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FOREWORD

The developments presented in this work make it economically feasible
to use a time-expiicif numerical code to perform thermomechanical‘simulations
of quasi;stafié systems that incorporate physically small source regioné (or
centers of activity) in a relatively large ‘space. A nuclear waste repository
in a geological medium is an example of such a system. In particular; thel
techniques developed make it possible to eliminate two majof restrictions
that explicit-finite difference codes generally have that can considerably
limit their efficiency. These restrictions being: (1) the zones of the
mesh should be of.comparable size; and (2) the smallest zone which controls
the global time step restricts the speed at which equilibrium can be achieved
elsewhere. When applied properly, the techniques developed in this work can
provide enormous savings in computational_time without affecting the accuracy

of the solution in any significant way.
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SECTION 1
INTRODUCTION

‘The applicability of the explicit finite-difference (EFD) method for
analy;iﬁg the mechanicai and thermal response of a radioactive waste repos-
itory was first demonstrated by two-dimensional numerical simulations of
Project Salt Vault (PSV) (Reference 1). The PSV analysis was performed‘
using an alfeady—developed computer code, the STEALTH® 2D EFD continuum me-
~chaﬁics computer code (Reference 2), end‘two proven optimization techniques:
(1) dynamic relaxation (Reference 3); and (2) density sceling. ‘Subsequent
simulations of PSV, which included the initial excavation4seduence (Refer—
ence 4), and some spent fuel (SF) and highllevel waste (HLW) repository sco-
ping calculations (Reference 5), also used the STEALTH 2D code. However, in
these eaées, a new time-step optimization method called ”pseudo—time steps"
(PTS) was developed and tested. The need to develop PTS arose because of
the mésh (spatial accuracy) requirements of the SF and HLW scoping calcula-
tions. However, it has proven to be generally applicable to quasi-static

thermomechanical problems.

PTS effectively allows eachbzone in a quasi-static problem to use an
individually optimized, locally étable time step to advance states of stress.
The method ‘automatically scales the mechanical time step to a prescribed
fraction of the stable thermal time step of each finite-difference zone to
optimum values. The technique was used sﬁtcessfully in one PSV simulation
which did not require its use and in all three thermomechanical reéponee
calculations which did require a time-step optimizatien procedure in order
to be efficient. PTS has been derived se as to be generallfor one-, two-,
and three~dimensional problems and can be used with dynamic relaxation.

This report describes the motivation, derivation, and implementation of the

PTS method.

g

"Solids and Thermal hydraulics codes for EPRI Adapted from Lagrange
TOODY and HEMP," developed for Electric Power Research Institute by
Science Applications, Inc. under Contract RP307.



SECTION 2
TECHNICAL BACKGROUND

The EFD,method was originally developed for the efficient computation
of transient mechanical shock problems. ‘The explicit approach insures cor-
rect.thermodyhamic path dependence by 1imitiﬁg the time step to a value that'
allows grid points to communicate only with their immediate neighbor zones,
and zones to éommunitate only with their immediate neighbor grid points.
Mechanical changes are, therefore, communicated thréugh a mesh at a finite
rate equal to or less than the value of the local sound speed. When an event,i
has a material velocity on the order of the sound speed (i.e., when the local
Mach number approaches unity), the eveﬁt is_commuhicated at the numerically
optimum rate. When, on the other hand, the value of the material velocity
is many orders of magnitudé below the value of the local sound speed (as it
is in a qﬁaéi-static event), the spatial cbmmunication process is far'too

slow for efficient computation on a real time scale.

The explicit timé-step limit for a mechanical event based on the Courant

stability reduirement (Reference 6) 1is
-1 | 2.1
At, o (2.1)

where Ati is the maximum stable time step that can be used at point i,.Azi
is a characteristic length at point i, and ci.is the local longitudinal
sound speed at poiﬁt i. The characteristic length is thevdistance across a
zone in the direction of maximum acceleration (gradient of stress). The
" fastest sound.speed is the isentropic sound speed usually'associated with

the direction of the maximum principal stress:

Do

S . (2.2)

c?
£ do0 /. .
isentropic



In a uniform mesh made up.of square zohes (of side length a) in which
the sound speed is a constant, the characteristic length is bounded as fol-

lows:
las M< J2 oa.. . | (2.3).

Thus, . the time step for the entire mesh, which is taken to be the smallest

value of Ati’ will’depend~éntire1y on the smallest value of Aﬂi.

