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ABSTRACT 

Non-reactive tracer tests i n  prototype hot dry 
rock (HDR) geothermal reservoirs ind ica te  multiple 
f rac ture  flow paths that show i n c r e a s e s  i n  volume 
due t o  energy  e x t r a c t i o n .  Tracer  modal volumes 
cor re la te  roughly v i t h  es t imated  r e s e r v o i r  heat-  
t ransfer  capacity. Chemically reac t ive  t r ace r s  are 
proposed vhich w i l l  map the  rate of advance of  t h e  
cooled reg ion  of  an  HDR r e s e r v o i r ,  providing ad- 
vanced warning of  thermal drawdown. C r i t i c a l  
parameters a r e  examined using a simplified reser- 
v o i r  model f o r  sc reening  purposes. E y d r o l y s i s  
r e a c t i o n s  are a promising class of reactions fo r  
t h i s  purpose. 

INTRODUCTION 

Tracers  have become a u s e f u l  and r e l i a b l e  
d i a g n o s t i c  too l  fo r  determining the  s i z e  and f lu id  
flow charac te r i s t ics  of geothermal r e s e r v o i r s .  l- 
The fundamental premise under ly ing  t h e i r  use is 
that the tracer follows t h e  same f l o v  p a t h s  v i t h  
t h e  same flow f r a c t i o n s  as the injected reservoir 
f luid i t s e l f .  When t h i s  p r i n c i p l e  i s  app l i ed  t o  
steady s t a t e  flow i n  a fractured hot dry rock (BDR) 
geothermal reservoir,  f rac ture  volumes and degree  
of dispersion take on precise meaning.l 

The f i r s t  section of t h i s  paper is an overview 
of  t h e  r e s u l t s  obtained from i n e r t  tracer experi- 
ments performed i n  t h e  EDR geothermal r e s e r v o i r s  
opera ted  a t  Fenton H i l l ,  HM and a t  the  Rosemanowes 
Quarry in Cornwall, U.K. Here ve focus on model- 
independent in format ion  such as f rac ture  volumes 
and dispersive characteristics, and der ive  g e n e r a l  
c o n c l u s i o n s  a b o u t  t h e  b e h a v i o r  o f  f r a c t u r e d  
geothermal reservoirs. Since the l n f o w a t l o n  sup- 
p l i e d  by convent iona l  reservoir tests is probably 
insuf f ic ien t  t o  construct r e l i ab le  reservoir models 
with predictive c a p a b i l i t i t s ,  ve are developing the  
new technique of in jec t ion  of temperature-sensitive 
cbcmica l lp  r e a c t i n g  tr6cers. These tracers vi11 
d i r ec t ly  measure the rate of  coo ldom o f  t h e  rock 
b e t v e e n  t h e  two v e l l b o r e s  o f  a cont inuous  f l o v  
geothermal reservoir. These tests should a l so  be 

kefcrences and I l l u s t r a t ions  a t  end of paper. 
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useful in conventional geothermal reservoirs in 
which reinjection creates the undesirable side ef- 
fect of produced fluid thermal drawdown. The 
second aection of this paper explores the strengths 
and limitations of the reactive tracer concept 
using a simple one-dimensional dispersion model for 
illustrative purposes. The final section is an up- 
date on our ongoing laboratory kinetic atudies 
aimed at identifying reactive tracers suitable for 
different reservoir conditions. 

INERT TRACER ANALYSIS 

Definitions 
1. Residence Time Distribution, E(t): E(t)dt - 
the fraction of the injected fluid which exits the 
system between t and t +  dt. For tracers which 
follow the same flow paths as the reservoir fluid, 
the concentration-time response measured at the 
outlet to a pulse injected at the inlet ia: 

( I )  

where m is the m s s  of tracer injected, and Q 

is the volumetric flow rate of fluid. In this 
paper, we will often refer to the residence time 
distribution (RTD) curve as E(V), where E(V) - 
E(t)/Q. This convention allows us to compare 
directly fracture volumes measured in tracer ex- 
periments at different flow rates. 

2. Modal Volume, d: the volume corresponding to 
the peak of the RTD curve. In flow through frrc- 
tured geothermal reservoirs, 6 most llkely 
represents the volume of low impedance connections 
(AP/Q is small) which follow a direct route from 
inlet to outlet. 

3. Integral Mean Volume, a>: 

P 

e 

In fractured porous media, <V> l a  the void volume 
of all fractures which accept flow, rcgrrdlass of 
their impedance. Since meaaurement of the tail of 
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a d is t r ibu t ion  i s  inaccurate and the curve r u s t  be 
a r b i t r a r i l y  extended t o  i n f i n i t e  volume, the calcu- 
la ted  in tegra l  mean volume should be considered an  
approximate estimate of the e n t i r e  fracture system 
volume. 

4. Width a t  112 Height, wl12: the  width between 
the two points on e i the r  s ide  of  t he  peak for which 
t h e  t r a c e r  response is one-half i t s  peak value. 
This parameter, though de f ined  a r b i t r a r i l y ,  is a 
measure o f  the ou t l e t  dispersion of the main frac- 
t u re  flow paths. By using only t h e  f r o n t  p a r t  of 
t h e  d i s t r i b u t i o n ,  t h i s  approach circumvents the  
problem of the inaccurate t a i l  which decreases  t h e  
u s e f u l n e s s  o f  t h e  v a r i a n c e  a s  a measu re  o f  
dispersion. 

