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ABSTRACT

A gyrokinetic formalism using magnetic coordinates is used to derive self-consistent,
nonlinear Maxwell-Vlasov equations that are suitable for particle simulation studies of
finite-3 tokamak microturbulence and its associated anomalous transport. The use of mag-
netic coordinates is an important feature of this work as it introduces the toroidal geometry
naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the
use of the Action-variational Lie perturbation method of Cary and Littlejohn, and preserves
the Hamiltorian structure of the original Maxwell-Vlasov system. Previous nonlinear gy-
rokinetic set: of equations suitable for particle simulation analysis have considered either
electrostatic and shear-Alfvén perturbations in slab geometry, or electrostatic perturba-
tions in ‘oroidal geometry. In this present wck, fully electromagnetic perturbations in
toroidal geometry are considered.

DISCLAIMER

'I:hls report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
el_n_ploycs, makes any warranty, express or implicd, or assumes any legal lability or respor.si-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents tha its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Governmenl or any agency thereof. The views
anc! opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any zgency thereol.

- MR

o



I. INTRODUCTION

Particle simulation techniques based on nounlinear gyrokinetic equations have been re-
cently developed by Lee,'? and have proved to be quite useful for studying varions aspects
of drift-wave turbulence and its associated anomalous transport.®*

There are three different methods used to derive such nonlinear equations. The first
method, referred to as the Standard method, is exemplified by the work of Frieman and
Chen® (fully electromagnetic perturbations in general magaetic geometry). It consists of
explicitly gyro-averaging the Vlasov equation expressed in lowest-order guiding-center co-
ardinates and separating equilibrium and perturbed parts of the guiding-center distribution
function. One obtains a2 nonlinear gyrokinetic equation for the nonadiabatic part of the
perturbed distribution function. Unfortunately, this method involves rather complex alge-
braic manipulations, fails to provide a clear algorithm indicating how to proceed to higher
order, and provides equations that are not directly suitable for particle simulation analysis.
It nonetheless provides a basis upon which other methods can be judged.

The second (Hamiltonian) and third (Action-variational) methods regnire the use of Lie
perturbation techniques, particularly those developed by Littlzjohn in his work on guiding-
center theory.*® To obtain guiding-center equations of motion, one derives a guiding-center
Hamiltonian which has no gyro-angle dependence to any desired order. This provides us
with a transformation from physical-space coordinates (x, v) to guiding-center coordinates
(X, U, 4,¢), where X is the guiding-center position, I/ is the parallel velocity, p is the
adiabatic invariant (to any desired order) known as the magnetic moment, and { is the
gyro-angle.

The Hamiltonian Lie perturbaiion method involves the same procedure as the one out-
lined above. Under perturbation, the guiding-center Hamiltonian acquires new gyro-angle
dependence and, consequently, p is no longer invariant. We obtain gyro-center equations
of motion by deriving a gyro-center Hamiltonian which has no gyro-angle dependence to
any desired order. This provides us with a transformation from guiding-center coordinates
(X,U,1,() to gyro-center coordinates (X, U, ,{), where now /i is the adiabatic invari-
ant (to any desired order). This method is exemplified by the works of Dubin et al.?
(electrostatic perturbation in slab geometry), Yang and Choi'® and Hagan and Friemar!
(electrostatic perturbations in general geometry), and Hahm et al.'? (electrostatic and
shear-Alfvén perturbations in slab geometry). A discussion of the works contained in Refs.
5 and 9 to 11 is contained in Hahm et al.!?

The Action-variational Lie perturbation method represents a generalized form of the
Hamiltonian method, as it allows for more general transformations from guiding-center
phase space to gyro-center phase space. It recognizes the fact that the Lagrange and
Poisson brackets and the Hamiltonian can be perturbed simultaneously. We again obtain
gyro-center equations of motion by removing the gyro-angle dependence from the Pois-
son brackets and the Hamiltonian. New gyro-center coordinates are also produced. This



method was developed by Littlejohn'® and Cary and Littlejohn’ and is exemplified by the
work of Hahm!'® (electrostatic perturbation in general geometry).

Qur purpose in the present work is to use the Action-variational Lie perturbation
method to derive a set of nonlinear gyrokinetic Maxwell-Vlasov equations, which will de-
scribe fully electromagnetic perturbations in toroidal geometry. ‘The urperturbed system is
represented by an equilibrium tokamak configuration where the plasma pressure and current
profiles and magnetic field are related through the (equilibrium) pressure balance equation.
The use of magnetic coordinates will enable us to obtain a simple description for the drift
motion of gyro-centers, even in complex geometries such as the tokamak configuration.

Two small parameters readily appear in our analysis. The first parameter, ¢ < 1, is
the ratio of the ion gyroradius to the length scale associated with the equilibrium den-
sity nonuniformity and is used to define the so-called nonlinear gyrokinetic ordering, as
introduced by Frieman and Chen.® The second parameter, €5 < 1, is the ratio of the
ion gyroradius to the length scale associated with the equilibrium magnetic nonuniformity
and is used to define the tokamak ordering. Using a small inverse-aspect-ratio (¢p < 1)
tokamak ordering, we have eg = eey < e. We will derive nonlinear equations which contain
terms up to order ¢ and order ep, i.e., when we consider electromagnetic perturbations, .
we will treat the tokamak configuration as uniform ( on the ion gyroradius length scale).

