Non-equilibrium Models for Diffusive

Cavitation of Grain Interfaces

by

Tze-jer Chuang*, Keith I. Kagawa*#*, James R. Rice, and Leslie B. Sills#*##*

Division of Engineering, Brown University, Providence, RI, 02912, USA

Current affiliations:

June 1978

NOTICE

This report was prepared as an “account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their

or their employees, makes
any warranty, express or implied, or assumes any legal
liabitity or ility for the Y, p
or of any i it p product or
process disclosed, or represents that its use would not
infringe privately owned rights.

*Advanced Systems Technology, Westinghouse Electric Corp., Pittsburgh,

PA 15221, USA.

**Hawaiian Fluid Power Corp., Honolulu, Hawaii

96819, USA

%%%As of October 1978, School of Engineering, Tel-Aviv University,

Ramat-Aviv, Israel

Promm Ay fr IR nACTIETTT 18 UNLIMITED




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



Abstract

Existing models for the diffusive growth of voids on grain interfaces,
at elévated temperature, are fof the most part based on quasi-equilibrium
assumptions: surface diffusion is assumed to be sufficiently rapid that the
cavity has a rounded, equilibrium shape, and hence cavity growth is assumed
‘to be rate-limited only by grain boundary diffusion. However, creep rupture
cavities sometimes have narrow, crack like shapes and it is appropriate to
investigate non-equilibrium models for diffusive rupture. We do so here by
comparing the quasi-equilibrium model to anothef limiting case based on a

narrow, crack-like cavity shape. Criteria for choosing between the models

are given on the basis of representative relaxation times for the surface dif-

fusion process, and also by examining the properties of a "self similar" solu-

tion for cavity shape. By a suitable choice of parameters which measure the

growth rate, this solution can be made to ‘give results corresponding to either

limiting case, and aids the interpolation between them. The results suggest

that if s is the ratio of the applied stress to that which just equilibrates

cavities against sintering, then for circular cavities on a grain boundary
with diameter equal to a quarter of their average center-to-center spacing,

the quasi-equilibrium mode applies when s < 1 + 64 and the crack-like mode

when s > 2 + 9A. Here A is the ratio of surface to grain boundary diffusivity.
Also, the stress dependence of the growth rate and rupture lifetime is established

in each case, and the results are discussed in relation to the interpretation of

experimental data.




1. Introduction

Under creep conditions, polycrystalline solids often rupture prematurely
by the growth and coalescence of grain boundary voids. Experimental findings
indicate that a concentrated void population generally forms on grain boundaries
oriented in a direction perpendicular to the applied temsile loads [1], [2],
[3]. These voids can be nucleated at grain junctions (w-type voids) or at
grain boundary inclusion interfaces (r-type voids). Here we investigaté the
kinetics of void growth by diffusion, giving special attention to non-equilibrium
aspects of the problem. Specifically, rather than assuming a quasi-equilibrium
void shape (e.g., one of uniform curvatures) during growth, we allow the void
shape to be determined as part of the analysis.

Indeed, numerous studies of the growth of voids on a planar grain boundary
perpendicular to the applied stress have been made, on the assumption that sur-
face diffusion is rapid enough to give an essentially spherical void shape.

Hull and Rimmer [4] and Speight and Harris [5] estimated the time to rupture

of a material with an array of spherical voids located on a planar grain boundary
in which atoms were transported from the surface of the cavity along the grain
interface. A correction to the model was made by Weertman [6], who considered
the appropriate boundary condition to be one of zero vacancy flux on the grain
boundary at the midpoint- between the voids. Vitovec [7] then estimated the
strain rate by con31der1ng the change in stress acting across the grain boundary
which results from changes in the ligament size. Raj and Ashby [8] investigated
the combined contributions of nucleation and growth of voids to the rupture
lifetime, again assuming a quasi-equilibrium growth model, and have included
effects of grain boundary sliding. |

However, the éssumption of an equilibrium void shape may not always be

satisfied, and it is well known that rather elongated rupture cavities are




sometimes observed. Thus Chuang and Rice [9] examined the problem of a long,
crack-like cavity located on a planar grain boundary. Their work was limited
to a determination of the cavity shape for a given speed of growth. Here we
extend that work to a general examination of non-equilibrium cavity shapes,
and of relation between applied stress and growth rates over a wide range of
conditions. We consider the growth of pre-existing voids along a planar grain
boundary, perpendicular to the applied tensile stress and give results for two
cases: (i) a long cylindrical void in which case we assume plane diffusive
‘flow in directions perpendicular to the axis of the cylinder, and (ii) an axi-
symmetric void, in which case the diffusive flow is also assumed to be axi-
symmetric.

We start the analysis with the two limiting cases of slow, quasi-equilibrium
growth, in which the void has a rounded shape of uniform curvature (i.e., the
case already examined by Hull and Rimmer [4] and others) (Fig. la), and of very
rapid growth, in which case there is inadequate time for the void to develop
a rounded shape and, instead, it remains thin and crack-like (Fig. 1b).

The practical cases lying between these two extremes are difficult to
treat mathematically. However, we find that by linearizing the governing equa-
tions it is possible to develop a class of self similar solutions, analogous
~ to those of Mullins [10] for grain boundary grooving, in which the cavity
radius a varies with time t as a = ¢ tl/u, where ¢ is a constant. We
find that results for large and smgll ¢ agree, respectively, with the limiting
results based on the assumptions of crack-like and quasi-equilibrium void
shapes. By interpreting these results and by examining characteristic times
for surface relaxation, we are able to provide guidelines as to which of the
two simpler limiting cases is most‘appropriate in given circumstances.

The matter which diffuses from the void surfaces is assumed to flow along

the grain boundary, joining the crystals on either side. The crystals themselves




are assumed to move as if they were rigid, rather than elastically deformable,
and this is seen to be justified by estimates of representative elastic relaxa-
tion times. Indeed, these relaxation times and those associated with various
modes of surface shape and grain boundary alteration are given in the appendix.

Preliminary versions of the results given here, as limited to the long

cylindrical void model, are given in theses by Chuang [11] and Kagawa [12].




2. Processes in Diffusive Void Growth

In order to understand clearly the processes to be modelled, a descrip- N
tion of the mechanisms which govern diffusive void growth and the behavior
of the grains and their boundary is presented here.

Indeed, changes in the shape of a void located on a grain boundary can
be accomplished by self-diffusion along the surface of the cavity, by bulk
diffusion through the lattice, and by evaporation and condensation. It is
expected that at temperatures significantly below the melting point of the
material it should be more difficult to move an atom (or a vacancy) through
the lattice than along a free surface; thus lattice diffusion should be
negligible compared to surface diffusion [13]. As the temperature approaches
the melting point, however, lattice diffusion should contribute significantly
to the total atom flux. In order to more precisely determine which mechanism
is dominant, it is useful to compare characteristic relaxation times of a
free surface with periodic curvature when atom flux results from lattice diffu- .
sion and when it results from surface diffusion (e.g., Mullins [10,14], sum-
marized in the appendix). If Ty the characteristic time for surface diffu-
sion, and Tos the characteristic time for lattice diffusion, are such that
'rs/'rZ <:0.1, it can be expected that surface fluxes will be the more signifi-
cant part of matter transport. From typical values of the quantities involved
in calculating these characteristic relaxation times for some common metals

(see Tables I and II) at temperature T = 0.5 Tm and T = 0.8 T, ('I‘m is
the melting temperature), it is found that surface diffusion, indeed, does

dominate over lattice diffusion as the mechanism governing void growth (see
Appendix Al for details). 1In a similaf manner, it is shown in the appendix

that the contribution to matter transport by surface diffusion dominates over

that by evaporation-condensation (for example Ts/'rv < 0.1, where t, is




the characteristic time for evaporation-condensation). Thus, at least for this
temperature range, surface diffusion will be considered the only mechanism
which determines void shape.

Hence,‘the voids grow by the diffusion of matter along their surfaces
toward the void tip. Near the void tip, in the region adjacent to thé grain
boundary, the atoms may be removed from the void surface either through the
void tip aﬁd into the grain boundary or through the 1atticé. An examination
of characteristic relaxation times for grain boundary and lattice diffusion
reveals that grain boundary diffusion will be the dominant mechanism (see
Appehdix A2 for details). As atoms diffuse into the grain boundary, there
are various ways for the grains to respond to this additional matter. On the
one hand, if grain boundary diffusion is sufficiently fast (wifh respect to-
void growth) so that the diffused atoms spread over the entire grain boundary,
then the growth of the grain boundary & will be uniform or equivalently the
grains on both sides of the boundary will separate evenly (Fig. 2a); Hence
the grains behave as though they are rigid. If, on the other hand, diffusion
is slow on the boundary, the grains must deform in order to accommodate the:
atoms which have accumulated near the void tip. In order to do this the grains
deform elastically in this region (Fig. 2b). A first analysis of the accommo-
dation of diffusea matter by elastic deformation of the grains has been given
by Chuang [11], who examined a semi-infinite crack-like void along an infinite
grain boundary. (Chuang's techniques have been adopted in a recent paper by
Vitek [15]. However, the conditions assumed along the void surface in [15]
involve a discontinuity in the void profile, in that a portion of the void
is presumed to have a constant thickness; this discontinuity is inconsistent
with the equations governing surface diffusion and it is not clear as to what
effect this has on the end results.) Indeed, a comparison of the elastic

relaxation time with a time calculated on the basis of the rigid grain assump-
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tion (i.e. no elastic effects) indicates that the elastic effects generally

occur on a time scale so short as to be negligible (see Appendix A3).




3. Governing Equations

It is known from diffusion theory that differences in chemical potential
constitute a thermodynamic force causing atoms to migrate from regions of high
poteqtial to those of low potential. In cases of small departures from equilib-
rium, the general assumption is that the rate of kinetic change along the dif-
fusion path is everywhere linearly dependent on the gradient of the chemical
potential.

