

MASTER

A Stand Model for Upland Forests of Southern Arkansas

D. L. Mielke
H. H. Shugart
D. C. West

ENVIRONMENTAL SCIENCES DIVISION
Publication No. 1134

OAK RIDGE NATIONAL LABORATORY
OPERATED BY UNION CARBIDE CORPORATION · FOR THE DEPARTMENT OF ENERGY

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
Price: Printed Copy \$6.00; Microfiche \$3.00

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report, nor represents that its use by such third party would not infringe privately owned rights.

Contract No. W-7405-eng-26

A STAND MODEL FOR UPLAND FORESTS
OF SOUTHERN ARKANSAS

D. L. Mielke, H. H. Shugart, and D. C. West

ENVIRONMENTAL SCIENCES DIVISION
Publication No. 1134

Submitted as a thesis by D. L. Mielke to the Graduate Council of the University of Tennessee in partial fulfillment of the requirements for the degree of Master of Science.

Date Published: June, 1978

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
DEPARTMENT OF ENERGY

— NOTICE —
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

ACKNOWLEDGEMENTS

We thank Dr. Boyd Dearden and Dr. James Tanner of the Graduate Program in Ecology at the University of Tennessee for their helpful comments and intellectual support during the preparation of this report. The senior author also appreciates support given by the Environmental Sciences Division of Oak Ridge National Laboratory and release time from work provided by Weyerhaeuser Company during the latter stages of the preparation of this report.

Several people gave first-hand information on Red-cockaded Wood-pecker habitat in South Arkansas, provided information on forest dynamics and silvics of trees in the South Arkansas forest ecosystem, or discussed timber management policies in South Arkansas. Certain information provided by these individuals is cited as personal communications in the following text. We greatly appreciate the aid of Mr. and Mrs. H. H. Shugart and Carl Amason (El Dorado, Arkansas); Dick Williams (Georgia Pacific Company, Crossett, Arkansas); Kip Queatham, Bill Whiting, and Phil Hunnicutt (Potlach Company, Warren, Arkansas); David M. Moehring (Texas A & M, College Station, Texas); Dick Pike (Sam Houston National Forest, USDA-Forest Service, Cleveland, Texas); and Dan Cates (Davy Crockett National Forest, USDA-Forest Service, Crockett, Texas) in this regard. We wish to thank W. Mack Post, J. Warren Ranney, and R. H. Harris for many lively discussions.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

ABSTRACT

MIELKE, D. L., H. H. SHUGART, and D. C. WEST. 1978. A stand model for upland forests of Southern Arkansas. ORNL/TM-6225. Oak Ridge National Laboratory, Oak Ridge, Tennessee. 104 pp.

A forest stand growth and composition simulator (FORAR) was developed by modifying a stand growth model by Shugart and West (1977). FORAR is a functional stand model (Botkin et al. 1972a) which used ecological parameters to relate individual tree growth to environment rather than using Markov probability matrices or differential equations to determine single tree or species replacement rates. FORAR simulated tree growth and species composition of upland forests of Union County, Ark., by considering 33 tree species on a 1/12 ha circular plot.

Once a year trees were stochastically chosen to be killed or grown and new trees were stochastically planted on the plot. Individual trees were killed by a probability function scaled according to the maximum age of the appropriate species. Stocking of new individuals depended on the computed leaf area index of the plot and the existing conditions for soil, temperature, wildlife populations, and epidemics. Trees grew according to a species-specific optimum growth function modified by factors for soil moisture, competition, available light, and climate degree-days. The optimum growth function for each species was a function of the maximum age, diameter at breast height and height recorded for the species. The driving variable for the model was growing degree-days, which was randomly chosen at the beginning of each year from a normal distribution with appropriate mean and variance.

FORAR was validated using historical accounts, density-diameter distribution curves, and USDA Forest Service Continuous Forest Inventory (CFI) species composition data. Historical accounts agreed generally with FORAR output on the species of primary importance in upland forests of southern Arkansas. FORAR density-diameter curves corresponded to those of West et al. (1976) for southeastern forests, except that the simulated plots were not harvested. There was a statistically significant ($p < 0.1$) correlation in species composition between model output and USDA-Forest Service CFI data.

FORAR was used to examine the effects of two timber management schemes upon Red-cockaded Woodpecker (Dendrocopos borealis) nesting habitat. Leaving twelve trees per hectare on all or part of the management unit resulted in significantly more large, dying pines than removing all trees and a significantly greater number of years in which large pines, healthy or dying, were present. Further work is necessary to determine the relationship between Red-cockaded Woodpecker nesting habitat and woodpecker population numbers.

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	v
LIST OF TABLES	ix
LIST OF FIGURES	xi
I. INTRODUCTION AND LITERATURE REVIEW	1
II. MODEL DEVELOPMENT	10
III. MODEL OUTPUT AND VALIDATION	16
IV. MODEL APPLICATION	30
V. SUMMARY AND CONCLUSIONS	36
LITERATURE CITED	38
APPENDIX	43

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

LIST OF TABLES

<u>Table</u>		
1. Species biomass values from CFI plots and from FORAR output	25	
2. Comparison of Red-cockaded Woodpecker nesting habitat availability between two timber management schemes. Scheme 1 removes all trees; scheme 2 leaves 12 trees per hectare	34	
3. Parameters used in the FORAR model. Table 4 lists the values used for each tree species. See text for explanation of variables	47	
4. Parameter values used in the FORAR model. Scientific binomials follow Little (1971)	50	

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

LIST OF FIGURES

<u>Figure</u>	<u>Page</u>
1. Potential natural vegetation of transect from El Dorado, Arkansas, to San Antonio, Texas (redrawn from Kuchler 1966)	13
2. Mean annual precipitation along transect from El Dorado, Arkansas, to San Antonio, Texas	14
3. Model output showing biomass values through time for the major species	17
4. Percent biomass through time for the major species, from FORAR output. Mnemonics for tree species are from Goff et al. (1974). Distance between lines the species name is between is the percent biomass of that species for that year	20
5. Density-diameter distribution of FORAR output. Enclosed area contains the distribution curves of West et al. (1976)	27
6. Deck structure and job setup for program FORAR	46
7. Growing degree-day limits DMAX and DMIN for the geographic range of flowering dogwood (<i>Cornus florida</i>). Isopleths for growing degree days are calculated from U. S. Geological Survey (1965) and from program DATGEN (Appendix A-1)	48
8. Flow diagram of the FORAR model	51
9. Functional form for the random death process. The model assumes that 1% of all the seedlings of a species will live to reach the maximum known age. In the example shown, the maximum age of loblolly pine is 350 years	53
10. Functional form for the optimum growth equation. The slope of the curve is a function of AGEMX. The height of the curve is a function of the maximum dbh recorded for the species (Pardo 1973)	57
11. Functional form relating available light AL to photosynthetic rate $r(AL)$. Equations are from Kramer and Kozlowski (1960)	58

<u>Figure</u>	<u>Page</u>
12. Functional form relating degree-days DEGD to the effect of climate on the growth of a tree species. In this example, sassafras can not grow if the degree-days are less than 3686 or greater than 10947	59
13. Linear function relating basal area on the 1/12 ha plot (BAR) to a general competition factor S(BAR). The maximum basal area the plot can maintain is from Dick Williams (personal communication 1975)	61

I. INTRODUCTION AND LITERATURE REVIEW

The purpose of this study was to build and validate a forest stand model for upland forests of Union County, Arkansas, which could be used for many different types of ecological research. The type of use demonstrated in this study was the examination of the effects of two timber management schemes upon the presence of nesting habitat for the Red-cockaded Woodpecker (Dendrocopos borealis Vieillot). Stand models can be useful in studying changes in stand structure and species composition due to succession or longterm perturbations. Consequences of different timber and wildlife habitat management techniques can be predicted. Changes in species abundance (e.g., to dominance or extinction) can be determined. Better understanding of the importance of the structure and function of ecosystems results from the modeling. The usefulness of different measures of such things as diversity, productivity, or stability, or the usefulness of such parameters, can be studied. Also, sensitivity analysis can show where and how research efforts should be directed for greater efficiency.

The first step in this study was to determine which of the various types of stand models most suited the purpose of this study. Forest stand models have generally been built to study either timber management or vegetation succession. Those models simulating succession are probably more useful in ecological studies because they contain more ecological information. Because the objective of this study was to develop a multi-purpose stand model, only those models which simulate succession were examined. Several stand models have been built to

simulate single species (Bosch 1971) or managed stands (Amidon and Akin 1968, Peden et al. 1973, Lembersky and Johnson 1975, see Monserud 1975 for a more detailed review). Since these models do not keep track of species composition, none were considered appropriate to simulate natural secondary forest succession at the stand level.

Early attempts at modeling forest stand succession made use of birth and death rates, Markov matrices, or differential equations and focussed primarily on stand by stand replacement. Leak (1970) used birth and death rates to model species composition changes in a north-eastern hardwood forest. Data from past years must be used to determine the birth and death rates for each species, and initial conditions must be supplied. The birth/death rates can be constant, density-dependent, or serial; and up to 25-50 years of forest dynamics can be extrapolated.

According to Whittaker (1953), the "few universal properties of succession...are statistical results of any plant-by-plant replacement process." These statistical properties can be useful if any recognizable patterns or generalities emerge, even if the associated biology or ecology is not fully understood (Pielou 1975). One generality that emerges from the plant replacement process is that species composition changes through succession appear to be similar to a Markov process (MacArthur 1958). A Markov matrix is a matrix of transition probabilities of the states of a system and is used to calculate the condition of the system at time $t+1$ from the condition of the system at time t :

$$\vec{X}_{t+1} = \vec{M} \vec{X}_t$$

where;

\vec{X} = the vector of system states (defining the condition of the system) and

\vec{M} = the matrix of transition probabilities.

The condition of the system at time $t+1$ depends only on the condition of the system at time t and the transition probabilities of the Markov matrix. If the state vector is known at time t_0 , \vec{X}_0 , a chain of multiplications $\vec{X}_1 = \vec{M}\vec{X}_0$, $\vec{X}_2 = \vec{M}\vec{X}_1$, etc., can be used to determine the condition of the system at any time t . One useful property of Markovian processes is that regular Markov chains converge to the same stationary distribution, with each stage having the possibility of being reached from every other stage (Bharucha-Reid 1960). Secondary forest succession, similarly, tends to converge to the same stationary species distribution, although every seral stage may not have the possibility of being reached from every other stage (Horn 1975b). To use a Markov transition matrix to model forest succession, one must have separate, identifiable succession stages (cover-states); data to determine the transition rates between them, and data showing initial conditions. The assumptions necessary are that the number of cover-states is finite, that the transitions must take place at (arbitrarily small) discrete instants, and that the transition rates are independent of time (Slatyer 1976).

Waggoner and Stephens (1970) used a Markov transition matrix to model species composition in a Connecticut forest after noting that their forest appeared to have the necessary Markov properties. Since they were concerned mainly with climax (steady-state) conditions, they

did not need to input particular initial conditions. Any set of initial conditions would result in the same steady-state distribution.

A slightly different approach to modeling forest succession makes use of differential equations. These differ from Markov matrices in that the transitions are considered rate processes rather than probabilities. Assumptions that must be made are (1) that there are a finite number of cover-states; (2) that the effects of spatial heterogeneity are relatively constant; and (3) that the cover-states have definable, determinate input-output behavior. A fourth condition, that the input-output relations are superposable (Shugart et al. 1973, DiStephano, et al. 1967) is necessary to assume linearity. One advantage of the differential equation approach is that it usually takes less computer time. Analyses of Markov matrices, on the other hand, can give information on variances, stability, convergence, mean passage time, and time to absorption of the various cover-states (Shugart et al. 1973).

Some new ideas on succession consider the changes in species composition to be a function of environmental gradients and of the dispersal and survival characteristics of individuals (Drury and Nisbet 1973, Slatyer 1976), rather than as a "superorganism" moving from one seral stage to another with Markovian probabilities (Clements 1916, MacArthur and Connell 1966, MacArthur 1968). Markov matrices and functional stand models have accordingly been used to model succession on a tree-by-tree, instead of a stand-by-stand, basis. Instead of having a number of cover-states, Horn's (1975a) transition matrix for a New Jersey forest gave the probabilities of a tree of one species being replaced by a tree of another species. In setting up his transition matrix, Horn

(1975b) assumed (1) there was a constant, proportional rain of seeds on the plot; (2) abundance in the understory implies a competition advantage in the canopy; (3) the probability that a given species will be replaced by another given species is proportional to the number of saplings of the latter in the understory of the former; and (4) the transition probabilities do not change with species composition, successional stage, or edaphic condition.

One of the major drawbacks of the Markov approach is that it does not explicitly take into account dynamic ecological factors and stresses on individuals. Functional stand models, based on concepts rather than specific field data, have been built in an attempt to do this. Functional stand models deal stochastically with the birth, growth, and death of individual trees in a forest stand, using a list of parameters that characterize the physical environment and the traits of each tree species. If the recent concepts of succession are correct, i.e., that replacement should be looked at on the individual level and distinguishable cover-states do not always exist, then this functional approach should result in a more accurate simulation of succession. To parameterize a functional stand model, one must have relatively general information on the climate and several species-specific characteristics such as maximum age and shade tolerance. One advantage of this type of model is that this information can usually be found in textbooks of dendrology or silvics such as Fowells (1965) or Harlow and Harrar (1969) (Shugart and West 1977). In addition to the parameters, one must choose equations to describe growth and relations between tree dimensions (height to diameter, for instance).

The first functional stand model was developed by Botkin et al. (1972b) for a northeastern hardwood forest. Parameters were added only when the existing model did not exhibit satisfactory behavior. JABOWA, the resulting model (Botkin et al. 1972a,b), contained 10 parameters to characterize each tree species and seven to characterize the environment. The three main processes in JABOWA were the birth, death, and growth of individual trees on a 1/100 hectare (ha) plot. New trees were added to the plot on the basis of the relative shade, growing degree-day, and soil moisture tolerances of each species and the annual condition of the environment. A seed source was assumed to be available for each species. Death of an individual tree was considered a random process, with only 2% of the saplings of a species reaching the maximum age of that species. A tree that grew less than 0.01 cm in diameter at breast height (dbh) per year was subjected to another death process that gave it a 1% chance of surviving 10 years. While birth and death were modeled as stochastic functions, growth was deterministic. The potential growth increment for each tree was a function of the species and tree size. The potential growth increment was modified by factors relating to light competition, climate, and soil quality (competition for nutrients, etc.). This increment was added to the individual tree's dbh, from which the height was calculated using a quadratic function. Two other assumptions of the model were that the climate was constant and that the tree species were nonhydrophytic. The model commonly simulated 250-300 years of forest dynamics, which was long enough for the "climax" to develop.

Shugart and West (1977) modified the Botkin model to simulate a lower-slope forest of East Tennessee. The plot size was changed from 1/100 ha to 1/12 ha to lessen the abnormal effects from shading and root competition and climate was changed from a constant to a stochastic variable with a normal distribution. Because tree growth was affected by climate, birth, death, and growth were all stochastic processes. This model, FORET, simulated 100 stands for 600, and often 1000, years.

The FOREST stand model of Ek and Monserud (1974) was different from JABOWA and FORET in that the plot size was not fixed and in that tree location was explicitly considered. Growth was deterministic, while birth and death were stochastic. Height and diameter growth were treated separately as nonlinear functions of species, tree size, and a competition index. The competition index was a function of crowding, shade tolerance, and the height and crown width of both the individual tree and its competitors. Since this model was oriented toward silvicultural practices, shorter runs of up to 50 years were usual. This type of model shows great detail for one stand, but it is prohibitively expensive to replicate hundreds of stands in the manner of JABOWA and FORET.

Compared to the birth/death rates, Markov matrix, and differential equation stand models described earlier, functional stand models are more flexible, have more detail, explicitly consider ecological dynamics, and can be used for more general purposes (Monserud 1975, Ek and Monserud 1974, Botkin et al. 1972b). Three of the most important applications of functional stand models are in testing different forest

management strategies (Ek and Monserud 1974), in looking for generalities in succession, and in statistically testing hypotheses (Botkin et al., 1972a). Another potential use of this kind of model is in management of wildlife habitat. Where Markov matrix or differential equation stand models could identify a desired habitat down to general species composition and general tree size, the functional stand model can identify a desired habitat down to specific species composition and abundance and individual tree sizes.

Botkin et al. (1972b) originally constructed their model to include the minimum number of parameters necessary to adequately simulate the Hubbard Brook forest of New Hampshire. Because this type of model tends to use much computer time, it is important to know in what regions and under what conditions a model containing the minimum number of parameters does an adequate job of simulating forest stands. Shugart and West (1977) were able to simulate a forest of East Tennessee without any major additions other than a sprouting subroutine and more detail in the birth subroutine. In this study, FORAR, a modified version of FORET, was used to simulate an upland forest of south central Arkansas. A moisture factor modifying tree growth was added because FORAR simulated an upland forest farther west than the two previous functional stand model simulations. The model was validated using historical accounts, density-diameter curves, and USDA Forest Service species composition data. The validated model was then used to determine the presence through time of Red-cockaded Woodpecker nesting habitat under two timber management schemes.

II. MODEL DEVELOPMENT

The model described here (FORAR) simulated an upland forest typical of the type found in south central Arkansas. The model was developed from a modified version (Shugart and West 1977) of the JABOWA model used by Botkin et al. (1970, 1972a, 1972b) for the Hubbard Brook forest. FORAR simulates growth and succession by keeping account of the dbh, age, and species of all trees greater than 1.27 cm dbh on a 1/2 ha circular plot (radius = 5.1 m). The model also computes number of stems and biomass of each species. Once a year each tree was stochastically killed or grown and new trees were stochastically planted. Individual trees were killed by a probability function that was scaled according to the maximum age recorded for the appropriate species. The probability that a specific tree would die during a given simulated year was increased if its growth rate fell below an acceptable minimum (0.1 cm yr^{-1}). Stocking of new individuals in a given simulated year depended on the computed leaf area index of the plot and the condition of five environmental variables: mineral soil, litter layer, temperature, wildlife populations, and epidemics. The tree species to be stocked were randomly chosen from those species which could germinate under the existing environmental conditions. Trees grew according to a species-specific optimum growth function that was modified by soil moisture, competition, climate, and available light. The optimum growth function for each species was a function of the maximum known age, the maximum dbh, and the maximum height recorded for the species. The driving variable for the model was physiological growing degree-days based on

average daily temperature, which was approximated by assuming the yearly temperature cycle was a sine curve. A value for degree-days was randomly chosen each year from a normal distribution with appropriate mean and variance.

FORAR was written in FORTRAN IV and has been implemented on IBM 360 series and PDP-10 computers. The present version of the model considered up to 35 tree species and up to 700 individual trees and ran for any number of years. A detailed documentation of the FORTRAN program is given in the Appendix. Only a general description of the model input is given here.

FORAR read 19 parameter values to characterize each of 33 tree species used (see page 45 in Appendix). Most of the parameters, such as shade tolerance or maximum age, can be derived from information contained in standard dendrology or silvics textbooks (see Harlow and Harrar 1969 and Fowells 1965). Species used in the model were important timber species growing on upland sites in southern Arkansas (Little 1971; Moore 1960; Carl Amason, personal communication 1975).

For shade tolerance, all species described as intermediate in tolerance were classified as tolerant. The C values (see Appendix) of 1. for hardwoods and 2. for conifers were kept the same as those in FORET (Shugart and West 1977). The growth constant G was derived from equation (8) in Appendix, page 55, and the assumption that 2/3 of the maximum dbh of a tree is reached at 1/2 the maximum age. The value of G for each species can be solved for directly from equation (8) (Botkin et al. 1972b) or determined with a simple computer program of tree growth (Appendix A-2).

The S array was used to determine which of the tree species' seeds could germinate under the simulated annual conditions for mineral soil, litter, temperature, wildlife populations, and epidemics. Mineral soil was considered to be present if the biomass on the simulated plot was less than 0.2 metric tons ha^{-1} and if trees had been present on the plot less than 15 years. A litter layer was considered to be present any time the biomass on the plot was greater than 0.1 metric tons ha^{-1} . A "drought" year was approximated by a year that was hotter than normal, i.e., DEGD had a value greater than its mean, because the model did not contain a separate driving variable for moisture. The star rating system from Martin *et al.* (1951) was used to determine if a tree species is a highly-preferred wildlife food in the Southeast. The use percentages for all animals of the Southeast were added, using the mean for each percentage class. If the total was 75 or more, it was considered possible for a larger than average wildlife population to consume the entire seed source of that species during a given year.

Ozark chinkapin (Castanea ozarkensis Ashe) (Latin and common names of trees are from Little 1954) and short leaf pine (Pinus echinata Mill.) are being attacked by chestnut blight and southern pine beetle, respectively, in southern Arkansas, but the American elm (Ulmus americana L.) has yet to be attacked by Dutch elm disease (Carl Amason, personal communication 1975). Thus, Ozark chinkapin and shortleaf pine were the only species in the model that could be affected by epidemics. The chances of having higher than normal wildlife populations and epidemics were left at 0.5 as in FORET (Shugart and West 1977) from lack of information to the contrary. The variable KTIME was used to limit the

germination of pioneer species to the early years of succession. Values were taken mainly from Shugart and West (1977). It was assumed that unless a parent tree of a pioneer species was present on the plot, that species could not germinate on the plot after KTIME years for lack of a seed source.

