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ABSTRACT: A new paiadigm, called larée-gfain pipelin-“ :
ing, for developing efficient : parallel - algorithms on

distributed-memory . - multiprocessors, .. e.g., = -hypercube

machines, is introduced. Large-grain pipelining attempts to -

maximize the degree of overlapping and minimize the effect
of communication overhead in: a:-multiprocessor system

through macro-pipelining between the: nodes. - Algorithms .

developed through large-grain pipelining to perform matrix
multiplication are presented. To model the pipelined computa-
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‘ [GuHS86, H‘a;.M1886]‘.vThese hypercube vmachines are charac-

terized by a point-to-point, hypercube interprocessor connec-
tion. Each node in the system has its own processor and local

.memory, and runs independently of other nodes. There are

direct connections from the nodes to the host/IO processors
which take charge of program development, peripheral con-

B trollmg, and data downloading and uploading. This kind of
. architecture is referred to as dzstnbuted-memory multiproces-

..Sors.

tions, an analytic model is introduced, which takes into . . -

account both underlying architecture and algorithm ‘behavior,
Through the analytic mode), important design parameters,
such as data partition sizes, can be determined. Experiments

-~ were conducted on 2 64-node NCUBE multiprocessor. The
 measured results ‘match closely -with the "analyzed results,

which establishes the analytic model as an ‘intcgral part of

algorithm design.' Comparison with an algorithm which doesy

not use large-grain pipelining also shows that large-grain pipe:
lining is an efficient scheme for achieving a greater parallel-
Cism, 0 T ‘ Ry

L INTRODUCTION

In recent years, conﬁgunng & computer system with mul-- .

tiple VLSI processors becomes a sxgmﬁcant trend in parallel

processing rescarch. Among the available systems, hypercube o

multiprocessors - have -attracted a great amount’ of attenuon L
_ ..~ - tion overhead can be minimized, and, most importantly, the

1 This research was mpponed in part by the Apphed Mnlhemmeel Sclenee; .
subprogram of the Office of Encrgy Research, U.S. Depanment of Energy, - -
under contract W-31-109-Eng- 38lndhpenbydleDARPAACMPpmje¢. .
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"‘The major bottleneck in current hypercube multiproces-
sors is the communication. Due to the distributed nature, com-
munication between processors are usually carried out through
explicit message passing. This induces nonnegligible over-
head in transferring data between processors. In addition,

~dccording to current implementations, the host controls peri-

pheral devices. Programs and data must be downloaded from

- the host to nodes, and results must be uploaded back to the
- host. These -downloading and uploading operations cause a

severe 1/O bottleneck which limits the computauon rate,

' Therefore, to desngn parallel algomhms on hypercube

- multxprocessors, the designer must take into account the com-
" . munication effect and determine an efficient partitioning and

mapping scheme in order to reduce the amount of communi-
cation and balance the processor loads. Moreover, a schedul-

_ing strategy is needed, which arranges the order of job execu- -

tion to fully utilize the available resources. In this paper, a

_new algorithm design paradigm, called large-grain pipelining,

“is introduced. Large-grain pipelining exploits pipelined com-

putatxons between processors. Through pipelining, the degree
of overlapping can be maximized, the effect of communica-

- YO rate can be balanced with the computation rate.

MASTER

DISTRIBUTION OF THS DOCUMENT 1S UNLIMITED . M

One important characteristic of the pipelined computa-

. ‘tion is the concept of information flows [NeSn87). From the
.view point of information flows, one can identify three impor-

tant ‘ingredients in large-grain pipelining. First, the flows of
data connect the processors in the system into an array or a
network. Processors in this network reccive streams of data
from processors upstream and generate streams of data to pro-
cessors downstream. The network can be regular, such as a
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mesh, a binary tree, or a hexagon, or irregular. Furthermore,
the shape of the network may be changed as the computation
progresses. Next, to form streams of data, data in the compu-

tation are partitioned into blocks and are piped into the pipe- -

lines one by one. Data blocks are the most basic units of pro-
cessing. It follows that large-grain pipelining is most suitable
for problems whose data can be partitioned naturally and
operated upon in parallel, i.c., those that can be solved by data
parallel algorithms [HiSt86]. Pipelined computations will be
further elaborated in Section 2 of this paper, followed by
examples for performing matrix multiplication in Section 3.

