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ABSTRACT 

A gyrokinetic formalism using magnetic coordinates is used to derive self-consistent, 
nonlinear Maxwell-Vlasov equations that are sditable for particle simulation studies of 
finite-/? tokamak microturbulence and its associated anomalous transport. The use of mag­
netic coordinates is an important feature of this work as it introduces the toroidal geometry 
naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the 
use of the Action-variational Lie perturbation method of Cary and Littlejohn, and preserves 
the Hamiltorjan structure of the original Maxwell-Vlasov system. Previous nonlinear gy­
rokinetic seti of equations suitable for particle simulation analysis have considered either 
electrostatic and shear-Alfven perturbations in slab geometry, or electrostatic perturba­
tions in toroidal geometry. In this present wcrk, fully electromagnetic perturbations in 
toroidal geometry are considered. 
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I. INTRODUCTION 
Particle simulation techniques based on nonlinear gyrokinetic equations have been re­

cently developed by Lee, 1 , 2 and have proved to be quite useful for studying various aspects 
of drift-wave turbulence and its associated anomalous transport.3'4 

There are three different methods used to derive such nonlinear equations. The first 
method, referred to as the Standard method, is exemplified by the work of Frieman and 
Chen s (fully electromagnetic perturbations in general magnetic geometry). It consists of 
explicitly gyro-averaging the Vlasov equation expressed in lowest-order guiding-center co­
ordinates and separating equilibrium and perturbed parts of the guiding-center distribution 
function. One obtains a nonlinear gyrokinetic equation for the nonadiabatic part of the 
perturbed distribution function. Unfortunately, this method involves rather complex alge­
braic manipulations, fails to provide a clear algorithm indicating how to proceed to higher 
order, and provides equations that are not directly suitable for particle simulation analysis. 
It nonetheless provides a basis upon which other methods can be judged. 

The second (Hamiltonian) and third (Action-variational) methods require the use of Lie 
perturbation techniques, particularly those developed by Littlejobn in his work on guiding-
center theory.8""8 To obtain guiding-center equations of motion, one derives a guiding-center 
Hamiltonian which has no gyro-angle dependence to any desired order. This provides us 
with a transformation from physical-space coordinates (x, v) to guiding-center coordinates 
(X,U,fi,(), where X is the guiding-center position, U is the parallel velocity, /i is the 
adiabatic invariant (to any desired order) known as the magnetic moment, and ( is the 
gyro-angle. 

The Haxniltonian Lie perturbation method involves the same procedure as the one out­
lined above. Under perturbation, the' guiding-center Hamiltonian acquires new gyro-angle 
dependence and, consequently, ft is no longer invariant. We obtain gyro-center equations 
of motion by deriving a gyro-center Hamiltonian which has no gyro-angle dependence to 
any desired order. This provides us with a transformation from guiding-center coordinates 
(X,C7,^,C) to gyro-center coordinates (X,t7,/i,£), where now p. is the adiabatic invari­
ant (to any desired order). This method is exemplified by the works of Dubin et al. 9 

(electrostatic perturbation in slab geometry), Yang and Choi 1 0 and Hagan and Frieman11 

(electrostatic perturbations in general geometry), and Hahm et al. 1 1 (electrostatic and 
shear-Alfven perturbations in slab geometry). A discussion of the works contained in Refs. 
5 and 9 to 11 is contained in Hahm et al. 1 2 

The Action-variational Lie perturbation method represents a generalized form of the 
Hamiltonian method, as it allows for more general transformations from guiding-center 
phase space to gyro-center phase space. It recognizes the fact that the Lagrange and 
Poisson brackets and the Hamiltonian can be perturbed simultaneously. We again obtain 
gyro-center equations of motion by removing the gyro-angle dependence from the Pois­
son brackets and the Hamiltonian. New gyro-center coordinates are also produced. This 
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method was developed by Littlejohn13 and Cary and Littlejohn14 and is exemplified by the 
work of Hahm 1 5 (electrostatic perturbation in general geometry). 

Our purpose in the present work is to use the Action-variational Lie perturbation 
method to derive a set of nonlinear gyrokinetic Maxwell-Vlasov equations, which will de­
scribe fully electromagnetic perturbations in toroidal geometry. The ur.perturbed system is 
represented by an equilibrium tokamak configuration where the plasma pressure and current 
profiles and magnetic field are related through the (equilibrium) pressure balance equation. 
The use of magnetic coordinates will enable us to obtain a simple description for the drift 
motion of gyro-centers, even in complex geometries such as the tokamak configuration. 

Two small parameters readily appear in our analysis. The first parameter, t <£ 1, is 
the ratio of the ion gyroradius to the length scale associated with the equilibrium den­
sity nonuniformity and is used to define the so-called nonlinear gyrokinetic ordering, as 
introduced by Frieman and Chen.5 The second parameter, eg <S 1, is the ratio of the 
ion gyroradius to the length scale associated with the equilibrium magnetic nonuniformity 
and is used to define the tokamak ordering. Using a small inverse-aspect-ratio (€o < 1) 
tokamak ordering, we have Cg — eeo 4C £• Wie will derive nonlinear equations which contain 
terms up to order e2 and order eg, i.e., when we consider electromagnetic perturbations, 
we will treat the tokamak configuration as uniform ( on the ion gyroradius length scale). 