5. E f f e c t i v e  Heat Trans fe r  Sur face  Area, A: a 
single-parameter estimate o f  t h e  h e a t  t r a n s f e r  
c a p a c i t y  o f  a f r ac tu red  reservoir. Assuming plug 
flow up a s ingle  ve r t i ca l ,  rectangular f r a c t u r e  of  
surface area A (on one face of the fracture),  the  
f lu id  temperature within the  f rac ture  dur ing  long- 
term operation is given by:4 

where T, Ti, and Tr are the f lu id ,  i n l e t ,  and 
i n i t i a l  temperatures, Ar and a t he  thermal con- 
d u c t i v i t y  and thermal d i f fus iv i ty  of the rock, p 
and c the  average density and h e a t  c a p a c i t y  of  
t h e  f l u i d ,  and t the  time of operation of the 
reservoir.  The o u t l e t  f l u i d  temperature is ob- 

t h i s  model conveniently describes the  long-term be- 
h a v i o r  o f  a f r a c t u r e d  r e s e r v o i r  w i th  a s i n g l e  
adjustable parameter. 

P 
OP 

ta ined  by s e t t i n g  Z/L - 1. Although ShPl fSt iC,  

Dispersion Pfechanisms 
The ou t l e t  tracer response from a f r a c t u r e d  

g e o t h e r m a l  r e s e r v o i r  i r  a combination of  two 
e f f e c t s :  (1) l a r g e  scale flow h e t e r o g e n e i t i e s  
such as f r a c t u r e s  o f  d i f f e r e n t  s ize  and flow im- 
pedance, and (2) d i s p e r s i o n  r e s u l t i n g  from flow 
t h r o u g h  a ' s i n g l e  f r a c t u r e .  The l a r g e  scale 
heterogeneities w i l l  undoubtedly exe r t  g r e a t e r  in -  
f l uence  an t h e  h e a t  t r a n s f e r  behavior, since the  
positioning of low impedance condu i t s  e f f e c t i v e l y  
d e f i o e s  t h e  a c c e r s i b l e  volume of rock i n  a frac- 
tured reservoir. Indeed, t he  onset and SUbS~qUent 
rate o f  thermal drawdown is probably controlled by 
t h e  s u r f a c e  area o f  t h e  smallest low impedance 
connection. Ffowever, p roper  in te rpre ta t ion  of a 
tracerdetermined BTD curve requires an e v a l u a t i o n  
o f  t h e  magnitude o f  d i s p e r s i o n  w i t h i n  a s i n g l e  
fracture.  

Borne and Rodriguez5 and Robinson and Tester1 
eva lua ted  va r ious  o i a g l e - f r a c t u r e  d i r p e r r i o n  
mechanisms f o r  c o n d i t i o n s  l i k e l y  i n  f r a c t u r e d  
geothermal r e s e r v o i r s .  Table 1 rummarires t h e  
r e s u l t s  Of t h e s e  Studies,  using t he  axla1 disper- 
sion Peclet number (Pe - UL/Defr) as the  parameter 
c h a r a c t e r i z i n g  dispersion. A l a rge  Peclet number 
indicates that the mechanism produces very  l i t t l e  
of  t h e  obrerved o u t l e t  dispersion. The main con- 
clusion from these s t u d i e s  i s  t h a t  t h e  amount of  
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d i s p e r s i o n  produced wi th in  a s i n g l e  f r a c t u r e  is 
small compared with the overa l l  l eve l  of dispersion 
measured i n  BDR reservoi rs  using tracers.  Hulti- 
fractured reservoirs appear t o  be the r u l e  f o r  t h e  
systems tested a t  Fenton H i l l .  

This  c o n c l u s i o n  was c o r r o b o r a t e d  i n  t h e  
r a d i o a c t i v e  8ZBr t racer  experiments a t  Fenton H i l l  
using gamma logging  i n  t h e  production wellbore.  
D i s  t i n c  t concentrat ion-time curves were ident i f ied  
for three e x i t  regions i n  the  production wellbore.  
I n  a series of t racer  tests, we were ab le  t o  iden- 
t i f y  marked changes i n  the i n t e r n a l  flow f i e l d  of 
the reservoir. 

Empirical Correlations 
Despi te  t h e  existence of de ta i led  flow infor- 

mation from t racers ,  flow impedance measurements , 
and downhole logging, no unique reservoir model was 
constructed for  the  latest Fenton B i l l  r e se rvo i r .6  
Trace r s  are u s e f u l  f o r  measuring f rac ture  volume 
and flow f rac t ions ,  bu t  cannot be used e a s i l y  t o  
determine the  d is t r ibu t ion  and or ien ta t ion  of frac- 
t u r e s  i n  space .  I n  f u t u r e  r e s e r v o i r s ,  more 
s o p h i s t i c a t e d  i n j e c t i o n  schemes could be used t o  
improve the technique , such as p re fe ren t i a l  tracer 
i n j e c t i o n  i n t o  a s i n g l e  f r a c t u r e ,  followed by 
monitoring d i f f e ren t  product ion  r eg ions  by gamma 
logging. However, i n  analyzing past  tracer experi- 
men t s  i n  t h e  F e n t o n  B i l l  a n d  Rosemanowes  
r e s e r v ~ i r s , ~  we have found an empirical approach t o  
b e  a s  u s e f u l  a s  d e t e r m i n i s t i c  r e s e r v o i r  
s i m u l a t i o n s .  We may draw c o r r e l a t i o n s  from a 
series of t racer  experiments i n  the  same reservoir,  
o r  from tests i n  d i f fe ren t  reservoirs. These cor- 
r e l a t ions  l e a d  t o  gene ra l  conclus ions  about  t h e  
n a t u r e  o f  f low and hea t  t r a n s f e r  i n  f r a c t u r e d  
geothermal reservoirs. 