A soil moisture variable affecting tree growth, SOIM, was added to the model. An alternative would have been to add soil moisture as another model driving variable. However, the realism gained would not outweigh the increased complexity resulting from adding an additional level of resolution to the model. SOIM is a measure of how well a species grows on an upland site compared to its typical growth. To get a quantitative estimate, species presence and growth were examined along a transect from El Dorado, Arkansas, to San Antonio, Texas (Figure 1). Soil type (United States Soil Conservation Service 1967), solar radiation (Environmental Data Service 1962), mean monthly average, minimum, and maximum temperature (U.S. Geological Survey 1965a,b,c), degree-days (Environmental Data Service 1960a), and potential vegetation (Küchler 1966) are all relatively constant along this transect. Annual precipitation and annual pan evaporation, however, change relatively linearly along this transect from approximately 50 inches of rain and 60 inches of evaporation in El Dorado to approximately 30 inches of rain and 80 inches of evaporation in San Antonio (Environmental Data Service 1960b,c) (Figure 2). Therefore, it was assumed that water stress would be the most important factor in determining the western limit of the range of each species along the transect. Foresters along the transect (Dick Pike, Dan Cates,

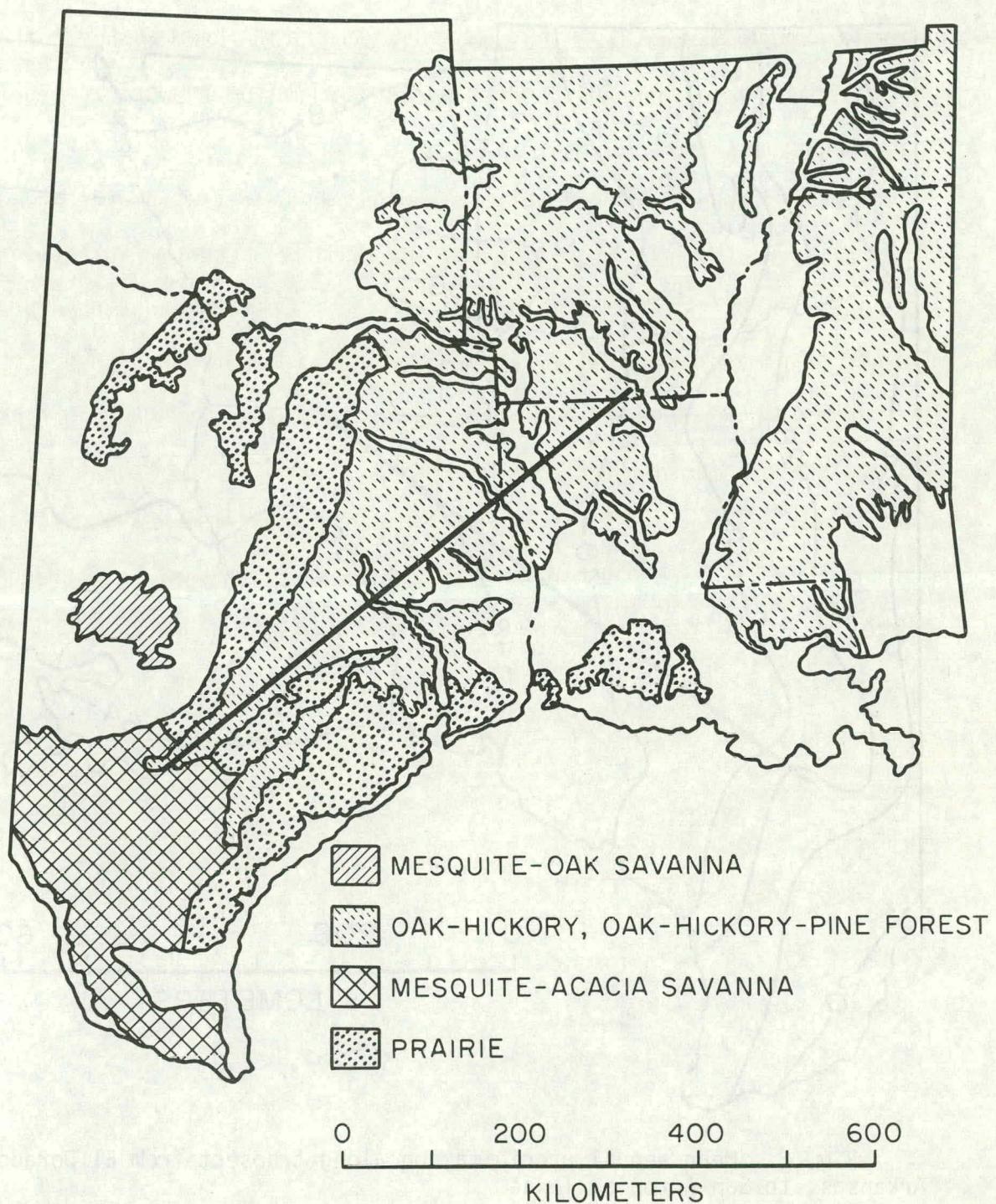


Fig. 1. Potential natural vegetation of transect from El Dorado, Arkansas, to San Antonio, Texas (redrawn from Küchler 1966).

ORNL-DWG 76-15285

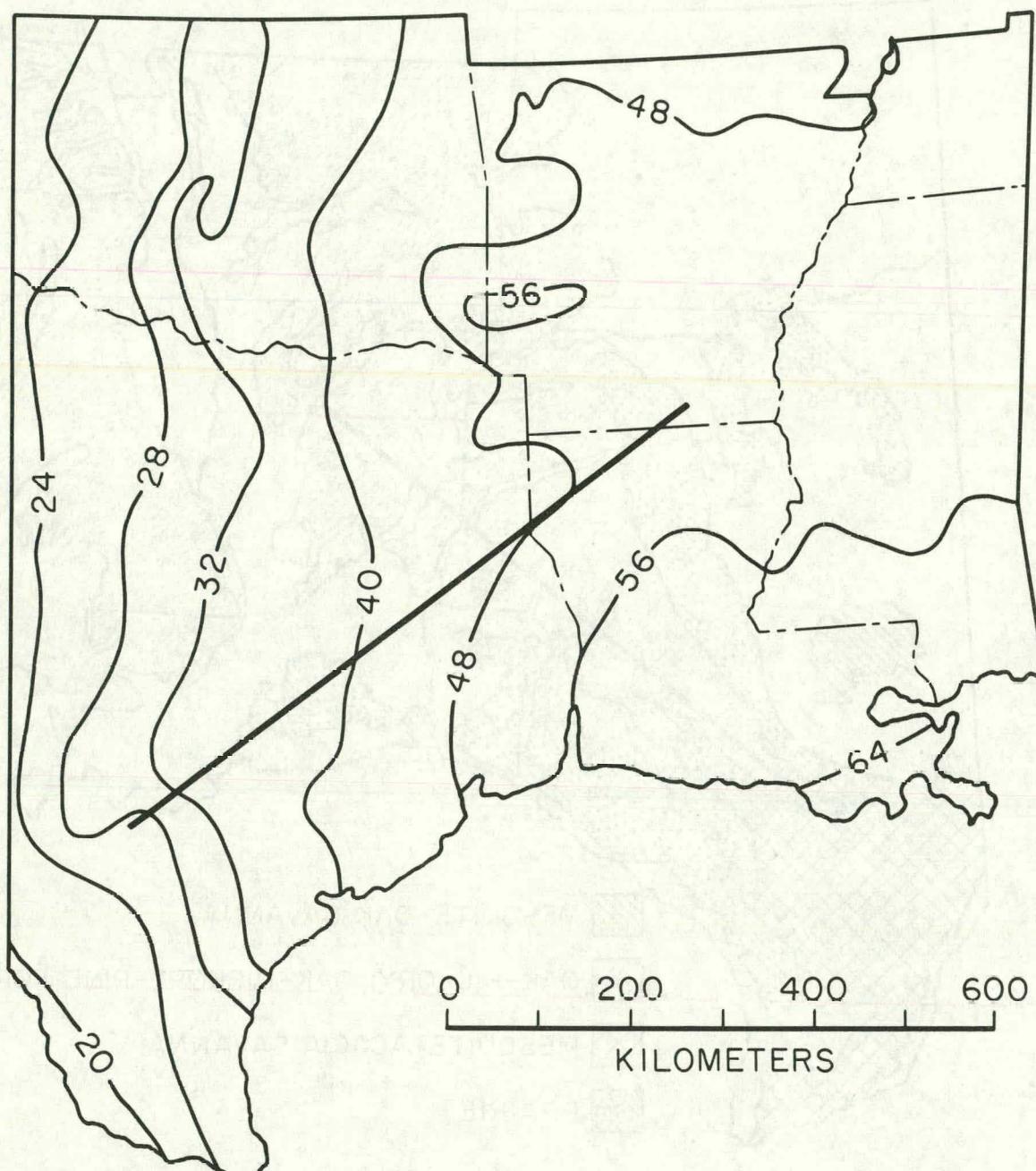


Fig. 2. Mean annual precipitation along transect from El Dorado, Arkansas, to San Antonio, Texas.

David M. Moehring, personal communications 1975) were contacted to determine where along the transect each species dropped out on upland sites and how well it grew there compared to its maximum size. These two factors were multiplied and normalized against the value for loblolly pine (Pinus taeda L.) to determine SOIM for each species. Loblolly pine was used as the normalizing species because it is the species of importance that makes the best growth on upland sites in southern Arkansas.

Degree-days (DEGD) was the driving variable of the model. The mean of DEGD was calculated by assuming the January and July mean temperatures for El Dorado, Arkansas, were the minimum and maximum values of a yearly sine curve of average daily temperature (see Appendix). The coefficient of variation of DEGD was assumed to be 0.08 (Shugart and West 1977).

III. MODEL OUTPUT AND VALIDATION

To simulate natural secondary succession, 100 stands were simulated for 1000 years each. Mean biomass and percent biomass values for each species were calculated from the 100 simulation values for each of the 1000 years. Total biomass (Figure 3) increased steadily from year zero with the increasing size of the dominant species, loblolly pine. Around year 2/5 the total biomass value dropped about 30% as the pine died out and sweetgum (Liquidambar styraciflua L.) and southern red oak (Quercus falcata Michx.) captured the site. After year 600 mature southern red oaks dominated and total biomass remained relatively steady at an intermediate value. Leaf area generally followed the same trends as total biomass (Figure 3). Number of trees (Figure 3) decreased steadily from year one, when all species were free to germinate on the plot, to a minimum when loblolly pine dominated. Number of individuals increased briefly after the last pines died and the canopy opened up, then decreased to a relatively steady value when southern red oak became dominant.

Percent biomass for each species each of the 1000 years was calculated in the same manner as total biomass and is shown in Figure 4. Distance between lines is the percent biomass of that species for that year. The larger the distance between the lines, the more important that species is to the total biomass. Loblolly pine quickly outgrew all other species and dominated for 250-300 years. Sweetgum and southern red oak increased in relative importance as the pines disappeared, with southern red oak eventually becoming dominant.

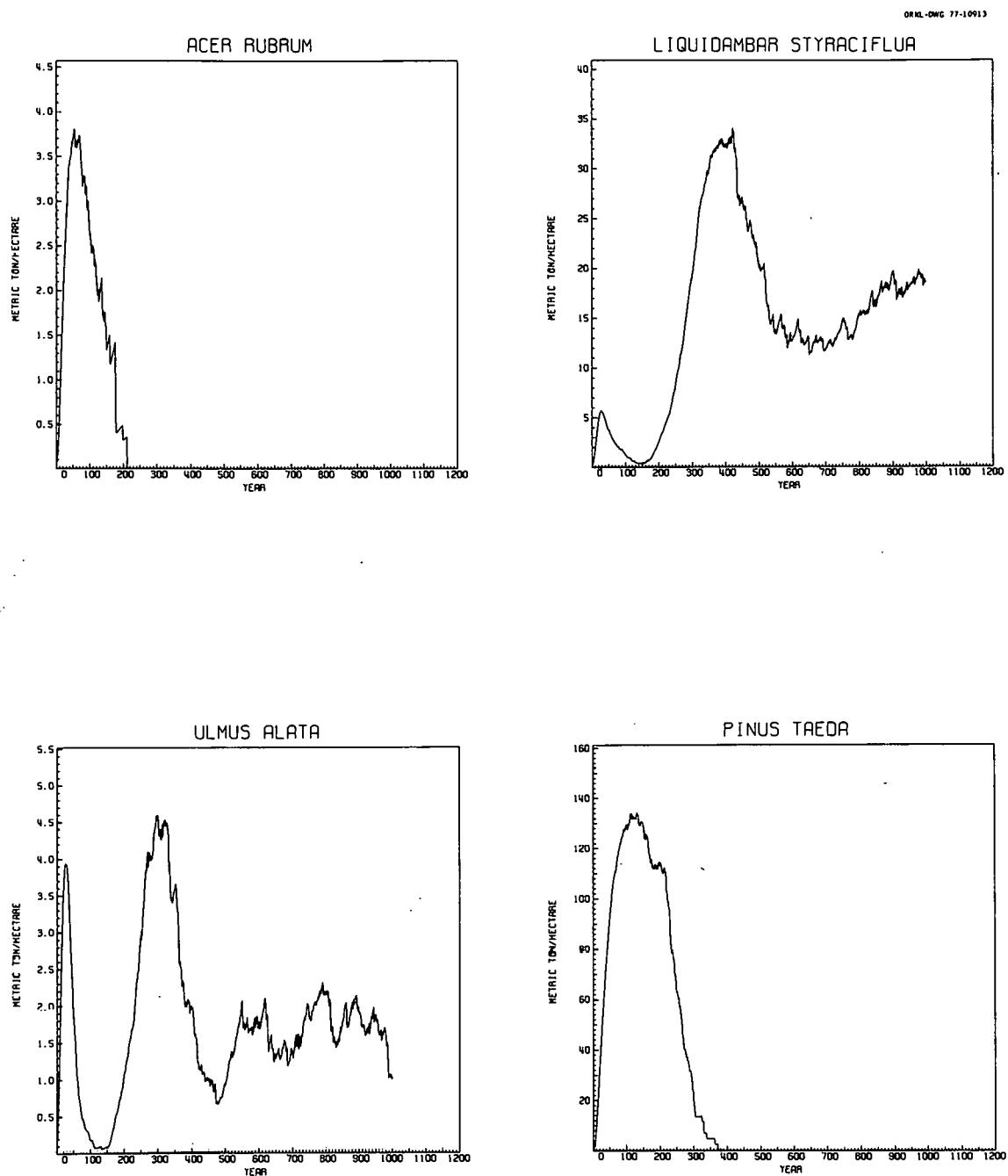


Fig. 3. Model output showing biomass values through time for the major species.

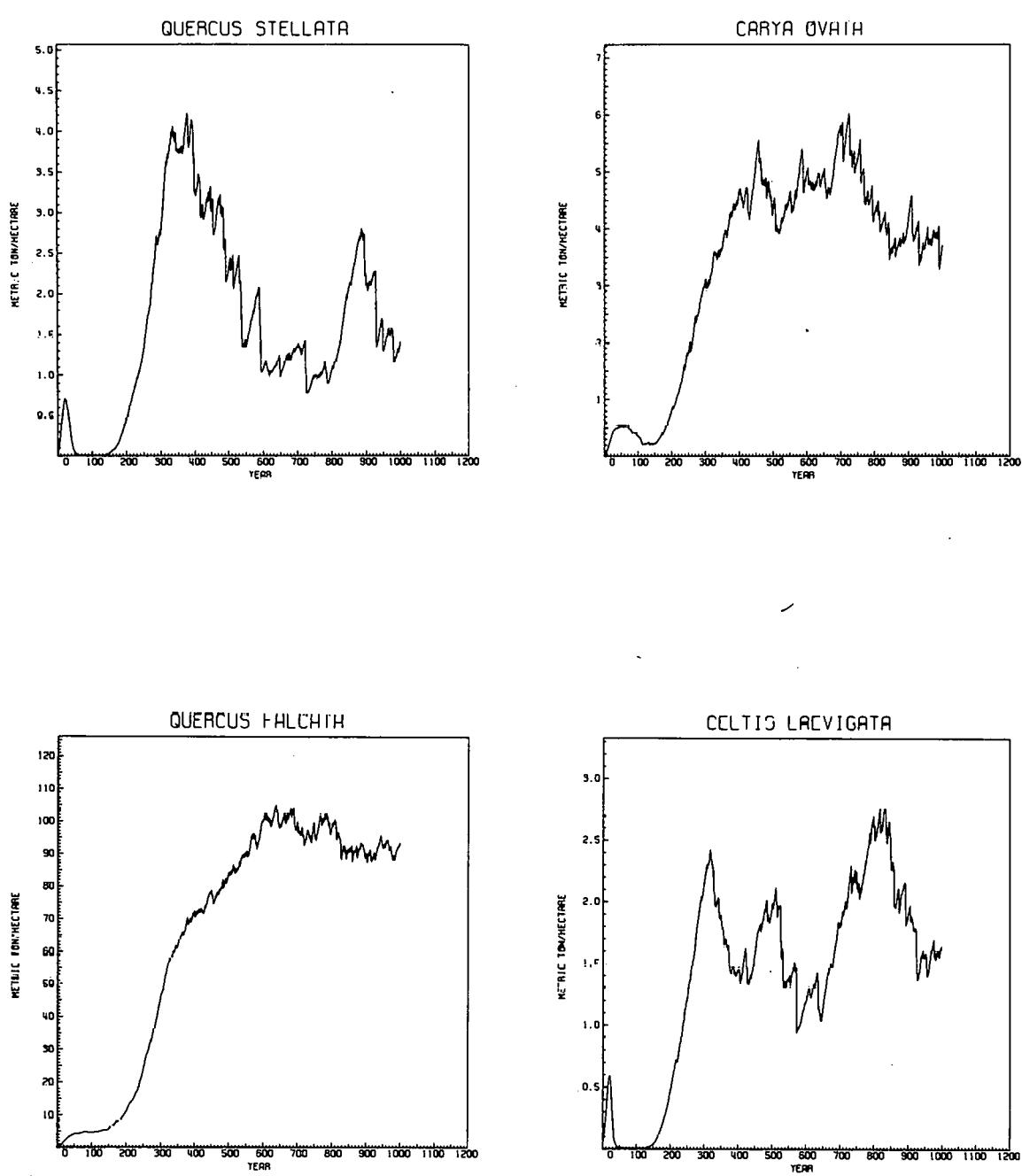


Fig. 3. (continued).

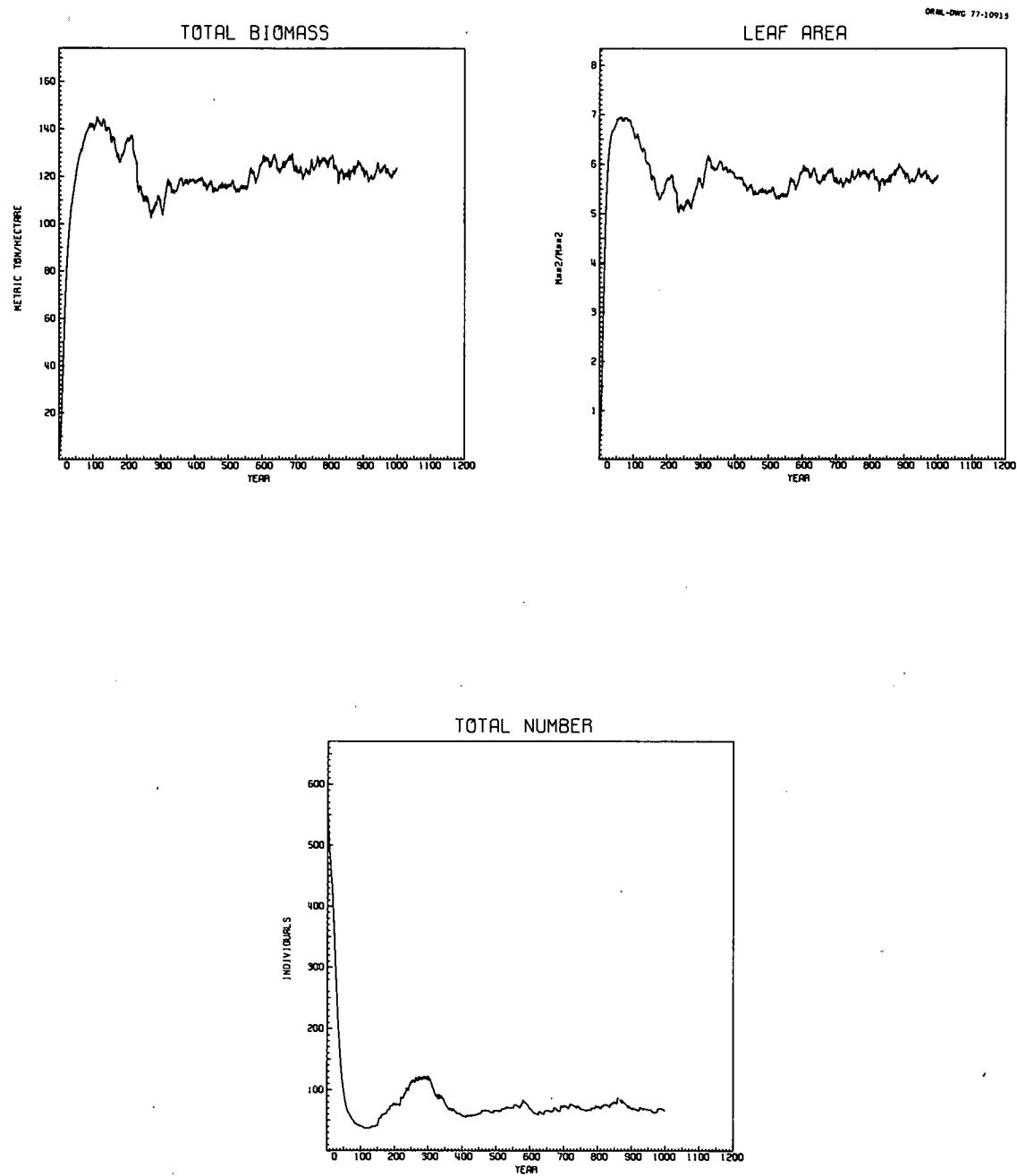


Fig. 3. (continued).