Thus for diffusion along a free surface, treated as isotropic in the plane

of the surface for simplicity, the flux law has the form
Js = - (DSGS/QkT) du/as . | (1)

Here Js is the number of atoms per unit time crossing unit length in the sur-
face, 9/3s is a derivative with respect to arc length along the surface in
the flow direction, u 1is the chemical potential per atom, £ <the volume per
atom, kT the energy-per-atom measure of temperature, Ds the surface diffu-
sivity, and Gs the thickness of the diffusion layer. Experimentally, Ds
and GS cannot be separated and we adopt the expression GS = 91/3. |

When a thin layer of matter is added to a curved surface, the surface
area and hence the total surface energy is altered and thus there is an extra
energy change in addition to that of adding matter to the bulk. Herring [16,17]

has analyzed the problem and, since the increase in area is negatively propor-

tional to the curvature where matter is added, we have

M=o - YSQ(xl + x2) (2)
12 K, are the principal curvatures (positive for voids like those in
Fig. 1), YS the surface free energy, and My is the potential of the bulk.

where «

Here it is assumed that there is no normal stress and the strain energy asso-

ciated with stresses in the plane of the surface is neglected. Stresses are




very small even at the void tip for the diffusive processes considered and
the neglect of the strain energy term is readily justified (e.g., [11]).

Furthermore, conservation of matter requires that for the axisymmetric
void,

(/r) a(sz)/as = v (3)
where v is the normal velocity, or recession rate, of the void surface
relative to the adjoining solid material, and where r is the radius measured
perpendicularly from the axis of symmetry. For the cylindrical void (i.e.,
the case of plane diffusive flow) we merely delete the two r's. Hence the

differential equation relating position and time dependent changes of the

void profile is
(B/r)a[ra(xl + K2)/3s]/as = v, (4)
for the axisymmetric void, with
B =D_6 0y /kT , (s)
and for the cylindrical void the same equation applies with the r's deleted
and k, set to zero. The parameter B has dimensions of (length)u/(time);
and has a fundamental role in the subsequent development.

Similarly, for diffusion along the planar grain boundary, also treated as

isotropic in its plane, the atom flux rate is

J, = - (Dbéb/ﬂkT)au/ar . (6)

b
where 'Db is the grain boundary diffusivity and Gb the "thickness" of the
diffusion zone. Now we observe that where a thin layer of matter is added at

a flat segment of grain boundary, joining the crystals on either side, there is
no change in area of the interface and hence no contribution of grain boundary

free energy Yy to u. However, to insert the matter it is necessary to do




negative work against the normal stress ¢ acting on the grain boundary at the

place of insertion, so that the chemical potential is

Again, the strain energy term is neglected, justly so [11].

For conservation of mass it is necessary that
(Q/r)a(er)/ar + 38/3t = 0 ‘ (8)

for the axisymmetric geometry, where we define & as the effective thickening
at the grain boundary due to adding matter to the adjoining grains. For the
cylindrical void geometry, with plane flow, we replace dr by 3x (the x
axis lies in the grain boundary, Fig. 1) and delete the two r's. Hence, in
view of the above expressions for Jb and u, the stress distripution and

thickening in the grain boundary are related by
(D, 6,2/kTr)3[rda/dr]/dr + 38/3t = 0 (9)

for the axisymmetric void. Again 3r + 9x and the two r's are deleted in
the cylindrical case.

Since we regard the grains as rigid, 36/3t is uniform as depicted in
Figure 2a. The more elaborate models explored by Chuang [11] and Vitek [15]
regard the grains as elastically deformable so that & is itself coupled to
the stress distribution o.

Now, eqs. (4) and (9) are the differential equations to be solved, respec-
tively, on the free surface (to determine its shape) and on the grain boundary
(to determine its stress distribution). The regions in which the equations
apply are themselves time dependent because the void grows along the grain
boundary, and the solutions are coupled by continuity conditions at the void

tip where it joins the grain boundary. First we note that the tip itself must
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have the equilibrium angle, from balance of local surface thermodynamic forces
(as discussed, for example, in the analysis of grain boundary grooving [10]),
so that

2y  cos ¥ =y, | - (10)
where ¢ 1is defined (see Fig. 1) so that w - ¢ is the angle between the
grain boundary and the tangent to the void surface at the tip. Furthermore,
the chemical potential must be continuous at the void tip (otherwise there
would be an unbounded flux J there) and given the previous expressions for
u this implies that
g, = ys(xl + K2)tip (11)
where o, is the normal tensile stress at the void tip and the curvatures are E

evaluated at the void tip. Recall that K, = 0 for the cylindrical void.

Finally, continuity of flux at the void tip implies that

(Jb)tip = 2(Js)tip H (12a)

whence

Q
H

(2kT/Db6b) (Js)tip

(2Dsésys/Db6b)[3(Kl + K2)/as]tip (12b)

where o; is the first derivative of the normal stress with respect to r or
x (whichever is applicable) at the void tip.

The mathematical problem of‘determining the rate of void growth, for a
given average tensile stress acting on the grain boundary, is too difficult
to solve in generality. Nevertheless, it is useful to consider the 'ideal"
solution procedure. We should let the cavity radius a vary with time in an
arbitrary, yet to be determined manner, and determine the void shape by solving

(4) subject to the conditions that the void height is zero and its slope angle




is ¢ at the void extremities, r = a(t). Hence the void shape is a functional

of the unknown function a(t), and therefore 9 and o; of eqs. (11) and

(12b) are, in principle, determined as functionals of a(t). We next solve (9)
for the stress distribution o on the grain boundary, subject to given values

9 and o; at r = a(t) and, for example, to a condition that the flux vanish °
midway between voids on the grain boundary. These three conditions over-determine
the second order differential equation (9) for o, and hence fhe value of 23é6/3t
(uniform along the grain boundary for the rigid grains model)that is compatible
with given values of 9, and o; is determined also. But since these latter
two quantities are functionals of a(t), ~the stress distribution o(r, t) on
the grain interface, and hence the average stress, is likewise determined, in
principle, as a functional of a(t). But the average stress is to be regarded

as a prescribed function of time, and its relation to a(t) therefore provides

a nonlinear hereditary relation from which the actual history a(t) of void growth
is to be determined.

As remarked, this program of solution is too difficult to carry oﬁt in
general. We therefore limit consideration to histories a(t) which are very
slow (quasi-equilibrium, spherical void shape) or very fast (thin, crack-like
void shape), and try to judge the intermediate cases on the basis of charac-
teristic relaxation time estimates (appendix) and the sélution for one tractable

family of growth histories, namely, self-similar growth with a(t) « tl/u.
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4. Void Shapes

Our goal is to determine the boundary conditions g, oé at the void
tip in relation to the time history of void growth. This is done here first
for the limiting cases of slow, quasi-equilibrium growth and rapid, crack-
like growth, and then for aAfamily of intermediate cases based on self-
similar solutions. The question arises, for a given history a(t) of cavity
growth, how can we determine if we are close to one or ancther of the limit-
ing cases? This can be done by first computing relaxation times associated
with the attainment of equilibrium by surface diffusion, for initial distur-
bances from equilibrium with half-wavelengths that we identify with the void
diameter 2a. Thus for the long cylindrical void, we set £/2 =2a, L=

in eq. (A-11) to obtain a characteristic relaxation time

_ B, 4 Y ,
('rs)cylinder = (16/7') a /B = a /6B , (13)

B is defined in eq.(5). For the axisymmetric geometry we should set £/2 =
L/2 = 2a, since the void curves in two directions, and this gives a lower

relaxation time

(). =(u/m" a'/m < a*/2uB . (1)
s ‘axisym

Next we observe that a/v, where v = da/dt is the cavity growth speed, is
a characteristic time associated with altering the equilibrium shape towards
which the cavity surface is ever-proceeding by surface diffusion. Thus if

T, << a/v, or if
aav/B << 6(cylinder) or 2u4(axisym.) , (15)

the cavity shape will be at equilibrium, whereas if T >> a/v , or if
a3v/B >> 6(cylinder) or 2u4(axisym.) , (16)

the cavity shape will remain effectively unrelaxed and growth will occur
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in a crack-like mode. It may be observed that in the early stages of creep
rupture a3 and, presumably, v are small, but both increase in time. Hence
it is possible that the early stages of growth occur in a quasi-equilibrium
mode and the latter stages in a crack-like mode.

4.1 Quasi-equilibrium Void Shapes

As previously discussed, when a3v is sufficiently small the void re-
tains a quasi-equilibrium shape of uniform curvature during growth. Thus the
cylindrical void is composed of two circular cylindrical segments or caps
and the axisymmetric void of two spherical caps.

4.1.1 Long Cylindrical Void (Circular cylindrical caps)

For this case x, = 0 and (see fig. la)

K) = siny/a . (17)

Moreover, as a result of continuity of matter flux at both void tips

dl2a’£(y)1/at = 20203 ) ;] (18)

tip
where the quantity in brackets on the left is the void volume per unit length
along the cylindriéal axis and where

£(y) = (V - siny cosw)/sinzw. (19)

MthtmrﬁswwomﬁmmtﬂmaweumaemeﬂuiMomeﬁpw
using the last form of (12b); this is because, effectively, the curvature
gradient is very small and Ds very large for near-equilibrium growth. Hence

from egs.(11) and (12b) we obtain

% =Yg sinv/a , ol = (2kT/AD, §,)£(¥)av " (20)
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for the associated stress boundary conditions at the void tip.

4.1.2 Axisymmetric Void (Spherical Caps)

For this case the analogous expressions are

Ky = K, = siny/a (21)

and

3 _ ‘
dl(uw/3)a” h(y)l/dt = 21ra[r2Q(Js)tip] s A (22)

where the bracketed term on the left is void volume and
h(y) = [1/(1 + cosy) - (cosy)/2]1/siny . (23)

Thus the boundary conditions on stress are

o, = 275 sing/a , oé = (2kT/QDb6b) h(ylav . (24)

This method of evaluation of o, and oé coincides with that by Hull and
Rimmer [10] and in related studies.