For f low through a s ingle  fracture o r  several  
fractures,  the  tracer dispersion measured by 
appears  t o  scale d i r e c t l y  wi th  f r a c t u r e  volume. 
The r a t i o  wllZ/8 i n  Table 2 var ies  over a q u i t e  
na r rov  range, considering that these systems span 
three orders of magnitude i n  s i z e *  These reser- 
voirs exhibit s i m i l a r  dispersive characteristics i n  
t h e i r  main f r a c t u r e  flow pa ths ,  each be ing  t h e  
r e s u l t  o f  f l o w  through s e v e r a l  ( a t  least  3-5) 
fractures. 

The modal volume 8 corresponds to  the low im- 
pedance  f r a c t u r e  c o n n e c t i o n s ,  wh ich  s h o u l d  
c o n t r i b u t e  most t o  t h e  long  term produced f lu id  
tempera ture  dec l ine .  A6 seen  i n  F i g u r e  1, 8 
correlates  w i t h  t h e  r e s e r v o i r ' s  h e a t  t r a n s f e r  
capacity. The e f fec t ive  heat t ransfer  surface a rea  
A was calculated by applying Eqn. (3) (o rB  i n  some 
 case^, a s l i g h t l y  m o d i f i e d  v e r s i o n  o f  t h i o  
expres s ion )  to  actual produced f lu id  thermal draw- 
down d a t a  f o r  each r e se rvo i r .  A s i n g l e  t racer  
experiment provides  a rough estiaate of the  heat 
ex t r ac t ion  c a p a b i l i t y  o f  a f r a c t u r e d  r e s e r v o i r .  
The Rosemanowes Phase 11 point i n  Figure 1 is not a 
data point,, as extensive energy ext ruc t ion  has no t  
been c a r r i e d  out i n  t h i s  reservoir. We include it 
t o  show that fo r  this new reservoir and commercial- 
s i z e d  systems, u se  of  the  overa l l  modal volume t o  
estimate A is  unjustified because of the  l a r g e  ex- 
t r a p o l a t i o n  from p resen t  day experience. A more 
l e g i t i m a t e  approach i n  s y s t e m s  w i t h  m u l t i p l e  

112 
w 
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e n t r a n c e  and e x i t  reg ions  would be t o  s i z e  in-  
d i v i d u a l  f r a c t u r e  zones  u s i n g  p r e f e r e n t i a l  
i n j e c t i o n  of a r ad ioac t ive  tracer and production 
w e l l  gamma logginge8 These subsystems a r e  l i k e l y  
t o  be small enough t o  warrant the use of Figure 1. 

This simple analysis  ignores the f ac t  tha t  not 
a l l  f lu id  t rave ls  d i r ec t ly  from entrance t o  e x i t  i n  
low impedance fractures. The Run Segment 5 tracer 
experiments  a t  Fenton Bill (5/9/80 t o  12/12/80) 
shoved tha t  i n  t h i s  r e s e r v o i r  roughly 30% of t h e  
i n j e c t e d  f l u i d  t r ave led  through h igh  impedance 
secondary j0iats.l This r e su l t  appears t o  be qui te  
common i n  t h e  EDR reservoirs  tes ted t o  date: flow 
through several low impedance j o i n t s  accounts  f o r  
t h e  e a r l y  tracer response,  whi le  a s u b s t a n t i a l  
secondary flow t r a v e l s  through a l a r g e  volume of 
rock a t  t h e  per iphery  o f  t h e  reservoir. The in- 
tegra l  mean volume [Eqn. (2)] is the  t o t a l  f racture  
volume (main fractures  plus  secondary flow paths). 
As seen i n  Table 2, the i n t e g r a l  mean volumes f o r  
t h e  62Br tracer experiments  o f  Run Segment 5 are 
much la rger  than the corresponding modal volumes. 
The enormous p o t e n t i a l  capacity of t h i s  reservoir 
probably went la rge ly  unused due t o  the  tendency of 
the  f lu id  t o  short-circuit i n  low impedance joints .  
Total reservoir sire estimates us ing  microseismic 
mapping and geochemical information a l so  substan- 
t iate t h i s  c o n c l ~ s i o n . ~  

In  addition t o  absolute size, reservoir growth 
dur ing  energy e x t r a c t i o n  may be monitored i n  a 
se r ies  o f  t racer  t e s t s  u s i n g  i and <V>. 
Frac ture  volume growth may be caused by e i t h e r  
thermal c o n t r a c t i o n  and stress cracking  of  rock 
during cooldown, or the  opening of new fractures  by 
water  permeation i n t o  pre-exis t ing jo in t s  i n  the 
rock matrix (hydraulic f rac tur ing) .  The i n c r e a s e  
I n  modal and i n t e g r a l  mean volumes du r i ag  Run 
Segment 5 are p l o t t e d  a g a i n s t  t o t a l  energy ex- 
t r a c t e d  i n  Figure 2. The maximum amount of new 
fracture  volume possible v i a  thermal contraction of  
rock is denoted by the free thermal expansion l ine .  
The large increase i n  in tegra l  mean volume suggests 
t h a t  hydraul ic  fracturing must have been occurring 
along with thermal contraction. Eowevcr, much of  
t h i s  new volume was poorly u t i l i zed ,  as evidenced 
by the modest increase in modal volume. 

