solving the inverse

problem. Finally, the technique is applied to an experimentally

determined temperature transient taken from an interior point of

an electrically-heated composite rod. The results are compared with

those obtained by applying a finite difference inverse technique to

the same data.



NOMENCLATURE

Symbol

{7}

{?}

h*

NI

{N>

Definition

Radius of cylindrical rod

Matrix, as defined in equation (10)

Heat capacity matrix for assembly of elements

Thermal expansion coefficients in gap width model,
equation (33)

Specific heat

Index of elements

Number of elements in assembly

Vector for assembly of elements, equation (11)
Vector for assembly of elements, equation (12)

Convective heat transfer coefficient

Radiative heat transfer coefficient, equation (5)

Number of time steps in analysis interval; J - 1 equals
number of "future" temperatures

Thermal conductivity matrix for assembly of elements
Thermal conductivity

Distance of temperature probe from surface of body
Number of nodes

Interpolation function

Vector of interpolation functions

Unit outward normal to boundary surface
Internal heat generation rate, per unit volume
Imposed surface heat flux

Surface heat flux due to convection

Surface heat flux due to radiation



Symbol

LI

ch

gap

15

rlé6

TaC

rr0A.

av

av

15

16

TOL1

TQL2

Definition
Radial coordinates, one-dimensional model

Radial coordinates of node point I

Radial coordinate of temperature probe location

Width of sheath gap in heater rod model, equation (33)
Inner radius of sheath gap interface, equation (33)
Outer radius of sheath gap interface, equation (33)

Matrix, as defined in equation (16)
Temperature
Value of temperature at Ith node

Temperature vector

Measured temperature at internal point rl of body
Temperature at which no convection occurs
Temperature at which no radiation occurs

Temperature at wall

Computed temperature at thermocouple probe position r%
averaged over analysis interval, equation (32)

Input temperature at thermocouple probe position FP
averaged over analysis interval, equation (32)

Computed temperature at inner surface of sheath gap
interface in heater rod model, equation (33)

Computed temperature at outer surface of sheath gap
interface in heater rod model, equation (33)

Time
Convergence tolerance, equation (18)

Tolerance for temperature error, equation (31)



Symbol Definition
w Summed weights function, equation (32)

Weighting functions, equation (28)

W
X General spatial coordinates
Greek
Symbols Definition
a Thermal diffusivity
P Density
n General spatial domain
ne Element domain
~ Boundary on which condition (2) is prescribed
A Boundary on which condition (3) 1is prescribed
V e Element external boundary on which condition (3) 1is
2 prescribed
v Gradient operator
a Stefan constant
e Emissivity
n One-dimensional coordinate of parent element
3 Surface heat flux parameter, equation (27)
A Incremental change in kernel
T Dimensionless time
z Summation symbol
Subscripts
I Index of nodes
i Index of time steps in solution, where 1 is a
) non-negative integer
3 Index of time steps in analysis interval, 1 < j < J

(1) At Time t = (i)At at which kernel is evaluated



Superscripts
t T
{ 1T

(P)

Other
Symbols

Transpose of matrix

Row vector

Iteration number at which kernel is

Matrix
Column vector
Euclidean norm

Integral sign

evaluated



INTRODUCTION

In transient heat conduction analysis, a class of problems can be
identified where the temperature history is known at some interior point
in the body and the transient surface temperature and surface heat flux
are to be determined. This class is generally referred to in the literature
as the inverse problem, in contrast with the usual direct formulation where
the interior temperature history is determined from specified boundary
conditions. Typically, the inverse formulation arises in experimental
studies where direct measurement of surface conditions 1is not feasible,
such as convective heat transfer in rocket nozzles and quenching of solids
in a fluid. One application examined in this paper deals with two-phase
flow over the surface of an electrically-heated rod that contains thermo-
couple probes in the interior.

