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ABSTRACT

The calculation of the surface temperature and surface heat flux 

from a measured temperature history at an interior point of a body is 

identified in the literature as the inverse heat conduction problem.

This paper presents, to the author's knowledge, the first application 

of a solution technique for the inverse problem that utilizes a finite 

element heat conduction model and Beck's nonlinear estimation procedure. 

The technique is applicable to the one-dimensional nonlinear model with 

temperature-dependent thermophysical properties. The formulation is 

applied first to a numerical example with a known solution. The example 

treated is that of a periodic heat flux imposed on the surface of a rod. 

The computed surface heat flux is compared with the imposed heat flux 

to evaluate the performance of the technique in solving the inverse 

problem. Finally, the technique is applied to an experimentally 

determined temperature transient taken from an interior point of 

an electrically-heated composite rod. The results are compared with 

those obtained by applying a finite difference inverse technique to

the same data.
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NOMENCLATURE

Symbol Definition

a Radius of cylindrical rod

[B] Matrix, as defined in equation (10)

[C] Heat capacity matrix for assembly of elements

Ci Thermal expansion coefficients in gap width model, 
equation (33)

c Specific heat

e Index of elements

E Number of elements in assembly

{?} Vector for assembly of elements, equation (11)

{?} Vector for assembly of elements, equation (12)

h Convective heat transfer coefficient

h* Radiative heat transfer coefficient, equation (5)

J Number of time steps in analysis interval; J - 1 equals 
number of "future" temperatures

[K] Thermal conductivity matrix for assembly of elements

k Thermal conductivity

L Distance of temperature probe from surface of body

M Number of nodes

NI Interpolation function

{N> Vector of interpolation functions

n Unit outward normal to boundary surface

Q Internal heat generation rate, per unit volume

q Imposed surface heat flux

*qC Surface heat flux due to convection

q* Surface heat flux due to radiation
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Symbol

LI

cP

gap
Ar

15

r16

[S]

T

TI

{T}

TaC

rr^OA.

W

av

av

15

16

t

T0L1
TQL2

Definition

Radial coordinates, one-dimensional model 

Radial coordinates of node point I

Radial coordinate of temperature probe location 

Width of sheath gap in heater rod model, equation (33)

Inner radius of sheath gap interface, equation (33)

Outer radius of sheath gap interface, equation (33)

Matrix, as defined in equation (16)

Temperature

Value of temperature at Ith node 

Temperature vector

Measured temperature at internal point r1 of body 

Temperature at which no convection occurs 

Temperature at which no radiation occurs 

Temperature at wall
PComputed temperature at thermocouple probe position rr 

averaged over analysis interval, equation (32)
PInput temperature at thermocouple probe position r' 

averaged over analysis interval, equation (32)

Computed temperature at inner surface of sheath gap 
interface in heater rod model, equation (33)

Computed temperature at outer surface of sheath gap 
interface in heater rod model, equation (33)

Time .

Convergence tolerance, equation (18)

Tolerance for temperature error, equation (31)
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Symbol Definition

W Summed weights function, equation (32)

Wj Weighting functions, equation (28)

X General spatial coordinates

Greek
Symbols Definition

a Thermal diffusivity

P Density

n General spatial domain

ne Element domain

^i Boundary on which condition (2) is prescribed

^2 Boundary on which condition (3) is prescribed

V e
2

Element external boundary on which condition (3) is 
prescribed

V Gradient operator

a Stefan constant

e Emissivity

n One-dimensional coordinate of parent element

3 Surface heat flux parameter, equation (27)

A Incremental change in kernel

T Dimensionless time

z Summation symbol

Subscripts

I Index of nodes

i
»

Index of time steps in solution, where i is a 
non-negative integer

3 Index of time steps in analysis interval, 1 < j < J

(i)At Time t = (i)At at which kernel is evaluated

t r
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Superscripts

t ]T

{ }T 

(P)

