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EFFECTS OF ALTERNATE FUELS REFRACTORY TEST FACILITY (RTF)
TEST 1

-                       ANALYSIS OF SELECTED ALUMINOSILICATE REFRACTORY BRICKS,
MORTARS, AND FIBROUS INSULATIONS DEGRADED BY DOMESTIC

RESIDUAL OIL COMBUSTION PRODUCTS

A. E. Pasto and V. J. Tennery

ABSTRACT

Industrial conversion in the U.S. to alternate fuels from natural
gas is presently underway and is anticipated to accelerate rapidly in
the next few years. Currently the prime alternate fuels are distillate
and residual oils. Conversion to residual oils for high-temperature
process heat applications is anticipated to result in accelerated
refractory and insulation corrosion and degradation due to reactions
between fuel impurities and the ceramic linings of high-temperature

equipment. Understanding the nature of such reactions and identification
of means for preventing or retarding them will be of considerable assis-
tance to both refractory manufacturers and users in the shift from
natural gas to alternate fuels.

This report is the first of a series that will cover analyses of
several generic types of refractories and fibrous insulations which have
been exposed to residual oil combustion products under well-controlled
conditions for times ranging from hundreds to thousands of hours in a
Refractory Test Facility (RTF) designed to simulate industrial process
heat combustors.

This report presents analyses of aluminosilicate refractory fire-
bricks, mortars, and refractory fibrous insulations following exposure
to domestic residual oil combustion for 500 hr at temperatures near
1375'C (2500'F). For all three types of refractory material, composi-
tions with two different A1203 contents were included. The fuel oil
impurities included Fe, Ca, Zn, Ni, Pb, and S in concentrations from
tens to hundreds of weight ppm.  Some of these impurities reacted with
the refractory samples by producing a slag layer on the exposed surfaces
followed by penetration into the materials.  The more reactive impurities
were Fe, Ca, and Zn. These impurity elements formed a glassy phase when
in contact with the major silicate phases in the test samples.  Reaction
products include an Fe-Zn-Al oxide spinel and hercynite (FeA1204)·  Test
samples with considerable porosity reacted more extensively with the slag.

Fibrous insulation materials evaluated in this test underwent
extensive shrinkage and other structural changes during the test due to
reactions with the fuel oil impurities. Accumulations of slag readily
penetrate into the voids between the fibers and result in continual
material degradation. The denser refractory bricks and mortars form

-               coherent slag layers by reaction with fuel impurities and exhibit much
slower degradation than the insulations.

1
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INTRODUCTION

General Background

A recent assessmentl of industrial near-term (05 year) fuel-usage               „

planning concluded that many energy-intensive industries will of necessity

be forced to convert from use of natural gas to distillate and/or residual

fuel oils for high-temperature process fuel requirements. Further, this

conversion will probably involve heavy use of No. 6 residual oil because

of its cost and availability compared with distillate fuels. Residual

oils typically contain impurities (heavy metals, alkalies, S, V, etc.)

which interact with the refractory and insulation linings exposed to

their combustion, a process that leads to shortening of equipment service

life through chemical, structural, and phase content alteration.  Avail-

able literature on pertinent phase-equilibrium studies and some reports

on actual equipment failures incurred through use of heavy fuel oils were

also assessed. In general, it was found that an insufficient data base

existed concerning the nature of these impurity-refractory interactions

to permit refractory users to effectively design and specify refractory

systems for future equipment.  Consequently a program to provide such a                -

data base was developed and organized into three tasks.

1.  Analysis of refractory materials (field samples) exposed to alternate

fuel combustion in actual industrial furnaces and the reporting of

results.

2.  Exposure of selected generic refractory materials classes to

alternate fuel combustion under controlled conditions of atmo-

sphere, time, temperature, and fuel impurity level.

3.  Possibly large-scale industrial tests with alternate fuels using

refractory types identified from tasks 1 and 2 as more resistant

to deterioration.

The authors were involved in task 1 early in the program because of

the many fuel-related failures brought to our attention during our assess-

ment period. Companies experiencing these failures provided us with

numerous refractory specimens for analysis.  Results of these analyses                 „

have been reported, notably at meetings sponsored by the American Ceramic
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Society.  Publication of the results has also been proceeding rapidly

with several reports now available. As analyses are completed,2-4

further reports will be issued.

A common feature of the refractory field samples is the fact that

most of the respondents to this effort are unable to document the actual

time-temperature history of the degraded refractory specimens.  Further,

the source and nature of the residual fuel oil is usually unknown.

Interpretation of the chemical, mineralogical, and other analytical

results of the used refractories is often complicated due to these

unknowns.  These deficiencies in the field sample-related data provided

justification for proceeding into task 2, the systematic controlled-

condition combustor tests. This report is the result of test 1. Future

test results will be similarly reported.

Materials and Test Condition Selection

The general philosophy of this portion of the program is to evaluate

alternate fuel combustion effects on materials and under firing condi-

tions which closely simulate industrial practice. Suggestions from a

wide cross section of firms that use and produce refractory materials

were solicited at a meeting whose proceedings were subsequently pub-

lished.5

Because of their wide industrial use, the first generic refractory

materials to be studied were aluminosilicate-based refractories and

insulations.  A test temperature of 1375'C (2500'F) was selected as a

compromise between the lower temperature [near 1200-1260°C (2200-2300'F)]

common to numerous processes such as steel soaking pits or aluminum

reverberatory melting furnaces and the high temperature used in such

processes as glass melting.  It was anticipated that reaction between

the test specimens and fuel impurities would be sufficiently rapid to

form a reaction zone of a depth amenable to analysis within several

hundred hours.  The objective of the analyses was to identify the

degradative reactions and from these results to postulate compositional

or structural modifications in the materials which would make them more

stable with such fuel. It became obvious during this work that results

I

i
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of such analyses obtained at one temperature could only under very

limited conditions be used to estimate results at other temperatures.

In many large-scale heating processes, the incoming combustion air

is preheated; because this requires expenditure of energy, as little

air as possible in excess of stoichiometric is used.  However, to ensure

complete combustion, burners are normally operated at a slight air excess,

and to simulate this practice, we operated the combustor during this test

with a small amount of excess air.

Another operating parameter of concern was the time-temperature

history.  Many processes require frequent thermal cycling, and it was

felt that the effect of this cycling should be considered in any test

program. The test described herein included several temperature cycles.

DESCRIPTION OF RTF

General Considerations

Ideally selected instrumented specimens should be placed in an

operating, full-scale industrial furnace so that test conditions could

perfectly match use conditions.  However, this approach is impractical                 -

for many reasons, and therefore investigators in refractory-slag inter-

action research ordinarily perform bench-scale experiments such as

placing slag (ash) in a hole drilled into a brick and subsequently heat
treating the specimen in a controlled atmosphere. This procedure, while

perhaps useful as a screening test to quickly identify the least reactive

materials, does not always yield results comparable to those obtained

from actual service specimens.

The authors concluded that a procedure involving exposing refractory

specimens to a suitable combustion atmosphere under controlled conditions

would best simulate actual industrial use conditions. The apparatus

consisted of a furnace chamber with an oil burner, associated piping,

an oil storage tank, and controls. Contacts with manufacturers of oil

burners quickly indicated that the chamber would not be small since the

smallest No. 6 oil burners available at the time released a minimum of

about 2.9 x 105 W (1 x 106 Btu/hr).
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RTF Specifications

A conceptual design of the RTF was described in a specification,

and vendor solicitation took place in April 1976. The unit was ordered

in July, the equipment was delivered in March 1977, and the unit became

operational in mid April 1977.

The RTF is shown in Fig. 1. It consists of a carbon steel-shell

furnace chamber 2.7 m (9 ft) long by 2 m (6-1/2 ft) OD.  The lining

consists of 75 mm (3 in.) of 94+% A1203 refractory castable backed with

150 mm (6 in.) of a lightweight insulating castable refractory.  The

chamber interior dimensions are about 1.2 m (4 ft) diam by 2.3 m

(7-1/2 ft) long.  Provision is made to allow water cooling of the

interior via metal tubes connected to an exterior-mounted manifold.

Penetrations for these tubes are shown in Figs. 1 and 2 surrounding the

door opening.  A John Zink Co. FFC-10-PL burner assembly is mounted on

the back end of the chamber as shown in Fig. 2.  This burner provides

a flat flame configuration with gas or fuel oils.  The heat release

rate is variable from 3.2 x 105 W (1.1 x 106 Btu/hr) up to 1.2 x 106 W

(4.0 x 106 Btu/hr) depending on air and oil pressure.

Mounted next to the furnace chamber and shown in Fig. 1 is a heated,

7.6-m3 (2000-gal) oil storage tank.  The system also contains a control

panel, oil pump, and piping to feed the burner.  Combustion air is pro-

vided by the blower mounted above the furnace chamber while atomizing

air is provided from a laboratory compressed air supply line.

Sight ports are located on top, both sides, and both ends of the

chamber.  Thermocouple feedthrough penetrations are located on the side

and bottom.  A flue gas monitor penetration is provided in the stack.

With this system we can heat to a given temperature with natural

gas/air combustion and switch to oil/air as desired.  With interior

cooling, the chamber temperature can be controlled at the desired

temperature of 1375'C (2500'F) quite easily.  We have attained a maximum

temperature of 1550'C (2820'F) in tests.  The minimum temperature obtain-

able is limited by the flame instability which occurs at low fuel flow

rates with residual oil.
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SPECIMEN SELECTION AND PREPARATION

Selection

As mentioned previously, test 1 includes selected aluminosilicate

refractories and insulations.  Since the previous assessmentl indicated

anticipated better performance with increasing alumina content in

aluminosilicate-type material, two levels of A1203 content widely used

in industry were chosen for the bricks, mortars, and fiber insulations.