The third important ingredient of large-grain pipelining
is the determination of design parameters which include the
sizes of data blocks and the number and lengths of pipelines.
An optimal set of parameters can maximize the degree of

- overlapping and balance the 1/O rate with the computation
rate, which, in turn, optimizes the algorithm. Through accurate
analytic modeling, these design parameters can be obtained.
It turns out that the sizes of data blocks are usuvally much
greater than that of a single data element to offset the effect of
communication overhead. Details of the analytic model will

- be presented in Section 4, together with experimental results

from a 64-node NCUBE. These results confirm the validity of
the model and the effectiveness of the large-grain pipelining
concept.

2. MODELING PIPELINED COMPUTATION

A job can be considered as a function which takes inputs
and generates outputs. This situation can best be illustrated
through P-nets [King88]), as shown in Figure 1. Figure 1(a)
describes the job of a matrix multiplication, AXB =C, where
circles represent data modules (the matrices) and squares
represent computation modules (the multiplication). One way
of performing the multiplication is to partition A and B into

Matrix multiplication
AxB=C

(a)

four submatrices as follows:
_ |Aoo Aot|_ |Boo Bor{_ |Coo Cor|_

AxB = [410 Au|* |Bio Bu|™ [Cro Cu|=€
where Cj = CP+CP = A;Boj+A;1 B yj, 0i,jS1. The P-net
shown in Figure 1(b) defines the necessary operations to cal-
culate’ the matrix product in this case. Four phases are

identified: data downloading, submatrix multiplication, sub-
matrix addition, and result uploading.

In general, .there are two major techniques in exploiting
parallelism: concurrency and pipelining [HwBr84]. Con-
currency exploits spatial parallelism.by utilizing several pro-
cessors operating on multiple subjobs simultaneously. Thus, if
a hypercube multiprocessor has 8 processors, then the 8 sub-
matrix multiplications specified in Figure 1(b) can be per-

- formed concurrently as shown in Figure 2(a). However, as
“mentioned in Section I, these data are usually downloaded

from the host. Thus, the amount of concurrency obtained is
really - dependent - upon - the - host-to-node communication
bandwidth and the degree of overlapping when the host down-
loads several processors. In other words, if the host download-
ing is performed sequentially and ‘the communication over- -
head is very high, then operations in these 8 processors might
be carried out sequentially in time, even though they are exe-
cuted by different processors.

Pipelining exploits temporal parallelism in which
streams of data flowing from processor to processor so that
different processors can work on different stages of the com-
putation simultaneously. Using this technique, an 8-processor
hypercube machine can be organized -into 4 pipelines, as
shown in Figure 2(b) for one of the pipelines. Each pipeline
has 2 stages. Although, within each pipeline, operations
between stages are executed sequentially, the number of
active I/O channels the host has to maintain when download-
ing submatrices of B is reduced from 8 to 4. Note also that the
calculation of C{}} does not depend on C{Y, but on the availa-
bility of A 19 and B gg. Thus, processor 0 can send B to pro-

Downloading

Submatrix
multiplication

Submatrix
addition

Uploading

Figure 1. Matrix multiplication and its P-net representation
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" Figure 2. Submatrix multphcanon using multiple processors

cessor 1 immediately after it receives B g and bcfore it calcu-
lates C3,. In this way, computations in these two processors
are overlapped through pxpelmmg

