

MASTER

A RENEWAL PROPOSAL

to the

Department of Energy

The Second Year of a Three Year Proposal

AT06-

(Contract No. 80EV10429)

T. A. Gosink

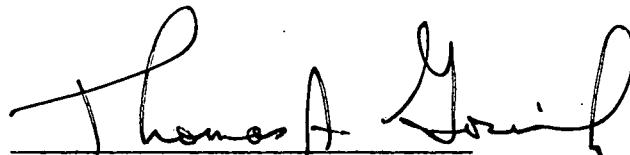
and

J. J. Kelley

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

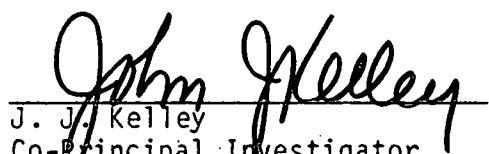
DISCLAIMER

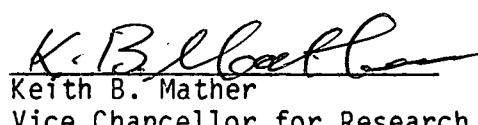

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

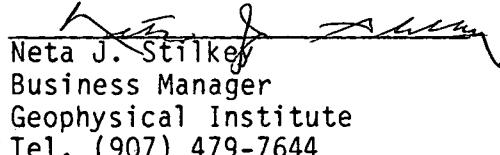
RESEARCH PROPOSAL SUBMITTED TO THE DEPARTMENT OF ENERGY
 SECOND YEAR RENEWAL REQUEST

Carbon Dioxide in Arctic and Subarctic Regions
 (Contract 80EV10429)

Geophysical Institute
 University of Alaska
 Fairbanks, Alaska 99701


March 1981


Thomas A. Gosink
 Principal Investigator
 Geophysical Institute
 Tel. (907) 479-7430


Juan G. Roederer
 Director
 Geophysical Institute
 Tel. (907) 479-7282

J. J. Kelley
 Co-Principal Investigator
 Institute of Marine Science
 Tel. (907) 479-7703

Keith B. Mather
 Vice Chancellor for Research
 and Advanced Study
 University of Alaska
 Tel. (907) 479-7314

Neta J. Stilley
 Business Manager
 Geophysical Institute
 Tel. (907) 479-7644

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The University of Alaska offers equal educational and employment opportunities.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	1
INTRODUCTION	3
ACCOMPLISHMENTS OF FIRST YEAR	6
PROPOSED RESEARCH (SECOND YEAR)	9
REFERENCES	12
PERSONAL DATA	14
BUDGET	32
EXPLANATION OF THE BUDGET	33
APPENDICES - Publications near completion or submitted:	
1. Field Report for YMER-80 Expedition	
2. Interim Report for the Department of Energy	
3. Arctic Seas. Are they overlooked significant sinks for atmospheric carbon dioxide?	
4. The globally significant sources and sinks of carbon dioxide in the Arctic	
5. Carbon dioxide in ocean surface waters: A simplified method of measurement	
6. Arctic tropospheric carbon dioxide: Low altitude aircraft sampling	
7. Manuscripts in preparation (by title)	
8. Prospectus for a DOE sponsored workshop on northern regions carbon dioxide and climatic change	

(Second Year Renewal Request)

RESEARCH PROPOSAL TO: U.S. Department of Energy

INSTITUTION: Geophysical Institute
University of Alaska
Fairbanks, Alaska 99701

TITLE: Carbon Dioxide in Arctic and Subarctic
Regions (Contract No. 80EV10429)

PRINCIPAL INVESTIGATOR: Thomas A. Gosink
Research Associate
[REDACTED]

CO-PRINCIPAL INVESTIGATOR: J. J. Kelley
Associate Professor
[REDACTED]

DURATION OF PROJECT: 36 months

INITIAL STARTING DATE: July 1, 1980

SUM REQUESTED FOR SECOND YEAR: \$215,112

ABSTRACT

A three year research project was presented (first year) that would define the role of the arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO₂ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole

arctic region is a net annual sink for about 1.1×10^{15} g of CO₂, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere.

Three objectives are proposed for the second year of this three year proposed research effort. The first objective is to continue the research on the seasonal sources and sinks of CO₂ in the arctic. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

A number of manuscripts have resulted from the work to date. The second objective is to complete the technical reports and manuscripts (9 at this time) which are in various stages of development.

The third objective is to prepare for the comparative Antarctic oceanographic studies which will be carried out in the third year.

INTRODUCTION

The increase in atmospheric carbon dioxide is generally expected to lead to increased global temperatures. It has been increasing at a rate of 0.7 - 1.0 ppm/yr or $1.5 - 3 \times 10^9$ mT (Keeling et al. 1976). Fossil fuel production has continued to increase also and it is estimated (Bocastaw and Keeling, 1981) that about half (0.505 - 0.548) of the carbon dioxide produced from anthropogenic sources remains in the atmosphere. While global temperatures may increase by 2°C , temperatures north of 60°N latitude may increase by 4° - 11°C or higher (Manabe and Weatherald, 1975; Manabe, 1979). Carbon dioxide induced temperature changes will affect several environmental variables including decomposition, the production of organically bound carbon, the thickness and extent of sea ice as well as the transfer of gases across this interface.

Much of the recent discussion on global carbon balance has focused attention on temperate or tropical regions. Less attention has been given to the polar regions, and in particular the Arctic with its ice covered ocean, tundra and taiga ecosystems. The role of vegetation and soils in the world carbon budget is controversial. Furthermore, the effect of climatic change on net accumulation rates in northern ecosystems is poorly known. Fortunately, previous research efforts in the Arctic and subarctic regions, in particular the large research efforts of the AEC/DOE sponsored Cape Thompson Project and the NSF sponsored Tundra Biome project of the International Biological Program provided a substantial data base which is useful in gaining an understanding of the role of the arctic biosphere in the global carbon cycle (Tiezen, 1978; Coyne and Kelley, 1975).

It is unclear whether northern ecosystems will provide negative or positive feedback in the global carbon cycle with the predicted increase in atmospheric carbon dioxide, although most of the evidence indicates a negative

feedback role (Miller, 1980). Estimates of the current rates of carbon accumulation in northern ecosystems vary, but most estimates indicate net accumulation. If the carbon balance of terrestrial systems becomes negative with increased global temperature, increased carbon dioxide released into the atmosphere may have a positive feedback on global temperatures. The carbon dioxide release in northern ecosystems should be further accelerated where permafrost is thawed. Although it is desirable to estimate the current carbon balance of northern ecosystems as precisely as possible, it is equally important to understand the current fluxes of this gas across the land-atmosphere interface on a seasonal basis.

Information on the transfer of CO₂ across the air-sea-ice interface was known in previous years only from short-term observations from occasional oceanographic cruises or ice stations. The DOE carbon dioxide research and assessment program offered an increased opportunity to ascertain the role of the ice covered ocean in the exchange of CO₂. Although, there are still significant data gaps, the preliminary results of this research clearly indicate that the arctic region (taiga, tundra, and ocean) acts as a winter source (Gosink et al. 1976, Kelley, 1968, Gosink and Kelley, 1977) and a summer sink for atmospheric CO₂, resulting in a net annual average sink of 1188×10^{12} g CO₂. This amount is equivalent to 4.6 percent of the annual global anthropogenic input of CO₂ to the troposphere. Presumably, the very low sea water equilibrium partial pressures of CO₂ (with respect to air) in the arctic seas (Table 1; also Appendix 4) during the summer contribute significantly to the draw-down of atmospheric carbon dioxide (Gosink and Kelley, 1979).

In this proposal we describe current progress of our research (See also the interim report to DOE-Appendix 2), our proposed three tasks for the proposed contract renewal period, and a statement of future plans for prospective field research efforts in both polar regions.

Table 1. Seasonal Source-Sink Strengths of the Various Regions in the Arctic

Season	Region	Area (10 ⁶ km ²)	% Area Active	Invasion Evasion Rate	ΔPCO ₂ (ppm)	Duration (Months)	Source(x10 ¹² g CO ₂)	Sink (x10 ¹² g CO ₂)
Winter	1. Central Basin	8.4	5-10	1.48 x 10 ¹² (g km ⁻² mo ⁻¹ atm ⁻¹)*	10 to 100	9	56 - 1119	-
	2. Barents, Laptev, and Kara Seas	2.5	25	"	-20 to -40?	8	-	149 - 299
	3. East Siberian, Chukchi and Beaufort Seas	0.9	10	"	20 to 40	6	16 - 32	-
	4. Greenland Sea and Baffin Bay	1.3	25	"	10 to 100?	6	28 - 288	-
	5. Norwegian Sea	0.5	100	"	-25?	6	-	111
	6. Annual Sea Ice	6-7	100	2.8-20.3 x 10 ⁶ (g km ⁻² mo ⁻¹)	-	6	101 - 1190	?
	7. Tundra and Taiga	1.6	100	See text	-	6	7	-
							Winter Totals	208 - 2636 (avg 1422)
								260 - 410 (avg 335)
Summer	1. Central Basin	8.4	10	1.48 x 10 ¹² (g km ⁻² mo ⁻¹ atm ⁻¹)*	-30 to + 10	3	-37	112
	2. Barents, Laptev and Kara Seas	2.5	100	"	-90 to -140	4	-	1332 - 2072
	3. East Siberian, Chukchi and Beaufort Seas	0.9	100	"	-40 to -80	3	-	160 - 320
	4. Greenland Sea and Baffin Bay	1.3	50	"	-10 to -40?	3	-	29 - 115
	5. Norwegian Sea	0.5	100	"	-50 to -100	6	-	222 - 444
	6. Sea Ice Melt Ponds	1?	?	See text	-	2	40?	40?
	7. Tundra-Taiga Freeze-Thaw Plants	1.6	100	See text	-	3	179	-
							0.5	0.4 - 56
							3	-
							3	213 - 411
							3	-
							48	-
							Summer Totals	304 - 360 (avg 332)
								2108 - 3511 (avg 2011)
Annual	1. Anthropogenic		See text				1 - 7	
							Annual Totals	513 - 3403 (avg 1958)
								2368 - 3924 (avg 3146)
							Annual Net Sink 1188 x 10 ¹² g CO ₂	

*This is the same as 0.078 nmole cm⁻² atm⁻¹ min⁻¹

ACCOMPLISHMENTS (FIRST YEAR)

YMER-80: Based on technical presentations in Sweden made by each of the principle investigators and a proposal submitted to the Swedish government YMER-80 organizing committee, we were invited to participate on both legs of the YMER-80 expedition to the eastern Arctic Ocean. A cruise report is given in Appendix 1. As a result of this cruise, earlier observations (Kelley, 1970) of the extensive low partial pressures of CO₂ (ca. 180-220 ppm) in surface sea waters were confirmed. It was also possible to show that these very low partial pressures had a much greater areal extent, thus affording a greater sea surface area for the exchange of atmospheric CO₂. It was also possible to estimate how deep these very low partial pressures penetrate (ca. 20 m) and the depth of which the PCO₂ equals the average partial pressure (ca. 130 m) in the late summer northern atmosphere. It was also possible to estimate the invasion rate of CO₂ across these cold surface waters (0.078 mmoles atm⁻¹ cm⁻² min⁻¹) which allowed us to determine that the Barents - Kara - Laptev - Norwegian Sea area acts as a strong summer sink absorbing about 2×10^{15} g CO₂.

Manuscripts: A backlog of publications resulted because we were waiting for confirming data (e.g. YMER-80 data). We now have articles in various stages of preparation to be submitted for publication (Appendices 3-7).

Techniques and Instrumentation: We have developed a new technique (Gosink and Kelley, 1981) tested on the YMER-80 expedition, whereby we can retrieve reasonably accurate data for CO₂ in sea water from accurate measurements of pH, salinity and temperature (Appendix 5 and 6). The preliminary results indicate that this method yields data that closely follow those obtained by gas chromatography. If this technique proves to be a reliable one, the data

base for CO₂ in oceanic surface waters and at depth could be considerably expended.

There have been long delays in acquiring urgently needed analytical instruments primarily as a result of late receipt of FY-1981 funds for this research from DOE. All of the instrumentation has only recently been acquired (due to long manufacturer lead times) but will be calibrated and ready for field testing in April, 1981.

Bering, Chukchi, East Siberian Seas: We expect to complete by the end of the first year of this study the first of four cruises to the area of the Bering, Chukchi, and East Siberian Seas. These cruises are scheduled aboard the R/V Alpha Helix (U of Alaska operated UNOLS vessel). These cruises will enable us to obtain information on the CO₂ partial pressure differences between the ocean and atmosphere during two critical periods of the year, namely around the time of the spring plankton bloom at the seasonal ice zone, and during freeze-up in the fall.

Tundra-Taiga Regions: Previous information on the evolution of CO₂ from frozen soils, especially during the period of change of phase (thaw or freeze-up) (Coyne and Kelley, 1971, Gosink and Kelley, 1977, and Gosink and Kelley, 1979) was obtained primarily by occasional in situ sampling at sites well above the Arctic Circle and laboratory experiments. Depending on the soil type, drainage conditions, depth of thaw, etc. the evasion of CO₂ to the atmosphere could be substantial. Laboratory experiments with different tundra and taiga soil types (Coyne and Kelley, 1971) indicates that release of CO₂ from soil during the period of change of phase may account for $0.4 - 56 \times 10^{12}$ g of CO₂ to the atmosphere. The objective of our springtime research is to complete a series of CO₂ observations in situ

on a transect from about 64°N to 70°N latitude which will traverse a north-south section of the northern tundra and taiga region including a wide variety of soil types. The first transect will occur during the period of phase change (thaw) which will allow us to test the validity of the data obtained from laboratory experiments as they relate to actual field measurements and to estimate the CO₂ flux from the soil to the atmosphere-associated with the northward march of the thaw line. This period of change of phase also is an important one to the various ecosystems encountered along this extensive north-south transect. The authors have also consulted with Dr. Philip C. Miller (San Diego State University, San Diego, CA) in order to bring about a mutually beneficial liaison for both DOE related projects. Dr. Miller will attempt to coordinate some of his field studies with ours whenever practical. The first transect is scheduled during a six day period at the end of April. During the period of phase as deduced from previous observations at 70°N latitude in Alaska, it is noted that subnivean CO₂ increases greatly (more than 8 times the atmospheric concentration) several times (Coyne and Kelley, 1973) during this period. This phenomena is not observed in the data from other temperate or tropical areas. It is suspected that this additional evolution of CO₂ may be due to fungal spore formation and mycelial growth which is enhanced during periods of high relative humidity under the snow and associated with the evolution of CO₂.

PROPOSED RESEARCH (SECOND YEAR)

Three objectives are proposed for the second year of this three year proposed research effort. The first objective is to continue the research on the seasonal sources and sinks of carbon dioxide in the arctic regions. Particular attention will be paid to the seasonal sea ice zone during the thaw and refreezing period, and the tundra-taiga regions, also during the freeze and thaw periods.

The University of Alaska Ship Committee has been apprised of our need for two cruises to the Bering/Chukchi Sea ice edge area. One is scheduled for the fall 1981; the other for the late spring 1982. In addition to obtaining sea surface water partial pressure data, as well as vertical PCO_2 profiles, attention will also be concentrated on the ice edge boundary particular during the spring.

The Bering Sea ice edge is an air-sea-ice frontal system that offers an opportunity to study the coupling of meteorological, physical and oceanographic processes in an area where events are concentrated in time and space and can be expected to occur each year within a more or less predictable time period (e.g. spring). After reaching its most southerly extent, this frontal ice edge system will move north eventually exposing the surface waters of the marginal seas of the Arctic Ocean (e.g. Chukchi, East Siberian). Whenever possible we will use cruise periods where other on-board projects will provide mutually beneficial data (hydrographic plankton, primary productivity data etc.).

The sea ice edge is a very heterogeneous region consisting of several types of sea ice of variable thickness and extent. Melt water may serve to stabilize the water column with the possibility of phytoplankton bloom production associated with an uptake of CO_2 from the water column. Any

upwelling phenomena associated with the ice edge will also serve to promote a phytoplankton bloom through nutrient enrichment of the photic zone. Storms will also modify the composition of the marginal ice zone and aid in the formation of plankton blooms and the possible release of alge from the ice with the net effect that CO_2 in the water and presumably in the near surface atmosphere will be affected. Data obtained from spring and fall cruises will allow us to more confidently assess the effect of these ice covered seas on the atmospheric CO_2 balance.

We anticipate some foreign participation on these cruises. Contact and letters of interest have been sent to Japanese and Swedish colleagues who have provided us with excellent logistic support in the Arctic for our research (Hakuho Maru 1978; YMER-1980) in the recent past.

A number of manuscripts have resulted from the work to date. The second objective, therefore, is to complete these technical reports and manuscripts which are in various stages of development. Draft manuscripts scheduled for submission to scientific journals are appended (Appendices 3-6). Manuscripts in preparation are listed by title in Appendix 7.

The third objective is to prepare for the comparative Antarctic oceanographic studies which will be carried out during the third year of this study. We anticipate an invitation to participate in the cruise of the Hakuho Maru (Japan) to Antarctica (ca. 5 months). We have already begun an analysis of previously collected pH, salinity and temperature data from past Japanese research vessels cruising in Antarctic waters. Although we cannot ascertain at this time the quality of these data, application of our pH method (Gosink and Kelley, 1981) does allow us to assess sea surface water CO_2 variability.

We have also been informed that a second cruise of the Swedish icebreaker YMER is under consideration by the Swedish government. It is expected that we will be invited to take part. Another YMER cruise would be especially attractive if it were scheduled to make a deep penetration into the summer pack ice as well as to revisit the Norwegian, Barents, and Kara Seas. Hoped for Russian participation on that cruise would assure that we could sample new areas to the east, namely the Kara and Laptev Seas.

Priority would be given to the Hakuho Maru cruise to Antarctica as much less is known about CO₂ in Antarctic waters, and ships of opportunity for this type of research are difficult to find. Since long lead-times are usually associated with preparations for these cruises it is necessary for us to prepare as early as possible. At this stage, preparations will entail primarily extensive liaison with our prospective hosts with regard to the overall scientific mission, interface of equipment, and potential scheduling problems so that no interference results with our second year research objectives.

Finally, there already exists a sufficient amount of information to warrant the convening of a small working group to synthesize existing information on the polar interactions among the atmosphere, land, sea, snow and ice in order to evaluate the hypothesis that with CO₂ induced climatic change the polar regions, particularly the Arctic, will become stronger carbon sinks than they are currently and that they will function significantly to damp out the global use in atmosphere CO₂ and temperature a prospectus for a workshop to be held in early 1982 was jointly drafted (Kelley, UA and Miller, SDSU) and submitted to the Department of Energy (See Appendix 8).

REFERENCES

Bocastow, R. B. and C. D. Keeling, 1981. Atmospheric carbon dioxide and the observed airborne fraction, SCOPE 16 (in press).

Coyne, P. I. and J. J. Kelley, 1971. Release of carbon dioxide from frozen soil to the arctic atmosphere, Nature, 327:407-408.

Coyne, P. I. and J. J. Kelley, 1973. Variations in carbon dioxide across an arctic snow pack in spring. J. Geophys. Res., 79(6): 799-802.

Coyne, P. I. and J. J. Kelley, 1975. CO₂ exchange over the Alaskan Arctic tundra: Meteorological assessment by an aerodynamic method, J. Appl. Ecol. 12: 587-611.

Gosink, T. A. and J. J. Kelley, 1977. Gases in sea ice. Report to the Office of Naval Research, Code 461, from the Institute of Marine Science, Univ. of Alaska, Fairbanks.

Gosink, T. A. and J. J. Kelley, 1979. The sources and sinks of carbon dioxide in the Arctic. Manuscript in preparation and to be found in part in a 1979 annual report to the Office of Naval Research from the Institute of Marine Science, Univ. of Alaska.

Gosink, T. A. and J. J. Kelley, 1981. A new empirical method to calculate PCO₂ from pH, salinity and temperature (manuscript in preparation).

Gosink, T. A., J. G. Pearson and J. J. Kelley, 1976. Gas movement through sea ice, 263:41-42.

Keeling, C. D., R. B. Bocastow, A. E. Bainbridge, C. A. Ekdahl, P. R. Guenther, C. S. Waterman, and J. F. S. Chin, 1976. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii, Tellus, 28:538-551.

Kelley, J. J., 1968. Carbon dioxide in sea water under Arctic ice. Nature, 218:862-864.

Kelley, J.J., 1976. Carbon dioxide in the surface waters of the North Atlantic, Ocean, the Barents and Kara Seas, Limnol. and Oceanog., 15:80-87.

Manabe, S., 1979. Seasonal variations in the effect of CO₂ enrichment, Nature, Vol. 282, November: 491-493.

Manabe, S. and R. T. Weatherald, 1975. The effects of doubling of the carbon dioxide concentration on the climate of a general circulation model. J. Atmos. Sci., 32:3-15.

Miller, P. C., 1980. Carbon balance in northern ecosystems and the potential effect of carbon dioxide induced climatic change: In, Carbon Dioxide Effects Research and Assessment Program. Report of a Workshop U.S. Dept. of Energy, CONF-8003118, No. 015, Washington, D.C. 109 pp.

Tiezen, L., 1978. Vegetation and production ecology of an Alaskan arctic tundra. Ecological Studies 29, Springer-Verlag, New York, 868 pp.

PERSONAL DATA

NAME: Thomas A. Gosink
[REDACTED] [REDACTED]
[REDACTED] [REDACTED]

EDUCATION:

B. A. Miami University, Oxford, Ohio, in Chemistry, 1959.
M. S. Massachusetts Institute of Technology, in Chemistry, 1962.
Ph.D. Oregon State University, in Chemistry, 1965.

POSITIONS HELD AND EXPERIENCE:

Research Associate, Geophysical Institute, University of Alaska, 1978-present.
Marine Chemist, Institute of Marine Science, University of Alaska, Fairbanks, 1975-Present.
Completed course in Air Chemistry, ODU-NASA, Spring 1973.
ASEE-NASA Summer Faculty Fellowship, Remote Sensing of the Environment, NASA, 1969.
Completed the Atomic Energy Commission short course in handling and measuring radioactive materials in 1968. (plus undergraduate course).
Visiting Associate Professor, University of Southampton, England, Fall 1974.
Associate Professor, temporary, Institute of Marine Science, University of Alaska, Fairbanks, 1973-1974.
Associate Professor, Old Dominion University, 1969-1974. (tenured)
NSF Summer Faculty Research Fellow, Ring Chain Tautomers, University of New Hampshire, 1971.
Taught courses in chemical oceanography and undergraduate and graduate-level organic chemistry, as well as introductory science.
Assistant Professor, Old Dominion University, 1965-1968.
Research Assistant, Oil Oxidation Inhibitors, Shell Oil Co., Summer of 1961.
Research Assistant, Organometallics, Dow Chemical Co., Summer of 1960.

PROFESSIONAL ORGANIZATIONS:

American Chemical Society, Past Section President
The Society of the Sigma Xi
American Association for the Advancement of Science
Limnology and Oceanography Society
American Geophysical Union

AWARDS AND/OR HONORS:

Two undergraduate awards
Stauffer Chemical Company Research Fellowship, 1964-1965

Personal Data of Thomas A. Gosink (Cont'd)

Page 2

PUBLICATIONS:

Published Articles

Marvell, E. N., G. Capel, T. A. Gosink, and G. Zimmer, Valence Isomerization of cis-Dienones to an α -Pyran., J. Am. Chem. Soc., 88:619, 1965.

Gosink, T. A., SCANREC: A Computer Test Grader, Analyzer and Record Keeping System, J. Chem. Ed., 47:101, 1970.

Gosink, T. A., Computer Programs for Questionnaire Tabulation, J. Chem. Ed., 48:438, 1971.

Marvell, E. N., and T. Gosink, Valence Isomerization of 2, 4, 6-Trimethyl2H-pyran., J. Org. Chem., 37:3036, 1972.

Marvell, E. N., T. Gosink, P. Churchly, and J. H. Li, Semihydrogenation of 1-Phenyl-4-penten-2-yn-1-one and of 1-Phenyl-3-(cyclohexen-1-yl) -2-propynone., J. Org. Chem., 37:2989, 1972.

Marvell, E. N., T. Chadwick, G. Capel, T. Gosink, and G. Zimmer, Rates of Electrocyclic Reaction, Conversion of α -Pyrans to cis-Dienones., J. Org. Chem., 37:2992, 1972.

Gosink, T. A., Valence Isomers. Substituents Effects on the Equilibrium Between 2H-Pyrans and cis-Dienones., J. Org. Chem., 39:1942-1946, 1974.

Gosink, T. A., Gas Chromatography in Environmental Analysis. Now and the Near Future., Environ. Sci. Tech., 9:630-634, 1974.