The firebrick consisted of a 45% alumina content super-duty brick

made up of mullite and a 90% A1203 brick composed of mullite-bonded

alpha alumina grain. The mortars were a mullite-based air-setting

mortar and a phosphate-bonded air-setting mortar of higher alumina con-

tent (80%).  The fibrous insulations consisted of 55% A1203 and a 95%

A1203 aluminosilicate fiber blanket.  All materials were purchased from

commercial refractory vendors.  Characterization of these materials is

described more fully in the test results section.

Preparation

Archive and Pretest Characterization Specimens

To simplify the specimen descriptions in the text to follow, the

specimens have been given the three-letter abbreviated designations

shown in Table 1.

Table 1. RTF Test 1 Specimen Designations

Distinguishing Phase
Specimen Type Characteristic Designation

Brick 90% A1203, alumina grains HAB

Brick 45% A1203, mullite-based MBB

Mortar High alumina, phosphate-bonded PBM

Mortar Mullite-based MBM

Fiber Blanket 95% A1203 HAF

Fiber Blanket 55% A1203 MAF
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Characterization and archive specimens of the brick and mortar were

prepared as follows:

1.  Slabs of each brick were sliced off with a diamond cutting wheel.

2.  Several of these were crushed to -100 mesh (<150 um) for chemical

and x-ray diffraction analysis.

3.  Other brick samples were joined together with appropriate mortars

according to mortar preparation instructions supplied by the manu-

facturer and then dried and fired in air at 1375'C (2500'F) for

periods up to 115 hr to evaluate phase and structural changes in

a clean atmosphere.  These were then analyzed by ceramographic,

microprobe, and scanning electron microscopic (SEM) techniques.

4.  Slabs of mortar were cast, dried, and fired along with the brick

slabs.  These were also analyzed by chemical and x-ray diffraction

analyses.

The brick slab specimens of HAB were joined with mortar PBM, while

brick slab specimens MBB were joined with mortar MBM in step 3.

The fiber specimens were prepared as follows:

1.  A 2.5 cm-wide (1 in.) strip was cut from the roll blanket and cut

into cubes.

2.  Some of these cubes were stored as archives, and some submitted

for x-ray diffraction and SEM analysis.

3.  Others were heat treated for long times in air with the brick

slabs.  Some of these were subsequently submitted for x-ray dif-

fraction and SEM evaluation, chemical analysis, or ceramographic

or microprobe examination. Others were retained as archives.

Test Specimens

Two standard size brick of type HAB were joined together with a

thin layer of PBM, dried and fired 8 hr at 1375'C (2500'F) in air.  The

resulting composite specimen is shown in Fig. 3.  Similarly, two standard

MBB brick were joined with MBM mortar (Fig. 4).

The fiber specimens were prepared as follows. Strips 11.4 cm long

(4.5 in.) by 2.5 cm thick (1 in.) by 2.5 cm wide (1 in.) were cut from
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the roll blanket and joined to a commercial 99% A1203 standard brick
*

with an air-setting Zr02-base cement. This cement was chosen since

it would be unlikely to react with the fibers at the test temperatures

and would form a strong bond.  Fiber strips covered both 11.4-cm

(4.5-in.) by 23-cm (9-in.) faces of the bricks.  These specimens are

shown in Figs. 5 and 6.

DESCRIPTION OF TEST

Specimen Arrangement

To support the test specimens, a platform of 99% A1203 brick was

assembled 1.8 m (6 ft) from the burner along its axis to a height which

was just below the central axis of the chamber. The brick and mortar

composite specimens were placed cn this platform adjacent to each other.

The fiber specimens were then placed on top of these so that all speci-
mens had an area facing the burner and an equal area facing away from

the flame.  The test specimen arrangement is shown schematically in

Fig. 7.

Fuel Oil

A domestic No. 6 residual fuel oil was purchased locally,t which

had been refined from a Kentucky crude oil.  Samples delivered on

separate dates were drawn from the tank and analyzed for sulfur and

metallic impurities by spark source mass spectrometry (SSMS) and atomic

absorption spectroscopy. Results are given in Table 2. The elemental

values for the SSMS technique are expected to be in the range of one-

half to two times the true value based on other analytical experience.

*
Zircar Zirconia Cement, an Y203-stabilized zirconia cement,

Zircar Products, Inc., Florida, N.Y.

t
Petroleum Recycling Corporation, Knoxville, Tenn.
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Table 2. Impurity Content of Domestic Residual Oil
Used in RTF Test 1

Concentration (wt ppm)

b
Element SSMSa Sample 1 SSMS Sample 2 AAS  Sample 3

Si              20                    20              300

Ca               3                   15              520

Fe              30 100 170

Zn              20 250 400

Ni               1                   20               12

V               20                    2               50

S >500 >500 12,100

Pb              20 500 2,200

Na              25                    25               57

Al              20                     3               NDC

Ba >2                   50               NDC

Co 70•2 NDC

Cr >2                    5               NDC

Mg               5                    20               NDe

P                5                    20              470

Sb                                      10                NDe

Sn                                    10               NDe

Sr 0.5                   2               NDC

Ti 0.3 0.7 NDC

 SSMS - Spark source mass spectrometric method.
b
AAS - Atomic absorption spectroscopic method.

eND - Not determined.
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Values for the atomic absorption spectroscopic (AAS) technique are

considered accurate to t5%.

It is apparent from the reported impurity levels that this oil is·

much different from fuels derived from Arabian, Venzuelan, or Caribbean
crudes, which are usually higher in sulfur, vanadium, and sodium. 1,6,7

Impurity contents of crude oils vary widely with location of source

since these impurities derive both from the rock strata associated with

the crude and also the organic matter from which the petroleum is formed.

The Al, Ca, Fe, Mg, Si, and Na elements are associated with rock strata,

while V, Ni, and Zn may be organically derived.  Oils are often blended

at refineries and foreign crudes may frequently be blended with domestic

oils.  For this reason, it is extremely important for a residual oil

user to obtain analyses of this fuel prior to use so that oils contain-

ing high levels of deleterious impurities can be rejected.

Operational Parameters

Thermocouples were inserted into the test panel so that one was

located directly below each of the test brick types with the junction

about 1 mm back from the hot face.  Other thermocouples were placed in

the stack and on the furnace floor and walls to provide additional

information on the temperature distribution within the chamber during

the test.  All thermocouples in the specimen stack indicated tempera-

tures within 10'C (18'F) of each other.  The floor temperature was

lower while the flue gas was considerably hotter.  During this test,

thermocouple outputs were continuously recorded with a strip chart

recorder.  The atmosphere within the chamber was monitored by a flue
*

gas analyzer,  which gave the %02 and combustibles in the stack gas.

The atmosphere was maintained hyper-stoichiometric in oxygen, between

4 and 8% excess, and typically at 6%.

Other parameters monitored were oil line pressure and temperature,

fuel flow rate, atomizing air pressure, and flow rate.

*

Teledyne Model 980 Portable Flue Gas Analyzer, Teledyne Analytical
Instruments, San Gabriel, Calif.
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The run started on 19 April 1977.  Timekeeping commenced and was

recorded when the temperature sensed by the specimen thermocouples

exceeded 1300'C (2370'F).  When a cool-down cycle was in progress, the

oil flow was stopped after reaching about 700'C (1290'F) and natural

gas was burned with air to keep the chamber at 500-7000C (930-1290'F)

and in an oxidizing condition.  This procedure was necessary to provide

for rapid startup on the following cycle.  Also, the oil burner was

unstable at these lower temperatures.

The test was largely uneventful.  A total of 521 hr at temperatures

of 1300-1400'C (2370-2550'F) was accumulated for the specimens.  Sixteen

cycles of heating-holding-cooling were experienced by the samples.

The experiment was terminated 16 June 1977. The panel at this

time is shown in Fig. 8 (flame-side) and Fig. 9 (back-side).

RESULTS OF RTF TEST 1

High Alumina Brick (HAB)

The posttest specimens are illustrated in Figs. 10 and 11.  Cracks

-                which apparently originated at the hot face penetrated into the speci-

mens (Fig. 11).  The major crack is continuous through the mortar layer.

These cracks are apparently due to the thermal cycling aspect of the               1

test as opposed to stress generated by the formation of low density

phases due to impurity reactions.  A planar separation between the

mortar and brick is shown in Fig. 11. This separation was complete

and extended through the specimen through the entire joint.

The color of the brick has changed from white to bluish-black on

the front surface and to a lighter blue on the back side.

The major faces of the specimens were sectioned with a diamond

saw, yielding a plate roughly 6 mm thick (0.25 in.).  This was further

cut into pieces for analysis as illustrated in Fig. 12. Selected por-

tions of reacted brick and mortar were crushed for chemical and x-ray

diffraction analysis. Other specimen pieces were analyzed by SEM,

ceramography, and electron microprobe analysis.
.
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Chemical analyses of the HAB specimen as received and posttest are

-               presented in Table 3.  The analysis was performed by a combination of

wet-chemistry and emission spectroscopy.  The accuracy and precision

for these analyses are not available because only one sample of each

type was analyzed. Further, the posttest values include a significant

portion of unaltered brick material due to the limited extent of the

reaction zone following the 500 hr test.  Thus, the chemical analysis

results serve as general guides to the nature of the impurity pickup

in.the refractories and do no  represent the exact composition of the

reaction zone.  This statement holds for all subsequent chemical analysis

data reported.  Pretest specimens were analyzed simultaneously with the

posttest specimens by the same laboratory.  The data indicate signifi-

cant increases in Fe, Si, Ca, Zn, and Ni contents of the posttest speci-

mens compared with the as-received brick. This was not unexpected

because of the impurity content of the fuel given in Table 2.  Also

apparent is the greater concentration of impurities in the flame-side

face compared with the more protected (back) side.  Later discussion of

the relative flux of impurities from the oil incident on these sample

-               faces will explain this observation.