For recervoi rs  operated with cteady flow con- 
d i t i o n s ,  t h e  need f o r  low impedance f r a c t u r e  
connections may be at odds with the goal of achiev- 
Sng a volumetr ic  sweep o f  f l u i d  through a l a r g e  
number  o f  f r a c t u r e s .  D i f f e r e n t  o p e r a t i n g  
s t r a t eg ie s  i n  future  BDR reservoirs  may allow us t o  
u t i l i z e  more e f f i c i en t ly  the la rge  f rac ture  volumes 
which appa ren t ly  possess  only  a r e l a t i v e l y  weak 
hydraul ic  connec t iv i ty  wi th  t h e  main fracturec.  
Rapid pressurization of a p a r t i a l l y  cooled rtser- 
voi r  could result i n  a more evenly dist r ibuted flow 
through a la rger  number of fractures. Experimental 
proof of  t h i s  conten t ion  is seen i n  the dramatic 
i n c r e a s e  i n  modal volume caused by r ap id  p r e s -  
sur izat ion i n  the stress unlocking experiment (SUE) 
on 12/8/80. A series o f  t hese  h igh  prescure  ex- 
p e r i m e n t s ,  o r  p o o s i b l y  c y c l i c a l  p r e s s u r e  
t r ans i en t s ,  could b r i a g  more of t h e  unured fa r -  
f ie ld  f racture  volume i n t o  the act ive heat exchange 
region of a fractured r ece rvo i r .  A l t e r n a t i v e l y ,  
huff-puff ope ra t ion  -- i n j e c t i o n  i n t o  a shut-in 
reservoi r ,  followed by product ion from t h e  same 
w e l l  -- might provide  g r e a t e r  access t o  a la rger  

6 



volume of  hot  rock. Because t r a c e r  experiments 
measure fracture volume, they w i l l  be invaluable i n  
e v a l u a t i n g  t h e  s u c c e s s  o f  t h e s e  p r o p o s e d  
techniques. 

RESERVOIR At?AL..E USING REACTING TRACERS 

Analysis o f  small ,  p ro to type  reservoi rs  was  
made manageable by the  a b i l i t y  t o  achieve produced 
f l u i d  temperature dec l ine  a f t e r  only a few months 
of operation. However, for  la rger  systems, reser- 
v o i r  s i m u l a t o r s  w i l l  have  t o  be u s e d  i n  a 
predictive way, since thermal drawdown measurements 
c o u l d  t a k e  y e a r s  t o  p roduce  u s e f u l  modeling 
information. More importantly, commercialization 
of the HDR concept requires that a method e x i s t  fo r  
predicting a p r i o r i  t h e  l i f e t i m e  of a r e s e r v o i r .  
The  normal b a t t e r y  o f  d i a g n o s t i c  experiments 
( p r e s s u r e  t r a n s i e n t ,  w e l l  l o g g i n g ,  t r a c e r  , 
microseismic,  and f lu id  geochemical) probably does 
not provide the information necessary t o  c o n s t r u c t  
d e t a i l e d  r e s e r v o i r  mode l s  w i t h  p r e d i c t i v e  
capability. Chemically reactive t racers ,  which are 
s e n s i t i v e  t o  i n t e r n a l  changes t o  the reservoir 's  
temperature f i e ld ,  may solve t h i s  problem i n  future 
HDR Systems. 

The k ine t ics  of most chemical r e a c t i o n s  are 
extremely temperature-sensit ive. For f i r s t  order 
reactions carried out i n  batch r e a c t o r s ,  t h e  fo l -  
lowing rate equation is often applicable: 

dC - - -kC , d t  (4) 

where C i s  t h e  concen t r a t ion  of t h e  r e a c t i n g  
species and t is time. The rate constant k is t h e  
p a r a m e t e r  w h i c h  c o n t a i n s  t h e  t e m p e r a t u r e  
sens i t iv i ty .  It normally can be desc r ibed  by t h e  
equation 

-Ea/RT 
k - Are # (5) 

where At i r  the  pre-exponential fac tor ,  Ea the  
ac t iva t ion  energy of the  reaction, R t h e  univer- 
sal gas constant, and T the absolute temperature. 
For typ ica l  reactions i n  rolution, k w i l l  vary by 
s e v e r a l  o r d e r s  of  magnitude €or the range of tem- 
p e r a t u r e s  e n c o u n t e r e d  i n  a n  HDR t e r e r v o i r  
undergoing extensive energy extraction. 

Suppose a tracer is  injected in to  an i n i t i a l l y  
hot reservoir,  and the  reaction proceeds about half  
way t o  completion du r ing  i t s  o t a y  i n  t h e  system. 
Then, a f t e r  some c o o l d o w  has  been achieved ,  a 
cecond experiment rhould chow l e a s  chemical reac- 
t i o n  because of  t h e  shor te r  time the  f lu id  rpeods 
i n  hot rock. A aer ies  of  r e a c t i v e  tracer exper i -  
ments w i l l ,  i n  theory, map the rate of progress of 
the  cooled region as it approaches t h e  e x i t  w e l l ,  
giving an ea r ly  warning of thermal drawdown. 

' 

I 
The t rans ien t  response o f  this reacting t r ace r  

experiment 611 be governed by both the temperature 
f i e l d  and the  dfeiperrire nature of the f l u i d  flow. 
For  p re l imina ry  e s t i m a t e s ,  w e  aosumed t h a t  t h e  
tracer behavior could be modeled us ing  t h e  one- 
dimensional axial dispersion equation with a first- 
order chemical reaction included: 
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Although objections have been r a i s e d  a g a i n s t  
t h e  a p p l i c a b i l i t y  of Eqn. (6) for  fractured porous 
media, we use i t  here to  demonstrate the concept of 
r e a c t i v e  t r a c e r s  and t o  perform parameter sen-  
s i t i v i t y  studies. Since chemical r e a c t i o n  rates 
f o r  f i r s t  o r d e r  r e a c t i o n s  depend on t h e  t i m e -  
temperature h is tory  of the  f lu id  ra ther  than on the 
s p e c i f i c  d i s p e r s i o n  mechanism, Eqn. (6) should be 

~ adequate for  these scoping calculations. 