Transpose of matrix 

Row vector

Iteration number at which kernel is evaluated

Other
Symbols

[ ]
{ }

Matrix

Column vector 

Euclidean norm 

Integral sign

t
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INTRODUCTION

In transient heat conduction analysis, a class of problems can be 

identified where the temperature history is known at some interior point 

in the body and the transient surface temperature and surface heat flux 

are to be determined. This class is generally referred to in the literature 

as the inverse problem, in contrast with the usual direct formulation where 

the interior temperature history is determined from specified boundary 

conditions. Typically, the inverse formulation arises in experimental 

studies where direct measurement of surface conditions is not feasible, 

such as convective heat transfer in rocket nozzles and quenching of solids 

in a fluid. One application examined in this paper deals with two-phase 

flow over the surface of an electrically-heated rod that contains thermo­

couple probes in the interior.

Various solution methods have been applied to the inverse problem 

over the past two decades, including integral equation solutions, series 

solutions, transform solutions, and function minimization techniques. In 

one of the earliest papers, Stolz CO1 obtained a linear solution by 

numerical inversion of the integral solution of the direct problem. His 

solution was found to be unstable for small time steps. Using an integral 

approach similar to that of Stolz, Beck (2) utilized a least squares 

technique to generate solutions for a much smaller time step. In a 

recent paper, Arledge, et al (3) also use an integral solution procedure 

which is valid for constant thermal properties. Burggraf (4) devised a 

series solution to the linear inverse problem which is exact only for *

* 1 Underlined numbers in parentheses identify References in the
last section of the paper.
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continuous input data. Makhin and Shmukin (_5), Kover'yanov (_6), Plummer, 

et al (_7), and Mehta (8) also utilize a series solution. Sparrow, et al (j)) 

and Imber and Khan (10) apply the transform method to the linear problem. 

Imber (11) has developed a transform solution to the inverse problem that 

is applicable to two-dimensional bodies of arbitrary shape when input data 

are known at suitable interior locations. In all of these papers, linearity 

of the model is essential to the formulation.

Several references consider the nonlinear problem of analyzing a 

composite body with temperature-dependent thermal properties. Ott and 

Hedrick (12) have developed a one-dimensional, implicit finite difference 

formulation and have applied it to an electrically-heated composite rod 

with temperature-dependent geometry and material properties. Beck has 

examined the nonlinear problem using a finite difference method (13) that 

builds on the ideas in Reference (jO and, more recently in Reference (14), 

has incorporated his function minimization technique into the framework of 

nonlinear estimation. Important to Beck's "second" method (14) is the 

observation that the temperature response at an interior location is 

delayed and damped with respect to changes in surface conditions. Beck, 

therefore, determines the surface heat flux in a given time step with a 

procedure that utilizes interior temperature data at "future" times. The 

surface heat flux is assumed to be a constant or low order polynomial 

over an analysis interval that consists of several time steps in the 

discretized data. The coefficients that describe the heat flux are 

adjusted iteratively to achieve the closest agreement in a least squares 

sense with the input "future" temperatures over the analysis interval.

Less flexible versions of Beck's technique were considered earlier by 

Frank (15) and Davies (16). Muzzy, et al (17) have adapted Beck's
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second method, with some modifications, into an explicit finite difference 

scheme for one-dimensional composite bodies with temperature-dependent 

material properties.

The finite difference method has been the predominant numerical 

technique for solution of the direct problem of heat conduction, and is 

applied in the nonlinear inverse formulations of References (12), (13), (14), 

and (17). In recent years, the finite element method (18) has become well 

established as another numerical technique for heat conduction analysis.

The finite element approach has demonstrated great versatility in modeling 

homogeneous or composite bodies with temperature-dependent material 

properties and complex geometries and boundary conditions. (See, for 

example, References (19), (20), (21).) In addition to these benefits, 

the technique shows considerable promise for the solution of coupled heat 

conduction and thermal stress problems (22), (23).