Identification of the crystalline phases of the reaction zone was

determined by use of x-ray diffraction.  Phases identified in the HAB'

samples are presented in Table 4. The as-received brick consists largely

of corundum and mullite. No free silica or other crystalline phases were

detected.  This technique has a detection limit of the order of 5 wt %.

The difference in major phase content for as-received and posttest

specimens is a spinel phase in the reaction zone.  More definitive infor-

mation about this phase was obtained by scraping the surface of the brick

originally oriented toward the burner, physically separating dark well-

defined crystals from the mass under a stereoscopic microscope.  These

were analyzed by the Debye-Scherrer x-ray technique.  They produced a

diffraction pattern that was indexed as belonging to a cubic crystal

with lattice parameter of 0.813 to 0.816 nm (8.13 to 8.16 A).  The

crystals were observed to be attracted to a magnet.  Thus, we concluded

that this material was an iron-bearing spinel.  Hercynite (FeA1204) has
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Table 3. Chemical Analysis Results From HAB Specimens

Content (wt %)                                 -
Element

(as oxide equiv.) As-Received Back-Side Front-Side

L.O.I. 0.05 0.05 0.23

A1203 90.15 85.89 81.74

Fe2O3 O.08 O.70 1.85

Si02 9.05 10.80 11.20

CaO 0.06 0.21 1.01

Ti02 0.34 0.45 0.77

P205 0.05 0.09 0.25

Na20 0.10 0.30 0.20

MgO 0.001 0.001 0.14

MnO 0.010 0.05 0.08

ZnO 0.001 1.0 2.0

NiO 0.003 0.30 0.50

Cr203 0.03 0.05 0.10

CUO 0.01 0.01 0.01

PbO 0.001 0.01 0.01

M003 o.oola O.Oola o.oola

V205 O.Oola o.oola 0.002

8203 0.003 0.003 0.005

BaO 0.00la 0.00la 0.002

Ag20 0.003 0.003 0.003

K20 0.07 0.09 0.10

Total 100.02 100.01 100.20

a
Not detected. Number is minimum limit of detection.
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Table 4.  Results of X-Ray Diffraction Analysis of

(HAB) Specimens

Phases Present and Amounts

Specimen Type Major Medium Minor

As-Received a-A1203 Mullite

Back-Side, Posttest a-A1203 Mullite Spinel

Front-Side, Posttest a-A1203 Mullite Spinel, Others

a lattice spacing of 0.815 nm (8.15 A), and based on this evidence, we

concluded that the spinel phase is hercynite.  However, ceramographic,

SEM, and microprobe evidence discussed later will show that hercynite

is a minor phase constituent of the total reaction zone. Further, the

microprobe and SEM x-ray energy dispersive analysis of crystals on the

hot face of the specimens show the presence of a major crystalline

phase containing, in addition to oxygen, large amounts of Zn, Al, and Fe,

along with minor amounts of Na and Ni. Therefore these crystals are

probably an iron-zinc-aluminum oxide spinel with a lattice spacing near

that of hercynite.  The lattice spacing of ZnFe204 is 0.844 nm whereas

that of ZnA12O4 is 0.808 nm.  A solid solution between these members to

yield a Zn(Al,Fe)204 spinel would possess a lattice spacing of 0.813 to

0.815 nm if the spinel has a composition of approximately Zn(Feo.45All.55)04

to Zn(Feo.27All.73)04 and if the lattice parameter is a linear function of

the Fe/Al ratio.  This is known to be the case8 for the analog compound

Ni(Fe,Al)204·  Another tentative explanation could be that this phase was

(Zn,Fe)A1204, although this assumption would not provide the lattice

parameter observed of 0.813 to 0.816 nm unless the Zn content was ex-

tremely low, and this does not agree with the chemical analysis results.

The lattice parameter observed could also possibly be produced by a

phase possessing a distribution of Fe2+ - Fe 3+ on both octahedral and

tetrahedral sites as (Zn,Fe)(Al,Fe)204·  Without further confirmatory

data, we will state that the slag layer contains an iron-zinc-aluminum

spinel, perhaps Zn(Fe,Al)204 and hercynite (FeA1204)·
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Other diffraction lines not attributable to any known phase were

observed in the x-ray diffraction pattern of the material from the

flame-side specimen.  Microprobe examination of this region showed

existence of an oxide phase containing Al, Si, Ca, Fe, Zn, and Ti in

close proximity to the hercynite crystals.  This material typically had

a glassy appearance.

Scanning electron microscopy (SEM) in combination with energy-

dispersive x-ray analysis (EDX) of pre- and posttest specimens provided

additional detail of the microstructures. A fracture surface through

a pretest sample containing HAB brick and the PBM mortar was examined.

Two major crystalline features were found in the brick, and these

(mullite and alumina) are depicted in Fig. 13.  Basically the micro-

structure of the HAB brick consists of very fine-grained mullite-bonded

sintered A1203 aggregate.  This refractory was similarly fractured

perpendicular to the slag plane and examined after completion of the

test.  Fig. 14(a) illustrates the surface of the slag near the fracture.

It consists of a dense underlayer above which is located a blocky sur-

face.  At higher magnification [Fig. 14(b)] one of these blocky features

is seen to be capped by a mound of material, which is shown in side view

in Fig. 14(c).  EDX analysis of the mound yields the elements, in addi-

tion to oxygen, Al, Si, Ca, Fe, and Zn in major amounts with Mn, Ti, Ni,

and Pb also present. The shape of these mounds indicates that this

material was a liquid at the test temperature.  The material below the

mound appears to be a highly developed (111) plane, probably of a cubic

oxide spinel, containing major amounts of Fe, Al, and Zn and minor Na

and Ni.  These two features, the mounds and underlying crystals, are

common to both faces of all the posttest specimens investigated.

Figure 15 shows an area on the fracture surface encompassing the

slag-to-brick region.  Fig. 15(a) at low magnification illustrates the

location relative to the sample surface which faced the burner. EDX

measurements at selected locations on this area, Figs. 15(b),(c), show

that the material contains several phases. Residual alumina grains

are predominant near EDX locations 2 and 4 along with some Fe and Zn.

Spinel crystals are predominant in the area near EDX point 1, while a
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Fig. 13. Scanning Electron Micrograph of Pretest HAB Specimen.
A:  A1203 grains. M:  mullite matrix. (a) Area containing alumina

-                grains and mullite matrix. 100x. EDX shows only Al and Si. (b) Alumina
grain. 1000x. EDX shows only Al. (c) Matrix area. 10,00Ox. Area
scan EDX shows Al and Si.
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(c) Side view of "mound" showing smoothly curved surface. 3000xo
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Fig. 15. Scanning Electron Micrograph of HAB Specimen Showing Cross
Section of Slag Zone. (a) Fracture area near specimen front face. 1000x.

(b) Selected area at 3000x. EDX at location 1:  Al, Fe, Zn major; Na, Ni
minor. EDX at location 2: Al major; Fe, Zn minor. EDX at location 3:

Al, Fe, Zn major; Na, Si, Ca, Mn, Ni minor. (c) Selected area from
different direction at 3000x. EDX at location 4:  Al major, Fe, Zn minor.
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silica-bearing matrix is predominant in location 3. Characteristics

of these regions are also illustrated in polished sections.

A polished section of an as-received HAB specimen is shown in

Fig. 16.  The microstructure consists of large, sintered A1203 aggre-

gates bonded together with mullite.  Posttest specimens were similarly

examined after sectioning normal to the hot face. Figure 17 is a series

of micrographs illustrating an HAB brick specimen at the slag surface.

In Fig. 17(a) the relationship of the spinel-phase crystals to the

brick microstructure is shown clearly.  A distinct zone in the brick

has been converted to the iron-zinc-aluminum spinel discussed previously.

The phase of darker color mixed in with these crystals is high in Al,

Si, and Ca with additional smaller amounts of Fe, Zn, and Ti.  Figure

17(c) illustrates a grain of A1203 which contains a contiguous reaction

zone.  Microprobe results for this region show major detectable elements

to be Fe, Al, and Zn with Na and Ni as minor elements in the crystals

at location 1. The mound at location 2 and the material at location 3

in the spinel are calcium aluminosilicate glass.  Within the porous

aggregate, crystals consist largely of detectable Al with minor amounts

of Fe and Zn at location 4.

Behind the actual slag layer, Fig. 17(b), crystals of hercynite

are observed at location 5. In the matrix surrounding these (location

6), Al, Si, Ca, Fe, Ti, and Zn were detected in ratios similar to the

matrix at location 3, Fig. 17(c).

A crystalline matrix phase located between the alumina aggregates
is not observed near the slag surface where it is glassy [see Fig. 17(b)]

but only deeper within the brick where it is no longer primarily mullite.
This matrix contains three phases as shown in Fig. 17(d).  Microprobe

evaluation of these revealed that the main difference between phase 1

and phase 2 was the presence of a large amount of Ca and a higher Si/Al

ratio in phase 1. Both of these contained measurable concentrations of

iron impurity.  Phase identification of the small bright spots (phase 3)
could not be accomplished unambiguously and their identity is presently
unknown.