Finally, once the transformations from physical-space to guiding-center coordinates and
guiding-center to gyro-center coordinates have been derived, it is possible to express the
density integrals contained in the set of Maxwell's equations in terms of the total gyro-
center distribution function and gyro-center coordinates. This procedure was used by Lee?
and Dubin et al.? (Poisson’s equation in slab geometry), Yang and Choi'® and Frhm'®
(Poisson’s equation in general geometry), and Hahm et al.!? (Poisson and parallel Amere
equations in slab geometry). We generalize this procedure to the full set of Maxwell’s
equations in general geometry. Using the same procedure, we also provide an energy
integral, useful for numerical simulation purposes. This then completes the derivation of
self-consistent, energy-conserving, nonlinear gyrokinetic Maxweil-Vlasov equations.

The remainder of this paper is organized as follows. In section II we describe briefly the
Action-variational Lie perturbation method and use it to develop our gyrokinetic formalism,
In section III we derive the gyrokinetic Hamiltonian and the gyrokinetic Vlasov equation. In
section IV we use our gyrokinetic formalism to derive the gyrokinetic Maxwell’s equations
and the expression for the gyrokinetic energy integral invariant. We present our conclusions
in section V and discuss possible applications of our work. In appendix A we present some
notation and terminology used in the theory of Lie transformation of one-forms and density
integrals. In Appendix B we present a modified version of Littlejohn's work on guiding-
center theory. In Appendix C we present the gyrokinetic and tokamak orderings used in
this work. Finally, in Appendix D we give the expressions for the Poisson brackets and for



the unperturbed equations of motion using magnetic coordinates.

II. LIE PERTURBATION THEORY

A. Action-variational Lie perturbation method

In his discussion of various aspects of noncanonical Hamiltonian perturbation theory,
Littlejohn'® pointed out that the action integral S = f Ldt, where L is the Lagrangian
function, provided a more general basis to perform Hamiltonian perturbation analysis.
More specifically, considering the Poincaré-Cartan fundamental one-form

-r:-'_Ldt:p-dq—Hdt

(where the latter expression is given in terms of the familiar canonical variables}, one
realizes'that the set of canonical transformations of H (leaving p - dq unchanged} can be
included in the more general set of noncanonical transformations of the one-form .

As an example, let us consider the problem of charged-particle motion in a uniform
magnetic field. In terms of the noncanonical variables (x, v), the one-form v hecomes

9= (A +v) -dx — Hydt,

where Hy = (v, We refer to this one-form as the phase-space Lagrangian. Considering
perturbations of the form A — A + 8A, and Hy — Hy + 8¢ , we notice that both the
Hamiltonian and symplectic structure (p-dq part of ) are perturbed. In addition, magnetic
perturbations (§A) appear explicitly in the expression for the perturbed one-form &y, a
distinct advantage of this method over the Hamiltonian Lie perturbation method.

In the problem of obtaining gyro-center equations of motion, one performs a sequence of
transformations {- - - T{T¢}, where the n'® transformation T} (¢ denotes the strength of the
perturbation) removes the gyro-angle dependence in the n'® order terms of the symplectic
structure and Hamiltonian. We refer the reader to Appendix A for further details on the
theory of transformation of one-forms, and to Refs. 13 and 14 for complete details on the
Action-variational Lie perturbation method.

B. Phase-space Lagrangian

We begin our perturbation analysis by transforming from physical phase space to
guiding-center phase space (we use the units in which e = m = ¢ = 1). The unperturbed
gyro-averaged phase-space Lagrangian was first derived by Littlejohn.” A modified version
of his work produces the expression

7=(A+pB R+ (- xB)B)]-dX +udt — GAAB +uB), (1)

where (X, g, ¢, () are the guiding-center coordinates with py = U/B and fields are eval-
uated at the guiding-center position X. This expression is correct to order eg, and the
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presence of the vector R causes this one-form to be gyro-gauge invariant. (For more details
sec Refs. 7 and 8 and Appendix B.) We refer the reader to Appendix D for the expression
of the Poisson brackets and unperturbed equations of motion using magnetic coordinates.

Consider now electromagnetic perturbations (§¢,5A) of the phase-space Lagrangian.
In guiding-center coordinates the perturbed one-form is given as

7 = 6A(X +p) - (dX + dp) — 5&(X + p)dt, (2)
where 5
o F o
p=pLl= \/—B'Ci

and !
dp = ;I—BCdP+PJ.J-dC-

We remind the reader that the tokamak conﬁgﬁ.ration is treated as uniform when consid-
ering perturbations. Using extended phase space coordinates (X, gy, 4, {,t,w), the total
phase-space Lagrangian is given as

T=(A+pB-uW +eSA)- dX+Eg— 5Adp+(;l-+eac -§A)d¢ - 3

where 1
H= ipﬁB’+pB—w+£5¢+0(e§), (4)

and 1. .
W=R+ E(b V x b)b+ O(ek),
and the parameters € and ep define the gyrokinetic ordering and the tokamak ordering,
respectively (see Appendix C).
C. Gyrokinetic Formalisms

Through the dependence of (5¢,6A) on p (and therefore on (), the symplectic struc-
ture and Harmiltonian acquire gyro-angle dependence. A gyrokinetic formalism represents
a prescription for gyro-averaging the perturbed phase-space Lagrangian. Two generic gy-
rokinetic formalisms are possible.