Various solution methods have been applied to the inverse problem
over the past two decades, including integral equation solutions, series
solutions, transform solutions, and function minimization techniques. In
one of the earliest papers, Stolz CO! obtained a linear solution by
numerical inversion of the integral solution of the direct problem. His
solution was found to be unstable for small time steps. Using an integral
approach similar to that of Stolz, Beck (2) utilized a least squares
technique to generate solutions for a much smaller time step. In a
recent paper, Arledge, et al (3) also use an integral solution procedure
which is wvalid for constant thermal properties. Burggraf (4) devised a

series solution to the linear inverse problem which is exact only for*

i lUnderlined numbers in parentheses identify References in the

last section of the paper.



continuous input data. Makhin and Shmukin (5), Kover'yanov (6), Plummer,

et al (7, and Mehta (8) also utilize a series solution. Sparrow, et al (j))
and Imber and Khan (10) apply the transform method to the linear problem.
Imber (11) has developed a transform solution to the inverse problem that

is applicable to two-dimensional bodies of arbitrary shape when input data
are known at suitable interior locations. In all of these papers, linearity
of the model is essential to the formulation.

Several references consider the nonlinear problem of analyzing a
composite body with temperature-dependent thermal properties. Ott and
Hedrick (12) have developed a one-dimensional, implicit finite difference
formulation and have applied it to an electrically-heated composite rod
with temperature-dependent geometry and material properties. Beck has
examined the nonlinear problem using a finite difference method (13) that
builds on the ideas in Reference (jO and, more recently in Reference (14),
has incorporated his function minimization technique into the framework of
nonlinear estimation. Important to Beck's "second" method (14) is the
observation that the temperature response at an interior location is
delayed and damped with respect to changes in surface conditions. Beck,
therefore, determines the surface heat flux in a given time step with a
procedure that utilizes interior temperature data at "future" times. The
surface heat flux is assumed to be a constant or low order polynomial
over an analysis interval that consists of several time steps in the
discretized data. The coefficients that describe the heat flux are
adjusted iteratively to achieve the closest agreement in a least squares
sense with the input "future" temperatures over the analysis interval.
Less flexible versions of Beck's technique were considered earlier by

Frank (15) and Davies (16). Muzzy, et al (17) have adapted Beck's



second method, with some modifications, into an explicit finite difference
scheme for one-dimensional composite bodies with temperature-dependent
material properties.

The finite difference method has been the predominant numerical
technique for solution of the direct problem of heat conduction, and is
applied in the nonlinear inverse formulations of References (12), (13), (14),
and (17). In recent years, the finite element method (18) has become well
established as another numerical technique for heat conduction analysis.

The finite element approach has demonstrated great versatility in modeling
homogeneous or composite bodies with temperature-dependent material
properties and complex geometries and boundary conditions. (See, for
example, References (19), (20), (21).) In addition to these benefits,

the technique shows considerable promise for the solution of coupled heat
conduction and thermal stress problems (22), (23).

In a recent paper, Hore, et al (24) present what 1is evidently the first
application of the finite element method to the inverse problem. They develop
a procedure for determining the surface heat flux at one boundary of a one-
dimensional linear system from a known temperature history at an interior
point. An iterative technique is used to determine incremental changes in
surface heat flux until the error in the computed temperature at the interior
point 1is within a prescribed tolerance. In their analysis, the surface flux
is evaluated using contemporary input temperatures only, i.e., no "future"
temperatures are utilized to determine surface flux as in Beck's second
method.

In Reference (24), the finite element formulation of the inverse

problem is applied to two numerical examples with known solutions. The



first example treated is that of a constant heat flux imposed on the surface,
while the second considers a periodic square wave heat flux. For both cases,
the predicted temperature at the interior node closely followed the input
temperature values. However, the two examples exhibited numerical instabili-
ties for the heat flux calculations, 1n the form of oscillations that
progressively diverged in time from the known heat flux solution. Hore,

et al identify some other difficulties with their inverse solution technique,
including that of using temperature data measured at points far removed from
the surface to solve for the surface heat flux. A potential difficulty with
their technique is that it does not minimize the effect of experimental
errors incurred in the temperature measurements at interior points. When
these data are not smooth, oscillations in the calculated values of the

heat flux can result. Hore, et al speculate that the nonlinear estimation
techniques of Beck, along with the use of "future" temperatures, could
possibly alleviate some of these difficulties.