31

p                     M                      A

„      1. *.., ..

f.
*                                                                           4

r                                         4       .,         1%   i        .6.
I                            , f                                                                                                                                                                                                                                       4                                      '                                                              i.    . 44:      .

-.

/        4.- V.

4.           : .I. 9M       «.

S.

S                9

V:.1
.e

*. .. t .51:- * '
'.      4.-    .                 4

.-'..

*249     : ....
Tigge/'SE#fif, f

 0 00     7
'.                                     .5

-   6..."          c.
=

.* 41.*„.

Fig. 16. Polished Section of HAB Specimen. As received, 100x.
Large central agglomerate is alumina, darker matrix is mullite. Black
areas are porosity. A: alumina; M:  mullite; P: porosity.



32

Z                                G

"---S        : 4     671 -"f--'li 4..... - . .                  t
 .TA   44    *BNWHzA '... 6            - 4   -"t:     . , S

Y-149316                         .  -    -                                                                                  ·-      , . - U  5, » .0    Y-149317,  D j- +
-.     . a     0 6,        1

.
5  t.   .  A., .       51

.       I   -      . .:
1 .:t

'

.

3:i«     I    .'.'. : I.               -  C
:   .A      j r

6 -7 4-lf'* u
:    -'*7' 7 .Ilt - V5

#--   it·.-..7       -·        ·  Ar

i      '1..."4.1_„ -, » 71...art- **'a ..1:G..'04:---f .  SURFACE ..·' /:....':1.«i:..                          .  1      .. . ...   U.   :   6   -  I   '1

:             ·    "   "i.:P·.1 ,   '4 4     '...,·04:,=ki :i.(.,. '. .+1 ,                               ·                                           .-··          _
'

-;  . 1 :           .  :    .' 511/  .S>'      .-r-'1/

r..kit,©.410/4 14;f/l&#FA+67't i» riti j '                           -              ..r.LE      ,«   I .
.1. 7 r                  ®  1                      1   43..                   61 -

 ,; Oes:;Itt.6/.5 r.u ..,„......,
., ' 431#01 f.'· :4                                    ' -  I   ".    ...Ii.  :.....r.        .,  =-- .... r .    4           _1,            4:21:   S     ,

Yf,;0:;   " f.:    f.  .t: .f:....,r
4     .        ..1    ....                                               :                                                                                                                                  a                                    /                  1..     r.. 29* .......:.:...7-0.f   .

·.:      .9 *3//  - -':'*."                .     .   '
2...i ».4  4 :'20.3:4034.j'·, :

:·,r .·-*ti,&,s,:2'39:"    ,:**'.i ·/ , :'.::'1.-.-*..1*r . fira{'- 1
 111 r  192- :'.   9* 5»,4»« .  '.i:*.. 121"CS:2'Y'  .,  il        -- .     .                               'f.

ip#   ....                  *7    11

«
.,4      -                                                     4                                                                            :         i g

51 ft·.r.r#-A- «:
'/   C , 3.0.     '9.- T   .  -   -- ....       r   J f .  4     :   .   ;1 49.    0         ,      /

..:' t.  1,z:nrk >.4.0 -+Lf :.  >::.  1'..T..A  ...:-f:4.-:rt:...,1(j  v...  e:e:,2.-2   2 .  :.1 :- ..:t...Li.-i. .  ." · .,:1. .., t.  i..           h ,  1.  0     . \'%

-A.-fifi'*»-1:.   ...\11·,•.6 + .....E.... :'..  4 ......  ....   ...' 4, -'  . .... >..1:.-  .-:... .
, -  -lit -·1 1..,    90       .. f,..rp       i

ca),1: ....1<  AL:     f£:2 ii, 2  :1-7,9, f ,1,t:.· .,o- -120,Ji  2 .isp#J  -t I{ --'  :-1  ...                                                                                                  4
--'5 /--g.-$ -A _.- .. -/.....A._-_--- _- - (b)  *61  ,     ,    A- ' *24   :     5.-: 2 i  ·E 1 -// 

M                 H
Z               G

---I."-1.-=-:" =-=- -- i--'·--ly-149319 . -„„                                                                                                                   -' Y-149321
..   ..   -      '.      .   ':t»':„ ·» 45...:,AH'Et.4,UM,*5:*,1 UlpfV     , 1 -149320 --   --=p

»tf,; 1:; , ..#-9  li*·'3efik   7 ,1 06:4== 7                                                         + %
'I...9.....Sik '.....5:...:/Il·  Z 3'/'...". ·%8.W-*" I  .:214,  ·,31,   ·-1                                                    ·'                                                                 '.,11.0

...,3....I.t» .43%<r.#T#V#VM#b.'    5*: ef#,«.4*„ 44,  A'r...........+9  F.nueJ.14..Hrwfvp'   pk#li'& 0K'.  ...,       .':„., . ,--c=

/.1/.EL  ir;-:-1, e» »03=«U k#..    -   ·'4:.      '.          ·' -3A. I 1. ·  5 -ra.-

Urk 9.. ,  ...7'0.-   1
i, r    .  ::4,            .          .7

- . . e            1 ...

3           · e 0 -2 E.J.    4
1    .0. H

-·• '                              -7      -C     "   *A

.0-.    11/, 44                       .               .               1    .                                                                                                 e                                                                                                                                                                         1

.                                                                                   i
0/    0 <2(-5    4/b      43  L    6       .1 12:,ft' I e-  <.0 . r                          1

+                                                                                      (2
. : . %      1.r6)          4         .

.

:  s     '    '      .1MP   7,*f   111 84'. "  , 1
f..   4%    . 8

-

.         4   2                                              '. '   /f'· ...1,42.':41    1.:.f.I_.*-S.'                       11

· ·                  ;       °  Ir,            '1 . ' 2222&2(*t ,

1

--11 MATRIX PHASE 1

1,:5,   96   0,>   .. 400  . . .  '347 0 '1 *-9-'.=.1'*.-3,1 . . r                      :.0     .   0 0-6 .*EA   -   I                                                                 .  4
599  :...   lie ' 00660'   . 1. D - 59"ir 603t.„*it: 2         1,                       3, *----1.-I/--t, MATRIX PHASE 2
6.

4 --I
MATRIX PHASE 3

'3 *--   '-,  _*fl,1  .·- -' d.  1., 1. '8.-__-- -   --                                                                                           -(d)

A

Fig. 17.  Polished Sections of HAB Specimens After Exposure in RTF Test I. Z:  Zn-Fe-Al spinel; G: glass; H: hercynite; A: A1203; M: matrix
silicate. (a) Hot face of flame-side specimen.  Note distinct layer of Zn-Fe-Al spinel crystals on surface. 100x. (b) Selected area from (a), 500x,
showing hercynite crystals in fine-grained matrix. (c) Partially converted A12O3 grain showing Zn-Fe-Al spinel phase at slag surface. 500x. (d) Matrix
area of brick about 6 mm (1/4 in.) from hot face.  Matrix consists of at least three phases. 500x.
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Phosphate-Bonded Mortar (PBM)

The characteristics of pre- and posttest mortar samples were

similar to those of the brick.  Chemical analysis results are presented

in Table 5. These were obtained using an emission spectrograph tech-

nique, which can have some inaccuracy at high concentrations such as

for the case of Al and Si in these samples. Changes observed after

Test 1 include significant loss of phosphorus from the original mortar

composition as well as increases in the content of Fe, Ca, Zn, and Ni,

for example. Since phosphorus is a major element in the bonding phase

in this material, this loss of phosphorus should have a pronounced

effect on the mortar's strength.

Data presented in Table 6 show the effect of the loss of P, as the

AlP04 bonding phase decreases in concentration.  The only detectable

new phases related to fuel oil impurities are the spinel(s) described

previously in the discussion of the HAB specimens.

SEM results showed the very porous nature of the pretest fired

mortar specimens [Fig. 18(c)].  An area scan EDX analysis of the entire

field of Fig. 18(a) indicated large Al, medium Si, and low Fe and Ti

contents.  Phosphorus could not be separately analyzed as its x-ray

peak was masked by that from the gold film previously evaporated onto

the specimen surface.

Fractured posttest specimens were also examined, and Figs. 19(a)-

(c) illustrate the nature of the reaction zone. Several features are

similar to those described for the HAB specimens, that is, a dense

layer of oxide crystals containing major amounts of Fe, Zn, and Al and

minor amounts of Na and Ni.  These crystals directly underlie mounds

containing the above elements plus large amounts of Ca and Si and a

smaller amount of Ti.  Deeper in the mortar the phase assemblage is

quite different, as shown in Figs. 19(d)-(f).  At about 4 mm (0.15 in.)

depth from the hot face, the mortar aggregates are larger and denser.

