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BOUNDARY LAYER PROFILE MEASUREMENTS I N  THE ELECTRODE WALL 
OF A COMRUSTION DRIVEN MHD CHANIiEL* 

R. K. James and C. H. Kruger 
High Tempera ture  Gasdynamics ~ a b o r a t d r ~  

S t a n f o r d  U n i v e r s i t y  

A b s t r a c t  

P r o f i l e s  of  t e m p e r a t u r e  and e l e c t r o n  number 
d e n s i t y  were measured i n  t h e  e l e c t r o d e  w a l l  bound- 
a r y  l a y e r  of  t h e  S t a n f o r d  M-2 MHD channe l  w i t h  
a p p l i e d  e l e c t r i c  f i e l d .  R e s u l t s  were  o b t a i n e d  
f o r  two f l ow  c o n d i t i o n s ,  and s e v e r a l  e l e c t r i c a l  
c o n d i t i o n s .  C a l c u l a t i o n s  of  p r o f i l e s  u s i n g  a  
boundary l a y e r  computer program were  made. Mea- 
s u r e d  t empe ra tu r e  p r o f i l e s  w i t h  no  c u r r e n t  showed 
some d i s c r e p a n c i e s  w i t h  t h e  t h e o r y ,  b u t  g e n e r a l l y  
t h e  agreement betwceil t heo ry  and exper iment  was 
adequate .  The J o u l e  h e a t i n g  of t h e  plasma caused  
a  s i g n i f i c a n t  i n c r e a s e  i n  t h e  measured tempera- 
t u r e  u r o f i l e s .  .Grind agreement rtilno ob t a ined  be- 
tween c a l c u l a t e d  and measured p r o f i l e s  t h a t  i n -  
c luded  t h e  e f f e c t  of  J o u l e  h e a t i n g .  Some e l e c -  
t r o n  number d e n s i t y  non-equi l ibr ium n e a r  t h e  w a l l  
was a p p a r e n t l y  obse rved ,  a l t hough  t h e  amount of  
non-equi l ibr ium was less t h a n  p r e d i c t e d .  At h i g h  
l o c a l  c u r r e n t  d e n s i t i e s ,  measurements show t h e  
e l e c t r o n  number d e n s i t y  p r o f i l e  t o  b e  r e l a t i v e l y  
f l a t  n e a r  t h e  w a l l  a t  c u r r e n t  d e n s i t i e s  where t h e  
anode v o l t a g e  d rop  a p p e a r s  t o  i n d i c a t e  t h a t  a  cu r -  
r e n t  c o n s t r i c t i o n  i s  o c c u r r i n g .  

I n t r o d u c t i o n  

The a c c u r a t e  p r e d i c t i o n  of boundary l a y e r  l o s s  
mechanisms such  a s  e l e c t r o d e  v o l t a g e  d r o p  and 
w u l l  l icar  t r a n s f e r  is 1iiyo~'tant to the d e s i g n  of 
MHD g e n e r a t o r s .  E f f e c t s  such  a s  v a r i a b l e  proper -  
t i e s ,  w a l l  roughness ,  t u r b u l e n c e ,  non-equi l ibr ium,  
and e l e c t r i c a l  i n t e r a c t i o n s  p r e s e n t  model ing  
d i f f i c u l t i e s  which r e q u i r e  t h a t  e x p e r i m e n t a l  
v e r i f i c a t i o n  be -done  of  t h e  t h e o r i e s  t h a t  a t t e m p t  
t o  p r e d i c t  t h e  boundary l a y e r  t r a n s p o r t .  Mea- 
surements  of  t h e  a c t u a l  boundary l a y e r  p r o f i l e s  
a r e  p a r t i c u l a r l y  i m p o r t a n t  i n  v e r i f y i n g  t h e  de- 
t a i l s  of  t h e  boundary l a y e r  models.  

T h i s  is a n  e x p e r i m e n t a l  i n v e s t i g a t i o n  of  t h r e e  
e f f e c t s  t h a t  have  been p r e d i c t e d  t o  occu r  i n  MHD 
f l ows ,  and have  p o s s i b l y  impor t an t  consequences  
i n  t h e  p r e d i c t i o n  of w a l l  h e a t  t r a n s f e r  and e l e c -  
t r o d e  v o l t a g e  d rop .  These  e f f e c t s  a r e  1 )  e l e c t r o n  
non-equi l ibr ium n e a r  t h e  e l e c t r o d e  due t o  t h e  
e f f e c t  of  f i n i t e  r a t e  r e combina t i on  k i n e t i c s ,  2)  
J o u l e  h e a t i n g ,  and 3)  c u r r e n t  c o n s t r i c t i o n  a t  h i g h  
l o c a l  c u r r e n t  d e n s i t i e s .    ail^' p r e d i c t e d  t h a t  
e l e c t r o n  non-equi l ibr ium would occu r  i n  t h e  bound- 
a r y  l a y e r  of  an  MHD g e n e r a t o r ,  and made measure- 
ments  of  N e  i n  an  MHD g e n e r a t o r ,  b u t  d i d  n o t  ob- 
t a i n  d a t a  i n  r e g i o n s  of Ll~e boundary l a y e r  where 
non-equi l ibr ium was expec t ed .  J o u l e  h e a t i n g  h a s  
a l s o  been s t u d i e d  t h e o r e t i c a l l y  i n  MHD boundary 
l a y e r s ,  and is  p r e d i c t e d  t o  b e  impor t an t  i n  gener -  
a t o r s  w i t h  h i g h  H a l l  pa r ame te r s . 2  C u r r e n t  con- 
s t r i c t i o n s  i n  t h e  boundary l a y e r  have  been  pre-  
d i c t e d  by 0 1 i v e r 3  t o  occu r  under  c e r t a i n  condi -  
t i o n s  i n  MHD boundary l a y e r s .  Such c o n s t r i c t i o n s  
cou ld  l e a d  t o  h i g h  l o c a l  h e a t i n g  r a t e s  on t h e  
e l e c t r o d e  s u r f a c e ,  a s  w e l l  a s  have s i g n i f i c a n t  
e f f e c t s  o n . t h e  e l e c t r o d e  v o l t a g e  d rop .  