The first formalism is referred to as the gyrokinetic Hamiltonian formalism. It involves
a transformation to gyro-center coordinates such that the phase-space Lagrangian becomes

5 =(A+pB - W) dX + pd( — Hydt, ()
where the Hamiltonian is given as
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We note that the transformation has transferred the symplectic-structure perturbatior to
the Hamiltonian, and has produced a gyro-averaged'effective perturbation potential (§87),
yet to be determined (see section III).

Since the symplectic structure is unchanged, we can still use the unperturbed Poisson
brackets with the new gyro-center coordinates. The equations of motion are, therefore,
given as

& BH,

%~ 55 ETh 7

and .

. B
P = B" - VA, ®

where

B =B+/VxB-iVxW= 5kt £l 4] L B x VP +O(c}),

and P is the equilibrium (unperturbed) isotropic scalar pressure (divided by 4rx) - we
introduced the fluid-like quantity P by using the equilibrium pressure balance equation
J x B = VP. This formalism is somewhat analogous to the pj-formulation of Hahm et
al12

The second formalism is referred to as the gyrokinetic phase-space Lagrangian for-
malism. It involves a transformation to gyro-center coordimates such that the symplectic
structure is left partially perturbed. The phase-space Lagrangian becomes

= [A + 5B — gW +¢(5A) + O(¢*)] - dX + id{ — Hydt, (9

where the Hamiltonian is given as '
| Hy = %ﬁﬁB’ + BB — B + e(63;). (10)
(This formalism is analogous to the vy-formulation contained in the Appendix of Hahm et

2l.1?) Now that the symplectic structure has been perturbed, we obtain new expressions
for the Poisson brackets. With these new brackets the equations of motion take the form

e OHn
X = B (B x VH;+B o ) (11)
and B B(5A)
fJ" = BB" [VH" + € 2% + 0(62)], (12)
where

B* = B" + ¢{6B) + O(¢°).



The presence of the inductive term of the perturbed electric field in the parallel equation of
motion makes these gyro-center coordinates useful if one wishes to have this term appear
explicitly. For our purposes, however, we shall use the gyrokinetic Hamiltonian formalism
since its equations of motion appear in a simpler form.!? In any case, both formalisms
describe the same physics using different gyro-center coordinates. ( In particular, energy
is conserved by the equations of motion in both cases.)

III. GYROKINETIC HAMILTONIAN FORMALISM

In this section we will show how to obtain the gyro-averaged phase-space Lagrangian
given by Eq. (5) through the use of the theory of Lie transformation of one-forms (as
described briefly in Appendix A).

A. Gyrokinetic Hamiltonian

1. Zeroth Order. The zeroth-order gyro-averaged term is functionally the same as the
original one. Hence

%0 = (A + 5B — aW) - dX + ad{ — Ho dt, (13)
and !
Ry = 5,aﬁB’ +AB — 1. : (14)
2. First Order. The first-order gyro-averaged term is obtained from the expression
"_71 =N - i;Wo -+ dSl-

The terms on the right-hand side are identified, respectively, as the perturbation one-
form <, the inner product of the first-order generating vector field with the unperturbed
Lagrange two-form, and the exterior derivative of the first-order phase-space gauge function.

The perturbation one-form is given by Eq. (1). The inner-product term is given by the
expression

iwwo = (B x Gy + G'B) - dX — G, - Bdpy + GYd( — Gidp — (GY + o B*G}" + BG} ),

and the gauge-function term (which one is free to choose) is

05, 05, 08
= . ——d, —d, -
d5,=VS5, -dX + B o+ By 8+ ac dc,
where we have used the fact that time is not transformed through this process so that
o8
Gi=0=7



The gyrokinetic Hamiltonian formalism requires that
3 = —Hat,

so that the first-order generating vector field, determining the transformation from guiding-
center to gyro-center coordinates, is given by the following components

~ 1,88
G, ——bx 5A + VS ——b~—-—
(6A+9S) - ghe,
éﬂ=-$-wA+V&L
= Bp BS;
Gl =z 6A+ 15
@:—p—aa+é§)
- S, as =
~Gy =, +AB- VS + B a;l &4,
and, consequently, the first-order Hamiltonian is given as
By = (5¢) - ;B - (6A) — 5L B(L - 8A) 2 (5¢) - (5) = (84 . (16)

Note that the generating vector field components include texms related to the gauge func-
tion 5;. We will describe later on how to choose this function. We also note that this
vector field is only needed if one wishes to go on to include higher-order terms. (For our
purposes we need to go on to second order.)

3. Second Order. The second-order term is obtained from the expression
, 1. -
T = ¢- top — 53](“1 +U1) +d.5'2 -

Since we wish to stop at this order, not all terms are relevant. Indeed, from the requirements
of the gyrokinetic Hamiltonian formalism, we have

A = ((ia)wo + %(i.ul) + %(il)‘:’l)t .

The above expression indicates that we only need the gyro-averaged portion of the second
order generating vector field. These are easily obtained and given as

o ,,BEA B5A
(G31) = —55b- (6B x Gy + (G152~ + G52,
and
wy = Lo 9y 0 oa 0Py _a (FA oo, OB
(G5 = ~5(Cl5 (A 50) =~ (oA 500 - Gy (57 - VeA- 2.