These consist of grains of A1203 and what appears to be fine secondary

mullite [Fig. 19(f)].  EDX analysis of the crystal in the center of

Fig. 19(f) indicated high concentration of Al, Si, and Ti with smaller
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Table 5.  Chemical Analysis Results from PBM Specimens

Content (wt %)
Element

(as oxide equiv.) Pretesta Back-Side Front-Side

A1203 Major Major Major

Fe2O3 0.50 0.50 1.0

Si02 10.0 10.0 10.0

CaO 0.10 0.25 1.0

Ti02 2.0 1.5 1.5

P205 5.0 0.15 0.15

Na20 0.10             c               c

MgO 0.10 0.30 1.0

MnO 0.03 0.05 0.10
b

ZnO 0.001 0.10 1.0

NiO 0.01 0.05 O.10

Cr203 0.10 0.15 0.15

CUO 0.01 0.01 0.01

PbO 0.002 0.05 0.05

V2O5 0.01 0.001 0.002

8203 0.003 0.10 0.30

BaO 0.001 O.001 O.001
b               b                b

Ag20 0.002 0.005 O.003

K2O 0.10 0.10 0.30
b               b                b

Sn02 0.001 0.001 0.001

COO 0.001 0.01 0.03

SrO 0.003 0.005 0.005

 Mixed with H20, dried, fired 20 hr in air at 1375'C (2500'F).
b
Not detected. Number is minimum limit of detection.

e
Masked by Zn interference.
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Table 6.  Results of X-Ray Diffraction Analysis
of PBM Specimens

Phases Present and Amount

Specimen Type Major Minor

Heated 115 hr in air
at 13750C (25000F) AlPO4, a-A12O3, mullite

Back-Side, Posttest a-A1203, mullite Spinel

Front-Side, Posttest a-A1203, mullite Spinel

amounts of Fe and Zn.  Analysis of a mortar specimen originally located

06  mm  (1/4  in.)  from  the  hot face indicated a significant concentration

of Fe from the fuel oil.

Posttest ceramographic and microprobe examination showed phase con-

tents similar to those determined for the HAB samples.  Figure 20(a)

illustrates the highly porous nature of the mortar and a distinct sur-

face layer.  The crystal phase at the surface is the Fe-Zn-Al spinel

discussed previously, surrounded by a darker matrix containing high

concentrations of Al and Si, medium concentrations of Ca, Fe, and Zn,

and small levels of Ti and S.  Just behind this layer [Fig. 20(b)] there

was an area containing blocky hercynite crystals in a matrix similar in

composition to the matrix surrounding the Fe-Zn-Al spinel.  The bright

areas in Fig. 20(b) are possibly an A1203 Ti02 - Fe203 Ti02 (ATFT) phase

similar to that observed in an 85% A1203 brick by Crouch.9  The crystals

were not present in pretest samples.  Crystalline siliceous phases are

only observed in areas deeper in the mortar and adjacent to the brick.

Mullite-Based Brick (MBB)

The test specimens of MBB are pictured in Fig. 21.  During Test 1,

the color changed from its original cream to dark blue-black on the

front surface and brown on the back surface. The vertical cracks

generated during the test ran completely through these brick and were
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Fig. 18.  Pretest Scanning Electron Micrographs of PBM Mortar-Brick
Joint. (a) High porosity shown at 55x. (b) and (c) Same area at 300 and
3000x show heterogeneous crystalline nature of mortar.
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most probably produced by thermal stresses.  A horizontal crack between

the mortar and top brick similarly extended completely through the sec-

tion.  The brick was sectioned similarly to the HAB sample, and the

specimens were analyzed by procedures described previously.

Results of chemical analyses are presented in Table 7.  The Fe203,

Ti02, and Na20 equivalent levels are higher in this refractory than in

the HAB specimens. After completion of the test, the Fe, Ca, Na, Mg,

Zn, Ni, and Pb contents have increased significantly.  All of these

elements were present in the fuel oil (Table 2).

X-ray diffraction results are presented in Table 8. The as-received

brick is largely mullite with a small amount of residual cristobalite

plus a glass phase not detectable by x-ray diffraction.  After the test

exposure, the only new crystalline phase observed is a spinel type.

The microstructure of the as-received brick consists of large

aggregates of mullite crystals bonded by silicate glass.  At low magni-

fication, these appear in large blocks surrounded by an essentially

continuous void [Fig. 22(a)].  At higher magnification needles of

mullite are observed [Figs. 22(b),(c)] as expected.  Also visible are

conchoidal fractures in the cristobalite [Fig. 22(d)].  EDX analysis

of the smooth region in the field of Fig. 22(d) indicated only Si as

expected for the case of the cristobalite polymorph of Si02·  The

needle-shaped crystals such as those shown in Fig. 22(b) contain

detectable Al and Si with minor Ti and Fe.  Adjacent to these crystals,

the glassy or amorphous area between these crystals contained Al and

Si as major detectable elements plus K, Ti, and Fe.

SEM derived pictures of the hot face surface of a posttest speci-

men are shown in Fig. 23.  Like the HAB specimen, the actual surface

consists of a dense layer. The fracture area and surface are shown in

Fig. 23(a), and at higher magnification in Fig. 23(b).  The presence

of mounds is also observed. EDX shows these mounds to contain Al, Si,

Ca, Fe, and Zn along with minor Ti.  The faceted spinel crystals

previously observed in HAB specimens are not present in this refractory.

Figure 24(a) illustrates the thickness of a slag layer on the MBB speci-

mens after the test.  In Fig. 24(b) located just below the slag layer
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Table 7.  Chemical Analysis Results from MBB Specimens

Content (wt %)
Element

(as oxide equiv.) As-Received Back-Side Front-Side

L.O. I. 0.30 0.30 0.31

A1203 46.11 44.95 44.01

Fe203 1.04 1.07 2.60

SiO2 50.35 50.51 48.04

CaO 0.015 0.11 1.28

Ti02 1.78 1.78 1.67

P205 O.loa O.loa O. loa

Na20 0.33 1.01 1.21

MgO 0.001 0.001 0.29

MnO 0.005 0.02 0.05

ZnO 0.002 0.05 0.10

NiO 0.01 0.05 0.30

Cr203 0.05 0.05 0.05

CUO 0.003 0.05 0.10

PbO 0.003 0.05 0.10

M003 o.oola o.oola o.oola

V2O5 0.03 0.03 0.03

8203 0.003 0.003 0.003

BaO 0.002 0.002 0.02

Ag20 0.003 0.002 0.0005

K20 0.20 0.25 0.21

SnO2 0.001 O.Oola 0.001

COO 0.002 0.002 0.005

Total 100.24 100.25 100.29

 Not detected.  Number is minimum limit of detection.
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Table 8.  Results of X-Ray Diffraction Analysis
of MBB Specimens

Phases Present and Amounts

Specimen Type Major Medium Minor

As-Received Mullite Cristobalite

Back-Side, Posttest Mullite Cristobalite,
Spinel

Front-Side, Posttest Mullite Cristobalite,
Spinel

a void is shown, which was found to be lined with mullite-shaped

crystals consisting of Al, Si, Ti, Fe, and Zn.

Ceramographic examination and electron microprobe results sup-

ported conclusions derived from the SEM data.  Fig. 25(a) is a low

magnification photograph of a polished section through the pretest

MBB brick and MBM mortar.  The large mullite aggregates and surrounding

cracks are readily apparent.  At higher magnification, in Figs. 25(b)

and (c), the nature of the mullite and the cristobalite phase is illus-

trated.  Figure 26 illustrates the microstructure of the MBB specimen

which faced the burner and includes the slag surface. The oxide

crystals containing high levels of Fe, Zn, and Al observed in other

specimens were present. The matrix material contains the same elements

as observed for other specimens, notably high Al and Si, medium Ca and

Fe, and small Zn and S.  The highly reflective needle-shaped crystals

apparent in Fig. 26(a) were unique to the MBB specimens.  These crystals

contain the same elements as the matrix plus a significant amount of Ti.

They are present in insufficient quantity to analyze by x-ray diffraction.

Fig. 26(b) is of the slag area immediately behind the area shown in Fig.

26(a).  It contains a light gray phase containing major Al and Si and

is therefore probably mullite.  Lower concentrations of Fe, Ti, and Zn

were also detected. The matrix material in this sample appears to be a

glass and contains major concentrations of Al and Si, plus lesser levels
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Fig. 26.  MBB and Slag Layer Near Hot Face. 500x. Z:  Zn-Fe-Al

spinel; G: glass; M: mullite. (a) Slag layer containing spinel crystals,
silicious matrix, and fibrous inclusions. (b) Slag layer just behind
(a), showing contaminated mullite crystals, matrix, and inclusions.
(c) Brick just behind (b), showing mullite and matrix.  Compare with
Fig. 25(b).
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of Ca, Fe, Ti, and S. The bright phase contains the same elements as

the needle-shaped crystals seen in Fig. 26(a).  Going back from the

slag into the brick, these disappear [see Fig. 26(c) which shows a

location just below the distinct slag layer].

Mullite-Based Mortar (MBM) Specimens

Results of the chemical analyses for the mortar specimens are pre-

sented in Table 9.  Significant increases in the Ca, Fe, Mg, Mn, Zn,

Ni, and Pb contents are attributable to fuel oil impurities.  X-ray

diffraction results of the reaction zone in Table 10 show that the

original a-A1203 and mullite phases are present after testing along

with the new spinel phases described previously.

The mortar microstructure consists of aggregates of mullite and

corundum grains.  These are visible in Fig. 27(a), along with the large                   I

void volume fraction.  At very high magnification, small needle-shaped

mullite crystals can be seen in the fracture surface [Fig. 27(b)].

These needles contain significant amounts of Al and Si, and smaller

amounts of Fe, K, Ca, and Ti.

After exposure to the residual oil combustion, the surface is

covered with a dense slag containing blocky Fe-Zn-Al spinel crystals

in a glassy matrix as described previously for the other materials.  A

mass of slag penetrates the mortar joint more deeply than it penetrates

the brick, due at least partially to its higher porosity.  Within this

slag-filled area, voids are lined with well developed mullite crystals

(Fig. 28).  EDX analysis of one of the crystals in Fig. 28(b) shows

the presence of major quantities of Al and Si with minor amounts of

Ca, Ti, Fe, and Zn.