4.2 Crack-Like Shape

In this limit we assume that a3v is sufficiently large and that there
is inadequate time for the large amounts of diffusive mass transfer necessary
to establish a rounded, near-equilibrium void shépe. Instead, the void re-
mains thin and crack like with relatively small curvatures everywhere except
near its tip (Fig. 1b) where 3 and its gradient must be large in order to
allow sufficient mass flow for the characteristic tip angle ¢ to develop.
Assgming that the speed v does not change appreciably over distances com-

parable to the void thickness near the tip, the near tip shape is determined

by the "steady state'" analysis of Chuang and Rice [9]. In that analysis the




void shape near the tip was assumed to remaih unchanged, relative to an
cbserver moving with the tip, during growth. This is an appropriate as-
sumpt ion fSF the high speed limit 6f void growth, as will be shown mathe-
matically in the ﬁext section. The curvature and surface flux rate at the

tip are then given by (see Eqs. (24) and (20) of [9]).

/3

Kegp = 2 SIn(/2) (vt (25)
_ . 2/3
(Js)tip = 2 S1n(w/2{ (B/Q2) (v/B) (26)
where B is defined by (5) and it is noted that 2sin(y/2) = (QYb - Ys)l/2/Yi/2'

(To make contact with the notation of [9], we note first that the sign con-
vention for k 'is reversed here, and alsé that in [9] a term v representing
the surface density of diffusing atoms is employed, and this term is replaced
here by v = GS/Q . Further, the above expressions actually represent the
first term in a certain series solution, but were shown in [9] to be accurate
to approximately 2% when compared to the exact, numerically obtained solution
for steady state growth.) The corresponding expression for the thickness, 2w,
of the void in'steady—state growth, at distances back frém the tip on fhe

order of a few times the tip radius of curvature, is [9]

2w = 4 sin(p/2) (B/v)Y/3 . (27)

By substituting Ktip and (JS)tip into (11) and (12b), we find that
the values of the stress and its gradient at the tip for consistency with the

presumed crack-like mode of growth are

o, = 2y, sin(¥/2) (v/&)'/°  (28)

oy = Hvg sin(y/2) (D8 /D, 6,) (V/B)z/3 . (29)
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While these results were derived for plane diffusive flow, we note that
they are valid not only for rapid growth of the long cylindrical void but
also for general 3-D voids, including the axisymmetric void. This is be-
cause at rapid growth speeds the principal curvature «x., is large near the

1

tip in the direction of growth whereas the curvature K, remains small. For

example, K, = siny/a at the tip of the axisymmetric cavity whereas Ky is
the inverse of the near-tip radius of curvature, and is much larger for
growth in a narrow, crack-like mode. -Thus, in the rapid growth limit, the
state of flow near the axisymmetric void tip approaches a plane flow state

(see the next subsection) and (28), (29) are valid for that case also.

4.3 Linearization of Equations for Void Shape

As stated previously, it is desirable to have general solutions for
cases of void growth that correspond with neither of the two limiting éases
just discussed. Such solutions have not been found for general void growth,
but to make the governing equations more tractable the assumption is made
that the slope of the void is everywhere small with respect to unity. That
is, we linearize the governing equations. For most metals this assumption
(¢ << 1) 1is violated at the void tip; see Table III. It can be shown, how-
ever, that the results from the linearized analysis for the void tip curva-
ture and flux rate, and hence for o, and oé , do not differ significantly-
from the exact solutions in the preQious two subsections for a large range of
Y values.

To accomplish the linearization we let w = w(x,t) or w(r,t) be the
height of the void surface above the x or r axis in Fig. 1, we set
3/3s = 3/3x or 3/9r , and write k., = 32w/ax2 for the cylindrical void, or

1

K, = 82w/3r2 and k, = (1/r)dw/3r for the axisymmetric void. Further, the

1 2

7~




recession rate vh = 3w/3t . Thus Eq.(4) governing the surface shape reduces

to

BV2V2w + 3w/3t = 0 (30)

with

V2 = 32/6x2 or v

32/30% + (1/r)3/or (31)

for the two cases, respectively.

For boundary conditions at x or r = a(t) , one must have

wla(t),t] = 0, w'la(t),t] = -¢ (32)

where the prime denotes differentiation with respect to x or r. Further-
'more, conditions of symmetry at the void center must be met. For the
cylindrical void these have the form w'(0,t) = w'''(0,t) = 0; the latter
condition implies zero matter flux at x = 0, and is to be replaced by the
condition (3/3r) [V2w(0,t)] = 0 for the axisymmetric void.

To obtain quasi-equilibrium solutions for the linearized problem, we

"merely neglect the dw/3t term. Then for both cases one cbtains
2
w = (y/2) (a - r /a) (33)

(replace r with x for the cylindrical void), which is the linear approximation
to a circular cylindrical or spherigal cap. Further, one may compare the

void tip curvature Ky = ¥/a predicted from the linearized analysis with

(17) or (21) and, evidently, it differs from the exact quasi-equilibrium re-
sult onl§‘insofar as ¢ differs from siny .

To examine the case of rapid growth within the linearized theory, it is

convenient to make the substitution




and to write

in the equations governing axisymmetric void growth. Note that (B/v)l

w(r,t) = (B/v)t

_18_

R = (a-r)/(8/)!/°

/3 w(R,t)

(3u)

(35)

/3

is a characteristic length associated with surface diffusion near a distur-

bance that moves with speed v ;

see, for example, Eq.(27).

Hence R and

w are coordinates of the void profile as scaled by this length. Further, let

€ = (B/asv)l/a

(36)

be the ratio of this characteristic length to the void radius; we are in-

terested in the limit

for axisymmetric void growth is readily shown to take the form

€+ 0

+

. In terms of w , the differential equation

a 3 _ 62 a2 24 + e3 a3 gi
R 353 ;?‘ ;;é ;3' oR
o av ow a w _
a-R-+€—-2- Rﬁ +£V =0

(37)

Now, proceeding in the spirit of boundary layer theory, we focus on the limit

of the above equation as

this limit as being one of extremely slow surface diffusivity,

There results

+
e+ 0

with R remaining finite.

ata/arY + aw/aR = 0 .

One can view

B+oF




-~ .fer from the exact results of Eqs.(25) and (26) for the crack-like limit only
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It is straightforward to show that the same equation results, as ¢ -+ ot ’
when a similar analysis is done for the long cylindrical void case. Further

the equation has the unique solution, bounded for large R, '

w = (3w/3R)p_o [1 - exp(-R)] = y[1 - exp(-R)] (38)

or
w= (83§ {1 - expl-(a-r)/(8/v)Y1) (39)

for r near a . This result of the analysis is, of course, just the linear-
ized version of the crack-like void profile discussed earlier and, indeed,

this solution for w leads to a curvature and flux rate at the tip which dif- Ry

insofar as ¢ differs from 2 sin(w/2).- We do not present the details here,
but the same boundary layer technique can be applied to the full nonlinear
equation (4) describing the voia profile. The results confirm that the solu-
tion as e +» 0% s the same for the axisymmetric and cylindrical geometry,
and coincides with the ''steady state'" solution of Chuang and Rice [9] outlined
earlier.

4.4 Self-Similar Solution for Void Shape

Eq.(30) is seen by dimensional considerations to have a family of 'self-
similar" solutions that correspond to an increase in void radius with time

according to
a-= go(Bt)l/u » (40)

where £ is an arbitrary positive constant. The associated void profile is
o .
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such that

/

w= (B0)Y%) n(g) where E = (x or 0)/(B)YY (41)

and where the function n(g) must satisfy

a*n/ag” - (g/8) an/dg + /4 = 0 (42)
for the long cylindrical void, or
dnsae® + 2/6) @njag® - (/e alnsag?
+ (/€2 - E/4) dn/dE + n/u = O (43)

for the axisymmetric void. Evidently, & = £ corresponds to the void tip,

and the conditions

n(g)) =0, n'(g)) = -1 N - (uy)

must be met there. Further, it may be anticipated that small values of go
correspond to near-equilibrium conditions and large values to crack-like con-

ditions. Solutions can be found in a power series form

n=) AE (45)

and results are discussed in the following subsections.

4.4.1 Long Cylindrical Void
Of the four linearly independent solutions to Eq.(42) for n , two can
be discarded for failure to meet the symmetry conditions n'(0) = n'''(0) =0 .

There remains

n=All+ ] go(m)Eum] + B, [1+ [ gy(m "y, (46)
m=1 m=1
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g (m) = = (47a)

(u)2m(m!) (4m-1) [(4m-2) (4m-6) *++(2)I[(4m-3) (4m-7) --+(1)]

1

o (47b)
(W) (m!) (um+l) [(umt2) (4m-2)-+(6)][(4m-1) (4m-5)<-+(3)]

g2(m) =

and where the constants Ao and A2 are determined in terms of Eo by

imposing the conditions (u44).

y.4.2 Axisymmetric Void

In this case the differential equation (43) for n has a regular singu-

lar point at £ = 0 where, in view of the symmetry conditions, one has

1
o

n'(0) =0, [n'''(£) + n''(E)/E - n'(E)/E2] >0 as E 0.  (u8)

The general solution for n consists of four linearly independent solutions,
» two of which have logarithmic terms that become unbounded at £ = 0 . The
- above boundary conditions are met if the coefficients of these logarithmic

solutions are set to zero, and there remain the terms

n=B [1+ m;lfo(m)g‘““] + B [1+ mzlfQ(m)E m (49)
where
£ (m) = —=0)(3) > - (bm=5) (50a)
° (u)um(m!)2 [1.3---(2m-1)]2
and
(1)(5)+++(4m-3)
f (m) = (50b)
2 (u)“m(m.')2 [3-5---(2m+1)]2
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and Bo and ‘B2 are determined from the boundary conditions (44) as quo-
tients of series in &o .