To i n v e s t i g a t e  t h e s e  e f f e c t s ,  expe r imen t s  were  
r u n  where e l e c t r o n  number d e n s i t y  p r o f i l e s ,  t e m -  
p e r a t u r e  p r o f i l e s ,  and e l e c t r o d e  v o l t a g e  d r o p s  
were  measured i n  t h e  e l e c t r o d e  w a l l  boundary l ay -  
er of  t h e  S t a n f o r d  M-2 MHD c h a n n e l  w i t h  a n  a p p l i e d  
e l e c t r i c  f i e l d .  P a r t i c u l a r  emphas is  was p l a c e d  
on measur ing  a s  c l o s e  t o  t h e  e l e c t r o d e  s u r f a c e  a s  
p o s s i b l e .  The f i n a l  measurements have a  s p a t i a l  
r e s o l u t i o n  of 0 .3  mm, w i t h  t h e  f i r s t  measured 
p o i n t  i n  t h e  boundary l a y e r  a t  t y p i c a l l y  0 .4  mm. 
Expe r imen ta l  c o n d i t i o n s  were chosen  where t h e  
e f f e c t s  of  i n t e r e s t  would b e  impor t an t  and acce s -  
s i b l e  t o  t h e  plasma d i a g n o s t i c s .  

The expe r imen t s  were r u n  i n  t h e  S t a n f o r d  M-2 
f a c i l i t y .  F i g u r e  1 shows a  d iagram of t h e  e x p e r i -  
men t a l  s e t u p .  Alcohol  seeded  w i t h  KOH t o  g i v e  a  
1% K c o n c e n t r a t i o n  i s  burned  w i t h  oxygen and 
n i t r o g e n  d i l u e n t .  The plasma p a s s e s  i n t o  a  
plenum where combustion i s  comple ted ,  t h e n  i n t o  
a run- in  s e c t i o n  and t h e  MHD channe l .  The MHD 
channe l  had  1 3  e l e c t r o d e  p a i r s .  The run- in  
s e c t i o n  was used b e f o r e  t h e  MHD channe l  t o  en- 
hance  boundary l a y e r  growth.  S p e c t r o s c o p i c  mea- 
surements  were made on t h e  l a s t  e l e c t r o d e ,  g i v i n g  
a  t o t a l  l e n g t h  f o r  boundary l a y e r  development of  
1 . 09  me te r s .  The channe l  had a  h e i g h t  of  10  cm 
and a  w i d t h  of  3 . 1  cm. O p t i c a l  a c c e s s  t o  t h e  
c h a n n e l  was p rov ided  by two 5 cm h i g h  by 2 cm 
wide open p o r t s  i n  t h e  s i d e w a l l  of  t h e  channe l .  
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Fig .  1. Expe r imen ta l  Appara tus  

\ 1 

Although t h e  boundary l a y e r  phenomena under  
i n v e s t i g a t i o n  i n  t h e s e  expe r imen t s  a r e  a f f e c t e d  
by t h e  p r e s e n c e  of t h e  magne t i c  f i e l d ,  t h e y  de- 
pend p r i n c i p a l l y  on t h e  l o c a l  c u r r e n t  d e n s i t y .  
As t h e  magnet g r e a t l y  compounds t h e  o p t i c a l  
a c c e s s  problems,  no  magnet ic  f i e l d  was used  i n  
t h e s e  expe r imen t s .  B a t t e r y  banks  p rov ided  power 
f o r  t h e  e l e c t r o d e s .  

PLENUM 

The expe r imen t s  c o n s i s t e d  of t h r e e  s e p a r a t e  
phase s .  I n  t h e  f i r s t  phase ,  t h e  emphas is  was on 
measur ing  t h e  d e g r e e  of  non-equi l ibr ium i n  t h e  
e l e c t r o n  number d e n s i t y  n e a r  t h e  w a l l .  E i g h t  
m inu t e  s c a n s  of  t h e  boundary l a y e r  were performed 
u s i n g  two d i f f e r e n t  s p e c t r a l  l i n e s  i n  t h e  e l e c -  
t r o n  number d e n s i t y  d i a g n o s t i c .  The t empe ra tu r e  
p r o f i l e  was measured,  and e l e c t r o d e  v o l t a g e  d r o p s  
were  measured a t  low c u r r e n t  d e n s i t y .  I n  t h e  
second phase ,  t h e  emphas is  was on t h e  e f f e c t  of  

r .. 
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Jou le  h e a t i n g  on t h e  tempera ture  p r o f i l e s .  A 
r e f e r e n c e  tempera ture  p r o f i l e  was measured, and 
then ano the r  p r o f i l e  measurement was performed 
whi le  t h e  c u r r e n t  was on. No c u r r e n t  was run  on 
t h e  l a s t  e l e c t r o d e  i n  o r d e r  t o  i n s u r e  t h a t  e l ec -  
t r o n  tempera ture  e l e v a t i o n  d i d  n o t  e x i s t  where 
t h e  measurements were be ing  taken,  a s  t h i s  can 
l ead  t o  d i f f i c u l t i e s  i n  i n t e r p r e t i n g  t h e  temper- 
a t u r e  d a t a .  The c u r r e n t  was chosen t o  be  h igh  
enough t o  cause  a  s i g n i f i c a n t  e f f e c t  on t h e  mea- 
su red  tempera ture  p r o f i l e .  E l e c t r o n  number den- 
s i t y  p r o f i l e s  were then measured w i t h  and wi thou t  
c u r r e n t .  I n  t h e  f i n a l  phase  of t h e  exper iments ,  
s i n g l e  e l e c t r o d e  p a i r s  were run  w i t h  a  h i g h  cur-  
r e n t  d e n s i t y ,  w h i l e  i n  one c a s e  v o l t a g e  d rops  
were measured, and i n  ano the r  t h e  e l e c t r o n  number 
d e n s i t y  p r o f i l e . .  This  f i n a l  phase examined t h e  
s t a b i l i t y  of t h e  boundary l a y e r  w i t h  a  h i g h  l o c a l  
c u r r e n t  d e n s i t y .  

D iagnos t i c s  

The s p e c t r o s c o p i c  d i a g n o s t i c s  used i n  t h e  
exper iments  c o n s i s t e d  of a  t empera tu re  measure- 
ment sys tem u s i n g  a  sodium l i n e  r e v e r s a l  method, 
and an e l e c t r o n  number d e n s i t y  measurement sys-  
tem us ing  an a b s o l u t e  i n t e n s i t y  measurement of 
h igh- ly ing energy s t a t e s  i n  t h e  potass ium atom. 
The d i a g n o s t i c s  a r e  s i m i l a r  i n  p r i n c i p l e  t o  t h o s e  
used by Da i ly  i n  r e f .  1, a l though  s i g n i f i c a n t  
t e c h n i c a l  improvements have been made. Improve- 
ments i n  t h e  o p t i c a l  hardware and a l ignment  pro- 
cedures  have inc reased  t h e  s p a t i a l  r e s o l u t i o n  
nea r  t h e  w a l l  i n  both  t h e  t empera tu re  and e l e c t r o n  
number d e n s i t y  measurements. A d i g i t a l  d a t a  ac- 
q u i s i t i o n  and s i g n a l  p roces s ing  sys tem h a s  s i g n i -  
f i c a n t l y  reduced t h e  n o i s e  i n  t h e  Ne measurement. 
These improvements a l l ow measurements t o  b e  made 
of N, ve ry  nea r  t h e  w a l l  where non-equi l ibr ium 
has  been p r e d i c t e d  t o  occur .  

