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1. INTRODUCTICN

Unitarity of the scattering matrix is a fundamental property-that should
be satisfied in any quantum'ﬁechanigal séattering theory. In the past few
yeérs there have been many reformulations of thé N-body Schrddinger equa-
tion as an ihtegral_equation whose kernél becomes compaét after a finite number
of iterat‘ions.1 The advantage of compact kernel equations is that they are
AEOth theoretically well understood, and easy to treat numerically.- One of
the difficulties Qith‘these formulations is that the manipulations making
the kernel compact often mix the dynamics in an unphysiéal way. In any
'appliéation;where one approximates these operators, it is importan; to under-
étahd the pﬁysics behind them to make a justifiable app?oximation. One tool
in understanding the phyéics contained in‘these operators is unitarity.
Through unitarity we can identify parts of the kernel responsible for the
prdduction of flux in the d;fferent scattering channels.

Becausé these theories are all equivalept to Schrédinger theory, it
would be surprising if any of theﬁ failed to satisfy unitarity. Perhaps for
this reason, there has been little interest in giving explicit proofs of
unitarity. We argue that the interest in‘an explicit proof of unitarity
is in understanding the physics contained in the N-body operators, rather
phan in giving a proof of a property that is impiicitly built into the
operators. In this paper we give an explicit proof of the unitarity of the
Bencze-Redishf51oan2 (BRS) équations. Because .our interest is.in using the uni-
tgrity proof to understanq the physical content of our operators, we concern
ourselves p?imarily with the algebraic aspects of the proof, rather than the

more difficult mathematical aspects. We prove the unitarity of an equation
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derived by Benoist-Gueutal, L'Huillier, Redish and Tandy (BLRT) that can be
. shown to redﬁce to. the BRS equation3 when we restrict coﬁsiderations to
two-body forces. In the next section we introduce our notation'and 1ntro;

duce the BLRT formalism.

2. NOTATION

Consider N non-relativistic particles interacting via pair'pqtentials.k
'We let lower case latin letters, {a,b,c,...} index partitions of N-particles
into na,...(2 .<_naiN). clusters. We use the notation aC b to indicate that
“the partition b can be obtained from a by joiningsome(ﬁossibly 0) of the
clusters of a. The totalAHamiltonian of our system is H = K.+ v, Qhere K is
the N-particle kinetig energy operator,.and.V is the sum of all interparticle
potentials. For every bartition a, Vv admits the decomposition V = Va + v?
where Va is the sum of all inferactions internal to the clustg:s of a;‘and
Va is the sum of all interaétions externel to the clusters of a. In addition
wé'define Vg which is the sum of'allAinteraéfions both internal to tﬁe clusﬁers
bf b and external to those of a. We define partition Hamiltonians Ha =K + Va’
The scattering states of the full H asymptptically behave like those éigené
Stétes of Ha_that have the particles of each clustér in a bound‘statég Wc

denote these eigenstatés of Ha by |¢a(aa)>, where o denotes the internal

quantum numbers of the bound clusters. The set. of all scatteringAchannels
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is denoted by A. We let z = E + ic and define the ﬁsual transition operators

1) = v + V@V = V()6 () (1)
be(z) = Tib(z) + 0 - v® : - (é)
where -
6(2) = -7 6 (2) = (z-H)7! 3
f_ G(;) - G_(2) = 6(2)V7G_(2) = ¢, (2)v3e(2). W

SR n, . e c na
‘We let C = (=) ®(n_-1)! and define V_ = C V. BLRT show that V_ defines a
. .a i a a aa . c
"j.channe1 coup1ing scheme by the sum rule

Y=y Wb, » ()
.{Clnézg} c . ¢

Using (5) in (1) witﬁ (4) they write

b ' -1 'y b
12°(2) = z Viec(z)cb (2) + E %iec(z)Tj (z)i (6)

: This can be'reduced to the pair

. Ti?(z) = g' %ac(Z)Gc(Z)Ggl(Z)' '.A (D
LOR RN Z'%icc(z)NCb(;) =¥+ z' T OTHOLA 8)

Eqﬁation (8) is the BRS equation in BLRT form, while (7) relates the full

transition operator to the BRS operator. BLRT then proceed to show’

a e .
z Vch(z)Vb is connectgd, : (9
''val o, ve ac, wc¢
) VG (V) = ) R (A - (10
c {c|nc—2},

- where K;;(z) is the kernel originully derived by BR.



