
CONF- 8 8 01 1 7 --6

DE89 000523

IPROCESSORS~ LARGE-GRAIN PIPELINING ON HYPERCUBE M

Chung-Ta King? Lionel M . Niln2

'Department of Computer sciehce 2Division of Mathematics and Computer Science
Michigan State University , Argonne National Laboratory

East Lansing, Michigan 48824 . Argonne, IL 60439

ABSTRACT: A new paradigm. called large-grain pipelin- ,
ing, for developing efficient parallel algorithms on
distributed-memory multiprocessors. cg.. hypercube
machines, is introduced Large-grain pipelining attempts to
maximize the degree of overlapping and minimize the effect
of communication overhead in a multiprocessor system
through macro-pipelining between the nodes. Algorithms
developed through large-grain pipelining to perfonn matrix
multiplication are presented. To model the pipelined computa-

[GuHS86. HaMS861. These hypercube machines arc charac-
terized by a point-to-point, hypercube interprocessor connec-
tion. Each node in the system has its own processor and local
memory, and runs independently of other nodes. There are
direct connections from the nodes to the hostno processors
which take charge of program development. jKriphwal con-
trolling, and data downloading and uploading. This kind of
architecture is referred to as distributed-memory muftiproces-
ors. ,

The major bottleneck in current hypercube multiproces-

munication between processors are usually carried out through

head in transferring data between processors. In addition.

tions,- an analytic model is introduced,-which takes-into

Through the analytic model, important design parameters,

were conducted '' ' NCUBE multiprocessor* The

account both and behavior* ~0s is the communication. Due to the distributed

such as data Phtion sizes* can be determined' Experiments explicit message passing. This induces nonnegligible over-

match clOsely the according to Current implementations, the host controls pe+
which the as an part Of pheral devices. h g r m s and dam must be down[oadd from

with an algorithm which the host to nodes, and results must be uploaded back to the
not use large-grain Pipefining atso shows that pipe:
lining is an efficient scheme for achieving a greater parallel-
ism.

host. These downloading and uploading operations cause a
VO bottleneck which limits the computation rate.

erefon, to design parallel algorithms on hypercube
ssors, the designer must take into account the com-

munication effect and determine an efficient partitioning and
mapping scheme in order to reduce the amount of communi-
cation and balance the processor loads. Moreover, a schedul-
ing strategy is needed, which arranges the order of job execu-
tion to fully utilize the available resources. In this paper, a

, .

1. INTRODUCTION

In recent ye=, configuring a computer system with mul-
tiple vu1 processon h o m e s a significant w n d in paallel
m e s s i n g march . Among the available system, hypercube

new algorithm design paradigm, called large-grain pipelining,
is in,troduced. Large-grain pipelining exploits pipelined com-

* putations between processors. Through pipelining, the degree
multiprocessors have attracted a aunt of attention of overlapping can be maximized, the'effect of communica-

tion overhead can be minimized, and. most importantly, the

One important characteristic of the pipelined computa-
is the concept of information flows [NeSn87]. From the

view point of information flows, one can identify h e impor-
tant ingredients in large-grain pipelining. First, the flows of
data connect the processors in the system into an array or a
network. Processors in this network receive streams of data
from processors upstream and generate streams of data to pm-
cessors downstream. The network can be regular, such as a

rate can be balanced with the computation rate.

I
"I,"-.

A~wdingly, the U. S Government retains a
nonexcIusiyB. mvaltv-free license to publirh
or ,epr&uce the published form of thia I Mntrihution. or allow others to do SO, for

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

E

mesh, a binary tree, or a hexagon, or irregular. Furthermore.
the shape of the network may be changed as the computation
progresses. Next, to form streams of data, data in the compu-
tation are partitioned into blocks and are piped into the pipe-
lines one by one. Data blocks are the most basic units of pro-
cessing. It follows that large-grain pipelining is most suitable
for problems whose data can be partitioned naturally and
operated upon in parallel, i.e., those that can be solved by datu
parallel algorithms IHiSt861. Pipelined computations will be
further elaborated in Section 2 of this paper, followed by
examples for performing matrix multiplication in Section 3.