The inverse solution technique described in the following sections
represents, to the author's knowledge, the first application of Beck's
nonlinear estimation procedure in a computational scheme based on a finite
element model of the direct problem. Discussion of the finite element
formulation and Beck's procedure is followed by application of this inverse
technique to two problems. First, a numerical example with a known solution
is treated to evaluate the performance of the technique in solving the
inverse problem. Finally, the technique is applied to an experimentally
determined temperature transient taken from an interior point of an
electrically-heated composite rod. The finite element computations
are compared with those obtained by applying a finite difference

inverse technique to the same data.
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FINITE ELEMENT FORMULATION OF THE DIRECT PROBLEM
The conduction of heat in the region (i is governed by the quasi-

linear parabolic equation

subject to the boundary conditions

T

TI0 on V1 (2)

and

kVT ¢+ n. + g + g1l + qC = 0 on V2 (3)

The heat flow rates per unit area on convection and radiation boundaries

are written

where h"" is defined by

hA = ea(T2 + T ) (T + T™) (5)

In general, %k, d, and h/l are temperature and spatially dependent, while Q,
g, and h are time and spatially dependent.

Let the region (i be idealized by a system of finite elements and let
the unknown temperature T be approximated throughout the solution domain at

any time t by

Here the N'. are the interpolation functions defined piecewise element by

element and the T*. or {T} are the nodal temperatures. The governing
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equations of the discretized system can be derived by minimizing a functional
or by using Galerkin's method (18). In the Galerkin formulation employed
here, the problem is recast in a weighted integral form using the inter-

polating functions N". as the weighting functions:

{n} [V« (kV({N}T {T})) + Q - pc -"7- ({N}T {T})] dfi
dt
(£ fi{N}[kV({N}T {T}) —n + g (7)
J\2

+ h({N}T (T} - TaC) + "~ ({N}1 (T} - T"~)] dv = 0

Only a single finite element is considered in the integral (7), as the
governing equations of the complete system of elements are obtained by
assembling the individual finite element matrices. The surface integral
over V-6 refers only to those elements with external boundaries on which
condition (3) is given.

Green's first identity is applied to the first wvolume integral of
equation (7) so that the second derivatives do not impose unnecessary
continuity conditions between elements. When use 1is made of the boundary
conditions (2) and (3), the integral formulation (7) leads to a set of
transient ordinary differential equations for the assemblage of finite

elements:

The components in equation (8) are defined by:

(cy = 1 pc{N} (N} dtl (9)
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E
k] = [ K[B] [B] dfl
e=1
+ R \5 (h + h*) (N} {(N}T dv , [B] = V{N} / (10)
e=1
F o= - I {N} QdSl
e=1
E
1 £fv e*N> (g - h T’aG}S av » (ID
e=1l f{2e
E
= - T {N} Y’)' av (12)
e=1 Vv ©

where the summations are taken over the individual finite element contributions.
These integrals are evaluated numerically using Gauss-Legendre quadrature in
the applications to be presented later.

The system of nonlinear equations (8) through (12) which defines the
discretized problem can be solved using many different types of integration
schemes. The implicit one-step Euler backward difference method is employed

in this analysis. The time derivative of the temperature is approximated by

{T" (i+1)At ~ W (i)At

9{T}
(13)
o9t At
where is assumed known at time (i)At. In the nonlinear analysis,

is calculated using a computational scheme that iterates on the
out-of-balance heat flow rate for a given time step. At time (i+l)At, the

initial approximation of the node point temperatures is calculated by
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(0] . .
i ~ At C At T At
me [Cl(3)At + (DAt) (T} (i+1)At [C] (1) {T} (1)
- {Flraenat T {Pla)at (14)

As demonstrated in Reference (25), the (P)*'" correction {Al}"™" to the
temperature vector (T} is given by

[s] (P-1) {AT} (P) = (P-D (T} (P-D

(i+l)At (i+1)At (i+1)At
- -—— rci(p 1) {T}

At | J(i+l)Aat 1 J(i)At

+ {?} + {F} (p-D 1 (15)
(i+1)At (i+l)AtJd
where
ts] ((ip:lD)At ((iP+_1D)At K] ((f+_1D)At (16)
(P-D

is evaluated using temperatures {1} .
(i+l)Aat

In each iteration, a new temperature vector is computed according

to
P-D + AT =
(ry P) r) ¢ (AT (17)
(i+1l)At (i+1)At
+ The iteration continues until convergence is obtained according to the
criterion
AT P

(i+1)at

where TOL1l represents an adjustable tolerance.