Gosink, T. A. and D. Reynolds, Selenium Analysis of the Marine Environment. Gas Chromatography and Some Results., Marine Chem. Comm., 1:101-114, 1975.

Gosink, T. A., Rapid Simultaneous Determination of Picogram Quantities of Aluminum and Chromium from Natural Waters by Gas Phase Chromatography., Anal. Chem., 47:165-168, 1975.

Gosink, T. A., Gas Chromatographic Analysis of Beryllium in the Marine System. Interference, Efficiency, Apparent Biological Discrimination and Some Results, Mar. Sci. Comm., 2:183-199, 1976.

Gosink, T. A., On the use of cosmogenic radionuclides of beryllium for ocean transport studies., Mar. Sci. Comm., 2:413-417, and Reply in 3, 277-78, 1977, 1976.

PUBLICATIONS (Cont'd)

Gosink, T. A., J. G. Pearson, and J. J. Kelley, Gas movement through sea ice., Nature, 263:41-2, 1976.

Gosink, T. A., Sample Size in Environmental Assessments, Chapter 27. In Assessment of the Arctic Marine Environment: Selected Topics., Inst. Mar. Sci. Occas. Publ. No. 4, University of Alaska, Fairbanks, 1976.

Gosink, T.A. and R. Seitz, Automatic Gas Sample Pressure Controller. Int. J. Environ. Anal. Chem., 6, 263-266, 1979.

Gosink, T. A. and J. J. Kelley, Carbon monoxide evolution from arctic surfaces during spring thaw. J. Geophys. Res., 84, 7041, 1979.

Jones, P. R., G. R. Wrisman, M. J. Baillargeon and T. A. Gosink, Atropisomerism in o-arylacetyl-N, N-dimethylbenzamides, J. Org. Chem., 45, 3618-20, 1980.

Gosink, T. A., Trace element studies in Port Valdez, Alaska. Chapter 5 in: Port Valdez: Environmental Studies, 1976-1979, Inst. of Mar. Sci. Publ. Occas. No. 5, Fairbanks, Alaska, pages 77-106, 1980.

Gosink, T. A., Atmospheric trace gases in association with sea ice. Antarctic Journal, 15, 1980.

SUBSTANTIVE REPORTS

Gosink, T. A., D. C. Burrell and D. W. Hood, Trace and metal analysis of aqueous systems. A study of the development of gas chromatographic techniques and of analytical errors. Final report to the N.S.F. Grant GA 37740. Feb. 1975.

Fleischer, P., T. A. Gosink, W. J. Hanna, J. C. Ludwick, D. E. Bowker and W. G. Witte, Correlation of chlorophyll, suspended matter, and related parameters of waters in the lower Chesapeake Bay area to LANDSAT-1 imagery., Inst. of Oceanography, Old Dominion Univ., Tech. Report No. 28, 1976.

Gosink, T. A. and D. C. Burrell, Special Data Report: Natural distributions and environmental background of trace heavy metal in Alaskan shelf and estuarine areas. To the Outer Continental Survey Program. Task order 12, R.U. # 162/163/288/293/312. Jan. 1977.

Gosink, T. A., Dissolved chemical fluxes. in: Interdisciplinary Panel statements. Seasonal Sea Ice Zone Conference, Cold Regions Sci. Technol. 2, 339-340 (1980).

REPORTS (Cont'd)

Kelley, J. J., T. A. Gosink and J. G. Pearson, Gas in Sea Ice. Annual report to the Office of Naval Research Code 461, Arlington, Virginia, 22217. Contract No. N0014-76-C-0331. Sept. 1976.

Gosink, T. A. and J. J. Kelley, Gases in Sea Ice, Annual report to the Office of Naval Research, Code 461, Arlington, Virginia 22217. Contract No. N00014-76C-0331, Sept. 1977 and 1978. Final Report, 1979.

Gosink, T. A. and D. C. Burrell. Four quarterly reports and one annual report. Chromium, and selenium data for Beaufort Sea, Norton Sound and Gulf of Alaska. 1976-77.

Gosink, T. A. Quarterly, 1 annual and 1 final reports in the Continuing Environmental Studies in Port Valdez, Alaska. Trace element 1976-1979.

RECENT PRESENTATIONS:

Bowker, D. E., W. G. Witte, P. Fleischer, T. A. Gosink, W. J. Hanna and W. G. Witte, An investigation of the waters of the lower Chesapeake Bay area. Proceeding of the Tenth Intl. Sympos. on Remote Sensing of the Environment., 6-10 October 1975, pp. 411-420, Research Inst. of Michigan, Ann Arbor, 1975.

Gosink, T. A., Sample Size and Analytical Error. POAC-75 meeting, Fairbanks, Alaska, August, 1975.

Kelly, J. J. and T.A. Gosink, Trace gases in the arctic atmosphere-air-sea-ice land exchange. Eleventh Int. Polar Meeting. Berlin Geophysical Society, Berlin October 1978.

Gosink, T. A. and J. J. Kelley, Sea ice influence on air-sea interactions. American Geophysical Union meeting, Miami, 1978. Abstract M4.

Gosink, T. A. and J. J. Kelley. Arctic source-sinks of trace gases. 177th Annual American Chemical Society. Joint meeting with Japan and Australia, Honolulu, April 1979.

Gosink, T. A. and J. J. Kelley. Partial pressures of carbon dioxide in surface waters of the Bering Sea and other Arctic Oceans. XIV Pacific Science Congress in Khabarovsk, Russia, August 1979.

Gosink, T. A. and J. J. Kelley, The influence of sea ice on trace gases in the arctic, XIV Pacific Science Congress in Khabarovsk, Russia, August 1979.

Gosink, T. A. and J. J. Kelly, Trace gases of the arctic, American Chemical Society, Washington, D.C., Sept. 1979.

Gosink, T. A. and J. J. Kelly, Air-sea gas transfer through annual sea ice. IUGG-IAPSO XVII General Assembly. Canberra, Australia, December 1979.

Personal Data of Thomas A. Gosink (Cont'd)

Page 5

PRESENTATIONS (cont'd)

Gosink, T. A., Properties of sea ice, and the natural sources and sinks of carbon dioxide in the Arctic. To the NOAA/ERL CO₂ monitor group. Boulder, May 1980.

Gosink, T. A., Studies of trace gases in the Arctic and Subarctic. To the Environmental Resources Technology Research Group. Los Angeles, May 1980.

PATENTS:

Gosink, T. A. Preparation of N. N-Dialkydithiocarbamates for oil oxidation inhibitors. All rights to Shell Oil Co. 1962.

Gosink, T. A., Preparation of Triphenyllead Acetate (for use in antifoulant paints). Seaguard Finishes Company, Inc., 1969.

IN PREPARATION:

The globally significant sources and sinks of carbon dioxide in the Arctic.

Annual sea ice. An air-sea gas exchange moderator.

Observations and calculations of PCO₂ in sea waters. A new approach.

Arctic tropospheric carbon dioxide and low altitude aircraft sampling.

Calculations of the carbon dioxide-carbonate system from a single parameter-insitu pH.

An explanation for the extremely low partial pressure of carbon dioxide in surface waters of the Barentz, Kara and Greenland Seas.

Properties of sea ice and the natural sources and sinks of carbon dioxide in the Arctic.

Studies of trace gases in the Arctic and Subarctic.

February 1981

Biographical Sketch ofJOHN J. KELLEY

Education: B.S. Pennsylvania State University, Geophysics
Geochemistry, 1955-1958
University of Washington, Graduate Student and
Scientist, Atmospheric Sciences, 1962-1968
University of Alaska, Fairbanks, Graduate Student,
Ph.D. program, and professional staff member,
1968-1970
Ph.D. University of Nagoya, Nagoya, Japan, Chem-
ical Oceanography, 1974

Member: American Geophysical Union
Arctic Institute of North America (Fellow and Governor)
Explorers Club of New York

Professional Experience: 1959-1968, Principal Scientist, Chemical Micrometeor-
ology Program, University of Washington
1969-1970, Invited participant in research design of
Tundra Biome, International Biological Programme
(USIBP)
1969-1975, Co-Principal Investigator, Tundra Biome,
USIBP
1969-1973, Co-Principal Investigator, USN-ONR Con-
tract, Carbon Dioxide in Polar Seas
1971-1972, Co-Principal Investigator, National Science
Foundation Grant, Bering Sea Oceanography
1973-1974, Co-Principal Investigator, NSF-NCAR
Experiment, Tropical Atmospheric Carbon Diox-
ide and Water Vapor
1973, Invited participant, International Bering Sea
Oceanography Program, IDOE (NSF)
1974-1976, Principal Investigator, USN-ONR
(Arctic Branch), AIDJEX (ALIX) Experiment
1974, Assistant Professor, Institute of Marine Sci-
ence, University of Alaska, Fairbanks
1974-1976, Program Manager for Meteorology and
Oceanography, Division of Polar Programs, NSF
(Professional leave of absence, University of
Alaska)
1976-1977, Liaison/Research Management Officer,
Governor's Office, State of Alaska, at NOAA
Outer Continental Shelf Environmental Assess-
ment Program (OCSEAP), Boulder, Colorado
(Sabbatical leave, University of Alaska)
1977-1980, Director, Naval Arctic Research Laboratory,
Barrow, Alaska, and Associate Professor, University
of Alaska, Fairbanks, Alaska
1980-Present, Associate Professor, Institute of Marine
Science, University of Alaska, Fairbanks

Inventions: 1973, J. J. Kelley and G. Mimken. Logic Controlled solid-state manifold sampling system for liquids and gases. Invention Disclosure submitted to the U.S. Patent Office.

Publications: Kelley, J. J., Jr. and E. LaChapelle. 1966. Atmospheric carbon dioxide variations on Mt. Olympus, Washington. *J. Geophys. Res.* 71(8):2173-2174.

Kelley, J. J., Jr. and D. F. Weaver. 1966. Carbon dioxide and ozone in the arctic atmosphere. *Proc., 16th Alaska Science Conf.* 151-167 pp.

Gudiksen, P. H., P. W. Hildebrandt and J. J. Kelley, Jr. 1966. Comparison of an electrochemical and a colorimetric determination of ozone. *J. Geophys. Res.* 71(2):5221-5223.

Kelley, J. J., Jr. 1968. Carbon dioxide and ozone studies in the arctic atmosphere. (Invited paper.) *Proc., AINA-ONR Drifting Stations Symposium.* Arctic Institute of North America, Washington, D.C.

Kelley, J. J. Jr. 1968. Investigations of atmospheric trace gases and suspended particulate matter on Mt. Olympus, Olympic National Park, Washington. *J. Geophys. Res.* 74(2):435-443.

Kelley, J. J., Jr. 1968. Carbon dioxide in the sea water under the arctic ice. *Nature* 218:5144, 1-5.

Kelley, J. J., Jr. 1968. Observations of carbon dioxide in the atmosphere over the western United States. *J. Geophys. Res.* 74(6): 1688-1693.

Kelley, J. J., Jr. and T. McTaggart-Cowan. 1968. The vertical gradient of net oxidant near the ground surface at Barrow, Alaska. *J. Geophys. Res.* 73(10):3328-3330.

Kelley, J. J., Jr., D. Weaver, and B. Smith. 1968. Variation of carbon dioxide under snow in the Arctic. *Ecology* 49(2):358-361.

Kelley, J. J., Jr. and D. F. Weaver. 1969. Physical processes of the surface of the arctic tundra. *Arctic* 22(4):425-437.

Kelley, J. J., Jr. 1970. Carbon dioxide in the surface waters of the North Atlantic Ocean, Barents and Kara Seas. *Limnol. Oceanogr.* 15(1):80-87.

Johnson, P. L. and J. J. Kelley, Jr. 1970. Dynamics of carbon dioxide in the arctic biosphere. *Ecology* 51(1):73-80.

Coyne, P. I. and J. J. Kelley. 1971. Release of carbon dioxide from frozen soil to the arctic atmosphere. *Nature* 234(5329):407-408.

Kelley, J. J. and D. W. Hood. 1971. Carbon dioxide in the surface water of the ice-covered Bering Sea. *Nature* 229(5279):37-39.

Kelley, J. J. and D. W. Hood. 1971. Carbon dioxide in the Pacific Ocean and Bering Sea: Upwelling and mixing. *J. Geophys. Res.* 76(3): 745-752.

Kelley, J. J., L. L. Longerich, and D. W. Hood. 1971. Effect of upwelling mixing and high primary productivity on carbon dioxide concentrations in surface waters of the Bering Sea. *J. Geophys. Res.* 76(36):3687-3693.

Miller, R. F., D. C. Berkshire, J. J. Kelley and D. W. Hood. 1971. A method for the determination of the reaction rates of carbon dioxide with water and hydroxyl ion in seawater. *Envir. Sci. and Tech.* 5:127-133.

Coyne, P. I. and J. J. Kelley. 1972. Carbon dioxide exchange in the Alaskan arctic tundra: Meteorological assessment by the aerodynamic method. *Proc., Tundra Biome Symposium, USIBP, Lake Wilderness Center, University of Washington, Seattle.* 36-39 pp.

Kelley, J. J. 1973. Microclimatological investigations near the arctic tundra surface. (Invited paper.) *Proc., 25th Anniversary of Naval Arctic Research Laboratory Symposium, 1972.* In: *Alaska Arctic Tundra, AINA Tech. Paper No. 25.* 109-126 pp.

Kelley, J. J. 1973. Surface ozone in the arctic atmosphere. In: *Pure and Applied Geophysics, 106-108:1106-1115.* Birkhauser Verlag, Basel (Switzerland).

Kelley, J. J. 1973. Baseline observations of atmospheric trace gases in the arctic atmosphere of North America. (Invited paper.) *Proc., TECOMAP Conference, sponsored by United Nations WMO/WHO, 1973 August, Helsinki, Finland.*

Coyne, P. I. and J. J. Kelley. 1973. Variations in carbon dioxide across an arctic snowpack in spring. *J. Geophys. Res.* 79(6):799-802.

Coyne, P. I. and J. J. Kelley. 1973. Equilibration partial pressure of carbon dioxide in arctic surface waters. *Limnol. Oceanogr.* 19(6):928-938.

Kanamori, S., J. J. Kelley and D. W. Hood. 1973. The distribution of equilibrium partial pressure in the Bering Sea. *Proc., Geochemical Society of Japan, Akita University, Akita, Japan, 1-3 October.* 45-48 pp.

Kanamori, S., J. J. Kelley and D. W. Hood. 1973. Determination of equilibrium partial pressure of carbon dioxide in sea water. *Proc., Oceanographical Society of Japan, Tokyo University of Fisheries, Tokyo, 6-11 June.* 158-159 pp.

Gordon, L. I., P. K. Park, J. J. Kelley and D. W. Hood. 1973. Carbon dioxide partial pressure in North Pacific surface waters. 2. General late summer distribution. *Marine chemistry* 1:191-198.

Kelley, J. J. 1974. On the role of calibration integrity in atmospheric trace gas monitoring. *Proc., 11eme Colloque International sur les Atmospheres Polluees, IRCHA, Paris, France.*

Coyne, P. I. and J. J. Kelley. 1975. Carbon dioxide exchange over the Alaskan arctic tundra: Meteorological assessment by an aerodynamic method. *J. Applied Ecology* 12:587-611.

Gosink, T. A., J. G. Pearson, and J. J. Kelley. 1976. Gas movement through sea ice. *Nature* 263:5572.

Hood, D. W. and J. J. Kelley. 1976. Evaluation of mean vertical transports in an upwelling by CO_2 measurements. *Marine Science Communications* 2(6):387-411

Fletcher, J. O. and J. J. Kelley. 1977. The role of the polar regions in global climate change. In: *Polar Research to the Present and Future*, edited by M. A. McWhinnie, A.A.A.S., 97-116.

Kelley, J. J. 1977. Icebergs--A natural resource. In: *Iceberg Utilization*, edited by A. A. Huseing, Pergamon Press. 20-24.

Coyne, P. I. and J. J. Kelley. 1978. Meteorological Assessment of CO_2 exchange over an Alaskan Arctic Tundra (pp. 299-313, Chap. 12) in *Vegetation and Production Ecology of an Alaskan Arctic Tundra*. Ed. by L. L. Tiezen. Springer-Verlag, New York. 668 pp.

Laursen, G. A. and J. J. Kelley. 1979. Arctic and Subarctic Research Support Facilities above the Arctic Circle. In *Comparative Mechanisms of Cold Adaptation*. Ed. by L. Underwood, L. Tiezin, A. Callahan, and E. Folk. Pub. by Academic Press, N.Y. 379 pp.

G. Wendler, A. Poggi, and J. Kelley. 1979. On the Katabatic Wind in Antarctica. *Antarctic Journal*. (In press)

T. A. Gosink and J. J. Kelley. 1979. Carbon Monoxide Evolution from Arctic surfaces during spring thaw. *J. Geophys. Res. J. Geophys. Res.* 84:C11, 7041.

Kelley, J. J. 1980. Background levels and biogeochemical cycle of CO_2 in the Arctic: Multimedia monitoring requirements. *Proceedings of the International Symposium on the Multimedia Monitoring of Environmental Pollution, Riga, USSR*. (In Russian), pp. 266-271. Proceedings to be published by WMO. (In press).

Technical Reports Kelley, J. J., D. T. Bailey, and B. J. Lieske. 1964. Radiative energy exchange over arctic land and sea. Scientific Report No. 5, Dept. of Atmospheric Sciences, University of Washington. pp. 125.

Kelley, J. J., Jr. 1966. An analysis of carbon dioxide in the arctic atmosphere, Part 2. Scientific Report No. 7, Department of Atmospheric Sciences, University of Washington. pp. 133.

Kelley, J. J., Jr. 1967. Atmospheric ozone investigations at Barrow, Alaska, 1965. Scientific Report No. 9, Department of Atmospheric Sciences, University of Washington. pp 96.

Kelley, J. J., Jr. and S. M. Hodge. 1967. Measurements of the chemical constitution of the atmosphere at the Blue Glacier field station, Mt. Olympus, Washington. Scientific Report No. 10, Department of Atmospheric Sciences, University of Washington. pp 44.

Kelley, J. J., Jr. and D. F. Weaver. 1968. Measurements of the thermal regime of the soil and atmosphere near an arctic tundra surface. Scientific Report No. 12, Department of Atmospheric Sciences, University of Washington. pp.34.

Kelley, J. J., Jr. 1969. An analysis of carbon dioxide in the arctic atmosphere near Barrow, Alaska, 1969-1967. Scientific Report No. 3, Department of Atmospheric Sciences, University of Washington. pp. 172.

Kelley, J. J., Jr. 1970. Atmospheric ozone investigations at Barrow, Alaska, 1965-1967. Scientific Report No. 2 (Final Report), Department of Atmospheric Science, University of Washington. pp. 110.

Kelley, J. J. and A. Hanson. 1970. Observations of carbon dioxide in the surface waters of the eastern North Pacific Ocean and Bering Sea. Scientific Report, Department of Atmospheric Sciences, University of Washington. pp. 38.

Kelley, J. J. and P. L. Johnson. 1970. Observations of carbon dioxide and plant growth in arctic ecosystem. Scientific Report, Department of Atmospheric Sciences, University of Washington. pp. 130.

Kelley, J. J. 1971. Observations of carbon dioxide in the surface waters of the North Atlantic Ocean, Barents and Kara Seas. Scientific Report, Department of Atmospheric Sciences, University of Washington. pp. 18.

Kelley, J. J. and D. W. Hood. 1971. Carbon dioxide in surface waters of the Barents Sea: Southwind Expedition, 1970. Report 71-20, Inst. Marine Science, University of Alaska, Fairbanks. pp. 9.

Longerich, L. L., J. J. Kelley, and D. W. Hood. 1971. Carbon dioxide in the surface waters near the coast of southern Alaska and the eastern Aleutian Islands. In Report 71-19, Inst. Marine Science, University of Alaska, Fairbanks.

Longerich, L. L., M. Billington, V. Alexander, J. J. Kelley, and D. W. Hood. 1971. Carbon dioxide and primary productivity in the glacial fjord system of Southeast Alaska. In Report 71-19, Inst. Marine Science, University of Alaska, Fairbanks.

Kelley, J. J. and P. I. Coyne. 1972. A case for comparison and standardization of carbon dioxide reference gases. Eastern Deciduous Forest Biome Report 72-28, U.S. Atomic Energy Commission, Oak Ridge, Tennessee. pp. 24.

Hobbie, J. E., R. J. Barsdate, V. Alexander, D. W. Stanley, C. P. McRoy, R. G. Stross, D. A. Bierle, R. D. Dillon, M. C. Miller, P. I. Coyne, and J. J. Kelley. 1972. Carbon flux through a tundra ecosystem at Barrow, Alaska. USIBP Tundra Biome Report 72-1. pp. 29.

Coyne, P. I. and J. J. Kelley. 1973. Carbon dioxide dynamics on the arctic coastal plain. U.S. Army Cold Regions Research and Engineering Laboratory (CRREL), Final Report. pp. 119.

Kelley, J. J., D. W. Hood and L. L. Longerich. 1973. Oceanography of the Bering Sea. Phase 2. Turbulent upwelling and water mass identification in the vicinity of Samalga Pass, eastern Aleutian Islands. Final Progress Report to the National Science Foundation, Inst. Marine Science, University of Alaska, Fairbanks, Vol. 2, Part 1. pp. 115.

Kelley, J. J., D. W. Hood, J. J. Georing, R. Barsdate, M. Nebert, L. Longerich, J. Groves, and C. Patton. 1973. Oceanography of the Bering Sea. Phase 2. Turbulent upwelling and water mass identification in the vicinity of Samalga Pass, eastern Aleutian Islands. Final Report to the National Science Foundation. Vol. 2, Part 2 (Methods and Data), Inst. Marine Science, University of Alaska, Fairbanks. pp. 263.

Kelley, J. J. 1974. Dynamics of the exchange of carbon dioxide in arctic and subarctic regions. Ph.D. Thesis, University of Nagoya, Water Research Institute, Nagoya, Japan. pp. 171.

Hood, D. W. and J. J. Kelley. 1974. Upwelling phenomena in the eastern Aleutian passes with a suggested method of measuring material transport. In: Bering Sea Oceanography: An update, 1972-1974, edited by A. Y. Takenouti and D. W. Hood. Report 75-2, Inst. Marine Science, University of Alaska, Fairbanks. 245-277 pp.

Kelley, J. J. and T. A. Gosink. 1976. Gases in sea ice. Annual Report to the Department of Navy, Office of Naval Research, Arlington, Virginia. pp. 15.

Gosink, T. A. and J. J. Kelley. 1977. Gases In Sea Ice. Annual Report to the Office of Naval Research, Arlington, Virginia. pp. 49.

Gosink, T. A. and J. J. Kelley. 1978. Gases In Sea Ice. Annual Report to the Office of Naval Research, Arlington, Virginia. pp. 91.

Kelley, J. J. and T. A. Gosink. 1978. Trace gases in the outer atmosphere. Report of the 11th International Polar Meeting, Berlin, October 4-7, 1978. (In press).

Kelley, J. J. 1978. Thirty Years of Research at the Naval Arctic Research Laboratory. Report of the 11th International Polar Meeting, Berlin, 4-7, 1978 (In press).

Kelley, J. J. and T. A. Gosink. 1979. Gases in Sea Ice: 1975-1979. Final Report to the Office of Naval research, Arlington, Virginia. 104 pp.

Kelley, J. J. and G. A. Laursen. 1979. Investigation of the Occurrence and Behavior Patterns of Whales in the Vicinity of the Beaufort Sea Lease Area. Report to the Bureau of Land Management. 48 pp.

Kelley, J. J. and G. A. Laursen. 1980. Investigation of the Occurrence and Behavior Patterns of Whales In The Vicinity of the Beaufort Sea Lease Area. Final Report to the Bureau of Land Management. 753 pp.

Recent Publications: Prentki, R. T., M. C. Miller, R. J. Barsdate, V. Alexander, J. Kelley, and P. Coyne. 1980. pp. 76-178. *In Limnology of Tundra Ponds*. Ed. by John E. Hobbie, Pub. by Dowden, Hutchinson and Ross, Inc., Pa. 514 pp.

Kelley, J. J. and G. A. Laursen. 1981. A Short History of the Naval Arctic Research Laboratory. *In Proceedings of the First International Symposium on Arctic Mycology*, Univ. of Washington Press (in press).

Recent Reports: Kelley, J. J. 1981. Factors to be considered for the evaluation of a multipurpose arctic research laboratory on the north coast of Alaska. Report to the President, University of Alaska. Institute of Marine Science. 41 pp.

Gosink, T. A. and J. J. Kelley. 1981. Atmospheric Chemistry. A plan for a research-study program. Report to the Director of the Geophysical Institute. Geophysical Institute. 24 pp.

Kelley, J. J. 1981. Drift of Ice Island T-3 (Fletcher's Ice Island) in the Arctic Ocean. Report to NASA, Goddard Space Flight Center. 4 pp.