The t empera tu re  d i a g n o s t i c  r e l i e s  on K i r c h o f f ' s  
law, which s t a t e s  t h a t  t h e  e m i s s i v i t y  and absorp- 
t i v i t y  of a  gas  a t  a  g iven wavelength a r e  equa l .  
The measurement must be  made i n  a  r eg ion  of t h e  
spect rum where t h e  o p t i c a l  dep th  of t h e  gas  is  
approximate ly  0 . 1  t o  1.0.  The s p e c t r a l  r eg ion  
very  n e a r  t h e  sodium D l i n e s  a t  5900 8 prov ides  a  
s u i t a b l e  o p t i c a l  depth  when t h e  plasma i s  seeded 
wi th  a  sma l l  amount of sodium. A gas  t empera tu re  
de t e rmina t ion  i s  made by o b t a i n i n g  f o u r  r a d i a t i o n  
i n t e n s i t y  s i g n a l s  from t h e  plasma. The f o u r  r e -  
qu i r ed  s i g n a l s  a r e  ob ta ined  by r eco rd ing  t h e  in- 
t e n s i t y  of r a d i a t i o n  from t h e  plasma wi th  and 
wi thou t  a  c a l i b r a t e d  lamp f i l amen t  focused i n  t h e  
plasma, a t  two d i f f e r e n t  o p t i c a l  dep ths .  The 
lamp on and o f f  c o n d i t i o n s  a r e  ob ta ined  by chop- 
p ing  t h e  lamp and u s i n g . a  s imple  d i g i t a l  process-  
i ng  scheme t o  demodulate t h e  s i g n a l  i n t o  t h e  two 
r equ i r ed  s i g n a l s .  Although i n  p r i n c i p l e  one of 
t h e  o p t i c a l  dep ths  could be  chosen t o  be  ze ro ,  
and thus  w i th  no gas  i n t e r a c t i o n  t h e  measurement 
could be  taken b e f o r e  t h e  exper iment ,  i n  p r a c t i c e  
sma l l  d r i f t  problems i n  t h e  l i g h t .  c o l l e c t i o n  sys-  
tem make i t  more a c c u r a t e  t o  o b t a i n  t h e  f o u r  
s i g n a l s  du r ing  t h e  experiment a s  c l o s e  t o g e t h e r  
i n  t ime a s  p r a c t i c a l .  The r e q u i r e d  v a r i a t i o n  i n  
o p t i c a l  dep th  i s  accomplished by va ry ing  t h e  wave- 
l eng th .  

To c a l c u l a t e  t h e  tempera ture ,  exp res s  t h e  f o u r  
PMT s i g n a l s  P i ,  Pg, P j ,  P4 i n  te rms of o p t i c a l  
dep ths  TA, TB,  lamp blackbody tempera ture  Tb, 
plasma tempera ture  Planck f u n c t i o n  BV, 
wavelengths A*, ABSTpkd  o p t i c s  c a l i b r a t i o n  
f a c t o r s  KA, Kg. 

P = K [ ( I  - e-TA) B 
1 A (lamp + emiss ion)  

p2 = K [ ( I  - e-TA) B (T ,AA)] (emiss ion on ly )  
A V P  

p3 = ~g [(I - e - T ~ )  B 
(lamp + emiss ion)  

+ e - T ~  Bv (Tb , XB) 1 

P4 = $ [ ( I  - e-'B) B  (T ,AB)] (emiss ion only)  
v  P  

These f o u r  equa t ions  p l u s  a  c a l i b r a t i o n  curve  
of P  v s .  X f o r  t h e  o p t i c a l  sys tem can be  so lved  
t o  y i e l d  t h e  5  unknowns KA, KR, T A ,  T R ,  and Tp, 
though t h e  exp res s ion  is  long  and r e q u i r e s  
i t e r a t i o n .  I f  XA is  ve ry  n e a r  ?B such t h a t  
KA = Kg and Bv(T,XA) = Bv(T,AB), t hen  a  s imp le  
s o l u t i o n  f o r  t h e  tempera ture  can be  d e r i v e d ,  
g i v i n g  

P  

where C  = hc/Xk = 24420 K f o r  X = 5890 8. 
Thi s  formula is  s i m i l a r  t o  t h a t  used by V a s i l ' e v a  
f o r  c o r e  t empera tu re  measurements i n  t h e  Sov ie t  
U-25 MHD f a c i l i t y . 4  Note t h a t  t h i s  equa t ion  in -  
vo lves  on ly  d i f f e r e n c e s  of s i g n a l s ,  s o  a  cons t an t  
DC b i a s  i n  t h e  s i g n a l  p roces s ing  e l e c t r o n i c s  can 
be  t o l e r a t e d  wi thou t  s a c r i f i c i n g  accuracy i n  t h e  
t empera tu re  de t e rmina t ion .  

The e l e c t r o n  number d e n s i t y  d i a g n o s t i c  r e l i e s  
on t h e  Saha equa t ion :  

where g: and a r e  t h e  i o n  and e x c i t e d  
s t a t e  degeneracie:t and ckh i s  t h e  energy d i f -  
f e r e n c e  between t h e  e x c i t e d  s t a t e  and t h e  i o n i -  
z a t i o n  l i m i t .  Th i s  equa t ion  r e l a t e s  t h e  e l e c t r o n  
number d e n s i t y  Ne t o  t h e  number d e n s i t y  Nk of 
e x c i t e d  s t a t e s  i n t h e p o t a s s i u m  atom. The number 
d e n s i t i e s  of t h e s e  e x c i t e d  s t a t e s  a r e  measured by 
performing an a b s o l u t e  i n t e n s i t y  measurement on 
r a d i a t i o n  emi t t ed  from upper t o  lower s t a t e  t r a n s -  
i t i o n s .  The lower s t a t e  i s  chosen t o  be  a  non- 
ground s t a t e  s o  a s  t o  minimize r e a b s o r p t i o n  of 
t h e  emi t t ed  r a d i a t i o n .  The upper s t a t e  is  chosen 
t o  b e  a s  c l o s e  t o  t h e  i o n i z a t i o n  l i m i t  of t h e  
potass ium atom a s  is p r a c t i c a l ,  a s  t h e  h igh- ly ing 
s t a t e s  o f  t h e  potass ium atom w i l l  be  i n  e q u i l i -  
brium w i t h  t h e  f r e e  e l e c t r o n s  even when a  deg ree  
of non-equi l ibr ium e x i s t s  between t h e  f r e e  e l e c -  
t r o n s  and t h e  potass ium ground s t a t e .  I n  t h e  
p r e s e n t  exper iments ,  6D-4P (5360 g), 7D-4P (5112 
2) and 8D-4P (4965 8) t r a n s i t i o n s  a r e  used.  The 
fo l lowing  equa t ion  r e l a t e s  t h e  popu la t ion  of t h e  
upper s t a t e  t o  t h e  measured a b s o l u t e  i n t e n s i t y  I 
i n  t h e  plasma: 