In a non-uniform mesh in which the sound speed is a constant, the_ch&r-
acteristic length is not necessarily bounded over such a small range. The
smallest zone dimension limits the smallest value that a time step can at-.
tain. Larger values of the time step are possible, depending on  the gradiént
of stress (direction of maximum acceleration), but the ‘largest time step is
'limited by the least largest™ dimension. Thus, where both 1afge and small
zones exist, the large zones are usually computed at time.steps far below
their optimum value. In transient problems (expecially’nonlinear ones) ,
this constraint is unavoidable (and desirable) in order to breserve the time
sequencing of interacting eventé which are communicating at sound speed. The
frequency of time steps is consistent with the response frequency'of the
transient event. 1In quasi-static problems iﬁ which‘M6mentum effects‘are
small, the Courant time-step constraint is too restrictive. The response
freduency is hany orders below the one implied by the mechanical sound speed

and a zone-related characteristic length.

For isotropic, quasi-static simulations in which zone sizes are rela-
tively uniform, satisfaction of Eq.(2.1) requires that the mechanical sound
speed be artificially scaled down in order to achieve an increased time step.
The magnitude of sound speed scaling must be limited by the need to guaran-

tee a proper description of physical processés. It is useful to view an

The least largest dimension is determined by the two-step process of
first finding the largest dimension of each zone and then taking the
minimum value of. these largest dimensions.



artificial reduction in sound speed in terms of the effective elastic mod-
uli and mass densities which are used to compute the value of sound speed.
One can view a reduction of the sound speed (1) as an artificial reduction
in the bulk and shear moduli, (2) as an artificial increase in the density,

or (3) as a combined moduli reduction and density increase.

Scaling the moduli down is most applicable when ineftial effects are
quite important, but compressibility'is unimportant. Under modulus scaling,
stress is assumed to be a weék function of strain. There are two classes of .
problems in which~modﬁ1us scaling is obviously applicable: (1) incompress;
ible flow and (2) rigid body motion. In both cases, thé values of the mod-
uli are assumed to be unimportant and can be chosen small enough to improve
computational efficiency. To understand the implications of modulus scaling,

the logic for the incompressible-case is described below.

The_phys;cal assumption associated with inéompressibility'implies that
the mechanical sound speed is indeterminant. Often, it is said that the
sound speed is infinite (or, similarly, that the Mach number is zéro, M=0).

- However, as a practical matter, a better condition might be that incompress-
ibility for real»materials exists when M & 0:3. For many cases, this means
that the sound speed can be reduced (scaled) below its actual value provided
that M < 0.3. Suppose an air bubble is expanding in water at approximately
15 ft/sec and it is necessary to compute the resulting pressure in the water.
.The.sound spéed of water is about 5000 ft/sec, which, for this problem, means
that the Mach number is about 3 X 1072. The flow is incompressible accofding
to M < 0.3. Therefore, the sound speéd is not importaht and can be artifi-
cialiy,dropped up to two orders of magnitude without exceeding the Mach num-
ber criterion for incompressibility. To be cénservative, let's drdp the
sound speed only one order of magnitude to 500 ft/sec. This improves the
time step by a factor of 10. To drop the sound speed means that the buik
modulus isieffectivély reduced by a factor of 100 (i.e., the compressibility
is increased by 100). Sihce the flow at 15 ft/sec is inéompressible, the
change of modulus will be applied to infinitesimal strains and the pressures will

be only slightly affected. A similar logic may be applied to the rigid case.



When inertial.effects are unimportant but where compressibility may be
important, density scaling may be used. In these probiems, the time scale
of the problem must bevdetermiﬁed by some other mechanism -- for example,
heat transfer. Density scaling allows one to coﬁpufe the intermediate state
points of the process. Density scaling is applicable to repository type of:

calculations.
When‘é problem is static or nearly static, the density (or masé) does

not play an impo:tant'role in the stress equilibrium process. "Inertial ef-

fects disappear and the two-dimensional momentum equations become

or

XX ,boxz o~ bcxx bc‘zy_ ~ a
+ =0, + =0, : (2.4)
oy . Ox oy ,

vy’ and cxy are stresses. The zero on

where F and F_ are forces and o__, ©
X y - XX . .
" the right-hand side of the equal sign indicates that the inertial force is

negligible. So, for Eq.(2.4), one can write
pX =0, py=0. ' : . (2.5)

Equation (2.5) is valid because X and y are small. Therefore, p can be any
valué (in‘unité consistent with X and ¥) so loﬁg as Eq.(2.5) reméins satis~-
fied. 1Increasing the density has the effect of lowering the sound speed,
which, in turn, raises the time step. Since the sound speed is inversely
proportional to the square root of density, the time step is directly pro-

portional to the square root of density.