Expressions for curvature and flux at the void tip will not be shown in
detail because of the complexity of the series expressions. These expressions

can easily be derived, however, from

(x,) = -(y/a) Eon"(io) , (k). = Y/a (51)

1 tip

- 2 2 e re
(Js)tip = (By/Qa’) [-Eo n (Eo) - g (Eo) - 1] (52)

Further, the corresponding value of the stress and its gradient at the void

tip are, from (11) and (12b)

o, = (st/a) [-Eon"(io) + 1] (53)

2
ol = 2(D_8_/D,8.) (¥y /") [-E2 n'""(E) - En'T(E) - 1] (sw)

Note that the series representation for any of these quantities is amenable

to numerical computation. In additidn, the velocity can be derived by differen-

tiating equation (40) to obtain
gg = u(asv/B) . (55)

Note that a3v/B is the same dimensionless speed measure which occurred in
our earlier discussion based on relaxation times.
4,5 Discussion

Indeed, in order to develop a model of void growth using the various
solutions found for the various stages of void growth, it V?uld be instruc-

tive to compare the similarity solution to the equilibrium, as well as the




crack-like solutions. For very small choices of Eo (corresponding to slow
void growth) a good approximation to n from both (46) and (49) can be made

by neglecting all but the first terms of the series; in this case
n= (€ /2) [1 - (e/E)°] (56)
o o

which is identical to equation (33) for the linearized equilibrium solution.
Thus, the self-similar void shape approaches that of the lineérized equilib-
rium void shape when a3v/B is chosen to be very small. Furthermore, the
shapes predicted by the similarity solution for Eo = 1,2 and 3 are com-
pared to the linearized equilibrium shape in Fig. 3. Note the good agreement
for the void shape in the neighborhood of the void tip; indeed, this is the
region of interest since continuity of flux and chemical potential are en-
forced here in solving the complete void rupture problem.

On the other hand, for larger choices of &o (i.e. for higher growth
rates) the similarity solution for the axisymmetric void is.compared to the
crack-like solution in Fig. 4a and Fig. 4b. The shapes are not alike since
by fixing Eo an acceleration and higher order time derivatives, as well as
a velocity are imposed at the void tip. In fact, examination of the accelera-
tion reveals a deceleration at the void tip. Hence, the combination of both

this deceleration and the high velocity associated with large choices of Eo

allows matter to be removed from the void tip to form a depression. But once
again fhe agreement in tﬁe neighborhood of the void tip for these two solu-
tions is quite good.

Furthermore, since we are most interested in determining the values of

the curvature and flux at the void tip, it is worthwhile to make a comparison
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of these quantities as obtained from the various "linearized" solutions.
Figuré 5a is a graph of non-dimensionalized curvature at the void tip
vs. the void growth.rate parameter a3v/B. It is seen that for slow growth
the curvature found from the similarity solution and that derived by the
linearized equilibrium solution agree well. For larger values of the growth
rate parameter the curvature obtained from the similarity solution and that
obtained from the linearized crack-like solution are in close agreement.
Next consider Fig. 5b which is a graph of non-dimensionalized flux at
the void tip vs. the void growth rate parameter. Again as in the case of

the curvature « for slower growth rates the equilibrium solution and

10
the similarity solution for the flux at the void tip are in good agreement;
furthefmore, for a3v/B > 4 the similarity solution acts as a smooth tran-
sition into the crack-like solution. Thus it can be concluded that near the
void tip and for a3v/B < 4 , either the equilibrium solution. or the similar-
ity solution approximates well the void growth behavior; for faster growth
rates (i.e., a3v/B > 100) the crack-like solution can be used to describe
this phenomenon. Moreover, the results are consistent with our earlier dis-
cussion of the relaxation time of surface, self-diffusion for the axisymmetric

void, in which we have suggested a3v/B = 24 as representative in separating

the two limiting cases.
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5. Rigid Grain Model and Stress vs. Growth Speed Relations

As discussed in Section 2, the grains can be assumed to separéte rigidly
as atoms diffuse into the grain boundary ahead of the void tip. Recall that
elastic effects in the grains may be neglected under most circumstances since
the elastic relaxation time is much shorter than any representative time of
the void growth process. In this section, using the figid grain assumption
the relationship between void gfowth and applied stress will ke explored for
each of the void shapes considered in Section 4 (i.e. equilibrium, self similar,
and crack-like) and in both two and three dimensions. |

5.1 Long Cylindrical Void

In order to model the growth of voids on a grain boundary transverse to
an applied stress, consider a very large crystal with a periodic array of
'symmetric, cylindrical voids of length 2a and center to center spacing 2b
‘located on a planar grain boundary as shown in Fig. 6a. A uniform stress o_
is applied perpendicular to the graih boundary and at a distance large compared
| to 2b.
| The differential equation governing the normal stress o(x) at the grain
boundary is given by equation‘(g) and is to be solved subject to the rigid grain
assumption that the boundary thickening rate is independent of x. The boundary
conditions are that the stress o, and its gradient 0; are specified at

x = a, and that the flux J and hence the derivative 90/9x, vanishes at

b?
x = b.
These conditions require that
38/3t = (DbiQ/kT)o;/(b-a) (57)
and that the stress distribution be given by
o =0 + 0 (x-a)l-(x-a)/2(b-a)] . (58)

We regard the average remotely applied stress, o_, as being specified and this

is given by



b '
J odx = (1 -d) g, + Q1 - d)2 boo/3 (59)

where d = a/b.

Recalling now that o and o; are expressed, in general, as functionals
of the growth function a(t), the last equation relates the unknown growth
to o_, regarded.as given. As remarked, it is presently possible to carry
out the analysis only for special cases. Thus, for quasi-equilibrium growth

o, and o; are given by eqs. (20), resulting in

2
3

5 = 1-d Ys sin ¥ .
© d b

2
aQ - a)2 §§3§— F(P) v ' (60)
b°b

where f£(¥) is defined by (19) and reduces to 2¢/3 in the linearized approxi-
mation. Note that the speed v appears only in the last term énd, if we solve

for v,

3QDb¢Sb [0 1-d Ys sin w]

(61)
2d(1-d ) 2KTb2£(¢) d b

v s

we find the ahticipated cut-off stress level below which sintering occurs.
At the other extreme of void growth in the limiting crack-like case,

o and o; are found from eqs. (28) and (29), and the expression for o_ is

o
' . 2y sin (v/2)(1-d) 53, 1/3 ) ‘ b3, 2/3
o = [( + = AQQ-d)\— ] (62)
© B 3 B
b
where we havé introduced the notation
A= Dsaslnbcb . (63)
In this case the speed is related to o_ by
v = (27/60) (/I + 12 - 178/(1-0)° (64)

where "
L = 4o, b/[3y_ sin (v/2)] - (65)




- 27 -

5.2 Axisymmetric Void

Next consider an array of axisymmetric voids of radius a with average
center to center spacing 2b located on a planar grain boundary as shown in
Fig. 6b. As in the case of long cylindrical voids a uniform stress o¢_ is
applied transverse to and far from the gféin boundary. The stress distribution
is to be determined by solution of equation (9) subject to the given values

1 .
%, and o, at r=a and to zero flux, 9¢/9r = 0, at r = b. Hence there

results
36/3t = 2(nbabn/wr)c;a/(b2 - a?) (66)
and the stress distribution is
o = o + [ag /(1 - a2/b7)Ilealr/a) - (=7 - a®)/2p%Y . (67)

The normal stress in the grain boundary can now be related to the applied stress

o, through

b '
g = —55- I . 2mo dr = (1 - d2)o + (1 - d2)2 Qbo /3 (68)
® b a ° °

where, again, d = a/b and the function Q = Q(d) is defined by
= [3d/Q2 - a®)%1en(27d) - (3 - %) - a®)/w] . . (89)

This function is evaluated in Table IV. We note that Q is not strongly
variable over an appreciabie range of d values; for example, it lies between
approximately 0.5 and 0.65 for all values of d > 0.1 (i.e., for voidage in
excess of 1% of the grain boundary area).

]
For quasi-equilibrium void growth % and o, are given by (24) so that

2 Y sin ¢
- 1-4 2 ka

h(y)v (70)

where h(y) is defined by (23) and reduces to 3y/8 upon linearization. Thus

the growth rate is given by
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30D, .6 2y sin ¥

2d(1-d2)2QKTbh(y)

under these conditions.

t
On the other hand, for growth at the crack-like limit o, and o, are

given by eqs. (28) and (29) so that

. 2 1/3 2/3
2y_ sin ($/2)(1-4d°) 3 3
c = —=2 {(va) + %-A(l - a%) (9§1> } . (72)

o b
This can be solved for v to give

172 _ 153,981 - a3 (73)

v = (27/64)(B/b3a3)[ (1 + Qza)
where I has been defined in (65) and A in (63).

5.3 Comparisons Based on the Similarity Solution

The similarity solution provides, at the price of linearization, a means
of interpolating approximately between the quasi-equilibrium and crack-like
1imitinglcases. Our discussion here is limited to the axisymmetric model;

a Sc.M. thesis by Kagawa [l2j may be consulted for a somewhat analogous dis-
cussion based on the long cylindrical void model.