The microstructure of the pretest mortar as revealed by ceramography

is shown in Fig. 29.  This material is multiphase, containing aggregates

of fine mullite in a very finely grained or glassy matrix, larger grains

of corundum (large light areas in the figure), and porosity (black).

After Test 1, the MBM specimens shown in Fig. 30 possess a highly

heterogeneous microstructure.  The slag surface contains Zn-Fe-Al spinel
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Fig. 27. Scanning Electron Micrographs of Pretest MBM Specimens.
(a) Fracture surface through mortar shows aggregates of mullite and
a-A1203 along with voids. 100x. (b) Same area at 300Ox, showing very

fine mullite crystals.
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Table 9. Chemical Analysis Results from MBM Specimens

Contents (wt %)                                -

Element
(as oxide equiv.) Pretesta Back-Side Front-Side

A1203 Major Major Major

Fe203 0.75 0.75 1.0

Si02 Major Major Major

CaO 0.50 1.0 3.0

Ti02                                                          b
2.0 3.0 3.0

b                    b
P205 0.10 0.10 0.10

Na20 3.0 2.0                 c

MgO 0.20 0.50 1.0

MnO 0.01 0.05 0.10

ZnO 0.001 0.10 1.0

NiO 0.03 0.05 0.10

Cr203 0.15 0.10 0.15

CUO 0.01 0.02 0.03

PbO 0.002 O.10 O.15

V205 0.05 0.05 0.08

8203 0.005 0.30 O.50
b

BaO 0.001 O.002 O.10

Ag20 0.003 0.001 0.002

K2O 0.20 0.50 0.50

Sn02 0.001 0.001 0.001

COO 0.002 0.01 0.03

SrO 0.002 0.005 0.005

 Mixed with H2O, dried, fired 115 hr in air at 1375'C (2500'F).
b
Not detected. Number is minimum limit of detection.

cMasked by Zn interference.
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Table 10.  Results of X-Ray Diffraction Analysis
of MBM Specimens

Phases Present and Amounts

Specimen Type Major Medium Minor

Heated In Air 115 hr at Mullite a-A1203
13750C (2500'F)

Back-Side, Posttest Mullite a-A1203, spinel

Front-Side, Posttest Mullite a-A1203, spinal

crystals (location 1) within a glassy matrix (location 2).  The crystal

at location 3 is hercynite and is adjacent to needle-shaped crystals.

Qualitatively, these latter crystals contain relatively high concentra-

tions of Al and Si, with lesser amounts of Ca, Zn, Ti, and S. The

bright phase at location 4 contained largely Al and Si, with lesser

amounts of Ca, Fe, Zn, S, K, and Ti. An aggregate of alumina crystals

is also visible in Fig. 30(c).  The light gray crystals within this

aggregate contain Al and less Fe, probably in a solid solution but

possible as hercynite.  The darker matrix adjacent to the crystals con-

tains Al and Si as the major detectable elements with lesser quantities

of Fe and Ti.

High-Alumina Fiber Insulation (HAF)

The nominally 95% A1203 - 5% Si02 fiber insulation specimens are

shown in Fig. 31 in the posttest condition and still mounted to the

supporting brick.  The color of the insulation ranged from dark bluish-

black on the surface oriented toward the burner, to dark brown on the

surface facing away from the burner.  A significant amount of shrinkage

has obviously occurred on both sides (compare with Fig. 5) as a result

-                of the combustion product and heat exposure. The front surface has

lost a large portion of material, probably due at least in part to poor

bonding of the fibers to the supporting refractory brick.  The gross
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Fig. 28. SEM Micrographs of MBM Specimen, Post Test. (a) Low
magnification photograph of fracture surface through MBB brick and MBM

mortar shows dense matrix, voids containing needle crystals (mullite?).
(b) Same area at higher magnification shows needle shaped crystals.
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lateral shrinkage may be partly due to a lack of compression in the

fibers when they were originally bonded to the brick.  A mounting tech-

nique involving increased edge compression for the fibers may reduce

some of these edge effects.

Chemical analysis results are presented in Table 11. Significant

increases in the concentration of Fe, Si, Ca, Mg, Mn, Zn, Ni, and Cr

occurred during the test.  The phosphorus content increased signifi-

cantly in the flame-side specimen.  This result was confirmed with

microprobe analyses.

X-ray diffraction examination (Table 12) indicated that the initial

fibers consisted of metastable aluminas which transformed to a-A1203

upon heating to high temperatures.  After exposure to the combustion

products, the a-A1203 was still present in addition to Fe-Zn-Al and

Fe-Al spinels.

SEM examination of fibers as-received and heated to 1375'C (2500'F)

indicated a pronounced growth of alumina crystals within the fibers as

illustrated in Fig. 32.  Also, appreciable sintering occurred at high

temperature with fibers typically becoming bonded together as shown in

Fig. 32(c),(d).  This sintering greatly reduced the resiliency of the

fiber strips and made them quite brittle.

Exposure to the combustion atmosphere during the test resulted in

the fiber surface being covered with a slag which penetrated quite

deeply into the insulation.  Figure 33 illustrates the nature of this

slag as viewed directly on the hot face. In this case, the reaction

layer is not completely dense as in the dense brick specimens.  The

layer contains definite crystal forms which are intergrown and bonded

to each other.  Apparently the very low initial silica content of this

fibrous insulation retards formation of the siliceous matrix observed

to be common in the brick specimen, and consequently there was no

physical barrier to retard impurity penetration into the insulation.

An inclined view of this layer and the underlying fibers (Fig. 34)

shows a well developed crystal which contains Al, Fe, and Zn as

major detectable elements, with minor amounts of Na and Ni. This

cyrstal appears to be the cubic Fe-Zn-Al spinel discussed previously
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Table 11.  Chemical Analysis Results from HAF Specimens

Contents (wt %)
Element

(as oxide equiv.) Pretesta Back-Side Front-Side

L.O.I. 0.09 0.24 0.33

A1203 97.35 90.54 73.45

Fe203 0.060 2.79 5.69

Si02 1.50 2.10 4.35

CaO 0.16 0.70 6.60

Ti02 0.46 0.58 0.92

P205 0.16 0.26 4.08

Na20 0.13 0.25 0.09

MgO 0.001 0.07 0.72

MnO 0.03 0.12 0.21

ZnO 0.001 2.0 3.0

NiO 0.002 0.30 0.50

Cr203 0.05 0.20 0.20

CUO 0.005 0.01 0.01
b

PbO 0.001 0.003 0.003
b                  b

M003                                      b
0.005 0.001 0.001

b
V205 0.001 0.001 0.003

b                  b
B203 0.003 0.003 0.003

b
BaO 0.001 0.002 0.10

Ag2O 0.001 O.0005 0.0005

Total 100.01 100.17 100.26

 Heated 115 hr in air at 1375'C (2500'F).
b
Not detected. Number is minimum limit of detection.
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Table 12.  Results of X-Ray Diffraction Analysis
of HAF Specimens

Phases Present and Amounts

Specimen Type Major Minor

As-Received Metastable Aluminas,
a-, 8-, X-, A1203

Heated 115 hr In Air At
13750C (2500°F) a-A1203

Back-Side, Posttest a-A1203 Spinel

Front-Side, Posttest a-A1203 Spinel

for other test materials.  Also apparent in this figure is the prevalent

coating of the individual fibers with slag-type deposits.

Characterization of the coating on the fibers is difficult, and its

composition varies with depth in the sample.  The hot face layer is
largely converted to spinel, while a few millimeters into the insulation

glassy and crystalline phases of other compositions appear.  Fig. 35

shows a heavily coated group of fibers and shows a glassy area [left

side, Fig. 35(c)] which EDX showed to contain large amounts of Al, Si,

and Ca.  The elongated crystals on the right side of the group were

rich in Al with a minor level of Ca.

Ceramography and microprobe examination verified the SEM and EDX

results.  Figure 36 illustrates the hot face region of the specimen

facing the burner.  No residual fibers are observed within 1000 um of

the deposit surface. The appearance of this surface is similar to

those described earlier with Fe-Zn-Al spinel crystals containing minor

Na and Ni concentrations [Fig. 36(b), location 1] within a glassy matrix

(location 2).  However, the nature of the matrix material is quite

different in this instance.  At location 2 the microprobe results show

major Ca and P concentrations plus minor levels of Fe and Zn.  At other

locations this matrix contained varying amounts of Ca, P, and Si or Al,

P, Ca, Fe, Zn, and Ni.  This matrix thus was a highly variable composi-

tion of calcium phosphate glass incorporating Si, Al, Fe, and Zn into

its structure.
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Fig. 33. Scanning Electron Micrographs of Slag Layer on HAF Flame-Side Post-Test Specimens.
(a) Slag surface showing high porous layer of material. 10OX. (b), (c) Same area at 300 and 1000x
showing intergrowth of crytsals.
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Immediately behind this layer there appear two other crystalline

phases [locations 3, 4, Fig. 36(b)].  The material at location 3 con-

tains iron and aluminum in the form of hercynite while the highly re-

flecting specks (location 4) contain major elements Al, Si, and Ti with

minor amounts of Fe and Zn.  Figure 36(c) illustrates the deposit-coated

fibers deeper within the network.  As noted previously, these contain

various species in addition to Al such as Ca, Si, and Fe. Some appear

to contain only Fe and Al and may have been converted to hercynite.