When a mesh is very non-uniform, it is desirable to scale density dif-
ferently in different zones in order to counteract the characteristic zone

length constraint on the time step. The technique of non-uniform density



scaling corresponds to ‘applying a different time step to each’mass point in
the gfid during the same computing cycle. If each of tﬁese local time steps
has the maximum value allowed by the Courant condition for local stability,
then each point of the grid will respond as vigorously as possible to re-
lieve the current unbalanced forces. Though each mass point responds ac-
éofdihg to a different time step, the resulting stresses will be on the

time scale of the applied load to the extent that stress equilibrium is ap-

proached.

Non-uniform density scaling is attractive in principlé but cumbersome
to apply. PTS scaling corresponds to employing the maximum stable time step
to each mass point. These sq-called "pséudo-time steps"‘proﬁide the identi-
cal features of variable density scaling, including the feature of different
time steps for the motion in the orthogonal directions at the same point.
This is very useful for hydrodynamic systems (zero-shear_strength),,But re-
_quires care when Poisson's ratio is less than-0.5. 1Instabilities can be
‘generated in this latter case when the orthogonal time steps have different
values. The precise conditions for stability when the directional time-step

feature is included have not been established at this time.

Using an explicit-in-time code to do static éimulations fequires that
some form of damping be added to the equations of motion which will act
to reduce spurious oscillations. A veiocity damping method known as
dynamic relaxation (DR) has been used successfully by many people. Veloc-
ity damping concerns itself only with the end states of a process. Inter-
mediate states are not guaranteed to be accurate because the process (thermo-
dynamic path dépéndence)'is always chosen to be critically damped or, at
worst, slightly underdamped. DR is quite useful in establishing overburden

in complex geologies.

In DR, 'a viscous damping term is added to the momentum equation. This
acts to critically damp the fundamental response mode. In this way, the
number of time stebs (iterations) required to achieve stress equilibrium is

reduced. 1In scaling methods, the magnitude of individual time steps is



increased to improve efficiency. DR is most useful when the integrated
value of time is of little or no consequence, i.e., it doesn't matter what
the '"'real time" is.  Density scaling, on the other hand, preserves time as

a meaningful variable.

In DR, thé equations of motion are modified as follows,
| 0Ty ) '.]3.) |
IF, = m (x tox ), ZFy m y_+ -y s o (2.6)

whefé‘ﬂ'is'a dimensionless damping coefficient, X and ¥ are the components
oflaccelerétion resulting from the externally applied forées, Fy and Fy’ and
x and y are the components of velocity that result from integrating X and ¥,
respectively, with critical damping applied. In terms of stress, Eqs.(2.6)

become

bdxx boxx - (i +_nf.) N
hqxx bozz ST '- .
bX + by = p(y +':|: Y) + pgy >

where ' is N/%. The value of N (or N') is chosen to critically damp the
lowest fundamental frequency of the grid. For linear elastic problems, it
is'a reiatively simple matter to determine the damping (or relaxation) fac-
tor from a modal analysis or a dynamic excitation without damping. Even for
mildly nonlinear systéms,'the latter technique can be used. For strongly '
nonlinear systems, an appropriate relaxation factor is far more difficult to

compute and often requires considerable judgment.



'The calculational form of the dynamic relaxation momentum equation

comes from solving Eq.(2.7) fof‘acceleration,*

>(2.8)

. ' 2 S\

.n _ 1 box o, 1L 7N 'n
yvo= st e =) =23 g
. o™ oy n

Integrating Ed.(2.8) with respect to time and making the following substi-

tutions)
o0
pn m ’
n xn+; + xn-% .n I+ n-%
X = 2 ) = 2 3
yields
0o n n
n-% L n-%
xn+% AL J% <6;§§ + be > + By Ae™ - qﬁ;_ [Xn+ + X" 2] s
P
(2.9)
d o \B n .
n+% n-% _ |1 Xy vy n _ TAt [.m+)  .n-%
Ty T e\ Ty Tey B T [V Y

Solving Eq.(2.9) for new velocity and defining the relaxation factor, w, to be

% . L, L
Superscript n denotes time orientation.



results in .