, As dxscusscd in Secuon l one unportant ingrcdxcnt of
large-gmn pipelining is .the partitioning of data .into data
blocks. Thus, submatrices of B can be further partitioned into

. sub-submatnccs to form data streams. Also, when download-
{ing, the host can feed all the pipelines in a- round-robin

fashion. In this way, even though the downloading is per-
formed sequcnually, operations among :the processors can

overlap Note that the granulanty (the sizes of -data blocks)

plays a very important role in this situation. The smaller:the
granularity is, the higher the degree of overlapping will be.
However, since there is a fixed overhead associated with the
setup of cach message, a small granularity results in a large
number of messages and a high communication cost. - The

choice of a suitable granularity is a2 very important i issue and

will be discussed in Section 4. Note also that the pxpelmcd
computation discussed hcrc is most smtablc for devclopmg

data parallel algonthms in wluch data arc panmoncd and
operatcd upon indcpcndcntly

From the above discussion, one can see that multiple
pipelining is a very general pattern of computation. Even the
concurrent computation depicted in Figure 2(a) can be con-
sidered as a pipelined computation with 8 pipelines, each has
only one stage Following the flow concept, cach stage in the
pipeline can bé modeled as a computational unit with multiple
input and output streams (see Figure 3). Computation of the

. whole system is then the cascade of these units along different
directions. From this point of view, & formal analytic model of
pipelined computations can be derived [King88], which can
be used to estimate the execution time of the computation.

3. EXAMPLES OF LARGE-GRAIN PIPELINING

In this section, examples are introduced to illustrate the
application of large-grain pipplirﬁng. Consider the problem of
matrix multiplication, AxB=C, where 4, B, and C arc MxM
matrices. Suppose that A and B are stored in the host initially,
and that C will be stored back to the host. Then, input data
must be downloaded from the host to the nodes and results
must be uploaded back to the host. Downloading and upload-
ing operations introduce extra communication overhead,
which differentiate our algorithms from those reported else-
where [ChSm87, FoOHB7}.

To perform the multiplication, the following partitioning
scheme is used: - The hypercube is configured into an -
nyXnqa=N mesh, and matrices A and B are partitioned along
columns and rows into nyxn4 and n,Xxn3 submatrices, respec-
tively. Note that, if #ny and ny are both power of 2, then the
mesh can be embedded perfectly onto a hypercube so that any ~
node is only one hop away from its four neighbors [SaSc85].
Furthermore, nodcs liein the same. column or row form a sub-
cube. o

' One way to perform the multiplication is to load subma-
trices of A into the corresponding processors in the mesh.
Then, submatrices of B are piped into the hypercube from the
host; as shown in Figure 4(a). Each column of n1 nodes forms

+a pipeline and there are n, pipelines altogether. Let nodej;
denote the processor located at row i and cdlumn j of the
- mcsh Thcn, the algonthm is dcscnbed in Fxgurc 5.

. I can be seen from Fxgurc 4(a) that each pipeline will
';c:;exvc a stream of B submatrices from the host. After all

datablock (s)

o e = Computational

unit o

- Figure 3.Model of a computaﬁonal unit
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Figure 4. A matrix multiplication using pipelining concept

submatrices of B have passed through the pipelines, each pro-
cessor will have collected a portion of a submatrix of C with
size (M /n1)xM. To obtain the final result, a binary-tree reduc-
tion is performed among the processors in the same row (Fig-
ure 4(b)). Note that the pattern of binary-tree reduction can be
perfectly embedded into a hypercube. The pipelining concept
can also be applied here in which each C{? can be further par-
titioned into n4 smaller sub-submatrices. Then, these small
sub-submatrices are piped through the reduction tree to accu-
mulate the final results.