The second-order Hamiltonian is given in terms of the first-order generating vector com-
ponents and the perturbation potentials by the expression

Hz=§ﬁuB-<EBxc‘:1+( 1;’_6A+G$§(6A»
op 7] op
~5B(G:- (a(m VoA ) G“[a-(A 5) - 5(eA- 32))

—-(G1 (V6¢+—5A)+(G§‘ 6¢+ 13464’))

- 5((é1) V() — (GTB - (5A) + (GP) (511’1))

4, Phase-space Gauge Function. We again emphasize that the choice of this gauge
function is purely arbitrary. We make the particular choice for 5; such that the “canonical-
energy” component of the first-order generating vector vanishes (i.e., G’ = 0). Making use
of the gyrokinetic ordering, this means that to order € we have

05, -

B—= =8, = §¢ — 80

6 c ¢1 ¢ U,

or

.l 1, o .
5 = 36\1'1 = B(&I’ - &T).
The second-order Hamiltonian, therefore, becomes

= 2(b- a0 - (2 (6 + 5 VoR, b x Ve

2B fi/n
- —(b x Vo, - SA) + 7 (—:sA x b- A
op. 0 0p, 0
+ B{(6A - )3‘:(5A Z))+((5A'a—p)5f5¢l (6A - ac)a_ﬁxbl)

5. General Expression for §A. The expression for the second-order Hamiltonian can be
further simplified if we use two conditions imposed on the perturbed vector potential SA.
Consider the general expression for §A as given by

SA =aB+ AV, + B b x Vi, .

A first condition is the Coulomb gauge: V - 8A = 0. The second condition stems from
the observation that the perturbations under consideration have moderate to high n values
(n ~ 5 to 20). Combining those two conditions with the gyrokinetic and tokamak order-
ings, we obtain that 3; ~ 8, /n, and that 6B} ~ quf + 5;- From this we conclude that the
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relative contribution of the perturbation 8, to 6B is 1/qn® smaller than that of the per-
turbation B; and, consequently, a useful representation for the perturbed vector potential
is

5A=aB+3Vy,. (17)
Using 1 = V,/ | Vifp |= 3 x b, and the particte velocity unit vectors

1=—(sin¢i+cos¢2)=¢xb,
the expression for the first-order effective perturbed potential is given as
by = 64— pyB' a+pLB | Vi | B sin(.

Finally, the second-order Hamiltonian is given by the expression (keeping terms of order €
only)

= (b 5AY) + BUGA- )64 22)
- %(Ex V6y, - 5A) — 2;(6 (6% + iml b x V)
dp, 0
+{(5A - _)&J’pl (5A - 3 3_6¢1) (18)

From the linear (perturbation) term (v - A}, we recogniz= the nonlinear term (§vg - A}
where the effective perturbed §E x B velocity is given as

1. -
5VE = —EV&[;I x b.

The other terms are simply ponderomotive potentials related to the transformation from
guiding-center coordinates to gyro-center coordinates.

B. Gyrokinetic Vlasov Equation

1. Gyrokinetic Hamiltonian. The gyrokinetic Hamiltonian is given by the expression

a= ;p"B + BB - + ¢ (5%, (19)
where the effective perturbed potential is given as

(687) = (69) — B~ (5A) — pLB (1 - 6A) + O(e).
2. Gyro-center Coordinates. The guiding-center to gyro-center phase space transfor-

mation is expressed as _ B
Zz° = Z° - G5 + O(¢%).

10



More specifically, we have w = @, and

X=%+< [b"(“*BV”")*Baaf‘I"]

P =P E b-5A, (20)
w=h-e(6A- o+ o),

¢ =+ e(BA-2 + o)

3. Gyrokinetic Vlasov Equation. The gyrokinetic Vlasov equation is given by the
expression
8

a - —. 2 _ o
~F+(Vb+X.) -VF+ —-F =0, zt
Ca 4 3pu (1)
where the paralle] velocity is
1
b-X = AB+ 5 (5‘1") =pB - b (§A) + O(¢?), (22)
the perpendicular velocity is
%, =Bivprell (68")5 b TP+el V(6" 23
B; b CB By Pliga B’ x ‘gx s (23)

where Vp, is the unperturbed magnetic drift velocity

b o o a as ' N
Vp: E X (pv.B‘i'Pﬁsz'Vb) ( +P”B)B XVB+P||B VP,
and the parallel equation of motion is
. 1 _ _
= ——B—ERB' -[(A + A|B)VB + eV (68°)]. (24)
In magnetic coordinates, the expressions for the drift velocities are'®
. g oB € o . d -
Yp=—ple+t PﬁB)ﬁ + 5(1—5(5‘5 -95(5‘1’ ))
V - -P’ - a L
b= 5iBi+ ByPn(—Bs)H D(p+p.,3)% 5oy (69 - 53—5‘5" no ()
.V 08B OB . 8 e
§=pleBj - BIPM(B, N+ (# +P||B)(5 5¢ Ewvl (5 (5¢°) — 1@(“’ ))-
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Similarly for the parallel equation of motion

. 1.8 P )
py = —EIHBH + 9712k + £jB) 35

R S Bj Poa .
- pllg +9a(g)5(6%) +lag -~ Inlg 13—5(5‘1’ h (26)
and finally the toroidal momentum equation is

: 8
Py = —e— (6%
[3 o¢ ( )a
where the £-axis is the axisymmetry direction, and the overbar notation was ignored in the
previous expressions.