The third important ingredient of large-grain pipelining
is the determination of design parameters which include the
sizes of data blocks and the number and lengths of pipelines.
An optimal set of parameters can maximize the degree of
overlapping and balance the UO rate with the computation
rate, which, in turn. optimizes the algorithm. Through accurate
analytic modeling, these design parameters can be obtained.
It turns out that the sizes of data blocks are usually much
greater than that of a single data element to offset the effect of
communication overhead. Details of the analytic model will
be presented in Section 4, together with experimental results
from a &node NCUBE. These results confirm the validity of
the model and the effectiveness of the large-grain pipelining
concept.

2. MODELING PIPELINED COMPUTATION

A job can be considered as a function which takes inputs
and generates outputs. This situation can best be illustrated
through P-nets [King88], as shown in Figure 1. Figure l(a)
describes the job of a matrix multiplication, AxB=C. where
circles represent datu modufes (the matrices) and squares
represent computation modules (the multiplication). One way
of performing the multiplication is to partition A and B into

Matrix multiplication
A x B = C y

four submatrices as follows:

where Cu =C$%€y) =AioBoj+Aj1Blj, OSJSl. The P-net
shown in Figure l(b) defines the necessary operations to cal-
culate the matrix product in this case. Four phases are
identified: data downloading, submatrix multiplication. sub-
matrix addition, and result uploading.

In general, there are two major techniques in exploiting
parallelism: concurrency and pipelining (HwBr841. Con-
currency exploits spatial parallelism.by utilizing several pro-
cessors operating on multiple subjobs simultaneously. Thus, if
a hypercube multiprocessor has 8 processors, then the 8 sub
matrix multiplications specified in Figure l(b) can be m-
formed concurrently as shown in Figure 2(a). However, as
mentioned in Section 1. these data are usually downloaded
from the host. Thus. the mount of concurrency obtained is
really dependent upon the host-to-node communication
bandwidth and the degree of overlapping when the host down-
loads several processors. In other words. if the host download-
ing is performed sequentially and the communication over-
head is very high, then operations in these 8 processors might
be carried out sequentially in time, even though they are exe-
cuted by different processors.

Pipelining exploits temporal parallelism in which
streams of data flowing from processor to processor so that
different processors can work on different stages of the com-
putation simultaneously. Using this technique, an 8-processor
hypercube machine can be organized into 4 pipelines, as
shown in Figure 2(b) for one of the pipelines. Each pipeline
has 2 stages. Although, within each pipeline, operations
between stages are executed sequentially, the number of
active I/O channels the host has to maintain when download-
ing submatrices of B is reduced from 8 to 4. Note also that the
calculation of C\g does not depend on C@. but on the availa-
bility of A 10 and Boo. Thus, processor 0 can send Bw to pro-

Q Q b Q

1 Downloading I
Submatrix
multiplication I
Submatrix i addition

Uploading

Figure 1. Matrix multiplication and its P-net representation

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

..

(a) concurrent operation

Processor 0 Processor 1

. .

. ..

(b) pipelined operation

Figure 2. Submatrix multplication using multiple processors

From th above discussion, one can that multiple
pipelining is a very general pattern of computation. Even the
concurrent computation depicted in Figure 2(a) can be con-
sidered as a pipelined computation with 8 pipelines, each has
only one stage. Following the flow concept. each stage in the
pipeline cad% modeled as a computational unit with multiple
input and output streams (see Figure 3). Computation of the
whole system is then the cascade of these units along different
directions. From this point of view, a formal analytic model of
pipelined computations can 'be derived [KingSS]. which can
be used to estimate the execution time of the computation.