The major problem with Algorithm [ is that each proces-
sor has to store a large amount of intermediate data —
CH, ... €)1 To reduce the amount of memory storage,
we can perform the tree reduction during the submatrix multi-

- plication phase, as shown in Figure 6. That is, as soon as a C.
submatrix is generated, a binary-tree reduction is invoked
among the row processors to accumulate the complete subma-
trix. This complete C submatrix is then uploaded back to the
host. No intermediate submatrices of C need be stored in the
Processors. '

the host

<Algorithm I>:
Host:
1.1.fori :=0ton1~1do )
12. forj:=01ton,~1do sendA; to node;;
1.3.fork :=0ton3~1do
14.  forj:=0to ny—~1do sendBj to nodeq;;
1.5.fori =010 ny~1 do receive C; from node; 5,
Node: (node;;, 0<i<n,-1, 0Sj<ny-1)-
2.1. receive A;; from the host;
2.2.fork :=0to n3~1do
23. if(i =0) then receive Bj from the host
24. else receive B, from node;_y,j;
25, if(i # ny~-1) then send Bj; 1o node;, j;
28.  CY =AjxBy; '
2.7. perform binary-tree reduction with node;;, 0<I <n,~1,
to obtain C; := C{O+..4+C{* ™ in node; -,
where C{ :=[CQ, ... CB 1)
2.8. if (j = ny~1) then send C; to the host.

Figure 5. Algorithm / for matrix multiplication

It is very important here to consider the balance between
granularity and communication overhead. It might turn out
that communication cost is so high that, combining two or
more C{’s into a larger submatrix, e.g.; use [C{{ C] in the
reduction, will give a better performance. In other words, the
tree reduction is performed every two or more iterations
instead of one. Thus, the choice of optimal granularity is
essential. In our approach, granularity is determined through
accurate performance estimations which will be discussed in
more detail in Section 4.

<Algorithm ll>:

s-1Host:
1.t.fori:=0ton;-1do
1.2, forj:=01o n,—1do send A; to node;;
1.3.fork :=0to n3-1do
1.4. forj:=0tony~1do send Bj to nodey;;
1.5. fork :=01to n3—-1do
1.6. fori:=010 ny—1do receive Cy from node; p,—1-
Node: (node,-j, 0<i<ny -1, 0gj<ny-1)
2.1. receive A; from the host;
2.2, fork :=0to n3-1do
2.3. if (i =0) then receive B;, from the host
2.4. else receive Bji from node;_, j;
2.5. if (i # ny~1) then send Bj; 10 node;.y
26. CP :=AyxBy;
2.7.  perform binary-tree reduction with node;;,
0/ <n,-1, 1o obtain Cy = CP+..+C "
in node; n,1;
2.8. if (j = na-1) then send Cj to the host.

Figure 6. Algorithm /I for matrix multiplication
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‘<Algorithm lll>:

Host: L ? N LAt
11.fori:=0ton,-1do ‘
12. forj:=0to ny-1do send A,, to node., :
13.fork :==0tony~1do )
14. forj=0tony-1do send B,-k to ‘nodeo,-;
1.5.fork :=0to n3~1do
1.6. fori:=010on;—1do receive Cy from node;n,-1.

Node (node,,. OSzSn,-—l 05]5”2—1) -

. 2.1. receive A;; from the host; . Yoy

22 fork :=0tons~1do =
23. if(i =0) then receive B,k from the host

24. - elsereceive Bj from node;.y,j;
25. I (i #ny-1) then send Bj to node;,y, 3 Y
26. CY =A;xB ki } .
27. if(j+#0) then’ ’ ‘
‘28, recelve CY from node; j-l i
c29. 0 P =cP +ci;
210. it {j = na=1) then send CY to the host
2.11. eise send CY to node; j41.