3. UNITARITY
Unitarity can be expressed in many ways. For scattering theory, the
opticai theorem is one of the most natural expressions of unitarity. Its
éontent is §imp1e; flux is conserved and all of the scattered flux comes
out in éne.gf therpen scattering channels. The most familiar expressions
" invelve matrix elements of transition operators and have the form

E (11)

'_ + 1,9
]Im<?a(aa?|T:a(E4‘iO ”¢a(aa)> = —'Elgincl ) b

Ty >
BbeA a

“where ?inc is the current of the incident beam and Yy 4Bb(E) is the partial
cross section for scaLtering from the initial channel a toa final channel

Expression (11) has an operator analogue which in the center of momentum

B

b
frame has the structure
1im{Tf_b(E+is) ~?P@E-1e)} = ) Tic(E+io+)D G E)TP(E-10)  (12)
>0 YceA

where
DO sB) = -2 [aR(e) [0 (v D3R () 8 (B = B R0 ()R] (13)
and g(c) is the relative momenta of the clusters of c¢. We will prove expression

(12) follows from (7), (8) assuming we know how to solve all of our subsystem

(2...N-1 budy) problems. In what follows it is convenient to introduce the

notation
A(z) = A(E+1ie)
A(E) = lim A(E t i€)
) al] .
5 A(E) = A(z) - A(z™)
AA(E) = lim AEA(E) . ' (14)

e->0



4., PkOOF OF UNITARITY
In this section we show that the solutions of the BR equations satisfy
(12). 1In order to isolate the algebraic aspects of this proof, we list those
results that are not pu:ely algebraic in naturg; but are ﬁevertheless needed

in the proof. We then discuss these results in the next section. The basic

"technical results that we need are:

TRL: pim 7 1228 ¢ (E)T () = 7 ED e BT ED). (15)
e>0 o € C ) c (] -

R2: kim 4G _(E) = (e EHVHD, (v B (1 +vi6_(ET)). (16)
>0 € © (v eATace) c c’7d’ cc

m®3: Q+VI6_ (NP @) = 12 (2). a7 -

ma: ()6, (2671 (@)D (v, B) — 0 if b e (18)

- Armed with these technical results we begin our proof of unitarity. The
first step is to use (1), (5) and the subsystem resolvent relation

¢ (2) - 6,(2) = G, () (V- V)G, (2) s

to rewrite our transition operators as

12 (2) = v* +Z' 1 2)6 _(2)v° -0
@) =+ ¥@e 7P . @
Cc . )

Subtracting T:b(z*) from Tib(z) one finds after some algebra

8 130 (E) = Z; V28 g0 0, (®) +6_(2)F (208 G, (B) + 6 _(2)a ¥4 (B)G (")
Cs

+-AEGC(E):de(z*)Gd(z*))Vb}. | (27>

From (8) it follows that

2 19 = 1 ¥ (208 6, 1. (25)
e X .



Using (23) in (22) after some algebra gives A

*

2" (k) -2 ¢ (2)8_6_(B)T (). | )

Taking the limit as e>0 using TRl and TR2 gives

‘ATib(E)‘ -7 Z q'ac(EJ')(1+G & )v ) Dly, ,E)(1+vd G, (E7)1 bE7y.  (25)
. Y {y Cc}

Using TR3 and (19) we obtain

ab I 1o e 5l @, o m1 E)
c {Yde;igc} ¢ d d"d N

AT+ (E)
I ¥ewhe e o (Yd,E)T b@y. (26)
Yged c2d

From TR4 we see the sum over c can be extended over ¢ é-d to give

ar® ey = ) 1 PAENe EH D (LB (). (27
Yy €A d :
Cc
Using (7) we obtain A .
Arib(E) = ¥ T:C(E+)DC(YC,E)be(E') (28) .
Y €A ‘ - ‘ :
Cc

which agrees with the desired result- (12).

