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ABSTRACT 

We show t h a t  t he  N-part ic le  s c a t t e r i n g  equat ions  of Bencze, Redish and .S loan  1 

s a t i s f y  a proper  u n i t a r i t y  r e l a t i o n .  Our proof uses  a r e c e n t l y  proposed 

farm of t hese  equat ions  given by Benois t-Gueutal,  ~ ' ~ u i l l i e r ,  Redish and 

Tandy . 
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1. INTRODUCTION . 

U n i t a r i t y . o f  t h e  s c a t t e r i n g  ma t r ix  i s  a fundamental p rope r ty  t h a t  should 

be  s a t i s f i e d  i n  any quantum .mechanical s c a t t e r i n g  theory.  I n  t h e  p a s t  few 

years  t h e r e  have been many re formula t ions  of t h e  N-body Schrodinger equa- 

. . t i o n  a s  an i n t e g r a l  equat ion  whose k e r n e l  becomes compact a f t e r  a f i n i t e  number 

1 o f i t e r a t i o n s .  The advantage of compactkernelequationsis t h a t  they  are 

both t h e o r e t i c a l l y  w e l l  understood, and easy t o  t r e a t  nmie r i ca l ly .  One of 

t h e  d i f f i c u l t i e s  w i t h  these  formula t ions  is  t h a t  t h e  manipulat ions making 

" the  k e r n e l  compact o f t e n  mix t h e  dynamics i n  an unphysical  way. I n  any 

a p p l i c a t i o n  where one approxiinates t h e s e  ope ra to r s ,  i t  is impor tan t  t o  under- 

' 

s t and  the  physics  behind them t o  make a j u s t i f i a b l e  approximation. One t o o l  

i n  understanding the  phys ics  contained i n  t hese  ope ra to r s  i s  u n i t a r i t y .  

Through u n i t a r i t y  we can i d e n t i f y  p a r t s  of t h e  k e r n e l  r e spons ib l e  f o r  t h e  

pro'duction of f l u x  i n  t h e  d i f f e r e n t  s c a t t e r i n g  channels .  

Because these  t h e o r i e s  a r e  a l l  equ iva l en t  t o  Schrodinger theory,  i t  ' 

would be s u r p r i s i n g  i f  any of them f a i l e d  t o  s a t i s f y  u n i t a r i t y .  Perhaps f o r  , 

t h i s  reason,  t h e r e  has  been l i t t l e  i n t e r e s t  i n  g iv ing  e x p l i c i t  p roo f s  of 

u n i t a r i t y .  We argue t h a t  t h e  i n t e r e s t  i n  an e x p l i c i t  proof of u n i t a r i t y  

i s  i n  understanding the  phys ics  conta ined  i n  t h e  N-body o p e r a t o r s ,  r a t h e r  

than i n  g iv ing  a proof of a p rope r ty  t h a t  i s  i m p l i c i t l y  b u i l t  i n t o  t h e  

ope ra to r s .  I n  t h i s  paper we g ive  an e x p l i c i t  proof of t h e  u n i t a r i t y  of t h e  

~ e n c z e - ~ e d i s h - s l o a n Z  (BRS) equat ions.  Because o u r  i n t e r e s t  i s  . i n  u s ing  t h e  uni- 

t a r i t y  proof t o  understand t h e  p h y s i c a l  con ten t  of o u r ' o p e r a t o r s ,  w e  concern 
I .  ' , . 1' . 

our se lves  p r i m a r i l y  wi th  t h e  a l g e b r a i c  a s p e c t s  of t h e  proof ,  r a t h e r  than t h e  

more d i f f i c u l t  mathematical a spec t s .  W e  prove t h e  u n i t a r i t y  of an  equat ion  



derived by Benoist-Gueutal, L' H u i l l i e r  , Redish and Tandy (BLRT) t h a t  can be 
. . 

3 
shown t o  reduce t o . t h e  BRS equation when we r e s t r i c t  considerat ions t o  . 

two-body forces .  In  the next  sec t ion  w e  introduce our no ta t ion  and i n t r o -  

duce the  BLRT formalism. 