Finally, once the transformations from physical-space to guiding-center coordinates and 
guiding-center to gyro-center coordinates have been derived, it is possible to express the 
density integrals contained in the set of Maxwell's equations in terms of the total gyro-
center distribution function and gyro-center coordinates. This procedure was used by Lee1 

and Dubin et al. 9 (Poisson's equation in slab geometry), Yang and Choi 1 0 and Kr-hmu 

(Poisson's equation in general geometry), and Hahm et a l . u (PoisBon and parallel Ampere 
equations in slab geometry). We generalize this procedure to the full set of Maxwell's 
equations in general geometry. Using the same procedure, we also provide an energy 
integral, useful for numerical simulation purposes. This then completes the derivation of 
self-consistent, energy-conserving, nonlinear gyrokinetic Maxwell-Vlasov equations. 

The remainder of this paper is organized as follows. In section II we describe briefly the 
Action-variational Lie perturbation method and use it to develop our gyrokinetic formalism. 
In section III we derive the gyrokinetic Hamiltonian and the gyrokinetic Vlasov equation. In 
section IV we use our gyrokinetic formalism to derive the gyrokinetic Maxwell's equations 
and the expression for the gyrokinetic energy integral invariant. We present our conclusions 
in section V and discuss possible applications of our work. In appendix A we present some 
notation and terminology used in the theory of Lie transformation of one'forms and density 
integrals. In Appendix B we present a modified version of Littlejohn's work on guiding-
center theory. In Appendix C we present the gyrokinetic and tokamak orderings used in 
this work. Finally, in Appendix D we give the expressions for the Poisson brackets and for 
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the unperturbed equations of motion using magnetic coordinates. 

II. LIE PERTURBATION THEORY 
A. Action-variational Lie perturbation method 

In his discussion of various aspects of noncanonical Hamiltonian perturbation theory, 
Littlejohn1 3 pointed out that the action integral S = J Ldt, where L is the Lagrangian 
function, provided a more general basis to perform Hamiltonian perturbation analysis. 
More specifically, considering the Poincare-Cartan fundamental one-form 

7 = L it = p d q — Hdt 

(where the latter expression is given in terms of the familiar canonical variables), one 
realizes' that the set of canonical transformations of H (leaving p • dq unchanged) can be 
included in the more general set of noncanonical transformations of the one-form 7. 

As an .example, let us consider the problem of charged-particle motion in a uniform 
magnetic field. In terms of the noncanonical variables (x ,v) , the one-form 7 becomes 

7 = (A + v)*dx-H0dt, 

where H0 = \v2. We refer to this one-form as the phase-space Lagrangian. Considering 
perturbations of the form A - t A + SA, and H0 -> Ha + Sip , we notice that both the 
Hamiltonian and symplectic structure (p-rfq part of 7) are perturbed. In addition, magnetic 
perturbations (SA) appear explicitly in the expression for the perturbed one-form 67, a 
distinct advantage of this method over the Hamiltonian Lie perturbation method. 

In the problem of obtaining gyro-center equations of motion, one performs a sequence of 
transformations {• • • T^Tf}, where the n"1 transformation T£ (e denotes the strength of the 
perturbation) removes the gyro-angle dependence in the n , h order terms of the symplectic 
structure and Hamiltonian. We refer the reader to Appendix A for further details on the 
theory of transformation of one-forms, and to Refs. 13 and 14 for complete details on the 
Action-variational Lie perturbation method. 

B. Phase-space Lagrangian 

We begin our perturbation analysis by transforming from physical phase space to 
guiding-center phase space (we use the units in which e = m = c = 1). The unperturbed 
gyro-averaged phase-space Lagrangian was first derived by Littlejohn.7 A modified version 
of his work produces the expression 

1 = [A + pllB-li(K+^(b.^xb)b)}.dX+fidC-(l-^B2+fiB)dt, (1) 

where (X,/7||,p,() are the guiding-center coordinates with p\\ = UjB and fields are eval­
uated at the guiding-center position X. This expression is correct to order eB, and the 
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presence of the vector R causes this one-form to be gyro-gauge invariant. (For more details 
see Refs. 7 and 8 and Appendix B.) We refer the reader to Appendix D for the expression 
of the Poisson brackets and unperturbed equations of motion using magnetic coordinates. 

Consider now electromagnetic perturbations {6$, 6A.) of the phase-space Lagrangian. 
In guiding-center coordinates the perturbed one-form is given as 

-ll=6A{X + p)-(dX + dp)-5<t>(X + p)dt, (2) 

where 

and 
1 . 

dp=—Cdn + px±dC. 
We remind the reader that the tokamak configuration is treated as uniform when consid­
ering perturbations. Using extended phase space coordinates (X.,p\\,ptC,t,w), the total 
phase-space Lagrangian is given as 

7 = (A + P||B - fiW + tSX) • dX + c^- • SXdp, + (fi + e ^ • SA)dC - Hdt, (3) 

where 
H=^B* + fiB-w + e6++OtfB)1 (4) 

and 
w = R+i(i-vxi)4+o(4), 

and the parameters e and es define the gyrokinetic ordering and the tokamak ordering, 
respectively (see Appendix C). 

C. Gyrokinetic Formalisms 

Through the dependence of (6<I>,6A) on p (and therefore on £), the symplectic struc­
ture and Hamiltonian acquire gyro-angle dependence. A gyrokinetic formalism represents 
a prescription for gyro-averaging the perturbed phase-space Lagrangian. Two generic gy­
rokinetic formalisms are possible. 