Figure 7. Algorithm JII for matrix mult_iplication

_ Binary-tree reduction is not the only way to accumulate

submatrices of C. We consider next a linear reduction
scheme, as described in Figure 7. After having calculated'a €
submatrix, each processor sends that C submatrix to its right
neighbor. The accumulation progresses from left to right in a
. linear fashion until the complete C submatnx is obtamcd in
the right most processor of the row. el

Note that in Algonthm IIT a processor will pcrfoxm a
submatrix multiplication before it pauses to wait for the C
submatrix from the left neighbor (Statement 2.6 - 2.9 in Figure

7. This'is bccausc submatnx muluphcauon isa computauon
intensive opcrauon (4] (n ). If every proccssor performs its
multiplication after it receives the C submatrix from the left
neighbor, then the delay within each stage will be very long.
Following the same argument, one can :also -expect that the

. linear reduction will bchavc badly when n; is large, because
the reduction path is very long. Performance analyses of these

--algorithms are given in the next section, where considerations
:in designing algorithms using the pxpclxm.ng concept will .be
further elaborated. L

. 4. PERFORMANCE ANALYSIS

In thls sectxon, pcrformance of thc three algonthms intro-
duced in the previous section is analyzpd An analytic model
is introduced to model the execution of the algorithms and
-+ estimate their execution times. To verify the accuracy of the
. analytic model and the effectiveness of the pipelining concept,
‘the algorithms were 1mplcx_nentcd on a 64-node NCUBE mul-

** tiprocessor [HaMS86]. A very closc match between the

' analyzcd and: ineasurcd perfoxmancc is observed. Comparison
_with an algonthm without using the pipelining. concept was

conducted and the results indicate the supenor of algorithms

. using the pipelining concept.

4.1. NCUBE Mu!tiprocossor

NCUBEE is a distributed-memory. multiprocessor with a
point-to-point -hypercube interprocessor connection. Our
major concern here is to measure system parameters, such as
message startup delay, single-byte transmission time, and ele-
mentary operation (e.g., axb+c) time. All time quantities will
be  measured ' "in - terms < of - ticks, ' where
1 tick=1024/processor clock rate (in Hz). In general, com-

“munication overhead is modeled as [GrRe86]

O) +Tyxs  for communication initiated by the host(4.1)
G, +1T,xs - for communication initiated by the iiodc(4.2)

~ where

DE

<. O = message startup delay in the host

" 14 = single-byte transmission time for messages ini-
.- - tiated by the host

G, =message startup delay in the node

T, = single-byte transmission time for messages ini-
: uated by thc node

s =size of the message (m bytes)

Message startnp delay includes such overhead as invoking the
send()-and recv() routines and setting up the DMA. Transmis-
sion time includes such overhead as transferring the message
to and from the operating system’s buffer and over the com-
mumcanon link {MuBASG6]. :

The host communication ovcrhcad is studied first. Note
that when downloading submatrices, the host must first gather
all elements of the submatrix and load them into a consecutive
memory buffer before the send primitive can be called. Simi-
larly, when receiving submatrices, the host has to scatter the
elements of a submatrix from a consecutive message buffer to
their respective locations in the matrix. Thus the experiment
performed not only measured the overhead in (4.1) but also
measured the overhead involved in gathering/scattering opera-

.- tions. . Results from the experiment show that-the host com-
- munication can be modeled perfectly by . :

5.5+0. 069xs 4.3)

. Notc that thxs valuc is mdcpcndcnt of the numbcr of recexvmg
nodes, which indicates that the host cannot do any useful com-

putauon dunng the mtcrval given by (4. 3)

cht, node communication overhead is measured and

'can be modcled lmearly by

50+0013xs 4.4)




Note that data gathering/scattering operations are not neces-

- sary in the nodes. Finally, the times to execute simple opera-

tions T,=a + b and t.=axb+c, where a, b, and ¢ are floating
numbers, are measured and found to be 0.15 and 0.24 ticks,
respectively. In summary, we will use the following system
parameters on the NCUBE:

On | On Th Tn T Te
5.5 5 0.069 | 0.013 | 0.15 | 024 |

<Note>: all quantities are measured in ticks

‘4.2 Ahalysis of Pipelined Matrix Multiplicaﬁoh

Given theiset of. s;ystexn paran;etérs. t:.her g)gccyﬁoh time
(T) of the algorithms discussed in Section 3 can be derived.