In a recent paper, Hore, et al (24) present what is evidently the first 

application of the finite element method to the inverse problem. They develop 

a procedure for determining the surface heat flux at one boundary of a one­

dimensional linear system from a known temperature history at an interior 

point. An iterative technique is used to determine incremental changes in 

surface heat flux until the error in the computed temperature at the interior 

point is within a prescribed tolerance. In their analysis, the surface flux 

is evaluated using contemporary input temperatures only, i.e., no "future" 

temperatures are utilized to determine surface flux as in Beck's second 

method.

In Reference (24), the finite element formulation of the inverse 

problem is applied to two numerical examples with known solutions. The
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first example treated is that of a constant heat flux imposed on the surface, 

while the second considers a periodic square wave heat flux. For both cases, 

the predicted temperature at the interior node closely followed the input 

temperature values. However, the two examples exhibited numerical instabili­

ties for the heat flux calculations, in the form of oscillations that 

progressively diverged in time from the known heat flux solution. Hore, 

et al identify some other difficulties with their inverse solution technique, 

including that of using temperature data measured at points far removed from 

the surface to solve for the surface heat flux. A potential difficulty with 

their technique is that it does not minimize the effect of experimental 

errors incurred in the temperature measurements at interior points. When 

these data are not smooth, oscillations in the calculated values of the 

heat flux can result. Hore, et al speculate that the nonlinear estimation 

techniques of Beck, along with the use of "future" temperatures, could 

possibly alleviate some of these difficulties.

The inverse solution technique described in the following sections 

represents, to the author's knowledge, the first application of Beck's 

nonlinear estimation procedure in a computational scheme based on a finite 

element model of the direct problem. Discussion of the finite element 

formulation and Beck's procedure is followed by application of this inverse 

technique to two problems. First, a numerical example with a known solution 

is treated to evaluate the performance of the technique in solving the 

inverse problem. Finally, the technique is applied to an experimentally 

determined temperature transient taken from an interior point of an 

electrically-heated composite rod. The finite element computations 

are compared with those obtained by applying a finite difference 

inverse technique to the same data.

»
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FINITE ELEMENT FORMULATION OF THE DIRECT PROBLEM

The conduction of heat in the region Ci is governed by the quasi- 

linear parabolic equation

V • (kVT) + Q = pc (1)

subject to the boundary conditions
/

T = T10 on V1 (2)

and

kVT • n. + q + q^1 + qC = 0 on V2 (3)

The heat flow rates per unit area on convection and radiation boundaries 

are written

q = h(T - T ) , q = h (T - T ) , (4)

where h"^ is defined by

hA = ea(T2 + T^ ) (T + T^) (5)

In general, k, d, and h/,L are temperature and spatially dependent, while Q, 

q, and h are time and spatially dependent.

Let the region Ci be idealized by a system of finite elements and let 

the unknown temperature T be approximated throughout the solution domain at 

any time t by

M T
T(x,t) = l N (x) T (t) = {N} {T} (6)

1=1

Here the N^. are the interpolation functions defined piecewise element by 

element and the T^. or {T} are the nodal temperatures. The governing
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equations of the discretized system can be derived by minimizing a functional 

or by using Galerkin's method (18). In the Galerkin formulation employed 

here, the problem is recast in a weighted integral form using the inter­

polating functions N^. as the weighting functions:

{n} [V • (kV({N}T {T})) + Q - pc -^7- ({N}T {T})] dfi
dt

-(f fi{N}[kV({N}T {T}) -n + q (7)
J \ 2

+ h({N}T {T} - TaC) + ^({N}1 {T} - T^)] dV = 0

Only a single finite element is considered in the integral (7), as the 

governing equations of the complete system of elements are obtained by 

assembling the individual finite element matrices. The surface integral 

over V-6 refers only to those elements with external boundaries on which 

condition (3) is given.