The first formalism is referred to as the gyrokinetic Hamiltonian formalism. It involves 
a transformation to gyro-center coordinates such that the phase-space Lagrangian becomes 

7 = {A + p\\B-iiW).dX + jid(-H,dt, (5) 

where the Hamiltonian is given as 

H,= 1-plB* + jiB-w + t(6*'!). (6) 
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We note that the transformation has transferred the symplectic-structure perturbation to 
the Hamiltonian, and has produced a gyro-averaged'effective perturbation potential (6<$J), 
yet to be determined (see section HI). 

Since the symplectic structure is unchanged, we can still use the unperturbed Poisson 
brackets with the new gyro-center coordinates. The equations of motion are, therefore, 
given as 

and 

'ii = -fJS--™" ( 8 ) 

where 
B* = B + p||V x B - jiV x W = Blb + ^ B x VP + 0 ( 4 ) , 

and P is the equilibrium (unperturbed) isotropic scalar pressure (divided by 4TT) - we 
introduced the fluid-like quantity P by using the equilibrium pressure balance equation 
J x B = VP. This formalism is somewhat analogous to the p||-formulation of Hahm et 
al." 

The second formalism is referred to as the gyrokinetic phase-space Lagrangian for­
malism. It involves a transformation to gyro-center coordinates such that the symplectic 
structure is left partially perturbed. The phase-space Lagrangian becomes 

7 = [A + p,|B - £ W + e(5A) + 0(e 2 )] • dX + /Idf - Hndt, (9) 

where the Hamiltonian is given as 

En = l-p\B3 + jiB-w + e(5$),). (10) 

(This formalism is analogous to the V||-formulation contained in the Appendix of Hahm et 
al. 1 2 ) Now that the symplectic structure has been perturbed, we obtain new expressions 
for the Poisson brackets. With these new brackets the equations of motion take the form 

*=55r< B*™" + B-itf>' ( 1 1 ) 

and 

*' = w [™" +^r +°<< 2 ) ]' ( 12 ) 

where 
B " = B ' + E(6B) + 0(e 2 ) . 
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The presence of the inductive term of the perturbed electric field in the parallel equation of 
motion makes these gyro-center coordinates useful if one wishes to have this term appear 
explicitly. For our purposes, however, we shall use the gyrokinetic Hamiltonian formalism 
since its equations of motion appear in a simpler form. 1 2 In any case, both formalisms 
describe the same physics using different gyro-center coordinates. ( In particular, energy 
is conserved by the equations of motion in both cases.) 

III. GYROKINETIC HAMILTONIAN FORMALISM 
In this section we will show how to obtain the gyro-averaged phase-space Lagrangian 

given by Eq. (5) through the use of the theory of Lie transformation of one-forms (as 
described briefly in Appendix A). 

A. Gyrokinetic Hamiltonian 

1. Zeroth Order. The zeroth-order gyro-averaged term is functionally the same as the 
original one. Hence 

70 = {A+pn-B-jiW)-dX. + fidC-H0dt, (13) 

and 

2. First Order. The first-order gyro-averaged term is obtained from the expression 

7i=7i-*"i<*'o + iiS',. 

The terms on the right-hand side are identified, respectively, as the perturbation one-
form -71, the inner product of the first-order generating vector field with the unperturbed 
Lagrange two-form, and the exterior derivative of the first-order phase-space gauge function. 

The perturbation one-form is given by Eq. (1). The inner-product term is given by the 
expression 

iiuo = (B x G, + G?B) • dX - G, - Bip), + G?dC - Gfd/i - (Gf + p\\B2G? + BG?)dt, 

and the gauge-function term (which one is free to choose) is 

where we have used the fact that time is not transformed through this process so that 

Ho^lpjB'+jiB-w. (14) 
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The gyrokinetic Hamiltonian formalism requires that 

7, = -Hidt, 

so that the first-order generating vector field, determining the transformation from guiding-
center to gyro-center coordinates, is given by the following components 

G f ^ M S A + VS,), 

« - g - « A + f . (15) 

and, consequently, the first-order Hamiltonian is given as 

H, = ({*) - P||B • (*A) - pxB(l • SA) = (S<f>) - (6v) = (Sfa). (16) 

Note that the generating vector field components include terms related to the gauge func­
tion 5i. We will describe later on how to choose this function. We also note that this 
vector field is only needed if one wishes to go on to include higher-order terms. (For our 
purposes we need to go on to second order.) 

3. Second Order. The second-order term is obtained from the expression 

7 2 =s 0 - tjw0 - 2*i(< î + <*h) + dS2 • 

Since we wish to stop at this order, not all terms are relevant. Indeed, from the requirements 
of the gyrokinetic Hamiltonian formalism, we have 

&3 = ({i2)<*to + 2<*«Wl) + ofa)'*'")* • 

The above expression indicates that we only need the gyro-averaged portion of the second 
order generating vector field. These are easily obtained and given as 

«J?>~£MlDx ft+ «*«»+««*». 
and 

8 



The second-order Hamiltonian is given in terms of the first-order generating vector com­
ponents and the perturbation potentials by the expression 

S, = ip„B - ( S B x G 1 + (G^SA + G\t8A)) 

- i B ( G , ( | , A - V , A . | ) - a n | ( . A . | ) - | ( 5 A . | ) ] ) 

- \{G, • {V64> + ~SA) + {G?-^64> + G\^)) 

- i « G . ) • V(*fc) - {G?)B • (SA) + ( G f > ^ ( ^ ) ) . 