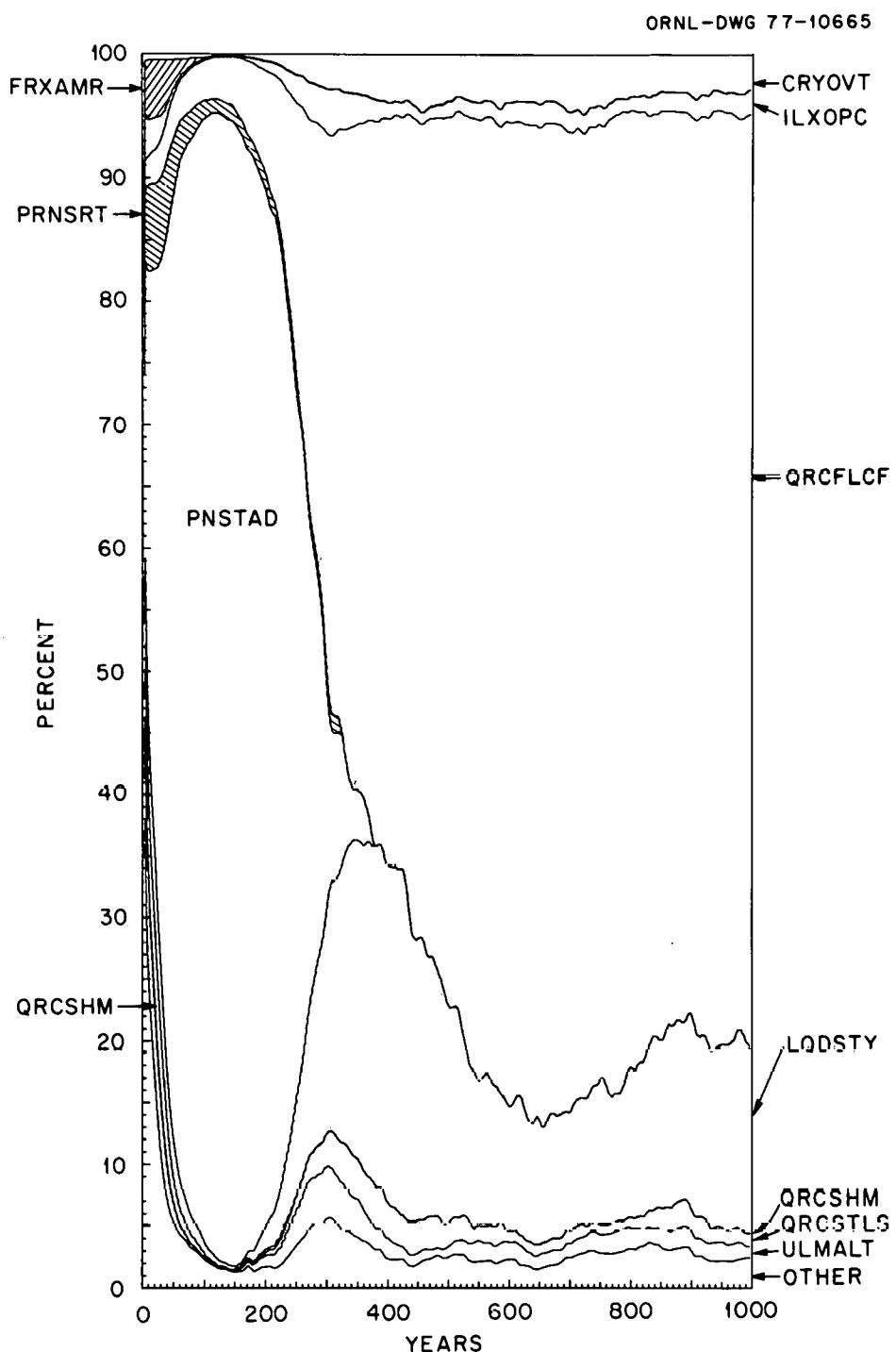


Fig. 4. Percent biomass through time for the major species, from FORAR output. Mnemonics for tree species are from Goff *et al.* (1974). Distance between lines the species name is between is the percent biomass of that species for that year.

Two of the major problems associated with modeling forest stand growth and composition are determination of input parameters and model validation. Both of these problems are caused by the time necessary for forest growth and change in species composition. To obtain species birth and death rates or cover-state transition rates directly, tens of years must be spent collecting data. Functional stand models such as FORAR circumvent this problem by using general information that can be drawn largely from standard forestry textbooks. All types of forest stand models, however, must use an independent set of data against which to test the predictions of the model.

Botkin et al. (1972b) validated JABOWA by reviewing the reactions of experienced field observers to model predictions and by testing the ability of JABOWA to predict change in species composition with changes in elevation. Data from Hubbard Brook plots were used in the validation.

Shugart and West (1977) validated FORET by running the model with two sets of input parameters. One set, representing present forest conditions on lower slopes in East Tennessee, was used to develop and tune the model. The second set of parameters was identical to the first except that it included American chestnut (Castanea dentata [Marsh.] Borkh) and represented the historical forest of East Tennessee before the chestnut blight. The results of the model simulation of pre- and post-blight forests using the second set of parameters was then tested against historical data to validate the model.

There are no good historical data which show the effects of man's activities or catastrophic events (such as the chestnut blight) upon

the growth and composition of an upland forest in Union County, Arkansas. Neither are there any growth or composition differences resulting from gross spatial differences such as elevation. As a result, separate studies were made to test the ability of FORAR to simulate the growth and composition of upland forest stands in south-central Arkansas.

In a geological reconnaissance of the middle and southern counties of Arkansas in 1859 and 1860, M. Leo Lesquereux recorded some descriptions of the natural vegetation encountered: "The yellow sandy uplands, mostly derived from tertiary or cretaceous sandstone, are characterized by the Loblolly Pine...With these trees are seen upon all the dry uplands and recent formations the White, the Black, the Spanish [southern red] Oaks in abundance and of beautiful growth, more rarely the Shellbark [shagbark] Hickory, the Blackjack and the Post Oak, with the Holly" (Owen 1860). Although the records from the expedition are not from Union County, FORAR generally agrees with the importance accorded the different groups by Lesquereux. Pines, red and white oaks (Quercus spp.), hickories (Carya spp.), and holly (Ilex opaca Ait.) are all among the top ten groups in biomass in the model output. FORAR agrees with Lesquereux upon the importance of holly, although the species is only a minor component of the upland forests of Union County today. Harlow and Harrar (1969) suggest that the extermination of the species in some places may be caused by the taking of leaf sprays by people for use as Christmas decorations.

To get a better estimate of the model's ability to accurately simulate species composition, the biomass on each of the USDA Forest

Service Continuous Forest Inventory (CFI) plots in Union County was calculated. Biomass was determined using equations from Shugart and West (1977) and West et al. (1976). Stems greater than 5 inches were calculated by the equation:

$$\begin{aligned}
 \frac{\text{Biomass}}{\text{Ha}} &= \frac{\text{Biomass}}{\text{Stem}} \cdot \frac{\text{Stems}}{\text{Hectare}} \\
 &= 0.1193 \times (2.54 \times D)^{2.393} \times \frac{687.55}{D^2} \times 2.47 \\
 &= \frac{(2.54 \times D)^{2.393}}{D^2} \times 202.6, \quad D = \text{diameter in inches} .
 \end{aligned}$$

Stems less than 5 inches were calculated by the equation:

$$\frac{\text{Biomass}}{\text{Hectare}} = \frac{\text{Biomass}}{\text{acre}} \times 100 \times 2.47, \quad D = \text{diameter in inches} .$$

The resulting biomass figures, which varied from 10 to 200 metric tons ha^{-1} , were separated into 10-ton categories (5-15 metric tons, 15-25 metric tons, etc.) to group stands of similar biomass values. Only the 95-105 metric tons ha^{-1} group had a sufficient number of plots (10) to calculate a meaningful average. The relative biomass of each species on the "average" plot was used to numerically rank the species. A similar ranking was made from the FORAR output from those years in which the total plot biomass was between 95 and 105 metric tons ha^{-1} . The rankings of model output and the CFI data were compared using Spearman's rank correlation coefficient, r_s (Snedecor and Cochran 1972):

$$r_s = 1 - \frac{6 \sum d_i^2}{n^3 - n} , \quad$$

where d_i = difference in ranked positions and n = number of species. The calculated value, $r_s = 0.458$, indicates that there is a significant correlation ($p < 0.1$) (Beyer 1966) between the predicted species biomasses of the model and the actual species biomasses of the CFI "average" plot. If one leaves out black cherry (Prunus serotina Ehrh.), which contributes an unusually high biomass in the early years of this model as it did in FORET (Shugart and West 1977), the significance of the correlation improves ($p < 0.05$).

The CFI "average" plot biomass percentages were used to calculate an expected biomass value for each species on a 100 metric tons ha^{-1} plot. Table 1 compares the expected values with the values generated by FORAR. The species which lie outside the 95% confidence level are "hickory," American beech (Fagus grandifolia Ehrh.), shortleaf pine, blackgum (Nyssa sylvatica Marsh.), "white oaks," and "others." A larger sample of CFI plots might correct the errors for "hickory," blackgum, and "others;" however, an adequate sample would probably still show the model to be "low" in American beech, shortleaf pine, and "white oaks." The error for shortleaf pine is unexplained, but a more accurate soil moisture factor would probably increase the beech and white oak biomass. Shugart and West (1977) have shown that a functional stand model can adequately simulate the red and white oak groups for a lower slope forest of East Tennessee. It would appear that the soil moisture variable of the model is not accurate enough to account for the red oak and white oak biomasses on the sandy upland soils of south central Arkansas.

Table 1. Species biomass values from CFI plots and from FORAR output

Species ¹	FORAR 95% confidence interval (metric tons ha ⁻¹)	Expected value from CFI plots (metric tons ha ⁻¹)
<u>Acer Rubrum</u>	3.01 + 3.78	0.06
<u>Carya</u> ²	0.49 + 0.63	2.39
<u>Celtis laevigata</u>	0.10 + 0.17	0
<u>Cornus florida</u>	0.45 + 0.65	0.07
<u>Diospyros virginiana</u>	1.25 + 1.57	0.62
<u>Fagus grandifolia</u> ²	.002 + .004	0.56
<u>Fraxinus americana</u>	4.48 + 5.78	0
<u>Ilex opaca</u>	1.71 + 1.33	0.41
<u>Juglans nigra</u>	.0006 + .003	0
<u>Juniperus virginiana</u>	0.37 + 0.87	0.03
<u>Liquidambar styraciflua</u>	5.45 + 3.91	11.32
<u>Morus rubra</u>	0.62 + 1.07	tr
<u>Nyssa sylvatica</u> ²	0.04 + 0.10	1.56
<u>Pinus echinata</u> ²	2.08 + 2.77	13.92
<u>Pinus taeda</u>	60.82 + 22.40	52.65
<u>Prunus serotina</u>	6.49 + 6.57	0.20
<u>White Oaks</u> ²	0.78 + 0.83	6.27
<u>Red Oaks</u>	7.67 + 2.71	6.94
<u>Sassafras albidum</u>	0.89 + 0.77	0
<u>Ulmus alata</u>	3.69 + 2.12	0.47
<u>Ulmus americana</u>	0.20 + 0.36	0.55
<u>Other</u> ²	0.10 + 0.13	2.87

¹Some spp. were grouped according to genus or subgenus to conform more easily with CFI data.

²A significant difference between model and expected values.

The ability of FORAR to predict stand growth was tested using density-diameter curves. Figure 5 shows the distribution curve resulting from 540 simulated plots generated by the model. The gray area includes all the density-diameter curves calculated by West et al. (1976) from USDA Forest Service CFI data for the regional forests of eastern Oklahoma, northern Arkansas, Tennessee, and North Carolina. The differences between the curves can probably be ascribed to the cultural practices affecting the real forests.

Theoretically, the distribution plotted logarithmically should be a straight line if the per cent mortality for each diameter class is equal and diameter is a linear function of age (Meyer 1952). Deviations from linearity result from species and individual tree physiology, interactions among species (such as competition or soil enrichment) and historical cultural practices (West et al. 1976). The actual distribution curves of West et al. (1976) tend to show two areas of nonlinearity, a plateau around 38 cm and a nonlinearity in the larger diameter classes. Goff and West (1974) showed that a plateau region in the density-diameter curve is a natural condition in forest stands. It occurs when understory trees reach canopy level and their mortality rates are reduced. The diameter at which the plateau occurs is a function of stand age. A younger stand has a lower canopy and a plateau farther to the left, etc. The nonlinearity of the larger diameter classes is affected by cultural practices, especially logging. Logging would make the curve more convex, whereas leaving behind economically useless trees would make the curve more concave.

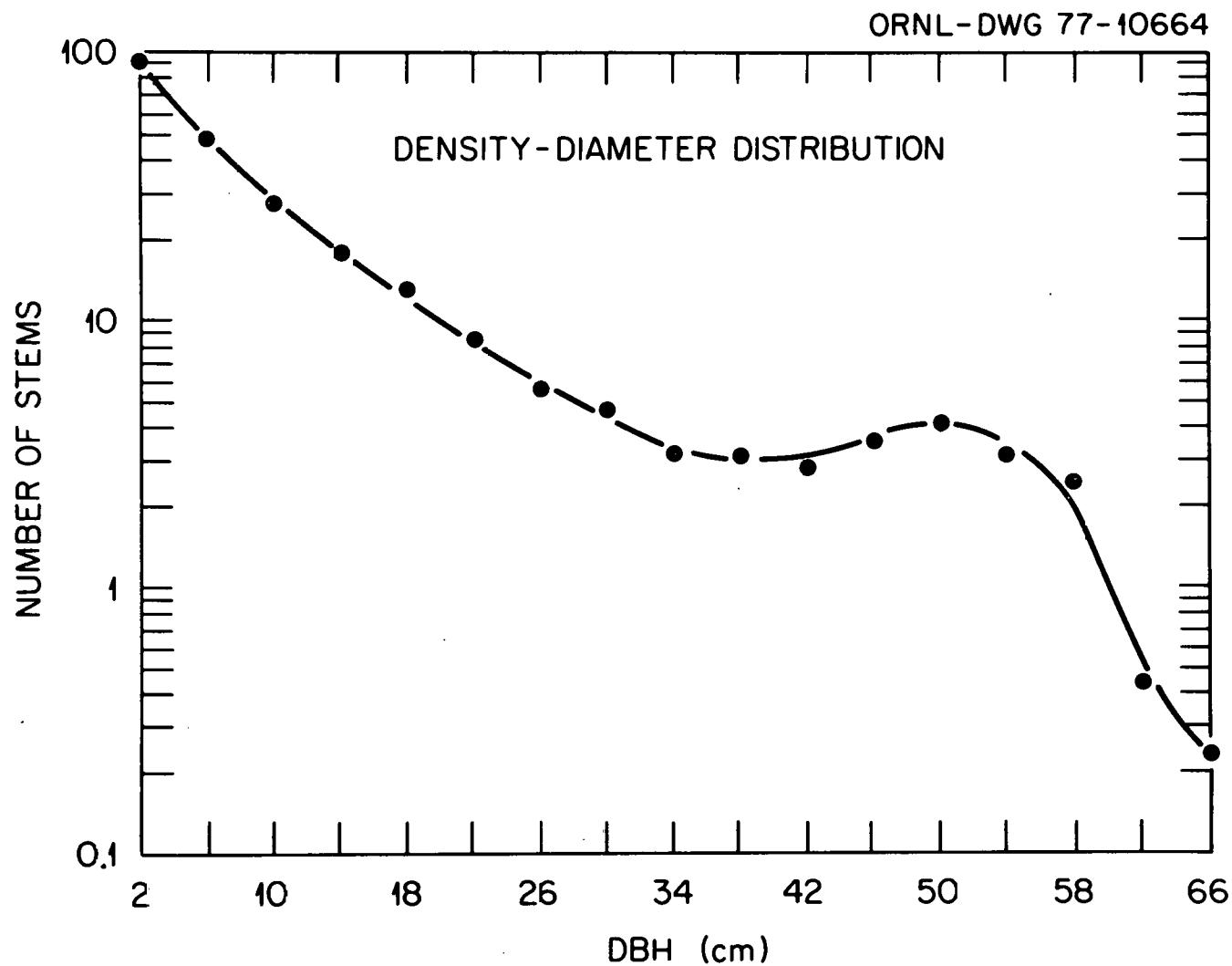


Fig. 5. Density-diameter distribution of FORAR output.
the distribution curves of West et al. (1976).

The plateau of the density-diameter distribution curves of the FORAR-generated plots was pushed far to the right. This was due to the average age of the simulated plots being 250 years, far greater than the average of the CFI stands used by West et al. (1976). The curve was convex in the larger diameter classes because trees died quickly in the model and because the two tree species of upland forests in southern Arkansas that attain a relatively large size can be thought of as pioneer species. Pioneer species tend to have convex density-diameter curves because they start growing in full sunlight, competing only for space. As the trees grow larger competition for sunlight and nutrients increases and the mortality rate increases, causing the density to decrease more rapidly (West et al. 1976). Loblolly pine, the species that makes up almost half the timber biomass in Union County, is a true pioneer species. The first 100 to 300 years of secondary succession in Union County are typified by even-aged stands of loblolly pine. When the pine overstory dies, the southern red oaks then present in the understory form the new canopy and start to grow in relatively full sunlight. In this respect, some southern red oaks acted as "pioneers" in the model and contributed to the convexity of the distribution curve in the larger diameter classes.

The density-diameter curves generated from FORAR output generally had a flatter slope than the actual curves of West et al. (1976), although the densities were comparable at the smaller diameters. West et al. (1976) state that the slope of the distribution curve is probably related to timber harvesting, the heaviest timber harvesting causing the steepest slope. It would appear that the KILL subroutine

assumption that 1% of the seedlings of a species reach maximum age is reasonable for undisturbed forest stands but too high for stands that are affected by cultural practices. The sensitivity of the model predictions to this factor could be tested, but it was not done in this study.

Taken together, these several factors support the validity of the FORAR model. The validity of the functional stand model approach has been demonstrated using JABOWA (Botkin et al. 1972a,b) and FORET (Shugart and West 1977). The composition of the model forest agreed generally with the forest composition reported in the 19th century (Owen 1860). There was fair agreement in species rank between the model output and USFS CFI data, even though the CFI data were limited and were collected at various places. The density-diameter curves of the simulated plots agreed generally with the curves of West et al. (1976), the differences being due to the simulated forest being undisturbed for hundreds of years. These factors, along with agreement between model output and descriptions of the upland forest of Union County, Arkansas, by local naturalists, lend credulence to the validity of FORAR. To gather data to better validate or improve the model would require many man-years of effort involving remeasurement of fixed plots.

IV. MODEL APPLICATION

The Red-cockaded Woodpecker (Dendrocopus borealis Vieillot) is an endangered species native to the pine forests of the southeastern United States. The range of the species extends from Florida and Georgia to eastern Texas on the west and to southern Missouri and eastern Maryland on the north. Audubon described the species as abundant in the 1800's, but a census in 1973 estimated the population between 3000 and 10,000 birds (Chamberlain 1974). The species was added to the endangered species list in 1968 (Lay and Slepston 1975).

Red-cockaded Woodpeckers are birds of open, overmature pine forests. They live in family groups called clans, which may consist of a breeding pair, other adults, yearlings, and young of the year. In this respect they are more gregarious than most woodpecker species (Bent 1964, Ligon 1971). The nonbreeding adults, ranging from zero to seven in number, assist in feeding the young (Lay and Slepston 1975).

The clan lives in a stand of overmature pines, most of which have redheart (Fomes pinii), a fungous parasite which rots the heartwood of an infected tree. The stand usually contains two to nine overmature pines and occupies an area up to 0.4 km distance across (Lay et al. 1971, Hopkins and Lynn 1971). The stand containing the overmature pines ranges from 2 to 18 ha (Chamberlain 1974, Crosby 1971). The birds chip out roost and nest cavities in the relatively brittle wood of the rotten hearts of the pines. Around each cavity the birds drill many openings into the sapwood, which causes pine resin to flow down on the bark and form a whitish glaze around the cavity. The functions

this behavior serves are not known, although it may be to protect against predators, to remove the cambium layer to protect the cavity from being grown over, to establish territories, or to aid in identification of cavity trees (Beckett 1971, Dennis 1971). When sap will no longer flow from the diseased tree red-cockadeds cease using the cavity for nesting, although it may still be used for roosting. The birds will also abandon the nest if the understory vegetation grows up to the nest cavity.

The Red-cockaded Woodpecker has become an endangered species primarily because timber harvesting has removed most of the suitable habitat - old-age, open pine stands. Czuhai (1971) predicted that by 1980 most of the remaining overmature timber of the South will have been harvested. If the species is to survive, it will be found in those areas of the Southeast that are 75-100% forested, have frequent fires, and are primarily pine (Jackson 1971). Union County, Arkansas, rates high in all three categories. FORAR can be a valuable tool in investigating the effects of present logging practices in Union County on the availability of Red-cockaded Woodpecker nesting habitat through time.

To use FORAR, Red-cockaded Woodpecker habitat had to be defined in terms of model information. The major factor of old-growth stands which defines the habitat appears to be the nest tree (Ligon 1970). Unlike the most recently extirpated Picidae, the Ivory-billed Woodpecker (Campephilus principalis) (Tanner 1942), the Red-cockaded Woodpecker does not depend on the mature forest for all its food. It will feed in cornfields (Bent 1964, Baker 1971) and second-growth stands of young

pines (Beckett 1971). Neither is the species overly disturbed by moderate logging in the area of the nest (Ligon 1970). Thus, the critical factor appears to be large, dying pines in open areas.