Green's first identity is applied to the first volume integral of 

equation (7) so that the second derivatives do not impose unnecessary 

continuity conditions between elements. When use is made of the boundary 

conditions (2) and (3), the integral formulation (7) leads to a set of 

transient ordinary differential equations for the assemblage of finite 

elements:

[G] + [K] {T} + {F} + {F> = 0 (8)

The components in equation (8) are defined by:

E T

[C] = l pc{N} {N} dtl
e=l •’fi6I

9 (9)
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E
[K] = l

e=l J
k[B] [B] dfl

E f

e=l
+ ^ (() (h + h^) {N} {N}T dV , [B] = V{N} , (10)

F = - I
e=l

{N} QdSl

„acsE
l f v e^N> (q - h T") dV » 

V 2e=l ^-e (ID

E
= - I

e=l V e
{N} Y?- dV (12)

where the summations are taken over the individual finite element contributions. 

These integrals are evaluated numerically using Gauss-Legendre quadrature in 

the applications to be presented later.

The system of nonlinear equations (8) through (12) which defines the 

discretized problem can be solved using many different types of integration 

schemes. The implicit one-step Euler backward difference method is employed 

in this analysis. The time derivative of the temperature is approximated by

9{T}
9t

{T^(i+l)At ~ W(i)At
At (13)

where is assumed known at time (i)At. In the nonlinear analysis,

is calculated using a computational scheme that iterates on the 

out-of-balance heat flow rate for a given time step. At time (i+l)At, the 

initial approximation of the node point temperatures is calculated by
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'■At [C](i)At + ^(DAt5 {T} (0)
(i+1)At At [C](i)At {T}(i)At

- {F} - {?}1 J(i+l)At 1 J(i)At

As demonstrated in Reference (25), the (P)*'^ correction {Al}^^ to the 

temperature vector {T} is given by

(14)

[S] (P-1)
(i+l)At

{AT}(P) = (P-D
(i+1)At {T} (P-D(i+1)At

- --- rci(p_1) {t}
At 1 J(i+l)At 1 J(i)At

+ {?} (i+l)At + {F} (P-D 1
(i+l)AtJ (15)

where

ts]
(P-D 
(i+1)At

(P-D
(i+1)At + [K] (P-D(i+l)At (16)

is evaluated using temperatures {l} (P-D(i+l)At‘
In each iteration, a new temperature vector is computed according

to

{T} (P)
(i+l)At {T} (P-D(i+l)At

+ (AT}(P^ (17)

• The iteration continues until convergence is obtained according to the 

criterion

||{at}(p) II / MW (P)
(i+l)At < T0L1 (18)

where T0L1 represents an adjustable tolerance.

The procedure represented by equations (14) through (18) is repeated 

in each time step of the calculation.
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In this application of the finite element method to the inverse 

problem, the analysis is limited to a one-dimensional model expressed in 

cylindrical coordinates. The temperatures are assumed to be spatially 

dependent only upon the radial coordinate r, and an isoparametric (18) 

discretization is employed,

M
r = l Nr (19)

1=1

so that r is interpolated using the same functions N^. as those used for 

T in equation (6). Both linear and quadratic interpolation functions are 

used in the application to be presented later. These functions are defined 

for the element natural coordinate system depicted in Figure 1 as follows:

Linear:

Ni = - |(n - i) n2 = |(n + 1) (20)

Quadratic:

N1 = Y(n2 “ r,) » N2 = +

n3 = i - n2 (21)

For the quadratic element, the center node (Figure 1) can be reduced out 

on the element level using static condensation procedures (26)♦

*

*r
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FORMULATION OF THE INVERSE PROBLEM

For the purposes of this study, the one-dimensional problem of a 

cylindrical body with flux boundary conditions at the surface is considered 

as depicted in Figure 2. The conditions

(23)

T(rP,t) = TP(t) at r = rP < a (23)

are prescribed, while the surface heat flux

(24)- k -5— = q(a, t) at r = a

is unknown.

For convenience, a solid cylinder is assumed, but a hollow cylinder 

with any known boundary condition at the inner surface could be used. The 

material properties k and c are known functions of temperature T and spatial 

variable r. The problem is to determine q(a,t) and the spatial temperature 

distribution T(r,t), 0 r Jl a> w^en the temperature history T(r^,t) = T^(t) 

is known at an interior point r^ < a.