Medium Alumina Fiber (MAF) Insulation

The specimens of 55% A1203 content fiber blanket are shown in the

posttest condition in Fig. 37. The color ranged from dark bluish-black

on the surface toward the burner to dark brown on the back side. Shrink-

age was greater for these specimens than for the HAF material. In this

case the fibers did not fall off the surface of the supporting bricks,

although debonding occurred from the brick at the edges.

Chemical analysis results are presented in Table 13.  As in the

materials previously discussed, major changes occurred during exposure

to the furnace atmosphere and these include significant pickup of the

elements Fe, Ca, Mg, Zn, and Ni. The sodium concentration increased

in this instance, but phosphorus did not as was observed in the HAF

specimens.

Those changes associated with the impurity increase during the

test are indicated in the x-ray diffraction data of Table 14.

The as-received fibers are noncrystalline and convert to mullite

and cristobalite upon heating in a clean atmosphere. Exposure to the

combustion products in this test results in the appearance of the

spinel phase(s) previously noted.  Cristobalite was not detected in

this material following the test. SEM examination of this fiber insu-

lation prior to testing indicates that the material contains fibers of

varying diameters plus shot inclusions of variable size (Fig. 38).                     -

Even through x-ray diffraction results indicate a noncrystalline

material in the as-received fibers, some structure is observable at
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Fig. 37. Visual Appearance of MAF Specimens Post-Test. (a) Flame-
side. (b) Back side.
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Table 13.  Chemical Analysis Results from MAF Specimens

Contents (wt %)
Element a

(as oxide equiv.) Pretest Back-Side Front-Side

L.O.I. 0.02 0.27 0.35

A1203 54.30 51.69 47.90

Fe203 0.15 2.80 3.91

Si02 44.63 42.00 41.67

CaO 0.003 0.37 3.04

Ti02                                        b
0.031 0.040 0.075

b
P205 0.10 0.10 0.20

Na20 0.62 2.22 1.65

MgO O.001 0.001 O.42

MnO O.001 0.03 O.10
b

ZnO 0.001 0.10 0.30

NiO 0.003 0.20 0.30

Cr2O3 O.005 O.20 O.15

CUO O.005 0.003 O.01

PbO O.002 O.10 O.10
b                   b

M003 0.03 0.001 0.001
b

V205 0.001 0.001 0.003
b

B203 0.005 0.003 0.003
b                  b

BaO O.001 O.001 O.02

Ag20 0.002 0.0005 0.0005

K20 0.16 0.20 0.12
b

Sn02 0.001 0.002 0.003
b

COO 0.001 0.003 0.01

Total 99.97 100.24 100.14

 Heated 115 hr on air at 13750 C (2500'F).
b
Not detected. Number is minimum limit of detection.
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Table 14. Results of X-Ray Diffraction Analysis
of MAF Specimens

Phases Present and Amounts

Specimen Type Major Minor

As-Received Glassy

Heated 115 In Air
At 1375'C (25000F) Mullite Cristobalite

Back-Side, Posttest Mullite Spinel

Front-Side, Posttest Mullite Spinel

high magnification [Fig. 38(b)] which is similar to the morphology of

needle-shaped mullite.  EDX analysis of various fibers and shot inclu-

sions indicate only Al and Si are present in major amounts, with trace

levels of K occasionally detected.

After completion of the test, the surface is covered with a slag

deposit considerably denser than the deposit on the HAF material, which

-                contained less initial Si02 than this MAF insulation.  This surface is

seen to be covered with blocky structures [Fig. 39(a),(b)], some with

triangular geometry capped by mounds of a glassy phase [Fig. 39(a),(c)].

Immediately underneath the dense surface layer are well-defined crystals

of the Fe-Zn-Al spinel which contains minor amounts of Na and Ni [Fig.

39(b)].  Major elements in the mounds include Al, Si, Ca, Fe, and Zn

with lesser amounts of Na, Ni, Cr, and Pb.  The coated fibers and shot

[Fig. 39(d),(e)] contain Al, Si, Fe, Ca, Zn, Na, Ni, Cr, and Pb.

Ceramography and microprobe evaluation supported the SEM and EDX

results.  Figure 40 depicts the surface region of the flame-side speci-

men of the MAF insulation.  Numerous phases exist in the sample.  The

large dense crystals are Fe, Zn, and Al oxide (spinel) containing minor

amounts of Na and Ni.  The long needle-shaped crystals are hercynite

(FeA1204)·  Very close to the surface, the matrix appears glassy and is

mostly calcium aluminosilicate glass with Fe, Ti, Zn, S, and P.  Just

below this surface, remnants of original fibers appear, and under higher
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magnification [Fig. 40(b)] these are found to be surrounded by multiple

phases.  Four distinct phases were identified, denoted by locations 1-4

on Fig. 40(b).  Location 1, the medium gray matrix, contains Al, Si, and

Ca as major detectable elements, with minor levels of P, Fe, Zn, and Ti.

The very dark areas (location 2) contain largely Al, Si, P, and Ca plus

oxygen with additional smaller amounts of Fe, Mn, Zn, and Ti. Lighter

gray inclusions as at location 3 contain primarily Al, Si, and Ca with

minor amounts of Zn and Fe. Finally, the very reflective material at

location 4 contains major amounts of Al, Si, and Fe, plus Ca, Zn, P, K:

and Ti.

SUMMARY AND INTERPRETATION OF RESULTS

Summary of Results

Exposure of aluminosilicate refractories and insulations for about

500 hr at 1300-1400'C (2370-2550'F) to combustion of a domestic residual

oil containing large amounts of Fe, Ca, Zn, Ni, Pb, and sulfur as impuri-

ties results in significant chemical reactions between these materials

and several of the impurities.  A mixed layer of crystalline and glassy

reaction products is produced on the original surface.  The kinetics

of penetration of the various refractories and insulations by these

products has not been evaluated hence their long-term physical stabili-

ties in such an environment are presently unknown. However, the data

presented in the test results section allow assessment of the relative

stabilities of these ceramic materials under the condition which pre-

vailed during the test.
6

Results of pre- and posttest analyses are summarized in Tables 15

and 16. Table 15 illustrates gross elemental changes which occurred in

regions near the hot face of flame-side specimens during the test.  This

listing is based on those elements which appear to be present in suffi-

cient quantities in the tested materials to result in generation of new

phases.  All of these ceramic materials have become significantly con-

taminated by Fe, Ca, Ni, and Zn.  Those having very high initial A1203

compositions (HAB, HAF) experienced increases in Si and P contents.
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Table 15. Summary of Changes in Chemical Constituents
of Materials Tested in RTF Test 1

a
Material Designation Elements Showing Major Increases

HAB Fe, Si, Ca, P, Mg, Zn, Ni                     -
PBM Fe, Ca, Mg, Zn, Ni

MBB Fe, Ca, Na, Mg, Zn, Ni

MBM Fe, Ca, Zn, Ni

HAF Fe, Si, Ca, P, Mg, Mn, Zn, Ni, Cr

MAF Fe, Ca, Na, Mg, Mn, Zn, Ni, Cr

a
See Table 1 for explanation of designation.

Cr, Na, Mn, and Mg contents also have increased significantly along with

others which usually appear in small quantities in the new phases.

Table 16 summarizes the phase assemblages determined by x-ray dif-

fraction, SEM in conjunction with EDX. and optical microscopy in con-

junction with electron microprobe analysis for all of the refractories                 -

and insulations included in this test.

The reacted surfaces of all these ceramics contained well-developed

crystals of an oxide spinel containing Fe, Zn, and Al, plus minor amounts

of Na and Ni. These crystals appear to have developed in the presence

of a siliceous melt rich in calcium and silicon in addition to those

just mentioned. Often this glassy phase contained P, S, and other

trace elements. Immediately behind the layer containing these spinel

crystals, hercynite was often observed. The matrix phase surrounding

these crystals may be either crystalline or glassy. Slightly further

back into the specimen where impurity contents are lower the original

a-A1203, mullite, and cristobalite phases were observed after the test.

Interpretation of Results

The existence of the posttest phase assemblages described above can

be rationalized by examination of the ZnO-A1203-Si02 and FeO-A1202-Si02

(ref. 10) phase equilibrium diagrams.  These are similar in respect to all

phases present with the sole exception of iron-cordierite (2FeO•2A1203 5Si02)

which does not have an analog ZnO compound.
11



Table 16. Summary of Phases Present in Materials Tested in RTF Test 1

Phases Initially Present Phases Present After Test
Material

Designationa Major Medium Minor Major Medium Minor

HAB a-A1203 Mullite a-A1203 Mullite Zn-Fe-Al spinel
Hercynite (FeA1204)

Glassy matrix rich in
Si, Ca, Al, Fe, and
Zn near hot face

Crystalline silicates
in cooler regions

PBM AlP04 a-A1203 Same as for HAB plus
Mullite Mullite very minor A1203'Ti02-

a-A1203 Fe203'Ti02 (ATFT)
\1

MBB Mullite Cristobalite Mullite Same as for the HAB W

except no hercynite
Cristobalite

MBM Mullite a-A1203 Mullite a-A1203
Same as for HAB

HAF Metastable a-A1203 Fe-Zn-Al spinel
aluminas Glassy silicates and

phosphates rich in Ca
and other impurities

Hercynite
Crystalline silicates

in cooler regions

MAF Glass or Mullite Same as for HAB

microcrystalline
mullite

 See Table 1 for explanation of designations.
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11The ZnO-A1203-Si02 diagram, Fig. 41, is taken from work by Bunting.