The other component of t h i s  rese tvoi r  model i s  
t o  superimpose an axial (z -d i rec t ion)  temperature 
f i e l d  on the  flow f ie ld .  The single-fracture t e m -  
perature solution [Eqn. (311 w f l l  be used i n  t h e s e  
c a l c u l a t i o n s .  This  uniform temperature f i e ld  as- 
sumption is perhaps t h e  weakest a s p e c t  o f  t h e  
model, given t h e  explanation of tracer dispersion 
as flow through d i f fe ren t  s ized  f r a c t u r e s .  These 
f r a c t u r e s  are each l i k e l y  t o  have unique tempera- 
ture  charac te r i s t ics ,  the small ones (corresponding 
t o  short  residence times) cooling down more rapidly 
than the  l a r g e  ones. Nonetheless,  t h e  model as 
f o r m u l a t e d  s h o u l d  be s u f f i c i e n t  f o r  parameter 
s t u d i e s .  Analysis of  a c t u a l  e x p e r i m e n t s  w i l l  
probably have t o  account f o r  t h e  o b j e c t i o n  j u s t  
raised. 

The most impor tan t  f e a t u r e  of  t h e  r e a c t i v e  
t r ace r  concept is its a b i l i t y  t o  i d e n t i f y  thermal 
drawdown much more qu ick ly  than  simple produced- 
f l u i d  t e m p e r a t u r e  m e a s u r e m e n t s .  F o r  

A - 300000 102, Q = 1.262*10-* m3/s (200 gpm), and 
Tinit - 250%. t h e  in t e rna l  temperature f i e l d  i n  a 
r e s e r v o i r  a t  va r ious  times is shown i n  Figure 3. 
To achieve 10% of produced f lu id  thermal drawdown 
( t h e  bare  minimum f o r  estimating reservoir s ize) ,  
f i ve  years of continuous ope ra t ion  are requ i r ed .  
The r e a c t i v e  tracer response t o  a s t ep  change i n  
i n l e t  concentration is shown i n  Figure 4. J u s t  1-2 
yea r s  of  operation are required t o  obtain a sensi- 
t i v e  estimate of heat exchange capacity. 

Parameter s t u d i e s  using the axial dispersion 
model a l so  support t he  following conclusions: 

For thermal b e b v i o r  l ike  t h a t  I n  Figure 3, 
reactions with higher a c t i v a t i o n  energy  are more 
sens i t ive  t o  omall l eve ls  of thermal drawdown. For 
the  example ohown above, Ea - 90 LJlmol and t h e  
measurement r equ i r ed  1-2 years of operation t o  be 
successful. This requirement would be c l o s e r  t o  
two yea r s  f o r  but only one p a r  
f o r  Ea - 130 W/mol. 

Ea - 43 W/mol, 

Tracer  d i s p e r s i o n  a f f ec t s  the  shape of the 
response curves ,  b u t  n o t  t h e  o e n s i t i v i t y  o f  t h e  
measurement. However, n o t i c e  t h a t  t h e  response 
Curves of  F igure  4 are compared w i t h  t h e  non- 
r e a c t i n g  t r ace r  response Curve. A reac t ive  t r ace r  
experiment should always be accompanied with an  in- 
e r t  tracer test run  s imul taneous ly ,  e s p e c i a l l y  
s i n c e  t h e  I n e r t  tracer response curves  t e n d  t o  
.hi f t  marked ly  toward  l o n g e r  r e s idence  t imes  
(because of  r e s e r v o i r  growth) dur ing  long  term 
operation. 
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0 The reactive t racer  response is sensi t ive t o  
t h e  e x t e n t  of thermal drawdown, but no t  t o  the  
specif ic  shape of the temperature f ie ld .  Reactions 
which a r e  moderately f a s t  a t  the highest reservoir 
temperature a r e  extremely 61018 a t  t e m p e r a t u r e s  
100% below t h i s .  Thus, t h e  exac t  shape of the 
temperature f i e l d  i n  the  coo led  r e g i o n  o f  t h e  
r e s e r v o i r  is unimportant. The conversion of a 
reacting t r a c e r  is e s s e n t i a l l y  a measure of t h e  
amount o f  h o t  rock  r e m a i n i n g  between t h e  two 
wellbores. The term "hot" is dependent solnewhat on 
t h e  a c t i v a t i o n  energy o f  t h e  r e a c t i o n ,  a s  vas  
discussed above. 

The 6hape of t h e  t rancient  reactive t racer  
response curve is s i g n i f i c a n t l y  d i f f e r e n t  t h a n  
t h o s e  i n  F i g u r e  4 f o r  nonuniform temperature 
f ie lds .  The model used i n  Figures 3 and 4 assumed 
a s i n g l e  temperature f i e l d  f o r  a l l  flow p a t h s ,  
regardless of residence time. A plausible alterna- 
t i v e  in f r a c t u r e d  geothermal r e s e r v o i r s  is the  
model o f  l i c h o l  and Mite,1o which p o s i t s  t h a t  
s h o r t  r e s idence  t imes correspond t o  f ractures  of 
smaller surface area which cool more r a p i d l y  than  
t h o s e  of longer  r e s idence  t i m e .  I f  a pu l se  of 
reactive tracer were injected,  the response from a 
nonuniform temperature f i e l d  would exhibit  a higher 
peak than that  from the uniform temperature f i e l d ,  
and then would descend more s t e e p l y  t o  a region 
below the uniform-temperature-field response. This 
s o r t  of comparison between models and actual  ex- 
perimental data should help in the  cons t ruc t ion  of 
complex s imula t ions  o f  f u t u r e  r e s e r v o i r s .  The 
analysis  should provide information on n o t  only 
r e s e r v o i r  capac i ty ,  bu t  a l s o  the d i s t r ibu t ion  of 
f racture  surface areas. 