The method developed by Beck (14), with certain modifications suggested 

by Muzzy, et al (17), is used in the solution of the nonlinear inverse problem 

presented here. Beck's technique focuses on the observation that the tempera­

ture response at an interior location is delayed and damped with respect to 

changes at the surface of the body, as verified by Burggraf's exact linear 

solution (4). To effectively deal with this observation, Beck determines 

the surface heat flux q(a,t) at time t using interior temperatures T^ 

measured at times greater than t. A common difficulty with other numerical

inverse procedures (Reference (1), for example) is the occurrence of violent
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oscillations or instabilities in the calculated heat flux when the time 

steps are reduced to sufficiently small values. Beck’s approach permits 

the use of small time steps for improved accuracy in the heat flux 

calculations without encountering these instabilities. His method 

also tends to reduce oscillations in the computed surface flux due 

to experimental errors incurred in measurement of the interior 

temperatures T^.

In the application of Beck's method, the surface heat flux is 

represented by a vector of elements (q^q^,... jq^) such that in a given 

time step At, q(a,t) is represented by

q(a,t) = q (i)At (i-l)At < t < (i)At , i > 1 (25)

For a given i _> 1, it is assumed that .... ^(i)At are ^nown*

determine an analysis interval consisting of J 1 time steps is

selected, as depicted in Figure 3. In the next step of the calculation, 

q is estimated over the analysis interval (i)At < t _< (i+J)At using
orelations that take the trend of q into account. For the first time 

step in the analysis interval.

q(i+1)At q(i)At + (q(i)At ~ q(i-l)At) (26)

and for the "future" time steps

q(i+j)At q(i+j-l)At

+ ^(q(i+j-l)At " q(i+j-2)At) 2 (27)

2In his paper, Beck examines both constant and linearly varying 
heat flux estimates over the analysis interval.
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for 2 < j < J, where 0 < (3 < 1 is an adjustable parameter.3 Then the

boundary value problem (equations (1) through (5)), cast in the discretized

finite element formulation (equations (8) through (12)), is solved over the

analysis interval (i)At < t (i+J)At, using conditions (26) and (27).

The objective of the method is to select q,.,,NA to achieve the J ^(i+l)At
closest agreement in a least squares sense between the computed and input 

temperatures at over the analysis interval. This is accomplished by 

minimizing the weighted sum of squares function

f(q) = t w.(T,., - T*;,^^)
3=1 j (i+j)At

P '2
(i+j)At)' (28)

with respect to the parameter 3 At• ln equation (28), the weights are 
2 Pdefined by w^ = j and ^(i+j)At are tae comPute^ an<^ input tempera­

tures at the interior point r^. The minimization is done using an iterative 

procedure that involves direct sampling of the function (28) and adjustment

of q / . .n n * ^ in each iteration.4 n(i+l)At
The solution value of is taken as the accepted value of

q(a,t) over the single time step At only. The analysis intei'val is shifted 

by one time step and the process is repeated. For the special case J = 1, 

no future temperatures are used and least squares minimization is not 

required.

For convective boundary conditions, a heat transfer coefficient can 

be computed in each time step from the expression

h(i)At (i)At
(T(i)At “ T(i)At

(29)

3qQ is determined from conditions at the initial time.

4In his formulation. Beck uses an analytical scheme to minimize the 
summed square function f.
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As an alternate formulation, the iteration scheme outlined above can be 

performed on the heat transfer coefficient h^^t and the surface heat 

flux then computed from

_ h rTw ac .
q(i)At n(i)Atu(i)At " (i)At; (30)

The latter scheme is employed by Muzzy, et al (17) in a finite difference 

application of Beck's method.