The figure has been redrawn and slightly revised.  The dotted boundary               -

curve between the more recently postulated 12 mullite-A1203 eutectic and

Bunting's curve between mullite and A1203 has been completed.  Also, an

isotherm where mullite was thought by Bunting to convert to A1203 and a

solid solution has been eliminated for clarity of presentation.  How-

ever, the A1203-Si02 phase equilibrium diagram is yet subject to dis-

agreement among researchers, particularly with regard to the melting

behavior of mullite.  For instance, Aksay and Pask 13 maintain that, as

Bunting had proposed, mullite does melt incongruently.  Hence we could

on that basis have left the mentioned isotherm on Bunting's diagram.

However, for purpose of this discussion, the actual melting behavior is

of no consequence since our test temperature was well below the melting

point of mullite. The remainder of the diagram is as originally presented.

Plotted on the A1203-Si02 join in Fig. 41 are initial compositions

of the materials tested. The mullite-base mortar was not chemically

defined  as  to A120 3/Si02 ratio,  but it consisted  of  mullite  and  a-A1203
initially and so must be on the A1203-rich side of the mullite composition.

Consider now that the residual oil combustion products contain a
high ratio of ZnO/Si02 and FeO/Si02 and that these are deposited con-

tinuously on the specimen surfaces. The actual ratios are unknown,

but from posttest analytical results showing large increases in Zn
and Fe relative to Si, we can assume they are quite high.  Arbitrarily
choosing a minimum mole ratio of ZnO/Si02 or FeO/ Si02 of 9:1 fixes the
composition of the relevant combustion products at about 90% ZnO (FeO)
on the ZnO-Si02 (FeO-Si02) join.  Connecting this general composition
of combustion product to the original compositions yields a locus of

compositions possible in the reacted materials.
When these loci are considered, possible phases present depend on

local compositional values on the composition loci.  Very near the sur-

face where the combustion product concentration is highest the local

concentration is within the ZnO-Zn2Si04-ZnA1204 or Zn2Si04-ZnA1204-Si02
compatibility triangles (or the FeO analogs).  However, free ZnO (FeO)

and Zn2Si04 (Fe2 Si04) were never observed in our posttest specimens.
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Hence these compatibility triangles are eliminated. Closer toward the

alumina-rich portion of the diagrams are two more relevant composition                -

triangles, mullite-Si02-ZnA1204 (FeA1204) and A1203-mullite-ZnA1204

(FeA1204)-  The 90% A1203 brick (HAB), phosphate-bonded mortar (PBM),

95% alumina fiber (HAF), and mullite-bonded mortar (MBM) specimens all

exhibit posttest phase compositions within the latter triangle (see

Table 16).  Hercynite (FeA1204) and the Zn-Fe-Al spinel (probably a

solid solution of Fe in ZnA1204) would coexist with A1203 as observed.

The mullite-based brick (MBB) and 55% A1203 fiber (MAF) specimens would

exist within the mullite-Si02-ZnA1204 (FeA1204) triangle.  Again reference

to Table 16 illustrates that at least for the MBB specimen, these three

phases are present.  The absence of free silica (cristobalite or tridy-

nite) from the MAF specimen is probably due to formation of siliceous

glasses with the other elements present.

The other phases observed in these specimens after testing such as

the aluminosilicate crystalline and glassy phases are difficult to ana-

lyze and locate with reference to equilibrium diagrams. This is at least             -

in part due to the presence of a wide range of solid solution possible

in the Fe-Al-Si-0 systems, and is further complicated by the other im-                -

purities present, particularly Ca.  This element occurs largely in the

glassy matrix surrounding the Zn-Fe-Al bearing spinel phases.

Some further observations relevant to this study are gleaned from

literature relating to Zn and Fe attack of refractories in roofs of

steel-melting arc furnaces and blast furnaces.  A study of the deterio-

ration of aluminosilicate refractories in blast furnace stacks indi-14

cated that ZnO (derived from charge materials) reacts to form ZnA1204

and Zn2 Si04·  Further, reacting ZnO with hercynite (FeA1204) leads to

ZnA1204 formation. Hence it would appear that ZnA1204 is more stable

than FeA1204 under these conditions so that the spinel crystals observed

in this study are probably first formed as ZnA1204, with the iron then

diffusing into the structure to form a solid solution. Fe was often

observed by EDX and probe measurements to have diffused deeper within

the ceramic test materials than had the Zn. This iron has reacted with

the alumina to yield the hercynite found directly behind the surface layer.
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Another similar studyl5 found that reaction of ZnO with blast

1

-

furnace firebrick (42% A1203) yielded ZnA1204 but not Zn2Si04.  When

Zn2Si04 is made to form in the laboratory, the required silica is

obtained by preferential mullite decomposition rather than reaction

with available free silica. This may explain our finding of free

silica remaining in the MBB specimen (Table 16).  Also, the presence

of larger amounts of glassy matrix phases in mullite-based materials

is explained by the degradation of mullite by Zn and Fe.

An examination of high alumina-content brick from electric arc-

furnace steel melting roofs indicated16,17 that CaO and FeO or Fe203

reaction leads to fcrmation of hercynite and/or magnetite spinels,

sometimes together in solid solution.  Anorthite (CaO·A1203 2Si02) or

glassy phases were produced when calcium was available. The authors

determined that differences in constitution of reaction phases and the

extent of degradation caused by them in various refractory brick were

mainly a consequence of the alumina/silica ratio.  High alumina (85%)

brick reacted strongly with CaO and Fe203, leading to formation of

phases adversely affecting refractory performance.  Lowering the alumina

content provided more silica to react with the CaO and Fe203, and these

brick performed better in this environment.  On the other hand, very

high alumina (90-95%) brick also performed well in the present test.

Hence, there may exist some optimum A1203/Si02 ratio in brick which

will yield good performance in the presence of Ca and Fe impurity with-

out incurring the economic penalty involved with expensive, very high

alumina content refractories and insulations. In our mullite-based

materials we have seen similar indications. Mullite is stable in the

presence of silica and ZnA1204 or FeA1204 as shown by its presence in

the slag layer [see for instance Fig. 24(b)].  The interlocking nature

of the needle-shaped crystals holds the silicate melt matrix in place

and provides a diffusion barrier against further ingress of impurities.

Consequently, this brick seemed to perform no worse than the higher

'                alumina brick under the conditions of this test.

A further factor involved in slag penetration into refractories

-                is the open porosity. Our observations of depth of attack into the
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test specimens are in accord with the common knowledge that the lower

the open porosity, the slower is the penetration under fixed conditions.

This was very obvious in comparing, for instance, the behavior of HAB

brick and PBM mortar specimens of similar composition:  the more porous

mortar exhibited a much deeper reacted zone. The fiber specimens are,

in this respect, nearly the worst possible case since they consist of

mostly open porosity and rely on this characteristic to provide their

relatively low thermal conductivities.  The more highly siliceous

mullite-based fibers (MAF) performed as well as if not better

than the much more expensive higher alumina content fibers in this

test because a dense surface layer was formed on the MAF specimen.

For optimal physical stability in such situations as these, the cheaper

mullite-based fibers of as high a density as tolerable by the thermal

conductance design for the furnace wall should be selected for the hot

face.  Of course there are many processes where the MAF type of insula-

tion cannot be employed, due to its inherently lower temperature limita-

tions compared with the HAF type of material.  A dual insulation

construction could also possibly be desirable where MAF fibers are used

to face a HAF construction.

There is a final point about the 95% alumina fibers. Investigations

of the rate of reaction between ZnO and various types of alumina have

shown18,19 that the metastable forms react much faster to form ZnA1204

than do a-A1203·  Perhaps the relatively poor behavior of the HAF speci-

mens in this test (Fig. 32) is related to this fact. It would suggest

that prior to exposure to residual oil combustion products of the type

employed in this test, furnaces lined with this material should be

heated with a clean fuel to convert the fiber to the a-A1203 form.

CONCLUSIONS

Selected aluminosilicate refractories and insulations were exposed

to combustion products of a domestic residual fuel oil containing Ca,

Fe, and Zn as major impurities under controlled conditions of tempera-

ture and atmosphere.  Analysis of these materials after an accumulated
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exposure of about 500 hr at about 1375'C (2500'F) indicated that all

were being degraded by the fuel oil impurities.  Conclusions based on

the analyses are as follows:

1.  Zn, Fe, and Ca are the primary elements involved in the reactions

observed in this test. Spinel phases containing Zn and Fe are

formed with aluminum oxide whether it occurs as pure a-A1203 or

in combination with silica as mullite. The calcium forms a glassy

matrix with silica and alumina.

2.  Increasing the A1203/Si02 ratio of refractory materials does not

necessarily lead to better refractory performance under these

specified conditions.  An optimum level of silica may exist

which will yield materials of good service life without incurring

the extra expense required for very high alumina content ceramic

materials.

3.  Mortar materials suffer in performance compared to denser fire-

brick due to their porous nature, which allows easier penetration

of impurity bearing gases and melts.

4.  Fiber insulations are readily penetrated by combustion products,

_                     leading to detrimental reactions.  The extent of penetration is

determined by the material density and permeability with the

denser materials being preferable for improved stability.

5.  The long-term stability of fiber blanket insulations under these

conditions is questionable.  Large accumulations of combustion

products which freely penetrate the voids between the fibers

lead to continual material degradation. The denser materials

(e.g., brick) form more protective surface layers and appear

more suitable although their long-term usefulness should be

assessed with longer tests. The desirability of a multimaterial

furnace wall design in which the insulation is protected by a

thin layer of denser refractory on the hot face is indicated by

the results of this test.
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