- Due to the limitation of space, only the execution time of
. Algorithm I will be derived here. The derivations for Algo-
rithm II and JIT are very similar. A more formal and accurate

analytic model is presented in [King88]. To simplify the
analysis, let us assume that matrices A, B, and C are all square
matrices with size MxM. The extension to non-square
matrices is straightforward. Note that matrices A and B are
partitioned into nyXn, and nyxn3 submatrices, respectively.
Assume that ny,n2, and n3 can divide M evenly. Then, the
sizes of submatrices are:

2
size of 4;; is b for O<i<ny, 0<j<ny
2

- . bM? ] .
size of By is o for 0<i<nq,0<j<ns
2

size of Cj; is :Ai for0<i<ny, 0<j<ns

"where b=4 bytes is the size of a floating number on NCUBE.
_ Define the following notations:

3 M2
O2=14 ,;, }‘;22 V12 =T, ';11‘;22
973 =T nzng VB = nzn%
M bM
013 = Thb L‘ s _ Vi3 =Tnb’;;:3
=1 n B V1=1, "

The first step in analyzing the performance of a pipelined
algorithm is to identify the critical path of the computation.
Note that in Algorithm /, all processors perform the same

function, and, according to the order of data downloading,-

“processors at the right most column are the ones that start the

‘only focus on the operations in node; »,-1, 0Si<ny~1. Con- -
; sider node g ,-1 first. Operations in this processor depend on

latest among all processors at the same row. Thus, we need

two events: the arrival of a B submatrix and the setup of the

) receive routine. Note that, before the host can download

B,. .1,0, it must send all submatrices of A as well as Bgp, «.,

By,-20 to the comresponding nodes. Thus, B,y 9 will arrive
at nodeo_,,z.l at
lvl@ =N(0+012) + n2(04+023)

where N=n,n; is the number of nodes used. The interval
between successive B submatrix arrivals is :

9= ﬁz(ﬁh"'ez;)

-~ which is the time the host Ioads all nodes in the top row

exactly once. On the other hand nodeg,n,~1 Will setup the
receive routine for B, 10 only after it has received Aot
from the host. Thus, this node will be ready for By, at

@ =ny(04+012) + Y12 + 0,

The second term, \yiz,'aéi:dunts for the time to copy the .
received A submatrix (A .n,-1) from the system’s buffer, and
O, is the time to invoke the receive toutine. for Bp,10-

Depending on which event occurs first, the processor can start
the submatrix multiplication phase at

T = max {u‘“’, ‘a«»}+ vn

where W3 is the time to copy B,,_1, from the system buffer.
From now on, in each iteration, nodeg,n,-y will (1) send the
received B submatrix to node y ,,-1, which takes G, + y23; (2)
perform a submatrix multiplication, which takes tg; and (3)
receive & B submatrix from the host, which takes o, + yx.
Let

c© =2(c,+y2) + 1o

Theh, the iteration time at this node will depend on both n@
and ¢©, and is given by

5© = max {n“”, 0(0)}

Given T{? and 8©, the time that nodeg n,-y finishes the sub-
matrix multiplication phase can be found to be
TR =T + (13-1)8 + (Outys) + 10

Furthermore, due to the binary-tree reduction, the submatrix
addition phase will take

T = loga, (G.+2¥1+11)
assuming for simplicity no further partitioning for C submf\-
trices. It follows that the host will receive the first submatrix
of Cat

o =T +TY + (G,4+¥1)

In general, for node;,, -1, 0Si<ny~1, the time that the
submatrix multiplication can start is dependent upon (l) when -