Some of the modifications to Beck's method suggested in Reference (17) 

have been implemented in the procedure presented here. First of all, a 

weighted least squares criterion is used in the function (28). The weights 

reflect that the temperature difference at time (i+j)At has more influence 

on q^+^)^t for increasing j over the analysis interval consisting of an 

appropriate number of time steps. Beck's formulation is obtained by 

defining w^ = 1 for all j.

Secondly, before minimization of the summed square function (28) 

proceeds for a given analysis interval, is adjusted iteratively

to satisfy the requirement

T - T^ < T0L2 1 av av' (31)

for some prescribed T0L2 > 0, where T^ is given by

Tav
1
W

J
^ Wj T(i+j)At

J
W = l

3=1
w.
J

(32)

and T^v is similarly defined. The resultant estimate for q^+jj^t t*ien 

refined in the minimization procedure for the function (28). This ensures 

that the input and computed temperatures at r agree closely in an averaged 

sense before minimization of the summed square function (28) is carried
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out. Otherwise, it may be possible for the algorithm to calculate 

from a relative minimum rather than from the true minimum of the function 

(28) on the analysis interval. This problem is discussed in more detail 

in Reference (17).

A crucial factor in Beck's formulation is the relationship between 

the magnitude of the time step At and the required number of time steps J 

in the analysis interval, given a temperature probe located a distance L 

from the heated surface. Beck (14) explores this relationship by studying 

sensitivity coefficients that define the temperature change at an interior 

point due to a unit step in surface heat flux. He examines a one-dimensional 

model with the temperature probe fixed at distance — = 1 from the surface.
cl

Using the criteria derived from the sensitivity coefficients for this model,

Beck recommends values of J that are appropriate for given values of the

dimensionless time step Ax = . The value of J is increased as the
a

magnitude of Ax is reduced, roughly preserving the length J • Ax of the 

analysis interval. Muzzy, et al (17) also study this relationship in 

applying Beck's formulation. Some additional results are presented in 

the numerical applications in this report. For a detailed discussion 

of this topic, the reader is referred to Beck's paper.

*
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NUMERICAL APPLICATIONS

The inverse formulation developed in the preceding sections is applied 

here to a composite rod containing an electric heating element and thermo­

couple sensors. This heater rod represents one member of a 49-rod array 

that is designed for test purposes to simulate a nuclear fuel bundle. The 

heater rod bundle is positioned in a thermal-hydraulics test loop that is 

used to study hypothetical loss-of-coolant accidents in pressurized-water 

nuclear reactors (27).5

A heater rod cross section6 and the corresponding one-dimensional 

finite element discretization used in the inverse analysis are depicted in 

Figures 4 and 5. The electric heater rods are from 548.64 to 640.08 cm

(18 to 21 ft) in length, 1.077 cm (0.424 in.) in diameter, and have dual­

sheath design. The outer sheath is 0.025 cm thick (0.010 in.) stainless 

steel; the inner sheath is 0.076 cm thick (0.030 in.) stainless steel and 

is grooved to accept the 0.051 cm (0.020 in.) chromel vs. alumel thermo­

couples. The next inner layer is boron nitride (BN), which electrically

insulates the heating element from the stainless steel sheaths. In the 

section of the rod from which the cross section of Figure 4 is extracted,
nthe heater element consists of an Inconel 600 tube. The core of the 

heater element is filled with magnesium oxide (MgO), which is both a 

filler and insulator between the heating element and the central rod 

thermocouple sheaths. * 7

sThis test facility is operated by the Oak Ridge National Laboratory 
(ORNL) Pressurized-Water Reactor Blowdown Heat Transfer Separate-Effects 
Program, which is part of the overall light-water reactor safety research 
program of the Nuclear Regulatory Commission.

, 6The heater rod cross section selected for the test models is that 
one identified in Reference (12) for LEVEL G (ZONE I).