The procedure represented by equations (14) through (18) 1is repeated

in each time step of the calculation.
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In this application of the finite element method to the inverse
problem, the analysis is limited to a one-dimensional model expressed in
cylindrical coordinates. The temperatures are assumed to be spatially
dependent only upon the radial coordinate r, and an isoparametric (18)

discretization is employed,

Nxr (19)

so that r is interpolated using the same functions N'. as those used for
T in equation (6). Both linear and quadratic interpolation functions are
used in the application to be presented later. These functions are defined

for the element natural coordinate system depicted in Figure 1 as follows:

Linear:
Ni=-|(n - i) N2 = |(n + 1) (20)
Quadratic:
Nl = ¥ (n2 ™ r,) y N2 = +
N3 = 1 - n2 (21)

For the quadratic element, the center node (Figure 1) can be reduced out

on the element level using static condensation procedures (26)+¢
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FORMULATION OF THE INVERSE PROBLEM
For the purposes of this study, the one-dimensional problem of a

cylindrical body with flux boundary conditions at the surface is considered

as depicted in Figure 2. The conditions
(23)
T(rP,t) = TP (t) at r = rP < a (23)
are prescribed, while the surface heat flux
- k 55— = qg(a, t) at r = a (24)
is unknown.
For convenience, a solid cylinder is assumed, but a hollow cylinder
with any known boundary condition at the inner surface could be used. The

material properties k and ¢ are known functions of temperature T and spatial

variable r. The problem is to determine g(a,t) and the spatial temperature

distribution T(r,t), O r Jl a> wen the temperature history T(r®,t) = T"(t)

is known at an interior point r”* < a.

The method developed by Beck (14), with certain modifications suggested
by Muzzy, et al (17), 1is used in the solution of the nonlinear inverse problem
presented here. Beck's technique focuses on the observation that the tempera-
ture response at an interior location is delayed and damped with respect to
changes at the surface of the body, as verified by Burggraf's exact linear
solution (4). To effectively deal with this observation, Beck determines
the surface heat flux g(a,t) at time t using interior temperatures T"
measured at times greater than t. A common difficulty with other numerical

inverse procedures (Reference (1), for example) is the occurrence of violent
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oscillations or instabilities in the calculated heat flux when the time
steps are reduced to sufficiently small values. Beck’s approach permits
the use of small time steps for improved accuracy in the heat flux
calculations without encountering these instabilities. His method
also tends to reduce oscillations in the computed surface flux due
to experimental errors incurred in measurement of the interior
temperatures T".

In the application of Beck's method, the surface heat flux is
represented by a vector of elements (g~g”™,... Jjg") such that in a given

time step At, g(a,t) 1is represented by

qg(a,t) = q . (i-1)At < t < (i)Aat , i > 1 (25)
(1) At
For a given i > 1, it 1is assumed that .... "(1)At are “nownf
determine an analysis interval consisting of J 1 time steps is
selected, as depicted in Figure 3. In the next step of the calculation,

g 1s estimated over the analysis interval (i)At < t < (i+J)At using
relations that take the trend of g into account. For the first time

step in the analysis interval.

g (i+l)At g(i)At + (g(i)At ~ g(i-1)At) (26)

and for the "future" time steps

g(i+j)At g(i+j-1)At

+ N (g(i+3-1)At " g(i+j-2)At) 2 (27)

2In his paper, Beck examines both constant and linearly varying

heat flux estimates over the analysis interval.
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for 2 < j < J, where 0 < (} < 1 is an adjustable parameter.} Then the
boundary value problem (equations (1) through (5)), cast in the discretized
finite element formulation (equations (8) through (12)), is solved over the
analysis interval (i)At < t (i+J)At, wusing conditions (26) and (27).