where L is t h e  p a t h  l e n g t h  of t h e  plasma. Th i s  
equa t ion  r e l i e s  on t h e  E i n s t e i n  c o e f f i c i e n t  AkL, 
a  fundamental  c o n s t a n t  of t h e  potass ium atom 
which i s  only  known t o  f 50% f o r  t h e  d e s i r e d  
t r a n s i t i o n s .  Th i s  l i m i t s  t h e  a b s o l u t e  accuracy 
of t h e  d i a g n o s t i c  t o  + 25%. Because of t h i s  
a b s o l u t e  accuracy l i m i t a t i o n ,  t h e  v a l u e s  of Ne 



presented i n  t h i s  paper have been co r rec t ed  by a  
f a c t o r  t o  make t h e  measured co re  Ne match t h e  
equ i l ib r ium Ne based on t h e  measured co re  temper- 
a t u r e .  The raw measured v a l u e s  a r e  t y p i c a l l y  
m u l t i p l i e d  by about 1.15 t o  y i e l d  t h e  f i n a l  Ne 
va lue .  

F igu re  2 shows a  diagram of  t h e  o p t i c a l  system. 
The same b a s i c  system i s  used f o r  bo th  t h e  temper- 
a t u r e  and e l e c t r o n  number d e n s i t y  measurements. 
A c a l i b r a t e d  tungs ten  s t r i p  lamp l o c a t e d  on one 
s i d e  of t h e  channel  is  imaged i n t o  t h e  plasma t o  
se rve  a s  a  c a l i b r a t i o n  source  f o r  bo th  t h e  tem- 
p e r a t u r e  and Ne measurements. The lamp r a d i a t i o n  
is  chopped t o  g ive ,  f o r  t h e  temperature  measure- 
ment, an  emiss ion only  and an emiss ion p l u s  t r a n s -  
miss ion s i g n a l ,  wh i l e  f o r  t h e  e l e c t r o n  number 
d e n s i t y  t h e  chopper provides  DC r e j e c t i o n  du r ing  
t h e  system c a l i b r a t i o n .  A  scanning mi r ro r  i s  
placed a t  t h e  f o c a l  p o i n t  of t h e  f i e l d  l e n s  t o  
a l low a  p a r a l l e l  scanning of  t h e  boundary l a y e r .  
The r eg ion  nea r  t h e  w a l l  is  scanned more s lowly 
than t h e  co re  r eg ions  t o  improve s i g n a l  q u a l i t y  
n e a r  t h e  w a l l .  The SPEX 0 .5  meter f o c a l  l e n g t h  
monochromator has  an  i n t e r n a l  s p e c t r a l  scanning 
mi r ro r ,  which i s  used dur ing  t h e  e l e c t r o n  number 
d e n s i t y  measurements t o  r e p e t i t i v e l y  scan a  re- 
g ion of about 5.0 g cen te red  on t h e  d e s i r e d  
s p e c t r a l  l i n e .  

TABLE 

Fig .  2 .  Boundary Layer Op t i c s  

An e s t i m a t i o n  procedure  was developed t o  re-  
cover t h e  weak s i g n a l s  t h a t  a r e  encountered i n  
the  e l e c t r o n  number d e n s i t y  measurements. The 
d e s i r e d  q u a n t i t y  is  t h e  i n t e g r a t e d  l i n e  i n t e n s i t y  
I ,  which is:  

v  +A 
O r  

The i n t e g r a t i o n  i s  performed about a  r eg ion  2A 
centered on t h e  l i n e  c e n t e r  vo, where A i s  
chosen t o  inc lude  only  t h e  l i n e  of i n t e r e s t  and 
not  ad jacen t  l i n e s .  The pho tomul t ip l i e r  s i g n a l  
has s i g n i f i c a n t  background n o i s e  due t o  continuum 
r a d i a t i o n  and c o l l e c t i o n  no i se .  I n  o rde r  t o  r e -  
duce t h e  e f f e c t  of t h i s  background n o i s e  t o  a  
minimum, i t  is  necessary  t o  keep t h e  s p e c t r a l  
bandpass of t h e  monochromator t o  a  minimum. This  

p rec ludes  ope ra t ing  t h e  monochromator such t h a t ,  
by i n c r e a s i n g  t h e  bandpass of t h e  monochromator, 
t h e  s l i t s  perform t h e  r equ i red  s p e c t r a l  i n t e g r a -  
t i o n ,  a s  t h i s  i n c r e a s e  i n  bandpass causes  a  pro- 
p o r t i o n a l  i n c r e a s e  i n  n o i s e ,  wh i l e  the  s i g n a l  
s t r e n g t h  remains cons tan t .  To overcome t h i s  pro- 
blem, t h e  monochromator was run wi th  narrow s l i t s  
and a  d i g i t a l  s i g n a l  p rocess ing  scheme was devel- 
oped t o  determine t h e  v a l u e  of t h e  l i n e  i n t e n s i t y .  
As, r e l a t i v e  t o  t h e  monochromator r e s o l u t i o n ,  t h e  
l i n e s  being observed a r e  narrow, t h e  observed 
shape of t h e  l i n e  i s  due p r i n c i p a l l y  t o  t h e  mono- 
chromator ins t rument  broadening, which remains 
cons tan t  throughout t h e  boundary l a y e r  scan.  I t  
is  p o s s i b l e  t o  t a k e  advantage of t h i s  f a c t  i n  a  
s i g n a l  p rocess ing  scheme. The observed l i n e  
shape is  expressed i n  a  u n i t y - i n t e g r a l  f u n c t i o n  
f (X) ,  which is  obta ined by averaging and normaliz- 
i ng  t h e  s p e c t r a l  d a t a  f o r  t h e  e n t i r e  boundary lay-  
e r .  The s i g n a l  P r ece ived  from t h e  P M  i s  
assumed t o  c o n s i s t  of y-dependent n o i s e  n  and 
l i n e  i n t e n s i t y  s: 