Kelley, J. J. 1981. Prospectus for the Science Advisory Committee of the Alaska Eskimo Whaling Commission. Institute of Marine Science. 18 pp.

ATTACHMENT A

Research Activities:

A. Gases in Sea Ice (Through Institute of Marine Science)
 Agency - U.S. Navy - ONR Code 461
 Amount: \$85K FY-78
 CO-P.I. Dr. T. A. Gosink

B. Gases in Sea Ice (Through Institute of Marine Science)
 Agency - U.S. Navy - ONR Code 461 and
 Department of Energy
 Amount: \$100K FY-79

C. Marginal Ice Zone Marine Experiment (MIZMEX) - (Through NARL)
 Agency: U.S. Navy, ONR Code 461
 Amount: \$40.5K (concluded September 1978)
 CO-P.I. Arnold Hanson

D. An Investigation of Whales in Beaufort Sea Lease Areas
 (Through NARL)
 Agency: Bureau of Land Management
 Amount: \$150K FY-78

E. An Investigation of Whales in Beaufort Sea Lease Areas
 (Through NARL)
 Agency: Bureau of Land Management
 Amount: \$650K FY-79

F. Training Program for Native Youths
 Agency: Alaska Federation of Natives
 Amount: \$148K FY-79

G. An investigation of whales in Beaufort Sea Lease Areas
 (through the NARL)
 Agency: Bureau of Land Management
 Amount: \$400,000 FY-80.

H. Trace Gases In The Arctic Environment: Air-Sea-Land
 Distribution And Exchange (through Institute of
 Marine Science).
 Agency: National Science Foundation
 Amount: \$41,513 (first year FY-80).
 Co-P.I. Dr. T. A. Gosink (Geophysical Institute).

I. Carbon Dioxide in Arctic and Subarctic Regions (through
 Geophysical Institute).
 Agency: Department of Energy
 Amount: \$196,912 (first year FY-80). Total requested for
 three years \$557,000).
 P.I. Dr. T. A. Gosink
 Co-P.I. Dr. J. J. Kelley

ATTACHMENT A (cont'd)

J. Establishment of a Science Advisory Committee for the
Alaska Eskimo Whaling Commission
Agency: AEWG, Barrow, Alaska
Amount: \$22,000 (1980/81)
P.I.: Dr. J. J. Kelley

ATTACHMENT B

Informal or Unscheduled Instructional Activities:

In addition to the presentation of informal seminars at the NARL, the following activities have been pursued:

Editor - Newsletter - NARL NEWS.

Instructional television series on Environmental Sciences sponsored by North Slope Borough School District. The series is designed for the senior high school young adult level of education is taped and sent to nine Borough villages.

Cooperation with Alaskan Eskimo Whaling Commission and North Slope Borough School District to train students in various scientific and technical skills: Funding through AFN.

Consultation with the North Slope Borough School District on the development of a science curriculum for the Borough.

Conduct adult education short courses in various scientific subjects for Inupiat residents of the North Slope. Arrangements are made for in-house and outside experts to teach these courses.

Conduct appropriate technology seminars for the NARL staff, community teachers, and leaders in association with outside consultants.

Provide advice on various environmental science topics to North Slope Borough leaders.

Review proposals and scientific journal manuscripts for various funding agencies and professional journals.

Develop and Edit a quarterly publication: Institute of Marine Science Notes (1980/81).

Participate in the development of science training program for students living in remote villages (through WAMI Program). Courses will be taught on-campus (summer) with visits to the remote villages in the winter (1980/81).

ATTACHMENT C

External Service Activities:

In addition to actively participating in community planning and development activities (Alaska Eskimo Whaling Commission, N.S.B. planning conferences), I have been invited to participate in the following conferences during the period 1978-79:

1. Presented seminar on trace gases and exchange processes at the Annual NOAA/ERL-GMCC Conference at Hilo, Hawaii, January 1978.
2. Consultant on siting criteria for atmospheric physics and chemistry. UN/WMO, Geneva, Switzerland, April 1978.
3. Presented seminar on trace gases at the University of Mainz (Invited by Professor Christian Junge) May 1978.
4. Presented seminar on Carbon Dioxide Air-Sea-Land Transfer at the Institute of Meteorology, University of Stockholm October 1978.
5. Presented Seminar on trace gases and polar climate at the Meteorology Department, University of Uppsala, Sweden October 1978.
6. Invited to participate in Eastern Arctic Marine Sciences Conference (Chemistry Section) Technical University of Denmark, Copenhagen (Lyngby), January 1979.
7. Invited to participate in planning conference for Seasonal Ice Zone research. U.S. Postgraduate School, Monterey, California (February 1979).
8. Produced planning document for proposed Swedish (multi-disciplinary) Icebreaker YMER-80 cruise to East Greenland and Svalbard in 1980.
9. Presented two papers at the 11th International Polar Meeting, Berlin, October 1978.
10. Presented invited paper at the International Symposium on Integrated Monitoring of Environmental Pollution, Riga, USSR, December 12-15, 1978.
11. Invited to participate at an expert meeting on producing an integrated multimedia monitoring/research plan at the UN/WMO, Geneva, September 1-5, 1980.

ATTACHMENT C (cont'd)

12. Panel Member: Interagency Committee on Ocean Pollution Research and Monitoring (provides review and future research recommendations for all U.S. Outer Continental research efforts) 7/26, 27, 28, 1980; 8/25, 26, 27, 1980; 9/22, 23, 24, 1980.
13. Serve on University of Alaska Telecommunications Committee (1980/81).
14. Serve as Chairman of the Alaska Eskimo Whaling Commission Science Advisory Committee (1980/81).
15. Serve as member of the President's UAF Arctic Research Laboratory Task Force (1980/81).
16. Invited to present two papers at the 10th Annual Arctic Workshop, INSTAAR, Boulder, Colorado, March 11-14, 1981.
17. Serve as IMS delegate to the 32nd Alaska Science Conference Committee.

In addition to the above, I review numerous proposals in marine sciences and meteorology for the National Science Foundation and Department of Energy.

I have also been appointed to serve on the Alaska State Review Panel for the Appropriate Technology Small Grants Program.

Budget

Salaries

Co-Principal Investigator, T. Gosink, Research Assoc. in Geochemistry 6 mo. @ \$4725	28,350
Co-Principal Investigator, J. J. Kelley, Assoc. Prof. of Marine Science, 3 mo. @ \$4326	12,978
Laboratory/Field Technician, 12 mo. @ \$2016	24,192
Data Processing Asst., 3/4 mo. @ \$1620	1,215
Subtotal	66,735
7.5% salary increment - FY 82	5,005
Subtotal	71,740
Reserve for annual leave 11%	7,891
Holiday and sick leave 9.5%	6,815
Total Salaries	86,446

Staff Benefits

Hospitalization, Social Security, Retirement, 16% of total salaries	13,831
--	--------

Travel

(Domestic:)

6 one-way trips, Fairbanks-Seward @\$.35/mi.	1,260
6 one-way trips, Fairbanks-Dutch Harbor including 20 days subsistence @\$74/day	3,610
2 round trips, Fairbanks to a National meeting, including 10 days @ \$65/day	2,460
8 round trips, Fairbanks-Barrow, including 24 days subsistence @\$100/day	4,240
2 round trips, Fairbanks-Denver-San Diego, including 10 days @ \$65/day	2,504
Subsistence for haul road travel, 30 days @\$67	2,010

(Foreign:)

2 round trips, Fairbanks-Stockholm, including 6 days subsistence @ \$100/day	3,872
2 round trips, Fairbanks-Tokyo, including 6 days subsistence @ \$100/day	3,020
	22,976

Supplies

Miscellaneous expendable materials & supplies	2,000
---	-------

Services

1200 miles vehicle use, haul road, \$.50/mi.	600
Shipping	3,000
Report preparation and page charges	1,800
Communications	700
Computer costs	300
	6,400

Logistics

4 days cost share for 25 days at \$6000 per day on R/V Alpha Helix	24,000
Total Direct Costs	155,653

Overhead - 38.2% of total direct costs

Total Budget	215,112
--------------	---------

EXPLANATION OF THE BUDGET

A. Salaries and Wages: The Principal Investigator named in the proposal will be responsible for the overall management of this research. Salary for a total of nine man months is requested. Salary for a full-time technician is also requested. The investigators are the same as those supported under the DOE proposal for 1980-81.

It should be noted that due to the high cost of living in Alaska, salaries are considerably higher than the national average for any given position. For instance, the federal government recognizes this fact by paying a 25% taxfree cost of living allowance to its employees in Alaska; on similar grounds, NSF has agreed to raise the salary limitation for Alaskan investigators to \$59,375 from the mandated \$47,500 per annum.

B. Staff Benefits are provided at the current University of Alaska rate.

C. Travel requests are made for the transport of investigators to and from the field research sites, and to work with collaborators (Peterson, NOAA, Denver, and Miller, San Diego). Funds are requested at this time for one national meeting for each Principal Investigator.

Foreign travel is to transport the Principal Investigators to discuss and consult on data collected on the YMER-80 cruise, and to plan and join the Japanese Antarctic Research Expedition on the R/V Hakuho Maru.

D. Supplies refer to purchase of gases, glassware, mechanical and electronic parts not normally designated as permanent equipment. These are consumable items.

E. Other items (services) are divided into several categories. Report preparation includes costs involved with reproduction and journal page charges if applicable. Communication charges refer to telephone charges. Shop support is provided for electronic and mechanical repair and modifications.

Shipping charges for the transport of equipment are provided. This level of funding is conservatively estimated from charges normally incurred during past years of operations.

F. Logistics are a direct charge item in line with past expenditures. The various categories are listed.

G. Indirect Costs: This item is listed in accordance with the current University of Alaska rate.

APPENDIX

The following appendices represent results of research carried out under DOE Contract 80EV10429 for fiscal year 1980. Except for internal reports, all manuscripts in this appendix are to be considered in preliminary or draft form. They are appended for the convenience of the DOE and its need for timely reporting of research products. Although, the manuscripts will undergo extensive editing, it is unlikely that the reporting of research results will change substantially. It is requested that the appended manuscripts be treated as internal documents and that republication or reproduction for public dissemination not be done without the permission of the authors.

DRAFT

CRUISE REPORT, YMER-80 LEG I & II, July-September 1980

Nitrous oxide data are presented in tabular form. Reduced, corrected cruise data for PCO_2 , temperature and salinity are presented in graph form.

Activities

Nitrous oxide determination of surface waters at 15 stations on 3 transects were completed during Leg I. A few comparison measurements were also made during Leg II.

Partial pressures of carbon dioxide in the air and in surface waters were measured over the entire area covered by Leg II.

Partial pressures of CO_2 in surface waters for Leg I, were calculated from pH data from that period, and verified during Leg II.

Routine observations of the in situ pH, temperature, and salinity of surface waters were recorded during both Leg I and Leg II.

Methods

pH and temperature measurements were made with a Corning Model 135 pH meter with a combination reference electrode. NBS standardized buffer solutions (4.01, 7.00, 9.12) were used for instrument calibration.

Salinity measurements were made with #4403 Electromark Digital Analyzer. Standardized sea water was used for calibration.

Nitrous oxide measurements were made on a Perkin Elmer Model 3920 gas chromatograph with electron capture device (ECD), using standardized ECD methods with a 2 m. Porapak Q column. A 1 ppm Matheson calibrated gas standard was utilized. Samples were collected using the vacuum expansion methods of Herr and Barger (1978).

YMER-80 LEG I NITROUS OXIDE DATA

Date	Lat. ($^{\circ}$ N)	Long. ($^{\circ}$ E)	Depth (m)	nmoles N_2O/ℓ
3 August	79.5	40	10	22.4
			20	22.2
			40	17.5
			50	22.2
			100	18.0
			125	20.0
			150	20.9
			200	19.6
			275	21.2
3 August	79.7	44	10	21.3
			20	18.2
			30	19.4
			40	18.8
			50	16.7
			75	16
			100	16
			150	17
3 August	79.7	46	10	19.4
			20	19.3
			30	17.6
			40	17.1
			50	20
			75	15.6
			100	18.3
			125	18.5
			150	19.7
			200	17.5
			250	17.9
4 August	75.5	22	10	22.4
			20	22.1
			30	20.3
			40	22.9
			50	26.2
			65	23.6

Carbon dioxide measurements were made with a Perkin Elmer Model 3920 flame ionization detector (F 10) after methanization of the carbon dioxide. A 4' carbosieve B column with appropriate valving was used for restoring the CO₂. A Keeling international carbon dioxide standard (287 ppm) was used for calibration. Sample collection was achieved with a continuous countercurrent equilibrator as described by Gosink and Kelley (1978).

Results

The entire area covered by both legs I and II are markedly undersaturated with CO₂ in the water. Less so than any open waters of the Barents and Kara Seas, but still more than any open ocean areas at lower latitude. The undersaturation extends to a depth of about 75 meters, varies from 50 to 100 m and occasionally goes to a depth as great as 200 m. The only exception was the region in the vicinity of Nord, Greenland, 80°N 2.5°E.

Atmospheric carbon dioxide also decreased as one proceeded north, particularly in the vicinity of Greenland, and when the wind originated from maritime areas.

Late season carbon dioxide concentrations in the sea water seem to be essentially the same as the early season.

pH data are presented in only the broadest outlines. In general, the higher the pH the lower the PCO₂. The pH varied around 8.17 \pm .03 for most of the cruise rising to 8.37 \pm .02 during the deepest penetrations of the ice pack. There was a period between 27 and 31 July, during the trip from heavy ice NW of Franz Josefs Land to about 50% open water southwest of Franz Josefs Land when the pH steadily rose from 8.2 to 8.5.

Unfortunately there was some reference electrode problems at that time, but two replacement electrodes provided similar high values. This high pH would agree with the extremely low partial pressures of CO₂ reported by Kelley over a decade ago for the Barents and Kara Seas.

Surface (1-20 m) nitrous oxide measurements for 35 observations is 16.8 \pm 4.2 nmoles N₂O/L. The range was from 7.4 to 22.4 nmoles N₂O/L. Average temperature and salinity were -1.5°C and 31%. Intermediate depth waters ranged from 13-30 nmoles N₂O/L and deep waters between 12 and 16 n moles N₂O/L. Two stations near 79.3°N 36°E had unusually high values, up to ca. 50+nmoles N₂O/L.

Discussion

The normal range of partial pressure differences between the atmosphere and ocean CO₂ is on the order of \pm 30 ppm, usually on the negative side. Kelley has already reported exceptionally low (-90 to -190 ppm) for the entire Barents and Kara Seas surface. Confirmation of these values was successfully achieved during Leg II. The probable cause of the extremely low PCO₂ values is cooling of warmer N. Atlantic waters rather than biological activity. A 10°C temperature drop in a body of water lowers its PCO₂ by about 140 ppm. If the water was already normally (biologically caused) low by 20-40 ppm, the net result would be to produce the extreme (-160 ppm) lows observed.

The arctic seas appear to be a major sink for atmospheric carbon dioxide during the brief summer period. As a preliminary estimate 0.3×10^{16} g of CO₂ may be absorbed in the region alone, and may represent the apparent missing sink for CO₂.

Nitrous oxide concentrations are about normal for surface and deeper waters. The principal difference is again due to temperature differences. These polar ocean surface waters are not highly saturated with N₂O as at lower latitude (110-180%) but almost exactly saturated (\pm 30%) with respect to air at 330 ppb. Nitrous oxide is a ubiquitously produced trace gas which influences stratospheric chemistry.

References

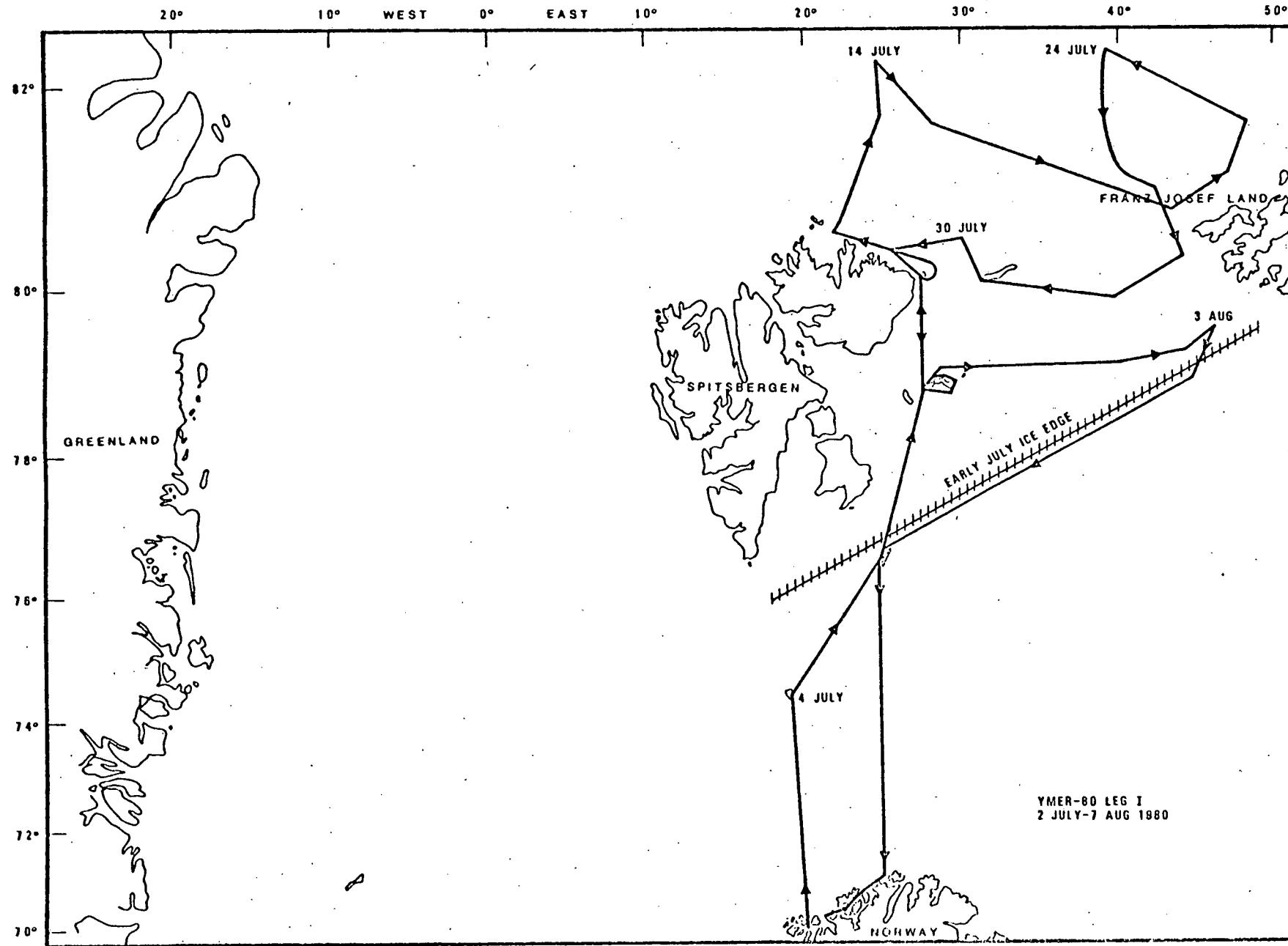
YMER-80 LEG I NITROUS OXIDE DATA

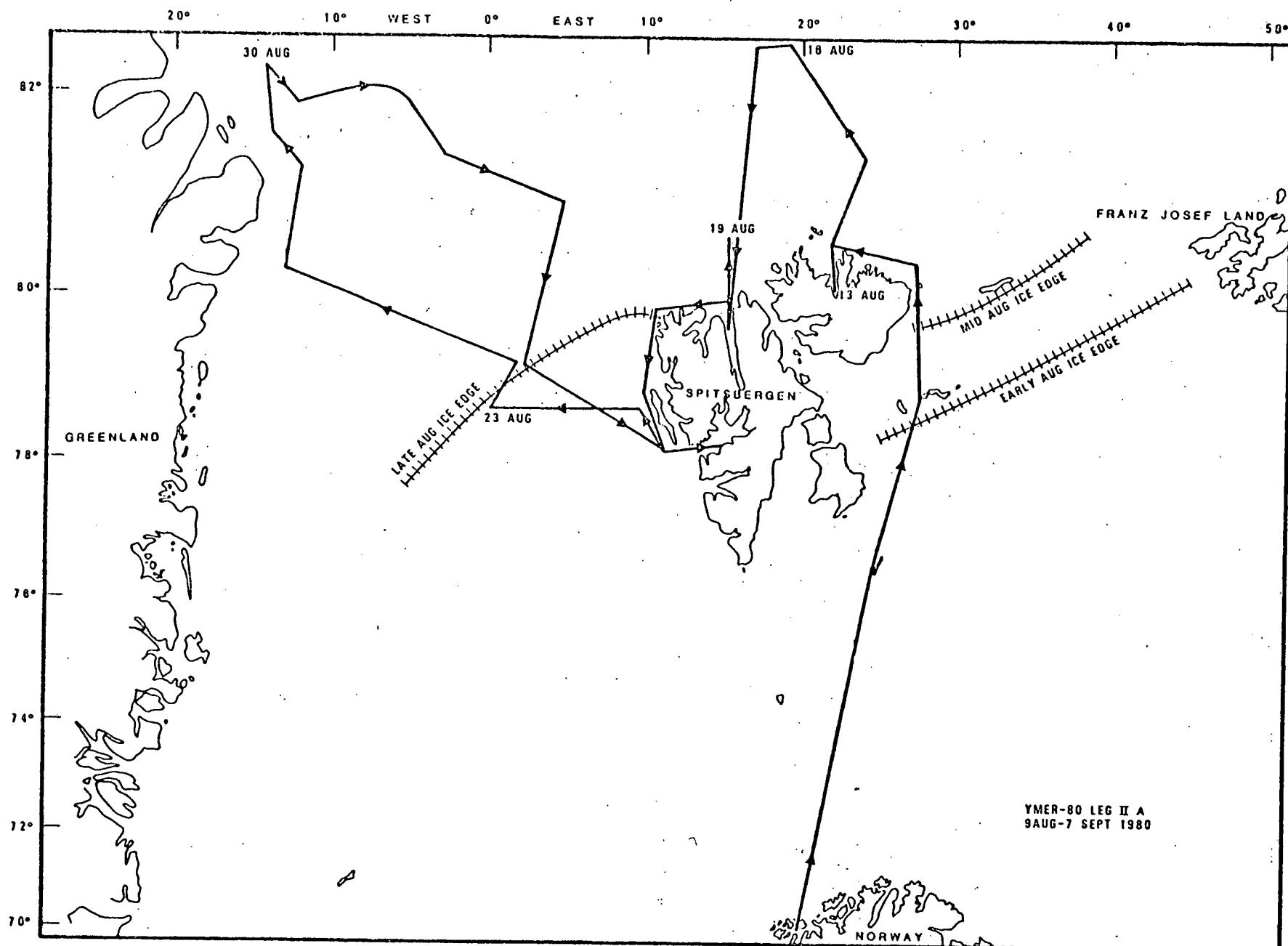
Date	Lat. (°N)	Long. (°E)	Depth (m)	nmoles N ₂ O/l	
13 July	81.0	23.0	0	7.4	
			15	20.3	
			22	21.1	
14 July	81.4	23.0	35	15.4	
			55	16.0	
			250	13.9	
			500	14.2	
			000	18.9	
			1500	14.4	
			2000	15.8	
			2500	15.8	
			3230	15.0	
17 July	82.2	25.0	all surface samples	16.3	
			taken	14.5	
			from	13.3	
			around	14.3	
			melting	15.2	
			sea ice	14.3	
				13.4	
				15.2	
				13.8	
				14.8	
22 July	81.5	49.9	10	13.7	
			20	12.8	
			40	14	
			50	13.4	
			75	13.5	
			100	13.3	
					Sal.
29 July	80	38	all surface samples	20.7	29.4
			taken	21.4	30.2
			from	17.9	32.4
			around	18.4	31.4
			melting	17.9	31.7
			sea	21.8	31.4
			ice	19.9	27.9
				17.9	26
				17.7	28.5
				16.9	25.5