A to achieve the

The obgective of the method is to select g,.,,N
(i+1)yAt

closest agreement in a least squares sense between the computed and input
temperatures at over the analysis interval. This is accomplished by

minimizing the weighted sum of squares function

fl@ = t w.(T,., - TP, )2 (28)
j i+J)At i+j)At) !
3=1 (1+3) (1+3)At)
with respect to the parameter 3 At In equation (28), the weights are
. 2 P . .
defined by w* = j and ~(i+j)At are tae comPute” an<"® input tempera-
tures at the interior point r”. The minimization is done using an iterative

procedure that involves direct sampling of the function (28) and adjustment

of g/,.nv** in each iteration.!
n(i+l)At
The solution value of is taken as the accepted value of
g(a,t) over the single time step At only. The analysis intei'val is shifted
by one time step and the process is repeated. For the special case J = 1,

no future temperatures are used and least squares minimization is not

required.
For convective boundary conditions, a heat transfer coefficient can

be computed in each time step from the expression

h(i)At (29)

3qQ is determined from conditions at the initial time.

4In his formulation. Beck uses an analytical scheme to minimize the

summed square function f.
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As an alternate formulation, the iteration scheme outlined above can be
performed on the heat transfer coefficient Ihh™ "t and the surface heat

flux then computed from

h rTw ac .
g(i)At — n(i)Atwu (i)At "  (i)At; (30)

The latter scheme is employed by Muzzy, et al (17) in a finite difference
application of Beck's method.

Some of the modifications to Beck's method suggested in Reference (17
have been implemented in the procedure presented here. First of all, a
weighted least squares criterion is used in the function (28). The weights
reflect that the temperature difference at time (i+j)At has more influence
on g°~+7)"t for increasing j over the analysis interval consisting of an
appropriate number of time steps. Beck's formulation is obtained by
defining w* = 1 for all j.

Secondly, before minimization of the summed square function (28)
proceeds for a given analysis interval, is adjusted iteratively

to satisfy the requirement
T - T < TOL2 (31)

for some prescribed TOL2 > 0, where T~ is given by

1 J J
T T Wy T (i+3)At w= 1 w. (32)
av w J
3=1
and T"v is similarly defined. The resultant estimate for g™+3j~t ttien
refined in the minimization procedure for the function (28). This ensures

that the input and computed temperatures at r agree closely in an averaged

sense before minimization of the summed square function (28) is carried
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out. Otherwise, it may be possible for the algorithm to calculate
from a relative minimum rather than from the true minimum of the function
(28) on the analysis interval. This problem is discussed in more detail
in Reference (17).

A crucial factor in Beck's formulation is the relationship between
the magnitude of the time step At and the required number of time steps J
in the analysis interval, given a temperature probe located a distance L
from the heated surface. Beck (14) explores this relationship by studying
sensitivity coefficients that define the temperature change at an interior
point due to a unit step in surface heat flux. He examines a one-dimensional
model with the temperature probe fixed at distance e 1 from the surface.
Using the criteria derived from the sensitivity coefficients for this model,
Beck recommends values of J that are appropriate for given values of the
dimensionless time step Ax = . The value of J is increased as the

a
magnitude of Ax is reduced, roughly preserving the length J + Ax of the

analysis interval. Muzzy, et al (17) also study this relationship in
applying Beck's formulation. Some additional results are presented in
the numerical applications in this report. For a detailed discussion

of this topic, the reader is referred to Beck's paper.
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NUMERICAL APPLICATIONS

The inverse formulation developed in the preceding sections is applied
here to a composite rod containing an electric heating element and thermo-
couple sensors. This heater rod represents one member of a 49-rod array
that is designed for test purposes to simulate a nuclear fuel bundle. The
heater rod bundle is positioned in a thermal-hydraulics test loop that is
used to study hypothetical loss-of-coolant accidents in pressurized-water
nuclear reactors (27) .5

A heater rod cross section6 and the corresponding one-dimensional
finite element discretization used in the inverse analysis are depicted in
Figures 4 and 5. The electric heater rods are from 548.64 to 640.08 cm
(18 to 21 ft) in length, 1.077cm (0.424 in.) in diameter, and have dual-

sheath design. The outer sheath is 0.025 cm thick (0.010 in.) stainless

steel; the inner sheath is 0.076 cm thick (0.030 in.) stainless steel and
is grooved to accept the 0.051cm (0.020 in.) chromel vs. alumel thermo-
couples. The next inner layer is boron nitride (BN), which electrically
insulates the heating element from the stainless steel sheaths. In the

section of the rod from which the cross section of Figure 4 is extracted,
the heater element consists of an Inconel 600 tube.n The core of the
heater element is filled with magnesium oxide (MgO), which is both a
filler and insulator between the heating element and the central rod

thermocouple sheaths.* 7

sThis test facility is operated by the Oak Ridge National Laboratory
(ORNL) Pressurized-Water Reactor Blowdown Heat Transfer Separate-Effects
Program, which is part of the overall light-water reactor safety research
program of the Nuclear Regulatory Commission.