FORAR was modified slightly to keep track of every pine on the 1/12 ha simulated plots that had a dbh greater than or equal to 25 cm, the approximate minimum loblolly pine cavity tree diameter reported (Baker 1971, Thompson and Baker 1971, Lay and Russell 1970). Any large pine growing less than 0.1 cm dbh per year was considered a diseased and dying tree. This was a conservative estimate, based on Lay and Russell's (1970) 0.15 cm yr^{-1} mean dbh growth of cavity trees in eastern Texas. The basal area (openness) of the simulated plot was not explicitly considered because the presence of even one large pine on a simulated plot suppressed the understory enough to leave much of the pine bole above the understory and thus useable by the bird. When management for timber was simulated, the plots were burned every five years to keep the stands open (Williams, personal communication 1975).

FORAR was run under 2 different management schemes to determine the effects on the presence of Red-cockaded Woodpecker habitat, i.e., pines greater than or equal to 25 cm dbh. The first management scheme represented the current forest management practices of private industry in south central Arkansas. The simulated loblolly pine stands were clearcut after 40 years and replanted in pine. The young plots were burned once every five years after the pines reached sapling size. Herbicide treatments were considered equivalent to burning by the simulator. The simulated plots were stocked with enough pines to produce approximately $160 \text{ pines ha}^{-1}$ at rotation age to avoid

modeling precommercial thinning (rather than stocking several hundred pines and thinning them), since pre-commercial-sized trees were unimportant in this application of the model. The second management scheme, which was a theoretical plan rather than a suggested management practice, was similar to the first except that one large pine was left uncut when the simulated plot was logged. This would be equivalent to leaving 12 large pines per hectare on part or all of the management unit. After five years the remaining trees were taken and the plot was replanted with pines. If the remaining trees did not last five years the plot was replanted earlier. It was assumed that management units of different ages would be interspersed so that the large pines left in an average management unit would be within 0.4 km (the maximum reported distance between cavity trees) of other utilizable large pines. Thus, a Red-cockaded Woodpecker clan on the plot(s) could find enough large pines around the management unit to continue to use the habitat, or a clan in the surrounding management units could come in and utilize the remaining pines.

Total trees present through the simulation and total number of years with at least one large tree present on the plot were monitored (1) for large pines, and (2) for large, dying pines (Table 2). The second management scheme, that of leaving 12 trees per hectare, was significantly higher in all categories except total number of large pines. The number of large pines present was not significantly different between the two schemes. This shows the importance of knowing what acceptable Red-cockaded Woodpecker habitat is and of studying the integrated effects of managing for the species. For

Table 2. Comparison of Red-cockaded Woodpecker nesting habitat availability between two timber management schemes. Scheme 1 removes all trees; scheme 2 leaves 12 trees per hectare

	Management scheme 1	Management scheme 2	Level of significance
Total large pines present through simulation	3170	3255	N.S.
Total large, dying pines present through simulation	172	213	**
Number of years with at least one large pine present on plot	388	405	*
Number of years with at least one large, dying pine present on plot	40	52	**

*p < 0.05.

**p < 0.01.

instance, leaving 12 large pines per hectare five extra years would not significantly increase habitat availability through time if the critical habitat factor were number of large pines; but habitat availability would increase if the critical factor were total number of years with large, dying pines present. Habitat studies could better define what is acceptable habitat and how Red-cockaded Woodpecker population numbers relate to habitat availability.

V. SUMMARY AND CONCLUSIONS

Forest stand models can be useful in studying changes in species abundance and composition due to succession or longterm perturbations. Current ideas consider succession to be based on dynamic ecological factors and stresses on individuals. If those ideas are correct, functional stand models using ecological concepts rather than specific field data on tree or stand replacement rates should simulate succession more accurately than Markov matrices or differential equations. The functional stand model FORAR simulated an upland forest of Union County, Arkansas, using 18 parameters for each tree species and six parameters for the environment. Because the study location was farther west than the previous application in East Tennessee, a general soil moisture factor modifying the growth of each tree species was added.

The validity of the functional stand approach to modeling forest stand succession has been demonstrated using JABOWA (Botkin et al. 1972b) and FORET (Shugart and West 1977). The composition of the stands simulated using the FORAR model generally agreed with 19th century reports (Owen 1860). Compared to USDA Forest Service Continuous Forest Inventory data, FORAR was "low" in American beech, shortleaf pine, and white oaks. The generated density-diameter distribution curves generally agreed with the curves of West et al. (1976), the discrepancies probably being due to the forests of the model not being harvested for hundreds of years. All these factors support the validity of the FORAR model. To gather data to better validate or improve the model would require many man-years of effort involving remeasurements of fixed plots.

FORAR was used to simulate through time the presence of Red-cockaded Woodpecker nesting habitat in two timber management schemes. In the theoretical example examined in this study, leaving 12 trees ha^{-1} after logging resulted in significantly more large, dying pines than taking all trees and a significantly greater number of years in which large pines, healthy or dying, were present. A better definition of acceptable habitat might show whether these or other factors are actually important in determining use by the species. This, in turn, needs to be related to Red-cockaded Woodpecker population numbers to aid in determining optimal management policies.

LITERATURE CITED

Amidon, E. L., and G. S. Akin. 1968. Dynamic programming to determine optimum levels of growing stock. *For. Sci.* 14:287-291.

Baker, F. S. 1949. A revised tolerance table. *J. For.* 47:179-181.

Baker, W. Wilson. 1971. Observations of the food habits of the Red-cockaded Woodpecker. IN Thompson, Richard L. (ed.), *The Ecology and Management of the Red-cockaded Woodpecker*. USDI Bureau of Sport Fisheries and Wildlife, U.S. Government Printing Office, Washington, D.C.

Beckett, Ted. 1971. A Summary of Red-cockaded Woodpecker observations in South Carolina. IN Thompson, Richard L. (ed.), *The Ecology and Management of the Red-cockaded Woodpecker*. USDI Bureau of Sport Fisheries and Wildlife, U.S. Government Printing Office, Washington, D.C.

Bent, Arthur C. 1964. *Life Histories of North American Woodpeckers*. Dover Publications, Inc., New York.

Beyer, William H. (ed.). 1966. *Handbook of Tables for Probability and Statistics*. The Chemical Rubber Co., Cleveland, Ohio.

Bharucha-Reid, A. T. 1960. *Elements of the Theory of Markov Processes and Their Applications*. McGraw-Hill Book Co., New York.

Bosch, C. A. 1971. Redwoods: A population model. *Science* 172:345-349.

Botkin, D. B., J. F. Janak, and J. R. Wallis. 1970. A Simulator for northeastern forest growth: A contribution of the Hubbard Brook ecosystem study and IBM research. Research Report 3140, IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Botkin, D. B., J. F. Janak, and J. R. Wallis. 1972a. Rationale, limitations, and assumptions of a northeastern forest growth simulator. *IBM J. Res. Develop.* 16:101-116.

Botkin, D. B., J. F. Janak, and J. R. Wallis. 1972b. Some ecological consequences of a computer model of forest growth. *J. Ecology* 60:849-873.

Chamberlain, E. Burnham. 1974. *Rare and Endangered Birds of the Southern National Forests*. The Charleston Mus. USDA For. Serv.

Clements, F. E. 1916. Plant succession. *Carnegie Inst. Wash. Publ.* 242.

Crosby, Gilbert T. 1971. Home range characteristics of the Red-cockaded Woodpecker in North-Central Florida. IN Thompson, Richard L. (ed.), *The Ecology and Management of the Red-cockaded Woodpecker*. USDI Bureau of Sport Fisheries and Wildlife, U.S. Government Printing Office, Washington, D.C.

Czuhai, Eugene. 1971. Synoptic review of forest resource and use within the range of the Red-cockaded Woodpecker. IN Thompson, Richard L. (ed.), *The Ecology and Management of the Red-cockaded Woodpecker*. USDI Bureau of Sport Fisheries and Wildlife, U.S. Government Printing Office, Washington, D.C.

Dennis, John V. 1971. Utilization of pine resin by the Red-cockaded Woodpecker and its effectiveness in protecting roosting and nesting sites. IN Thompson, Richard L. (ed.), *The Ecology and Management of the Red-cockaded Woodpecker*. USDI Bureau of Sport Fisheries and Wildlife, U.S. Government Printing Office, Washington, D.C.

DiStephano, J. J., III, A. R. Stubberud, and I. J. Williams. 1967. *Feedback and Control Systems*. McGraw-Hill Book Co., New York.

Drury, W. H., and I. T. Nisbet. 1973. Succession. *J. Arnold Arboretum, Harvard Univ.* 54:331-368.

Ek, A. R., and R. A. Monserud. 1974. FOREST: A Computer model for simulating the growth and reproduction of mixed species forest stands. Research Report, University of Wisconsin-Madison.

Environmental Data Service. 1960a. Growing degree-days. IN *The National Atlas of the United States of America - 1970*. U.S. Government Printing Office, Washington, D.C.

_____. 1960b. Mean annual precipitation. IN *The National Atlas of the United States of America - 1970*. U.S. Government Printing Office, Washington, D.C.

_____. 1960c. Mean annual pan evaporation. IN *The National Atlas of the United States of America - 1970*. U.S. Government Printing Office, Washington, D.C.

_____. 1962. Annual solar radiation. IN *The National Atlas of the United States of America - 1970*. U.S. Government Printing Office, Washington, D.C.

Fowells, H. A. 1965. *Silvics of Forest Trees of the United States*. USDA For. Ser. Hdbk. No. 271.

Goff, F. G., and D. C. West. 1974. Canopy-understory interaction effects on forest population structure. *Forest Science* 21:98-108.

Goff, F. G., R. K. Schreiber, and J. K. Thurman. 1974. GST: A Mnemonic technique for coding species names to facilitate field and computer processing. EDFB-IBP Memo Rep. 73-95. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Harlow, W. M., and E. S. Harrar. 1969. Textbook of Dendrology. McGraw-Hill Book Co., New York.

Hopkins, Melvin L., and Teddy E. Lynn, Jr. 1971. Some characteristics of Red-cockaded Woodpecker cavity trees and management implications in South Carolina. IN Thompson, Richard L. (ed.), The Ecology and Management of the Red-cockaded Woodpecker. USDI Bureau of Sport Fisheries and Wildlife, U.S. Government Printing Office, Washington, D.C.

Horn, Henry S. 1975a. Forest succession. *Sci. Am.* 232:90-98.

_____. 1975b. Markovian properties of forest succession. IN Cody, M. L., and J. M. Diamond (eds.), Ecology and Evolution of Communities. Belknap Press of Harvard University Press, Cambridge, Massachusetts

Jackson, Jerome A. 1971. The evolution, taxonomy, distribution, past populations, and current status of the Red-cockaded Woodpecker. IN Thompson, Richard L. (ed.), The Ecology and Management of the Red-cockaded Woodpecker. USDI Bureau of Sport Fisheries and Wildlife, U.S. Government Printing Office, Washington, D.C.

Kramer, P. J., and T. T. Kozlowski. 1960. Physiology of Trees. McGraw-Hill Book Co., New York.

Kuchler, A. W. 1966. Potential natural vegetation. IN The National Atlas of the United States of America - 1970. U.S. Government Printing Office, Washington, D.C.

Lay, Daniel W., Earnest W. McDaniel, and Dennis N. Russell. 1971. Status of investigation of range and habitat requirements. IN Thompson, Richard L. (ed.), The Ecology and Management of the Red-cockaded Woodpecker. USDI Bureau of Sport Fisheries and Wildlife, U.S. Government Printing Office, Washington, D.C.

Lay, Daniel W., and Dennis N. Russell. 1970. Notes on the Red-cockaded Woodpecker in Texas. *Auk* 98:781-786.

Lay, Daniel W., and Danny Slepston. 1975. The Red-cockaded Woodpecker. Texas Parks and Wildlife Department, Austin, Texas.

Leak, W. B. 1970. Successional change in northern hardwoods predicted by birth and death simulation. *Ecology* 51:794-801.

Lembersky, M. R., and K. N. Johnson. 1975. Optimum policies for managed stands: An infinite horizon Markov decision process approach. *For. Sci.* 21:109-122.

Ligon, J. David. 1970. Behavior and breeding biology of the Red-cockaded Woodpecker. *Auk* 87:255-278.

Little, E. L. 1954. Checklist of Native and Naturalized Trees of the United States (including Alaska). *USDA For. Ser. Agric. Hdbk.* No. 41.

Little, E. L. 1971. *Atlas of United States Trees, Vol. 1. Conifers and Important Hardwoods.* U.S. Government Printing Office, Washington, D.C.

MacArthur, R. H. 1958. A note on stationary age distributions in single species populations and stationary species populations in a community. *Ecology* 39:146-47.

MacArthur, R. H., and J. H. Connell. 1966. *The Biology of Populations.* John Wiley and Sons, New York.

Martin, A. C., H. S. Zim, and A. L. Nelson. 1951. *American Wildlife and Plants, a Guide to Wildlife Food Habits: The Use of Trees, Shrubs, Weeds, and Herbs By Birds and Mammals of the United States.* Dover Publications, Inc., New York.

Meyer, H. A. 1952. Structure, growth, and drain in balanced unevenaged forests. *J. For.* 50:85-92.

Monserud, R. A. 1975. Methodology for simulating Wisconsin northern hardwood stand dynamics. *Ph.D. Thesis, University of Wisconsin-Madison.*

Moore, Dwight M. 1972. *Trees of Arkansas.* Arkansas Forestry Commission, Little Rock, Arkansas.

Owen, David Dale. 1860. *Second Report of a Geological Reconnoissance of the Middle and Southern Counties of Arkansas.* C. Sherman and Sons, Printers, Philadelphia.

Peden, L. M., J. S. Williams, and W. E. Frayer. 1973. A Markov model for stand projection. *For. Sci.* 19:303-314.

Pielou, E. C. 1975. *Ecological Diversity.* John Wiley and Sons, New York.

Shugart, H. H., T. R. Crow, and J. M. Hett. 1973. Forest succession model: A rationale and methodology for modeling forest succession over large regions. *For. Sci.* 19:203-212.

Shugart, H. H., and D. C. West. 1977. Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight. *J. Environ. Manage.* 5:161-179.

Slatyer, R. O. 1976. Dynamic changes in terrestrial ecosystems. Report of the MAB/SCOPE Workshop, Santa Barbara, California.

Snedecor, George W., and William G. Cochran. 1972. Statistical Methods. Iowa State University Press, Ames.

Tanner, J. T. 1942. The Ivory-billed Woodpecker. Dover Publications, Inc., New York.

Thompson, Richard L., and W. Wilson Baker. 1971. A Survey of Red-cockaded Woodpecker habitat requirements. IN Thompson, Richard L. (ed.), *The Ecology and Management of the Red-cockaded Woodpecker*. USDI Bureau of Sport Fisheries and Wildlife, U.S. Government Printing Office, Washington, D.C.

U.S. Geological Survey. 1965a. Mean monthly average temperature. IN *The National Atlas of the United States of America - 1970*. U.S. Government Printing Office, Washington, D.C.

_____. 1965b. Mean monthly minimum temperature. IN *The National Atlas of the United States of America - 1970*. U.S. Government Printing Office, Washington, D.C.

_____. 1965c. Mean monthly maximum temperature. IN *The National Atlas of the United States of America - 1970*. U.S. Government Printing Office, Washington, D.C.

U.S. Soil Conservation Service. 1967. Distribution of principal kinds of soils: Orders, suborders and great groups. IN *The National Atlas of the United States of America - 1970*. U.S. Government Printing Office, Washington, D.C.

Waggoner, P. E., and G. R. Stephens. 1970. Transition probabilities for a forest. *Nature* 225:1160-1161.

West, D. C., F. G. Goff, and W. C. Johnson. 1976. Forest population structure in the southeastern United States. EDFB/IBP-75/14. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Whittaker, R. H. 1953. A consideration of climax theory: The climax as a population and pattern. *Ecol. Monogr.* 23:41-78.

APPENDIX

INTRODUCTION

Because of the relative ease of estimating the necessary input parameters and because the model retains information on both individuals and species, FORAR (FORest in ARkansas stand simulation model) is versatile enough to be used in several different types of ecological studies. Changes in species composition through succession or because of long-term perturbations can be examined and consequences of different timber and wildlife habitat management techniques can be predicted. Changes in tree species abundance (e.g. to dominance or extinction) can be determined. The model provides dynamic simulations of what is classically referred to as the structure and function of ecosystems. The usefulness of different measures of such indices as diversity, productivity, or stability can be studied.

This user's manual describes the FORAR model, which simulates an upland forest of Union County in southcentral Arkansas. The model was developed from FORET (Shugart and West 1977), a modified version of the JABOWA model used by Botkin *et al.* (1972a, 1972b). The logging subroutine has been expanded in FORAR. A subroutine to burn the plot and probabilities of trees dying from fire damage has been added. Soil competition is computed using basal area instead of biomass. A fifth environmental variable, species-specific epidemics, has been added to subroutine BIRTH to affect seedling establishment. In addition, variables have been added, deleted, renamed, or shifted to other subroutines to make the program more efficient.

FORAR simulates composition and growth of a forest stand on the basis of each tree greater than 1.27 cm in diameter at breast height (dbh) on a 1/12 ha circular plot. The model computes (1) the numbers and biomass of each species and (2) the dbh, age, and species of each individual tree. Once a year, trees are stochastically killed or deterministically grown and new trees are stochastically planted. Individual trees are killed by a probability function that is scaled according to the maximum age recorded for the appropriate species. The probability that a specific tree will die during a given simulated year is increased if its growth rate (expressed as diameter increment) falls below an acceptable minimum (0.1 cm/yr). Stocking of new seedlings and sprouts in a given simulated year depends on the computed leaf area index of the plot and the condition of five environmental variables discussed below. The tree species to be stocked are chosen randomly from those species which can germinate under the existing conditions for soil, temperature, wildlife populations, and epidemics. Trees grow according to a species-specific optimum growth function that is modified by soil moisture, competition, available light, and climate. The optimum growth function for each species is a function of the maximum known age, the maximum dbh and the maximum height recorded for the species. The driving variable for the model is degree-days, which is randomly chosen at the beginning of each year from a normal distribution with appropriate mean and variance. FORAR is written in FORTRAN IV and

has been implemented on IBM 360 series and PDP-10 computers. The present version of the model considers up to 35 tree species and up to 700 individual trees and can simulate the forest for any prespecified number of years.

PROGRAM DESCRIPTION

The deck setup of FORAR is shown in Figure 6. The control cards shown are those necessary to run the program on the ORNL IBM 360/91 computer. The program is listed in Appendix A-3. In a typical run the maximum computer core used is 270K. Computer time needed will depend on the size of the run, i.e., how many different plots are wanted, how many species are used and how many years each plot is run. A run of three plots, each potentially having 33 species and running for 600 years, takes approximately two minutes of CPU time.

INPUT

The program currently reads in parameter values for each tree species using the format:

6A4,F6.0,F5.0,F4.3,F5.2,I1,F4.0,F2.0,F5.1,F2.0,F4.1,F4.0,5L1,I4,F3.1 .

This format can easily be changed in subroutine DATA to suit the user. Table 3 lists and describes the input variable names in the order in which they are entered in the above format. Most of the parameters, such as shade tolerance or maximum age, are relatively straightforward and can be derived from standard textbooks of dendrology or silvics. Harlow and Harrar (1969) and Fowells (1965) were used in the present case for such parameter estimations.

DMAX and DMIN are the maximum and minimum degree-day values associated with the geographic range of each species. They are calculated (using a sine wave, see Appendix A-1) from the January and July mean temperatures at the northern and southern ends of the range of each species (e.g., Figure 7). B2 and B3 are the coefficients of the following equation (Ker and Smith 1955) relating height to diameter (in cm):

$$H = 137 + B2D - B3D^2 . \quad (1)$$

Solving for B2 and B3, using $H=H_{\max}$ and $\frac{dH}{dD} = 0$ when $D=D_{\max}$ Botkin et al. 1972a) results in:

ORNL-DWG 76-18413

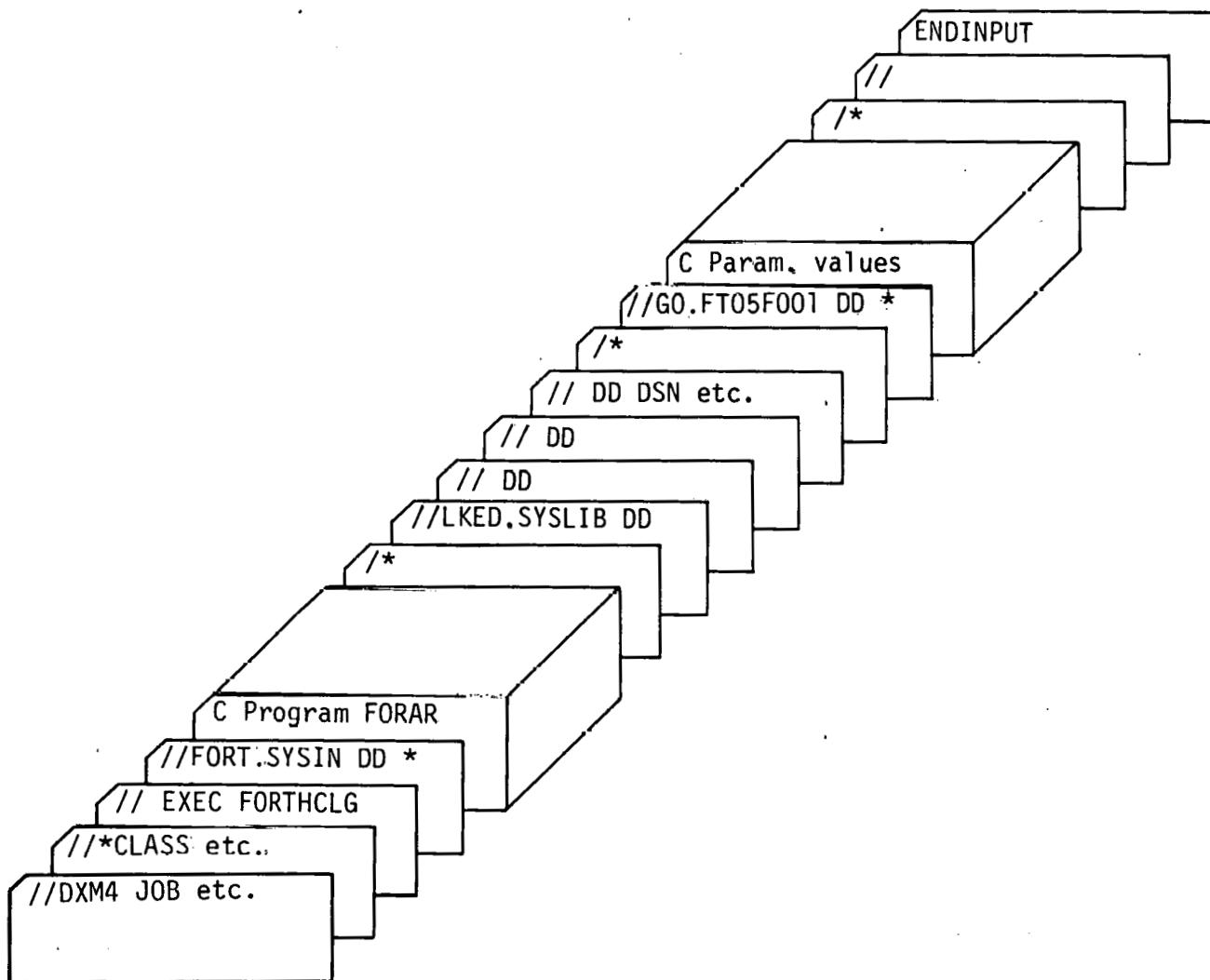


Fig. 6. Deck structure and job setup for program FORAR.