4. Phase-space Gauge Function. We again emphasize that the choice of this gauge 
function is purely arbitrary. We make the particular choice for Si such that the "canonical-
energy" component of the first-order generating vector vanishes (i.e., Gf = 0). Making use 
of the gyrokinetic ordering, this means that to order e we have 

B—i = infa. =$<j>- 8v, 

1 - 1 - -

The second-order Hamiltonian, therefore, becomes 

H2 = l-{(b-6A)3) - ^ ( ^ ( ^ i ) 2 + j , ™ * , .tx*6&) 

- i {6 x VS^ • SA) + \i-jgSA xb-SA) 

5. General Expression for SA. The expression for the second-order Hamiltonian can be 
further simplified if we use two conditions imposed on the perturbed vector potential SA. 
Consider the general expression for SA as given by 

SA = a B + ft VV»P + ft ~b x V^ P • 

A first condition is the Coulomb gauge: V • SA = 0. The second condition stems from 
the observation that the perturbations under consideration have moderate to high n values 
(n ~ 5 to 20). Combining those two conditions with the gyrokinetic and tokamak order-
ings, we obtain that ft ~ ft /n, and that SB\\ ~- gn.ft + ft. From this we conclude that the 

9 

file:///i-jgSA


relative contribution of the perturbation /32 to 6B\\ is l/qn2 smaller than that of the per­
turbation fii and, consequently, a useful representation for the perturbed vector potential 
is 

SA = a B + / 3 V ^ p . (17) 

Using 1 = V^J P / | Vy>p 1 = 2 x 6 , and the particle velocity unit vectors 

i = -(sin<i + cosC2) = £xb, 

the expression for the first-order effective perturbed potential is given as 

Sip! =64>- p\\B2 a + pLB | V% | 8 sinf. 

Finally, the second-order Hamiltonian is given by the expression (keeping terms of order e2 

only) 

^ = i((5.^) + ^ A . 0 ) | ( 5 A . | ) ) 
- i{S x WVi • *A) - ^{^={H\f + l-V*W, • 6 x V*&) 

From the linear (perturbation) term (v- SA), we recognize the nonlinear term (SVE • &A) 
where the effective perturbed SE X B velocity is given as 

1 _ 
SVE = - - V J ^ x b. 

B 
The other terms are simply ponderomotive potentials related to the transformation from 
guiding-center coordinates to gyro-center coordinates. 

B. Gyrokinetic Vlasov Equation 

1. Gyrokinetic Hamiltonian. The gyrokinetic Hamiltonian is given by the expression 

H = ±p\B* + iiB -w + e(6V), (19) 

where the effective perturbed potential is given as 

(£**) = {6<t>) - p|,B • {SA) - p±B ( i • SA) + O(e). 

2. Gyro-center Coordinates. The guiding-center to gyro-center phase space transfor­
mation is expressed as 

Z" = Za - eG? + 0(e2). 

10 



More specifically, we have w =vb, and 

X = X + - i [ & x ( 5 A + - | w * 1 ) + | ^ * I ] , 

P H = f l i - ; | i - * A , (20) 

3. Gyrokinetic Vlasov Equation. The gyrokinetic Vlasov equation is given by the 
expression 

| f + (V'6 + Xx) -V/ , + ( 5 | | ^ J ' = 0, (21) 

where the parallel velocity is 

V =b-± = pnB + e i g | - < W > = fl|S- eS- <£A) +0(£ 2 ) , (22) 

the perpendicular velocity is 

^ = | [ V D + 4 4 < 5 # * ^ , t ^ * * p + 4 x *<'•*"• (23) 

where V D is the unperturbed magnetic drift velocity 

Vp = | x (p&B + pp*b.Vb) = (ii + p\B)^ x VB + p\± x V J\ 

and the parallel equation of motion is 

h = ~B^W • MA + P\\B)VB + tV(6*')]. (24) 

In magnetic coordinates, the expressions for the drift velocities are16 

* = £[*,] + Bgni^)] + J(M + # » f £ + | t^<«T) - «|<W)), (25) 

< = £[,Ujf - */*(£)] + ̂  + #!)<«£ - /J£) + ^ W - j£<W». 
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Similarly for the parallel equation of motion 

1 /?* P' /),R 

~ 5 « f + w£) ] |<** '> + [«§ " 'fll(^)]|{«»->}. (26) 

and finally the toroidal momentum equation is 

where the £-axis is the axisymmetry direction, and the overbar notation was ignored in the 
previous expressions. 

IV. GYROKINETIC MAXWELL'S EQUATIONS 
The set of Maxwell's equations relate perturbation potentials (6<j>, 5A) to density (cur­

rent) integrals involving the total distribution function alone (Poisson's equation) or with 
some componert of the particle velocity (Ampere's equation). Together with the gyrolri-
netic energy integral invariant and the gyrokinetic Vlasov equation, they represent a self-
consistent and energy-conserving set of nonlinear equations suitable for purposes of gyroki­
netic particle simulation. 

We will now express those density integrals in terms of the gyro-centei distribution 
function F and gyro-center coordinates (X,p\\,ji,d- A brief description of this procedure 
is outlined in Appendix A. 