cessor 1 immediately after it receives Boo and it calcu-
lates ~ b . In this way, computations in these two processors
axe overlapped through

ient of
large-grain pipelining is the partitioning of data into data
blocks. Thus, submatrices of B can be further partitioned into
sub-submatrices to form data streams. Also, when download-
ing, the host can feed all the pipelines in a round-robin
fashion. In this way, even though the downloading is per-
formed sequentially, operations among the processors can
overlap. Note that the granularity (the sizes of data blocks)
plays a very important role in this situation. The smaller the
granularity is, the higher the degree of overlapping will be.
However, since there is a fixed overhead associated with the
setup of each message, a small granularity results in a large
number of messages and a high communication cost. The
choice of a suitable granularity is a very important issue and
will be discussed in Section 4. Note also that the pipelined
computation discussed here is most suitable for developing
data paralfel algorhms in data' are partitioned and
operated upon independently.

3. EXAMPLES OF LARGE-GRAIN PIPELINING

In this section, examples are introduced to illustrate the
application of large-grain pipelining. Consider the problem of
matrix multiplication. AxB=C, where A, B, and C are M x M
matrices. Suppose that A and B are stored in the host initially.
and that C will be stored back to the host. Then. imut data . .
must be downloaded from the host to the nodes and results
must be uploaded back to the host. Downloading and upload-
ing operations introduce extra communication overhead.
which differentiate our algorithms from those reported else-
where [ChSm87, FoOH871.

To perform the multiplication, the following partitioning
scheme is used: The hypercube is configured into an
nlxnz-dl mesh, and matrices A and B are partitioned along
columns and rows into n l x n ~ and n z ~ n 3 submatrices. respec-
tively. Note that, if n l and nz are both power of 2, then the
mesh can be embedded pedcctly onto a hypercube so that any .
node is only one hop away from its four neighbors ISaSc851.
Furthermore, nodes lie in the same column or row form a sub-
cube.

I

One way to perform the multiplication is to load subma-
trices of A into the corresponding processors in the mesh.
Then, submatrices of B are piped into the hypercube from the
host, as shown in Figure 4(a). Each column of n 1 nodes forms

t a pipeline and there are nz pipelines altogether. Let mde~
denote the processor located at row i and column j of the
mesh. Then, the algorithm is describkd in Figure 5.'

from Figure 4(a) that each pipeline will
receive a stream of B submatrices from the host. After all

- .

data block ($1

Figure 3. Model of a computational unit

J

f * . .~

From
BlO B l l 8 1 2 B13

the host

(a) submatrix multiplication

<Algorithm I>:
Host:

1.1. for i := 0 to n1-1 do
1.2.
1.3. fork := 0 to n3-l do
1.4.
1.5. for i := 0 to nl-1 do receive Ci from nodejn,l.

2.1. receive Aq from the host;
2.2. fork := 0 to n3-l do
2.3.
2.4.

for j := 0 to n2-1 do send Ac to nodee;

for j := 0 to n2-I do send Bjk to nodeoj;

Node: (node+ WSnl-1, (KjSn2-1)
.

if (i = 0) then receive Bjk from the host
else receive Bjk from n0de i - l~ ;

2.5.
2.6. c!# :=Aijajk;

if (i # n 1 - 1) then send Bjk to nodei+lj;

2.7. perform binaty-tree reduction with nodeil, ollSnjn~-l.
to obtain Cj := C~o)+...+C~-’’ in nodei,,,l.
where Ci’) := [Cig, ..., C!~,-I];

2.8. if (j = n2-1) then send Ci to the host.

Figure 5. Algorithm I for matrix multiplication

It is very important here to consider the balance between
granularity and communication overhead. It might turn out
that communication cost is so high that, combining two or
more C$”s into a larger submatrix, e.g., use [C# C@] in the
reduction, will give a better performance. In other words, the
tree reduction is performed every two or more iterations
instead of one. Thus, the choice of optimal granularity is
essential. In our approach, granularity is determined through
accurate performance estimations which will be discussed in
more detail in Section 4.