2. NOTATION 

Consider N non- re la t iv i s t i c  p a r t i c l e s  i n t e r a c t i n g  .v ia  p a i r  po ten t i a l s .  
k 

We l e t  lower case l a t i n  letters, {a ,b ,c ,  ... 1 index p a r t i t i o n s  of N-particles 

i n t o  n 
a'"' 

(2 1 n  I N )  c l u s t e r s .  W e  use the  nota t ion a c b t o  i n d i c a t e  t h a t  a  - 

the p a r t i t i o n  - b  can be obtained from a by joining some (possibly 0) of the  

, c lus te r s  of a .  The t o t a l  Hamiltonian of our system is H = K + V ,  where K is 

t h e  N-particle k i n e t i c  energy operator ,  and v i s  the  sum of a l l  i n t e r p a r t i c l e  

po ten t i a l s .  For every p a r t i t i o n  a ,  V admits the  decomposi t io~ V = Va + va . 

where Va is  the sum of a l l  i n t e r a c t i o n s  i n t e r n a l  t o  the  c l u s t e r s  of a , a n d  

va i s  the  sum of a l i  i n t e r a c t i o n s  e x t e r n e l  t o  the  c l u s t e r s  of a .  I n  addi t ion  

be def ine  V: which i s  the  sum of a l l  i n t e r a c t i o n s  both i n t e r n a l  t o  the  c l u s t e r s  

of b and ex te rna l  t o  those of a .  We 'define p a r t i c i o n  Hamiltonians Ha = K + Va. 

The s c a t t e r i n g  s t a t e s  of t h e  f u l l  H asymptotical ly behave l i k e  those eigen- 

s t a t e s  of H t h a t  have the  p a r t i c l e s  of each c lus te f  i n  a buruld s t a t e .  Wc 
a .  

denote t h e s e  e igens ta tes  of Ha by 1 (I (aa)>,  where u denotes the  i n r e r n a l  
a .  

quantum numbers of the. bound c l u s t e r s .  The set. of a l l  s c a t t e r i n g .  channels 



i s  denoted by A.  We l e t  z = E.+ i s  and de f ine  t h e  usua l  t r a n s i t i o n  ope ra to r s  

. . . . .  . Tab(z) T:~ (2) + P - va - 
, where 

. . -1 
G(z) = ( z  - H) ; G (2) = (z - H ) - 1 

a a 
. . 

. . G(Z)  - C,(z) = G ( z ) v ~ G ~ ( ~ )  = G ~ ( ~ ) v ' G ( ~ ) .  
. . n 

, We l e t  Ca = (-) a ( i a  - 1 )  ! and de f ine  3; = C,V> BLRT show t h a t  9: def 

channel. coupl ing scheme by the' sum r u l e  

(3) 

(4 

i n e s  a 

Using (5) i n  (1) w i th  (4) they w r i t e  

This can be  reduced t o  t h e  p a i r  

Equation (8) is  . theBRSequat ion i n  BLRT form, whi le  (7) r e l a t e s  t h e  f u l l  

t r a n s i t i o n  ope ra to r  t o  theBRSopera tor .  BLRT then, proceed t o  show' 

1' ?>C(z)?i  is connected, 
C 

a c  
whrca % (z) i s  the ker i le l  o r ' i g i ~ l t l l l ~  derived by BR. R . . 



3. UNITARITY 

Uni tar i ty  can be expressed i n  many ways. For s ca t t e r i ng  theory, the 

op t i ca l  theorem i s  one of the most na tura l  expressions of un i t a r i t y .  Its 

content i s  simple; f l ux  is  conserved and a l l  of the sca t te red  f l u x  comes 

out i n  one of the  open s ca t t e r i ng  channels. The most fami l ia r  expressions 
. ~ 

I n v n l \ , ~ m a t r i x  of t r ans i t i on  operators and have the  form 

i 
where jinc is  the current  of the  incident  beam and u aa$~b  (E) is  the  p a r t i a l  

'cross sec t ion  fo r  s ca t t e r i ng  from the i n i t i a l  channel a a t o  a f i n a l  channel 

, , ' pb. Expression (11) has an operator analogue which i n  the  center ' of momentum 

frame has the  s t ruc tu r e  

where 

D ~ ( ~ ~ ; E )  = - 2 ~ i  d t  ( e )  1 $ c ( ~ c )  ;x (c)>s (E - E ( Y ~ , X ( C ) )  ) < 4 c ( ~ c )  ;x(c) 1. (131, 

and g(c )  i s  the  r e l a t i v e  momenta of t he  c l l .~s te r s  of c. We w i l l  prove expression 

(12) follows from (7) ,  (8) assuming we know how t o  solve  a l l  of our subsystem 

(2. . . N - 1  buJy) problem.  In  what follows i t  l s mnvbnient t o  introduce t he  

nota t ion 

A(z) = A(E+i&)  

A(E) = l i m  A(E+ i ~ )  
~4 

A€A(E) a A(Z)  - A(z*) 