IV. GYROKINETIC MAXWELL’S EQUATIONS

The set of Maxwell’s equations relate perturbation potentials (§¢,5A) to density (cur-
rent) irtegrals involving the total distribution function alone (Poisson’'s equation) or with
some componert of the particle velocity (Ampere’s equation). Together with the gyroki-
netic energy integral invariant and the gyrokinetic Vlasov equation, they represent a self-
consistent and energy-conserving set of nonlinear equations suitable for purposes of gyroki-
netic particle simulation.

We will now express those density integrals in terms of the gyro-center distribution
function F and gyro-center coordinates (X, 5y,4,¢). A brief description of this procedure
is outlined in Appendix A.

A. Guiding-Center Transformation

The density integral for the Poisson equation involves the zeroth velocity moment. Its
transformation under the operation (T3;) ™! is trivial and we get (T3c)~!1 = 1. The density
integral for the Ampere equation involves the first velocity moment. Its transformation
under the operation (Tgc)™! gives

(Tac)'v=Vee =Ub+Vp+(p.BL+Vp),

where the expressiun for Vo is derived in Appendix B. Here we note that the gyro-
average of Vg gives the unperturbed guiding-center drift velocity, i.e., U is the parallel
drift velocity while Vp is the magnetic drift velocity; the vectors 1 and Vp are purely
oscillatory,

B. Gyrokinetic Maxwell’s Equations

From the expressions of the density integrals in tevms of the guiding-center distribution
and guiding-center coordinates, we now obtain the expressions in terms of the gyro-center
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quantities. Using the expression for V¢, the gyrokinetic Maxwell’s equations are given as
Vi = ~4r 3 (=)a f Q.B]d°Z (Toy F)(Z) #(T5cX - x), @7)

4 rp 7y . > " W
VA = T -3 f QuB] ©°Z Vo (Z) (Toy Fa)(2) P(TocX - x)],  (28)

where J is the equilibriumn (unperturbed) current, and

- b ) [ Fij ap .
s F=F_c2 - . 2. P
ey F=F eBx(6A+BV5\I’1) VF+£B 6A6"F+ e(6A - 5C+ &l’l)aﬁ +
and Tc';cx =X+ ﬁ_;_f + - -+, These equations are correct to order € and «gz.

C. Gyrokinetic Energy Integral Invariant

We will now derive an expression for the gyrokinetic energy integral invariant using the
procedure outlined in Appendix A. The simplest way to proceed is to transform the particle
kinetic energy integral into the guiding-center kinetic energy integral and then transform
it into the gyro-center kinetic energy integral.

The guiding-center kinetic energy integral is given by the expression
' 1
Ep= f OBj 361 B° + uB + O(ch) | F(2) &'Z,
and the gyro-center kinetic energy integral is given as
S ape S - Fiemy B
Egi = J OB ((Tey)™ (Et"ll".B2 + AB))) F(Z) &Z,
where &*Z = 2r ds)—Cdﬁ"dﬁ, and
o -1l -
([(Ta ) GAB + BB)) =
gﬁﬁm + ﬁB — B b- (64) - mB (6A- 1)+ 2((5A -B)) + 5(6A-b x [3,B x B])
( [(6¢)"' — (6o )’]) + o5 (V6<I> -bx V8p— VT - b x VD)

Bp a

+ B(6A - 5) 57(6A - ))+((6A ac)a- —(5A-a’_:)b-c=6u).

The total gyrokinetic energy integral can finally be given by the expression
Ee= % [ 0.5} (Tar) " (GAB" + B)) P 72

+8—ﬂ—_f(I6'E|’+|B+6B|’)d°x. (29)
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V. DISCUSSION AND CONCLUSIONS

We have succeeded in deriving self-consistent, energy-conserving, nonlinear gyrokinetic
Maxwell-Vlasov equations suitable for gyrokinetic particle simulation studies of finite-@
tokamak microturbulence.

This work reproduces and generalizes the results of all previous derivations of sets
of equations suitable for gyrokinetic particle simulation by treating fully electromagnetic
perturbations in tokamak geometry. Because the magnetic-coordinate representation of
the gyro-center equations of motion [FEqgs. (25) and (26)] preserved the simple form of the
guiding-center equations of White and Chance,!® these equations can also be used non-self-
consistently to study the diffusion of test particles in a given turbulent tokamak plasma,
or a tokamak with partially destroyed magnetic surfaces.?®

We have presented the gyrokinetic Hamiltonian formalism and used it to derive a non-
linear set of equations. This formalism was only one of the many formalisms obtainable
from the Action-variational Lie perturbation method. Such versatility is quite useful in
numerical studies since we can adapt a formalism to a particular numerical scheme. All
such formalisms involve the introduction of phase-space gauge scalar fields, in addition
to generating vector fields, that facilitate the gyro-averaging and simplification of various
quantities.

The presence of the fluid-like quantity  x VP in the expressions for B* and Vp was
justified as follows. The unperturbed magnetic configuration used in our work was that of
an equilibrium tokamak configuration with prescribed plasma current and pressure profiles
and magnetic configuration. These unperturbed fields are related through the equilibrium
pressure balance egquation J x B = VP. Such an equation was used to show explicitly
the equilibrium-pressure effects in the expression for the gyro-center drift velocity [e.g. Eq.
(23)].