&I) submatrix addition

Figure 4. A matrix multiplication using pipelining concept

submatrices of B have passed through the pipelines, each pro-
cessor will have collected a portion of a submatrix of C with
size (Mln 1)xM. To obtain the final result, a bmary-tree reduc-
tion is performed among the processors in the same row (Eg-
ure 4(b)). Note that the pattern of bmary-tree reduction can be
perfectly embedded into a hypercube. The pipelining concept
can also be applied here in which each Cf) can be further par-
titioned into n4 smaller sub-submatrices. Then, these small
sub-submatrices are piped through the reduction me to accu-
mulate the final results.

The major problem with Algorithm I is that each proces-
sor has to store a large amount of intermediate data -
c#, ..., c&I. TO reduce the amount of memory storage,
we can perform the tree reduction during the submamx multi- - plication phase, as shown in Figure 6. That is. as soon as a C
submatrix is generated, a binary-tree reduction is invoked
among the row processors to accumulate the complete subma-
pix. This complete C submatrix is then uploaded back to the
host. No intermediate submatrices of C need be stored in the
processors.

<Algorithm 11,:
~-1HoSt:

1.l.fori :=Otonl-ldo
1.2.
1.3. fork := 0 to n3-l do
1.4.
1.5. for k := 0 to n3-l do
1.6.

Node: (nodejj, OSilnl-I, Wjh2-1)
2.1. receive Aii from the host;
2.2. fork := 0 to n3-l do
2.3.
2.4.
2.5.

2.7.

for j := 0 to n2-1 do send Au to nodeq;

for j := 0 to n2-1 do Send Bjk t0 “Odeoj;

for i := 0 to nl-1 do receive Cil: from nodei,.,l.

if (i = 0) then receive Bjk from the host
else receive Bjk from nodei-1.j;

if (i f nl-I) then send Bjk t0 nodei+l,j;

perform binary-tree reduction with MdeiI,
2.6. Cg’ :=Aijdjk;

OSI 9 2-1, to obtain Ca := C$)+ ...+C$”)
in nodejnil :

2.8.

Figure 6. Algorithm I I for matrix multiplication

if (j = nz-l) then send CB to the host.

<Algorithm Ill>:
Host:

1.1. fori := 0 to nl-1 do
1.2.
1.3. for k := 0 to n3-l do
1.4.
1.5. fork := 0 to n3-l do
1.6.

2.1. receive Av from the host;
2.2. fork := 0 to n3-l do
23. If (i = 0) then receive
2.4. else receive Bit from nodej-1,j;
2.5. if (i # n 1-1) then send Bjk to no&j+i,j;
2.6. cg) : = A q a j k ;
2.7. if (j # 0) then
2.8.
2.9.
2.10. If (j = n2-1) then send Cg) to the host
2.11.

Figure 7. Algorithm Iff for matrix multiplication

for j := 0 to n2-1 do send Ag to nodeg ;

fori s 0 to n2-1 do send Bjk to "Odeoj;

for i ts: 0 to nl-1 do receive Ca from
Node: (nodeg, OSiSn~-l . ,OSj~~- l)

else send Cg) to nodeij+l.

Binary-tree reduction is not the way to accumulate
submatrices of C. We consider next a linear reduction
scheme, as described in Figure 7. After having calculated a C
submatrix, each processor sends that C submatrix to its right
neighbor. The accumulation progresses from left to right in a

the right most processor of the row.
. linear fashion until the complete

Note that in Algorithm Iff a processor will perform a
submatrix multiplication before it pauses to wait for the C
submatrix from the left neighbor (Statement 2.6 - 2.9 in Figure

.7). This is because submatrix multiplication is a computation
intensive operation (0(n3)). ~f every processor performs its
multiplication after it receives the C submatrix from the left
neighbor, then the delay within each stage will be very long.
Following the same argument, one can also expect that the
linear reduction will behave badly
the reduction path is very long.
algorithms are given in the next section, where considerations
in designing algorithms using the pipelining concept will be
further elaborated.