7As described in Reference (12), the heater element configuration and 
heater output vary over the length of the rod.
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The transient response of the heater rod is modeled as a coupled heat 

conduction and mechanical deformation problem due to the presence of a small 

air gap between the stainless steel sheaths that varies in width with tempera­

ture. The fabrication process that reduces the heater rod to its final 

diameter often creates an imperfect fit between the inner and outer sheaths 

at the thermocouple locations and produces a gap between the thermocouple 

junction and the outer sheath. The thermocouple is welded to the inner 

sheath, causing the gap between the junction and outer sheath to grow with 

increasing fluid temperature and to close with increasing heater power. 

Correspondingly, the change in the gap width alters the temperature 

profile in the cross section.

A one-dimensional model developed in Reference (12) is used to model 

the mechanical response of the gap:

Ar__ = Ar_____+ r16(EXP[C1(T1 c - T1 ^ )gap gap0 lv 16 160

P P2 2 2 3 3 3+ T<T16-T160)+T(T16-T160)l - 1)

- r15(EXPtC1(T15 - T15^) + 2 (T15 - T15^)

)] - 1) (33)

In equation (33), the quantities Ar , T, , , T,c are the bias gap andgap0’ 160’ 150
bias nodal temperatures determined in an initial steady-state configuration. 

The expansion coefficients C^(i=l,3) are determined in situ as part of a 

rod calibration procedure (28) for each test. In calculating the thermo­

mechanical response of the heater rod model, the gap width Ar

\

and the
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appropriate geometric variables of the finite element model (equations (8) 

through (12)) are adjusted in each iteration of the solution process described 

in equations (14) through (18).

The thermophysical properties of thermal conductivity k and specific 

heat c are dependent upon temperature and the spatial coordinate. Except 

for the thermal conductivities of MgO and BN, these properties are determined 

for each material as a function of temperature from an optimum polynomial fit 

to available data, as given in Reference (12). The thermal conductivities 

for the MgO and BN depend on packing density and must be determined in situ 

as part of the rod calibration procedure (28) prior to each test.

The first numerical example8 was selected to evaluate the performance 

of the technique in solving the inverse problem for the finite element model 

of Figure 5. The periodic surface heat flux depicted in Figure 6 was used 

as boundary condition input for a direct solution. This boundary condition 

is included because the ramp in heat flux is typical of surface transients 

in the test loop and because the finite element formulation used by Hore, 

et al (24) demonstrated divergence in the surface heat flux for a similar 

periodic problem. The temperature transient of Figure 6 was calculated at 

the thermocouple node 14 of the discrete model using a heat generation rate 

fixed at Q = 9.19 x 10 watts/cm . With the temperature transient of 

Figure 6 serving as input, the corresponding inverse analysis was performed 

in an attempt to recreate the periodic surface heat flux boundary condition. 

Computed results were obtained using no future temperatures, one, and two

8The finite element inverse calculations described in this section were 
performed using TOL1=.001, equation (18); TOL2=1.0, equation (31); 8=0.5, 
equation (27); At=0.05 seconds, which is equal to the data acquisition 
interval for the thermocouple sensors in the heater rod. For each analysis, 
the iterative procedure for minimizing the summed square function (equation (28)) 
was terminated when the uncertainty in the value of cl^+2)At was ^ess
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future temperatures (corresponding to J = 1, 2, and 3) in the inverse 

solution. In Figures 7 through 9, the surface heat flux calculated for 

each J value is compared with the input boundary condition of the direct 

problem. The calculated and input thermocouple temperatures at node 14 

are also compared for each case in these figures; however, the error in 

temperatures (T0L2 = 1.0) is not discernible on the scale of these plots.

All three inverse solutions follow the input surface flux of the direct 

problem. The solutions using future temperatures reduce oscillations in 

the computed surface heat flux, but tend to "round off" rapid changes as J 

is increased. For the finite element model of Figure 5 and a selected time 

step of At = .05 seconds, the use of one future temperature appears optimal 

for reducing oscillations.