Future work related to this nonlinear gyrokinetic set of equations will include the deriva-
tion of the moment equations obtzined from the gyrokinetic Vlasov equation [Eq. (21)],
and their comparison with the various RMHD theories and their FLR-kinetic modifications.
(See for instance Hasegawa and Walatani'” and Hazeltine et al.’®) A comparison with the
generalized gyrokinetics of Bernstein and Catto® will also be made.
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Appendix A. Theory of Lie Transformation

The basic references for this appendix are Dragt and Finn,'® Littlejohn,’® and Cary and
Littlejohn.!*

1. Notation and Terminoclogy

Consider the transformation of a point Z by the operator T. The new point Z is related
to the old point Z through the relation Z = TZ. The transformation operator T induces
a transformation on scalar fields, called pull-back and noted T, with the scalar-invariance
property F(Z) = F(Z) or F = T*F. If we consider the more general case of differen-
tial forms (the scalar fields are considered as zero-forms), the pull-back of forms can be
represented as §; = (T*)™ !y, where 4% and 4 are k-forms, i.e., they are k-covariant anti-
symmetric tensors. Finally, vector fields V are transformed by the push-forward operator
T. induced by the transformation operator T, and represented as V = T.V.

The theory of Lie transformation defines the transformation T* as a continuous trans-
formation (with respect to the parameter ¢) generated by the vector field G, such that
T = exp(eG).
The expressions for the pull-back and push-forward operators are given in terms of the Lie
derivative Lg with respect to the vector field & as

T = exp(elg) = (T%) .

2. Iterative Seguences of Lie Transformations

Qur analysis uses Lie transformation theory to gyro-average various quantities. Those
quantities are normally given as series expansions in terms of the parameter e. It is,
therefore, customary fo proceed through a sequence of transformations T = -.. T3 T3 T,
where the transformatior T; removes the gyro-angle dependence of the n-th order term of
the series expansion. '

3. Transformation of a One-form

The fundamental one-form in Hamiltonian dynamics is the Poincaré-Cartan one-form
4 =p-dq — Hdt (given in terms of canonical coordinates). In a way similar to the use of
potentials (, A) in electromagnetics, it comes into play only through its exterior derivative
d~. When the one-form « is transformed, a phase-space gauge function S is normally added
to produce a transformed one-form with some desired properties. Hence for our purposes
one-forms are transformed according to the expression

F=(T*)"y +dS.
Using the series expansions for v, 5, and S

(1,55) = 3 €(ms s Sa)s

n=0
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{where S; is normaily taken to be zero) and the inverse pull-back sequence
~1feey— 1
(Tu)—l = (T;') I(Tl ) Y= Id—el, +ez(§L]2 —Lz) +oney,
we get the following expressions {(order by order)

Fo = TYos
= —Livw+d5,

1
T=r—hmnt+(; L} — La)yo + 5,

We can simplify these expressions by using the homotopy formula Lx = ixd + diyx,
where iy is the inner product with the vector field X to produce

Fo = Yoy
F1 =1 — hwo + 4S5y,

. 1. -
F2 = Y2 — towp — 531(“’1 + @) + dS4,

where w, = dvn, inwm = G2 (wm)ab dZ°, and i = S, — di, 7, etc.
4. Transformation of a Density Integral

The Maxwell's equations relate, on the one hand, a potential y acted on by some space-
time differential operator L and, on the other hand, a density integral involving the particle
distribution function f and some component of the particle velocity. A representative
equation can be given as

Lx(x') = fd:"v g(z) f(2)
= [Pz oe) fla) 8(x—x),

where z = (x,v) and d®°z = d°xd®v, The transformation from physical-space particle
coordinates z to guiding-center coordinates Z = Tgoz produces the expression

Lx(x) = [ BB|&Z F(2) (Teo)al(2) (T55X - ¥).
In the integral expression given above, the variable Z is a dummy variable. We, there-

fore, substitute the gyro-center coordinates Z = Tgy Z, and then use the relation F = T3, F
to produce

Lx(x) = [ BBId*Z (T5 FY(2) (To0) " 9)(2) £(TeLX - x).

16



This procedure can be similarly applied to the particle kinetic energy integral which
involves the integral

[ #292) f(a),

and can, therefore, be transformed into

[ BBI&°Z F(Z) (Tay) " [(Téc) "9l 2)) -

Appendix B. Gyro-gauge Invariant Phase-space Lagrangian

In this appendix, we present a2 modified version of Littlejohn’s work on guiding-center
theory,” and present a critical discussion of the work of Hagan and Frieman.!!

1. Gyro-gauge Invariance Formalism

We begin with the expression for the phase.space Lagrangian given in terms of the
noncanonical coordinates (x', u, g, &)

1 T 1 4 1 ‘
v = —E-[A +e(ub+ /2u0B 1)) dx' — (Euz + poB)dt,

where ¢ is the ratio of the particle gyroradius to some characteristic nonuniformity length
scale (the e-scaling shown above is typical of gniding-center theory), and the unperturbed
magnetic field is assumed time-independent.

Instead of proceeding as in Ref. 7 (i.e., by using a twe-step transformation: preparatory
- guiding-center position — and gyro-averaging), we .ransform directly to the guiding-
center coordinates (X, U, 4, () which must satisfy the following Lagrange-bracket conditions

(compare with Ref. 11).
[I"C] = & [C,Z] =0, Z#ﬂ-.

These conditions effectively place all geometrically dependent terms into the new gyro-
angle ¢ (as was also accomplished in Ref. 11 - see the end of this appendix for a discussion
of their approach), and indicate that the phase-space Lagrangian has been gyro-averaged.