A t  a  given s p a t i a l  l o c a t i o n ,  N (approximately 
400) p o i n t s  of va ry ing  wavelength X i  a r e  ob- 
t a i n e d .  Using t h e s e  p o i n t s ,  t h e  l e a s t  squa res  
f i t  t o  n  and s i s  made, g iv ing :  

Th i s  scheme g ives  a  s i g n i f i c a n t  improvement i n  
s i g n a l  q u a l i t y  over o t h e r  schemes t h a t  have been 
used such a s  s t r a i g h t f o r w a r d  i n t e g r a t i o n  of the  
s p e c t r a l  d a t a  o r  u s ing  t h e  monochromator wi th  a  
wide e x i t  s l i t  t o  perform t h e  s p e c t r a l  i n t e g r a -  
t i o n .  

A  boundary l a y e r  c o r r e c t i o n  must be app l i ed  t o  
t h e  d a t a  t o  account f o r  t h e  e f f e c t  of t h e  s i d e w a l l  
boundary l a y e r s  on t h e  d i a g n o s t i c  meas! rements.  
The c o r r e c t i o n  procedure  fo l lows Daily* f o r  t h e  
temperature  p r o f i l e .  For t h e  Ne measurement, t h e  
fo l lowing  procedure  is  used. Using a  one-seventh 
power temperature  p r o f i l e ,  t h e  equ i l ib r ium e x c i t e d  
s t a t e  popu la t ion  Nk i s  c a l c u l a t e d .  A pa th  i n t e -  
g r a l  of t h e  c a l c u l a t e d  Nk p r o f i l e  i s  performed, 
and e l e c t r o n  number d e n s i t y  is c a l c u l a t e d  based on 
t h e  i n t e g r a t e d  and c o r e  Nk va lues .  The r a t i o  of 
t h e s e  two c a l c u l a t e d  e l e c t r o n  number d e n s i t i e s  i s  
then used t o  c o r r e c t  t h e  measured Ne t o  y i e l d  
t h e  co re  va lue .  

Boundary Layer Modeling 

C a l c u l a t i o n s  from a  modified v e r s i o n  of a  bound- 
a r y  l a y e r  program o r i g i n a l l y  developed by ~ a i . 1 ~ ~  
were used t o  i n t e r p r e t  t h e  exper imenta l  d a t a .  The 
fol lowing equa t ions  d e s c r i b e  t h e  boundary l a y e r  
model: 

Cont inui ty :  

Moment um: 
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Elect ron-Ion Continuity: ,  

where t h e  e l e c t r o n  and i o n  c o n t i n u i t y  equa t ions  
have been combined t o  e l i m i n a t e  t h e  e l e c t r i c  
f i e l d  and 3 is  t h e  ambipolar d i f f u s i o n  coef- 
f i c i e l t ,  Ce t h e  average e l e c t r o n  concen t ra t ion ,  
and H t h e  average t o t a l  en tha lpy .  These equa- 
t i o n s ,  p l u s  an  equa t ion  of s t a t e  and t h e  appro- 
p r i a t e  i n i t i a l  hnlindary c o n d i t i o n s ,  provide  a 
complete d e s c r i p t i o n  UP t h e  problem a s  consider-  
ed.  

The recombination coe t  t i c i e n t  f o r  Lllr, slec.. 
t r o n s  was obta ined from cur ry6 ,  who p resen ted  a 
recombination c o e f f i c i e n t  which was co r rec t ed  f o r  
use  i n  combustion gases :  

The source  term f o r  t h e  e l e c t r o n  i o n  c o n t i n u i t y  
equat ion becomes 

where t h e  s t a r  i n d i c a t e s  t h a t  t h e  equ i l ib r ium 
value  of N, l s  t n  he  used. 

A mixing l eng th  model f o r  t h e  tu rbu lence  f r o q  
t h e  STAN5 boundary l a y e r  program was used7. The 
roughness model suggested by Healzer ,  e t  a ~ . ~  
was added t o  t h e  STAN5 model. 

Resu l t s  and Discuss ion 

Figure  3 shows a p l o t  of a temperature  p r o f i l e ,  

Fig.  3. Experimental  and T h e o r e t i c a l  Temperature 
P r o f i l e s ,  N2/02 = 1.0 ,  u = 450 m / s .  

wi th  a corresponding c a l c u l a t e d  p r o f i l e ,  f o r  ze ro  
c u r r e n t  cond i t ions  wi th  N2/02 = 1.0 ,  and a mass 
flow of 0.181 kg l sec ,  g iv ing  a f r e e  s t ream ve loc i -  
t y  of 450 m/sec. The c a l c u l a t e d  p r o f i l e  u ses  
s t a n d a r d  va lues  of t h e  tu rbu lence  parameters ,  w i th  
a sand g r a i n  roughness of 2.0 mm. The match of 
theo ry  t o  measurement i s . g o o d ,  a l though d i sc rep -  
a n c i e s  a r e  observed. The c a l c u l a t e d  p r o f i l e  wi th  
roughness included provides  a b e t t e r  f i t  t o  the  
d a t a  than  one wi thout  roughness ,  p a r t i c u l a r l y  f o r  
t h e  p o i n t s  very  n e a r  t h e  w a l l ,  a s  t h e  s l o p e  of t h e  
p red ic t ed  p r o f i l e  wi thout  roughness is  too g r e a t  
nea r  t h e  wa l l .  The sandgra in  roughness va lue  used 
i n  t h e  c a l c u l a t i o n  was s e l e c t e d  t o  g ive  t h e  b e s t  
f i t  t o  t h e  d a t a ,  however t h e  va lue  used seems t o  
be  excess ive ly  l a r g e .  sonjug made measurements of 
f r i c t i o n  f a c t o r s  i n  a modified v e r s i o n  of t h e  
Stanford  M-2 channel,  and r epor t ed  t h a t  t h e  mea- 
su red  f r i c t i o n  f a c t o r s  matched f r i c t i o n  f a c t o r  
c o r r e l a t i o n s  f o r  a roughness s i z e  of about 0 . 1  mm. 
The r l e c t r o d c  w a l l  observed i n  t h e  p resen t  exper i -  
ment should have a l a r g e r  roug l~ness  than t h e  b r i c k  
w a l l s  used by Sonju,  b u t  a roughness of 0 .5  mm 
cppms more r easonab le  than  t h e  2 .0  mm roughness 
which seems t o  f i t  t h e  d a t a  b e t t e r .  ~ i l i l~ '  alul 
 axw well^ have suggested t h a t  r e c i r c u l a t i o n  e f f e c t s  
may be  important  i n  MHD channel  f lows,  and s o  a 
r e c i r c u l a t i o n  model might improve t h e  match of 
d a t a  t o  theo ry .  Another p o s s i b l e  source  of t h e  
d i s c r e p a n c i e s  is t h e  e f f e c t  of t h e  h o t  upstream 
b r i c k ,  which could g ive  r i s e  t o  a v a r i a t i o n  i n  
t h e  temperature  p r o f i l e  very  near  t h e  w a l l  which ' 