A. Guiding-Center Transformation 

The density integral for the Poisson equation involves the zeroth velocity moment. Its 
transformation under the operation ( T ^ ) - 1 is trivial and we get ( 1 5 c ) - 1 1 = 1. The density 
integral for the Ampere equation involves the first velocity moment. Its transformation 
under the operation (Tec)" 1 gives 

( ^ c ) _ 1 v = Vcc = Ub + VD + {P±B 1 + V D ) , 

where the expression for Vac is derived in Appendix B. Here we note that the gyro-
average of V G C gives the unperturbed guiding-center drift velocity, i.e., U is the parallel 
drift velocity while V o is the magnetic drift velocity; the vectors _L and V^ are purely 
oscillatory. 

B . Gyrokinetic Maxwell's Equations 

From the expressions of the density integrals in terms of the guiding-center distribution 
and guiding-center coordinates, we now obtain the expressions in terms of the gyro-center 

12 



quantities. Using the expression for VGC, the gyrokinetic Maxwell's equations are given as 

VH<j, = - 4 T T £ ( - ) . faaB^Z (T^F 0)(Z) 53(T^CX - x), (27) 

V2SA =-[J- £ ( - ) „ / B ^ J ^Z V C C (Z) ( 7 ^ ( 2 ) * 3(7£ CX - x) ], (28) c „ m J 

where J is the equilibrium (unperturbed) current, and 

and TQQ'X. — X + Pi.f H . These equations are correct to order e2 and e#. 

C. Gyrokinetic Energy Integral Invariant 

We will now derive an expression for the gyrokinetic energy integral invariant using the 
procedure outlined in Appendix A. The simplest way to proceed is to transform the particle 
kinetic energy integral into the guiding-center kinetic energy integral and then transform 
it into the gyre-center kinetic energy integral. 

The guiding-center kinetic energy integral is given by the expression 

B+ = /flJBJ [\p\B2 +pB + 0 ( 4 ) ] F{Z) <?Z, 

and the gyro-center kinetic energy integral is given as 

EGk = JOBl <[(I5 r)- 1 C-pfB1 + iiB))) F{1) <?%, 

where d*Z = lir cPXdp^dfi, and 

<[(3cr)-1(5Pfifl' + AB)]) = 
l-p\B* + jiB- pi}B b • {SA} - p±B (SA • i ) + l-{{6A • bf) + ±<*A • 6 x ft,B x SB]) 

+ ^§=P+)2 ~ (^)*D + 2 p ( ^ * • i x TO^ - WT • 6 x VSv) 

+ B{(tL §,|<*A • | » + «U • ffo. - «A • | ) | M . 
The total gyrokinetic energy integral can finally be given by the expression 

Eat = E / M i { [ ( ^ r 1 * ^ 2 + A*)]>. ft <*°Z 

+ ^ / ( | * E | 2 + | B + « B | 2 ) r f 5 x . (29) 
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V. DISCUSSION AND CONCLUSIONS 
We have succeeded in deriving self-consistent, energy-conserving, nonlinear gyrokinetic 

Maxwell-Vlasov equations suitable for gyrokinetic particle simulation studies of finite-j3 
tokamak microturbulence. 

This work reproduces and generalizes the results of all previous derivations of sets 
of equations suitable for gyrokinetic particle simulation by treating fully electromagnetic 
perturbations in tokamak geometry. Because the magnetic-coordinate representation of 
the gyro-center equations of motion [Eqs. (25) and (26)] preserved the simple form of the 
guiding-center equations of White and Chance,1* these equations can also be used non-self-
consistently to study the diffusion of test particles in a given turbulent tokamak plasma, 
or a tokamak with partially destroyed magnetic surfaces.'5 

We have presented the gyrokinetic Hamiltonian formalism and used it to derive a non­
linear set of equations. This formalism was only one of the many formalisms obtainable 
from the Action-variational Lie perturbation method. Such versatility is quite useful in 
numerical studies since we can adapt a formalism to a particular numerical scheme. All 
such formalisms involve the introduction of phase-space gauge scalar fields, in addition 
to generating vector fields, that facilitate the gyro-averaging and simplification of various 
quantities. 

The presence of the fluid-like quantity 6 X V F in the expressions for B* and V D was 
justified as follows. The unperturbed magnetic configuration used in our work was that of 
an equilibrium tokamak configuration with prescribed plasma current and pressure profiles 
and magnetic configuration. These unperturbed fields are related through the equilibrium 
pressure balance equation J x B = VP. Such an equation was used to show explicitly 
the equilibrium-pressure effects in the expression for the gyro-center drift velocity [e.g. Eq. 
(23)]. 

Future work related to this nonlinear gyrokinetic set of equations will include the deriva­
tion of the moment equations obtained from the gyroHnetic Vlasov equation [Eq. (21)], 
and their comparison with the various RMHD theories and their FLR-kinetic modifications. 
(See for instance Hasegtwa and Wakatani17 and Hazeltine et at. 1 8) A comparison with the 
generalized gyrokinetics of Bernstein and Catto* will also be made. 
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Appendix A. Theory of Lie Transformat ion 

The basic references for this appendix are Dragt and Finn, 1 9 Littlejohn, 1 3 and Cary and 
Littlejohn. 1 4 

1. N o t a t i o n and Terminology 

Consider the transformation of a point Z by the operator 2\ The new point Z is related 
to the old point Z through the relation Z = TZ. The transformation operator T induces 
a transformation on scalar fields, called pull-back and noted T", with the scalar-invariance 
property F(Z) = F{Z) or F = T*F. If we consider the more general case of differen­
tial forms (the scalar fields are considered as zero-forms), the pull-back of forms can be 
represented as % = (T*) - , 7k, where 7* and % are k-forms, i.e., they are k-covariant anti­
symmetric tensors. Finally, vector fields V are transformed by the push-forward operator 
T. induced by the transformation operator X, and represented as V = T.V. 