BEACTIVE TRACER KINETIC STUDIES 

In  a d d i t i o n  t o  t h e  modeling work desc r ibed  
above, we are  performing laboratory k ine t ic  experi- 
ments t o  f i n d  s u i t a b l e  r e a c t i v e  t racers  f o r  
d i f f e r e n t  reservoir conditions. The reaction r a t e  
parameters (Ar and Ea) must be ouch that t h e  reac- 
t i o n  time a t  t h e  i n i t i a l  reservoir temperature is 
on the order of the  average f l u i d  r e s idence  t i m e  
i n  t h e  r e s e r v o i r .  React ions with e a s i l y  charac- 
t e r i z e d  rate behavior  are p r e f e r a b l e  t o  t h o s e  
e x h i b i t i n g  complex L'lnetic properties. Also, ad- 
sorption of reactants and products on the reservoir 
rock s u r f a c e s  should be negligible.  Finally,  the 
chemical analyois of teactaats  and product6 m u s t  be 
s e n s i t i v e  enough t o  d e t e c t  low concen t r a t ions  
accurately. Othetvfoe, an  unreasonably large quan- 
t i t y  of t racer  would have t o  be injected.  

We are c u r r e n t l y  s t u d y i n g  t h e  a l k a l i n e  
hydro lys i s  of o rgan ic  esters and amides i n  water 
for  use as chemically reactive tracers: 

Eaters: RCOOR' + OH' R W -  + R'OH (7) 
h i d e s :  R C O ~ ~  + OH- + RCOO- + W3 

Under t y p i c a l  geochemical conditions , many ea ters  
and amides obey the following rate lav: 

(8) 
4. 

where C i s  t h e  concen t r a t ion  of t h e  ester o r  
amide ,  and k2 t h e  second o r d e r  r a t e  cons t an t  
( w i t h  u n i t s  l i t e r s / m o l - s ) ,  and [OE'] t h e  
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hydroxide ion concentration. The product kz[OH-] 
is a pseudo-first order rate constant vhich plays 
the role of k in the first order rate expression 
[Eqn. (4)]. To fully understand the first order 
alkaline hydrolysis mechanism, we must model the 
terms k2 and [OH-] separately. 

In concentrated NaOR solutions at room tem- 
perature, [OE'] is simply calculated by 
[OH'] - 10(pH-'4). Eowever, the OR- concentration 
in a typical geofluid at high temperature is much 
different from the value measured by pH at room 
temperature because of the increase in the ioniza- 
tion constant of vater with temperature. This 
situation is modeled approximately assuming the 
following liquid phase equilibrium reactions: 

H20 H+ + OH-; (10) 

The equilibrium constants K for these reactions 
follow the van't Eoff relation: 

KT AHo 1 1 An(- K25 ) - -(- R 298 2 - T) (12) 

The heats of reaction AEo for Reactions (10) and 
(11) are 57.4 and 11.6 U/mol, respectively. 

Our goal is to calculate [OH-] as a function 
of temperature, given measurements of [H ] and 
[ECOJ-] for the fluid sample at 25.C. If [E+] 
and [HC03-] are measured at room temperature, 
then equilibrium-constant expressions allow us to 
calculate the concentrations of all species in 
Eqns. (10) and (11) at 25%. Concentrations at 
high temperature are then obtained by calculating 
the new equilibrium constants using Eqn. (121, 
using the concentrations at 25% as initial condi- 
tions, and assuming the reactions proceed 
stoichiometrically to the n e w  equilibrium position 
at the upper temperature. 

+ 

Figure 5 shows the behavior of [OH-] with tem- 
perature for the case of pE = 6.0 and 
[HCOa-] - lo00 ppm, both at 25%. The hydroxide 
concentration increases dramatically with tempera- 
ture due to the water diS60CiatiOn reaction. Other 
calculations show that in the pE range of 3-7, 
similar straight line log (OE-] versus 1/T be- 
havior should be observed as long as bicarbonate 
ion is present in quantities of over roughly 100 
ppm. Thus; [OR-] play be conveniently Glculated 
by 

Notice that 45.8 W/mol is the difference in the 
heats of reaction of fhe two ionization reactions. 

Eqn. (13) implies a la [OH-] versus 1/T 
straight line behavior. The second order rate con- 
stant k2 also possesses this type of temperature 
dependence. Therefore, the pseudo-first order rate 
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constant k = kz[OH-] w i l l  e x h i b i t  a n  Arrhenius 
behavior.  Combining Eqn. (13) with the Arrhenius 
equation for  kz, we o b t a i n  f o r  t h e  f i r s t  o rde r  
r a t e  constant parameter expressions: 

where the subscript  2 r e f e r s  t o  t h e  second o rde r  
r a t e  constant k2. 

Experimental k i n e t i c  s t u d i e s  have been per- 
formed SO f a r  on f ive organic esters and one amide 
t o  obtain the second order r a t e  constant k2 as a 
func t ion  of temperature ,  and a l s o  t o  v e r i f y  the 
model for  [OH-] j u s t  presented. Mixtures of 6 O d i w  
bicarbonate  and acetic acid were used as a buffer 
system. By keeping t h e  N a B C O j  concen t r a t ion  a t  
2750 ppm and varying t h e  amount of a c e t i c  a c i d  
added, we were able  t o  adjust  t h e  pI1 a t  room tem- 
p e r a t u r e  i n  t h e  r a n g e  o f  i n t e r e s t .  I n  t h i s  
simulated brine, the ace t ic  a c i d  i o n i z a t i o n  reac- 
t i o n  a l s o  had t o  be included i n  the calculation, 
b u t  t h e  b e h a v i o r  o f  [OE’] v e r s u s  T was 
none the le s s  qui te  similar t o  that described above. 
In addition t o  the advantage o f  pB a d j u s t a b i l i t y .  
t h e  a c e t i c  acid buffered the solution t o  the point 
where the production of ca rboxy l i c  a c i d s  v i a  the  
hydro lys i s  reaction had v i r t u a l l y  no e f f e c t  on the 
PH. 