In the second numerical example, the inverse formulation is applied 

to an actual thermocouple transient taken from a representative test of the 

ORNL thermal-hydraulics facility.9 The heater power input to the rod during 

this transient is depicted in Figure 10. Figures 11 through 13 depict the 

results of the finite element inverse analysis for the first 10 seconds of 

the test, the significant period of the transient. Included are plots of 

surface heat flux and surface temperatures for solutions using no future 

temperatures, one, and two future temperatures. Figure 10 also compares 

the thermocouple temperatures computed in the inverse solution for J = 2 

with the data thermocouple temperatures; as in the first test case, the 

error in temperatures is not discernible on the scale of these plots.

Results from the first test problem (Figures 6 through 9) suggest that

, 9The thermocouple transient used in this analysis was recorded at 
thermocouple TE-325BG of rod bundle 1 in blowdown test 105 (29). The 
position of this thermocouple in bundle 1 and a complete description 
of the rod geometry are given in Reference (12).
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the use of one future temperature in the inverse analysis is adequate to 

remove some of the "roughness" from the computed results without severe 

rounding of rapid changes in surface heat flux.

The measured thermocouple transient (Figure 10) examined in this 

study was also analyzed in Reference (29) using a one-dimensional finite 

difference inverse formulation developed by Ott and Hedrick (12). Results 

of this analysis, depicted in Figures 11 through 13, indicate good agreement 

between the finite element and the finite difference inverse techniques for 

the rod configuration of Figure 4. Agreement between the two techniques is 

equally good for other thermocouple transients that were analyzed and 

presented in Reference (25).

The inverse formulation described here has been used in Reference (30) 

to analyze the quenching of 304 stainless steel thick cylinders in liquid 

nitrogen. Analyses were performed for values of time up to 600 seconds on 

numerical test cases with known solutions and on experimental data collected 

at interior thermocouple sensors. None of the inverse analyses performed 

thus far on the quenched cylinders or on the electrically-heated rods have 

demonstrated any instability in the surface heat flux calculations. This 

contrasts sharply with the finite element formulation of Reference (24) in 

which the accuracy of the heat flux predictions progressively deteriorated 

with time for both example problems presented.
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SUMMARY AND CONCLUDING REMARKS

In this paper, a formulation of the nonlinear inverse heat conduc­

tion problem has been presented that is applicable to composite bodies with 

temperature-dependent thermophysical properties. This formulation is based 

on a finite element model of the direct problem and on Beck's nonlinear esti­

mation procedure. Applications of the inverse technique to an electrically- 

heated composite rod were examined in this study. In the first example, a 

periodic heat flux was imposed on the surface of the rod. The inverse 

calculations followed the input surface heat flux of the direct problem, 

with the use of one "future" temperature optimal for reducing oscillations 

without severe "rounding" of rapid changes in the computed flux. Finally, 

the technique was applied to an actual thermocouple transient recorded at 

an interior thermocouple sensor in the rod. For this transient, the results 

from the finite element inverse analysis were found to be in good agreement 

with those obtained from a finite difference inverse technique. None of 

the analyses performed thus far using the inverse technique developed here 

have demonstrated numerical instabilities in the heat flux calculations 

such as those encountered in the finite element formulation of 

Reference (24).

The results presented here clearly demonstrate that the inverse 

formulation based on the finite element technique and Beck's second method 

is capable of successfully treating experimental data. Consideration of 

"future" temperatures in calculating surface heat flux permits the use of 

small dimensionless time steps while avoiding severe oscillations or 

numerical instabilities in the computed results. This technique also 

reduces oscillations in the calculated heat flux that are due to 

experimental errors incurred in temperature measurements.

t
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Studies are under way to extend the formulation presented here to 

treat the coupled inverse heat conduction-thermal deformation problem in 

two and three dimensions. While both the finite element and the finite 

difference methods have been applied successfully in one-dimensional 

inverse analyses, it is the author’s opinion that the finite element 

technique offers advantages in modeling complex geometries and boundary 

conditions in a multidimensional system. The compatibility between the 

finite element heat conduction model and the well-known finite element 

displacement formulation used in analysis of the mechanical problem is 

particularly advantageous in these studies.

t
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