: the first B submatrix, B, 0» amves, ie.,

WO =T +i(042y)
where the second term is the time to transfer one B submatrix

- from node,.,,z_l 10 node;+1,n,-15 and (2) when it receives the A

submatrix and is ready for an—l 0,16



[

¥ = (+1)n2(04+012) + Y1z + O
Assume that pP2a), then we have o
TP =p® 7O =TO +i(0,12y5) V=50

and the host will receive the C submatrix from node; - at

Wi = Ho +i(0nt2y3)

Now consider the host. The first C submatrix will arrive
at the host at g, and subsequent C submatrices arrive with an
interval of (G,+2y23). On the other hand, after receiving one
C submatrix, the host needs a time interval of 8, + o to copy
the submatrix from the system buffer and setup the next
receive routine. It follows that the host will finish the upload-
ing phase (and the whole execution) at ~

T=py+(n l—l)max{(c,.+2\|lz3), (91 + 6';,)}4' 0

4.3. Performance Analysis

In this subsection, the execution time derived in Section
4.2 is first validated through experimental results obtained
from the NCUBE. Having established the validity, the model
can then be used to assist in algorithm designs, such as deter-
mining the optimal partition configuration and partition size.
Next, the effectiveness of the algorithms introduced in Section
3 is compared with an algomhm without using large-grain
pipelining.

The design parameters 'ny and ny determine the

. configuration of the pipelines, where n; gives the number of

pipelines and n; gives the number of stages in each pipeline.

If the number of processors (V) is fixed, then we need only

consider n, or n3, because N=nn3. Figure 8 shows the rela-
tionship between the execution time and the pipeline

40000~ . - - —— Measured data
35000—-\.; N=2 77T Analyzed data
30000- - 64%64 matrices, n3=8
as000- s
oo 15000 e ‘
50004 N=16y.3)
0 | | ) T T
16 = 32

1 2 4 8

Number of ¢olumn partitions (1)
Figure 8. Effects of pipeline configuration for Algorithm /

12000 - —— measured: n3=2
N -« measured: n4=32
11000 -} - - - analyzed: n3=2
' “\'c — — analyzed: n3=32
10000 &) 64x64 matrices, 16 nodes
AR
Execution )
time (T) 9000
8000 —
- 7000 - S~
6000 -

1 1 i 1
1x16 2x8 4x4 8x2 16x1
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Figure 9. Effects of partition size for Algorithm /

configuration for Algorithm /. The optimal configuration for a
given N can be found from the corresponding curve by choos-
ing its minimum point. It can be seen from the figure that our

.analytic model predicts the trend correctly and that errors are

within 5% in the region of interest, i.c., around the "knees"”.

It can be scen in Figure 8 that a square configuration

- always results in good performance [FoOH87}. However, due
““to the host downloading and uploading operations, the algo-

rithm favors partitions with few pipelines, i.e., a small n,. On

“the other hand, when n; is small, C submatrices will be large,

and so will be the reduction tree. In this case, the communica-
tion overhead is too high for efficient execution.

Parameter n3 determines the partition size of data. The
effect of partition sizes on the performance of Algorithm / is
illustrated in Figure 9. It is evident from Figure 9 -that the
granularity does have a bearing on the algorithm performance.
A large granularity forces the operations in the processors to

~ «be executed nearly sequentially, which reduces the degree of
. overlapping between processors. On the other hand, a small

granularity can increase the degree of overlapping, but, due to
the fixed overhead in transmitting messages, communication
cost will also rise. Though it is not shown. the best pamuon
size in this case is around 16.

Next, performance of the three algorithms introduced in
Section 3 is studied. In Figure 10, their execution times are
plotted against the pipeline configurations. It can be seen that
Algorithms IT and III have the same performance around the
optimal regions, and both are superior to Algorithm /. This is
because the latter has a reduction tree which involves subma-
trices of large sizes. Note that Algorithm JIf is expected to
perform worse when n, is large, due to & long path to accu-
mulate C submatrices. However, from Figure 10, we can see
that Algorithm JII performs as good as Algorithm 1/ does. A
reasonable explanation is that operations in the processors can
be fully overlapped in Algorithm J/I.