Table 3. Parameters used in the FORAR model. Table 4 lists the values used for each tree species. See text for explanation of variables.

<u>Parameter Name</u>	<u>Meaning</u>	<u>Field</u>
AAA	Scientific name (up to 24 letters)	xxxxxxxxxxxxxxxxxxxxxxxxxxxx
DMAX	Maximum degree-days for species range (see text)	xxxxx.
DMIN	Minimum degree-days for species range (see text)	xxxx.
B3	Derived growth parameter (see text)	.xxx
B2	Derived growth parameter (see text)	xx.xx
ITYPE	Shade tolerance 1 = tolerant 3 = intolerant	x
AGEMX	Maximum age recorded for the species	xxx.
C	Leaf area constant 1 = deciduous 2 = coniferous	x.
G	Derived Growth constant (see text)	xxx.x
STEND	Tendency to sprout Value of 0.,1.,2.,or 3.	x.
SPTMIN	The minimum dbh of a tree that will sprout	xx.x
SPTMAX	The maximum dbh of a tree that will sprout	xxx.
S(1)	Must the seed have a litter layer to germinate? value of T or F	x
S(2)	Must the seed have mineral soil to germinate? value of T or F	x
S(3)	Is the seedling susceptible to hot years? value of T or F	x
S(4)	Is the seedling a highly-preferred food for wildlife? value of T or F	x
S(5)	Is an epidemic seriously damaging the species? value of T or F	x
KTIME	Number of years after a bare plot that a species is liable to be present	xxx
SOIM	The fraction of maximum recorded dbh the species will attain on an upland site	x.x

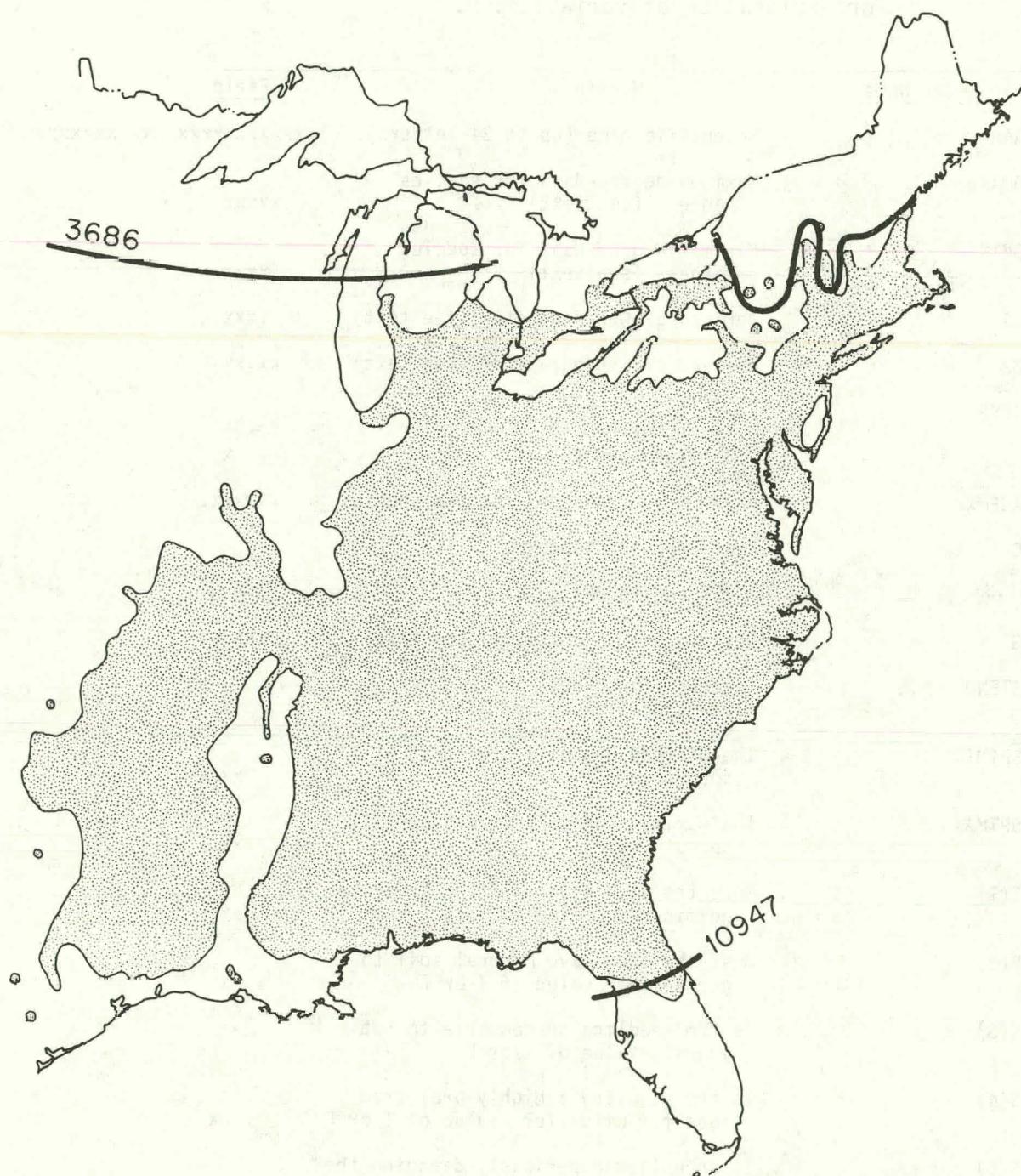


Fig. 7. Growing degree-day limits DMAX and DMIN for the geographic range of flowering dogwood (*Cornus florida*). Isopleths for growing degree days are calculated from U.S. Geological Survey (1965) and from program DATGEN (Appendix A-1).

$$B2 = \frac{2(H_{\max} - 137)}{D_{\max}} , \quad B3 = \frac{(H_{\max} - 137)}{(D_{\max})^2} . \quad (2)$$

The growth constant G is derived from Equation (4) below and the assumption that 2/3 of the maximum dbh of the tree is reached at 1/2 the maximum age. G can be solved for directly (see Botkin et al. 1972b) or found by using a simple program of tree growth on an interactive computer (see Appendix A-2). The variable KTIME is an attempt to handle variation in seed source availability. If there is no parent tree on the plot and if the variable IMYR (the number of years that have passed since the plot had no trees and mineral soil) is greater than KTIME, then it is assumed there is no seed source for the species and that it can not be established by seeding. The input values used in the present version of FORAR are listed in Table 4.

The model usually starts a plot with no trees; however, subroutine LOAD can be used to input any desired initial conditions. If a litter layer is wanted at the beginning of a plot, IMYR should be given an initial value greater than 15.

Subroutines

The flowchart for FORAR is shown in Figure 8. There are 14 subroutines in addition to the main program; however, KILL, BIRTH, and GROW are the main elements in terms of actual computation.

Whenever a random number is needed for any model computation, a call to subroutine RANDOM returns a random number drawn from a flat distribution between 0 and 1. In subroutine DATA the user declares the number of plots wanted, the number of tree species, the number of years each plot will be run, the interval of time between successive outputs, the annual insolation, the maximum basal area a plot can attain, and the mean for DEGD. Subroutines PLOTIN and INIT initialize variables, and PLOTIN also updates and prints the plot number.

Subroutine GAUSS randomly chooses a value for DEGD — total growing degree-days for a year, based on a growing degree-day temperature of 42°F — from a normal distribution. The mean and standard deviation of DEGD can be calculated from data available from the National Climatic Center, Asheville, North Carolina.

Table 4. Parameter values used in the FORAR model. Scientific binomials follow Little (1971).

Species	DMAX ³	DMIN ³	B3	B2	ITYPE	AGEMX	C ⁸	G	STEND	SPTMIN	SPTMAX	S	KTIME	SOIM
<i>Acer rubrum</i>	13395	1810	0.173	52.58	1 ³	150 ²	1	240.2	2 ¹	12.0 ⁸	150 ¹¹	F ¹ T ¹ T F ¹⁰ F ⁸ 9999	0.5	
<i>Carpinus caroliniana</i>	10947	2097	0.228	33.56	1 ²	100	1	129.9	2 ¹	6.0	70 ¹¹	F F F F ¹⁰ F 9999	0.4	
<i>Carya cordiformis</i>	9461	3686	0.306	69.21	3 ¹	300 ⁸	1	117.2	2 ⁵	12.0 ⁸	110 ¹¹	T ⁸ F ² T ⁸ F ¹ F ⁸ 30	0.8	
<i>Carya glabra</i>	12652	3686	0.168	49.65	1 ¹	300 ⁸	1	111.3	2 ⁵	12.0 ⁸	145 ¹¹	T ¹ F ² T ⁸ F ¹⁰ F ⁸ 30	0.5	
<i>Carya laciniosa</i>	8718	5081	0.318	72.46	1 ¹	300	1	123.2	2 ⁵	12.0	90 ¹¹	T F T F ¹⁰ F ⁵ 9999	0.4	
<i>Carya ovata</i>	12652	4105	0.312	69.66	1 ¹	300 ²	1	116.5	2 ⁵	2.0 ¹	110 ¹¹	T ⁸ F ² T ⁸ F ¹⁰ F ⁸ 9999	0.7	
<i>Carya texana</i>	9461	5526	0.318	57.56	1	300	1	79.6	2 ⁵	12.0	110 ¹¹	T F T F ¹⁰ F ⁵ 9999	0.5	
<i>Carya tomentosa</i>	10947	3686	0.190	49.41	1 ¹	300 ⁸	1	98.6	2 ⁵	12.0 ²	130 ¹¹	T ¹ F ² T ⁸ F ¹⁰ F ⁸ 9999	0.8	
<i>Castanea ozarkensis</i>	7756	5526	0.085	21.72	1	60	1	250.9	2 ¹²	12.0	125 ¹¹	T F T F ¹⁰ T ⁵ 9999	0.8	
<i>Celtis laevigata</i>	12652	5526	0.336	71.26	1 ¹	350	1	112.7	2 ¹	6.0 ¹	115 ¹¹	T ¹ F F F ¹⁰ F 9999	0.6	
<i>Cornus florida</i>	10947	3686	0.536	40.81	1 ¹	100 ⁸	1	88.7	3 ¹	12.0	35 ¹¹	F ⁶ F ¹ T ¹ F ¹⁰ F ⁸ 9999	0.9	
<i>Diospyros virginiana</i>	13395	5526	0.084	35.84	1 ¹	150 ⁸	1	234.1	2 ¹	12.0 ⁸	210 ⁸	F ¹ F ² T ⁸ F ¹⁰ F ⁸ 30 ⁵	0.3	
<i>Fagus grandifolia</i>	10204	2097	0.151	46.20	1 ¹	400 ²	1	80.7	2 ¹	6.0 ⁸	30 ⁸	F ¹ F ² T ⁸ F ¹⁰ F ⁸ 9999	0.5	
<i>Fraxinus americana</i>	10947	2414	0.080	34.43	3 ²	300 ⁸	1	113.3	2 ¹	6.0 ¹	20	F ¹ T ² T ⁸ F ¹⁰ F ⁸ 9999	0.9	
<i>Ilex opaca</i>	10947	5526	0.156	42.61	1 ²	200 ²	1	133.5	1 ⁵	6.0	35 ¹¹	F ⁸ F F F ¹⁰ F 9999	0.5	
<i>Juglans nigra</i>	8499	3686	0.074	36.37	3 ¹	250	1	161.5	1 ¹	6.0 ¹	40	T ⁸ F ² T ⁸ F ¹⁰ F ⁸ 20 ⁵	0.7	
<i>Juniperus virginiana</i>	10204	2966	0.236	57.75	3 ¹	300 ¹	2	107.1	0 ¹	12.0 ¹	120 ¹	F ¹ T ¹ F ¹ F ¹⁰ F ⁸ 20 ⁵	0.9	
<i>Liquidambar styraciflua</i>	10947	5526	0.191	55.20	3 ¹	300 ²	1	119.4	2 ¹	12.0 ¹	80 ¹	F ¹ F ¹ F ¹ F ¹⁰ F ⁸ 9999	0.7	
<i>Morus rubra</i>	13395	3686	0.061	22.15	1 ⁴	75 ⁵	1	260.6	0 ⁵	12.0 ¹	180 ¹¹	T ⁵ F ⁵ T F ¹⁰ F 30 ⁵	0.3	
<i>Nyssa sylvatica</i>	12652	3686	0.202	37.00	1 ⁵	300 ⁶	1	54.8	1 ¹	60.0 ¹	90 ¹	F ⁸ T ⁸ F ⁸ F ¹⁰ F ⁸ 9999	0.7	
<i>Ostrya virginiana</i>	10204	1810	0.266	49.50	1 ⁷	100	1	219.1	1	6.0	90	F F F F ¹⁰ F 9999	0.4	
<i>Pinus echinata</i>	9461	5526	0.290	70.75	3 ¹	300	2	128.4	2 ¹	6.0 ¹	20 ¹	F ¹ T ¹ F ¹ F ¹⁰ F 9999	1.0	
<i>Pinus taeda</i>	10947	6391	0.189	60.81	3 ¹	350 ²	2	174.5	0 ¹	12.0 ¹	160 ¹¹	F ¹ T ¹ F ¹ F ¹⁰ F ⁸ 9999	1.0	
<i>Prunus serotina</i>	10947	3899	0.083	35.57	3 ²	250 ¹	1	139.5	2 ¹	6.0 ¹	210 ¹	F ¹ T F ⁸ T ¹⁰ F ⁸ 9999	0.7	
<i>Quercus alba</i>	10204	2966	0.074	36.37	1 ¹	400 ³	1	100.7	2 ¹	12.0 ¹	40 ¹	T ¹ F ¹ T ¹⁰ F ⁸ 9999	0.8	
<i>Quercus falcata</i>	10947	5526	0.078	33.57	1 ⁶	400	1	82.9	2 ¹	12.0 ¹	30 ¹	T ⁸ F ⁸ F ⁸ F ¹⁰ F ⁸ 9999	0.9	
<i>Quercus marilandica</i>	10204	5081	0.111	24.86	3 ⁵	400	1	36.3	2	12.0	40	F ⁵ F F F ¹⁰ F 9999	1.0	
<i>Quercus shumardii</i>	10947	5081	0.199	65.19	3 ²	400	1	115.9	2 ¹	12.0 ¹	160 ¹	F ¹ F ¹ F F ¹⁰ F 30 ⁵	0.7	
<i>Quercus stellata</i>	10947	5526	0.195	47.75	3 ¹	400	1	67.9	2 ¹	12.0 ¹	40	T ¹ F ¹ F ⁸ T ¹⁰ F ⁸ 9999	1.0	
<i>Quercus velutina</i>	9461	3313	0.097	41.57	1 ²	200 ⁹	1	100.1	2 ¹	12.0 ¹	40	F ¹ T ¹ F ⁸ F ¹⁰ F ⁸ 9999	0.8	
<i>Sassafras albidum</i>	10947	3686	0.619	75.51	3 ²	20C ⁸	1	108.1	3 ¹	6.0 ¹	60	T ¹ F ¹ F ⁸ F ¹⁰ F ⁸ 20 ⁵	0.8	
<i>Ulmus clata</i>	10947	5526	0.230	51.81	3 ¹	12 ⁵	1	212.5	1	6.0	110	F F ⁵ F F ¹⁰ F 9999	0.4	
<i>Ulmus americana</i>	12652	1522	0.082	39.35	3	300 ¹	1	141.8	1 ¹	6.0 ¹	240 ¹	F ¹ F ¹ T ¹ F ⁵ T ¹⁰ 9999	0.4	

¹From Fowells (1965)

²From Harlow and Harrar (1969)

³From Little (1971) and U.S. Geological Survey (1965)

⁴From Wigginton (1964)

⁵From Carl Amason (personal communication, 1975)

⁶From Baker (1949)

⁷From Peattie (1950)

⁸From Shugart and West (1977)

⁹From Northeastern Forest Experiment Station (1971)

¹⁰From Martin et al. (1971)

¹¹From Pardo (1973)

¹²From Moore (1960)

¹³All other values not otherwise referenced were developed during the course of this project.

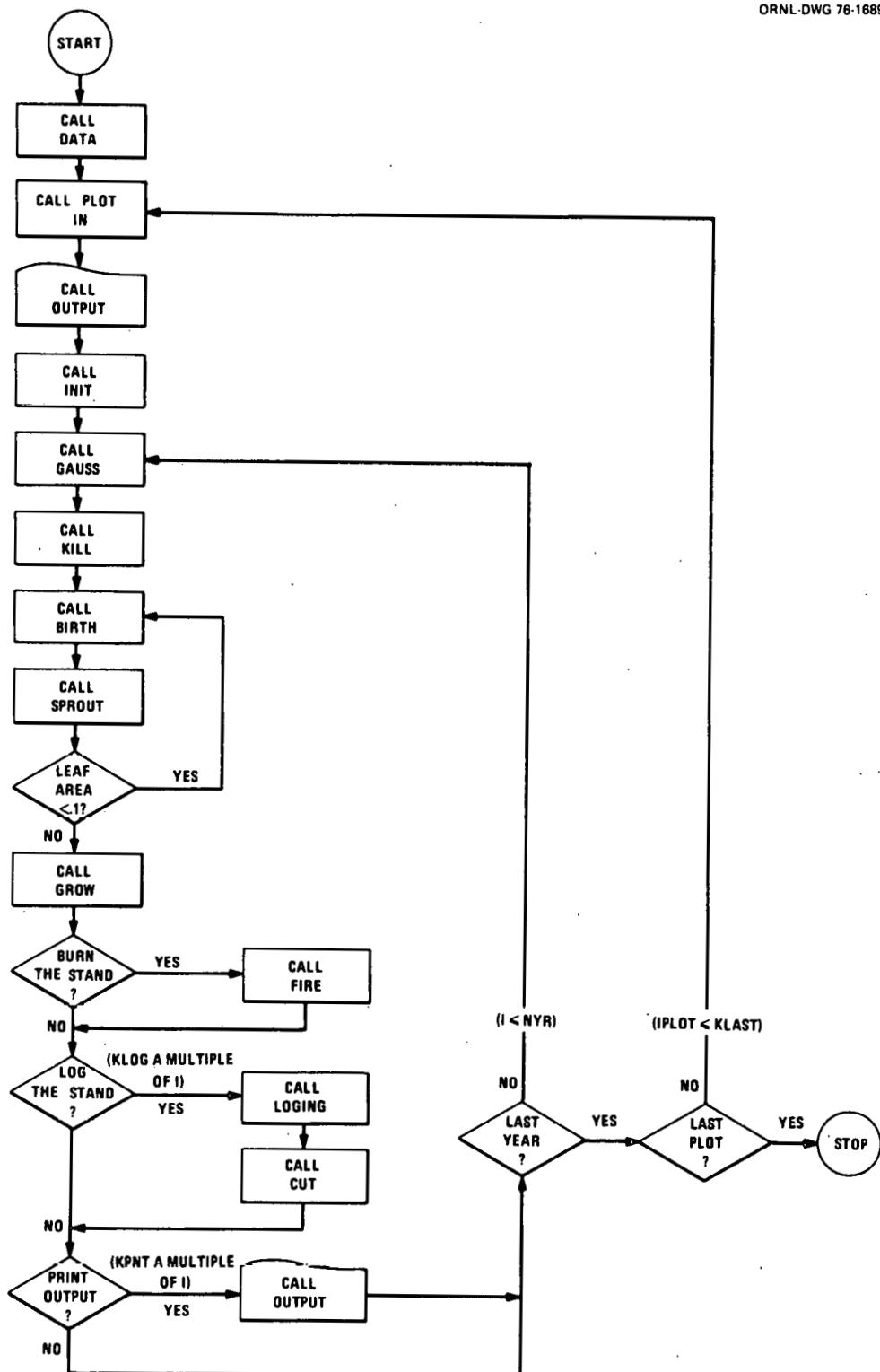


Fig. 8. Flow diagram of the FORAR model.

Subroutine KILL

FORAR, like the Botkin model, assumes that individual tree death can be viewed as a stochastic process, rather than delineating all the different and complex causes of mortality. The probability that a tree will be killed in any one year is $p = 1 - (1 - \varepsilon)^n$ (Botkin et al. 1972b). The model assumes that 1% of all seedlings of a species will live to reach the maximum age for that species (Figure 9). Setting p equal to 0.99 and n equal to AGEMX (the maximum known age a species can attain) results in:

$$\varepsilon = 4.605/AGEMX \quad . \quad (3)$$

Once a year KILL generates a random number for every tree, and the tree is killed if the random number generated is less than ε .