Following the procedure presented in Ref. 13 and outlined in Appendix A, we obtain
the guiding-center phase-space Lagrangian

17



16 = HA+eUb- @ R+ B(GY + U\ B b Vb bl Vb 1)

BB ¢ ; B oxi B o2 :9pin.

> G+ (U B(b VXb)+2J2_;TEG1 2BC vB)l1l|}-dX
v b vxhro- £ [ ivp_ 2

tep-e(F (b Vxb)+6G 33‘/;4 VB acS;,)]d(

8 .3
+ J(a—“sa +Glo)dp +€¥[Ga- b+ 55 514U

+BxG; -

—[%U’%—yB—e(UG:"+BG{‘—;AV2§“C‘-VB)]&,

where the spatial component of the firsi-order generating vector G, = —\/% ¢ was used.
The other generating vector components and the phase-space gauge function 3 will be
chosen so as to gyro-average the phase-space Lagrangian vg, as well as give it a simple
form. In accordance with Littlejohn,"®*>?* the term —¢ xR - dX must be kept to ensure -

gyTo-gauge invariance (to order €2), and we have G% = G{y + G, - R.

We now proceed with the gyrc-averaging of the oae-form q9¢. Without going into the
details of this operation, we simply give the result as

e = %{A+eU3—e"’{pR+((G§’) 55 v xbb]}-ax
+elp—e((CM + ‘-‘gb.v x b)]d¢
~ QU+ uB — (U(GY) + BIGD) ]t

At this point, various possibilities leading to a simplification of v¢ exist. For example,

Littlejohn™® chooses
(@f) = £b-v x5,

and
(G;)=_%a.wa,

so that

g = é(A+cU5—esz)~dJ(+epd(—(%U’+pB+ Sulb.V x b)de
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In a later paper,? Littlejohn decides on the more favorable choice
(GY) = ub-V xb,
and
uy_ BV g
(6t =224 9 %,
so that

= %[A+eU5—s’p(R-é—é(5-Vx5)13)]-dX+e,udC— (%u2 + uB)dt,

which is also the choice made by Hagan and Frieman.!’ This choice allows us to transform
to coordinates in which the expression for the parallel drift velocity U = u+pug b-V xb+---
contains the Bafios term explicitly®! and, therefore, gives a simple form to the guiding-center
Hamiltonian. Following the discussion in Ref. 9 on the difference between the guiding-
center formalism and the gyrokinetic formalism, we set ¢ = 1 in the last expression for 7¢
and obtain Eq. (1).

2. Guiding-center Transformation of Particle Velocity

With this last choice, the components of the first-order generating vector are

9 .
G]gl::_ —#Cs
R T S T Gy e g
Gl =ub-Vxb-5((-0b-1+1-Vb.{-U\/Fb- Vb,
U 2
:‘gcz Glp:+ #C VB

B

G, =G R+‘/2“J' vB+ L b. V. _L--—-[( Vh.¢—1.Vb- 1]
T e B B B2uB '

where R = V1 f =Vi.9and 1 = ~(sin¢ 1 + cos(2), and the expression for Gz, is
not needed for our purposes.

In section IV the expression for the transformation of the particle velocity vector Vg =
(T&c) v was needed. Up to order g, this expression is given as

- B N o
v
Vec-v= ‘(Glm'v“’"'Glm:b‘i'W ;‘F_L— \/2FBG$9=C)
=Vp+Vp,

where the gyro-averaged part is the magnetic drift velocity

Vp = = x (uVB + U%.- Vb),

DJI o
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and the purely oscillatory part is
Vp=-[GY, +2u(- Vb 1]b

1 2 - PR 1. 7 [ T
§1/§U(C~V6-L+2b'vxb)+BC'VBT-L

1 2 - s = P ooi A B z
IV FUE Vb 1430960+ £1-VBIL

+ |

+|

3. Comment on a paper of Hagan and Frieman

Finally, we would like to comment on the work of Hagan and Frieman.!! They correctly
point out that the initial Darboux-Lie transformation approach of Littlejohn,®? as applied
by Yang and Choi,'? leads to gyro-averaged equations that depend on the crientation of
the unit vectors perpendicular to the magnetic field. This dependence is not present in
the results of the standard method (i.e., as in Ref. 5) and, therefore, they look for a new
method which will avoid such an undesirable feature.

Before proceeding however, they criticize the gyro-gauge invariance formalism of Little-
john” in which the introduction of a scalar field y(x), which is involved in the transformation
of the gyro-angle  —— { + ¥, is chosen such as to eliminate the geometrically dependent
terms from the gyro-averaged eguations. Their criticism of the formalism is based on the
observation that this elimination leads to a magnetic differential equation for 3 that does
not satisfy the integrability condition of Newcomb.*

The integrability condition® says that the magnetic differential equation b- V4 = S
where S is a given scalar function, has a single-valued solution # only if S satisfies the

condition
f s¥ g
B ?
where the line integral is taken around a closed field line.

By requiring that the gyro-averaged equations be gyro-gauge independent, Hagan and
Frieman!! obtain 1
bVy=2bVxb-b-R=S,

where R = Vi -2. They point out that this equation clearly violates the integrability
condition, and conciude that the gyro-gauge invariance formalism leads to an “ill-behaved”
1 (our emphasis). We claim that this condition should not be imposed on the gyro-gauge
field ¢ (requiring it to be single-valued) because this field is angle-like in nature and,
therefore, multivalued. Hence, no inconsistency should be associated with the gyro-gauge
formalism.