The theory of Lie transformation defines the transformation T* as a continuous trans­
formation (with respect to the parameter e) generated by the vector field G, such that 

T = exp(eG). 

The expressions for the pull-back and push-forward operators are given in terms of the Lie 
derivative LG with respect to the vector field G as 

^ " = e x p ( e I 0 ) = ( 7 : ) - , . 

2 . I t e ra t ive Sequences of Lie Transformations 

Our analysts uses Lie transformation theory to gyro-average various quantities. Those 
quantities are normally given as series expansions in terms of the parameter e. It is, 
therefore, customary io proceed through a sequence of transformations T* = • • • TgTjTj", 
where the transformation T£ removes the gyro-angle dependence of the n-th order term of 
the series expansion. 

3 . Transformation of a One-form 

The fundamental one-form in Hamiltonian dynamics is the Poincare-Cartan one-form 
7 = p • <fq — Hdt (given in terms of canonical coordinates). In a way similar to the use of 
potentials (if), A) in electromagnetics, it comes into play only through its exterior derivative 
dry. When the one-form 7 is transformed, a phase-space gauge function S is normally added 
to produce a transformed one-form with some desired properties. Hence for our purposes 
one-forms are transformed according to the expression 

7 = ( r * ) - 1 7 + d5. 

Using the series expansions for 7, 7, and S 

(7,7l5) = XV(7n,7r.,S„), 
n.=0 
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(where So is normally taken to he zero) and the inverse pull-back sequence 

(r»)-> =... (T r r ' c j r r = w - ^+*{\% - w + • • •, 
we get the following expressions (order by order) 

7o = 7o, 
7i = 7i - £ i 7 o + dSu 

72 = 72 ~ i i 7 i + ( s i ? - i a h o + dS2, 

We can simplify these expressions by using the homotopy formula L\ = ixd + dix, 
where ix is the inner product with the vector field X to produce 

To = 7o, 
7i = 7 i -iiu/0 + dS[, 

72 = 72 - i2<*>o ~ 5*i(wi + w,) + dS 2 , 

where u/n = d7„, i n u; m = G° (wm)„i <£Zfr, and S[ = Sx - dixfo, etc. 

4. Transformation of a Density Integral 

The Maxwell's equations relate, on the one hand, a potential \ acted on by some space-
time differential operator L and, on the other hand, a density integral involving the particle 
distribution function / and some component of the particle velocity. A representative 
equation can be given as 

I X ( x ' ) = / d 3 v g{z) / («) 

= y > z 5 ( Z ) / ( z ) S 3 ( x - x ' ) , 

where z = (x ,v) and d*x = d?x<Pv. The transformation from physical-space particle 
coordinates z to guiding-center coordinates Z = TQCZ produces the expression 

Lx(*') = JBB^Z F(Z) me)-lg\{Z) 5 3 (T^X - x'). 

In the integral expression given above, the variable Z is a dummy variable. We, there­
fore, substitute the gyro-center coordinates Z = TayZ, and then use the relation F = T^yF 
to produce 

Lx(x') = JBB^Z [T^F](Z) [(T-Gcyg\{Z) P{T£X. - x'). 
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This procedure can be similarly applied to the particle kinetic energy integral which 
involves the integral 

y>zS(z)/(Z), 
and can, therefore, be transformed into 

JBBp2F{Z) {{T^)-1[(T<:cr13](Z)> . 

Appendix B. Gyro-gauge Invariant Phase-space Lagrangian 

In this appendix, we present a modified version of Litttejohn's work on guiding-center 
theory,7 and present a critical discussion of the work of Hagan and Frieman.11 

1. Gyro-gauge Invariance Formalism 

We begin with the expression for the phase-space Lagrangian given in terms of the 
noncanonical coordinates (x',u,(io,0) 

7 = i [ A + 6 (u b + sfiitfl i ) ] • dmf - ( - u 2 + itoB) dt, 

where e is the ratio of the particle gyroradius to some characteristic nonuniformity length 
scale (the c-scah'ng shown above is typical of guiding-center theory), and the unperturbed 
magnetic field is assumed time-independent. 

Instead of proceeding as in Ref. 7 (i.e., by using a two-step transformation: preparatory 
- guiding-center position - and gyro-averaging), we .ransform directly to the guiding-
center coordinates (X, U, /*, f ) which must satisfy the following Lagrange-bracket conditions 
(compare with Ref. 11). 

These conditions effectively place all geometrically dependent terms into the new gyro-
angle C (as was also accomplished in Ref. 11 - see the end of this appendix for a discussion 
of their approach), and indicate that the phase-space Lagrangian has been gyro-averaged. 