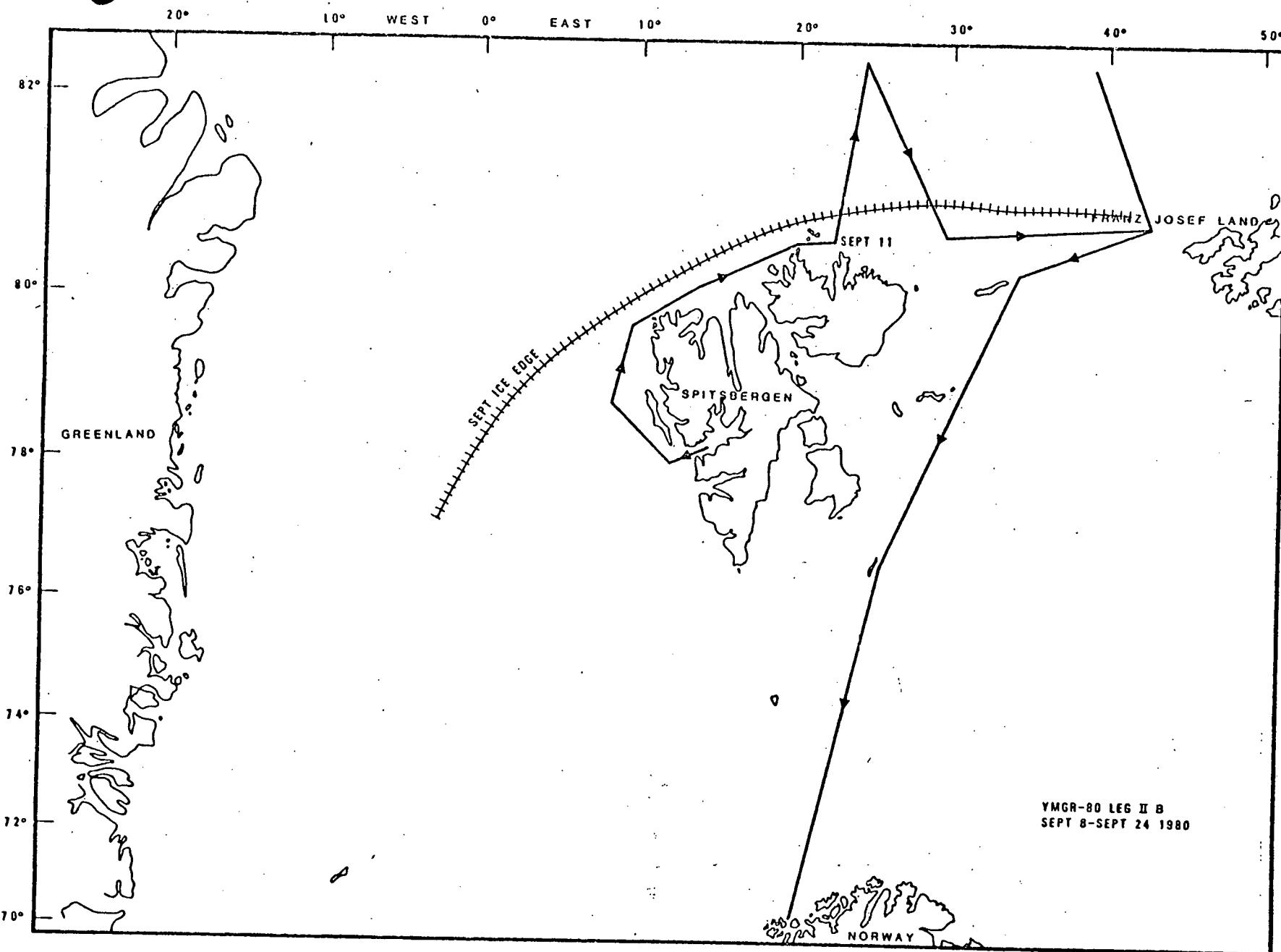
YMER-80 LEG I NITROUS OXIDE DATA

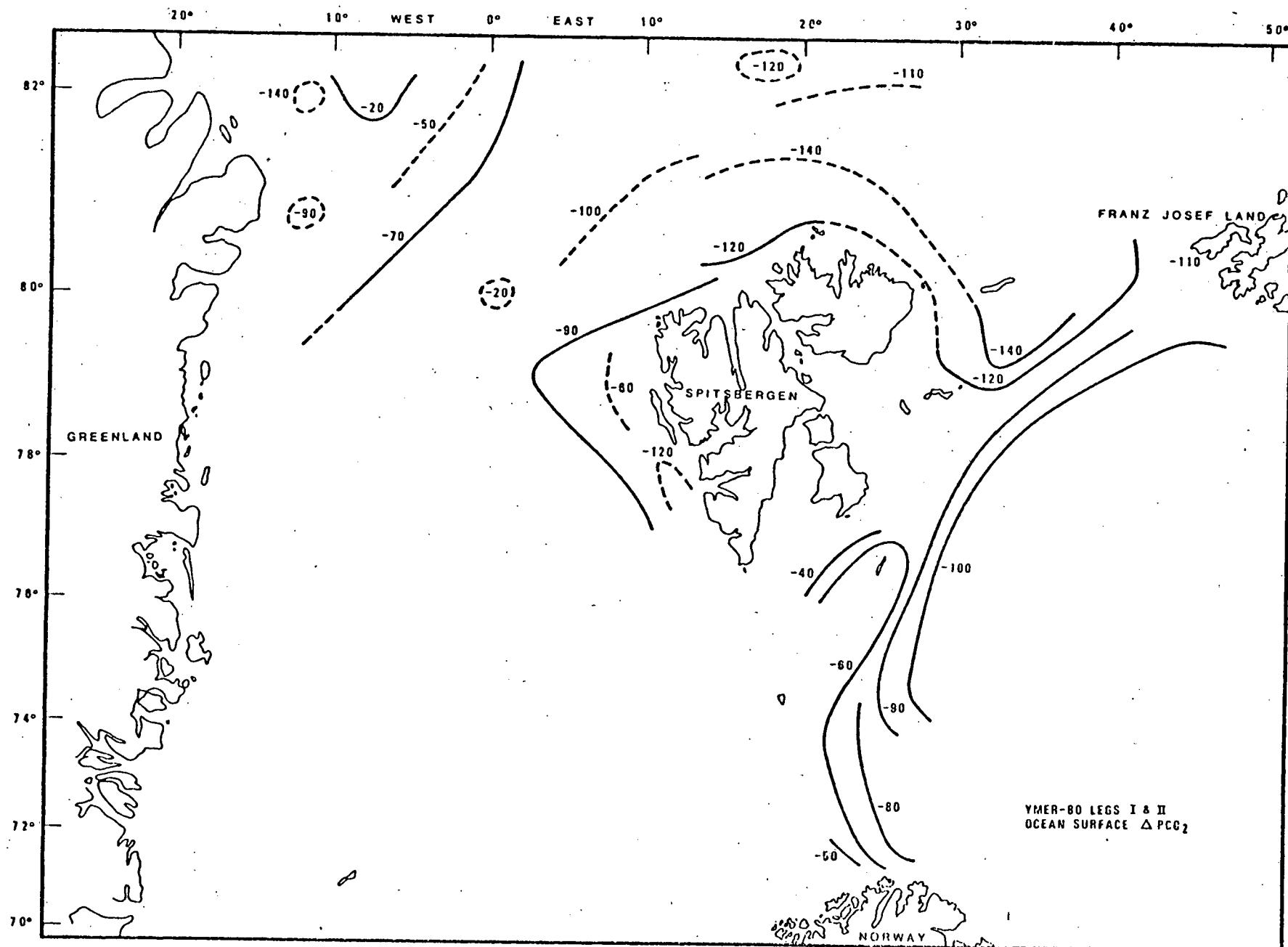
Date	Lat. (°N)	Long. (°E)	Depth (m)	nmoles N ₂ O/l
4 August	75	20	10	16.1
			20	-
			30	19.7
			40	20.0
			50	19.3
			75	22.9
			100	24.0
			125	23.5
			150	21.0
			170	22.6
5 August	74	23	10	14.3
			20	16.7
			30	16.1
			40	17.8
			50	18.5
			75	17.8
			100	20.2
			150	19.9
			190	20.9
			250	19.3
			440	20.0
5 August	73	20	10	13.9
			20	18.0
			30	18.2
			40	14.2
			50	21.1
			150	15.9
			200	22.1
			300	21.7
			400	21.4

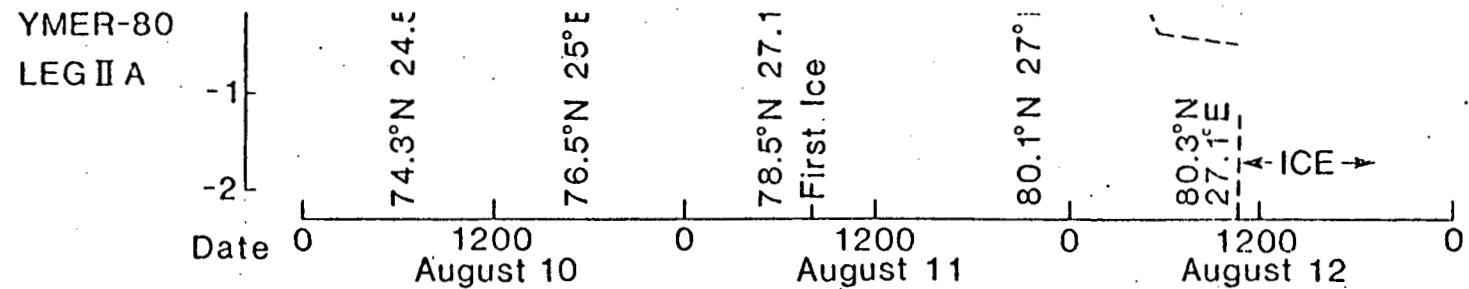
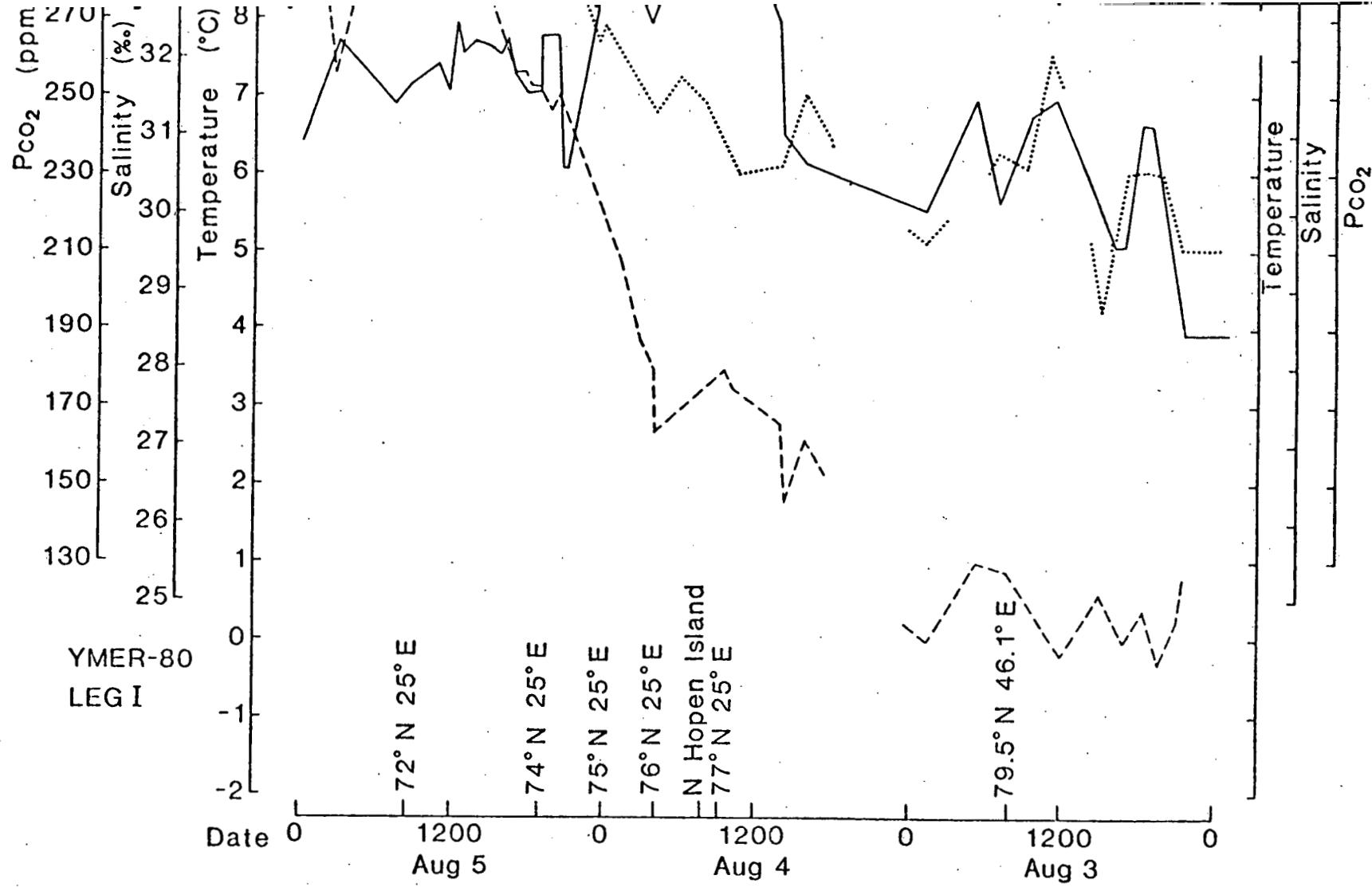
REFERENCES

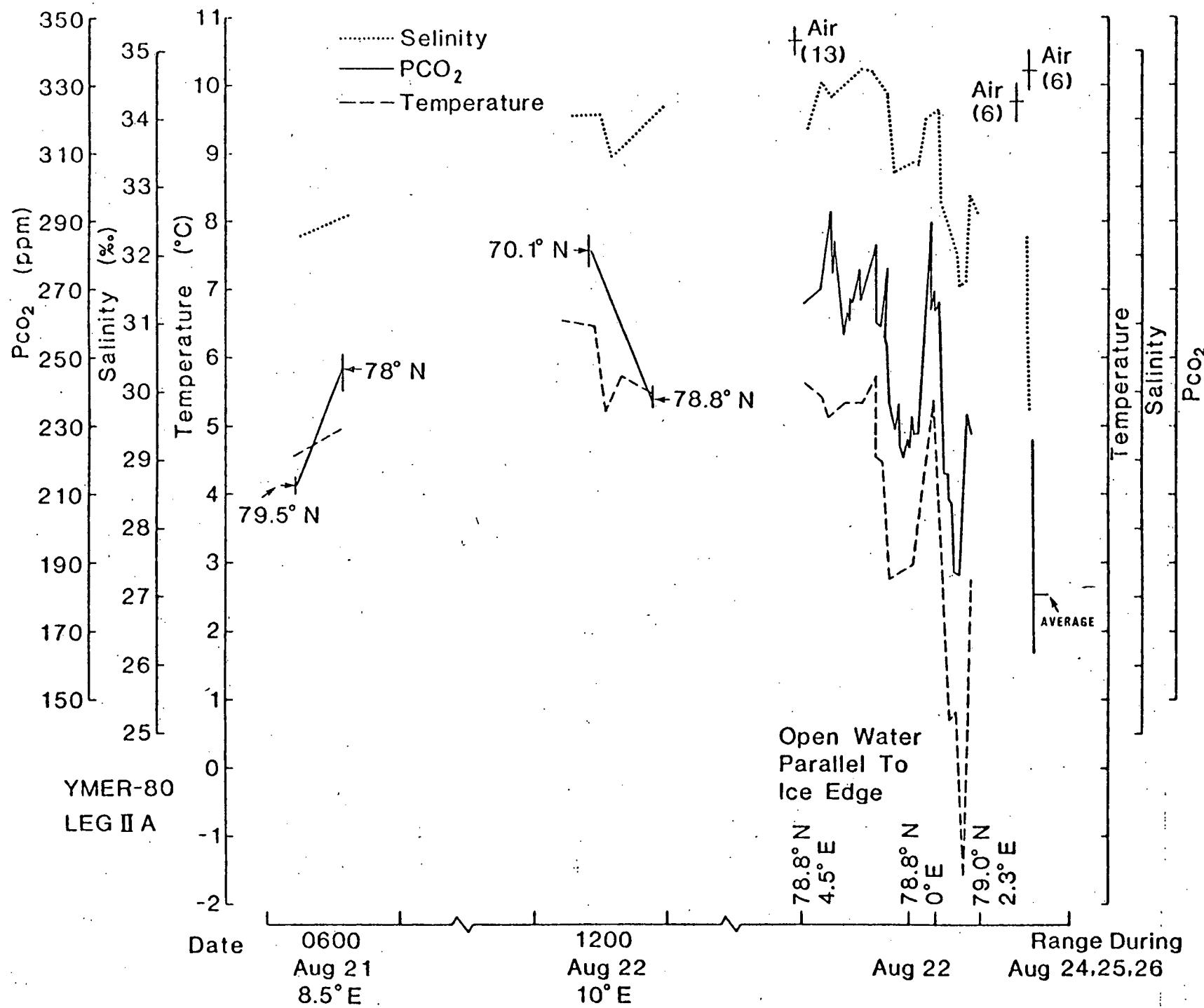

GOSINK, T. and KELLEY, J.J. 1978. ANNUAL REPORT TO THE OFFICE OF NAVAL RESEARCH
CODE 461. INSTITUTE OF MARINE SCIENCE, UNIVERSITY OF ALASKA, FAIRBANKS, AK.

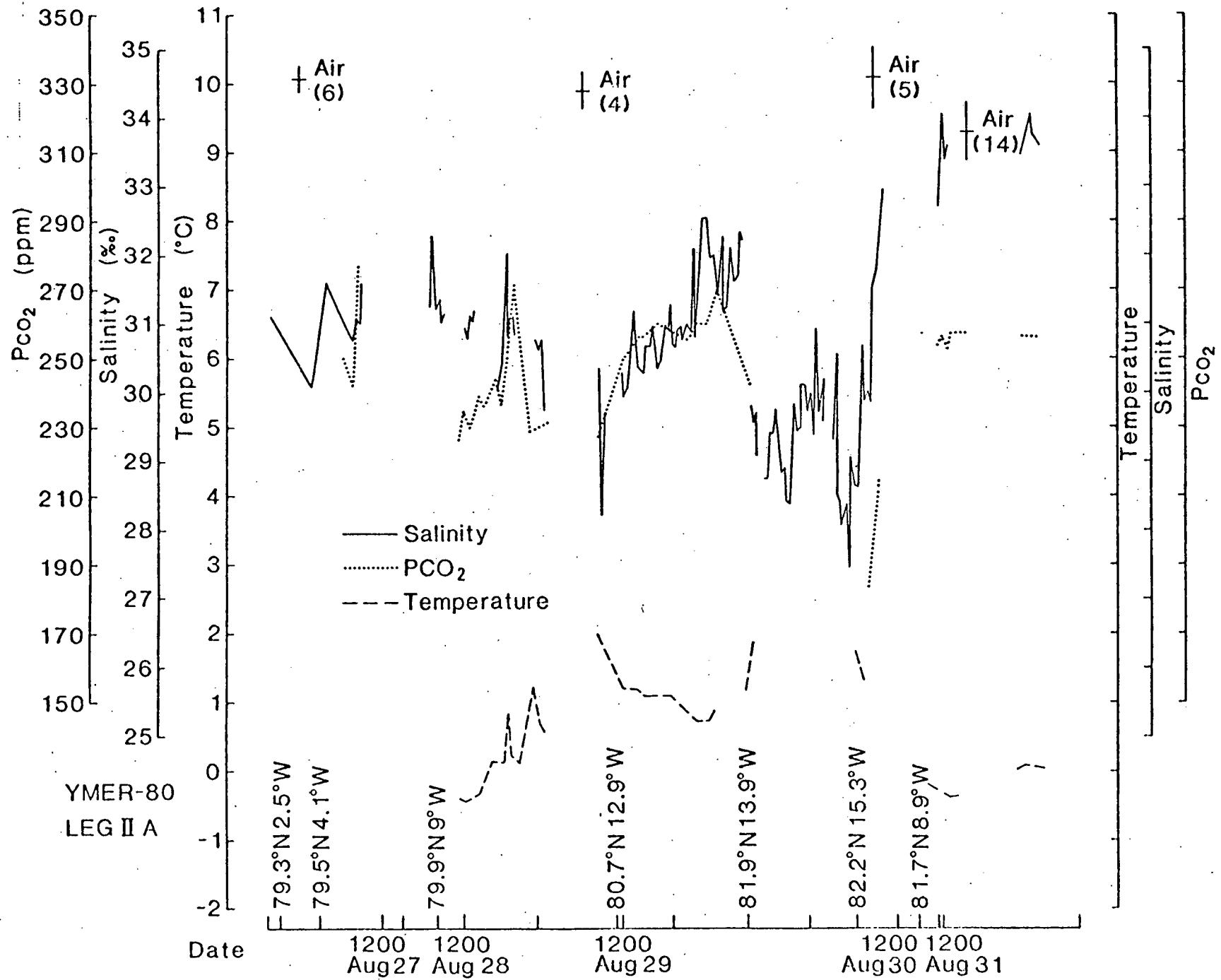

HERR, F. and BARGER W. 1978. "Molecular Hydrogen in the near surface atmosphere
and dissolved in waters of the tropical north Atlantic." Journal of
Geophysical Research 83:6199-6205.

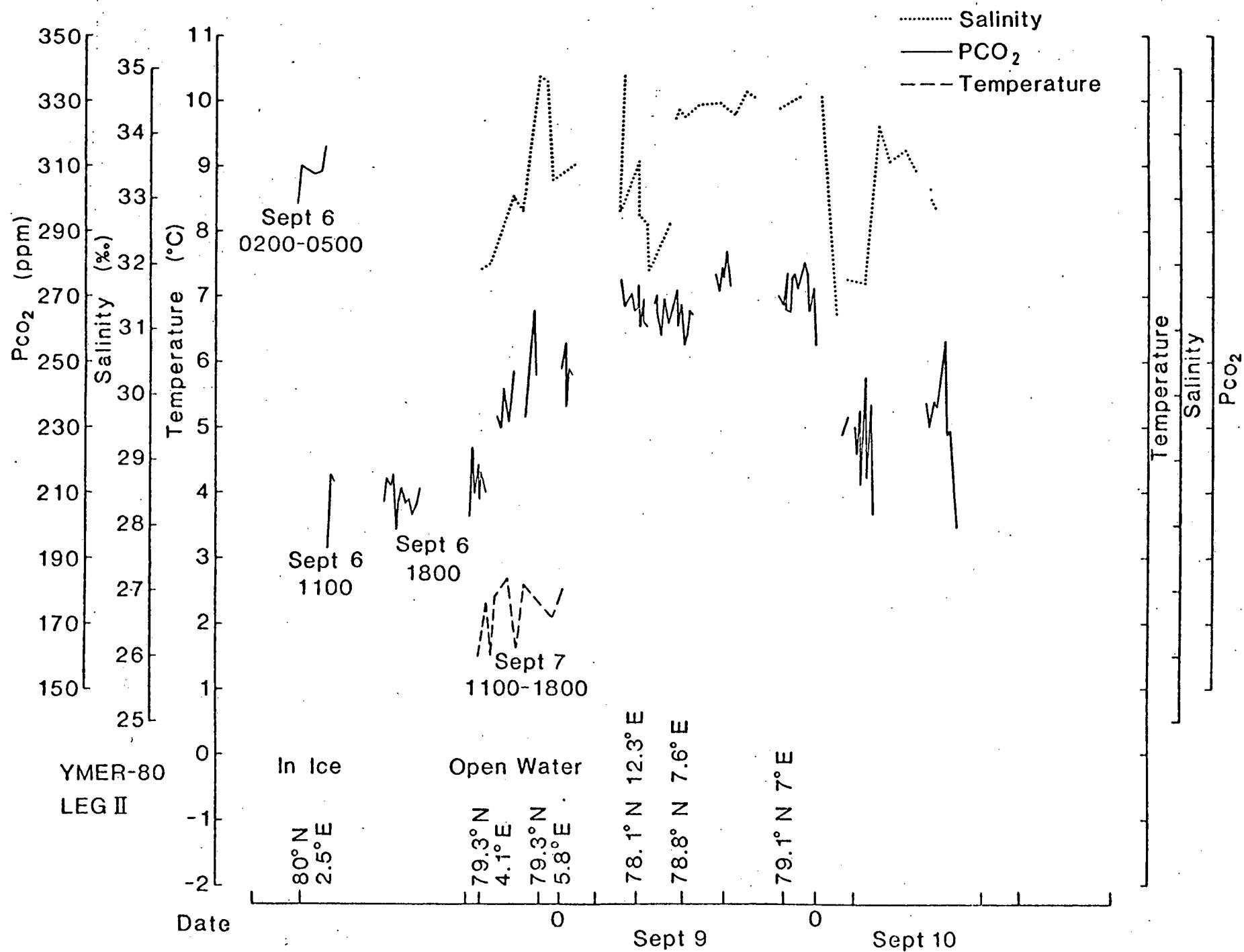

KELLEY, J.J. 1970. "Carbon dioxide in the surface water of the north Atlantic
and the Barents and Kara Sea." Limnology and Oceanography. 15:80-87.