To compare the above equilibrium and crack-like solutions ﬁith the

similarity solution, we make the definitions

8 [o“/(l - d2)]/[2ys sin 9$/a] , and (74)

o = [Q1 - d2)Q(d)/d](Dsss/Db6b) ) (75)

Observe that o_/(1 - d2) is the average stress on the unvoided portion of the
grain boundary, so that 8 is this stress normalized by the stress which just

- prevents sintering of an equilibrium-shaped void of radius a. The part of the
parameter p that depends on d(= a/b) is given in the last line of Table IV;
additi;nally, p is proportional to what has been defined as 4 in'(63). With

these notations, the quasi-equilibrium solution (70) becomes
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s =1+ [h(9)/3 sin y] p(a3v/B) ; (76a)
and upon linearization
s =1+ (1/8) p(asv/B) ; (76b)

the crack-like solution (72) is

/3

s = [sin (¥/2)/sin pILEW/BY/3 + (2/3) 0(Pw/B)?/3) (77a)
whereupon linearization gives
s = (1/2)@w/B) 3 + (1/3) p3wBY?/3 . (77b)

For the similarity solution, o, and c; are determined by eqs. (53)
and (54), and the results are inserted into (68) to solve for o, In terms

of the. linearized version of the stress measure s,
_ " 2 m " -
s = (L/2)[-g n (£ ) + 1] + (1/3)ol-E n (E)- € n (E)) - 1] (782

where it is recalled that 52 = uasv/B and, further, that a and v vary

1/4 -3/4 so that a°v is constant.

during the growth process as t and t
This featﬁre requires that o_ have a rather artificial variation with time

in order to be consistent with the presumed growth history. However, our

interest in the similarity solution is only in formulating a reasonable pro-

‘cedure for extrapolating between the quasi-equilibrium and crack-like limiting
cases.

The results are shown in Fig. 7 where the similarity solution and the two
limiting éases are plotted for p =1 and p = 10. It is seen that the similarity
solution approximates the equilibrium solution for low values of void growth and
the crack-like solution for higher vélues of void growth. For both p =1 and
p = 10, the éimilarity solution can be thought of as a transition between the

slower growing quasi-equilibrium solution and the faster growing crack-like

solution for values of (aav/B) between 10 and 30. Note that this range of
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values for (a3v/B) is consistent with that found from a consideration of
relaxation times, namely a3v/B * 24 at transitionm.

5.4 Conditions for Applicability of the Quasi-equilibrium and Crack-like Models

The solutions given in equations (76a) and (77a) are based on the assump-
tions that the voids grow with either a quasi-equilibrium shape or a crack-like
shape, respectiyely. To check the consistency of these assumptions we must
verify that the speeds v predicted are appropriate for the given mode of
growth. Thus based on our conclusions from Fig. 7, a3v/B < 10 implies growth
in the quasi-equilibrium mode and a3v/B > 30 implies the crack-like ﬁode.
These inequalities translate directly into inequalities on stress, since by

(70) and (72) o_ is a monotonic function of v.

i

(o]

Choosing the representative value ¢ = 75° (Table III) equation (76a)

for the quasi-equilibrium mode becomes

s =1+ 0.237p (asv/B) (79a)
-3

and equation (77a) for the crack-like mode is '

*

1/3 + 0.420p (asv/B)2/3 .

s = 0.630 (a’v/B) (79b)
Figure 8 shows a plot of eqs. (79a) and (79b) for several values of p. We

expect that a more general solution to the problem would agree with the quasi-
equilibrium solution for low values of asv/B making a transition between that
solution and the crack-like solution near aav/B = 24. Using the value a3v/B = 10
in eq. (7éa),.the quasi-equilibrium mode is predicted when

s <1+ 2.37p (80a)

for the crack-like mode to be effective a3v/B > 30, hence
s> 1.96 + 4.06 p (80b)

implies the crack-like mode of growth.
To appreciate the restrictions involved, observe that over the range

. 0.1 <d < 0.5 it is reasonable to make the approximations (1 - d2) 0.9 and
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p 2 0.55 A/d. Thus growth occurs in the equilibrium mode when

g, < l.Q(Ys/a) (1 + 1.34/4) (8la)
and in the crack-like mode when

0, > 3.5(y /a)(1 + 1.24/d) (81b)

The quantity Ys/a is typically of the order of 1 HN/m2 (140 psi); for
example, this number follows if Y 1.5 N/m and a = 1.5 yum. Thus for a

. given stress level, cavity growth in the quasi-equilibrium mode is favored

when surface diffusion is much more rapid than grain boundary diffusion (i.e.,
when A is large), and also in the early stage of growth when the void radius

a and the ratio d of the diameter to spacing are small. Conversely, the crack-
like mode is favored when A is small, and in the later stages of growtﬁ when

a and 4 are large.

Consider, for exémple, a stress level of 20 HN/m2 applied across a grain
boundary in a material with Y = 1.5 N/m, containing voids of 3 um diameter
and 12 um center-to-center spacing; this corresponds to d = 1/4, i.e.,
approximately a 6% voidage by area of the boundary. Under these conditions
the void would grow in a quasi-equilibrium mode if A > 2.0, and a crack-like
mode if A < 0.9. Intermediate values of A would fit neither limiting case.
When the same void has enlarged to 6 um diameter, growth would be in the
quasi-equilibrium mode if A > 7.8 and in the crack-like mode if A < 4.3,
Finally, if we consider again the initial 3 um void diameter, d = 0.25,
we find that growth would occur at quasi-equilibrium conditions at all stress
levels up to 100 MN/m2 if A > 10; on the other hand, any stress in excess of
10 MN/m2 would cause crack-like growth if A < 0.38.

Tables I and II have been prepared on the basis of what we think to be

representative surface diffusion values, estimated for the temperatures shown
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with a minimum of extrapolation from measured data. The entries in Table II
show that A values can cover an extremely wide range and that in most cases
A exceeds unity, sometimes substantially. Hence it will normally be the case
at moderate stress levels that quasi-equilibrium or mixed conditions dominate,
with crack-like conditions emerging only towards the end of growth, if at all.
However, it is well to remember that Ds values for a given material and
temperature can vary by several orders of magnitude [lB]land that results

seem to be sensitive to impurities and, of course, the environment.with which
.the surface makes contact. Thus, we are led to believe that very low A
values could sometimes result, and in such cases crack-like growth would occur
over a wide range of stress levels and void sizes.

5.5 Rupture Time

We define a rupture time t, as the time for a void to grow from some

initial raidus a, to the limiting radius b, at which there is coalescence.

0f course, in practical cases the time required to nucleate voids is an important
component of the overall rupture time (see Raj and Ashby, [8]). By using the
results of previous subsections, we have approximate means of solving for the
speed v of cavity growth as a function of stress o_ and radius a. For
example, eqs. (71) and (73), when used in conjunction with the guidelines of

thé last two subsections as to which case applies, provide this relation for

the axisymmetric void model. The rupture time tr is then given by

b .
tr = Ja W . (82)

5.5.1 Growth in Crack-Like Mode

Recall that growth occurs in this mode when the inequalities (79b) or (80b)

are met. The rupture time when all growth occurs in this mode is, -for the

axisymmetric void,
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4.3 (1 2.3 3 .
64 b A (1-u“)"[Q(u) 1 du
r 27 ——ﬁ—'J (83)

t = =
a_ {[1+Qw)za1/2-1)°

where do = ao/b and where the stress measure I is defined by (65) and the
function Q(d) by (69). This integral cannot be carried out in closed form.
However, by inspection of Table IV it is seen that Q is not strongly variable
for d > 0.1 and it suffices to use an average value Q * 0.6 in the integral.
Indeed the integrand becomes independent of Q when IA is very small, and
depends on the 3/2 power of Q when IA is very large. Thus the replacement

of Q by Q is not critical when d° > 0.1 and there results

3
t_ = 0.234 X H(d ) . (84)
T [(1+o sz /2 }

where the function H(d) is

1 2.3
H(d ) = (35/16) J (1-u®)” du
° d , (85)
= (l-do)[l-do(l+d°)(19-16d°+5d°)/16]

The expression for tr has two limiting ranges. First if 0.6IA < 0.5,

""it is suitable to write (li»x)l/2 =1 + x/2 and thus (84) becomes
t = 8.67(b*/B)H(d )/T°
r o
y,_ .3 . 3
= 3.66(b /B)(Ys/bow) H(do)31n (yv/2) (86)

where (65) for I is used. Thus in this limiting case the rupture time varies
as 0;3. Further, the result is independent of A, and hence of Db’ so that
the rupture lifetime in this limit is controlled by the rate of surface diffusion;
i.e., t. is inversely proportional to Ds (note that B is proportional to
Ds). Of course, the inequality that must be mef for validity of this limit,

o

namely 0.6ZA < 0.5, implies that A is small. Specifically, when ¢ = 757,

the restriction on A is

A< 0.4 ys/bo°° . (87)

Hence, if we take Yo T 1.5 N/m and b = 6 um as previously, we find that
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the restriction, for validity of the inverse cube relation, is A < 0.02 when
o, =5 MN/m2, A < 0.005 when o, = 20 MN/m2, A < 0.001 when o_ = 100 MN/m2.
All these combinations of o, and 4 values'would, generally, be sufficient
to meet the basic inequalities cited earlier for validity of the crack-like
growth model. However, it is rarely, if ever, the case that such smali A
values occur (see the discussion at the end of subsection 5.4) and thus a 0;3
law should not frequently be observed. We discuss work by Goods and Nix [19,20]
on silver subsequently; in that case the data on t. is well fit by an inverse

cube law.

The other limiting case is when 0.6IA > 100. It is then appropriate to

write (lwz)l/2 -1-= xl/2 and thus (84) becomes
t_ = 0.503(b"/BIH(A_)(a/5)/?
[o]
= 0.327(6*/B) (v a/bo_)*/PH(a ) sin®2(v/2) (88) °

Now the rupture time varies as the inverse 3/2 power of stress. Further,

3/

material parameters enter in the form A 2/B so that t. is controlled by

the speed of both sﬁrface and grain boundary diffusion, and is inversely propor-
3/2/Di/2' o

tional to Db Again setting ¢ = 757, the restriction on A for

validity of this limiting form is
89
A > 76 ys/bo°° . ( )’.