AA(E) : l i m  A A(E) . 
€-to E 



4. PROOF OF UNITARITY 

I n  t h i s  sec t ion  we show t h a t  the  so lu t ions  of the  BR equations s a t i s f y  

(12). In order t o  i s o l a t e  t h e  a lgebra ic  aspects  of t h i s  proof, w e l i s t  those 

r e s u l t s  t h a t  a r e  not purely . , algebra ic  i n  nature ,  but  a r e  never theless  needed 

i n  the proof. We then discuss  these r e s u l t s  i n  the  next sec t ion.  The b a s i c  

technical  resul- ts  t h a t  we need a re :  

%ac + 
Cb (E-) . ' % a ~ ( ~ ) ~  G ( E ) ~ C b ( z * )  = 1 T (E ) A G ~ ( E ) T -  

' T R ~ ' :  R i m .  1 T (15) - E C - 
E+O C C 

+ d 
TR2: R i m  A G (E) = - C ( I + G  (E ) V ~ ) D ~ ( ~ ~ , . E ) . ( ~ + V ~ G ~ ( E - ) ) .  (16) 

€ 4  
C 

{yd~A d s c )  

Armed wi th  these t echn ica l  r e s u l t s  we begin our proof of u n i t a r i t y .  The 

f i r s t  s t e p  i s  t o  use ( I ) ,  (5) and the  subsystem resolvent  r e l a t i o n  

t o  rewri te  our t r a n s i t i o n  operators a s  

Subtrac t ing T:b (z*) from ~t~ (z)  one f inds  a f t e r  some a lgebra  

From (8) i t  follows t h a t  



Using (23) i n  (22) a f t e r  some a lgeb ra  g ives  

ab %ac 
A€T+ (E) = 1 T ( z ) A ~ G ~ ( E ) T ~ ~ ( Z * ) .  - 

C 

Taking the  l i m i t  as €4 us ing  TR1 and TR2 g i v e s .  

. us ing  TR3 and '(19) we o b t a i ~ i  
.. . 

T (E+)G c (E+) G ; ' - (E )D~  (Y d , , ~ ) ~ d b  (E-1' 

From TR4 we s e e  the  sum over  c can be  extended over c $ d t o  g ive  

Using (7) we o b t a i n  

which ag rees  w i t h  t h e  d e s i r e d  r e s u l t  (12) .  . 

5. TECHNICAL RESULTS b 

I n  a r r i v i n g  a t  t h i s  r e s u l t  we u t i l i z e d  fou r  t e c h n i c a l  r e s u l t s  t h a t w e r e  

non-algebraic i n  cha rac t e r .  We g ive  a b r i e f  d i scuss ion  of each of t h e s e  r e s u l t s  
. . 

i n  t h i s  s ec t ion .  

The f i r s t  of t h e s e  r e s u l t s ' i s  TR1. It says  t h a t  we can b r i n g  t h e  l i m i t  

E+O i n s i d e  t h e  T ope ra to r s  i n  express ion  (24) .  The type  of problem t h a t  can 

* 
a r i s e  he re  i s  when a c u t  of r a c ( z )  and a c u t  of T ' ~ ( z  - ) a r e  s epa ra t ed  by 6- 

func t ions  i n  a l l  of t h e i r  continuum v a r i a b l e s .  This  w i l l  cause a d d i t i o n a l  

s i n g u l a r i t i e s  through t h e  mechanism 



We a r e  p ro t ec t ed  from t h i s  s i t u a t i o n  because the  s i n g u l a r  p a r t s  of l a c ( z )  and ' 

"Jc T '~ (z* )  a r e  s epa ra t ed  by the  connected ope ra to r .  1' G (z)Ve, having no non- - c e e  
C 

t r i v a l  t r a n s l a t i o n a l  symmetries. That t h i s  is  connected fo l lows  from BLRT. A 

'Lac 
s l i g h t l y  more r e f i n e d  argument shows t h a t  c u t s  of t he  p a i r s  T  ( z ) ,  AEGc(E) and 

A G (E) ,  T '~(z*)  a r e  never  s epa ra t ed  by 6-funct ions i n  of t h e i r  continuum 
E C - 

i 
v a r i a b l e s ;  i . e . ,  every denominator i n  t he  T 's  has  a t  1 ,eas t  one i n t e g r a t i o n  per- 

formed. This  prevents  hidden s i n g u l a r i t i e s  from a r i s i n g  i n  t h e i r  p roducts  as 