In this section, performance of the three algorithms intro-
duced in the previous section is analyzed. An analytic model
is introduced to model the execution of the algorithms and -
estimate their execution times. To yerify the accuracy of the
analytic model and the effectiveness of the pipelining concept,
the algorithms were implemented on a &-node NCUBE mul-

'* tiprocessor [HaMS86]. A very close match between the

analyzed and e s u r e d performance is observed. Comparison
with an algorithm without using the pipelining concept was
conducted, and the results indicate the superior of algorithms
using the pipelining concepL

4.1. NCUBE Multiprocessor

NCUBE is a distributed-memory multiprocessor with a
point-to-point hypercube interprocessor connection. Our
major concern here is to measure system parameters, such as
message startup delay, single-byte transmission time, and ele-
mentary operation (e.g.. axb+c) time. All time quantities will
be measured in *terms of ticks. where
1 tick=1024/processor clock rare (in Hz). In general, com-
munication overhead is modeled as [&Re861

for communication initiated by the host (4.1)

for communication initiated by the node(4.2)

a h + Thxf

a,, + T,,W

where ~

+ a h = message startup delay in the host

?h = single-byte transmission time for messages ini-
tiated by the host

0" = message startup delay in the node

T,, = single-byte transmission time for messages ini-

includes such overhead as invoking the
send(] and rem() routines and setting up the DMA. Transmis-
sion time includes such overhead as transferring the message
to and from the operating system's buffer and over the com-
munication link fMuBA861.

The host communication overhead is studied first. Note
that when downloading submatrices, the host must first gather
all elements of the submatrix and load them into a consecutive
memory buffer before the send primitive can be called. Simi-
larly, when receiving submatrices. the host has to scatter the
elements of a submatrix from a consecutive message buffer to
their respective locations in the matrix. Thus the experiment
performed not only measured the overhead in (4.1) but also
measured the overhead involved in gatheringlscattering opera-

, tions. Results from the experiment show that the host com-
eled perfectly by

s. which indicates that the host cannotdo any useful com-

Next, node communication overhead is measured and

5.0 + 0 . 0 1 3 ~ ~ (4.4)

putation during the interval given by (4.3).

can be modeled linearly by

. . ̂ _. .. .
b

o h
5.5

o n Th % Ib Zc
5 0.069 0.013 0.15 0.24

sizeofAu is bMz for(Ki<nt.Olj<nz

size of Bu is bM? for OSi<nz. Olj<n3

size of C, is e for 04' en 1 , &j<n 3

' where b = 4 byres is the size of a floating number on NCUBE.
Define the following notations:

n1n2

n2n3

nln3

The first step in analyzing the performance of a pipelined
algorithm is to identify the critical path of the computation.
Note that in Algorithm I, all processors perform the same
function, and, according to the order of data downloading;
processors at the right most column are the ones that start the
latest among all processors at the same TOW. Thus. we need
only focus on the operations in nodeLna-1. OSiSnl-1. Con-
sider nodeo.,,l first. Operations in this processor depend on
two events: the anival of a B submatrix and the setup of the
receive routine. Note that, before the host can download
B,,,1fi, it must send all submatrices of A as well as Boo. ...,

Bn,-zo to the correspondhg nodes. Thus, Bnr1,0 will arrive
at nodeo,,,l at

p") =N(ah+812) + n2(ah+823)
where N=nlnz is the num
between successive B submatrix arrivals is

nodes used. The interval

q(O) =n2(oh+8p)

which is the time the host Ioads all nodes in the top row
exactly once. On the o , mdeO,na-1 will setup the
receive routine for B,, er it has received A O , , , ~ ~
from the host. Thus, this node will be ready for B,,,-l,o at

a (O) = nz(oh+812) + yr12 + a,
The second term, ~ 1 2 . accounts for the time to copy the
received A submanix (AO, , ,~-~) from the system's buffer, and
o n is the time to i the receive routine for B,,l,o.
Depending on which occurs first, the processor can start
the submatrix multiplication phase at