, 6The heater rod cross section selected for the test models is that
one identified in Reference (12) for LEVEL G (ZONE 1I).

7As described in Reference (12), the heater element configuration and
heater output vary over the length of the rod.
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The transient response of the heater rod is modeled as a coupled heat
conduction and mechanical deformation problem due to the presence of a small
air gap between the stainless steel sheaths that varies in width with tempera-
ture. The fabrication process that reduces the heater rod to its final
diameter often creates an imperfect fit between the inner and outer sheaths
at the thermocouple locations and produces a gap between the thermocouple
junction and the outer sheath. The thermocouple is welded to the inner
sheath, causing the gap between the junction and outer sheath to grow with
increasing fluid temperature and to close with increasing heater power.
Correspondingly, the change in the gap width alters the temperature
profile in the cross section.

A one-dimensional model developed in Reference (12) is used to model

the mechanical response of the gap:

Ar = Ar + rl6(EXP[cli?]1cl6— Tl

)
gap gapl

160

P P

2 2 2 3 3 3
+ "I°<T16—T160) +"I*(T16—T160)] - 1

- rl15(EXPtC1 (T15 - T15%) + 2 (T15 - T15%)

)] - 1) (33)

T,c are the bias gap and

In equation (33), the antities Ar T,
quation (33) quantitl gap0' 160" 180

bias nodal temperatures determined in an initial steady-state configuration.
The expansion coefficients C”(i=1,3) are determined in situ as part of a
rod calibration procedure (28) for each test. In calculating the thermo-

mechanical response of the heater rod model, the gap width Ar and the
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appropriate geometric variables of the finite element model (equations (8)
through (12)) are adjusted in each iteration of the solution process described
in equations (14) through (18).

The thermophysical properties of thermal conductivity k and specific
heat ¢ are dependent upon temperature and the spatial coordinate. Except
for the thermal conductivities of MgO and BN, these properties are determined
for each material as a function of temperature from an optimum polynomial fit
to available data, as given in Reference (12). The thermal conductivities
for the MgO and BN depend on packing density and must be determined in situ
as part of the rod calibration procedure (28) prior to each test.

The first numerical examplel was selected to evaluate the performance
of the technique in solving the inverse problem for the finite element model
of Figure 5. The periodic surface heat flux depicted in Figure 6 was used
as boundary condition input for a direct solution. This boundary condition
is included because the ramp in heat flux is typical of surface transients
in the test loop and because the finite element formulation used by Hore,
et al (24) demonstrated divergence in the surface heat flux for a similar
periodic problem. The temperature transient of Figure 6 was calculated at
the thermocouple node 14 of the discrete model using a heat generation rate
fixed at Q@ = 9.19 x 10 watts/cm . With the temperature transient of
Figure 6 serving as input, the corresponding inverse analysis was performed
in an attempt to recreate the periodic surface heat flux boundary condition.

Computed results were obtained using no future temperatures, one, and two

8The finite element inverse calculations described in this section were
performed using TOL1=.001, equation (18); TOL2=1.0, equation (31); 8=0.5
equation (27); At=0.05 seconds, which is equal to the data acquisition
interval for the thermocouple sensors in the heater rod. For each analysis,
the iterative procedure for minimizing the summed square function (equation (28))

was terminated when the uncertainty in the value of ¢1~+2)At was "ess
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future temperatures (corresponding to J = 1, 2, and 3) in the inverse
solution. In Figures 7 through 9, the surface heat flux calculated for
each J value is compared with the input boundary condition of the direct
problem. The calculated and input thermocouple temperatures at node 14

are also compared for each case in these figures; however, the error in
temperatures (TOL2 = 1.0) is not discernible on the scale of these plots.
All three inverse solutions follow the input surface flux of the direct
problem. The solutions using future temperatures reduce oscillations in
the computed surface heat flux, but tend to "round off" rapid changes as J
is increased. For the finite element model of Figure 5 and a selected time
step of At = .05 seconds, the use of one future temperature appears optimal
for reducing oscillations.