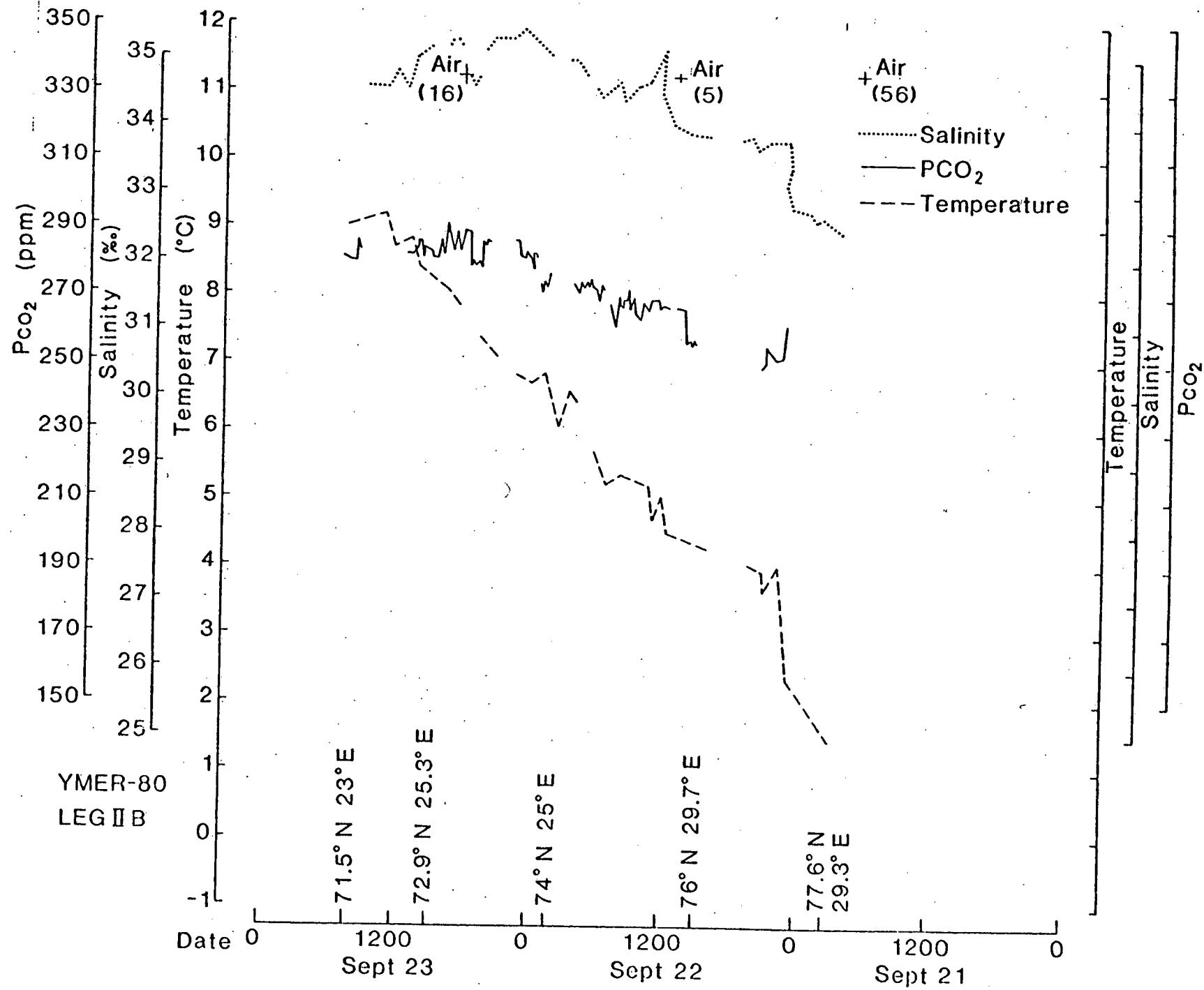

REFERENCES



Gosink, T. and Kelly, J.J. 1978. Annual Report to









— — — Equilibrium Depth - estimated ca. 130 m
.... Strong Δ PCO₂ depth (270 ppm) estimated ca. 20 m

INTERIM REPORT

TO THE DEPARTMENT OF ENERGY

FROM THE GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, ALASKA 99701

CARBON DIOXIDE IN ARCTIC AND SUBARCTIC REGIONS

Drs. T. A. Gosink and J. J. Kelley

February 1981

(Contract No. 80EV10429)

This is our first interim report to the Department of Energy under this contract number (80EV10429). We reported last year through the Office of Naval Research (Code 461). We had had a long standing Arctic research contract program with ONR and through that agency last year we received phase-in funds from the Department of Energy.

We have completed our investigation of sea surface water PCO_2 between Greenland and Franz Joseph's Land. This was conducted in conjunction with the Swedish sponsored arctic expedition YMER-80 during the summer of 1980.

A copy of the cruise report is attached.

As a result of that cruise we:

- (1) confirmed our earlier observations of extensive low partial pressures of CO_2 (ca. 180-220 ppm) in surface waters in that region (Kelley 1970).
- (2) showed that the very low partial pressures extend farther north (ca. 82°N) and to the west (ca. 5°W) (see map in cruise report and cruise track data).
- (3) obtained estimates as to how deep these very low partial pressures (ca. 20 m) and the equilibrium depth (ca. 130 m) penetrate (see cruise report).
- (4) confirmed a new simple empirical method for the determination of PCO_2 in sea water (Technical paper in preparation).
- (5) obtained an estimate for the invasion rate of CO_2 across cold Arctic surface waters ($0.078 \text{ m moles atm}^{-1} \text{ cm}^{-2} \text{ min}^{-1}$).
- (6) have estimated the Barents-Kara-Laptev Norwegian Seas area as enormously strong sinks, absorbing ca. $2 \times 10^{15} \text{ g CO}_2$ during the summer months alone.
- (7) can now estimate that the Arctic is an annual set sink of $1 \times 10^{15} \text{ g CO}_2$ per year and that a large portion of its annual variations are naturally occurring. (Technical paper in preparation).

At the present time we are engaged in repairing our old equipment, obtaining and calibrating our new equipment, and preparing for two more field events before the end of our first fiscal year of support under this contract. One field trip is to observe tundra and taiga surface CO₂ emissions during spring breakup to confirm our earlier evidence of substantial release of gases from those soils during that period of time, e.g. Coyne and Kelley 1971 and 1973, Gosink and Kelley 1978 and Gosink and Kelley 1979. The second field trip is to be into the north Bering Sea edge during spring thaw.

REFERENCES

1. Coyne, P.I. and J. J. Kelley, 1971. Release of carbon dioxide from frozen soil to the arctic atmosphere. *Nature*, 234, 407-408.
2. Coyne, P. I. and J. J. Kelley, 1974. Variations of carbon dioxide across an arctic snowpack during spring. *J. Geophys. Res.*, 79, 799-802.
3. Gosink, T. A. and J. J. Kelley, 1978. Annual report to the Office of Naval Research, Code 461. From the Inst. of Mar. Sci. Univ. of Alaska, Fairbanks.
4. Gosink, T. A. and J. J. Kelley, 1979. Carbon monoxide evolution from Arctic surface during spring thaw. *J. Geophys. Res.*, 84, 7041.
5. Kelley, J. J., 1973. Carbon dioxide in surface waters of the North Atlantic Ocean, the Barents and Kara Seas. *Limnol. and Oceanog.*, 15 80-87.

Arctic Seas. Are they Overlooked Significant Sinks
for Atmospheric Carbon Dioxide?

T. A. Gosink and J. J. Kelley

Geophysical Institute and
Institute of Marine Science
University of Alaska
Fairbanks, Alaska 99701

ABSTRACT

Two arguments are presented to support the concept that the Arctic Ocean and its surrounding seas, 3.8 percent of world ocean and sea surface, can absorb during the summer between 5 and 10 percent, or more, of the annual anthropogenic production of carbon dioxide. The implication is that the arctic seas are important sinks for atmospheric carbon dioxide. ✓✓

INTRODUCTION

During the recent Swedish Arctic Expedition, *YMER-80*, we measured the atmospheric and sea surface partial pressures of carbon dioxide. Observations aboard the *YMER* were made in the Norwegian and North Greenland Seas, and the oceanic areas north of Svalbard and Franz Josef Land including the associated seasonal ice zone. We present here two arguments which lead us to believe that the Arctic Ocean and surrounding seas are absorbing between 5 and 10 percent, and possibly as much as 40 percent, of the annual anthropogenic production of CO_2 during the 3 to 4 month summer period. We are aware of other seasonal and geographic arctic water mass sources and sinks (Gosink and Kelley, 1980a) but the apparent intensity of Barents Sea area warrents particular note and study.

Polar oceans and adjacent seas affected by sea ice constitute about $35 \times 10^6 \text{ km}^2$, or essentially 10 percent of the world oceans and seas surface. In the northern hemisphere, sea ice extends over about $8.4 \times 10^6 \text{ km}^2$ in the summer, and up to $15 \times 10^6 \text{ km}^2$ in the winter including the seas of Japan, Okhotsk. The Arctic Ocean basin and surrounding seas comprise about $13.6 \times 10^6 \text{ km}^2$ or 3.8 percent of world oceans and sea surfaces. (Sverdrup *et al*, 1942 and Barry, 1979). We have reported that carbon dioxide is transferred, through sea ice (Gosink, *et al*, 1976) and that it, based on Alaskan Arctic observations, can be a significant source of CO_2 to the Arctic atmosphere in the winter (Gosink and Kelley, 1980b). We are concerned here, however, only with the summer open ocean water which is moderately to extremely undersaturated with respect to carbon dioxide i.e., carbon dioxide partial pressures in sea water are ^{definitely} less than atmospheric CO_2 partial pressures.

Most of the available data for carbon dioxide in seasonally ice covered sea water comes from the Bering Sea. Research results summarized by Park *et al*, (1974) shows the carbon dioxide in Bering Sea surface waters varies seasonally and spatially from strongly supersaturated to strongly undersaturated conditions. North Atlantic waters were reported nearly 50 years ago by Buch (1926) to have very low partial pressures of carbon dioxide (160 ppm) in the vicinity of sea ice, which was verified by Kelley (1970) when he extended those observations into the Barents and Kara Seas, and closely retraced Buch's transatlantic cruise track. Unlike Buch, however, Kelley did not observe extremely low atmospheric carbon dioxide concentrations, although it was significantly lower than continental air. On the recent YMER-80 cruise, we further extended the sea surface and atmospheric observations to about 84°N between Greenland, Spitsbergen and Franz Josephs Land,

and south off the Norwegian coast. With the only exception of the region near Nord, Greenland, where arctic basin waters are flowing into the Greenland Sea, and a station at the Greenwich meridian at 80°N, the surface waters were all highly undersaturated with respect to CO₂ during the entire July through September period. The two Greenland sea stations were nevertheless undersaturated, but only to the extent of 5-25 ppm, respectively. We are publishing elsewhere the full report of the YMER-80 CO₂ observations, and our explanation for the principal cause for these exceptionally low surface water partial pressures of CO₂, which extend to 20-200 m depth. (Gosink and Kelley, 1980c, d).

The First Argument

Near surface air flowing out of the Arctic was observed to have CO₂ concentrations on the order of 317 to 325 ppm (August and September 1980). Our analytical data for CO₂ are based on S.I.O. standards on the Jc Scale, and are accurate to \pm 2 ppm). Under laboratory conditions, our gas chromatographic analytical method has an accuracy and precision of about \pm 0.2 ppm. (Gosink and Kelley 1977). Air flowing into the arctic basin north of Norway (July, August and September) had concentrations in the range of 336 to 341 ppm. Lower tropospheric continental air at 55°N in the Skaggerak Strait region during September was observed to be 351 ppm. Thus tropospheric air passing through the summer arctic basin apparently loses 11 to 24 ppm of its carbon dioxide content. If the air in the arctic basin is exchanged every 2 weeks, there would be about 9 air mass changes during the summer open water period of June through September. Treating the arctic basin as a simple cylinder of $10 \times 10^6 \text{ km}^2$ base area, and arbitrarily

of 2 km in height, the CO_2 air mass volume is $20 \times 10^6 \text{ km}^3$ per exchange. The rationale for the 2 km figure is based partly upon the work of Bolin and Bischof (1970) who point out that there is a 25 to 30 day delay in seasonal variation between the lower and upper troposphere (9 km). Thus, the entire arctic troposphere will not be uniformly relieved of part of its CO_2 burden, before it exits the Arctic. The other factor is that the density of the air column is not uniform, and 2 km seems a reasonable arbitrary first estimate to approximate the mass of air in the lower troposphere. An 11 ppm depletion of CO_2 in this simple scheme yields 220 km^3 or $4.3 \times 10^{14} \text{ g}$ of CO_2 per air mass change or $3.9 \times 10^{15} \text{ g}$ CO_2 in the summer period. If 24 ppm of CO_2 are removed, then $8.4 \times 10^{15} \text{ g}$ of atmospheric CO_2 are deposited in Arctic surface waters over the summer. The lowest figure is 12.4 percent of current annual fossil fuel and cement production figures, and the highest figure, 40 percent, based on a 2 percent/year updating of Rotty's compilations (1977). If a lower exchange rate ($0.034 \text{ mmole cm}^{-2} \text{ atm}^{-1} \text{ m}^{-2} \text{ min}^{-1}$) suggested by Keeling (1965) is employed, then the percentage range is reduced to 5.4 to 17.5 percent. The Hood and Kelley (1976) rate, as determined in cool ($7-9^\circ\text{C}$) waters, affords a 6.9-22.0 percent range. The surface waters of the Eastern Arctic were in the 0 to $+2^\circ\text{C}$ range.

If during the winter freeze-up, the cooling and salt rejection from forming sea ice causes the otherwise stable surface waters to sink to great depths (below 2-500 m) with this added CO_2 , then that CO_2 is effectively removed. If it remains near the surface and flows south again (as some portion of it certainly does) where it is warmed, then part of it will be released to the atmosphere again.

The difference between CO_2 in air and sea water based on YMER observations, (Eastern Arctic Ocean) indicated undersaturation in sea water of about -110 ppm. Kelley's (1970) observations in the Barents sea area (1970) suggests an average under saturation of about 130 ppm. If arbitrary geographic division of the arctic oceanic regions are used, then over a 100 day period, the Barents, Kara and Laptev seas ($2.3 \times 10^6 \text{ km}^2$ surface area) would absorb $1.3 \times 10^{15} \text{ g}$ of CO_2 . The open water of western arctic ocean, also of about $2.3 \times 10^6 \text{ km}^2$ area, with its apparent ΔPCO_2 of about - 60 ppm would absorb an additional $0.7 \times 10^{15} \text{ g}$ of CO_2 for a total of $2.0 \times 10^{15} \text{ g}$ of CO_2 (9.6 percent of anthropogenic production) which agrees with the results of our first argument. If, of course, some of the carbon dioxide above 500 m was also being absorbed, then the figures mentioned above would all be proportionally larger, and still in agreement with the results of the first argument.

Although the Arctic oceanic regions occupy a small area of the world oceans and seas surface (3.8 percent) it would appear that they may be a significant sink for CO_2 during the summer. Little can be said at this time about the possible role of Antarctic seas and the exchange of CO_2 across the sea surface. Data are difficult to obtain in both regions, both on an areal and temporal basis due to logistics problems. In order to further test these arguments it will be necessary to obtain data within the polar pack ice and marginal seas from spring to fall which may only be possible by taking advantage of future floating ice stations.

ACHNOWLEDGMENT

This work was supported in part by the Department of Energy Contract 80EV10429 and National Science Foundation Grant DPP 8002432.

REFERENCES

Barry, R. G. 1979. Meteorology and Climatology of the Seasonal Ice Zone. Proceedings of an Interum workshop on the seasonal Sea Ice Zone at Moterey Caligornia Febuary-March, 1979. Published in Cold Regions Science and Technology. Vol. 3. 1980.

Bolin, B. and W. Bischof. 1970. Variations of the carbon dioxide content of the atmosphere in the northern hemisphere. *Tellus*, 22, 431-442.

Buch, K. 1940. For a summary see: Deacon, G. E. R. Carbon dioxide in arctic and antarctic seas. *Nature*, 145, 250-252, (1940).

Gosink, T. A. and J. J. Kelley. 1977. Annual report to the Office of Naval Research, Code 461. Arlington VA. From the Institute of Marine Science, University of Alaska, Fairbanks.

Gosink, T. A. and J. J. Kelley. 1980a. The sorces and sinks of carbon dioxide in the Arctic. In preparation and to be found in part in our 1979 annual report to the Office of Naval Research.

Gosink, T. A. and J. J. Kelley. 1980b. Annual sea ice. An air-sea gas exchange monitor. In preparation and to be found in part in our 1979 annual report to the Office of Naval Research.

Gosink, T. and J. Kelley. 1980c. Partial pressures of CO₂ in summer surface waters of the Barents, Greenland and Norwegian Seas, at the Eastern Arctic Ocean. In preparation.

Gosink, T. and J. Kelley. 1980d. An explanation for the extremely low partial pressure of CO₂ in surface waters of the Barents, Kara and Greenland seas. In preparation.

Hood, D. and J. J. Kelley. 1976. Evaluation of mean vertical transport in an upwelling system by CO₂ measurements. *Mar. Sci. Comm.* 2:6, 387-411.

Kelley, J. J. 1970. Carbon dioxide in the surface waters of the North Atlantic Ocean and the Barents and Kara Seas. *Limnol. and Oceanog.* 15, 80-87.

Park, K., L. I. Gordon and S. Alvarez-Borrego. 1974. The carbon dioxide system of the Bering Sea. In: *Oceanography of the Bering Sea*. Hood and Kelley eds. Institute of Marine Science Publication No. , University of Alaska, Fairbanks.

Rotty, R. 1977. Carbon dioxide production in preparation. In: *Marine Science*. Vol. 6. The Fate of Fossil Fuel CO₂ in the Oceans. Andersen and Malahoff Eds. Plenum press.

✓ Shirrow, G. 1975. The dissolved gases-carbon dioxide. In: Chemical Oceanography. Vol. 2. 2nd Ed. Riley and Skirrow Eds. Academic Press.

Sverdrup, H. U., M. W. Johnson and R. H. Fleming. 1942. The Oceans. Their physics, chemistry and general biology. Prentice Hall, 1087 pp.

Gosink, T. A., J. G. Pearson and J. J. Kelley. 1976. Gas movement through sea ice. *Nature*. 263:41-42.

THE GLOBALLY SIGNIFICANT SOURCES AND SINKS OF CARBON DIOXIDE IN THE ARCTIC

J. J. Kelley and T. A. Gosink

INTRODUCTION

This article is the first comprehensive consideration of the Arctic as a whole with respect to atmospheric carbon dioxide, its natural and anthropogenic origins and interaction with the various arctic surfaces. The paper is based on our own field research of more than two decades and other relevant scientific papers.

The issue of atmospheric carbon dioxide is international in scope and interest because of its potential disastrous effects on atmospheric heating. The Arctic can be markedly affected by this heating and in turn trigger other climate modifications (e.g. Fletcher and Kelley, 1978). In this paper we will develop the various factors and synthesize an annual cycle for the Arctic which clearly shows that this ice dominated region plays a surprisingly large role in moderating atmospheric dioxide.

The Arctic (above 67°N), at first glance, appears to be an almost insignificant region as far as atmospheric carbon dioxide is concerned. The whole surface area of the Arctic is only 4% of the earth, its ocean-sea area 3.8% of the world oceans surfaces, and is heavily influenced by both glacier and sea ice. The winter to summer average variations in tropospheric carbon dioxide are the largest (12-16 ppm) recorded at all of the remote monitoring sites in the world (eg. Bolin and Keeling, 1963 and Keeling et al, 1976a,b) and have a curious repeatable spring surge just before the summer minimum. On the other hand,

the annual rate of increase of the mean concentration is the same as recorded in Mauna Loa or the South Pole. These annual arctic tropospheric CO₂ excursions are generally ascribed to transport of polluted lower latitude continental air into the region during the winter, and reduced in the spring-summer due to hemispheric resurgence of photosynthetic activity. Our own research in the Arctic, however, decidedly shows that the arctic hydrosphere, and to a lesser extent the geosphere, markedly affect tropospheric carbon dioxide, and that these effects operate throughout the entire year. These natural arctic phenomenon have indeed been obscured by transport of anthropogenically polluted air from lower latitudes, but we have been reasonably successful in reading through that masking by means of seasonal source-sink experimentation. We estimate that the natural sources and sinks of carbon dioxide within the Arctic are causing about 20-40% of the annual apparent tropospheric CO₂ concentration excursion.

Current estimates of annual tropospheric anthropogenic carbon dioxide input are about 2.6×10^{16} of CO₂ when considering recent recognition of tropical forest clearing (Rotty, 1977; Bolin, 1977; Wong, 1978; Woodwell et al, 1978). Anthropogenic factors within the Arctic and the adjacent subarctic are virtually inconsequential with respect to carbon dioxide. They are likely to remain so even with the increased oil exploration and production activities.

We will show that physical-chemical rather than biological processes dominate the entire annual cycle. Arctic phenomena are so intense, for example, that we estimate that an equivalent of nearly 10 percent of the entire burden of carbon dioxide introduced annually by all anthropogenic activity is absorbed by north polar seas just during the short summer period. On the other

hand, we have also shown that annual sea ice is permeable enough towards carbon dioxide so that about a third of the carbon dioxide absorbed by the seas over the summer months is transferred back to the troposphere during the remainder of the year. Tundra soil, plants, ponds and lakes are also treated in our discussions as well as preliminary estimates of latitudinal transport.

EXPERIMENTAL METHODS

All gas analyses were accomplished on a Carle 311 M gas chromatograph. Carbon dioxide reference gas standards prepared at the Scripps Institute of Oceanography (S.I.O; C. D. Keeling Laboratory) were used. In addition, air samples were periodically taken in the vicinity of the Point Barrow NOAA/ERL-GMCC site for comparison. Values for CO₂ in air agreed with the NOAA measurements within 1 ppm by volume. The NOAA analyses were made by means of a nondispersive infrared analyzer using S.I.O. standards.

Air samples were either collected and held briefly under slight positive pressure in teflon coated steel and glass (10 ml) gas tight syringes, or in 250 ml gas sample bottles. It was necessary to employ oversize O-rings under the plunger in order to achieve a gas tight fit at low temperatures. Analyses were completed within 24 hours; usually within 1 to 6 hours. Standards held in these syringes were stable for 24-72 hours, depending on the particular syringe in question. Standards stored in slightly pressurized routine commercial glass gas sample bottles were stable for several weeks.

Samples of air from under a snow cover were taken by holding the gas tight syringe upwind of the operator, and inserting the needle or

extended cannula beneath the snow and frost to withdraw 5 to 10 ml of air.

In some experiments over sea ice or tundra, the increase of carbon dioxide over the original air trapped in a chamber was followed. In other experiments, the sealed chamber was flushed with helium. The recovery rate of CO₂ versus oxygen was determined as a function of time, temperature and salinity of the ice. The sealed chambers on the sea ice were prepared by packing snow around the chambers and wetting it with freshwater to provide a gas tight ice seal.

Experiments with atmospheric sampling from aircraft are published elsewhere (Gosink and Kelley, 1981a) as are the procedures for research from on board research vessels (Gosink and Kelley, 1978).

DISCUSSION

Description of the Arctic

Our physical description of Arctic is one of defining the areas of the various interfaces which may interact with the troposphere. These estimates are used through out this article to calculate seasonal quantities of carbon dioxide exchanged across those surfaces.

The surface of the Arctic, based on simple spherical geometric calculations, is taken to be 2.12×10^7 km². The troposphere of the Arctic is assumed to be 2.1×10^8 km³ in volume and to contain 6.9×10^{16} g of CO₂ at an average concentration of 335 ppm (μ atmospheres). Table 1 shows our breakdown of the various land and sea areas that have different degrees of influence on tropospheric carbon dioxide.

The central pack ice, including about a third of the Canadian Archipelago, is the largest of all subcategories, and is considered to be almost closed to ocean-air interaction. The two exceptions are the estimated year round 5-10% open water in cracks, leads and polynas. (Whitman, 1966) and the ca 50% annual sea ice which we have shown to be permeable (Gosink et al, 1976) and will discuss further in this paper. The surrounding seas have been subdivided into four categories for two different reasons. The principle reason is that these regions appear to display different partial pressures of carbon dioxide, particularly during the summer period. The secondary reason has to do with the amount and duration of the ice cover. Three of these areas are considered to be 10% open water during the winter due to wind and current stress on the ice. Only two are considered to be 100% open for a 3 to 4 month period during the summer.