The hydroxide concentration model was tes ted 
experimentally i n  two ways. F i r s t ,  several  experi- 
ments  a t  d i f f e r e n t  t e m p e r a t u r e s  b u t  t h e  same 
s t a r t i n g  pH were performed. Second order rate con- 
s t a n t s  were back-calculated using the f i r s t  order 
rate expres s ion  and t h e  e q u i l i b r i u m  model f o r  

[OH-]. These r e s u l t s  are presented i n  Table 3 i n  
t h e  form of 8econd o r d e r  Arrhenius parameters .  
These parameters ag ree  w e l l  with k ine t ic  r e s u l t s  
t a b u l a t e d  by K I r b y , l l  d e s p i t e  t h e  f a c t  t h a t  
previous s tudies  were performed i n  the temperature 
range from 30-60’C and NaOH concen t r a t ion  on t h e  
o rde r  of  1 ?i. Without t h e  [OH-) model, our rate 
data are Inexplicable.  For I n ~ t a n c e ,  i f  k i n e t i c  
p a r a m e t e r s  are c a l c u l a t e d  by n a i v e l y  assuming 
[OH-] - 10(pH-14), without accounting f o r  t h e  in- 
crease of ionization of water with temperature, the 
va lues  of k2 are 2-3 o r d e r s  of magnitude t o o  
h igh ,  and t h e  a c t i v a t i o n  energies are much la rger  
than those given by Kirby.ll The second check on 
t h e  model was t o  run experiments a t  the same tem- 
perature and d i f fe ren t  pH. This comparison yielded 
the correct  rate versus pa behavior as predicted by 
the model. We fee l  that these results are powerful 
e v i d e n c e  o f  t>e v a l i d i t y  o f  t h e  hydroxide con- 
centration model for  the compounds l i s t e d  i n  Table 
3. 

One o t h e r  ester which was t e s t e d  b u t  n o t  
l i s t e d  i n  t h e  t a b l e  fs t e r t - b u t y l  a c e t a t e .  Its 
rate was much more r a p i d  t h a n  e x p e c t e d  from 
previous s tudies ,  and i t  did not exhibi t  the rate- 
pB behavior predicted by the model. The r e a c t i o n  
mechanism i s  c l e a r l y  d i f f e r e n t  f o r  t e r t - b u t y l  
acetate  under these conditions, a fact  which may be 
e x p l a i n e d  by K i r b y ‘ s  o b s e r v a t i o n  t h a t  t h e  
hydrolysis of esters of t e r t i a r y  alcohols are a c i d  
catalyzed even a t  low acid concentrations.ll 
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The k ine t ic  data obtained so f a r  a r e  p l o t t e d  
i n  a convenient form i n  F igure  6. The reaction 

time -tR - l/(k2[OH-)) is t h e  t i m e  r equ i r ed  f o r  
the reactant concentration t o  proceed t o  l/e of i ts  
or ig ina l  value. To choose the  appropriate tracer, 
zR should roughly equal the  typ ica l  f l u id  residence 
t i m e  in the reservoir. For various r e s e r v o i r  t e m -  
peratures, pH's, and residence times, p lo t s  such as 
Figure 6 may be used t o  choose an appropriate reac- 
t i v e  tracer. As shown in the figure,  tracers have 
been i d e n t i f i e d  f o r  coo l  systems (80-1OO0C) and 
reservoirs of moderate temperature (170-200 DC) . In 
future k ine t ic  experiments, ve i n t e n d  t o  f i l l  t h e  
gap vhich ex i s t s  between these tVo groups, and a l so  
ident i fy  t r ace r s  fo r  much ho t t e r  reservoirs.  

CONCLUSIONS 

1. Levels of dispersion in tracer f i e l d  experiments 
o f  HDR r e s e r v o i r s  i n d i c a t e  t h a t  t h e  major i ty  of 
f l o w  is t h r o u g h  a number o f  l o r  i m p e d a n c e  
f r a c t u r e s .  However, up t o  30% of the  flow t r ave l s  
through h igh  impedance secondary flow p a t h s  of 
large volume. 

2. Reservoir heat t ransfer  capacity measured by ef- 
f e c t i v e  hea t  t r a n s f e r  surface area A corre la tes  
v i t h  tracer modal volume V. 

3. Tracer  dispersion acales approximately l i nea r ly  
v i t h  reservoir modal volume. 

4. The volume o f  secondary flow paths grows sub- 
r t a n t i a l l y  du r ing  long term energy e x t r a c t i o n .  
l4ore uniform flow and hence be t t e r  u t i l i z a t i o n  of 
high impedance jo in t s  w a s  achieved by r a p i d  pres- 
r u r i t a t i o n  of the Fenton Eill reservoir during the 
stress unlocking experiment. 

5. Preliminary modeling suggests that the in jec t ion  
of chemically reactive tracers should be a r ens i -  
t i v e  r e s e r v o i r  test for  measuring thermal drawdown 
f a r  i n  advance of  actual produced f lu id  temperature 
decline. 