is  no t  adequate ly  modeled by t h e  p resen t  temper- 
a t u r e  boundary cond i t ion ,  which averages  t h e  w a l l  
parameters  over  t h e  b r i c k  and e l e c t r o d e  s u r f a c e s .  
Fu r the r  work is planned t o  determine t h e  source  of 
t h e  d i s c r e p a n c i e s  noted between d a t a  and theory.  

Figure  4 i s  a p l o t  of temperature  p r o f i l e s  wi th  
N2/02 a 0.5 ,  and a mass f l .nw of 0.136 k g l s e c ,  
g i v i n g  a f r e e  s t ream v e l o c i t y  of about 350 m / s .  
The run w i t h  c u r r e n t  had an average c u r r e n t  den- 
s i t y  of 1.54 amps/cm2 over t h e  45.7 cm powered 
l e n g t h  of t h e  channel .  These p r o f i l e s  demonstra te  
t h e  e f f e c t  of J o u l e  h e a t i n g  on t h e  temperature  

Fig.  4. Experimental and T h e o r e t i c a l  Temperature 
P r o f i l e s  With and Without Current ,  
N2/02 = 0.5 ,  u = 350 m / s .  



p r o f i l e .  The s o l i d  l i n e s  show c a l c u l a t i o n s  of 
r.he p r o f i l e s ,  11s in8 t h e  ro1.18hn~ss  parameter  d i s -  
cussed above. The p r o f i l e  w i th  no c u r r e n t  shows 
sma l l  d i s c r e p a n c i e s  s i m i l a r  t o  t h o s e  i n  t h e  pre- 
v i o u s l y  d i scussed  p r o f i l e .  The e f f e c t  of t h e  
J o u l e  h e a t i n g  on t h e  tempera ture  p r o f i l e  is pre- 
d i c t e d  v e r y  w e l l  by t h e  t heo ry .  F igu re  5  shows 
t h e  c a l c u l a t e d  S tan ton  number f o r  t h e  runs  of 
Figure  4. A t  t h e  beg inn ing  of t h e  e l e c t r o d e  
s e c t i o n ,  S t  jumps upward due t o  t h e  lower temper- 
a t u r e  of t h e  e l e c t r o d e s  r e l a t i v e  t o  t h e  upstream 
b r i c k s .  The J o u l e  h e a t i n g  causes  a  15% i n c r e a s e  
i n  S t an ton  number a t  t h e  end of t h e  channel .  I n  
a  f u l l  s c a l e  g e n e r a t o r ,  t h e  e f f e c t  of J o u l e  hea t -  
i n g  would be  decreased by t h e  h i g h e r  v e l o c i t i e s  
and h i g h e r  w a l l  t empera tu re s ,  b u t  i nc reased  a t  
h igh H a l l  parameters  by t h e  r e s u l t i n g  c u r r e n t  
concen t r a t ions .  

WITH CURRENT, 
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Fig.  5 .  ~ a l c u i a t e d  E f f e c t  of J o u l e  Heat ing  on 
S tan ton  Number, N2/02 = 0 . 5 ,  u  = 350 m l s .  

F igure  6  is  a  p l o t  of measured e l e c t r o n  number 
d e n s i t y  a t  ze ro  c u r r e n t  a long w i t h  t h e  e q u i l i b -  
rium e l e c t r o n  number d e n s i t y  based on t h e  measur- 
ed tempera ture ,  and c a l c u l a t e d  equ i l i b r ium and 
non-equilibrium p r o f i l e s  u s ing  a  2.0 mm rough- 
nes s  s i z e .  The c o n d i t i o n s  o f  t h i s  run  a r e  iden- 
t i c a l  t o  t h o s e  of F igu re  3.  The comparison of 
measurement and theo ry  is  good, bu t  s i n c e  away 
from t h e  w a l l  t h e  e l e c t r o n  number d e n s i t y  is  ex- 
pected  t o  b e  e q u a l  t o  t h e  e q u i l i b r i u m  number 
d e n s i t y ,  d i s c r e p a n c i e s  i n  t h i s  f i g u r e  a r e  a  re- .  
s u l t  of t h e  p r e v i o u s l y  d i scussed  d i s c r e p a n c i e s  
between t h e  c a l c u l a t e d  and observed tempera ture  
p r o f i l e s .  F igu re  7  i s  an expansion of F igu re  6  
very  n e a r  t h e  w a l l .  Some non-equi l ibr ium seems 
t o  appear  ve ry  nea r  t h e  w a l l ,  b u t  t h e  non- 
equ i l i b r ium i s  n o t  a s  much a s  was expected  from 
t h e  c a l c u l a t i o n .  One p o s s i b l e  exp lana t ion  f o r  
t h e  d i sc repancy  is t h a t  t h e  e l e c t r o n  recombina- 
t i o n  c o e f f i c i e n t  used i n  t h e  c a l c u l a t i o n  under- 
p r e d i c t e d  t h e  recombinat ion  r a t e ,  t hus  g i v i n g  
r i s e  t o  a  t o o  h igh  p r e d i c t e d  non-equi l ibr ium 
near  t h e  w a l l .  Such an  e r r o r  i n  t h e  recombina- 
t i o n  r a t e  could have impor tant  e f f e c t s  on t h e  
c a l c u l a t e d  e l e c t r o d e  v o l t a g e  drop,  a s  t h e  plasma 
r e s i s t a n c e  based on t h e  c a l c u l a t e d  non-equi l i -  
hrium p r o f i l e  was 60% of t h e  r e s i s t a n c e  based 
on t h e  e q u i l i b r i u m  p r o f i l e .  A s  t h e s e  exper iments  
d i d  n o t  show ve ry  good agreement of measured 
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Fig.  6 .  Exper imenta l  and T h e o r e t i c a l  Ne P r o f i l e s ,  
~ ~ 1 0 ~  = 1 .0 ,  u  = 450 m l s .  
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Fig.  7. Exper imenta l  and T h e o r e t i c a l  Ne P r o f i l e s ,  
Near t h e  Wall ,  N2/02 = 1 .0 ,  u  = 450 m / s .  

w i t h  p r e d i c t e d  non-equi l ibr ium,  f u r t h e r  work is  
i n d i c a t e d  t o  e s t a b l i s h  t h e  sou rce  of t h e  d i s -  
c r epanc ie s .  