Following the procedure presented in Ref. 13 and outlined in Appendix A, we obtain 
the guiding-center phase-space Lagrangian 
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+ BxG 2-/fGf 0C + (l/Vf(^Vx6) + ^ G r - ^ C - V B ) i ] } . < « 

+ e : M - e ( ^ ( 6 - V x i ) + G r - ^ ^ | c - V £ - ^ S 3 ) ] d < 

+ J (^S3 + Gjo) * + 2 [Gj • 6 + ^ S 3 ] dtf 

- [if/8 + /iS - € (ffG? + BG? - ̂ ( • VB) 1 dt, 

where the spatial component of the first-order generating vector Gx = - J ^ £ was used. 
The other generating vector components and the phase-space gauge function 53 will be 
chosen so as to gyro-average the phase-space Lagrangian -jc, as well as give it a simple 
form. In accordance with Littlejohn, 7 , 8 , 1 3 , 2 4 the term — e/iR • dX. must be kept to ensure 
gyro-gauge invariance (to order e2), and we have G\ = G, 0 + Gi • R. 

We now proceed with the gyro-averaging of the one-form 7c. Without going into the 
details of this operation, we simply give the result as 

7 c = -JA + eUb- e 2 ^ R + ((flf) - | S - V x 4)6]} • dX 

+ e\M-e((G^) + ^b.Vxb)]d( 

-[±U>+tiB-e(U(G?) + B(GV)}dt. 

At this point, various possibilities leading to a simplification of 7 C exist. For example, 
Littlejohn7 , 8 chooses 

(G») = £'b-Vxb, 

and 
(Gr> = - ^ b - V x 6 , 

so that 

la = - (A + e Ub - e 2 fj,K) • dX + e fiAC, - <Xu% + pB + ^U "bVxb)dt. 
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In a later paper,24 Littlejohn decides on the more favorable choice 

and 

that 

1 G = -fA + eUb - <? fi(R+\(b-V xb)"b)]- dX + t ^ - {^U3 + fiB)dt, 

which is also the choice made by Hagan and Frieman.11 This choice allows us to transform 
to coordinates in which the expression for the parallel drift velocity U = u+jio b- Vx6- | 
contains the Banos term explicitly21 and, therefore, gives a simple form to the guiding-center 
Hamiltonian. Following the discussion in Ref. 9 on the difference between the guiding-
center formalism and the gyrokinetic formalism, we set e = 1 in the last expression for fc 
and obtain Eq. (1). 

2. Guiding-center Transformation of Particle Velocity 

With this last choice, the components of the first-order generating vector are 

where R = VX • ( = Vl -2 and i = - ( s i n O +cosC2), and the expression for G 2 e c is 
not needed for our purposes. 

In section IV the expression for the transformation of the particle velocity vector Vac = 
( T £ c ) _ 1 v was needed. Up to order CB, this expression is given as 

Vac - v = - (G, „ • Vv + <%„ b + - ^ G^ i - fi^B G^ <) 

= V D + V D , 

where the gyro-averaged part is the magnetic drift velocity 

V D = ^ x ( A . V B + t/ 2 S-V6), 
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and the purely oscillatory part is 

+ ^ v f t / ( ^ v i ' i + ^ " V x i ) + i ^ ' V 5 1 i 

3 . Comment on a paper of Hagan and Frieman 

Finally, we would like to comment on the work of Hagan and Frieman.11 They correctly 
point out that the initial Darboux-Lie transformation approach of Littlejohn,6 , 7 as applied 
by Yang and Choi, 1 0 leads to gyro-averaged equations that depend on the orientation of 
the unit vectors perpendicular to the magnetic field. This dependence is not present in 
the results of the standard method (i.e., as in Ref. 5) and, therefore, they look for a new 
method which will avoid such an undesirable feature. 

Before proceeding however, they criticize the gyro-gauge invariance formalism, of Little­
john 7 in which the introduction of a scalar field ^>(x), which is involved in the transformation 
of the gyro-angle f >-—» £ + ij>, is chosen such as to eliminate the geometrically dependent 
terms from the gyro-averaged equations. Their criticism of the formalism is based on the 
observation that this elimination leads to a magnetic differential equation for if> that does 
not satisfy the integrability condition of Newcomb.M 

The integrability condition2 2 says that the magnetic differential equation b • Vi> - S 
where 5 is a given scalar function, has a single-valued solution 4> only if S satisfies the 
condition 

where the line integral is taken around a closed field line. 

By requiring that the gyro-averaged equations be gyro-gauge independent, Hagan and 
Frieman11 obtain 

6 - V ^ = - 6 V x o - o - R = 5, 

where R = Vi • 2. They point out that this equation clearly violates the integrability 
condition, and conclude that the gyro-gauge invariance formalism leads to an "ill-behaved" 
if> (our emphasis). We claim that this condition should not be imposed on the gyro-gauge 
field tp (requiring it to be single-valued] because this field is angle-like in nature and, • 
therefore, multivalued. Hence, no inconsistency should be associated with the gyro-gauge 
formalism. 

Hagan and Frieman" then go on to develop a new method based on a transformation 
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to coordinates which satisfy the Poisson-bracket conditions 

Because of the simple relation between Poisson brackets and Lagrange brackets (Appendix 
D), we recognize the conditions we have used above. We have thus established the rela­
tionship between our work and the work of Hagan and Frieman. 1 1 Since the gyro-gauge 
formalism does not lead to any inconsistency, they are equivalent methods. 