40000 - — Algor. 1
35000-% N=2 - Algor. II
30000 | Algor. III
25000 64x64 matrices, n3=8
Et’i‘nexceu?gn 20000 e N4

15000 —
10000-:f'"~~~----¢ N=8

so00| eesEmEmm N Ty

0 T | T

)
1 2 4 8 16 32

Number of column partitions ()
Figure 10. Comparison of algorithms using pipelining

Finally, an algorithm which does not use large-grain
pipelining [NiKP87] is compared with the three pipelined
algorithms presented in this paper. In the non-pipelined algo-
rithm (see Figure 11), both submatrices of A and B are loaded
into the nodes initially. Note that the communication patterns
of ring and binary-tree reduction can be perfectly embedded in
a hypercube. In each iteration, every node performs a
submatrix multiplication, then adds the resultant C subma-
trices with all nodes in the same row, and finally sends the
local B submatrix to the next node in the same column in a
ring fashion. The measured speedups are plotted in Figure 12,
where the speedup of an algorithm is defined as

execution time using N nodes
execution time using one node

speedup =

It can be seen from Figure 12 that Algorithm II and 11/
both perform better than the non-pipelined one does. This is
because the pipelined algorithms can better utilize the over-
lapped operations and balance the computation with commun-
ication through the choice of optimal design parameters. How-
ever, the improvement is not so significant as expected. The

01 02 (1<}
B 1 B B 01 0“0

An Az A3 c To the
By B2y By 1 Co Cu host
A Az An—-Czo CnCn
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Figure 11, Matrix multiplication without pipelining
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Figure 12. Comparison of speedups

major reason is because of the communication overhead in
current generation hypercube multiprocessors. The overhead
in setting up a message s still too high, during which interval
the host cannot perform any useful computation. Besides, the
gathering/scattering operations in the host are also expensive.
More operating system supports are needed to reduce the
overhead.

The pipelining concept is expected to benefit from novel
architectural designs in the second generation hypercubes
{ShFi87]. For instance, if some processors in the hypercube
can access the disk directly, then several data streams can flow
into the hypercube simultaneously, which results in a true
multiple pipelining scheme. More research is needed to assess
the idea of pipelining under new environments.

5. CONCLUSION

We have introduced the concept of large-grain pipelining
— a model of pipelined computations on hypercube multipro-
cessors. From the view point of -information flows, we
described three most important ingredients of large-grain
pipelining. Also demonstrated, through algorithms for matrix

- multiplication, are the ways to implement the concept on

hypercube multiprocessors and to bring the considerations for
partitioning and pipelining together in arriving good design
decisions. The latter is accomplished through an accurate ana-
Iytic model of the algorithm and the underlying architecture.

Experiments on a 64-node NCUBE show a very close
match between the measured and analyzed data. This estab-
lishes the analytic model as an integral part in determining the
optimal design parameters for a given algorithm. Experimen-
tal results also indicate the effectiveness of the pipelining con-
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cept in improving the performance, With more efficient com-
munication support in second generation hypercube multipro-
cessors, the improvement using large-griin “pipelining is
expected to be even greater. '

The concept of large-grain pipelining is very similar to
systolic arrays [KuLe78], although large-grain pipelining con-
centrates on asynchronous and coarse-grain computations.
The versatile and dynamic interconnection of the hypercube
allows the system to form pipelines of different configurations
and to adapt to different processing streams. Therefore, it is
possible to transform a systolic algorithm into one which uses
large-grain pipelining. Main issue here is how to group data
and cells in the systolic arrays so that the granularity is large
enough to be processed on a hypercube multiprocessor.
Research is now undergoing to study the transformation pro-

. cedure in a formal way.
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