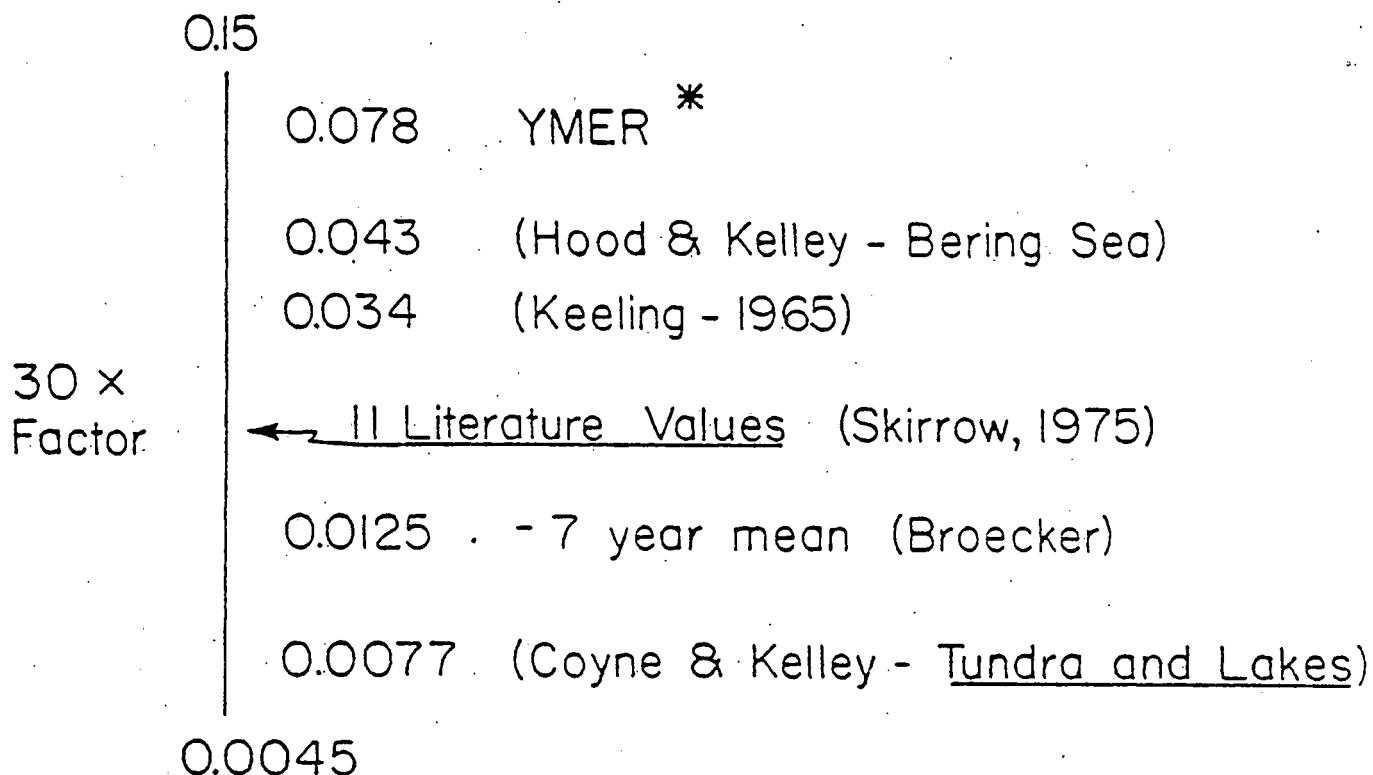
The Greenland Sea-Baffin Bay category is considered to contain the remainder of the Canadian archipelago water area, and to be 50% open water during the summer period. All of these Arctic seas may be referred to as the seasonal sea ice zone (SSIZ) which Barry (1979) defines as annually varying between 8.4 and 15×10^6 km 2 . His definition, however, includes subarctic sea ice, e.g. the Bering Sea and Sea of Othosk etc. Sverdrup et al, (1942) tabulate the Arctic Ocean and surrounding seas as covering 14.1×10^6 km 2 , but they include areas south of the Arctic circle such as the Norwegian and North seas which we consider to be perpetually open water. Our total Arctic Ocean and seas area is therefore 13.8×10^6 km 2 .

We estimate the land area within the Arctic to be predominantly glaciated and or mountainous, e.g. Greenland. We know of no significant ($> 1 \times 10^{12}$ g CO $_2$) sources or sinks for carbon dioxide in these glaciated areas, and thus will not consider them in our source-sink calculations. The remaining

Table 1. Estimated Surface Areas of Various Regimes of the Arctic

	<u>Region</u>	<u>(Area x 10⁶ km²)</u>
<u>Ocean Sea</u>	Central Pack Ice	8.4
	Barents, Kara, Laptev Seas	2.5
	East Siberian, Chukchi, Beaufort Seas	0.9
	Greenland Sea and Baffin Bay	1.3
	Norwegian Sea	0.5
	Total Ocean-Sea Area	13.8
<u>Land</u>	Tundra	0.6
	Taiga	1.0
	Mountainous and/or Glaciated	6.0
	Total Land Area	7.6
Total Area		21.8 x 10 ⁶ km ²

land area within the Arctic circle is conservatively estimated to cover $1.6 \times 10^6 \text{ km}^2$. It is composed of the wet tundra, for which there is some field data, and the more dominant higher taiga for which we will have to use estimates from other sources about its effect on atmospheric CO₂. We estimate the wet tundra as occupying $0.6 \times 10^6 \text{ km}^2$ as shown in Table 1.


Aside from knowledge of the area and the partial pressure differences between the air-sea boundary, a reliable figure for the rate of invasion or evasion of carbon dioxide across the interface is required. Skirrow (1975) tabulates eleven laboratory and field study rates that vary between 0.00045 and 1.5 mmoles cm⁻² atm⁻¹ min⁻¹ (see Figure 1). We have recently observed within the Arctic an apparent invasion rate of 0.078 mmoles cm⁻² atm⁻¹ mm⁻¹ which we use in all of our calculations for this article (Gosink and Kelley 1981b). We use this figure since there is an apparent trend in change in rate as a function of sea water temperature. The numerical value of Keeling's rate (0.034) was for mid-latitude waters (assumed to be ~25°C). Hood and Kelley's rate (0.043) was for colder Bering sea water (ca. 9°C) and our recent value (0.078) was for surface water at -1 to 0°C.

Arctic CO₂ Source-Sink Inventory

In the following sections we will utilize our field evidence to calculate the source and sink strengths for the various categories listed above for a summer and winter period. The results are compiled in Table 2.

Figure 1. INVASION RATES - OPEN WATER - ΔPCO_2

mmoles cm⁻² atm⁻¹ min⁻¹

* Stable Inversion ~ 500m, calm - 5 knots (20 Sept

339 to 331 ppm over 48 hours

Sea water ~ 255 ppm; ΔPCO_2 80 ppm

The central pack ice of the Arctic apparently is shielding the troposphere from a large area of high to very high partial pressures of carbon dioxide, particularly during the winter period. Kelley (1968) reported an average difference in partial pressures (ΔPCO_2) between the water and air (water-air) of +42 ppm for a 3 week station during the month of January near 78°N and 175°W . The range of ΔPCO_2 was +14 to +87 ppm.

Personal communications with chemical oceanographers on the LOREX 79 Experiment near the North Pole permits us to calculate (Gosink and Kelley 1981c) the partial pressure of carbon dioxide (PCO_2) in the winter period at 475 ppm or a ΔPCO_2 of about 120 ppm considering typical winter arctic tropospheric burden of CO_2 at 345 ppm.

Lyakin and Rusanov (1980) have recently published historical data for the surface waters of the Arctic Basin for 1948 to 1978. When we employ their pH data (8.05 to 8.15) in our empirical method (Gosink and Kelley, 1981c) the surface water partial pressures are thereby determined to be in the range of 301 to 383 ppm or ΔPCO_2 of -40 to +40 ppm. The exact time of "winter" and locations for the historical data are unknown.

Summer data for the Central Arctic is even more sparse. Our recent YMER data (Gosink and Kelley, 1980c) indicate that surface water along the periphery of the Arctic Ocean Basin are slightly undersaturated (~-10 to -30) ppm during the summer period. Lyakhin and Rusanov's pH data (1980) affords a calculation of summer PCO_2 by the empirical method (Gosink and Kelley 1981c) to be in the range of 223 to 359 ppm for the Arctic Basin. This is in reasonable agreement with our YMER-80 observations along the periphery of the basin; $\Delta\text{PCO}_2 = \text{ca. } -100 \text{ to } +36 \text{ ppm}$, or approximately averaging -30 ppm. If the arbitrarily assigned range of -30 to +10 ppm for

the ΔPCO_2 of the summer central Arctic is correct, then the summer central Arctic operator provides for a source and sink range of 37 MT and 112 MT of CO₂ respectively as shown in Table 2. Some smaller subsections of the central basin are probably supersaturated with CO₂ at the surface as the compilation of Lyakhin and Rusanov suggest.

Melt ponds on the surface of sea ice were observed from the YMER cruise (80 - 82°) to have very high PCO₂ in August (420-490 PPM), but this may have been due to the decay of plankter. Those ponds in August were covered with ice and had a salinity of about 6°/oo, and as far as we can estimate at this time effectively cancels their presumed sink condition of earlier in the summer based on our observations north of Alaska (71°N). They are shown as 40 MT sources and sinks in Table 2.

The winter low figure for the Central Arctic open water, assuming that 5% of the total area is open water with a ΔPCO_2 of 10 ppm, that the length of time under such conditons is 9 months, is that 56×10^{12} g CO₂ (10^{12} g = million metric tons = MT) will be transferred from the ocean to the atmosphere. If the open water is 10% as has been suggested by Whitman (1966), and if the $\Delta PCO_2 = 100$ ppm, then the output of CO₂ to the air in the Central Arctic during winter jumps to 1119 MT CO₂ for the high figure.

The Barents Sea Region has been confirmed to have exceedingly low (180-250 ppm) summer partial pressures of CO_2 at the surface (Kelley 1970 and Gosink and Kelley 1981b). The average ΔPCO_2 for that region is on the order of -110 ppm). Considering the general easterly circumpolar flow of surface waters on that region, the phenomenon is assumed to extend into the Laptev Sea. If this intensity is maintained for a 4 month summer period over the entire area of $2.5 \times 10^6 \text{ km}^2$, then 1628 MT of CO_2 will be absorbed. As can be seen from inspection of Table 2, this figure alone overwhelms all of the other sources or sinks within the Arctic.

The Barents Sea region therefore is the predominant cause for the Arctic to be a net CO_2 sink. The partial pressure of CO_2 in those waters in the winter is unknown, but if our explanations for the principal cause of those low partial pressures is correct (Gosink and Kelley, 1981d) i.e. the cooling of surface waters as they are transported north, then we would expect those waters to remain undersaturated throughout the remainder of the year, but perhaps only at -20 to -40 ppm due to organic decomposition and the lack of photosynthesis. The winter open water factor would be reduced to ca 25%, and thus the transfer from the atmosphere would be ca. 225 MT CO_2 for that area and time period.

Chukchi and Beaufort Seas summer ΔPCO_2 values are significantly less than that in the Eurasian basin, being on the order of -60 ppm (Gosink and Kelley, 1979). Winter data in the Beaufort Sea suggests supersaturation of 20 to 40 ppm. Therefore the East Siberian, Chukchi, Beaufort subcategory is calculated to be a summer sink for CO_2 of 240 MT and a winter source in the range of 16-32 MT CO_2 based on the following observations.

Our experiments (Gosink and Kelley, 1978, 1979, 1981b) indicate that winter partial pressures of CO_2 under sea ice are patchy and mixed from under-saturated to the more common super-saturated. For example, PCO_2 returns rapidly to the supersaturated (to 360+ppm) in the fall or during the month of November. Furthermore, indications are that partial pressures on the order of 400 ppm are close (10-20 m) to the surface then (Gosink and Kelley 1979).

In the northern Bering Sea we measured PCO_2 values of 400-440 ppm at and just below the thermocline located at 20-40 m (Gosink and Kelley, 1978 Hakuho Maru cruise, 1978 and 1981c). At lower latitudes, where photosynthesis extends below the surface thermocline, the depth at which the high PCO_2 water is encountered is as much as several hundred meters (e.g. Li et al., 1969). In the Beaufort Sea within 200 km of the coast, the thermocline is only 10-20 m below the surface. On 11 November 1978, the PCO_2 of newly ice-covered surface waters 30 km offshore had already risen to 341 ppm, about 10-12 ppm greater than the ambient air. The PCO_2 just 6-7 m below the surface was 420 ppm. Light levels were low at that time with the sun being above the horizon for only one hour per day, thus photosynthesis effectively had ceased.

It would appear from three sets of winter experiments (1-30 day observations each) (Kelley, 1968; Kelley and Hood, 1971 and this report) in addition to several spot samples, that the surface sea water PCO_2 in the winter within 2-300 km of the coast is about 340-360 ppm, but with an occasional high observations of ca. 400 ppm. However, on one occasion, two separate samples of sea

water from under the ice ~ 200 km north of Alaska during early April 1978 (floating ice station ARLIS-VII) unequivocally displayed PCO_2 of 295 and 300 ppm. The light level at that time of year was low to moderate, but nearly constant for ca. 15 hours/day. Those isolated low PCO_2 observations suggest that slight but significant offshore biological activity had commenced immediately under the sea ice in April. This departs from other winter and spring month observations when the PCO_2 values for surface Beaufort Sea waters were generally 340-350 ppm and higher (Kelley, 1968; Gosink and Kelley, 1978). Coastal and near-coastal waters maintained 10-60 ppm above ambient atmospheric CO_2 values at Barrow in April to early May 1979.

Migratory filter-feeding whales move into the general offshore area of Barrow, Alaska during April. It may be assumed that plankton are abundant enough at that time to sustain them as well as to modify the carbon dioxide in the water column.

Another seemingly anomalous situation was observed in June of 1979 over two days. Partially trapped coastal waters inside the offshore bar and grounded ice displayed the expected low PCO_2 (280-300 ppm) due to photosynthesis. On the other hand, waters just 1-2 km further offshore consistently analyzed for a PCO_2 of ca. 400 ppm. Zooplankton were obviously abundant, and their respiration may have overcome the prior influence of the phytoplankton.

The Greenland Sea-Baffin Bay region is dominated by sea ice throughout the year. We estimate for our calculations that it is 10% open in the winter and 50% open in the summer. The only PCO_2 data we have are for the summer period in the Lena Trough area (Gosink and Kelley 1981d). The surface sea water coming out of the Arctic in that region was slightly undersaturated with a ΔPCO_2 of about 0 to 10 ppm. Surface waters farther south, probably modified by the Spitsbergen Atlantic current, were undersaturated by 10 to 45 ppm. We can only assume that winter waters are similar to the central pack ice, and have supersaturation ΔPCO_2 on the order of 10 to 100 ppm. On the basis of these data and assumptions, the winter source strength range for the Greenland Sea-Baffin Bay region is estimated to be 28-288 MT CO_2 and the summer sink strength 29-115 MT CO_2 .

The perpetually open water of the Norwegian Sea and southern edge of the Barents Seas have summer partial pressures ranging from 50 to 100 ppm below that of the atmosphere (Gosink and Kelley 1981c) and is considered to be a year long phenomenon for reasons mentioned above. The winter partial pressure difference is unknown but is assumed at this time to be -25 ppm. Thus this small area is listed as sink for the entire year with winter and summer season strengths of 111 and 222-444 MT CO_2 respectively.

The remaining months, not included in the above or following calculations are considered to be transition periods during which the ΔPCO_2 is relatively small and self compensating as the process changes from source to sink or vice versa.

Gases at the Sea Ice-Air-Snow Interfaces. The only air-sea interface left for discussion at this point is the sea ice-air interface. We have reported that annual sea ice, not multi-year ice, because of its brine channels and the carbonate nature of the brine, is permeable to carbon dioxide (Gosink et al, 1976 and Gosink and Kelley 1977, 1978, 1979 and 1981e). Carbon dioxide, carbon monoxide, methane and sometimes nitrous oxide have all been observed to emanate from the sea ice surface. All of these gases can usually be found over the surface of annual sea ice in concentrations significantly greater than that of the ambient air (Gosink and Kelley, 1977, 1978). We are reporting at this time, however, only on the concentration and exchange of carbon dioxide. A description of sea ice and the probable causes of its porosity to gases is presented elsewhere (Gosink and Kelley, 1981e). Air samples withdrawn by syringe from beneath the snow cover over sea ice were enriched in carbon dioxide if the wind velocity was low, or if the sample came from a wind protected area. This difference between the subnivean concentration and air at 2 m ranged from 0 to 80 ppm.

A summary of results for the recovery of gases in helium flushed chambers to sea ice are shown in Figure 2. The fact that the oxygen concentration in the fresh ice sealed, helium flushed chambers (Figure 1) did not recover nearly as rapidly as the CO_2 , proves that the gases are being evolved from the sea ice surface, and are not leaking in around the

Table 2. Seasonal Source-Sink Strengths of the Various Regions in the Arctic

Season	Region	Area (10 ⁶ km ²)	% Area Active	Invasion Evasion Rate	ΔPCO ₂ (ppm)	Duration (Months)	Source (x10 ¹² g CO ₂)	Sink (x10 ¹² g CO ₂)
Winter	1. Central Basin	8.4	5-10	1.48 x 10 ¹² (g km ⁻² mo ⁻¹ atm ⁻¹)*	10 to 100	9	56 - 1119	-
	2. Barents, Laptev, and Kara Seas	2.5	25	"	-20 to -40?	8	-	149 - 299
	3. East Siberian, Chukchi and Beaufort Seas	0.9	10	"	20 to 40	6	16 - 32	-
	4. Greenland Sea and Baffin Bay	1.3	25	"	10 to 100?	6	28 - 288	-
	5. Norwegian Sea	0.5	100	"	-25?	6	-	111
	6. Annual Sea Ice	6-7	100	2.8-28.3 x 10 ⁶ (g km ⁻² mo ⁻¹)	-	6	101 - 1190	?
	7. Tundra and Taiga	1.6	100	See text	-	6	7	-
						Winter Totals	208 - 2636 (avg 1422)	260 - 410 (avg 335)
Summer	1. Central Basin	8.4	10	1.48 x 10 ¹² (g km ⁻² mo ⁻¹ atm ⁻¹)*	-30 to +10	3	-37	112
	2. Barents, Laptev and Kara Seas	2.5	100	"	-90 to -140	4	-	1332 - 2072
	3. East Siberian, Chukchi and Beaufort Seas	0.9	100	"	-40 to -80	3	-	160 - 320
	4. Greenland Sea and Baffin Bay	1.3	50	"	-10 to -40?	3	-	29 - 115
	5. Norwegian Sea	0.5	100	"	-50 to -100	6	-	222 - 444
	6. Sea Ice Melt Ponds	1?	?	See text	-	2	40?	40?
	7. Tundra-Taiga Freeze-Thaw Plants	1.6	78	See text	-	3	179	-
	Ponds and Lakes	1.24	100	"	-	0.5	0.4 - 56	213 - 411
Annual	1. Anthropogenic			See text			1 - 7	
						Annual Totals	513 - 3403 (avg 1958)	2368 - 3924 (avg 3146)
						Annual Net Sink	1188 x 10 ¹² g CO ₂	

*This is the same as 0.078 mmole cm⁻² atm⁻¹ min⁻¹

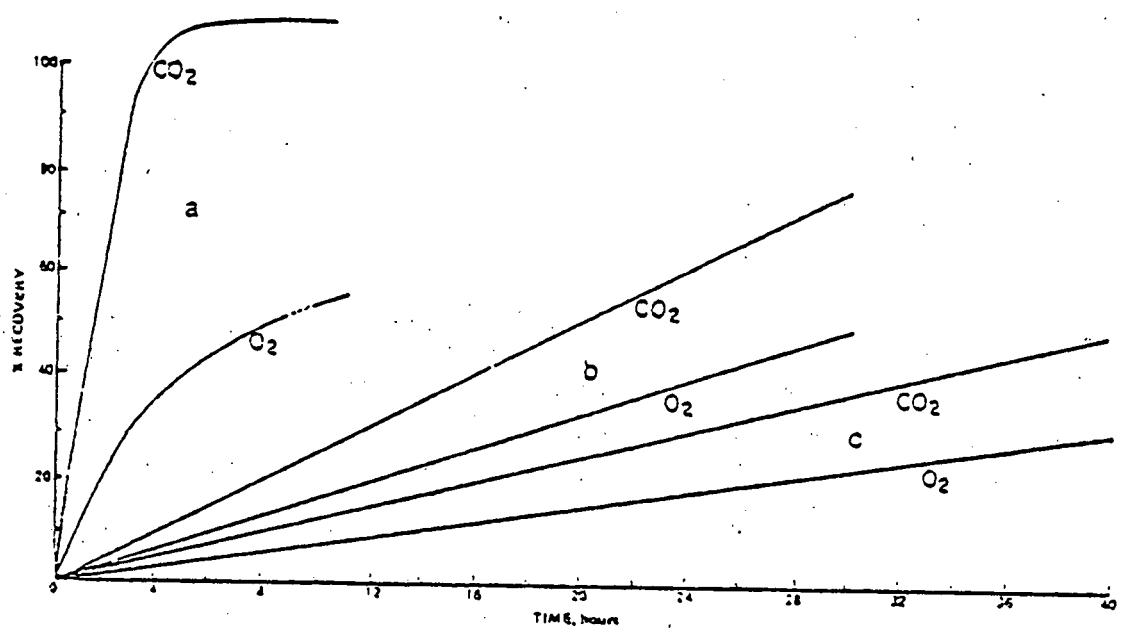


Figure 2

edges. Full (100%) recovery to ambient conditions for CO_2 equals 0.034% (340 ppm) and for O_2 , 21%. In all cases (Figures 2: a, b, c) oxygen recovery lags behind CO_2 recovery. The CO_2 partial pressures in the brine in the sea ice matrix have been observed to be in excess of 440 ppm (Gosink and Kelley, 1978). Probably the brines are depleted in O_2 because of the high salt concentration, and because of the suspected slight biological and chemical oxygen consumption within the relatively warm sea ice matrix.

Curve pairs (Figure 2a) denote experiments performed on relatively warm (-10 to -15°C) saline (3-4‰) coastal annual sea ice. In that case, the CO_2 concentration exceeded ambient atmospheric concentration levels (then about 340 ppm) and reached a plateau of about 360 ppm within a few hours, while the O_2 level continued its slow rise over the following 12 hours to only 60% recovery when the experiment was terminated. Curve pairs b and c were for experiments performed over less saline (1-2‰), colder (-20 to -25°C) offshore ice at ARLIS VII (about 220 miles NNE of Point Barrow, Alaska) during 7-11 April 1978. The temperatures in all cases were the ambient air temperatures. The effect of the salinity difference is clearly demonstrated by curve pairs b and c. The ice for cases b and c were, respectively, annual sea ice probably formed late in the previous spring, and multi-year ice. It is uncertain if the difference between curve pair (a) and pairs (b) and (c) is caused more by the temperature rather than the salinity differences.

Based on experiments at -10 to -15°C, the rate at which carbon dioxide was being released to the atmosphere from annual ice surfaces was $2-4 \times 10^{-3} \text{ ml cm}^{-2} \text{ hr}^{-1}$. At -20 to 25°C, it apparently dropped to about $10^{-4} \text{ ml cm}^{-2} \text{ hr}^{-1}$. The veins in sea ice theoretically should close by two orders of magnitude at -20°C, which is in agreement with the 20-40 fold decrease in gas fluxes observed for annual sea ice, assuming the much larger brine channels opened and closed at about the same levels of magnitude as did the much smaller multi-grain boundary veins (Gosink and Kelley, 1981e).

Chambers containing ambient air sealed to the ice at ARLIS VII, showed carbon dioxide levels of 351-362 ppm when sampled a few hours later (4 and 24 hours) and suggest a transfer rate compatible with the $10^{-4} \text{ ml cm}^{-2} \text{ hr}^{-1}$ discussed shown above. The ambient air CO_2 concentration was stable between 339-341 ppm. Samples of the subnivean air at ARLIS VII generally ran around 350 ppm. The range was 337-374 ppm, with the samples taken over multi-season ice being the lowest.

There are brief periods in early May when sea ice is begining to rot, when 2 liter chambers covering 200 cm^2 of sea ice were enriched (10-20 ppm) in CO_2 in a few minutes. The PCO_2 of winter sea ice brine was on the order of 1000 ppm. We suggest that this is one of several possible causes for the small repeatable atmospheric surge of carbon dioxide before the rapid summer decline, as mentioned in the introduction. That is, the brine and multi-grain boundary veins were opening up with the onset of warmer weather, thus allowing for a final burst of carbon dioxide from the brines before photosynthesis at the

surface reversed the process. Other possible causes are yeast sporulation, on land, as yet thoroughly uninvestigated, and tundra freeze-thaw processes. These facets are mentioned at the end of the next section.