~6') = max p(O),'a(O) + prB I 1 .
where is the time to copy B,,-1,0 from the system buffer.
From now on, in each iteration, nodeO,,,-1 will (1) send the
received B submatrix to node 1 . , ~ - 1 , which takes a,, + \yu; (2)
perform a submatrix multiplication, which takes to; and (3)
receive a B submatrix from the host, which takes on + wp.
Let

c@) = 2(on+w23) + to

Then, the iteration time at this node will depend on both q(O)
and c(O), and is given by

@ = max q@), c(0) { I
Given Tho) and gCo), the time that nodeo.,,-1 finishes the sub-
matrix multiplication phase can be found to be

fij) =ao) + (n3-1)S(O)'+ (on+yrU) +to

Furthermore, due to the binary-tree reduction, the submatrix
addition phase will take

T$') = 1og,,,(0,+2~1+t 1

assuming for simplicity no further partitioning for C d m a -
trices. It follows that the host will receive the first submatrix
of C at

= fij) + T$') + (a,+V1)

In general, for nodeL,,-l. (Ki*l-l, the time that the
submatrix multiplication can start is dependent upon (1) when
the first B submatrix. Bna-l.O,

where the second term is the time to transfer one B submatrix
from nodei,,,l to nodei+l,,,l;
submatrix and is ready for Bnrl

,-

a(i) = (i+l)n2(ah+0~2) + y42 +on

$0 = $g + i (a,+2wu)

. I Assume that p(i)2a(i), then we have I S t

Tbf') = ,&i) a(;) = gC0)

and the host will receive the C submatrix from nodei,n2-l at

Pi = PO + i (on+2~~3)

Now consider the host. The first C submatrix will arrive
at the host at k, and subsequent C submatrices arrive with an
interval of (o n + 2 ~ ~) . On the other hand, after receiving one
C submatrix, the host needs a time interval of 81 + o h to copy
the submatrix from the system buffer and setup the next
receive routine. It follows that the host will finish the upload-
ing phase (and the whole execution) at

4.3. Performance Analysis

In this subsection, the execution time derived in Section
4.2 is first validated through experimental results obtained
from the NCUBE. Having established the validity, the model
can then be used to assist in algorithm designs, such as deter-
mining the optimal partition configuration and partition size.
Next, the effectiveness of the algorithms introduced in Section
3 is compared with an algorithm without using large-grain
pipelining.

The design parameters n l and n2 determine the
configuration of the pipelines. where n2 gives the number of
pipelines and n 1 gives the number of stages in each pipeline.
If the number of processors (N) is fixed, then we need only
consider n l or n2, because N=n 1n2. Figure 8 shows the rela-
tionship between the execution time and the pipeline

- Measureddata

Analyzed data

64x64 matrices. n 3 4

Execution
em

1 2 4 8 1 6 3 2

Number of column partitions (n 1)

Figure 8. Effects of pipeline configuration for Algorithm f

12000 - measured: n3=2
.- - measured: n 3=32

- - - analyztd: n3=2
- - analyzed: n3=32

loo00 64x64 matrices, 16 nodes

Execution
time (2")

I
I

I
I

I 2
_ - ---

1 x 1 6 2 x 8 4 x 4 8 x 2 1 6 x 1

Partition pattern (nlxnz)
Figure 9. Effects of partition size for Algorithm f

configuration for Algorithm I. The optimal configuration for a
given N can be found from the corresponding curve by choos-
ing its minimum point. It can be seen from the figure that our
analytic model predicts the trend correctly and that CHOI-S are
within 5% in the region of interest, ic., around the "knees".

It can be seen in Figure 8 that a square configuration
always results in good performance [FoOH87]. However, due
to the host downloading and uploading operations, the algo-
rithm favors partitions with few pipelines, is . , a small n2. On
the other hand, when n 1 is small, C submatrices will be large,
and so will be the reduction tree. In this case, the communica-
tion overhead is too high for efficient execution.