In the present version of FORAR, there are two cases in which the kill probabilities of a tree are changed from the above statement. First, the model uses the array NOGRO to keep track of those trees that grow less than 0.1 cm dbh per year. A tree has only one chance in a hundred of surviving 10 years if such a growth rate is maintained (Botkin et al. 1972b). Accordingly, the random number generated has to be less than 0.368 to kill such a tree. Secondly, a moderate fire (described below) will "damage" those species that are susceptible to fire. In the present version of FORAR, a susceptible tree that is present on the plot when a moderate fire occurs is given a 20% chance of living 5 years (J. Warren Ranney, personal communication 1976); thus, the random number generated must be less than 0.275 to kill the tree.

Trees are also killed deterministically if there is logging or a fire. To log the circular plot, the user specifies in subroutine LOGING the upper and lower diameter limits of each species of the trees to be logged. Subroutine CUT then removes all trees on the plot within these diameter limits. In subroutine FIRE the user has a choice of specifying a light, a moderate, or a severe burn. A light fire sets the logging limits of each species to a minimum of 0 cm and a maximum of 12.7 cm and then calls subroutine CUT to remove the trees. A severe fire removes all trees from the plot and resets the bare plot counter IMYR to zero, allowing the pioneer species with small values of KTIME to reenter the plot. A moderate fire uses subroutine CUT in the same way as a light burn to remove all the trees of species that are extremely susceptible to fire damage, all the trees less than 25.4 cm dbh of species that are moderately susceptible to fire damage, and all the trees less than 17.8 cm dbh of resistant species. The susceptibility of each species to fire damage is established in the COMPUTED GO TO statements in subroutine FIRE. The susceptibility values used in FORAR were taken from Davis (1959), Fowells (1965), Harlow and Harrar (1969), Curtis (1959), Grange (1959), or developed in the course of

ORNL-DWG 76-18414

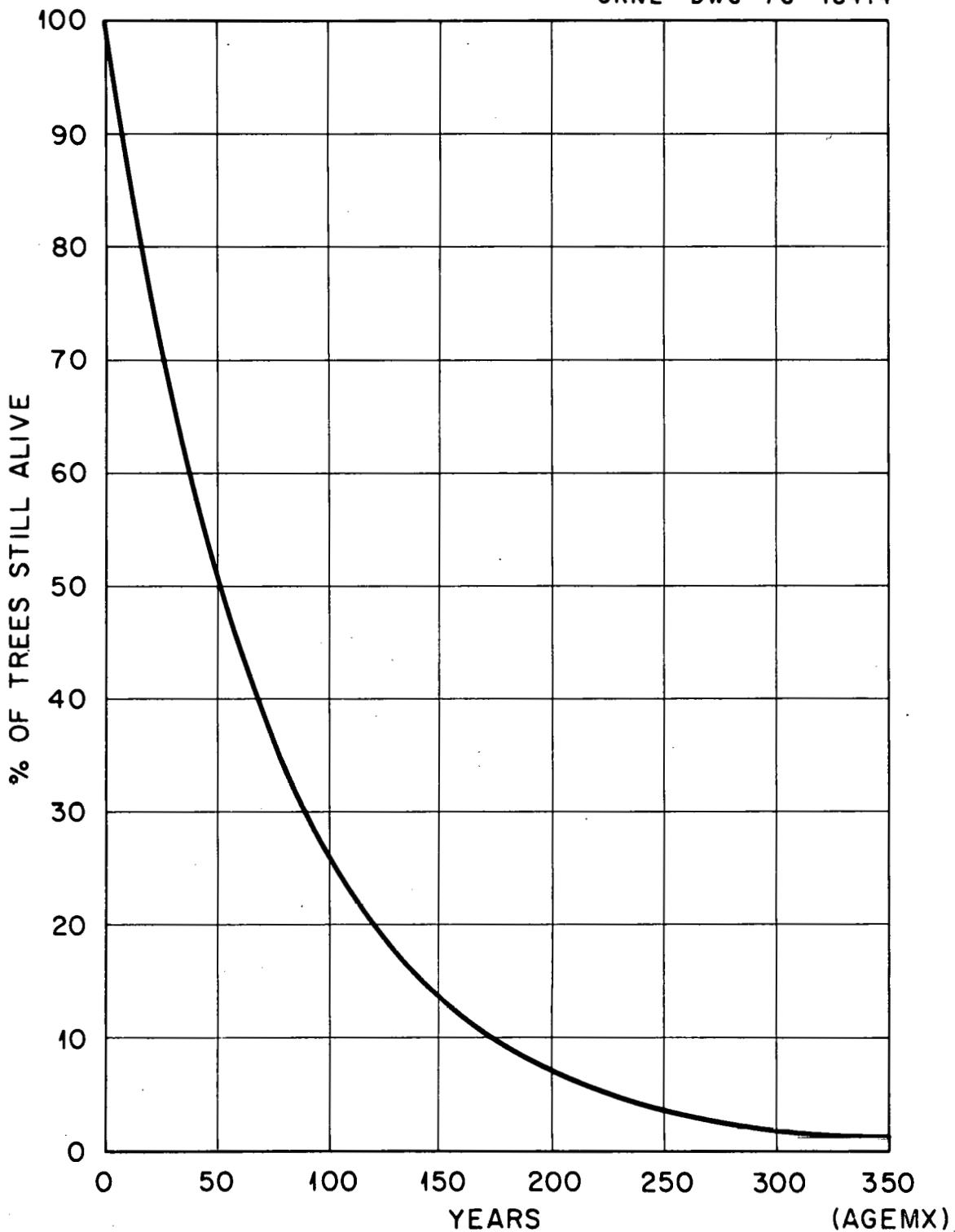


Fig. 9. Functional form for the random death process. The model assumes that 1% of all the seedlings of a species will live to reach the maximum known age. In the example shown, the maximum age of lob-lolly pine is 350 years.

this project. A moderate fire also resets IMYR to zero and changes the survival probabilities of those damage-susceptible trees that were large enough to survive the fire, as discussed above.

Subroutine BIRTH

BIRTH calculates the biomass already on the plot and sets the correct values for the year for the five environmental variables corresponding to the S array in Table 3. As in the FORET model (Shugart and West 1977), the soil is considered to be mineral soil if the biomass on the plot is less than 0.2 metric ton ha^{-1} and if IMYR (an additional parameter in the FORAR model) is less than 15. The soil is considered to have a litter layer if the plot biomass is greater than 0.1 metric ton ha^{-1} . It is a hot year if DEGD has a value greater than its mean. Wildlife populations are randomly chosen half the time to be large enough to consume the entire seed source of a preferred food species. In the FORAR model, an epidemic is randomly present half the time to destroy the seedlings of certain host species.

BIRTH then separates out those species capable of germinating under existing environmental conditions. For instance, we assume that a species requiring a litter layer to germinate (i.e., $S(1) = .TRUE.$) cannot be stocked when there is no litter layer on the ground (i.e., when the biomass on the plot is less than 0.1 metric ton ha^{-1}). From the subset of possible species, the program randomly chooses from one to three species to actually stock in a given year. A random number of seedlings between zero and eight are then "born" for each of the one to three species and randomly assigned a dbh around 1.27 cm (Tree seedlings are established 137 cm tall in the model in order to have a nonzero dbh.).

After the new seedlings are established, subroutine BIRTH calls subroutine SPROUT, which checks to see if any trees of a species capable of sprouting have died since the last year. If they have, and if their diameter was within the sprouting range of that species ($SPTMIN < dbh < SPTMAX$), a random number of sprouts between zero and three are randomly given dbh's around 0.1 cm and are added to the plot. Where a maximum of three species of seedlings can enter the plot in one pass through subroutine BIRTH, only one randomly chosen tree can sprout in one pass through subroutine SPROUT.

Subroutine BIRTH then calculates whether the biomass on the plot is less than 0.1 metric ton ha^{-1} . If it is, the program returns to the top of subroutine BIRTH to go through the process again. Before returning to MAIN, BIRTH updates the age of all the trees.

Subroutine GROW

The basic growth function used by FORAR, FORET (Shugart and West 1977), and JABOWA (Botkin *et al.* 1972a, 1972b) is:

$$\delta(D^2H) = R \text{ LA} \left(1 - \frac{D H}{D_{\max} H_{\max}}\right), \quad (4)$$

where

D = dbh,

H = height,

D_{\max} = maximum dbh recorded for the species (Pardo 1973),

H_{\max} = maximum height recorded for the species,

R = a constant, and

LA = leaf area.

This equation considers the trunk of a tree to be a cylinder and assumes that the change in volume of a tree in one year is proportional to the amount of sunlight the leaves receive times a factor for maintenance of the volume of living tissue already present (Botkin *et al.* 1972b). The assumptions of the model are as follows (For more details, see Botkin *et al.* 1972b):

$$H = 137 + B2D - B3D^2, \quad (5)$$

$$\text{LA} \propto \text{leaf weight}, \quad (6)$$

$$\text{leaf weight} = CD^2, \quad$$

$$\text{and} \quad G = RC, \quad (7)$$

$$\text{where} \quad C = \text{leaf area constant},$$

$$\text{and} \quad G = \text{a growth constant}.$$

Using the above equations in Equation (4) to solve for D , the annual increment of growth, we find:

$$\delta D = GD \frac{\left(1 - \frac{D H}{D_{\max} H_{\max}}\right)}{274 + 3B2D - 4B3D^2}. \quad (8)$$

This is the basic equation for optimum growth on a good site with no competitors. An example of this function for two species is shown in Figure 10.

FORAR modifies the annual growth equation by factors for shading, climate, competition, and soil moisture. In order to modify growth according to the amount of light each tree is receiving, subroutine GROW calculates the amount each tree is shaded, in 0.1 meter increments, by those trees on the plot that are taller. This is done using the equation:

$$AL = PHI e^{0.25SLA} , \quad (9)$$

where

AL = available light for a given tree,
 PHI = annual insolation (in appropriate units), and
 SLA = shading leaf area (Botkin *et al.* 1972a).

SLA is calculated using Equation (6) as the leaf biomass above a given height (Shugart and West 1977, Sollins *et al.* 1973). Kramer and Kozlowski (1960) give equations to relate AL to $r(AL)$, the photosynthetic rate:

$$r(AL) = 1 - e^{-4.64(AL-0.05)} \text{ for tolerant species ,} \quad (10)$$

$$r(AL) = 2.24(1 - e^{-1.136(AL-0.08)}) \text{ for intolerant species .} \quad (11)$$

The factor $r(AL)$ is then used as the shading factor multiplying the growth equation. Figure 11 shows $r(AL)$ as a function of AL for tolerant and intolerant species.

FORAR assumes a parabolic functional form for the effect of climate upon tree growth, $T(DEGD)$. Figure 12 shows the relationship between the range of the species and $T(DEGD)$. Optimum climatic effect occurs in the middle of the climatic range of the species. DEGD values at the range extremes reduce $T(DEGD)$, and thus the growth of the trees of that species, to near zero.

The crude competition factor in the model is simply:

$$S(BAR) = 1 - BAR/SOILQ , \quad (12)$$

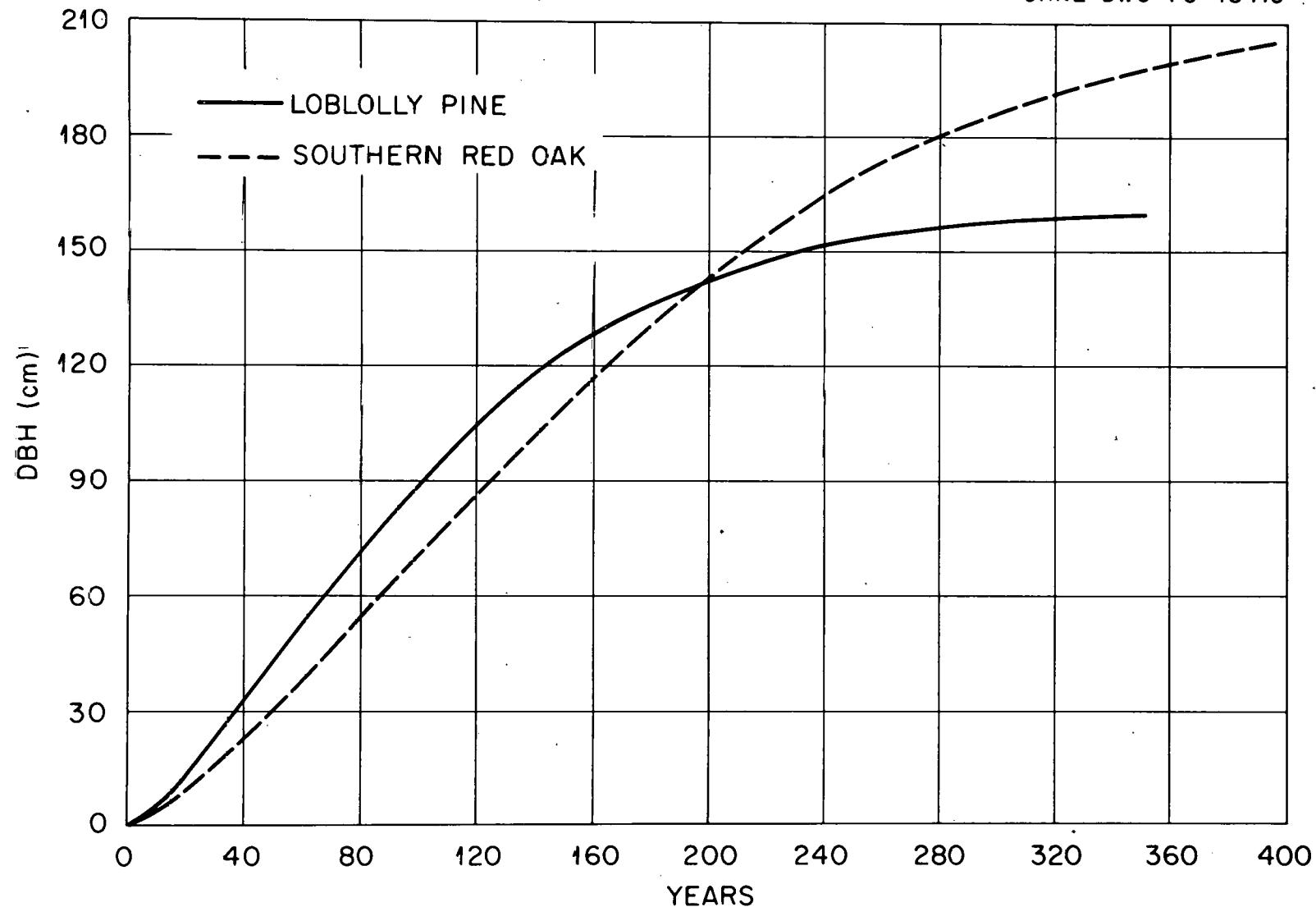


Fig. 10. Functional form for the optimum growth equation. The slope of the curve is a function of AGEMX. The height of the curve is a function of the maximum dbh recorded for the species (Pardo 1973).

ORNL-DWG 76-18417

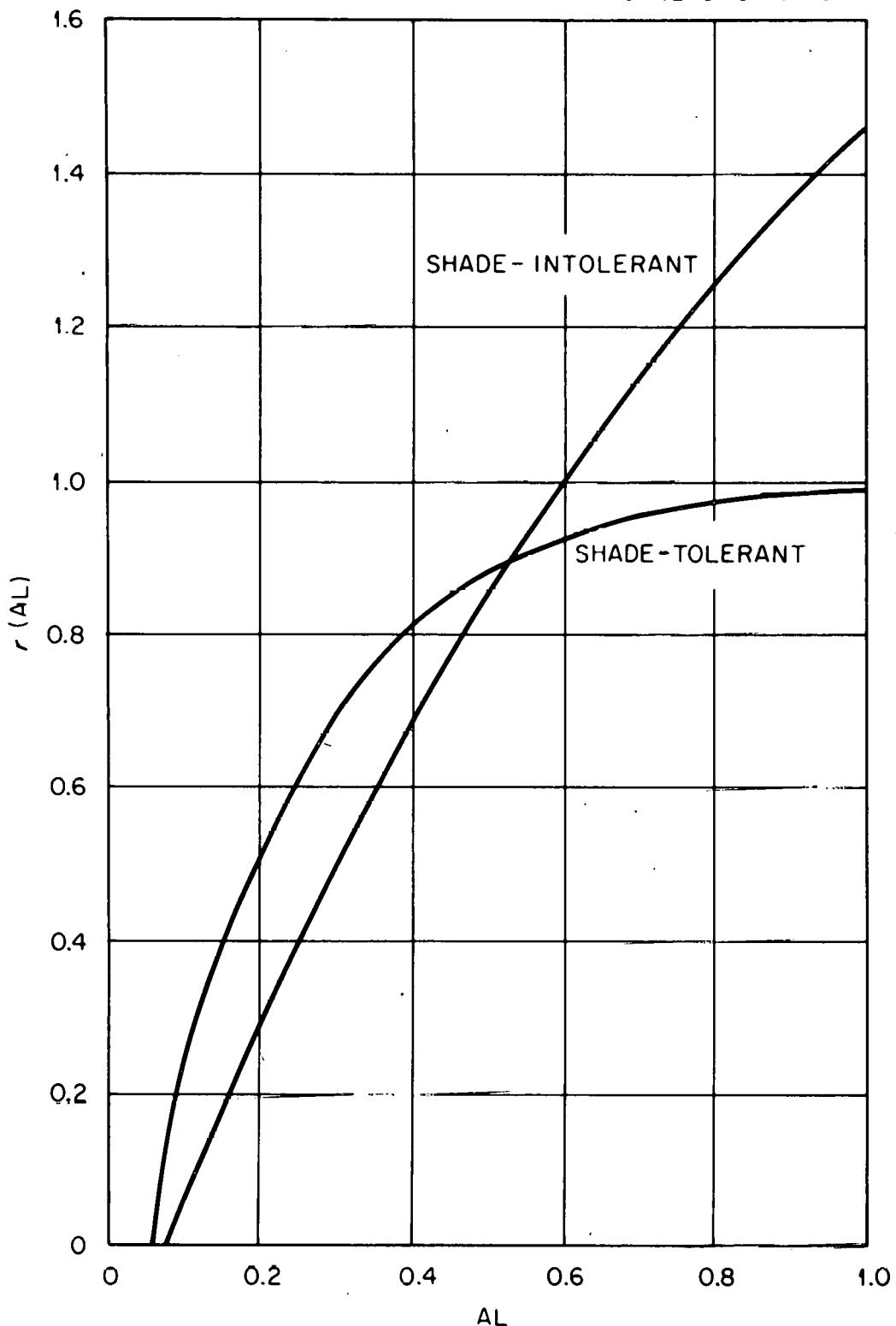


Fig. 11. Functional form relating available light AL to photosynthetic rate r (AL). Equations are from Kramer and Kozlowski (1960).

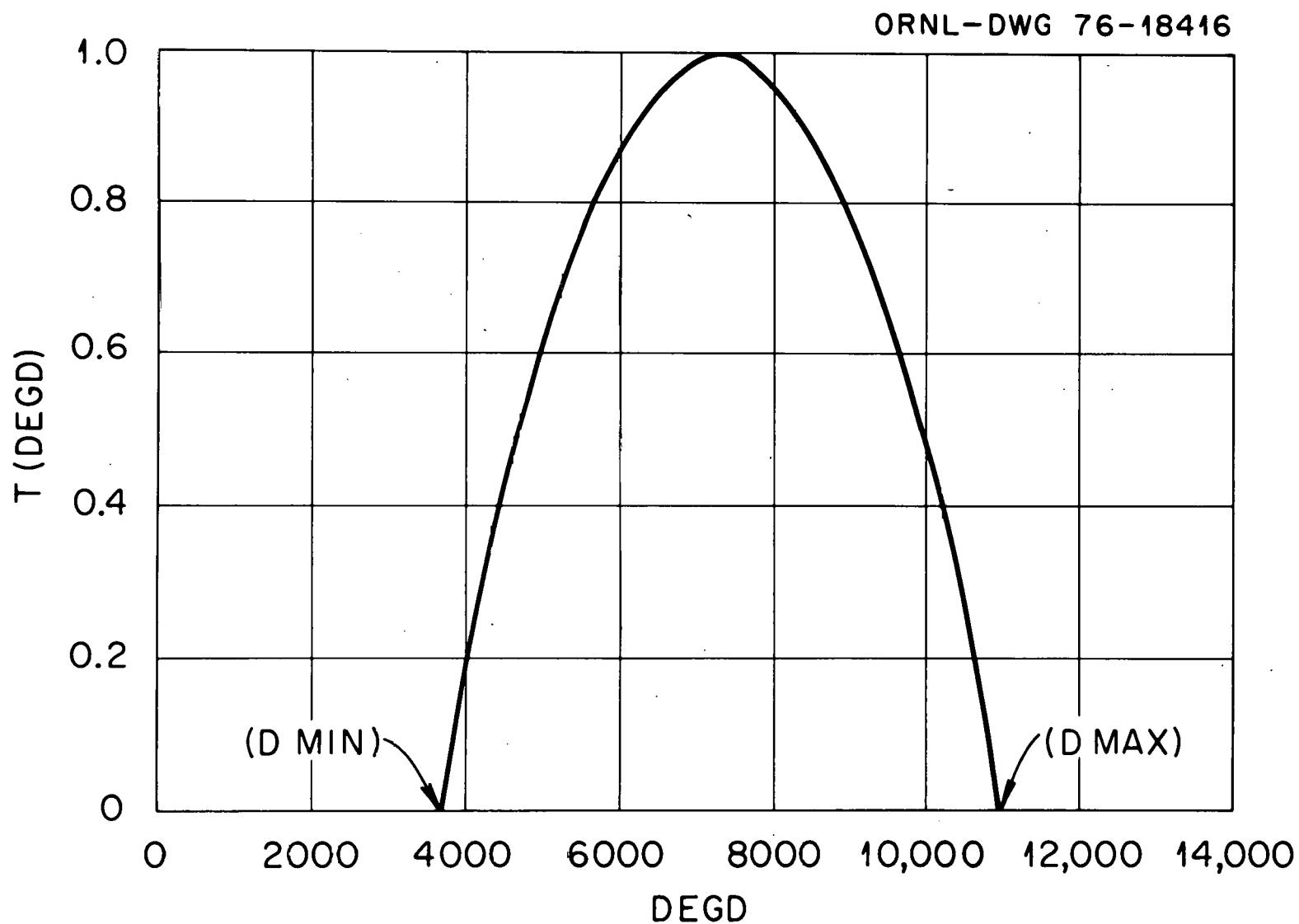


Fig. 12. Functional form relating degree-days DEGD to the effect of climate on the growth of a tree species. In this example, sassafras can not grow if the degree-days are less than 3686 or greater than 10947.

where

$S(BAR)$ = competition factor,
 BAR = basal area on the plot, and
 $SOILQ$ = maximum basal area the plot can sustain.