Appendix C. Gyrokinetic and Tokamak Orderings 

1. Gyrokinet ic Ordering 

We use the nonlinear gyrokinetic ordering introduced by Frieman and Chen.B The ratio 
of perturbed quantities over equilibrium quantities is assumed to be of order e ^ l [defined 
as Pi/Ln where pi is the ion gyro-radius and Ln is the length scale associated with the 
equilibrium density gradient — normally the perpendicular equilibrium length £ 0 x (minor 
radius)], i.e., 

, S F , SB 
| — | ~ | — | ~ 0 ( e ) , 

and we also have 
eS<f> SVE . ,5P 

I -f I ~ I - y I ~ I -p \~ 0(e) , 

where Vt is some characteristic (thermal) velocity. In addition, the derivative of the per­
turbed quantities are assumed to scale as follows 

l j ^ | ~ | * 6 - V | ~ 0 ( « ) , 

and 
l * 6 x V | ~ o ( i ) . 

2. Tokamak Ordering 

a. Equilibrium Magnetic Field. Using straight-field-Iine magnetic coordinates 
{ipp,8,£), the covariant representation for the axisymmetric tokamak magnetic field i s 1 6 , 2 3 

B = 9&P) Vf + Ifo) VB + 6&P,&) W P , 

where B - VV>P = 0, and the scalar pressure P(i>p, 9} is self-consistently associated with the 
functions g, I, and 5. (For circular unshifted magnetic surfaces: 6 = 0. 1 8) The Jacobian of 
the transformation from physical-space coordinates to magnetic coordinates is given as 

J " ' = ^ x V * . V { = r 4 7 r -
{91 +1) 
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b. Tokamak Ordering. 
We associate a length scale LB to the equilibrium magnetic field nonuniformity. For the 

tokamak geometry this length turns out to be the parallel equilibrium length L0\\ (major 
radius). We define a second small parameter £B where 

<=B = pi/LB = « «o < 1, 

with eo = LTI/LB = £<u./£o|| being the inverse aspect ratio. For small-inverse-aspect-ratio 
tokamak geometries we have «a <g. £ . 

The equilibrium tokamak configuration for low-/? plasmas (P/B2 ~ e§) scales as follows 

\^bxVB\~\pib-^'b\^\pib-Vxb\~0[€B), o 
and 

I g&-VS| ~ O(efleo), 

so that 

I Vt

 [ ~ ' Yt I ~ I ^ F ^ I ~ I * * I ~ o ( E B ) . 

Appendix D. Poisson Brackets and Equations of Motion 

1. Gyro-averaged Phase-space Lagrangian 

The gyro-gauge-independent phase-space Lagrangian derived in Appendix B and used 
in section II is given as 

7 = (A + pnB-pW).dX. + p.dC- (~pp3 + nB)dt, 

and is correct to order ££. Using the covariant representation for the equilibrium magnetic 
field, given in Appendix C, with its associated vector potential 

we obtain the magnetic-coordinate representation for the phase-space Lagrangian24 

7 = V>(W - ij>pdt, + pfadt + UB + W^p) + ftd( - Hodt. 
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2. Lagrange and Poisson Brackets 

The Lagrange brackets are obtained from the components of the two-form u; = dry as 
follows13 

r i i i S d 

"a = [*>*] = &&-•&'*• 

There is a simple relationship between Lagrange brackets and Poisson brackets. From 
the Lagrange covariant tensor we create a matrix whose coefficients are the components of 
the Lagrange tensor, i.e., the Lagrange brackets. Inverting this matrix (assuming it is non-
singular), we obtain a matrix whose coefficients are the Poisson brackets. The determinant 
of the Lagrange matrix is D2 where ( 

D = (gq + I) + Pu\g{r-d*5)-9'I}-

A coordinate-free, gyro-gauge-independent representation for the Pois&on bracket is given 

™-<x'fc-£'fr 
l—B • [(VF + W—F) x (VG + W ^ 

1 „. ,.„„ . „, B m d „ , d M d 

where 

and 

+ ^ B « • K V F + W^F)±G - (VG + W | G ) £ n 

B* = B + p|(V X B + 0(e%) = fl,| fr + P|| (V x B ) x , 

B J - i - B - - ^ . 

3. Unperturbed Equations of Motion 

Using the expression for the unperturbed guiding-center Hamiltonian 

HQ=l-p\B2+iiB, 

and the expression for the Poisson bracket given above, we get the following equations of 
motion. 
a. Guiding-center Drifts 

X = {X,H0} 

= j^;&xVH0 + B'BU), 
BB\\ 
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where U = p\\B is the parallel drift velocity. Using magnetic coordinates we find the 
following expressions (correct to order £B) 1 6 

A = - ^ + plB)^Bt 

i = ±{li + PIB)(S^B - / A B ) + V.{qBl _ IpnB^y 

b. Parallel Equation of Motion 

P\\ = {p\\,B0} 
1 

"JSBj 

= -^-P\\9'){p + p\B)j-6B 

= --±-B-.VH0 

i , . .., J r , a 

c. Toroidal Momentum Equation 

From the expression for the gyro-averaged phase-space Lagrangian 

7 = - ( ^ P - p\\g)di + ••-, 

we obtain an expression for the gyro-averaged toroidal momentum P( = —(i/>p — p\\g), and 
we can easily verify that it satisfies the toroidal momentum equation 
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