Again taking Y = 1.5 N/m, b =6 um, the inequality reads A > 4 for §w4=
5MN/m2, A>1 for o =20 MN/mz, and 4 > 0.2 for o_ = 100 MN/mQ. From
Table II énd what has been said earlier, those restrictions on A will typically,
although n;t always, be met. Hence, if the applied stress is high enough so

that the inequalities (80b) or (81b) ensuring a crack-like growth mode are met ,

3/2

it is to be expected that the rupture lifetime will follow a o; law. This

- seems consistent with results on a copper bi-crystal specimen reported by Raj [21].
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For the 2-D long cylindrical void model v is given by (64), assuming

‘that conditions for crack-like growth are met. The integral (82) for tr can

be done exactly in this case and we find
: 4 3
tr = 0.593 ‘b'T (l-do)u —%’2—} . (90)
. (+za)'“1 ] - , ,
This is similar to the above result for an axisymmetric void, and exhibits
similar limiting stress exponents for tr.

5.5.2 - Growth in Quasi-Equilibrium and Mixed Modes

Again consider the axisymmetric geometry. When the inequalities (80a)
or (8la) are met (i.e., for low o_ or large 4/d), growth in the quasi-
eQuilibrium mode is insured and v is given by (71). The rupture time is

calculated from (82) as

3 1 2,2
+ = 2KTb h(p) J u(l-u”)"Q(u)du ) (91)

989, Jg_ 1-20(1-uAAdly_sink/o_b]

The denominator in the integrand equals 1-1/s, where s as defined inl(‘7#)
is the ratio of the applied stress to that which just equilibrates the void
against sintering. Hence, when s >> 1 the denominator can be replaced by
ﬁnity and there results, when Q is given an average value of 0.6 as is
approﬁriate when d > 0.1,
t_ = 0.067 kT bh(y)(1-a>)%/ap 6. 0_ . (92)
T o b b=
Hence the lifetime is inversely proportional to o and to Db' Thi§ expres-
sion must be used with care, however, because the condition s >> 1 will be in-
consistent with the basic inequality of (80a), which must be met for validity
of the quasi-equilibrium model, unless p * 0.554/d >> 1. When s is not
large, an approximate procedure which slightly underestimates the rupture
time is provided by evaluating the denoﬁinator in the integrand at its lower

limit. This is equivalent to replacing
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2 . ,
o, by ¢ - 2(l-d°) Y, sin w/bd°

in the expression for tr.

To assess the error involved when rupture time is estimated by the quasi-
equilibrium model, but when the crack-like model is the more appropriate, we
calculate fhe ratio of the rupture time prediction of (82) to that of (78),
noting that the latter is appropriate for the crack-like model at representa-
tive stress levels (say, 10 to 100 MN/m2) if A 1is of the order of unity

© and 4 = 0.25,
[o]

or larger. Thus, evaluating the expressions for ¢ = 75
we find

(t) /() 1/2

r’quasi-equil’ ‘“r’crack-like - o'u7(°»b/YsA)

(93)

Suppose that Y = 1.5N/m and b = 6 um as previously. Then for A =1
and stresses o_ between 10 and 100 MN/m2 (well beyond typical stress
levels for validitonf the quasi-equilibrium model), the above rupture time
ratio ranges from approximately 3 to .9, and there is significant error.
Of course, larger A values diminish ;he error, in proportion to A_l/2.
It may frequently happen that the early stages of void growth are best
described by a quasi-equilibrium model and the later stages by a crack-like
model. To estimate an a/b ratio, say dl’ at which the description of

growth should change from quasi-equilibrium to crack-like, take the average

of eqs. (80a) and (80b) so that
s =1.5+ 3.2 (su)

or approximately, for 0.1 < dl < 0.5,

o b/yg = (2.6/d°)(l+1.2A/dl) . (95)
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Choosing several representative values for 4, Fig. 9 shows the regions in
which each mode prevails. As expected, for lower values of A, the crack-
like mode of growth prevails at lower stress levels, and conversely. To
estimate rupture time assuming a process in which both modes are active,
use equation (82) to obtain the time for the quasi-equilibrium portion of

. 2,3 . 2.3 2.3 .
growth by replacing (l—do) with [(l—do) - (l-dl) J, and to this add
the result of equation (84) for the time spent in crack-like growth, replac-

ing H(do) by H(dl) in that equation.
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6. Discussion of Experimental Results

Raj [21] has recently reported results of elevated temperature fracture
experiments on copper bicrystal specimens containing silica and copper oxide
partiéles along a grain boundary oriented perpendicular to the directioﬂ of
tensile loadiné. of fhe 12 specimens studied, Raj observed that 4 failed
entirely‘or in part by the plastic-flow induced growth of holes, initiated
at silica particles, and 2 failed due to "incompatibility of the matrix siip
at the grain boundary." The remaining 6 specimens, for which the results
are summarized in Table V, were reported to have failed by cavity growth through
diffusional transport. These cavities did not initiate at the silica particles
but rather at more distantly spaced copper-oxide particles, and evidence was
presented to show that the voids formed very early in the deformation history.

The first two columns of Table V correspond to Raj's system for identify-
ing the specimens; the next columns give the applied stress (labelled g, here)z
the temperature, one-half of the reported center-to-center spacing of the rupture
cavities on the fractured grain boundary (i.e., the distance referred to as b
here), and the observed time to rupture.

Comparison with theory is hindered by the lack of experimental data on Db

for Cu. The numbers listed in Table I for D and Qb in this case are

bo
merely estimates by Raj [21], based on analogy with other metals, but no measure-
ment has been reported and these values may be subject to substantial errors.

The surface diffusivity results, however, do result from measurements at tem-
peratures just slightly above 750°¢C by Bonzel and Gjostein, reported in [18],

and are consistent with results for other fcc metals, except Ag, when Ds is
plotted following Gjostein against Tm/Ti-(e.g., Fig. 17 of [18]). From these

results for Ds we compute an "average' value of the dimensionless speed

parameter aav/B by setting a = b/2 and evaluating v as b/(tr)obs’
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where (tr)obs is the observed rupture time in Table V. Thus

3 - U
avg(a v/B) = b /eB(tr)obs .

Calculating B from eq. (5) and the data in Tables I and III, we show this
avérage in the third to last column of Table V. The numbers are all large

and suggest that the inequality asv/B >> 24, ensuring growth in the crack-
like mode, is met for all specimens excépt for B7 and perhaps Bl. Thus,
for all but these two specimens, the rupture times should be given by eq. (84).
All the quantities which enter this expression for t, are available to us

except for A, eq. (63), which depends on D In view of the uncertainty

b*
in Db we have adopted two approaches. First, we have attempted to fit the
results for the cases of large avg(aav/B) in Table V with a single value
of A, taken as the same for all cases. We find that it is possible to bring

the calculated rupture time, (t_ ) into reasonably close agreement with

r’calc’
the experimental results by taking A = 0.5; this is shown by the second to
last column of Table V where we list the ratios of calculated to observed times.
The calculations have been based on d° = 0.1. Raj does not report initial
cavity (i.e., oxide particle) sizes but the calculation is not very sensitive
to do’ The value of 0.5 inferred for A 1is also consistent from the stand-
point of the inequality (80b), which should be met since the observed growth
seems to be in a crack-like mode. For example, taking b = 12 um as representa:
tive and Yg from Table III, we find from (8la) and (81b) that when a = b/u4,
the crack-like growth mode is ensured when o_ > 6.9 MN/m2 whereas the quasi-
equilibrium mode can occur only when o_ < 2.8 MN/m2. Further, as a increases
to b/2, the crack-like mode is ensured when o > 2.3 MN/m2 whereas the quasi
gquilibrium mode can occur only when o_ < 1.3 MN/m2. Thus the adopted value of

A is consistent with a crack-like growth mode being produced for all but the

lowest stress levels in Table V (i.e., all but specimen Bl and perhaps B7).




- 30 -

The second approach is to adopt Raj's estimate of Db’ i.e. to use the
values of Dbo and Qb in Table I. Then one calculates that A varies with
T, the results being A = 0.72 (600°C), 1.09 (650°C), 1.58 (700°C), and
2.22 (750°C). These values for A have been used in calculating, frém (84),
the rupture times, shown in ratio to the observed times, in the last column of
Table V. The agreement is less good but perhaps reasonable in view df uncer-
tainties in material parameters. The large values of A are, however, consis-
tent with a crack-like mode of growth at the stress levels of the experiments
only when a is gréater than about b/2. Thus it may perhaps be the case that
in the temperature range of the experiments Db values are a factor of two to
three times larger than predicted on the basis of Raj's estimates; such larger .. _
Db values (and hence smaller A values) seem to give a consistent explanation
of the results.

Goods and Nix [19] and Gooeds [20] have presented creep failure resﬁlts on
polycrystalline silver with water vapor bubbles of 1 um diameter spaced approxi--
mately 10 um apart along grain boundaries. As they point out, based on a
privately communicated version of our result in eq. (90) for crack-like growth
of the long cylindrical void, the low stress, low A, 1limit of the crack-like
model, with tr‘ 0;3, fits their data very well over the temperature range
examined (200°C to 550°C). Further, as Goods and Nix [19] comment based on
their own studies, the result for crack-like axisymmetric cavity growth is
not very different; e.g., compare (84) and (90). By rapidly cooling a speci-
men immediatély after fracture, so that there is no time for surface diffusion
to round-out the cavities, these authors also observe that the cavities are
flat and crack-like.