A plot of $S(BAR)$ is shown in Figure 13.

The last factor modifying tree growth, soil moisture, was added to FORAR when it was found that primarily-bottomland species were comprising too much biomass on the plot. For simplicity, $SOIM$ was assumed to be a constant factor reducing (usually) the growth of a species on an upland site. A more realistic approach would be to use moisture as another driving variable of the model. This, however, would add another level of resolution to an already complex program. Species that are found primarily on dry, poor soils have values of $SOIM$ near 1.0; whereas species that commonly grow well in bottomlands and grow much more poorly on upland sites may have values of $SOIM$ around 0.5.

The final growth equation for the model is thus:

$$\delta D = G D \frac{1 - \frac{D H}{D_{\max} H_{\max}}}{274 + 3B2D - 4B3D^2} r(AL) T(DEGD) S(BAR) SOIM . \quad (13)$$

OUTPUT

A sample output of FORAR is shown in Appendix A-4. Normal output of FORAR shows, for each species, the number of trees on the plot, their dbh's, and the biomass. Total biomass and leaf area on the plot are also given at the end of the species list. Output frequency (KPNT) is specified by the user in subroutine DATA. The model has an option to list all the trees that have died from random causes since the last printout, all the trees that have been removed by logging and the diameter limits for each species, and all the trees that have been killed by fire.

ORNL-DWG 76-18418

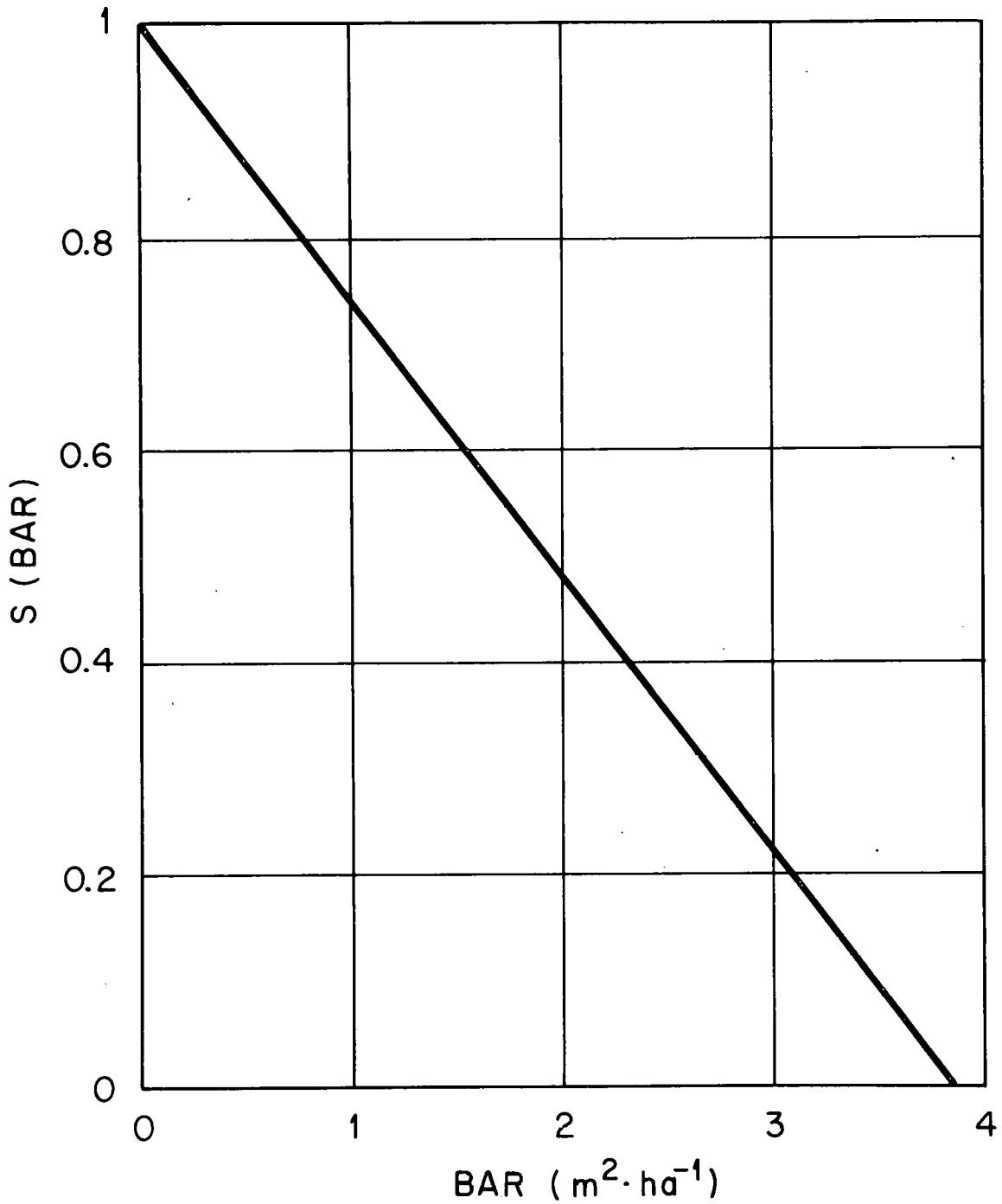


Fig. 13. Linear function relating basal area on the 1/12 ha plot (BAR) to a general competition factor S(BAR). The maximum basal area the plot can maintain is from Dick Williams (personal communication 1975).

REFERENCES

Baker, F. S. 1949. A revised tolerance table. *J. Forestry* 47:179-181.

Botkin, D. B., J. F. Janak, and J. R. Wallis. 1970. A simulator for northeastern forest growth: a contribution of the Hubbard Brook ecosystem study and IBM research. *IBM Research Report* 3140.

Botkin, D. B., J. F. Janak, and J. R. Wallis. 1972. Some ecological consequences of a computer model of forest growth. *J. Ecology* 60: 849-873.

Curtis, J. T. 1959. *The Vegetation of Wisconsin, an Ordination of Plant Communities*. University of Wisconsin Press, Madison.

Davis, K. P. 1959. *Forest Fire: control and use*. McGraw-Hill Company, Inc. New York.

Fowells, H. A. 1965. *Silvics of Forest Trees of the United States*. USDA For. Ser. Hdbk. No. 271. 762 p.

Harlow, W. M., and E. S. Harrar. 1969. *Textbook of Dendrology*. McGraw-Hill Company, Inc. New York.

Ker, J. W., and J. H. G. Smith. 1955. Advantages of the parabolic expression of height-diameters relationships. *For. Chron.* 31:235-246.

Kramer, P. J., and T. Z. Kozlowski. 1960. *Physiology of Trees*. McGraw-Hill Publishing Company, New York.

Little, E. L. 1971. *Atlas of United States trees, Vol. I. Conifers and Important Hardwoods*. U.S. Government Printing Office, Washington, D.C.

Martin, A. C., H. S. Zim, and A. L. Nelson. 1951. *American Wildlife and Plants, a Guide to Wildlife Food Habits: the use of trees, shrubs, weeds, and herbs by birds and mammals of the United States*. Dover Publishing Company, Inc., New York.

Northeastern Forest Experiment Station. 1971. *Oak Symposium Proceedings*. 161 p. USDA Northeastern Forest Experiment Station, Upper Darby, Pennsylvania.

Pardo, R. 1973. AFA's social register of big trees. *American Forests* 79:21-47.

Peattie, D. C. 1950. *A Natural History of Trees of Eastern and Central North America*. Houghton Mifflin Company, Boston.

Shugart, H. H., and D. C. West. 1977. Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight. *J. of Environ. Management* 5:161-179.

Sollins, P., D. E. Reichle, and J. S. Olson. 1973. Organic matter budget and model for a southern Appalachian Liriodendron forest. EDFB/IBP-73/2. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

U.S. Geological Survey. 1965. Monthly average temperatures for January and July. *The National Atlas of the United States of America* (1970). U.S. Government Printing Office, Washington, D.C.

Wigginton, B. E. 1965. *Trees and Shrubs for the Southeast*. University of Georgia Press, Athens.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

Appendix A-1

Program DATGEN calculates annual degree-days from January and July mean temperatures. A sine function is used to estimate average daily temperature, with the minimum and maximum values equal to the January and July means, respectively. The area under the sine curve and above the 42°F line is then determined by integration and scaled to the proper value for degree-days.

In the listing shown, the degree-days are calculated and printed out for the matrix of January mean temperatures from 0° to 70° and July mean temperatures from 60° to 90°.

```

ISN 0002      DIMENSION DEGD(100,100)
ISN 0003      DO 6 I=1,71,5
ISN 0004      XI=I-1
ISN 0005      DO 4 J=60,90,5
ISN 0006      KK=1
ISN 0007      XJ=J
ISN 0008      AVE=(XJ+XI)/2.
ISN 0009      IF(XI.GE.XJ) GO TO 39
ISN 0011      R=XJ-XI
ISN 0012      R=.5*R
ISN 0013      DO 11 JJ=1,342
ISN 0014      XJJ=JJ
ISN 0015      HEAT=R*SIN(.017214*(XJJ-91.25))+AVE
ISN 0016      IF(KK.EQ.1.AND.HEAT.GE.42.) GO TO 9
ISN 0018      GO TO 10
ISN 0019      9 D1=XJJ
ISN 0020      KK=2
ISN 0021      10 IF (KK.EQ.2.AND.HEAT.LT.42.) GO TO 12
ISN 0023      GO TO 11
ISN 0024      12 D2=XJJ
ISN 0025      KK=1
ISN 0026      11 CONTINUE
ISN 0027      DEGD(I,J)=COS(.017214*(D1-91.25))-COS(.017214*(D2-91.25))
ISN 0028      DEGD(I,J)=.31831*DEGD(I,J)*(D2-D1)*R-(D2-D1)*(42.-AVE)
ISN 0029      GO TO 4
ISN 0030      39 DEGD(I,J)=10000000.
ISN 0031      4 CONTINUE
ISN 0032      6 TYPE 7,(DEGD(I,J),J=60,90,5)
ISN 0033      7 FORMAT(7(1,F8.0))
ISN 0034      STOP
ISN 0035      END

```

Appendix A-2

Program GFIX iteratively determines the value of G , the growth constant, for each tree species. G is calculated using the optimum growth function developed by Botkin et al. (1972a, 1972b) and the assumption that a tree will attain $2/3$ of its maximum dbh at $1/2$ its maximum age:

$$\delta D = G D \frac{\frac{D H}{T - D_{\max} H_{\max}}}{274 + 3B2D - 4B3D^2}$$

and

$$D = 2/3 D_{\max} \text{ when } t = AGEMX/2$$

Any interactive computer system can be used to run this program. The values for D_{\max} , H_{\max} , B_2 , B_3 , and $AGEMX$ for the species and the initial guess for G are entered in. The value of DBH typed out can then be compared to $2/3 D_{\max}$, and a better guess for G can be entered for the next iteration. This is repeated until DBH becomes sufficiently close to $2/3 D_{\max}$.

```

ISN 0002      INTEGER AGEMAX
ISN 0003      TYPE 1
ISN 0004      1 FORMAT (2X,'TYPE IN DMAX,HMAX,B2,B3,AGEMAX,4F10.3,I5')
ISN 0005      ACCEPT 2,DMAX,HMAX,B2,B3,AGEMAX
ISN 0006      2 FORMAT (4F10.3,I5)
ISN 0007      3 TYPE 4
ISN 0008      4 FORMAT (2X,'TYPE IN G, F10.3')
ISN 0009      ACCEPT 5,G
ISN 0010      5 FORMAT (F10.3)
ISN 0011      D=.5
ISN 0012      J=IFIX(AGEMAX/2.)
ISN 0013      DO 10 I=1,J
ISN 0014      H=137.+B2*D-B3*D**2
ISN 0015      DELD=(G*D*(1.-(D-H)/(DMAX*HMAX)))/(274.+3.*B2*D-4.*B3*D**2)
ISN 0016      D=D+DELD
ISN 0017      IC CONTINUE
ISN 0018      TYPE 11,DMAX,HMAX,B2,B3,AGEMAX,G
ISN 0019      11 FORMAT (5X,"DMAX",5X,"HMAX",7X,"B2",9X,"B3",4X,
      A*AGEMAX",4X,"G",/,4F10.3,I5,F10.3)
ISN 0020      TYPE 12,D
ISN 0021      12 FORMAT (6X,"DBH=",F10.4)
ISN 0022      GO TO 3
ISN 0023      STOP
ISN 0024      END

```

Appendix A-3

Listing of Program FORAR

```

C      STAND SIMULATOR MODIFIED FROM:
C      BOTKIN,D.B.,J.F.JANAK,J.R.WALLIS. 1970. A SIMULATOR FOR
C      NORTHEASTERN FOREST GROWTH: A CONTRIBUTION OF THE HUBBARD BROOK
C      ECOSYSTEM STUDY AND IBM RESEARCH. RC 3140. IBM THOMAS J. WATSON
C      RESEARCH CENTER, YORKTOWN HEIGHTS, NEW YORK. 21P.
C
ISN 0002      DIMENSION DBH(700),NTREES(35)
ISN 0003      DIMENSION DBHK(250),NTREEK(35)
ISN 0004      COMMON /FDATA/ FARDAM(500),ALIMIT(35),BLIMIT(35),IMYR
ISN 0005      LOGICAL SWITCH(5),S(35,5),LOGS
ISN 0006      DIMENSION KTIME(35)
ISN 0007      COMMON /LOGBLK/ SWITCH,KTIME,S
ISN 0008      COMMON /RUNNR/ NYR,INYR,KPNT,KAGE,KTIME,KLAST
ISN 0009      COMMON /HDATA/ B2(35),B3(35),PHI,SOILQ,DEGD
ISN 0010      CALL DATA
ISN 0011      IPLOT=0
ISN 0012      11 CONTINUE
ISN 0013      CALL PLOTIN(IPLOT,DBH,NTREES)
ISN 0014      IMYR=0
ISN 0015      INYR=0
ISN 0016      CALL OUTPUT(DBH,NTREES)
ISN 0017      DO 9 J=1,KTIME
ISN 0018      JJ=J
ISN 0019      IF (JJ .GT. 1) PRINT 13,IX
ISN 0021      13 FORMAT (/,I PLOT NUMBER ,I4)
ISN 0022      CALL INIT(DBH,NTREES,DBHK,NTREEK,JJ)
ISN 0023      DO 1 I=1,NYR
ISN 0024      IMYR=INYR+1
ISN 0025      INYR=I
ISN 0026      CALL GAUSS(IX,700,0.8700,0,DEGD)
ISN 0027      CALL KILL(DBH,NTREES,IX)
ISN 0028      CALL BIRTH(IX,NTREES,DBH)
ISN 0029      CALL GROW(DBH,NTREES)
C      IF (R.LT..048) CALL FIRE (DBH,NTREES)
ISN 0030      IF (I.NE.35) GO TO 5
ISN 0032      CALL LOGING (LOGS)
C      CALL CUT (DBH,NTREES,LOGS)
ISN 0033      5 IF(I-KPNT*(I/KPNT).EQ.0) CALL OUTPUT(DBH,NTREES)
ISN 0035      1 CONTINUE
ISN 0036      9 CONTINUE
ISN 0037      IF(IPLOT .EQ. KLAST) GO TO 99
ISN 0039      GO TO 11
ISN 0040      99 CONTINUE
ISN 0041      STOP
ISN 0042      END

```

```

ISN 0002      SUBROUTINE LOAD(DBH,NTREES)
ISN 0003      DIMENSION DBH(700),NTREES(25)
ISN 0004      COMMON /IRUN/ INDEX
ISN 0005      DO 1 I=1,INDEX
ISN 0006      1 NTREES(I)=0.
ISN 0007      RETURN
ISN 0008      END

```

```

ISN 0002      SUBROUTINE LOGING (LOGS)
ISN 0003      COMMON /IRUN/ INDEX
ISN 0004      LOGICAL LOGS
ISN 0005      COMMON /FDATA/ FARDAM(500),ALIMIT(35),BLIMIT(35),IMYR
ISN 0006      DO 10 J=1,INDEX
ISN 0007      ALIMIT(J)=25.4
ISN 0008      BLIMIT(J)=200.
ISN 0009      10 CONTINUE
ISN 0010      LOGS=.TRUE.
ISN 0011      RETURN
ISN 0012      END

```



```

      SUBROUTINE CUT(DBH,NTREES,LOGS)
      DIMENSION DBH(700),NTREES(35),ANEW(100)
      COMMON /F0DATA/ FARDAM(500),ALIMIT(35),BLIMIT(35),IMYR
      DIMENSION KAGES(100),NCUT(35),DBHCUT(100),KKAGE(100)
      COMMON /SDATA/ KSPT(35),STEND(35),SPTMIN(35),SPTMAX(35)
      COMMON /TRAGE/ IGES(700),IDGE(500)
      COMMON /IRUN/ INDEX
      COMMON /TITLE/ AAA(35,6)
      LOGICAL CUTT,CUTSP,LOGS
      NTOT=0
      DO 1 I=1,INDEX
      NTOT=NTOT+NTREES(I)
  1 CONTINUE
      IF (NTOT.EQ.0) RETURN
      CUTT=.FALSE.
      NEW=0
      NFW=0
      KBEG=1
      KEND=0
  22 IF (.NOT.LOGS) GO TO 18
      PRINT 15
  15 FORMAT (12X,'DIAMETER LIMITS FOR LOGGING, BY SPECIES')
  16 PRINT 14,(J,ALIMIT(J),BLIMIT(J),J=1,INDEX)
  14 FORMAT (12X,15,2(2X,F5.1))
  18 DO 2 I=1,INDEX
      IF (NTREES(I).EQ.0) GO TO 2
      CUTSP=.FALSE.
      KEND=KEND+NTREES(I)
      DO 5 JJ=KBEG,KEND
  5   JJ=JJ
      IF (DBH(J).LT.ALIMIT(I).OR.DBH(J).GT.BLIMIT(I)) GO TO 6
      NTREES(I)=NTREES(I)-1
      NCUT(I)=NCUT(I)+1
      NFW=NFW+1
      DBHCUT(NFW)=DBH(J)
      KKAGE(NFW)=IGES(J)
      IF ((DBH(J).GT.SPTMIN(I)).AND.(DBH(J).LT.SPTMAX(I))) KSPT(I)=1
      CUTT=.TRUE.
      CUTSP=.TRUE.
      GO TO 5
  6   NEW=NEW+1
      ANEW(NEW)=DBH(J)
      KAGES(NEW)=IGES(J)
  5 CONTINUE
  51 IF (CUTSP.EQ.(.FALSE.)) GO TO 72
  53 II=1
  54 IF (.NOT.LOGS) GO TO 65
  56 PRINT 70,II,NFW,(AAA(I,L),L=1,6)
  70 FORMAT (10X/,2X,'SPECIES',I2,2X,I3,2X,6A4/,X,'DBH LOGS CUT')
  58 GO TO 74
  59 PRINT 71,II,NFW,(AAA(I,L),L=1,6)
  71 FORMAT (/,12X,'SPECIES',I2,2X,I3,2X,6A4/,X,'DBH TREES BURNED')
  74 PRINT 29,(DBHCUT(K),K=1,NFW)
  29 FORMAT (20X,4F8.2)
  80 DO 80 K=1,NFW
      DBHCUT(K)=0.
  80 CONTINUE
  86 NFW=0
  87 KBEG=KEND+1
  88 2 CONTINUE
      IF (CUTT.EQ.(.FALSE.)) GO TO 13
      IF (NEW.EQ.0) GO TO 10
  89 GO TO 8
  90 PRINT 20
  20 FORMAT (5X,'NO TREES CUT')
  91 DO 7 I=1,NEW
      DBH(I)=ANEW(I)
      IGES(I)=KAGES(I)
  7 CONTINUE
  92 RETURN
  10 CONTINUE
  93 PRINT 11
  11 FORMAT (10X/,10X,'ALL TREES WERE CUT')
  94 DO 12 J=1,700
      DBH(J)=0.0
  12 IGES(J)=0
  12 CONTINUE
  13 RETURN
  END