1 -1 n
Xn+2 _ Xn > .2 - . 1 + xn At ,
| 1+wat | 1+wae”
n+% .n-% i 2 W .0 [ Ae”
N =y el 1] + vy A s
L1+wAt ' L1+wAt

where

n

n 1 boxx bo'x
¥ = = +=L) +g
pn Ox oy X

% 5 \" -
n_o L _x o,y o,
' pn Ox Oy y

e
il

Equations (2.10) are geheral equations of motion which

undamped form when w=0.

- (2.10)

reduce to the



SECTION 3
'TIME STEP' OPTIMIZATION

A primary dptimi;ation requirément'for a quasi-static thermomééhanical
problem is that thc mechanical and thermal time steps be.brought into order-
of_magnitude.proximity for efficient computation. Unscaled, Courant-stable,
mechanical time steps are usually three orders of hagnitude smaller than
diffusion-limited, stable thermal time steps. In the absence of inertial
effects, thermal Eranspoft (diffusion) limits the mechanical response so

~that the mechanical time step may be increased to the thermally stable value
without Violating thermodynamic consistency. The simplest way to achieve
time-step parity between mechanical and thermal mechanisms without violating
the Courant stability criterion is to scale up the mass density. The scaled
value is limited such that no artificial inertial effects are created. The
arbitrarily increased density lowers the sound speed, which, in turn, creates
larger stable mechanical time steps. However, the characteristic zone length
will become an overriding factor in problems in which the zone size exhibits
.aspect ratios in excess of 2 to 1, and in which very small zones co-exist
with very large zones. 1In these cases, the Courant charactériétié length
becomes the'dominant impedimenﬁ to efficient computation in the same way

that the mechanical sound speed does when inertial effects are low.

All repository calculations exhibit negligible ihertia, which means
that density scaling is applicable, but stress is a sensitive function of
strain, so that modulus scaling is not valid. Mesh requirements vary from
problem to problem. The mesheé used for all tﬁe PSV calculations are ex-
tremely regular. Most of the zones are squares and those that ére not, are
rectangles‘which never exceed a 2 to 1 aspect ratio. The SF and HLW scoping
calculations, on the other hand, required initial meghesAthat had rectangular
zones of varying size and shape. Zones near the repository were long and
thin, with aspect ratibs»as high as 50 to 1. Away from the repository,

zones became more square-like.

10



In order to overcome the limitations due to zone length, it is desir-’

able to employ a non-uniform density scale. However, prescribing density

as a function of space and timé, in order to 6ptimize time steps, is cumber-
some to implement and not amenable ﬁo stability amalysis. For these reasons,
an alternative approach (PTS) was'déveloped which would provide the features
of (1) scaling the mass densities throughout thé entire grid by a constant
factor to increase the stable mechanical time step to be more compétiblé
with the real timé'scéle of the driving forces (e.g., thermal) and (2) ad-
justing the global density scale to a value that effecti&ely matches the

sound transit times in unequal size zones.

Before deriving thé formulas for PTS optimization, it is useful to see
" the effect of global density scaling on the standard DR equatibns‘df motion.
The velocity and coordinate update equations for grid point i of a one-di-

mensional system are written as follows, .

, Ach
n+x .n-% 2 .
K; =K P |—F— 1| + X = — (3.1)
s . s 1+w At s |1+w At
s s s s
n+E L :
X0t = xT 4+ ZE AR (3.2)
i i S
s
where -
' X, = coordinate
ii = velocity
ii‘= acceleration (including body forces)
w, = damping frequency for dynamic relaxation
At = time step in real time controlled by mechanical,

thermal,. or other constraints.

11



The subscript s denotes a'séalgd value. Density scaling is defined as
P. = PS> s >1, S (3.3)

where so'is a globallscéling factor and p is the unscaled mass density. As

a result, one can write

Xg T X5 - . (3.4a)
le] .

because, from conservation of momentum, X is inversely proportional to den-

sity. Similarly, one can write
k= x— ' S (3.4b)

and

because each is inversely proportioﬁal to Atn, and At" is proportional to the
square root -of density through the Courant condition. Thus, Eq.(3.2) is in-
variant with respect to scale, and displacement (and sfress-strain response)
is the same .in either the scaled or unscaled time domain. -A'singie scale
“factor, 65, applied globally to an entire mesh allows one to scale the grid's
mechanical time step to any convenient size consistent with the initial and

boundary.conditions.