I n  t h e  f i n a l  phase of t h e  exper iments ,  h igh  
c u r r e n t  d e n s i t i e s  were run  i n  an  a t t empt  t o  simu- 
l a t e  t h e  plasma c o n d i t i o n s  w i t h  a  l o c a l  c u r r e n t  
c o n c e n t r a t i o n  due t o  t h e  H a l l  e f f e c t .  Local  
c u r r e n t  d e n s i t i e s  up t o  14 amps/cm2 were ob ta ined  
by app ly ing  720 v o l t s  of b a t t e r i e s  t o  t h e  e l ec -  
t r o d e  c i r c u i t .  Th i s  phase of t h e  exper iments  was 



,I  pre l imina ry  s t u d y  t o  determine  i f  c u r r e n t  con- 
s t r i c t i o n s  would occur  a t  h igh c u r r e n t  d e n s i t i e s ,  
,lnd t o  de termine  t h e  v a l u e  u1 Li~e s p e c t r o s c o p i c  
d i a g n o s t i c s  i n  ana lyz ing  such behavior .  These 
r e s u l t s  a r e  p re sen ted  a s  e m p i r i c a l  obse rva t ions  
wi th  no a t t empt  a t  t h e o r e t i c a l  exp lana t ions .  
Movies o f  t h e  e l e c t r o d e  showed a r c i n g  through 
t h e  edges  of t h e  upstream and downstream i n s u l a -  
t o r s  a s  t h e  c u r r e n t  s t r e a m l i n e s  sp read  ou t  due  t o  
t h e  l a c k  of guard e l e c t r o d e s ,  b u t  no  evidence  of 
s h o r t i n g  t o  t h e  channel  w a l l s  o r  t h e  a d j a c e n t  
e l e c t r o d e s  was observed rpon channel  d isassembly .  
The movies a l s o  d i d  n o t  show evidence  of a r c  s p o t s  
on t h e  e l e c t r o d e  s u r f a c e ,  a l t hough  w i t h  a r c s  
occu r r ing  through t h e  i n s u l a t o r s ,  i t  was d i f f i -  
c u l t  t o  de termine  t h e  e x i s t e n c e  of a r c i n g  i n t o  
t h e  plasma from t h e  movies. Vol tage  drop measure- 
ments between t h e  anode and a  v o l t a g e  probe l o c a t -  
ed 7.5 mm from t h e  e l e c t r o d e  s u r f a c e  a r e  shown i n  
Figure  8. These r e s u l t s  show t h a t  above a  c e r t a i n  
c u r r e n t  d e n s i t y ,  t h e  v o l t a g e  drop beg ins  t o  f a l l ,  
sugges t ing  t h a t  a  t r a n s i t i o n  from d i f f u s e  t o  con- 
s t r i c t e d  c u r r e n t  t r a n s f e r  occurred .  E l e c t r o n  
number d e n s i t y  d a t a  (u s ing  t h e  6D-4P t r a n s i t i o n )  
from aaotlzer E ~ ~ L L L u J ~  Iur Lliree runs  ar d l f f e f -  
e n t  c u r r e n t  d e n s i t i e s  is  shown i n  F igu re  9 .  The 
f i e l d  of view of t h e  Ne d i a g n o s t i c  was inc reased  
f o r  t h i s  run  such t h a t  approximate ly  t h e  e n t i r e  
e l e c t r o d e  s u r f a c e  was be ing  observed by t h e  
d i a g n o s t i c .  The tempera ture  was n o t  measured i n  
t h e s e  runs ,  s o  t h e  tempera ture  r equ i r ed  i n  t h e  
e l e c t r o n  number d e n s i t y  d a t a  r e d u c t i o n  was ob ta in -  
ed by assuming t h a t  Nk was i n  e q u i l i b r i u m  w i t h  
t he  ground s t a t e  a t  t h e  e l e c t r n n  tempera ture .  
The e l e c t r o n  number d e n s i t y  i n  t h e  c o o l e r  r e g i o n s  
of t h e  boundary l a y e r  beg ins  t o  r i s e  s u b s t a n t i a l l y  
near  t h e  same c u r r e n t  d e n s i t y  where t h e  v o l t a g e  
drop began t o  f a l l  on t h e  o t h e r  e l e c t r o d e .  A t  
h ighe r  c u r r e n t  d e n s i t i e s ,  t h e  e l e c t r o n  number den- 
s i t y  p r o f i l e  i n  t h e  r eg ion  a c c e s a i b l e  t o  t h e  d i -  
a g n o s t i c  appea r s  t o  be  a lmost  f l a t .  De te r io ra -  
t i o n  of t h e  w a l l  had decreased s p a t i a l  r e s o l u t i o n  
such t h a t  only  p o i n t s  f a r t h e r  t han  2.0 nun from 
t h e  w a l l  could  be  observed. No evidence  of i n -  
t e n s e  a r c i n g  was s e e n  i n  t h e  r e g i o n s  viewed by 
t h e  e l e c t r o n  number d e n s i t y  d i a g n o s t i c ,  a s  a r c i n g  
would be  expected  t o  cause  a  d rama t i c  i n c r e a s e  i n  
e l e c t r o n  number d e n s i t y ,  and obse rva t ions  of t h e  
raw s p e c t r o s c o p i c  d a t a  show no evidence  of in-  
t e n s e  r a d i a t i o n  from an a r c  be ing  emi t t ed  from 
t h e  plasma. The p r i n c i p a l  conc lus ions  t h a t  can 
be drawn from t h i s  i n i t i a l  s t udy  of t r a n s v e r s e  
s t a b i l i t y  a r e  t h a t  t h e r e  is some evidence  from 
t h e  v o l t a g e  drop d a t a  of t r a n s i t l n n  t n  r n n s t r i c t -  
ed mode of c u r r e n t  t r a n s f e r  a t  s u f f i c i e n t l y  h igh  
c u r r e n t  d e n s i t i e s ,  and a t  t h e s e  c u r r e n t  d e n s i t i e s  
s u b s t a n t i a l  e l e v a t i o n  of Ne occurred  i n  t h e  
boundary l a y e r .  

Summary 
. . 