6 .  Laboratory k i n e t i c  s t u d i e s  have  i d e n t i f i e d  
s e v e r a l  r c a c t i o n a  w h i c h  obey  t h e  a l k a l i n e  
hydro lys i s  mechanirm under t y p i c a l  geochemica l  
condi t ions .  Three tracers t e s t e d  ao f a r  are ap- 
plicable i n  cool reservoirs (80-100 %) , while t v o  
ahould be useful in hotter syotems (up t o  200%). 

NOMENCLATURE 

A ef fec t ive  heat t ransfer  eurface area (a2) 

Ar f i r s t  order pr rexponent ia l  fac tor  (a-') 
A s e c o n d  o r d e r  p r e - e x p o n e n t i a l  f a c t o r  

r*2 (liter/mol-s) 
c concentration of  reacting t r ace r  (kg/m3) 

Ci i n l e t  concentration i n  s tepchange  experiment 
( b / m 3 )  

C ( t )  concentration response of i n e r t  tracer (kg/m3) 

e average f lu id  heat capacity (J/kg-K) 
P 

Deft e f fec t ive  d ispers iv i ty  of a reaervoir (m2/s )  

Ea f i r s t  order ac t iva t ion  energy (w/m01) 
Ea,2 second order ac t iva t ion  energy (W/mol) 
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E(t) residence time distribution function (6-l) 
AHo heat of reaction (W/mol) 

k first order rate constant (I ) 

k2 
K equilibrium constant 
I$ equilibrium constant at the temperature T 
K25 equilibrium constant at 2 5 %  

L fracture length (m) 
m 
Pe axial dispersion Peclet number 

Q 
R 
SUE stress unlocking experiment 
t time (e) 

T fluid temperature (K) 
Ti inlet fluid temperature (K) 
Tr initial rock temperature (K) 
t 

U average fluid velocity (m/s) 

8 modal volume (m3) 
<v> integral mean volume (ma) 

wlI2 width at 1/2 height of a tracer response curve 

z flow direction in one-dimensional flow model 

a 

hr 
%r reaction time (hr) 
[ 1 

-1 

second order rate constant (liters/mol-s)] 

mass of tracer in pulse (kg) 

volumetric flow rate of fluid (m3/s) 

universal gas constant - 8.314*10-3 W/mol-K 

P 

time of operation of a reservoir (s) 
OP 

(m3) 

(m) 
thermal diffusivity of rock (m2/s) 

thermal conductivity of rock (W/m-K) 

Concentration of ionic species (mol/liter) 
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I .  

Table 1. Nagnitudes of Different Single-Fracture Dispersion Mechanisms 

Sources: Horne 

Mec hani  srn 
-- 

Fracture Roughness 

Matrix Diffusion 

Taylor D i  spersion 

Point Source- 
P o i n t  Sink 
Potential Flow 

Actual Measured 
Dispersion i n  
Fractured Geothermal 
Reservoirs 

and Rodriguez (19831, Robinson and Tester (1984) 

Peclet Number Comnents 
- 

very large scale of dispersion (fracture 
aperture) is very small compared 
t o  overall length scale (well- 
bore separation distance) 

very large large apertures and rapid flow 
velocities minimize mat r ix  dif-  
fusion effects 

mol ecul ar d i  f f usi on coe f f i c i ent 
varies strongly w i t h  temperature, 
causing wide range i n  Pe 

55 calculated assuming dispersion is  
caused solely by flow streamlines 
of different length and velocity 

1 50-3x104 

0.5-5 observed dispersion Is much 
greater t h a n  can be explained by 
flow i n  a single fracture 



. 

Table 2. Sumnary o f  Tracer Field Experiments 

Fenton Hill Experiments 

Date t (m3) 

2/9/78 
3/1/78 
3/23/78 
4/7/78 
5/9/80 
9/3/80 
12/2/80 
12 /12/80 

11.4 
17 .O 
22.7 
26.5 

161 
178 
187 
266 

1311 
1845 

2173 
- 

. 
Rosemanowes Tracer Experiments ( 1982-1983 

RH6 A 
RH1 2 
F1 uor- 
escein x3 

1.42 
12.3 

2390 

18.1 
40.3 
62.5 
70.8 

227 
323 
303 
479 

1.59 
2.3 
2.75 
2.67 
1.41 
1.81 
1.62 
1.80 

1.68 1.18 
7 .O 0.57 

4870 2.04 



Table 3. Results o f  Kinetic Experiments 

-6 pH 
A r = (1.0457~10 ) l o  

a a,2 
E = E + 45.8 

a 2 E 
r,2 

Compound A - 
Ethyl Acetate 4 . 7 9 ~ 1 0 ~  42.7 5.009 

Ethyl Propionate 4 . 7 7 4 ~ 1 0 ~  43.8 4 . 992 

Iso-Pentyl Acetate 5 . 9 6 9 ~ 1 0 ~  52.6 62.42 

Ethyl Pivalate 1 .473x1O1l 98.3 1 .54x105 

Acetamide 1 . 5 1 9 ~ 1 0 ~  73.5 1 .59x102 

Ea 

88.5 

89.6 

- 

98.4 

144.1 

119.3 



FIGURE CAPTIONS 
Fig. 1 Effective Heat Transfer Surface Area Versus Modal Volume 

Fig. 2 FracltiirP V n l i m  GraLrt-h VPrwC C u m d a i 3 v ~  Fnercy FxtracW 

Fig. Internal Temperature Profiles During Long Term Energy Extraction 

Fig. 4 Reactive Tracer Behavior During LonQ Term Enerw Extraction 

Fig, 5 Hydroxide Concentration Versus Temperature in a Geofluid 

Fig. 6 Reaction Time Versus TemDerature for Candidate Reactive Tracers 
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