Parameter n3 determines the partition size of data. The
effect of partition sizes on the performance of Algorithm f is
illustrated in Figwe 9. It is evident from Figure 9 that the
granularity does have a bearing on the algorithm performance.
A large granularity forces the operations in the processors to
be executed nearly sequentially. which reduces the degree of
overlapping between processors. On the other hand, a small
granularity can increase the degree of overlapping, but, due to
the fixed overhead in transmitting messages, communication
cost will also rise. Though it is not shown, the best partition
size in this case is around 16.

Next, performance of the three algorithms introduced in
Section 3 is studied. In Figure 10. their execution times are
plotted against the pipeline configurations. It can be seen that
Algorithms If and Iff have the same performance around the
optimal regions, and both are superior to Algorithm I. This is
because the latter has a reduction me which involves subma-
trices of large sizes. Note that Algorithm Iff is expected to
perform worse when n2 is large, due to a long path to accu-
mulate C submatrices. However, from Figure 10. we can see
that Algorithm Iff performs as good as Algorithm If does. A
reasonable explanation is that operations in the processors can
be fully overlapped in Algorithm 111.

b

4 m - Algor. I

- - - - Algor. XI
3 m Algor.

25000 64x64 matrices, n3=8

O] I I I I I

1 2 4 8 1 6 3 2

Number of column partitions (n 1)

Figure 10. Comparison of algorithms using pipelining

Finally, an algorithm which does not use large-grain
pipelining [NiKPt37J is compared with the three pipelined
algorithms presented in this paper. In the non-pipelined dgo-
rithm (see Figure 1 I), both submatrices of A and B are loaded
into the nodes initially. Note that the communication patterns
of ring and binary-tree reduction can be perfectly embedded in
a hypercube!. In each iteration, every node performs a
submatrix multiplication. then adds the resultant C subma-
trices with a l l nodes in the same TOW, and finally sends the
local B submatrix to the next node in the same column in a
ring fashion. The measured speedups are plotted in Figure 12,
where the speedup of an algorithm is defined as

execution time using N nodes
execution time using one node speedup =

It can be seen from Figure 12 that Algorithm II and III
both perform better than the non-pipelined one does. This is
because the pipelined algorithms can better utilize the over-
lapped operations and balance the computation with commun-
ication through the choice of optimal design parameters. How-
ever, the improvement is not so significant as expected. The

To the
host

Figure 11. Matrix multiplication without pipelining

30-, - Algor.1

- - Non-pipelined ...a.

64x64 matrices

I I I I I
0 5 10 15 20 25 30

Number of processors (N)
Figure 12. Comparison of speedups

major reason is because of the communication overhead in
current generation hypercube multiprocessors. The overhead
in setting.up a message is still too high, during which interval
the host cannot perform any useful computation. Besides, the
gatheringkattering operations in the host a n also expensive.
More operating system supports are needed to reduce the
overhead.

The pipelining concept is expected to benefit from novel
architectural designs in the second generation hypercubes
[ShFi87]. For instance, if some processors in the hypercube
can access the disk directly, then several data streams can flow
into the hypercube simultaneously, which results in a true
multiple pipelining scheme. More research is needed to assess
the idea of pipelining under new environments.

5. CONCLUSION

We have introduced the concept of large-grain pipelining
- a model of pipelined computations on hypercube multipm-
cessors. From the view point of information flows, we
described three most important ingredients of large-grain
pipelining. Also demonstrated, through algorithms for matrix
multiplication, axe the ways to implement the concept on
hypercube multiprocessors and to bring the considerations for
partitioning and pipelining together in arriving good design
decisions. The latter is accomplished through an accurate ana-
lytic model of the algorithm and the underlying architecture.