5. TECHNICAL RESULTS

In arriving at this result we utilized four technical results that were
non-algebraic in chargcter. We give a brief discussion of each of tﬁeselresults
in this section.

The first of these results is TR1. It says that we can bring the limit
e+0 inside the'T operators in expression (24). The t&pe of problem that can
arise here is when a cut of %ac(z) and a cut of be(z*) are separated by 6-
functions in all of their continuum variables. This will cause additional

singularities through the mechanism



[ dp 5 2182 2'+ -2ie fG(E+-p2)dP.
(p"+E) " +e :

We are protectéd from this situation because the singular parts of %ac(z) and
be(z*) are separated by the connected operator,z' viAéGe(z)V:, having no non-
trival translational symmetries. Ihat this is cgnnected follows from BLRT. A
slightly more refinéd argument shows that cuts of the pairs %ac(z)’ AEGC(E) ana
Ach(E)’ be(z*) are never separated by §-functions in all of their continuum
variables; i.e., every denominator in the T's has at least one intégration peri

formed. This prevents hidden singularities from arising in their products as

e+0.
The second technical result follows directly from the spectral resolution

of the partition resolvents

G (2) = Z (dp (@) 6, (v PR (D)> £ <4, (v PR 29
e’ {v ¢4 dgc}f @Itk E-E(Y,R(d) +1e PRI @

if we note

oF(rpR(@> = (1o B (rg B @V [o,(r PR, @0

The third technical result 1s obvious from the solved form of the operator - -
(be(z) = Ggl(z)G(z)Vb). Because our solutions are known to be meroﬁorphic in

the cut plane,5 and because the kernel is contractive outside of a sufficiently

wide strip about the real axis, it is sufficient to show be(z) and G;l(z)Gc(z)TCb(;)
have identical perturbation series to show that they agree on their domains of

analyticity. The fact that the perturbation series (in Vg) are equal can be shown

explicitly by observing

ab _ b ' g b ¢ Na e, b
T2(z) =V + ] VG (V + ) VG (VG (2)V + ...
o C,

and

: d
61 (2)6 _(2) = 1.+§($a-63)cd(z)+ ) (331 =¥ 06, D F -V e, @ +.... (G2

a
d,,d, 1% 2 %2 %



We note (31) follows'diréctly from (8) and (21), while (32) (which is élso

convergent in ;,sufficiently wide stfip aboﬁt the real axis)'follows from .

(5) and (19). Multiplyiﬁg_(Bl) and (32) together, grouping terms of a

) single power of.%z, one obtains the pertufbation expansion for Tib(z). A.

.‘sligﬁf«gene;alization of this argument allows one to get z down to the scat-

teriﬁg'éuf provided we suitabl& restrict the domains of oﬁr operators.

fhe iasp tecﬂnica1 result follows if'we note '

1426, (26 (@)D (v ,B) = e 12%2)0, (2)D (v ,B). G

" ThisAwi11,vani$h as €0 unless we can factor a Gc(é) out of the right-hand

<Side-6f'%ad(z)Gd(z). It is easy to show one must have ég;d in order to do

this.

6. CONCLUSiONS
‘We have shown,that the BRS‘equations satisfy a proper unitarity relation.‘
fhis proof relied only on p?oﬁerties of the dynamic equationms. This_should
be ; useful. consideration in undérstanding afproximations made wifh these
4équations.
The author would like to thank E. F. Redish for both sqggesting fhis
prdblem'and for useful.éuggestions in its preparation. This work waé]supported

by the U. S. Department of Energy.
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