As Goods and Nix discuss, however, the difficulty of a direct interpreta-

tion of their results in terms of an inverse-cube expression like (86) for t,
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is that this expression is valid only when A << 1 (see the discussion in sub-
section 5.4) for stress levels in the range of approximately 5 to 80 MN/m2
as in their experiments. But the values for Ds and Db in Table I lead

to A =300 for T = 400°C, a middle-range temperature for their experi-
ments,‘and a & value of this magnitude is inconsistent with crack-like growth.
Rather than the Dso and Qs valﬁés in Table I, Goods and Nix use Qs =

20 kcal/mol (8u4kJ/mol) (they do not report'a DSo value), &ttributing this
value to a study by Gall, Gruzin, and Yudina, but they also conclude that

based on Db values for Ag, A is too large to justify the inverse cube rela-

tion. Goods and Nix speculate that some segregant, possibly oxygen or hydrogen,

at the grain boundaries could greatly enhance the transport there, giving rise

to a much lower A which would be consistent with the observed créck-like-
cavity shape.

| In any event, for sufficiently small A (i.e., less than approxim&tely
0.001 for the range of stresses in their experiments) the expression (84) for
tr becomes independent of A and reduces to (86). Using the value of Qs -
noted above, Goods and Nix show that this expression predicts reasonably the

dependence of tr on o, T and b over the range examined.
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5. Conclusion

We have shown how non-equilibrium aspects of surface diffusion can affect
the creep cavitation process. Tﬁe discussion is organized around two limiting
cases: the quasi-equilibrium and the crack-like mode of cavity growth. Further,
by recourse to characteristic relaxation time estimates, and to a self-similar
solution for cavity growth within the linearized theory, we have shown when one
model or the other applies and how to interpolate between them. More quantita-
tive guidelines are given in Section 5 but, essentially, the quasi-equilibrium
mode is favored when the stress level is low, when the cavity diameter and
ratio of diameter to spacing is small, and when the parameter A, giving the
ratio of surface to grain boundary diffusivities, is large; the crack-like mode
is favored at high stresses, larger diameters, and small A. The parameter |
asv/B is identified as a proper dimensionleés measure of speed, in order to
ascertain whether the cavity is more nearly of quasi-equilibrium or crack-like
shape.

The relation of applied stress to cavity growfh rate is different accord-
ing to the cavity shape. These relations and expressions for the rupture time'
are developed in Section 5. While uncertainties remain due.to the lack of
definitive surface and grain boundary diffusion data, the experimental results
of Raj [21] on Cu bicrystals, and of Goods and Nix [19,20] on Ag poly-
crystals with grain boundary water vapor bubbles, exhibit features that seem
consistent with our rupture time predictions based on the crack-like mode of

growth.
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Appendix: Characteristic Relaxation Times for Matter Transport

In order to determine the conditions for which self-diffusion along the
surface of the void and along the grain boundary ahead of the void are the
only significant mechanisms of matter transport, it is useful to compare the
characteristic relaxation time for each mode of transport which results from
a periodic disturbance. Mullins [10,14] derived characteristic times for the
flattening of a periodic, two-dimensional free sﬁrface; the extension to
three dimensions (Section Al), as well as an examination of the characteristic
relaxation time for grain boundary self-diffusion (Section A2) are presented
here. In addition, the rigid grain assumption is examined in Section A3.

Al. Mass Transport at a Surface

Indeed, there are several mechanisms which may contribute to the process
of mass transport at a surface: namely, surface self-diffuéion, lattice
self-diffusion, and evaporation-condensation. To calculate characteristic
relaxation times for these processes, consider a semi-infinite, isotropic

solid occupying the half-space z > w , where w is a surface given by

wix,y,t) = A(t) exp [2mi(x/2 + y/L)] (Al)

with 2 and L being the wavelengths of the periodic disturbance in the x
and y directions respectively, and A(t) taken to be much smaller than both
£ and L.

Conservation of mass at the surface requires that
a(Js)x/ax + B(Js)y/ay +J, + 46 = (1/2)(3w/3t) (A2)

where (Js)x and (Js)y are surface fluxes, Jz is the lattice flux in the
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z direction and A6 = 6 - eo where eo is the rate of evaporation from a
flat surface. In linear diffusion theory the fluxes in equation (A2) are
given by

(Js)x,y = -(DSGS/QkT) u/dx,3y , J = -(DL/QkT) du/oz (A3)

where Dz is the coefficient of lattice diffusion.
For a free surface, the chemical potential is given by Eq.(2). Since

the slope of the surface is everywhere small,
1

_ 2 A
(“)surface =u, - Qyc wix,y,t) (AY)

2
where c = (21:/2.)2 + (21r/L)2 . Following Mullins [14] and Herring [27] if -
we assume that the flow within the crystal is essentially divergenceless ’
(short relaxation time for attainment of local vacancy equilibrium), then u

must satisfy Laplace's equation, and

M= - stc2 exp(-cz)w(x,y,t). (AS5)

To complete the analysis of equation (A2), we again follow Mullins [14]
and consider the matter transport which results from the process of evapora-
tion-condensation. From kinetic theory [25], the flux from the surface can

be approximated by
26 = Ap/(2mmkT)/2 (A6)
where Ap = p - P, > P being the vapor pressure at the surface, Py the -

pressure at a reference state, and m is the mass of a molecule. Presuming

the surface to be in equilibrium with its own vapor at this pressure p, that

the vapor is a perfect gas, and that p 1is close to P,
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LR S kT(Ap/po). (A7)

Equating the chemical potential of the solid phase (A4) to that of the vapor
phase (A7) at the surface, with both referred to the same reference state,

implies that
2
Ap/po = -(stc /kT) wix,y,t) .
Therefore, equation (AS5) becomes

1/2

86 = -Lp 2v_c/(2m) Y2 (k1)%/27 w(x,y,t) (A8)

Substitution of equations (A3), (A5) and (A8) into equation (A2) leads to a

differential equation for the amplitude of the disturbance as

y 3 2
[ ] -
A'(t) + (Fsc + cm + Pvc ) A(t) =0 (A9)
where
Fs = DSGSQYS/RT
Fz = DZQYs/kT
and

- 2 1/2 3/2
F,=p0 Ys/[(2ﬂm) (k)71
Solution of equation (A9) gives the shape of the free surface as

w(x,y,t) = aoexp[—(Fscu + chs + Fvcz)t] exp[2ni(x/2 + y/L)]; (A1l0)

'indeed, each of the terms in the first exponential of equation (Al0) gives

the contributions to the flattening of the periodic surface by surface self-
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diffusion, lattice self-diffusion and evaporation-condensation, respectively.
From equation (Al0) it is seen that the characteristic relaxation time for

each mode of transport is given by
I
T, = (kT/DSGSQYs)(l/c ) (Al1l)
for surface self-diffusion,
3
T, = (KI/D 2y )(1/c”) (A12)
for lattice self-diffusion, and

r, = [2m20m)> 2 p 0y 11se?) )

for evaporation-condensation.
An estimate of the contribution to the total atom flux on a free surface
for each of these mechanisms can be made by examining the ratios of the charac-

teristic relaxation times. Equations (All) and (Al2) imply that

TS/TZ = (Dl/Dsas)(l/c) . (A14)

Assuming the wavelengths of the disturbance to be the same in the x and y

directions (i.e. 2 =L = 1) , equation (Al4) reduces to

AN (DQ/DSGS)(A/2\5-W). (A15)

Similarly, equations (All) and (Al3) imply that

t /7, = {p @/Ip_5_(2mmkm)}/?13(1/¢%) (A16)
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or for £ =L = A

1/2

v /T, = {p 8/[2D_5_(2mkT) /21}(a/2m)? ©(A17)

If.'Ts/Tz <<1 and TS/TV'<< 1 for a given A , surface diffusion can be
expected to be the dominant mechanism of matter transport for ffee surface
disturbances of wavelength less than A . For some common metals, Table II lists
values of Amax for these ratios of relaxation times equal to 0.l1l. These
maximum wavelengths are all within reasonable bounds for the consideration

of intergranular voids. Hence it can be concluded that surface self-diffusion

is the only mechanism which need be considered for the temperatures of in-
terest in this study.

A2. Matter Tramsport in the Grain Boundary

A similar analysis will be pursued in order to study the dominant mode
of mass transport at the grain boundary. Consider a local grain boundary
thickening 6 and its associated normal stress distribution o, on tpe grain
interfacg produced by placing matter selectively along the grain boundary.
Genefélizing Weertman's [26] 2-dimensional analysis, the grain interface. can
be modelled asAthe surface of a semi-infinite, isotropic, linear elastic
solid occupying the half-space z 3 0 . If the stresses at the surface are
of the form |

o, = 0,, = B(t) exp[2mi(x/2 + y/L)] (A18)

and

the linear elastic solution (Fung [28]) gives a grain boundary thickening
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§ = -2(l-v)0n/Gc | (A19)

where c2 = (2w/2,)2 + (21:/L)2 , and [(1-v)/GIB(t) is assumed much smaller
than 1; G is the elastic shear modulus and v the Poisson ratio.

Mass transport at the grain boundary can result from either grain bound-
ary or lattice diffusion; hence conservation of mass at the grain boundary

requires that
a(Jb)x/ax + a(Jb)y/ay + 2(Jz)'= -(1/R)(36/3t) (A20)

where (Jb)x and (Jb)y are the grain boundary fluxes in the. x and y
directions respectively, Jz is the lattice flux in the =z direction and
36/3t 1is the grain boﬁndary thickening rate. As before, the fluxes can be
related to the chemical potential through the following relations

(Jb)x,y = -(Dbdb/ﬂkT) du/3x,9y, Jz = -(Dz/ﬂkT)au/az . (A21)

By an argument similar to that in Section Al, the chemical potential through-

out the entire crystal is found to be

M= - ﬂonexp(-cz) . (A22)

Substitution of equations (A21), (A22), (A1l8) and (Al9) into equation (A20),
leads to a first order linear ordinary differential equation for B(t). Solu-
tion of this equation reveals the characteristic relaxation time for grain

boundary diffusion to be

t, = [2(1-v)/6] (kT/DbébQ)(l/és) (A23)
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and the characteristic relaxation time for lattice self-diffusion to be
T, = [(1—v)/e](kT/D£9)(1/c2) . (A24)
Comparing these relaxation times shows that

Tb/TZ = 2(D£/Db§b)(l/C) (A25)

or for £ =L =)

T, /1, = (D, /D 8, )(A/V2 1) . (A26)

If Tb/tl <<1 for a given 1A , grain boundary diffﬁsion will be the domi-
nant mechanism of matter transport near grain boundary disturbances:of wave-
length less than A . Table II gives Amax for some common metals with
Tb/Tz = .1 ; it is seen that for these metals grain boundary diffugion is
expected to be the dominant mechanism of matter transport.