Measurements of e l e c t r o n  number d e n s i t y  and 
tempera ture  p r o f i l e s  were made on t h e  S t an fo rd  
M-2 MHD channel .  Temperature p r o f i l e s  w i th  no 
c u r r e n t  agreed wi th  c a l c u l a t i o n s  from a  boundary 
l a y e r  computer program, p a r t i c u l a r l y  i n  t h e  s l o p e  
of t h e  p r o f i l e  n e a r  t h e  wal1 ,only  when a  roughness 
c o r r e c t i o n  was inc luded  i n  t h e  c a l c u l a t i o n .  Mea- 
surements w i th  c u r r e n t  showed t h e  e f f e c t  of J o u l e  
h e a t i n g  on t h e  tempera ture  p r o f i l e s .  The theore-  
t i c a l  p r e d i c t i o n s  f o r  t h e  J o u l e  h e a t i n g  agreed 
w e l l  wi th  t h e  exper iment .  Measurements of e l ec -  
t r o n  number d e n s i t y  ve ry  n e a r  t h e  w a l l  d i d  n o t  
show a s  much non-equi l ibr ium a s  was expected  from 
c a l c u l a t i o n s .  A t  l o c a l  c u r r e n t  d e n s i t i e s  of 
ahout 10.0 amps/cm2, v o l t a g e  drop measurements 
sugges ted  t h a t  a t r a n s i t i o n  from d i f f u s e  t o  

Fig .  8. Vol tage  D i f f e r e n c e  Between Anode and 
Vol tage  Probe Located 7.5 mm from t h e  
Surface .  J based on e l e c t r o d e  dimen- 
s i o n .  

F ig .  9 .  Measured Ne a t  High Cur ren t  D e n s i t i e s .  . 

c o n s t r i c t e d  c u r r e n t  t r ans fe ;  occu r red .  E l e c t r o n  
number d e n s i t y  p r o f i l e s  a t  t h e s e  c u r r e n t  denst . .  
t i e s  were a lmost  f l a t .  

Acknowledgements 

The a u t h o r s  g r a t e f u l l y  acknowledge t h e  t echn i -  
c a l  a s s i s t a n c e  and guidance of M r .  Frank Levy and 
M r .  P h i l i p  Krug of t h e  High Temperature Gasdynam- 
i c s  Labora tory .  R. K.  James acknowledges suppor t  
from an NSF g radua te  f e l l owsh ip .  



Refe r ences  

1. Dai ly ,  J .  W . ,  C. H. Kruger,  S. A. S e l f ,  R. H. 
E u s t i s ,  "Boundary Layer  P r o f i l e  Measurements 
i n  a Combustlon Dr iven  Gene ra to r , "  S i x t h  
I n t e r n a t i o n a l  Conference  on Magnetohydrody- 
namic E l e c t r i c a l  Power Gene ra t i on ,  J une  1975,  
a l s o  AIAA J. 2, August 1976,  pp. 997-1005. 

2 .  Maxwell, C. D., D. M. Markham, S. T. Demetri-  
a d e s ,  and D. A. O l i v e r ,  "Coupled E l e c t r i c a l  ., 
and F l u i d  C a l c u l a t i o n s  i n  t h e  Cros s  P l a n e  i n  
L i n e a r  p D  Gene ra to r s , "  P roceed ings  of  t h e  ' . . 
1 6 t h  Symposium on Eng inee r i ng  Aspec t s  of  ?@ID, 
P i t t s b u r g h ,  Penn. ,  May, 1977. 

3. O l i v e r ,  D. A., "A C o n s t r i c t e d  D i scha rge  i n  
Magnetohydrodynamic Plasma," P roceed ings  of 
t h e  1 5 t h  Symposium on Eng inee r i ng  Aspec t s  of  
MHD, P h i l a d e l p h i a ,  Penn. ,  May 1976.  

4 .  Vas i l ' eva ,  I. A., V. V .  K i r i l l o v ,  I. A. 
Maksimov, G. P. Malyuzhonok, and B. B. 
Novasaduv, "Measuren~erit of a P l a s m a ' s  Temper- 
a t u r e  by a S p e c t r o s c o p i c  Method w i t h  Contin-  
uous Automatic D e t e c t i o n , "  High Tempera ture ,  
11, 4,  pp. 838-845, July-August ,  1973. - 

5.  D a i l y ,  J.  W.  and C. H. Kruger,  " E f f e c t  of  
Cold Boundary Laye r s  on ~ ~ e c t r o s c o ~ i c  Temper- 
a t u r e  Measurements i n  Combustion Gas Flows," 

AIAA 1 4 t h  Aerospace S c i e n c e s  Meet ing ,  P a p e r  
#76-134, Washington,  D.C., J a n u a r y  1976,  a l s o  
J. Quant.  S p e c t r o s .  R a d i a t .  T r a n s f e r  17, 1977,  
pp. 327-338. 

6. Curry ,  B. P . ,  " C o l l i s i o n a l  R a d i a t i v e  Recom- 
b i v a t i o n  i n  Hydrogen Plasmas  and i n  A l k a l i  
P lasmas ,"  Phys.  Rev. A, 1, 1970,  166-176, 

. and OCR P r o g r e s s  Repo r t ,  August 16-September , 

1 5 ,  1973,  STD Corp. A c t u a l  numer i ca l  v a l u e s  
u s e d i n . t h e  c a l c u l a t i o n s  were o b t a i n e d  from 
t h e  p r o g r e s s  r e p o r t .  ' 

7. Crawford,  M. E.  and  W. M. Kays,  "STAN5 - A 
Program f o r  Numer ica l  Computation of  Two- 
Dimens ional  I n t e r n a l I E x t e r n a l  Boundary Layer 
Flows," Repo r t  No. HMT-23, Mechanica l  Engi- 
n e e r i n g  Department,  S t a n f o r d  U n i v e r s i t y ,  
December 1975.  

8 .  Hea l ze r ,  J.  M . ,  R. J. Mof fa t ,  and W. M. Kays, 
"The T u r b u l e n t  Boundary Layer  on a Ro~igh ,  
Porous  P l a t e :  Expe r imen t a l  Heat  T r a n s f e r  
With Uniform Blowing," Repor t  HTM-18, Mech- 
a n i c a l  Eng inee r i ng  Depar tment ,  S t a n f o r d  
U n i v e r s i t y ,  May 1974.  

9 .  Sonju ,  0. K. and C. H. Kruger ,  "Experiments 
on Hartmann Channel  Flow i n  P lasmas ,"  Phys.  
F l u i d s  12, 12 (Dec. 1969).  