Contact of high PCO_2 waters during the winter with porous annual sea ice should lead to a net flow of CO_2 to the atmosphere. Resistance to exchange in this case is affected by the sea ice as compared to the thin film exchange on open water. A definite value for this ice resistor effect is unknown at this time, but must be related to the 10^{-3} to $10^{-4} \text{ ml cm}^{-2} \text{ hr}^{-1}$ figures stated earlier. It is this high PCO_2 water rather than the brines in the sea ice that is the probable cause of the continental outgassing of CO_2 from the annual sea ice to the atmosphere. There is insufficient CO_2 in the small amount of brine trapped in annual sea ice to maintain the observed winter-long output of the CO_2 .

Our only data for carbon dioxide being evolved from annual sea ice comes from the Beaufort Sea area. If the ΔPCO_2 in the Barents sea area remains negative as discussed earlier, there is the probability that annual sea ice in that region of the arctic does not evolve CO_2 to the atmosphere over the winter, but rather operates as a small sink for tropospheric CO_2 . The Barents Sea region is perhaps one of the most critical regions for further research particularly in the winter.

Given a total area of annual sea ice on the order of $6.7 \times 10^6 \text{ km}^2$ (e.g. Barry, 1979) then 101-1190 MT of CO_2 is probably being evolved to the atmosphere over the winter from annual sea depending on the salinity and temperature of the annual sea ice.

Bolin and Keeling's 1963) earlier high altitude samples and our (Gosink and Kelley 1979) recent intermediate altitude sampling also indicate a source of CO₂ at the surface during winter. Low altitude winter atmospheric CO₂ values are usually always larger than those at higher altitude.

These considerations of sea-ice-air interfaces alone account for most of the source-sink strengths as shown in Table 2. The net result is to indicate that the Arctic is an annual net sink for CO₂ of more than 1000 MT or an equivalent to 15% of the annual anthropogenic contribution of CO₂ to the troposphere. These figures were derived by the use of our recently observed inversion rate for CO₂ across Barent Sea-Arctic Ocean water. If the lower rate proposed by Keeling (1965) for mid-latitude waters is substituted (0.034 vs. 0.078 mmole atm⁻¹ cm⁻² min⁻¹) then the affect of the Arctic on tropospheric CO₂ is that it still behaves as a sink, but absorbing an equivalent of ca. 7% rather than 15% of the annual antropogenic CO₂. Hood and Kelley's intermediate invasion rate (0.043) provides for a net Arctic CO₂ sink equivalent of ca. 8% of anthropogenic CO₂.

We have recently calculated simple box models (Gosink and Kelley, 1981b) considering CO₂ partial differences for atmospheric CO₂ entering and exiting the Arctic and have arrived at reasonably similar net sink results.

The relatively small but fairly numerous sources and sinks associated with the land portion of the arctic as shown in Table 2 are explained in the following sections.

Gases from Tundra, Lakes and Ponds A large net source of carbon dioxide in the arctic is the tundra with its bogs, ponds and lakes. Extremely high levels of methane and carbon monoxide as well as carbon dioxide were found at the surface of the tundra and in the lakes and ponds of the arctic in the vicinity of Point Barrow. Kelley et al (1968) and Coyne and Kelley (1974a), reported on the existence of elevated levels of carbon dioxide under the snow across the tundra, particularly in the spring. The level of carbon dioxide was inversely proportional to the wind speed (high wind velocity aspirates and replaces the carbon dioxide enriched subnivean air) and the highest levels (as much as several thousand ppm for a few hours over a few days) occurred in May during the annual final rise in atmospheric carbon dioxide mentioned earlier. Gas chromatographic procedures required only 5 cc samples of air. Thus the natural microenvironment was not disturbed. In this manner, small (0-30 ppm) but nearly continuous enrichments of carbon dioxide under the snow were noted throughout the winter. Similar subnivean enrichment of CO_2 has been observed for samples taken in the Fairbanks, Alaska, area (65°N). Insufficient data are available to calculate the evasion rate of CO_2 from frozen tundra surfaces, but it is estimated to be on the order of $10^{-4} \text{ ml cm}^{-2} \text{ hr}^{-1}$, or an almost insignificant 7 MT of CO_2 evolved to the atmosphere over winter.

Anthropogenic sources of CO_2 in the arctic are negligible (est. $<10^{12} \text{ g}$). However, recent petroleum developments may make this a source comparable to the natural outgassing of the winter tundra, particularly if CO_2 stripped from the petroleum gases is released to the atmosphere rather than being reinjected into the well.

During the months of June and September, the period of thaw and freeze, the concentration of land surface-evolved gases are large and variable, at least in the vicinity of Point Barrow. The region is dominated by ponds and lakes with organic rich sediment (Brown and Johnson, 1965; Douglas and Tedrow, 1960). Partial pressures of carbon dioxide in the lakes average about 115 ppm higher than that of the ambient atmosphere. The ponds, with warmer bottom sediment and smaller volume dilution, had an average PCO_2 of 357 ppm greater than the ambient air (Coyne and Kelley, 1974b). These lakes and ponds constitute 50-80% of the tundra in the vicinity of Barrow (Miller et al., 1976). Coyne and Kelley (1974b) calculate an evasion rate of CO_2 of $0.34 \text{ mg cm}^{-2} \text{ atm}^{-1} \text{ min}^{-1}$. Using Coyne and Kelley's evasion rate for tundra lakes and ponds, with an estimated average gradient between lakes and ponds of 300 ppm greater than that of the atmosphere, and that 60% of the $0.6 \times 10^6 \text{ km}^2$ of tundra is involved, then 48 MT of CO_2 is calculated to evolve to the atmosphere over the summer from that interface.

Miller et al, (1976) and Coyne and Kelley (1975), calculate that the vascular plants on the wet tundra fix about $400-770 \text{ g CO}_2 \text{ m}^{-2} \text{ season}^{-1}$, with about 43% of the CO_2 being drawn from the atmosphere. During periods of low photosynthesis, the hours around midnight, the soil is a source of about $0.2 \text{ g CO}_2 \text{ m}^{-2} \text{ hr}^{-1}$. Therefore given the facts and estimates that wet tundra emits more CO_2 than the plants can fix during a portion of this time, i.e. Miller et al's soil source rate for an estimated 8 hours a day over 90 days, Coyne and Kelley's vegetation drawn down values, and that 40% of the tundra and 100% taiga or boreal vegetation are involved then 179 MT of CO_2 are added to the atmosphere

from the soil while the vascular and other plants remove 213-411 MT from the air. This figure is in general agreement with estimated for tundra and alpine ecosystems tabulated by Revelle and Munk (1977).

Finally there is the interesting phenomena that the tundra is known to outgas carbon dioxide during freezing and thaw at the rate of 500-90,000 l/hectare (Coyne and Kelley, 1971). The effect of this is to add yet another 0.4 to 56 MT of CO_2 to the arctic troposphere over short periods of time both at the beginning and end of the arctic winter. This small quantity alone could influence near ground level monitored concentrations of atmospheric CO_2 by a few tenths of a ppm as suggested in a recent articles by Peterson et al (1980), and Halter and Peterson, (1981). It may be the cause, or part of the cause of the annual spring atmospheric CO_2 surge noted earlier.

RESULTS

The Arctic emerges from this source-sink analysis to be a source of 1107 MT of CO_2 during the winter period, a sink for 2479 MT of atmospheric CO_2 during the summer to yield a net annual sink effect of 1188 MT. The annual effect is equivalent to 4.6% of the global antropogenic input of CO_2 to the troposphere. The effect is even larger if one considers that half of the antropogenic input of CO_2 to the troposphere remains there while the remainder is withdrawn by the oceans and biosphere throughout the world. High PCO_2 surface waters on the average exist in the equitorial Atlantic and Pacific (Keeling 1968)

which largely offsets much of the low PCO₂ surface waters of the mid-latitudes. Surface waters near Antarctic also display high PCO₂ during the Austral summer. This is due to surface runoff of CO₂ saturated fresh water being affected by the salt of ocean water, plus the upwelling phenomena associated with Antarctic oceans. Therefore the Arctic, which is mostly oceanic in nature, appears to be inordinately important to the removal of atmospheric CO₂ compared to the rest of the world oceans.

Keeling and Bocastow (1977) point out in their models that the ocean-air CO₂ interactions is an equilibrium process. The net removal effect of the oceans on atmospheric CO₂ depends to a large extent on whether or not surface waters, with the absorbed CO₂, are mixed down to about 58 m depth. Winter cooling and salt injection into cold surface water in the Arctic by forming ice fairly well assures that the CO₂ absorbed by surface summer water sinks to depths where it is effectively removed from re-equilibrations with the atmosphere.

If we assume that if only 1/12 of the seasonally absorbed or evolved CO₂ affects tropospheric CO₂ in the Arctic (see arguments in simple box model by Gosink and Kelley, 1981b) then the natural arctic sources and sinks are causing a winter-summer fluctuation of 2.7 ppm, or 22% of the observed average 12 ppm annual variation. However, since both the CO₂ monitor levels, but more importantly that the source-sink effects are at the surface, the apparent effect may be closer to 44%.

CONCLUSIONS

Three conclusions can be drawn from this work.

1. The arctic is not an ice sealed inert surface with respect to atmospheric carbon dioxide balance, but is a viable, essential and substantial part of the whole carbon dioxide question.

2. The natural sources and sinks of CO₂ within the Arctic themselves cause a substantial part of the annual concentration excursion of atmospheric CO₂, particularly at the surface.

3. There ^{are} is more source-sink data required in three logically difficult areas if these estimates are to be improved. The most important is the Barents Sea region during the winter because of its tremendously large partial pressure difference, and for which no winter data is available. The next important region is the logically difficult central Arctic Basin during both the winter and summer. Background data for both the atmosphere and surface water is required.

Information about the seasonably variable CO₂ partial pressures in the extensive melt ponds (est. ca. 1-2 x 10⁶ km²) in the Arctic can be expected to have some bearing on temporary source sink strengths.

The third need is for the smaller regions for which data is lacking. These are the East Siberian Sea, the Canadian Archipelago and Baffin Bay.

ACKNOWLEDGEMENTS

We are grateful for the long term support offered by the Office of Naval Research for our field work. That work was covered by Contract No. N00014-76C-0331. We are also grateful for the logistic support provided by the Naval Arctic Research Laboratory, Barrow, Alaska. Additional recent financial support from the Department of Energy covered under Contract No. 80EV10429 is also acknowledged.

REFERENCES

Barry, 1979. Meteorology and Climatology of the Seasonal Sea Ice Zone. In: Proceedings Intern. Workshop on the Seasonal Sea Ice Zone, Monterey, Calif. Feb-March 1979. Cold Regions Sci. & Technol., Vol. 3, Vol. 3, (1980).

Bolin, B. 1977. Changes of land biota and their importance for the carbon cycle, Science 196:613-615.

Bolin, B. and W. Bischof. 1970. Variations of the carbon dioxide content of the atmosphere in the northern hemisphere, Tellus 22:431-442.

Bolin, B. and C. D. Keeling. 1963. Large scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide, J. Geophys. Res. 68:3899-3920.

Broecker, W. S. 1975. Climatic change: Are we on the brink of a pronounced global warming? Science 189:460-463.

Brown, . and P. L. Johnson. 1965. Pedo-ecological investigations, Barrow, Alaska, U. S. Army CRREL Tech. Report 154, 32 pp.

Coyne, P. I. and J. J. Kelley. 1971. Release of carbon dioxide from frozen soil to the arctic atmosphere. Nature 327:407-408.

Coyne, P. I. and J. J. Kelley. 1973. Variations of carbon dioxide across an arctic snow pack during spring. J. Geophys. Res. 79:779-782.

Coyne, P. I. and J. J. Kelley. 1974a. Variation in carbon dioxide across an arctic snow pack during spring. J. Geophys. Res. 79:799-802.

Coyne, P. I. and J. J. Kelley. 1974b. Carbon dioxide partial pressures in arctic surface water. Limnol. Oceanog. 19:928-938.

Coyne, P. I. and J. J. Kelley. 1975. Carbon dioxide exchange over the Alaskan arctic tundra: Meteorological assessment by an aerodynamic method. J. Appl. Ecol. 12:587-564.

Douglas, L. A. and J. C. F. Tedrow. 1960. Tundra soils of arctic Alaska. 7th Int. Cong. of Soil Sci. Madison, Wisconsin, Trans. 4:291-304.

Fletcher, J. O. and J. J. Kelley. 1978. The role of the polar regions in global climate change. In: Polar Research. To the present and the future. M.A. McWhinnie, Ed. AAAS Selected Symposium, West View Press, Inc. pp. 97-116.

Gordon, L. I., P. Park, J. J. Kelley and D. W. Hood. 1973. Carbon dioxide partial pressures in North Pacific surfaces waters. General lake summer distribution. Marine Chemistry 191-198.

Gosink, T. A., J. G. Pearson and J. J. Kelley, 1976. Gas movement through sea ice. Nature 263:41-42.

Gosink, T. A. and J. J. Kelley. 1977. Gases in Sea Ice. Annual Reports to the Office of Naval Research, Code 461. September.

Gosink, T. A. and J. J. Kelley. 1978. Gases in Sea Ice. Annual Reports to the Office of Naval Research, Code 461. September.

Gosink, T. A. and J. J. Kelley. 1981a. Arctic atmospheric carbon dioxide, low altitude aircraft sampling. Submitted to Arctic.

Gosink, T. A. and J. J. Kelley, 1981b. Arctic seas. Are there overlooked significant sinks in atmospheric carbon dioxide? (in preparation)

Gosink, T. A. and J. J. Kelley, 1981c. A new empirical method to calculate PCO_2 from pH, salinity and temperature. (in preparation).

Gosink, T. A. and J. J. Kelley, 1981d. An explanation for the extremely low partial pressure of carbon dioxide in surface waters of the Barents, Kara and Greenland Seas. (in preparation).

Gosink, T. A. and J. J. Kelley. 1981e. Annual Sea Ice. An air sea gas exchange moderator. Submitted to Arctic.

Gosink, T. A., J. G. Pearson and J. J. Kelley. 1976. Gas movement through sea ice. Nature 263:41-42.

Halter, B. C. and J. T. Peterson, 1981. On the variability of atmospheric carbon dioxide concentrations at Barrow, Alaska during summer. In preparation.

Hemminsen, E. 1959. Permeation of gases through ice. Tellus 11:355-359.

Keeling, C. D. 1965. Carbon dioxide in surface waters of the Pacific 2. Calculation of the exchange with the atmosphere. J. Geophys. Res. 70:6099.

Keeling, C. D., 1968. Carbon dioxide in surface ocean waters of Global distribution, J. Geophys. Res., 73, 4543-

Keeling, C. D. 1972. Industrial production of carbon dioxide from fossil fuels and limestone. Tellus 25:174.

Keeling, C. D., R. B. Bocastow, A. E. Bainbridge, C. A. Edhahl, R. R. Guenthor and L. S. Waterman. 1976a. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii, Tellus 28:538-561.

Keeling, C. D., J. A. Adams, C. A. Ekdahl and P. R. Guenthor, 1976b. Atmospheric carbon dioxide at the South Pole. Tellus 28:550-564.

Keeling, C. D. and R. B. Bocastow, 1977. Impact of industrial gases on climate. In: Studies in Geophysics Energy and Climate. National Acad. of Sci., pp. 72-95.

Kelley, J. J. 1968. Carbon dioxide in seawater under arctic ice. Nature 218:862-864.

Kelley, J. J. 1970. Carbon dioxide in surface waters of the North Atlantic Ocean. The Barents and ~~Kara~~ Seas. Limnol. and Oceanog. 15:80-87.

Kelley, J. J. and D. W. Hood. 1971. Carbon dioxide in the surface water of the ice-covered Bering Sea. Nature 229:37-39.

Kelley, J. J. 1973. Dynamics of the exchange of carbon dioxide in arctic and subarctic regions. Publ. by Inst. Mar. Sci., Univ. of Alaska, Fairbanks, Alaska. 171 pp..

Kelley, J. J., D. F. Weaver and P. B. Smith. 1968. The variation of carbon dioxide under the snow in the Arctic. Ecology 49:358-361.

Kelley, J. J., T. A. Gosink and J. G. Pearson. 1976. Gases in sea ice. Annual Report to Office of Naval Research, Code 461. September.

Li, Y. H., T. Takahashi and W. Brocker. 1969. Degree of saturation on CaCO_3 in the oceans, J. Geophys. Res. 74:5507-5525.

Lyakhin, Y. I. and V. P. Rusanov. 1980. Exchange of oxygen and carbon dioxide between the arctic basin and the atmosphere. Oceanology 20:625-36.

Miller, P. C., W. A. Stoner and L. L. Tieszen. 1976. A model of start photosynthesis for the wet meadow tundra at Barrow, Alaska. Ecology 57:411-430.

Park, P. K., L. I. Gordon and S. Alvarez-Borrego. 1974. The carbon dioxide system in the Bering Sea. In: Oceanography of the Bering Sea. D. Hood and J. J. Kelley (eds.), pp. 107-149. Inst. Mar. Sci. Occas. Pub. No. 2, Univ. of Alaska, Fairbanks, Alaska.

Peterson, J. T., K. J. Hanson, B. A. Bodhaine and S. J. Oltmars. 1980. Dependence of CO_2 , aerosol and ozone concentration on wind direction at Barrow, Alaska during winter. Geophys. Res. Letters. 7, 349-352.

Revelle, R. and W. Munk, 1977. The carbon dioxide cycle and the biosphere. In: Studies on Geophysics, Energy and Climate, National Acad. of Sci., pp. 140-158.

Richardson, C. 1976. Phase and relationships of sea ice as function of temperature. J. Geophys. Res. 17:507-519.

Sverdrup, H. V., M. W. Johnson and R. H. Fleming. 1942. The Oceans, Prentice Hall.

Whitman, and J. J. Schulle. 1966. Proceedings of the Arctic heat budget and atmospheric circulation. Memo RM523 NSF Rand 217, Navy Atlas of Ice.

Wong, C. S. 1978. Atmospheric input of carbon dioxide from burning wood. Science 200:197-200.

Woodwell, G. M., R. H. Whittaker, W. A. Reiners, G. E. Likens, C. C. Delwiche
and D. B. Botkin. 1978. The biota and the world carbon budget. Science
199:141-145.

FIGURE CAPTIONS

Figure 1. Various rates for transfer of CO₂ across the seas-water-air boundary.

Figure 2. Recovery of CO₂ and oxygen in helium flushed chambers over sea ice as a function of time, salinity and temperature.
(a) -10 to -15°C; 3-4‰ S (b) -15 to -20°C; 20‰ S (c)
-15 to -20°C; 10‰ S.

CARBON DIOXIDE IN OCEAN SURFACE WATERS:
A SIMPLIFIED METHOD OF MEASUREMENT¹

T. A. Gosink and J. J. Kelley

Geophysical Institute and Institute of Marine Science
University of Alaska
Fairbanks, Alaska 99701

RUNNING HEAD: Carbon Dioxide in Sea Water

DRAFT

ABSTRACT

Partial pressures of carbon dioxide in sea water can be estimated with reasonable accuracy by use of the equation: $PCO_2 = 3.98 \times 10^{21} \times pHc^{-19.568}$, where $pHc = pHs + (pHs \times Sal. \times 10^{-3})$. It should be possible to equip ships-of-opportunity with relatively simple instrumentation to inexpensively assess ocean surface PCO_2 on a seasonal basis or to derive PCO_2 values from archived pH data if they are of sufficient accuracy.

¹ Financial support was provided by the U.S. Navy, Office of Naval Research (Contract N100014-76C-0331) and Department of Energy Contract 80EV10429. Logistics support was provided by the Naval Arctic Research Laboratory, Barrow, Alaska.

INTRODUCTION

A simple relationship between pH and PCO_2 has been found so that PCO_2 in sea water can be calculated with only knowledge of *in situ* pH (pHs) and Salinity (S). The required accuracy of the pH measurement should be better than ± 0.01 pH units in order to maintain an accuracy of ± 6 ppm PCO_2 . The accuracy of the salinity measurement needs only to be $\pm 0.2\%$... Water temperature measurements are not required if pH is measured *in situ*, e.g., at the vessels engine cooling water inlet. Temperature measurements are, however, required ($\pm 0.2^\circ\text{C}$) in order to calibrate the pH meter against temperature dependent pH standards.

An important sink for atmospheric carbon dioxide is the ocean. Partial pressure differences between the ocean and the atmosphere usually are on the order of $\pm 0\text{--}40$ ppm concentration mixing ratio (approximately $\pm 0\text{--}40\mu$ atmospheres) with extreme ranges of $\pm \sim 150$ ppm. In order to determine PCO_2 in sea water, direct methods such as infrared or gas chromatographic analysis of clean air equilibrated with the sea water are used, or it is calculated from pH and alkalinity titration data. The latter indirect method produces data which are usually about 5% (or more) higher than the former methods (about 15 ppm with air values at 300 ppm) when performed simultaneously. The indirect method, furthermore, is variable depending on the values of K_1 , K_2 and K_B employed for the apparent ionization constants for carbonic and boric acids (Gieskes, 1974; Millero, 1979). In order to perform any of these measurements, skilled personnel are usually necessary, and thus data for only limited areas and seasons are available from various scientific cruises.

DISCUSSION

The pH of pure rain water in equilibrium with atmospheric CO_2 should be about 5.7 (with no contribution from SO_4^{2-}). The pH of a pure calcium carbonate solution is about 9.9, but when in equilibrium with atmospheric CO_2 (carbonic acid production) it is about 8.4 (e.g., Garrels and Christ, 1965). Sea water not only is essentially a calcium carbonate system in approximate equilibrium with carbonic acid produced from atmospheric CO_2 , but also has additional acid contributions due to boric, silicic and phosphoric acids etc. and thus its "normal" pH is closer to 8.1. The contributions of the additional acids are proportional to the salinity of the water. Edmond (1970) calculated that in 35‰ sea water, bicarbonate and carbonate account for 96.5% of the conjugate base present. Therefore 3.5% is the contribution of the other conjugate bases (borate, etc.). Assuming a reasonable constancy of composition, the correction factor for alkalinity titrations (and for pH) is $\frac{0.035}{35} \times \text{Salinity}$, or $\text{Salinity} \times 10^{-3}$. This factor can be applied either to the pH in an additive fashion as in this work, or to the total alkalinity as a subtractive term in place of the borate term to obtain an estimate of the carbonate alkalinity (Gosink and Kelley, 1980). Thus, K_B and ΣB , uncertain terms in the calculation (Millero, 1979) are not required. Silicates etc. are usually ignored, but are important for occurrences of ≤ 0.008 pH units.

The observed sea water pH is lower than the theoretical calculated carbonic acid-carbonate pH due to the presence of other acids in sea water. Thus, if the pH is corrected by adding the term $\text{pHs} \times \text{Sal.} \times 10^{-3}$, then the PCO_2 of the sea water can be calculated by the formula $\text{PCO}_2 = a \text{ pHc}^n$.

The subscripts on the pH term refer to *in situ* (s) and corrected (c) terms. The least squares fit for [a] and [n] based on observations from a summer cruise (*Hakuho Maru*, 1978) to the Bering Sea (Gosink and Kelley, 1980) are $a = 3.98 \times 10^{20}$ and $n = -19.568$. An initial emperical fit (Fig. 1) for data based only on calculations of PCO_2 from pH and alkalinity titrations, and randomly selected to cover a limited pH range from 7.9 to 8.2 are $a = 6.34 \times 10^{21}$ and $n = -20.83$. The slopes of the two curves (n) are essentially the same. The intercepts (a) differ because of the differences between observed and calculated PCO_2 which is treated elsewhere (Gosink and Kelley, 1980). Comparison of this method to PCO_2 calculated for sea water at 2000 m to the surface from alkalinity data also appears to be good. The method, however, fails below 20‰ salinity. We calculated the *in situ* and pressure corrected aH and pH by the thermodynamic methods reported by Millero (1979) and are related to NBS rather than tris buffer calibrations. Table 1 may be used with interpolation for the determination of the partial pressure of CO_2 in sea water from *in situ* pH (NBS buffer reference) in the salinity range of 26 to 36‰. This range should cover nearly all expected observations in the near surface to 400 meters of sea water.

CONCLUSIONS

Careful measurements of pHs along with salinity and temperature should make it possible, with reasonably simple periodic calibrations, to economically employ any ship of opportunity to more easily assess PCO_2 in ocean surface waters during all seasons or to retrieve PCO_2 information from

archived pH data. This should provide a more extensive data base, for example, for models related to global climate change in response to CO₂ changes in the natural environment.

Further observations of PCO₂ by direct (gas chromatography) and indirect (alkalinity titrations) measurement will be necessary to refine the values of a and n. A more detailed comparison of the methods is to be published elsewhere (Gosink and Kelley, 1980).

ACKNOWLEDGEMENTS

We acknowledge the generous assistance of Dr. Yasunori Watanabi, Department of Chemistry, Hokkaido University who provided alkalinity and pH data on the *Hakuho Maru* cruise. We thank Dr. A. Hattori, Ocean Research Institute, University of Tokyo for inviting us to participate in the *Hakuho Maru* cruise to the Bering Sea during the summer, 1978.