A3. Elastic Effect

Appropriateness of the rigid grain assumption will be examined by com-
paring the (elastic) relaxation time of the grain boundary with a time which
is computed on the basis of the rigid grain assumption. From the analysis

in Section 5 which is based on a rigid grain model, equation (61) says that

\4 =(Db6b9/kT)[l/a(b—a)]onet

where v is the void growth rate for the two-dimensional equilibrium con-
figuration, and % et is the net section stress. A representative time T

based on this model can be defined as

T, = (b-a)/v = (1/o__ )(KT/D, 8, )a(b-a)"] . (a27)

From equation (A23) for the (elastic) grain boundary relaxation time
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Tb/Tr s [(b-a)/a](onet/G) . (A28)

Since the net section stress is much smaller than the shear modulus,
tb.<< t_: thus effects resulting from elastic deformation become neglibibly
small after a time which is short in comparison with that for which the pro-

cess of void growth is active.




Material Properties of Some Common Metals

Table 1 (1).
Metals Ag Cu aFe YFe Ni Zn
T (%) [(22] 1234 1356 1809 1809 1726 69u
3 29
a(m’).x 10 (23] 1.706 1.181 1.177 1.177 1.094 1.524
25
m(kg) x 10 [22] 1.79 1.06 0.93 0.93 0.97 1.09
E(Pa) x 10710 [22] 7.58 12.40 19.60 19.6 20.70 3.70
v [22] 0.38 0.35 0.28 0.28 0.31 0.43
(i1)
2 -6 -2 -2 -6
D, (" /sec) (18] 4.5 x 10 3.4 x 10 10.0 0.4 2.85 x 10 9.4 x 10 \
o
&
0, (keal/mol) 11.7 38.2 55.6 49.0 37.7 + 3.8 6.7 !
Temperature ., 4¥70° - 770° 1070° - 1180° 1020° - .1370° 17¢° - 1370° 885° - 11107 3uc® - us0°
Interval ( K)
@ii)
Dbo(mzlsec) (221 1.2 x 107° 107 (vit) 2.5 x 107" 3.4 x 107" 1.75 x 1078 | 2.2 x 107°
H “ .
Q (keal/mol) ) 21.5 24,8 (vii) 40.0 39.0 28.2 ¢ 2 14.3
i
Temperature _ 623° - 753° - 803° - 923° 1101° - 1287°  [1123° - 13739 3ue® - u33®
Interval (TK) : .
- - -4 -5 -4 -5
D, (m/sec)  [22] | 6.7x10 > 7.8 x 107 2.0 x 10 4.9 x 10 1.27 x 10 1.3 x 10
0
60.0 67.86 + 1.45 67.2 21.9
Ql(kcal/mol) 45,2 + 0.2 50.4 t ,2 .
[ o
Temperat ure 912° - 1226° © | 971° - 133° 973° - 1023° 1uu3° - 163u° 1143%-1677°| 513 - 691
Interval (K)



Calculated Values of A and A___ at T = ,5T_and T = .8T
max m m

(
Table II
Metals Ag Cu aFe ] YFe Ni o Zn -_
At T = .5T
m
2 -
a =D /D5 5.72 x 10 7.9 x 1072 3.09 2,051 28,4V 1.30 x 10"
- -6 - - - -
p,(Pa) [22] 5.3 x 1070 3.8 x 10 1077 10”7 7.4 x 10 7 2.6 x 107°
(iv)
A naxtHm) 1.13 x 107 Y 8.1 x 102(4w)| 1.27 x 107 5.96 x 10" 1.31 x 10% V) 5.98 x 10° (1Y)
(for Ts/l’l = ,1) L o
A Cum) 2 2 2 (iv) 3.86 x 102 1.26 x 10
max 8.4 x 10 7.4 2.18 x 10 2.74% x 10
(for Ts/rv =.1)
1 (i) &
4
Max (™) 9.89 x 10° V) 4 5 x 10" 1.89 x 10% L.us x 10% AV 2,31 x 10 (V) 2.30 x 10t IV o
( for ‘bhl = .1)
At T-= .8T) 1.41 x
=121 (iv),(vi i 2 (i
A=D35 /D& 10 (vip 3.2 8.02 x 108 UV 16 x 10t a.6ulV) 2.08 x 102 V)
s s b
. - - - -3
P, ®a) (221} 5 g 4 1072 6.2 x 1072 2.3 x 107" 2.3 x 107" 8.5 x 10 4.1
A (um) (vi)] . 1 2 (3
T e /1 = 1) 1.98 x 10*! 2.6 x 100 [4.67 x 10* Y} 1,16 x 10° 7.89 x 10> V) 1.53 x 102 (V)
(for ARATILER
LY 5.38¢v1) 1.3 x 108 | 1.69 x 10° 1.07 x 10° 4.9 x 10* ¥ 7.0tV
(for rs/tv = .1)
Mpax (v 7.03 (V) 3.8 x 108 |2.91 x 107 (Y] 3,52 x 20t 4.56 3.69 x 1071 (I¥)
(for Tb/Tﬂ. = ,1)




(1)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

Footnotes for Tables I and II

Diffusion parameters were generally chosen so that the temperature ranges for the various types
of diffusion processes would be (a) made to overlap and (b) near as possible to O.STm and/oxr
0.8Tm . Note that in finding the diffusion coefficient (Ds, Db or Dz) extrapolation far out-

side the given temperature may lead to erroneous results.

Note that values for surface diffusion parameters are rather suspect with wide ranges in both the

pre-exponential term Dso and the activation energy Qs'

. - -10
Dbo calculated assuming Gb =5x10 "m.

Calculated on the basis of Table I; values for diffusion parameters, however, are outside the de-

sired temperature range by more than 10%.

Calculated for D__ = .16 x 1072, Q = 47.7 ; 1373 <T < 1523,

1021 | Q_ = §5.3 , 970 < T < 1220,

Calculated for D
so

Estimated in (21]; measurement not available.
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Table III. Values of Yb’ Y and ¢ for Some
Common Metals, from [24]

. . . 4 Y
Material Yb(JE%%E§ ) Y (122%95) ¥ = cos 1.b
s 2y
m m

A8
Au
Cu
Fe

Ni




Values of the function Q(d)

void growth; d = a/b = ratio of cavity diameter to average center-to-

center spacing.
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Table IV

appearing in solution for axisymmetric

4 0 0.01 0.05 0.10 0.20 0.40 0.60 0.80 1.00
Q 0 0.12 0.34 0.48 0.61 0.65 0.61 0.55 0.50
(1<a)q/d| = 11.6 6.78 4.76 2.93 1.36 0.65 0.25 0




Batch
I
1
I1
II1
111

111

Table V. Comparison of Data by Raj [21], on Diffusive-Mode
Fractures of Cu Bicrystals, with Predictions of Crack-1like Model.

Spec

No. o_(mi/m?) TCC)  bm) (£ (s) avgdwm” | ! s IR
BL 1 700 1% 1.60 x 10° 146 5.9 20

B2 13 700 10 4.63 x10° 770 0.6 2.9

B7 s 750 8.5  1.18 x 10° 64 0.4 2.4

B8 10 700 12 7.03 x10° 1052 1.0 4.5

B9 10 650 13 1.98 x 10° w11 1.2 3.2

B10 10 600 13.5 4.31x10° 2336 1.8 2.9

Average value corresponds to a = b/2 ; computed from surface diffusion
N
data of Table I and observed rupture time, using b /SBtr .

¥ calculated from eq. (84) for the crack like model using 4 = 0.1 and
surface diffusion data of Table 1, and assuming 4 = 0.5 in all cases.

t* calculated from eq. (84) as for previous colum, but obtaining A
from the estimate (no measurement available) for D, by Raj [21];
s =0.72 (600°) , 1.09 (650°C), 1.58 (700%), 2.22 (7150%€).
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Figures

(a) Quasi-equilibrium void and (b) crack-like void, each situated
along the grain boundary; w-y denotes the angle between the tan-
gent to the void at the void tip and the x-axis.

Grain boundary thickening 6 which occurs if grains behave (a)
rigidly or (b) elastically.

Axisymmetric void shapes predicted by the similarity solution for
Eo =1, 2, 3 and the quasi-equilibrium solution. :

Axisymmetric void shape predicted by the crack-like and similarity
solutions for (a) £, = 8 and (b) £, = 16 .

Graph of (a) non-dimensionalized curvature (X,) at the void tip
and (b) non-dimensionalized flux at the void tIp, each vs. the non-
dimensionalized void growth rate aS3v/B for the axisymmetric void

‘as computed from the quasi-equilibrium, similarity and crack-like

solutions.

(a) Cross-section of 2-D periodic array of voids along the grain
boundary. (b) View of grain boundary containing axisymmetric
voids with an average center-to-center spacing 2b

Graph of non-dimensionalized stress vs. void growth rate at p = 1

and 10 for the linearized quasi-equilibrium, self-similar, and
crack-like solutionms.

Graph of non-dimensionalized stress vs. void growth rate at several
values of p for the quasi-equilibrium and crack-like solutions
with ¢ = 75° .

Graph of non-dimensionalized stress vs. non-dimensionalized void
radius at which void growth becomes crack-like. Arrows indicate
the direction in which each mode of growth is applicable; similarly
directed arrows can be attached to each curve.
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