To optimize the relaxation rate of each individual grid point on a cycle’
basis, one can provide a point-dependeht scale factor so that each grid point
in each cycle moveco the maxiﬁum distance allowed by the Courant condition at

its'safety factor, F. For an unscaled problem, the globai time-step is

12



chosen .as the minimum stable time step for the entire mesh, i.e.,-

At = minimum(6t,)

where Gti are the mechanical time steps of the zones surroundihg grid point 1i.

The formula for a particular zone's time step is -

8t = F -%§ ‘ (3.5)

where F is a time step safety factor, usually less than, but never greater
than 1. F is used to compensate for uncertainties with respect to a precise
‘stability limit'for an arbitrary material. Ax-is the distance across a zoﬁe,
and ¢ is the local sound speed of the zone. Theréfore, the point-dependent

scale féctor would be

. 6t. 2 . ’ ) ’ .
s, | —=) . ' , (3.6)
i At : o ,
Combining Eq.(2.6) with the global scale, s, yields

2

ot | . ‘
s; = so<7ﬁ}>. : 4 B : (3.7)

Equation (3.7) resultsAin a time-dependent mass when zones distort and éti

changes in time.

Density scaling can be eliminated by defining a "pseudo-velocity update'"

equation as follows, -

' At ‘ ' ‘
% -% .. :
A v2+‘ = v?‘n [———Z~—— - 1] + x? — = s . (3.8)

13



where v is ‘the pseudo-velocity and

5¢T 1 [6tr,l+% + 6tr,1';2:|
i .2 i : i

Equation‘(3.8) provides the largest stable displacement allowed by the sta-

bility fraction, F.

The resulting coordinate update is

(3.9)

Equations (3.8) and (3.9) can be used directly or, if the form is incon-

venient, can be expressed in alternate forms. For example, it is customary

to update coordinates with the global time step, Ats,‘associated with the

driving forces in the real tiﬁe scale, i.e., Eq.(3.2). The real velocity,

.n+k
i

P T I
i i i s
to obtain
vrh\;‘2 th+%
inb% _ i
i A E
s

Substituting Eq.(3.8) into Eq.(3.lL) yields

1 Y
1 st 3 AT 1
in+2 _ i s LN-% 2
A -1 n+%x
= 5t77F Ac™E T | 14 woe?
1 S 1

When the imposed value, At:+

x, ¢, determined from the pseudo-velocity uses the identity

" (3.10)
(3.11)
Y 6tlil+ x’fl1
3.12)
T (
2 1+ (1)6t:r.1
s . i

L 4
? is not constrained by mechanical stability and,

in certain cases, when it varies substantially from cycle to cycle, Eq.(3.12)

must be used.

14



Equation (3.12) can be approximated when the fractional change of At
and 8t are both less than 1 -F, since the lack of centering will not induce

mechanical instabilityﬂ Using Ehis approximation, Eq.(3.12) becomes

n n+% .n
n+%y  .n-% 2 6ti 6ti *i
X =% - 1] + . vy b — | > , (3.13)
' 1+ wbt Ar 7 1+ wbt,
-1 s 1
or, more simply,
s . : 'n+1-* ..n
‘ st, “ X
n+X .n-% 2 : i i
xri‘ Z x‘i‘ Pl -1 + [ tv;] = m (3.14)
1+w6ti. Ae o * 1+wﬁti

Equations. (3.12), (3.13), and (3.14) yield no significant difference in

velocity when they all converge toward stress equilibrium.

The above equations provide a vigorous and stable responsé driving to-
ward local ‘stress equilibrium at every point. However, the damping term,
wétz; varies from point to point in contrast to the verified method of dynamic
relaxation which employs a uniforﬁ global damping term, wSAtZ. There may be
advantages in using wétz . This has not been explored. ‘Instead, the verified

method of dynamic relaxation was employed to obtain the verified equation,

. . + 12 .n
scT 2 X
d¥E g0k | 2 - -1+ [ ln,r;] — | . . (3.15)
T * 1+w At : Xl 1+w At
. .8 '8 . S S S
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SECTION 4
- SUMMARY

PTS scaling is a technique to optimize the time step of each grid point
so that the zone length and zone sound speed needed to satisfy the Coutant
condition do not -arbitrarily limit computing efficiency. Past notions of
computing inefficienéy with respecﬁ to solving non-transient,proBlems'usiﬁg
the EFD method are no longer valid because PTS eliminates tHe,transiént
mechanical constraint onthe global time step. In fact, Vhére nonlinear
raté-sensitive constitutive equations afe required, it may be that the EFD
approach, using PTS scaling, is more efficient Ehan implicit-in-time ap-

proaches because time still remains an independent variable.

16
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