Hagan and Frieman!! then go on to develop a new method based on a transformation
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to coordinates which satisfy the Poisson-bracket conditions

gl =2, {m2) =0, Z4¢

Because of the simple relation between Poisson brackets and Lagrange brackets (Appendix
D), we recognize the conditions we have used above. We have thus established the rela-
tionship between our work and the work of Hagan and Frieman.!' Since the gyro-gauge
formalism does not lead to any inconsistency, they are equivalent methods.

Appendix C. Gyrokinetic and Tokamak Orderings
1. Gyrokinetic Ordering

We use the nonlinear gyrokinetic ordering introduced by Frieman and Chen.5 The ratio
of perturbed quantities over equilibrium quantities is assumed to be of order ¢ < 1 [defined
as p;/L, where p; is the ion gyro-radius and L,, is the length scale associated with the
equilibrium density gradient — normally the perpendicular equilibrium length Ly, (miror
radius)], i.e.,

5F 8B
2~ 1221~ o),
d also h
T 19218 | 82 g
T 7 P &

where V, is some characteristic (thermal) velocity. In addition, the derivative of the per-
turbed quantities are assumed to scale as follows
a -
ag |~ -V~ O},
and X
| pibx ¥ |~ O(1).

2. Tokamak Ordering

a. Equilibrium Magnetic Field. Using straight-field-line magnetic coordinates
(15,8, £), the covariant representation for the axisymmetric tokamak magnetic field is'®?

B = g(3h) VE+ I(4) VO + 5(¢p:9) V‘/’m

where B - Vi, = 0, and the scalar pressure P(1,, 8) is self-consistently associated with the

functions g, 1, and §. (For circular unshifted magnetic surfaces: § = 0.'®) The Jacobian of

the transformation from physical-space coordinates to magnetic coordinates is given as
Bz

J ' =T x VO -VE= — .
v Sl Py
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b. Tokamak Ordering.

We associate a length scale Lp to the equilibrium magnetic field nonuniformity. For the
tokamak geometry this length turns out to be the parallel equilibrium length Lg) (major
radius). We define a second small parameter ¢ where

eg =pi/lp =€ K 1,

with g = Lnp/Lg = Loy Lq being the inverse aspect ratio. For small-inverse-aspect-ratio
tokamak geometries we have eg < €.

The equilibrium tokamak configuration for low-3 plasmas (P/B? ~ &) scales as follows
| %Lx VB |~|pib-Vb|~|pb-V xb|~ Oles),

and o
| E'b-VBI ~ O(epe),

so that

Vo Vp Bj- B _
1%~ 13 I~ 1=~ aR | ~ Oep).

Appendix D. Poisson Brackets and Equations of Motion

1. Gyro-averaged Phase-space Lagrangian

The gyro-gauge-independent phase-space Lagrangian derived in Appendix B and used
in section II is given as

1
7=(A+pB - pW) - dX + pd( — (3pB* + uB)dt,

and is correct to order eg. Using the covariant representation for the equilibrium magnetic
field, given in Appendix C, with its associated vector potential

A=y Vo-4, VE
we obtain the magnetic-coordinate representation for the phase-space Lagrangian®*

y = b — odf + py (gt + 10 + 6y + pdg — Hodt .
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2. Lagrange and Poisson Brackets

The Lagrange brackets are obtained from the components of the two-form w = dy as
follows!? 3
= [t 23] = )
wij = [Z 12 ] = azi‘ya azj‘)’--

There is a simple relationship between Lagrange brackets and Poisson brackets. From
the Lagrange covatiant tensor we create a matrix whose coefficients are the components of
the Lagrange tensor, i.e., the Lagrange brackets. Inverting this matrix (assuming it is non-
singular), we obtain a matrix whose coefficients are the Poisson brackets. The determinant
of the Lagrange matrix is D? where .

= (gq+ I)+ py [g(I' — 3p8) — ¢'1).

A coordinate-free, gyro-gauge-independent representation for the Poisson bracket is given
as

8 9., 8 _98
{FG}—-(aCFaG aFacG)

= B-(VF+ Wy F)x(VG+W G)]

=B [(VF+W F) (VG+W G) F],
where )
B =B+ gV x B+ O(ch) =B|'|b+p||(v x B)y,
and D

3. Unperturbed Equations of Motion
Using the expression for the unperturbed guiding-center Hamiltonian

Hy = §P||B + B,

and the express:on for the Poisson bracket given above, we get the following equations of
motion.
a. Guiding-center Drifts

X= {x Ho}

(B x VHo+ B*BU),
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where U = pyB is the parallel drift velocity. Using magnetic coordinates we find the
following expressions (correct to order eg)'®

; g
¥ = Dm+mm
- P’
(." +P"B)a¢ —(B" +P!193§)’

b. Parallel Equation of Motion

P'Ii = {Pll, Ho}

B - VH,

3
=—5u—mwu+ﬁm53

¢. Toroidal Momentum Equation

From the expression for the gyro-averaged phase-space Lagrangian
7=~ —pyg)d +---,

we obtain an expression for the gyro-averaged toroidal momentum Py = —(%, — pyg), and
we can easily verify that it satisfies the toroidal momentum equation

B ={P;,Hy} =0.
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