Experiments on a 64-node NCUBE show a very close
match between the measured and analyzed data. This estab-
lishes the analytic model as an integral part in determining the
optimal design parameters for a given algorithm. Experimen-
tal results also indicate the effectiveness of the pipelining con-

cept in improving the performance. With more efficient com-
munication support in second generation hypercube multipro-
cessors, the improvement using large-grain pipelining is
expected to be even greater.

The concept of large-grain pipelining is very similar to
systolic arrays [KuLe78]. although large-grain pipelining con-
centrates on asynchronous and coarse-grain computations.
The versatile and dynamic interconnection of the hypercube
allows the system to form pipelines of different configurations
and to adapt to different processing streams. Therefore, it is
possible to fransfopn a systolic algorithm into one which uses
large-grain pipelining. Main issue here is how to group data
and cells in the systolic arrays so that the granularity is large
enough to be processed on a hypercube multiprocessor.
Research is now undergoing to study the transformation pro-
cedure in a formal way.

.

REFERENCES

[ChSm87] V. Cherkassky, R. Smith, "Efficient Mapping and
Implementation of Matrix Algorithms on a
Hypercube," Technical Report, Department of
Electrical Engineering, University of Minnesota,
1987.

[FoOH87] G.C. Fox, S.W. Otto, A.J. Hey, "Matrix Algo-
rithms on a Hypercube I: Matrix Multiplication,"
Parallel Computing, Jan. 1987, pp. 17-31.
D.C. Grunwald, D.A. Reed, "Benchmarking
Hypercube Hardware and Software," Technical
Report, UIUCDCS-R-86-1303, Department of
Computer Science, University of Illinois at
Urbana-Champaign, 1986.

[GuHS86] J.L Gustafson, S. Hawkinson. K. Scott, "The
Architecture of a Homogeneous Vector Super-
computer," Proc. of 1986 Int'l Conf. on Parallel
Processing, August 1986, pp. 649-652.

[HaMS861 J.P. Hayes, T.N. Mudge. Q.F. Stout, S. Colley, J.
Palmer, "Architecture of a Hypercube Supercom-
puter," Proc. of I986 I d 1 Cot$ on Parallel Pro-
cessing, August 1986. pp. 653-660.
W.D. Hillis. G.L. Steele, "Data Parallel Algo-
rithms," Comm. ACM, December 1986, pp.
1170-1183.

[HwBr84] K. Hwang, EA. Briggs, Computer Architecture
and Parallel Processing, McGraw-Hill Book Co.,
1984.
C.T. King, "Parallel Computation Modeling for
Distributed-Memory Multiproccssors," PhD.
Dissertation, Department of Computer Science.
Michigan State University. 1988.

[KuLe78] H.T. Kung, C.E. Leiserson. "Systolic Arrays (for
VLSI)," Sparse Matrix Proc., 1978. pp. 32-63.

* [MuBA86] T.N. Mudge. G.D. Buzzard, T.S. Abdel-Rahman;
"A High Performance Ojxrating System for the
NCUBE," Proc. of the 2nd Conf. on Hypercube
Multiprocessors, 1986.

[GrRe861

LIiiSt8Gj

[King881

[Neb871 P.A. Nelson. L Snyder, "Programming Paradigms
for Nonshand Memory Parallel Computers." in

Jamieson. D.B. Gannon. R.J. Douglass. eds., MIT
Press, 1987.

[NiKP871 L.N. Ni. C.T. King, P. Prins. "Parallel Algorithm
Design Considerations for Hypercube Multipro-
cessors." Proc. of 1987 Int'l C O ~ . on Parallel
Processing. 1987, pp. 717-720.
Y. Saad, M.H. Schultz, "Topological Properties of
Hypercubes." Technical Report,
YALEU/DCS/RR-389, Department of Computer
Science, Yale University, June 1985.
Y. Shih, J. Ficr, "Hypercube Systems and Key
Applications," in Parallel Processing for Super-
computing and AI, K. Hwang, 0. DeGroot, 4s..
1987.

r r . , The Characteristics of Parallel Algorithm. L.H.

[SaSc851

[ShFi871

a

i

c