In the second numerical example, the inverse formulation is applied
to an actual thermocouple transient taken from a representative test of the
ORNL thermal-hydraulics facility.9 The heater power input to the rod during
this transient is depicted in Figure 10. Figures 11 through 13 depict the
results of the finite element inverse analysis for the first 10 seconds of
the test, the significant period of the transient. Included are plots of
surface heat flux and surface temperatures for solutions using no future
temperatures, one, and two future temperatures. Figure 10 also compares
the thermocouple temperatures computed in the inverse solution for J = 2
with the data thermocouple temperatures; as in the first test case, the

error in temperatures is not discernible on the scale of these plots.

Results from the first test problem (Figures 6 through 9) suggest that

, 9The thermocouple transient used in this analysis was recorded at
thermocouple TE-325BG of rod bundle 1 in blowdown test 105 (29). The
position of this thermocouple in bundle 1 and a complete description
of the rod geometry are given in Reference (12).
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the use of one future temperature in the inverse analysis is adequate to
remove some of the "roughness" from the computed results without severe
rounding of rapid changes in surface heat flux.

The measured thermocouple transient (Figure 10) examined in this
study was also analyzed in Reference (29) using a one-dimensional finite
difference inverse formulation developed by Ott and Hedrick (12). Results
of this analysis, depicted in Figures 11 through 13, indicate good agreement
between the finite element and the finite difference inverse techniques for
the rod configuration of Figure 4. Agreement between the two techniques is
equally good for other thermocouple transients that were analyzed and
presented in Reference (25).

The inverse formulation described here has been used in Reference (30)
to analyze the quenching of 304 stainless steel thick cylinders in liquid
nitrogen. Analyses were performed for values of time up to 600 seconds on
numerical test cases with known solutions and on experimental data collected
at interior thermocouple sensors. None of the inverse analyses performed
thus far on the quenched cylinders or on the electrically-heated rods have
demonstrated any instability in the surface heat flux calculations. This
contrasts sharply with the finite element formulation of Reference (24) in
which the accuracy of the heat flux predictions progressively deteriorated

with time for both example problems presented.
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SUMMARY AND CONCLUDING REMARKS

In this paper, a formulation of the nonlinear inverse heat conduc-
tion problem has been presented that is applicable to composite bodies with
temperature-dependent thermophysical properties. This formulation is based

on a finite element model of the direct problem and on Beck's nonlinear esti-

mation procedure. Applications of the inverse technique to an electrically-
heated composite rod were examined in this study. In the first example, a
periodic heat flux was imposed on the surface of the rod. The inverse

calculations followed the input surface heat flux of the direct problem,
with the use of one "future" temperature optimal for reducing oscillations
without severe "rounding" of rapid changes in the computed flux. Finally,
the technique was applied to an actual thermocouple transient recorded at
an interior thermocouple sensor in the rod. For this transient, the results
from the finite element inverse analysis were found to be in good agreement
with those obtained from a finite difference inverse technique. None of
the analyses performed thus far using the inverse technique developed here
have demonstrated numerical instabilities in the heat flux calculations
such as those encountered in the finite element formulation of

Reference (24).

The results presented here clearly demonstrate that the inverse
formulation based on the finite element technique and Beck's second method
is capable of successfully treating experimental data. Consideration of
"future" temperatures in calculating surface heat flux permits the use of
small dimensionless time steps while avoiding severe oscillations or
numerical instabilities in the computed results. This technique also
reduces oscillations in the calculated heat flux that are due to

experimental errors incurred in temperature measurements.
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Studies are under way to extend the formulation presented here to
treat the coupled inverse heat conduction-thermal deformation problem in
two and three dimensions. While both the finite element and the finite
difference methods have been applied successfully in one-dimensional
inverse analyses, 1t 1is the author’s opinion that the finite element
technique offers advantages in modeling complex geometries and boundary
conditions in a multidimensional system. The compatibility between the
finite element heat conduction model and the well-known finite element
displacement formulation used in analysis of the mechanical problem is

particularly advantageous in these studies.
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