The second t e c h n i c a l  r e s u l t  fol lows d i r e c t l y  from t h e  s p e c t r a l  r e s o l u t i o n  

, . 
of the '  p a r t i t i o n  r e s o l v e n t s  

i f  we n o t e  

The t h i r d  t e c h n i c a l  r e s u l t  i s  obvious from t h e  so lved  form of t h e  o p e r a t o r :  . 

b  
(Tab(z) = G:~(Z)G(Z)V ). Because ou r  s o l u t i o n s  a r e  known t o  b e  merokorphic i n  , . 

t h e  c u t  p l a n e ,  and because the  k e r n e l  i s  c o n t r a c t i v e  o u t s i d e  of a s u f f i c i e n t l y  

wide s t r i p  about t h e  r e a l  a x i s ,  i t  i s  s u f f i c i e n t  t o  show T~~ - ( z )  and C ~ ( Z ) G ~ ( Z ) T : ~  (*) 
a  

have i d e n t i c a l  p e r t u r b a t i o n  s e r i e s  t o  show t h a t  they agree  on their domains of 

"Ja 
a n a l y t i c i t y .  The f a c t  t h a t  t h e  p e r t u r b a t i o n  s e r i e s  ( i n  Vb) are equa l  can b e  shown 

e x p l i c i t l y  by observing . . 

- .  
and 



. . 
9 

We ndte  (31) follows d i r e c t l y  from (8) and ( % I ) ,  while (32) (which is a l s o  

. . 
convergent i n  a s u f f i c i e n t l y  wide s t r i p  about t h e  r e a l  ax i s )  ' iol lows from . 

(5) and (19). Multiplying, (31). and (32) together,  grouping terms of a 

%a . ,  
. . ab 

. s i n g l e  power o f .  V b ' one ob ra ins  the  per turbat ion expansion f o r  T - (z) . A . 

. . 
. . s l i g h t  .genera l iza t ion of t h i s  argument allows one t o  ge t  z  down t o  t h e  sca t -  

' te r fng cu t  provided w e  su i t ab ly  r e s t r i c t  the  domains of our opera tors .  

The . lost .  technical  r e s u l t  follows i f  we note  

. . 
This w i l l  vanish  a s  €4 unless w e  can f a c t b r  a  G c (z)  out  of t h e  right-hand 

%ad 
s i d e  o f  T ( z ) G ~ ( ~ ) .  It i s  easy t o  show one must have c C d  - i n  order t o  do 

t h i s .  

6 .  CONCLUSIONS 

.We have shown, t h a t  the  BRS equations s a t i s f y  a proper u n i t a r i t y  r e l a t i o n .  :. 

This proof r e l i e d  only on p roper t i e s  of t h e  dynamic equations.  This should 
. . .  

be a useful .considera t ion i n  understanding approximations made wi th  these  

equations. 

The author would l i k e  t o  thank E. F. Redish f o r  both suggest ing t h i s  
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by the  .U. S. Department of Energy. 



REFERENCES * 
. . . . . . .  

1. S .  .weinberg, Phys. Rev. 133, B232 (1964); 0. A. Yakubovskii, Sovi J. Nucl. - 
. . 

Phys. - 5;  937 (1967); Gy. Bencze, Nucl. Phys. A210, 568 (1973); E. F. Redish, 
' 

Nucl. Phys. ~ 2 2 5 ,  16  (1974) ; D. J. ~ o u r i  arid F. S. Levin, Nucl. Physo. - 
I . . .  . 

- A253, 395 (1975); W. Tobocman, Phys. Rev. C9, 2966 (1974). . - .  - 
. . . . 

. . .  
2. Gy..Bencze, Nucl. Phys. A210, 568 (1973); E. F. Redish, Nucl. Phys. A225, * 

. ,  . 

3 .  P. Benoist-Gueutal, M. L ' H u i l l i e r ,  E. F. Redish and .P .  C. Tandy, t o  be 
. . 

published;  K. L. Kowalski, Phys. Kev. e, 7 (1977). 
. . . . r.. 

4. ' The  assumption of pa i r .  p o t e n t i a l s  is no t  needed i n  t h e  proof of u n i t a r i t y ,  
. . 

only ' i n  showing t h e  equiva lence  between t h e  BLRT. equa t ions  and t h e  BRS 

equa t ibns .  

5 .  M. Reed and B. Siuion, Func t iona l  Analys is  (Academic P res s ,  1972),  Ch. V I .  14-15; . , , 

. S .  S t e inbe rg ,  Arch. R a t .  Mech. Anal. 31,' 372 (1968). - 