REFERENCES

Edmond, J. M. 1970. High precision determination of titration alkalinity and total carbon dioxide content of sea water by potentiometric titration. *Deep Sea Res.* 17:737-750.

Garrels, R. M. and C. L. Christ. 1965. *Solutions, Minerals and Equilibria*. Harper and Row, N.Y. 450 pp.

Geiske, J. M. 1974. The alkalinity-total alkalinity system in sea water, p. 123-151. In E. Goldberg (ed.), *The Sea*, Vol. 5. Wiley Interscience.

Gosink, T. A. and J. J. Kelley. 1980. Observations and calculations of PCO_2 in surface waters. A new approach. (in preparation)

Millero, F. J. 1979. The thermodynamics of the carbonate system in sea water. *Geochim. et Cosmochim.* 43:1651-1661.

Table 1. Partial pressures on CO_2 (ppm) in sea water for *in situ* pH between 7.9 and 8.4 and 26 to 36‰ salinity.

s ‰	7.90	8.00	8.10	8.20	8.30	8.40
36	543	424	333	262	206	157
34	564	441	346	272	214	163
32	585	458	359	282	223	169
30	608	475	373	293	231	177
28	632	494	387	305	240	185
26	565	513	402	316	250	192

FIGURE CAPTION

Figure 1. Empirical fit of $\ln \text{pH}$ versus $\ln \text{PCO}_2$ where the solid circles are for calculated PCO_2^c from randomly selected stations in the Bering Sea (*Hakuho Maru*, 1978) and the solid squares represent the observed PCO_2 data.

ARCTIC TROPOSPHERIC CARBON DIOXIDE.
LOW ALTITUDE AIRCRAFT SAMPLING

Thomas A. Gosink and John J. Kelley

Geophysical Institute
University of Alaska
Fairbanks, Alaska 99701

and

The Naval Arctic Research Laboratory
Barrow, Alaska 99723

ABSTRACT

Atmospheric carbon dioxide levels monitored at Barrow, Alaska show the largest winter-summer variations in the world for a clean background environment. Past high altitude aircraft data suggest a low altitude CO₂ source in the winter, and a sink in the summer. Our data, based on samples collected (3000 and 50 m), clearly show the source-sink effects of the Arctic Ocean and tundra throughout the year, particularly during the periods of freeze and thaw.

INTRODUCTION

Regular analyses of CO_2 in the atmosphere at Barrow, Alaska, and farther north, began in the early 1960's (Bolin and Keeling, 1963; Kelley, 1969 and 1973). Bolin and Keeling (1963) have shown extreme differences between the two poles with respect to atmospheric CO_2 concentrations. The South Pole shows minimal annual fluctuations (~ 1 ppm), the intertropical convergence zone shows a fairly persistent intermediate high, and the arctic atmospheric CO_2 varies (~ 12 ppm) from a worldwide high in winter to a worldwide low in the summer. Both poles, however, reflect similar long term trends in the gradual annual increase of CO_2 in the atmosphere of ~ 1 ppm (Keeling *et al.*, 1976). Our low altitude (<4000 m) aircraft data refine some of the implications to be found in the earlier high altitude (>5500 m) arctic data of Bolin and Keeling (1963).

The atmospheric CO_2 level begins to rise at Barrow, Alaska in late August, months before it does at mid-latitudes (late October) and reaches a worldwide high (for clean backgrounds) of ca. 340 ppm in late May, months after northern hemispheric anthropogenic space heating has ceased, and lower latitude photosynthesis has recommenced. Furthermore, the late spring high is a resurgence rather than a continuous climb to that level, and the high levels persist a few hundred km offshore for 1-2 weeks as compared to Barrow (Kelley, 1973 and this work). Our estimates of the arctic source-sink strengths for CO_2 , and for the role that annual sea ice plays in the winter-summer mixing ratio of atmospheric CO_2 have been published elsewhere (Gosink and Kelley, 1979a, b). This article deals with the results of our low altitude aircraft atmospheric CO_2 program, and shows the intensity of regional sources and sinks for CO_2 on the lower troposphere.

EXPERIMENTAL METHODS

The gas chromatographic procedure, standards and accuracy have been published elsewhere (Gosink and Kelley, 1979a). The sample collection procedures are described below.

A Naval Arctic Research Laboratory Twin Otter aircraft was usually used to collect air samples. Air was conducted to a 250 ml sampling flask via a small viton diapham air pump in the non-pressurized cabin at a rate of about 4-5 l/min. The air intake tubing (Teflon) was located on a strut well ahead of the engines. A C117 aircraft was also occasionally used. The tubing was placed in one of the clean air scoops mounted above the fuselage forward of the engines. Sampling flight plans were established to fly 150 to 1000 km north of Barrow, Alaska. Samples were periodically collected at approximately 100 m altitude outbound. At the farthest point, a vertical profile was made from 40 m to 4500 m altitude. Samples taken inbound were made at 3200 m to a point usually about 80 km inland. Another set of samples was taken to establish a vertical profile over land.

Care was taken to flush the short section of glass tubing leading to the stopcock before the stopcock to the highly evacuated sample bulb was opened. After 1.5-2 minutes of flushing, the bulb was slightly pressurized before the stopcock was closed.

Some air samples were collected and held briefly under slight positive pressure in Teflon and glass (10 ml) gas light syringes. It was necessary to employ oversize O-rings under the teflon plunger in order to achieve a gas tight fit at low temperatures. Analyses were completed within 24 hours; usually within 1 to 6 hours. Standards held in these syringes were

stable for 24-72 hours, depending on the particular syringe in question. Slightly pressurized gas sample bottle samples were stable for several weeks.

AIRCRAFT OVERFLIGHTS OF THE ARCTIC ICE AND TUNDRA

For the sake of brevity we have selected Figures 1 a-d and Figures 1 e,f from 7 of our 17 flights, to show horizontal and vertical profiles respectively of atmospheric carbon dioxide overland, seasonal ice from late spring to late summer when the changes are most pronounced. Other data show little horizontal and vertical change. A strict minority of our data point to opposite trends. The area sampled was always within a few hundred km from Point Barrow, Alaska. There was a strong enrichment of CO_2 over the sea ice, and a noticeable depletion only 80 km inland on 26 June 1977 (Fig. 1a). The sea ice was nearly continuous and had only begun to melt about 150 km north of Point Barrow at that time. Thus, offshore CO_2 evolution would have been high due to optimal opening of brine channels. The tundra at that time was free of snow and ice, and was biologically active i.e., soil respiration was going on. A few weeks later, 7 July 1977, there was only a suggested trend in enrichment over the ocean portion of the north-south transect. The sea ice around Point Barrow was breaking up and melting out to 300 km by that time, thus low PCO_2 surface waters may have influenced the local lower atmosphere at that time. The data for 20 July 1977 shows essentially constant oceanic atmosphere concentrations of CO_2 out to nearly 1000 km north of Point Barrow. It is important to note that the 20 July 1977 flight was at 2 km altitude, whereas the previous two were conducted at 30 m over the ice. There was, however, evidence for significant (10 ppm) enrichment at low altitudes on 18 July for a flight

300 km east of Point Barrow. That flight had nearshore altitudes over melting sea ice of *ca.* 150 m dropping to 15 m 100 km offshore over continuous ice which was beginning to melt.

The data shown in Figure 16 is for the same time period as Figure 1a, but a year later when the ice had already broken up several weeks earlier. The data from these flights show essentially constant low level atmospheric concentration of CO_2 from inland 90 km south of Point Barrow to 300 km offshore to the north. The only exception was the far inland early data of 27 June 1978. There was a sharp depression in atmospheric CO_2 130 km inland, presumably due to the uptake of CO_2 by the vegetation. The higher values 90 km inland may represent a seasonal latitude change when the surface was still thawing, and soil respiration was dominant. Similar data of slightly depressed CO_2 values near the mountains and of higher level of CO_2 further north over the tundra, have been observed in the past at surface monitoring sites (Kelley, 1973).

In early June of 1979, the sea ice and tundra were only beginning to thaw within 100 km of Point Barrow. The CO_2 partial pressure was essentially constant at 340-341 ppm to 850 km north of Point Barrow, and only dropped 2-3 ppm, 200 km inland. Carbon monoxide at that time showed a more dramatic change and has been reported elsewhere (Gosink and Kelley, 1979c).

Figure 1c shows the data from flight transect during late summer (8-9 September 1978). Freezing had set in so that the intense biological activity in the tundra had greatly diminished, yet the ground had not frozen hard and could outgas without biological fixation of the CO_2 (Coyne and Kelley, 1971). The oceans were nearly clear of all ice out to about 200 km, and skim ice was showing in the many leads in the pack ice. Low PCO_2 water was still at

the surface. This is in contrast to the 27 June data (Fig. 1b) when biological activity was uniformly high. The far inland atmospheric concentrations of CO_2 in this case were high and variable, and decreased northward to the coast where the 150-200 km of open low PCO_2 water appeared to influence the lower troposphere. Our aircraft sample data near Point Barrow are in general agreement with the NOAA-GMCC recorded values at Barrow for the 2 days prior to and during the flight as shown by the small bar in the figure. The surface winds were from a clean air northern (oceanic) sector. Winds aloft near Point Barrow usually have a westerly origin when the surface winds are from the north, and thus would have been influenced by the low PCO_2 open waters of the Chukchi and northern Bering Seas. The air from the pack ice region is clearly enriched in CO_2 near the surface as shown in Figures 1d and 1e.

Figure 1d presents data for a flight transect a few weeks later after the tundra had frozen (30 September 1978). There had been almost continuous high winds and wave activity from the northeast and northwest. The surface sea water PCO_2 level remained surprisingly low at about 270 ppm 20 km offshore. The lower atmosphere appears to be well mixed lower. There was however, a definite but small (2-3 ppm) trend for enrichment 300 km offshore for the air at 3200 m which suggest possible enrichment by either new sea ice or high PCO_2 surface waters very deep in the pack. Annual sea ice was forming in the leads in the pack ice, which was still 150 km offshore of the vicinity of Point Barrow. The offshore vertical gradient for the same flight is shown in Figure 1f.

On five occasions, both north and south of Point Barrow, vertical profiles showed the layered presence of higher (6-10 ppm) CO_2 near 1 km altitude. Occasionally, enrichment at 3 km was evident too. Our tentative interpretation is that they are real since they are well within the limit of our

analytical error. A complementary study on aerosols (G. Shaw, University of Alaska, personal communication), on one such flight showed that there were increases in aerosols at those same levels. These data suggest boundary layer entrapment. Ozone, incidentally, displayed a minimum in those CO_2 maximum layers. On 16 January 1978, a low CO_2 concentration rather than a CO_2 maximum was evident at 600 meters. The ozone concentration in that CO_2 minimum layer was reversed in that it displayed a maximum.

The winter profiles were variable for the month of January 1978. There was generally a small trend for enrichment of CO_2 near the surface, and the air at altitude over the sea ice was more highly enriched compared to the over land profile.

Figures 1e and 1f are vertical profiles of CO_2 and temperature ca. 300 km offshore over pack and newly forming sea ice, 8 and 30 September 1978. Horizontal profiles for these same sites were discussed in connection with Figures 1c and 1d. The high offshore surface values for 8 September 1978 (Fig. 1e) are believed due to the relatively calm freezing weather, the formation of new sea ice, or possibly by high PCO_2 surface waters deeper in the pack. The low surface values and slightly elevated concentration offshore at altitude on 30 September 1978 (Fig. 1c) on the other hand, are interpreted to reflect the persistent turbulent mixing of the previous 3 weeks, and the influence of the low surface PCO_2 ocean water south of there.

By 8 November 1978, the annual sea ice had reformed. There was high PCO_2 water (341 ppm) under the ice and there was a definite enrichment of CO_2 in the air above the sea ice 180 km north of Barrow at that time. The air near (30 m) the surface 180 km north of Barrow had ca. 340 ppm CO_2 , 80 km north it was 332 ppm at Barrow it was 327 ppm (~328 ppm according to the NOAA data).

SUMMARY AND CONCLUSIONS

Low altitude aircraft sampling for atmospheric CO_2 shows how intense ground level sources and sinks can, on occasion, modify the observations made on a fixed ground level station (e.g. Fig. 1c). Layering effects are also seen on occasion as opposed to continuous gradients. The most important fact is that the Arctic Ocean shows itself to be a significant source of CO_2 in the winter and sink in the summer, which is further substantiated both by high altitude flights (Bolin and Keeling, 1963) and the low altitude data presented here. Therefore, future atmospheric models will have to account for the natural sources and sink of CO_2 in the Arctic (Gosink and Kelley, 1979a) and not to consider them as essentially inert regions.

REFERENCES

Bolin, B. and C. D. Keeling. 1963. Large-scale atmospheric mixing as deduced from seasonal and meridional variations of carbon dioxide. *J. Geophys. Res.* 68:3899-3920.

Coyne, P. I. and J. J. Kelley. 1971. Release of carbon dioxide from the frozen soil to the arctic atmosphere. *Nature* 227:407-408.

Gosink, T. A. and J. J. Kelley. 1979a. Sea ice. A significant Arctic source and sink of carbon dioxide. Submitted to *J. Geophys. Res.*

Gosink, T. A. and J. J. Kelley. 1979b. Annual sea ice. An air-sea gas exchange moderator. Submitted to *J. Glaciol.*

Gosink, T. A. and J. J. Kelley. 1979c. Carbon monoxide from thawing arctic surfaces. Submitted to the *J. Geophys. Res.*

Keeling, C. D., R. B. Bacastow, A. E. Bainbridge, C. A. Ekdahl, Jr., P. R. Guenther, L. S. Waterma, J. F. S. Chin. 1976. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. *Tellus* 28:538.

Kelley, J. J. 1969. An analysis of carbon dioxide in the arctic atmosphere at Barrow, Alaska during 1961-1962, University of Washington, Dept. of Atmos. Sci. Scientific Report 3.

Kelley, J. J. 1973. Dynamics of the exchange of carbon dioxide in arctic and subarctic regions. Inst. Mar. Sci., Univ. of Alaska, Fairbanks, 111 pp.

FIGURE CAPTIONS

Figure 1a. Horizontal profiles of atmospheric CO₂ at low and high altitudes north and south of Point Barrow, Alaska, June-July 1977.

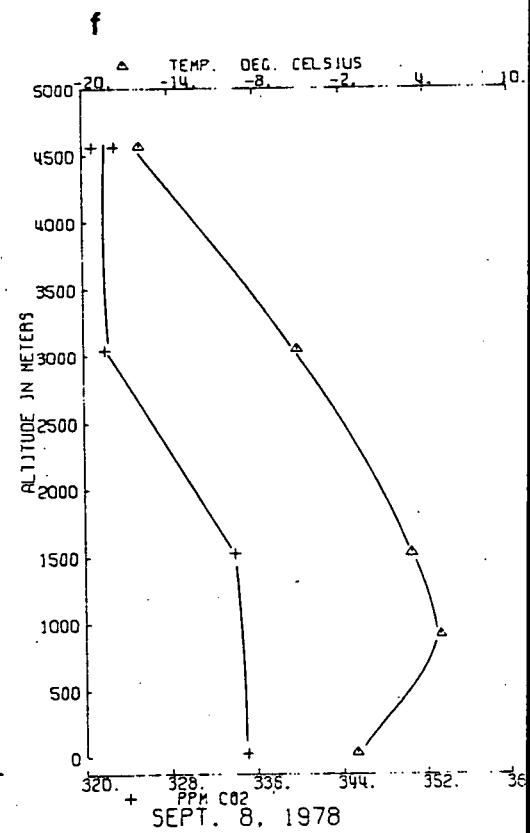
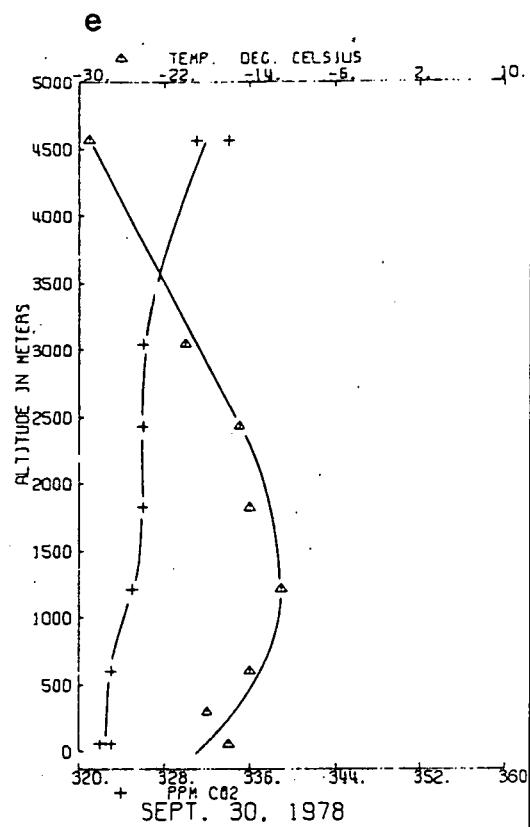
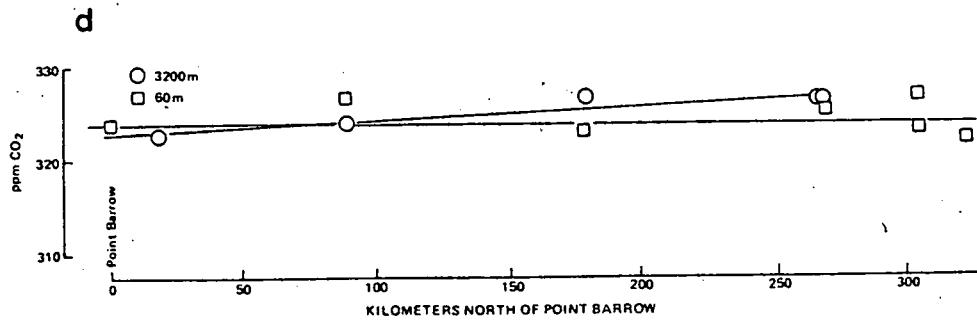
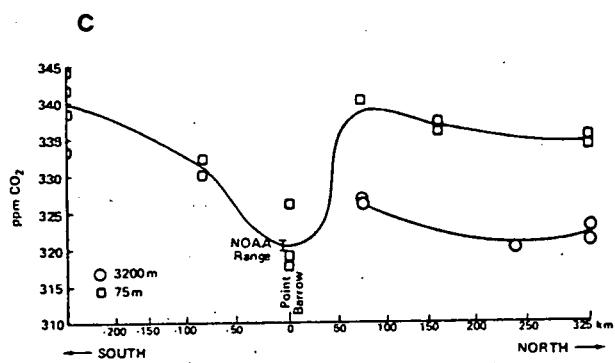
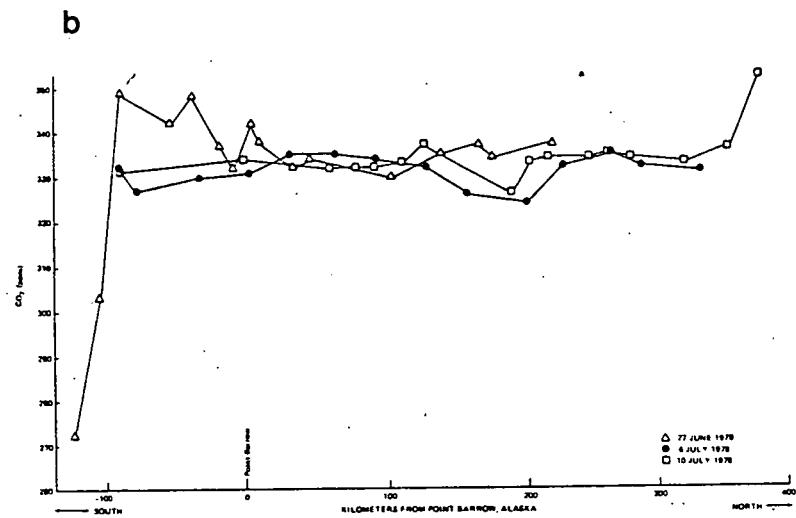
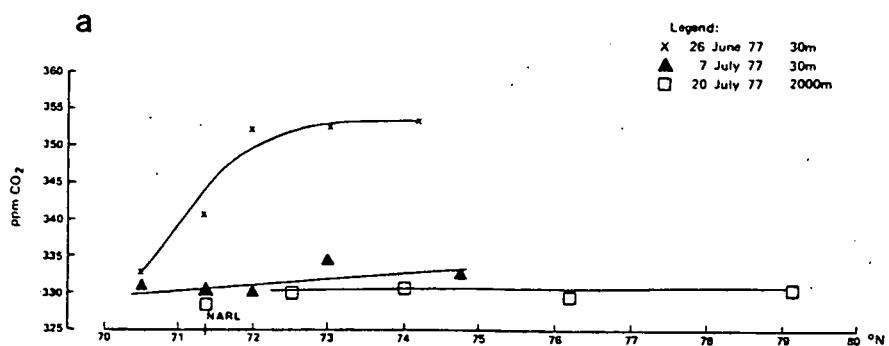






Figure 1b. Horizontal profile of atmospheric CO₂ at low altitude north and south of Point Barrow, Alaska, June-July 1978.

Figure 1c. High and low altitude horizontal profiles at atmospheric CO₂ north and south of Point Barrow, Alaska, 8-9 September 1978.

Figure 1d. High and low altitude horizontal profiles of atmospheric CO₂ north of Point Barrow, Alaska 30 September 1978.

Figure 1e. Vertical profile of CO₂ and temperature 320 km north of Point Barrow, Alaska, 8 September 1978.

Figure 1f. Vertical profile of CO₂ and temperature 260 km north of Point Barrow, Alaska, 30 September 1978.

APPENDIX 7

List of manuscripts (with titles) in preparation or partial completion.

1. Observations and calculations of PCO_2 in sea waters: A new approach.
2. An explanation for the extremely low partial pressure of carbon dioxide in surface sea waters of the Barents, Kara, and Greenland Seas.
3. Annual Sea Ic. An air-sea gas exchange moderator.

Prospectus to the U.S. Department of Energy Carbon Dioxide and Climate Division for support of a working group on the past, present, and future interactions with CO₂ induced climatic change among the atmosphere, land, sea, snow, and ice in polar regions

Principal Investigator:

Philip C. Miller
Systems Ecology Research Group
San Diego State University

John J. Kelley, Jr.
Institute of Marine Science
University of Alaska

DRAFT

We propose a small working group to synthesize existing information on the interactions among the atmosphere, land, sea, snow, and ice in order to evaluate the hypothesis that with CO_2 induced climatic change the polar regions will become stronger carbon sinks than they are currently and that they will function significantly to damp out the global rise in atmospheric CO_2 and temperature. As CO_2 contents and temperatures rise within the northern polar regions, terrestrial ecosystems will become stronger sinks, the polar ice cap will become a CO_2 source, and open water will become a stronger CO_2 sink. The net result will be a northern sink for CO_2 .

The hypothesis will be evaluated by reviewing and synthesizing the current data on the current carbon budgets, past carbon budgets, and future carbon budgets with CO_2 induced climatic change. To develop these carbon budgets, the polar region will be divided into geographic units consisting of ice, snow, land, and open sea. The region under consideration will be that dominated by the polar air mass or underlain by permanent or discontinuous permafrost, i.e., with an annual mean temperature of about -2°C . The working group will also develop a preliminary model of the three-dimension fluxes of CO_2 in the polar regions which can be used to project the current understanding into future conditions.

We propose to include 12-20 scientists actively involved in polar research or atmospheric CO_2 questions. Some possible participants are: G. Kukla, J. Kelley, P. C. Miller, T. A. Gosink, W. C. Oechel, W. O. Heal, L. C. Bliss, C. D. Keeling, Thomas Rosswall, John Andrews, Roger Barry, Kenneth Hare or Ritchie, P. Webber, V. Alexander, J. Hobbie, M. Miller, Joyce Harris, Brian Halter, Ken Rahn. The workshop should involve 5 days since the group has not worked together on this sort of problem and some

time must be spent on developing a common background for productive discussions. Prior to the workshop J. Kelley and P. Miller will develop the format for data from the workshop, which should expedite the processing of the data, the development of conclusions, and publication of the workshop report. The basic data will involve current areal extents of the geographic units, carbon contents, and carbon fluxes, and future areal extents, carbon contents, and carbon fluxes with CO_2 induced climatic change. Consideration of the transient responses must be given.

The proposed budget will be about \$17,000, including about \$10,000 for travel, \$5,000 for local arrangements, and \$2,000 for preparation and publication of the report. The workshop might best be held in Boulder, Colorado, to be centrally located and make use of the facilities of INSTAAR or NOAA. Alternatively, it could be held in San Diego.