```

```

ISN 0002      SUBROUTINE OUTPUT(DBH,NTREES)
ISN 0003      COMMON /TITLE/ AAA(35,6)
ISN 0004      DIMENSION DBH(700),BDH(500),NTREES(35),IDM(500),BAR(35)
ISN 0005      COMMON /KILD/ NOGRD(100),DDBH(500),KDEAD(35),AREA,KD
ISN 0006      COMMON /TRAGE/ IGES(700),IDGE(500)
ISN 0007      COMMON /RUNNR/ NYR,INYR,KPNT,KAGE,KTIMES,KLAST
ISN 0008      COMMON /HDATA/ B2(35),B3(35),PHI,SOILQ,DEGD
ISN 0009      COMMON /IRUN/ INDEX
ISN 0010      PRINT 11
ISN 0011      11 FORMAT(//, 'YEAR SPEC.      NUM.      NAME', BIOMA
ISN 0012      ZSS1)
ISN 0013      PRINT 21,INYR
ISN 0014      21 FORMAT(15)
ISN 0015      96 NDEAD=0
ISN 0016      NTOT=0
ISN 0017      DO 1 I=1,INDEX
ISN 0018      1 NDEAD=NDEAD+KDEAD(I)
ISN 0019      NTOT=NTOT + NTREES(I)
ISN 0020      IF(NTOT.EQ.0) GO TO 100
ISN 0021      N=1
ISN 0022      AREA=0.0
ISN 0023      TBAR=0.0
ISN 0024      DO 20 II=1,INDEX
ISN 0025      I=II
ISN 0026      BAR(I)=0.0
ISN 0027      IF(NTREES(I).EQ.0) GO TO 20
ISN 0028      NN=N+NTREES(I)-1
ISN 0029      N1=NTREES(I)
ISN 0030      DO 50 JJ=N,NN
ISN 0031      J=JJ
ISN 0032      50 AREA=AREA+1.9283295E-4*DBH(J)**2.129
ISN 0033      DD 97 J=1,N1
ISN 0034      N2=J+N-1
ISN 0035      DBH(J)=DBH(N2)
ISN 0036      BAR(I)=BAR(I)+1.193*DBH(N2)**2.393
ISN 0037      97 CONTINUE
ISN 0038      TBAR=TBAR+BAR(I)
ISN 0039      N2=MIN0(12,N1)
ISN 0040      PRINT 2, I,NTREES(I),(AAA(I,K),K=1,6),BAR(I),(DBH(J),J=1,N2)
ISN 0041      IF (N1.GT.12) PRINT 5,(DBH(J),J=13,N1)
ISN 0042      5 FORMAT(12X,4F8.3,/,20X,4F8.3,/,20X,4F8.3)
ISN 0043      N=N+NTREES(I)
ISN 0044
ISN 0045
ISN 0046      20 CONTINUE
ISN 0047      TBAR=TBAR*.012
ISN 0048      PRINT 7, NTOT,TBAR,AREA
ISN 0049      7 FORMAT(10X/10X,I7,E12.3,' METRIC TON/H.A. LEAF AREA =',F 9.3)
ISN 0050      2 FORMAT(15X,I5,' ',I3,' ',6A4,' ',E9.3,' ')
      Z(//,15X,'DBH ',4F8.3,/,20X,4F8.3,/,20X,4F8.3)
      GO TO 200
ISN 0051      100 PRINT 3,INYR
ISN 0052      3 FORMAT(10X,'YEAR',I5,' NO TREES LIVING')
ISN 0053      THEEND=1810
ISN 0054      IF (DEGD.GT. THEEND) GO TO 296
ISN 0055
ISN 0056      296 PRINT 297
ISN 0057      297 FORMAT(10X,'NONE OF THE SPECIES YOU ARE USING CAN EXIST WITH TH
      *IS CLIMATE')
ISN 0058      STOP
ISN 0059      296 THEEND=13395
ISN 0060      IF (DEGD.GT. THEEND) GO TO 298
ISN 0061      298 KD=1
ISN 0062      IF (NDEAD.EQ.0) RETURN
ISN 0063      PRINT 201
ISN 0064      201 FORMAT(' DEAD TREES SINCE LAST PRINTOUT')
ISN 0065      N=1
ISN 0066      DO 99 II=1,INDEX
ISN 0067      I=II
ISN 0068      IF(KDEAD(I).EQ.0) GO TO 99
ISN 0069      NN=N+KDEAD(I)-1
ISN 0070      N1=KDEAD(I)
ISN 0071      DO 98 J=1,N1
ISN 0072      N2=J+N-1
ISN 0073      DBH(J)=DDBH(N2)
ISN 0074      IDM(J)=IDGE(N2)
ISN 0075      98 CONTINUE
ISN 0076      N2=MIN0(7,N1)
ISN 0077      PRINT 4, I,KDEAD(I),(DBH(J),IDM(J),J=1,N2)
ISN 0078      IF (N1.GT.7) PRINT 5,(DBH(J),IDM(J),J=8,N1)
ISN 0079      6 FORMAT(27X,F9.3,I4,F9.3,I4,F9.3,I4,F9.3,I4,F9.3,I4,F9.3
      *,I4)
ISN 0080      4 FORMAT(5X,I5,I7,10X,7(F9.3,I4))
ISN 0081      N=N+KDEAD(I)
ISN 0082      99 CONTINUE
ISN 0083      DO 299 I=1,INDEX
ISN 0084      KDEAD(I)=0
ISN 0085      299 CONTINUE
ISN 0086      RETURN
ISN 0087
ISN 0088      END
ISN 0089
ISN 0090
ISN 0091
ISN 0092

```

```

ISN 0002      SUBROUTINE GROW(DBH,NTREES)
ISN 0003      DIMENSION DBH(700),NTREES(35),PROF(1000)
ISN 0004      COMMON /IRUN/ INDEX
ISN 0005      COMMON /TDATA/ G(35),C(35),ITYPE(35),AGEMX(35),SOIM(35)
ISN 0006      COMMON /KILD/ NOGRO(100),DBBH(500),KDEAD(35),AREA,KD
ISN 0007      COMMON /HDATA/ B2(35),B3(35),PHI,SOILQ,DEGO
ISN 0008      COMMON /CLIMAT/ DMIN(35),DMAX(35)
ISN 0009      NTOT=0
C      REQUIRES EACH TREE TO ADD A 1.0 MM GROWTH RING EACH YEAR
ISN 0010      AINC=0.1
ISN 0011      DO 1 I=1,INDEX
ISN 0012      1 NTOT=NTOT+NTREES(I)
ISN 0013      IF(NTOT.EQ.0) RETURN
ISN 0014      DO 2 I=1,100
ISN 0015      2 NOGRO(I)=0
ISN 0016      DO 9998 MN=1,1000
ISN 0017      9998 PROF(MN)=0.0
ISN 0018      N2=1
ISN 0019      BAR=0.
ISN 0020      DO 8 LL=1,INDEX
ISN 0021      L=LL
ISN 0022      IF(NTREES(L).EQ.0) GO TO 8
ISN 0023      N3=N2+NTREES(L)-1
ISN 0024      DO 7 KM=N2,N3
ISN 0025      K=KM
ISN 0026      BAR=BAR+.785*(DBH(K)**2)
ISN 0027
ISN 0028      C      THE HEIGHT PROFILE IS CALCULATED IN .1 METER UNITS
ISN 0029      C      IHT=IFIX((B2(L)*DBH(K)-B3(L)*DBH(K)**2)/10.+1.)
C      DATA FROM SOLLINS ET AL PAGE 41. SCALED TO 1/24 HA.
ISN 0030      PROF(IHT)=PROF(IHT)+1.9283295E-4*DBH(K)**2.129
ISN 0031      7 CONTINUE
ISN 0032      8 N2=N2+NTREES(L)
ISN 0033      BAR=BAR/10000.
ISN 0034      DO 9997 MN=1,999
ISN 0035      MN1=1000-MN
ISN 0036      PROF(MN1)=PROF(MN1)+PROF(MN1+1)
ISN 0037      9997 CONTINUE
ISN 0038      N=1
ISN 0039      M=1
ISN 0040      DO 10 I=1,INDEX
ISN 0041      IF(NTREES(I).EQ.0) GO TO 10
ISN 0042      NN=N+NTREES(I)-1
ISN 0043      DO 9 KK=NN,N
ISN 0044      J=KK
ISN 0045      HT=B2(I)*DBH(J)-B3(I)*DBH(J)**2
ISN 0046      C      SAME SCALE FACTOR AS ABOVE
ISN 0047      IHT=IFIX(HT/10.+2.)
ISN 0048      SLA=PROF(IHT)
ISN 0049      AL=PHI*EXP(-SLA*.25)
ISN 0050      CC=(137.40.25*B2(I)**2/B3(I))*(0.5*B2(I)/B3(I))
ISN 0051      DINC=G(I)*DBH(J)*(1.0-(137.0*DBH(J)+B2(I)*DBH(J)**2-B3(I)*DBH(J)
*4*B3(I)*DBH(J)**2)*(1.0-BAR/SOILQ)*SOILN(I)**4.0*(DEGD-DMIN(I))*
*(DMAX(I)-DFGD)/(DMAX(I)-DMIN(I))**2
ISN 0052      C      IF (ITYPE(I).EQ.3) DINC=2.24*(1.0-EXP(-1.136*(AL-0.08)))*DINC
ISN 0053      IF (ITYPE(I).EQ.2) DINC=.5*DINC*(2.24*(1.0-EXP(-1.136*(AL-.08)))+
*(1.0-EXP(-4.64*(AL-.05))))*
IF (ITYPE(I).EQ.1) DINC=(1.0-EXP(-4.64*(AL-.05)))*DINC
ISN 0054      IF(DINC.LT.AINC) DINC=0.0
ISN 0055      IF(DINC.GT.5.0) PRINT 6,J,I,DBH(J),DINC
ISN 0056      6 FORMAT(' DINC IS .GT. 5.0 FOR TREE',I5,' SPECIES',I3,' DBH',F6.
*1,' DINC',F8.3)
ISN 0057      IF(DINC.NE.0.0) GO TO 91
ISN 0058      NOGRO(M)=J
ISN 0059      M=M+1
ISN 0060
ISN 0061      91 DBH(J)=DBH(J)+DINC
ISN 0062      9 CONTINUE
ISN 0063      10 N=N+NTREES(I)
ISN 0064      RETURN
ISN 0065      END
ISN 0066
ISN 0067
ISN 0068
ISN 0069

```



```

ISN 0089      DO 65 I=1,KEND
ISN C090      IGES(I)=NAGE(I)
ISN 0091      65 DBH(I)=ANEW(I)
ISN 0092      70 CONTINUE
ISN 0093      N=0
ISN CC94      74 CONTINUE
ISN 0095      CALL SPROUT(IX,NTREES,DBH)
ISN 0096      IF(WEIGHT.LT.0.2) GO TO 210
ISN CC98      DO 100 I=1,KEND
ISN 0099      IGES(I)=IGES(I)+1
ISN 0100      100 CONTINUE
ISN 0101      777 CONTINUE
ISN 0102      RETURN
ISN 0103      END

```

```

ISN 0002      SUBROUTINE DATA
ISN 0003      COMMON /TITLE/ AAA(35,6)
ISN 0004      LOGICAL SWITCH(5),S(35,5)
ISN 0005      DIMENSION KTIME(35)
ISN C006      COMMON /LOGBLK/ SWITCH,KTIME,S
ISN 0007      COMMON /SDATA/ KSPRT(35),STEND(35),SPTMIN(35),SPTMAX(35)
ISN 0008      COMMON /IRUN/ INDEX
ISN CC09      COMMON /TDATA/ G(35),C(35),ITYPE(35),AGEMX(35),SOIM(35)
ISN 0010      COMMON /RUNNR/ NYR,INYR,KPNT,KAGE,KTIME,KLAST
ISN 0011      COMMON /HDATA/ B2(35),B3(35),PHI,SOILQ,DEGD
ISN 0012      COMMON /CLIMAT/ DMIN(35),DMAX(35)
ISN 0013      INDEX=33
ISN 0014      IX=76123
ISN 0015      KTIME=1
ISN 0016      KLAST=3
ISN CC17      NYR=500
ISN 0018      KPNT=50
ISN 0019      KAGE=-1
ISN 0020      PHI=1.0
ISN 0021      SOILQ=3.83
ISN 0022      DEGD=8700.
C      VALUE FOR SOILQ FROM MAX VALUE CITED BY DICK WILLIAMS, GP FORESTER
ISN 0023      DC 23 J=1,INDEX
ISN 0024      23 READ(5,24)(AAA(J,II),II=1,6),DMAX(J),DMIN(J),B3(J),B2(J),ITYPE(J),
     AAGEMX(J),C(J),G(J),STEND(J),SPTMIN(J),SPTMAX(J),
     B(J,J),JI=1,5),KTIME(J),SOIM(J)
ISN 0025      24 FORMAT(6A4,F6.0,F5.0,F4.3,F5.2,[1,F4.0,F2.0,F5.1,F2.0,F4.1,F4.0,
     ASL1,I4,F3.1)
ISN CC26      30 RETURN
ISN 0027      END

```

```
ISN 0002      SUBROUTINE RANDOM(IX,R)
ISN 0003      R=FLTRN(IX)
ISN 0004      RETURN
ISN 0005      END
```

```
ISN 0002      SUBROUTINE GAUSS(IX,S,AM,DEGD)
ISN 0003      Z=0.0
ISN 0004      DO 5 I=1,12
ISN 0005      S Z=Z+FLTRN(DUM)
ISN 0006      Z=Z-6.
ISN 0007      DEGD=AM+S*Z
ISN 0008      RETURN
ISN 0009      END
```

```

ISN 0062      SUBROUTINE INIT(DBH,NTREES,DBHK,NTREEK,JJ)
ISN 0003      COMMON /IRUN/ INDEX
ISN 0004      DIMENSION DBH(1),NTREES(1),DBHK(1),NTREEK(1)
ISN 0005      COMMON /SDATA/ KSPRT(35),STEND(35),SPTMIN(35),SPTMAX(35)
ISN 0006      COMMON /KILD/ NOGRO(100),DDBH(500),KDEAD(35),AREA,KD
ISN 0007      COMMON /TRAGE/ IGES(700),IDGE(500)
ISN 0008      DO 10 J=1,500
ISN 0009      DDBH(J)=0.0
ISN 0010      IDGE(J)=0
ISN 0011      10 CONTINUE
ISN 0012      DO 11 J=1,100
ISN 0013      11 NOGRO(J)=0
ISN 0014      DO 13 J=1,INDEX
ISN 0015      13 KSPRT(J)=1
ISN 0016      IF (JJ .GT.1) GO TO 1
ISN 0018      DO 2 J=1,INDEX
ISN 0019      2 NTREEK(J)=NTREES(J)
ISN 0020      DO 3 K=1,100
ISN 0021      3 DBHK(K)=DBH(K)
ISN 0022      RETURN
ISN 0023      1 CONTINUE
ISN 0024      DO 4 J=1,INDEX
ISN 0025      4 NTREES(J)=NTREEK(J)
ISN 0026      DO 5 K=1,100
ISN 0027      5 DBH(K)=DBHK(K)
ISN 0028      RETURN
ISN 0029      END

```

```

ISN C002      SUBROUTINE PLOTIN(IPLOT,DBH,NTREES)
ISN CC03      COMMON /TRAGE/ IGES(700),IDGE(500)
ISN 0004      COMMON /KILD/ NOGRO(100),DDBH(500),KDEAD(35),AREA,KD
ISN 0005      DIMENSION DBH(700),NTREES(35)
ISN 0006      DO 1 J=1,35
ISN 0007      KDEAD(J)=0
ISN 0008      DBH(J)=0.0
ISN 0009      IGES(J)=0
ISN 0010      1 NTREES(J)=0
ISN 0011      DO 2 J=36,700
ISN 0012      2 IGES(J)=0
ISN 0013      2 DBH(J)=0.0
ISN CC14      IPLOT=IPLOT+1
ISN 0015      PRINT 13,IPLOT
ISN 0016      13 FORMAT (/, ' PLOT NUMBER ',I4)
ISN 0017      RETURN
ISN 0018      END

```

```

ISN 0002      SUBROUTINE KILL(DBH,NTREES,IX)
ISN 0003      DIMENSION DBH(700),NTREES(35)
ISN 0004      COMMON /FDATA/ FARDAM(500),ALIMIT(35),BLIMIT(35),IMYR
ISN 0005      COMMON /IRUNA/ INDEX
ISN 0006      COMMON /SDATA/ KSPRT(35),STEND(35),SPTMIN(35),SPTMAX(35)
ISN 0007      COMMON /TDATA/ G(35),C(35),ITYPE(35),AGEMX(35),SOIM(35)
ISN 0008      COMMON /KILD/ NOGRO(100),DDBH(500),KDEAD(35),AREA,KD
ISN 0009      COMMON /TRAGE/ IGES(700),IDGE(500)
ISN 0010      COMMON /RUNNR/ NYR,INYR,KPNT,KAGE,KTIMES,KLAST
ISN 0011      ID = 1
ISN 0012      IDF=0
ISN 0013      N = 0
ISN 0014      NB=0
ISN 0015      DO 100 J=1,INDEX
ISN 0016      NB=NB+KDEAD(J)
ISN 0017      IF (NTREES(J).EQ.0) GO TO 100
ISN 0018      NA = N + 1
ISN 0019      NN = NTREES(J) + N
ISN 0020      DO 80 II=NA,NN
ISN 0021      I=II
ISN 0022      ISN 0023      CALL RANDOM(IX,R1)
ISN 0024      IF (FARDAM(IDF).EQ.1) GO TO 42
ISN 0025      IF (R1.LE.(4.605/AGEMX(J))) GO TO 50
ISN 0026      GO TO 44
ISN 0027      42 IDF=IDF+1
ISN 0028      IF (R1.LE..275) GO TO 50
ISN 0029      44 IF (NOGRO(ID).EQ.1) GO TO 40
ISN 0030      GO TO 80
ISN 0031      40 ID=ID + 1
ISN 0032      CALL RANDUM(IX,R2)
ISN 0033      IF (R2.GT.0.368) GO TO 80
ISN 0034      50 IF (KAGE.LT.0) GO TO 70
ISN 0035      KDEAD(J)=KDEAD(J)+1
ISN 0036      NB=NB+1
ISN 0037      NUP=KD-NB
ISN 0038      IF (NUP.EQ.0) GO TO 56
ISN 0039      DO 55 KK=1,NUP
ISN 0040      K=KK
ISN 0041      IJ=KD-K+1
ISN 0042      IF (IJ .GT. 500) GO TO 99
ISN 0043      ODBH(IJ)=DDBH(IJ-1)
ISN 0044      IDGE(IJ)=IDGE(IJ-1)
ISN 0045      55 CONTINUE
ISN 0046      56 DDBH(NB)=DBH(I)
ISN 0047      IDGE(NB)=IGES(I)
ISN 0048      KD=KD+1
ISN 0049      GO TO 70
ISN 0050      99 PRINT 98
ISN 0051      98 FORMAT(' DEAD TREES VECTOR FILLED, RERUN WITH SMALLER PERIOD BE
ISN 0052      *TWEEN PRINTOUTS (KPNT)')
ISN 0053      KAGE=-1
ISN 0054      C 70 NTREES(J)=NTREES(J)-1
ISN 0055      THIS IS THE SWITCH TO STUMP SPROUT TREES.
ISN 0056      IF (DBH(I).GT.SPTMIN(J).AND.DBH(I).LT.SPTMAX(J)) KSPRT(J)=-1
ISN 0057      DBH(I)=-1.0
ISN 0058      80 CONTINUE
ISN 0059      ISN 0060      N = NN
ISN 0061      100 CONTINUE
ISN 0062      DO 200 II=1,700
ISN 0063      101
ISN 0064      IF (DBH(I).EQ.0.0) RETURN
ISN 0065      IF (DBH(I) .GT. 0.0) GO TO 200
ISN 0066      110 DO 120 KK = 1,699
ISN 0067      K=KK
ISN 0068      DBH(K) = DBH(K+1)
ISN 0069      IGES(K)=IGES(K+1)
ISN 0070      120 CONTINUE
ISN 0071      DBH(700) = 0.0
ISN 0072      IF (DBH(I).LT.0.0) GO TO 110
ISN 0073      200 CONTINUE
ISN 0074      RETURN
ISN 0075      END

```

```

ISN 0002      SUBROUTINE FIRE (DBH,NTREES)
ISN 0003      DIMENSION DBH(700),NTREES(35)
ISN 0004      COMMON /FDATA/ FARDAM(500),ALIMIT(35),BLIMIT(35),IMYR
ISN 0005      COMMON /SDATA/ KSPRT(35),STEND(35),SPTMIN(35),SPTMAX(35)
ISN 0006      COMMON /IRUN/ INDEX
ISN 0007      LOGICAL LOGS
C          R=0.
ISN 0008      LOGS=.FALSE.
ISN 0009      IF (R.GE..828) GO TO 20
ISN 0011      PRINT 12
ISN 0012      12 FORMAT (5X, 'LIGHT FIRE')
ISN 0013      DO 15 J=1,INDEX
ISN 0014      ALIMIT(J)=0.
ISN 0015      BLIMIT(J)=12.7
ISN 0016      15 CONTINUE
ISN 0017      CALL CUT (DBH,NTREES,LOGS)
ISN 0018      RETURN
ISN 0019      20 IF (R.GE..966) GO TO 30
ISN 0021      PRINT 21
ISN 0022      21 FORMAT (5X, ' MEDIUM FIRE')
ISN 0023      DO 25 J=1,INDEX
ISN 0024      ALIMIT(J)=0.
ISN 0025      GO TO (22,22,23,23,22,22,23,22,23,22,22,24,22,23,22,24,22,23,22,23
A.22,24,24,22,23,23,23,23,24,24,23,23,23),J
ISN 0026      22 BLIMIT(J)=500.
ISN 0027      GO TO 25
ISN 0028      23 BLIMIT(J)=25.4
ISN 0029      GO TO 25
ISN 0030      24 BLIMIT(J)=17.8
ISN 0031      25 CONTINUE
ISN 0032      CALL CUT (DBH,NTREES,LOGS)
ISN 0033      N=0
ISN 0034      IJ=0
ISN 0035      DO 42 J=1,INDEX
ISN 0036      NA=N+1
ISN 0037      NN=N+NTREES(J)
ISN 0038      GO TO (35,35,40,40,35,35,40,35,35,35,35,40,35,35,35,40,35,40,35,40
A.35,35,35,35,40,40,40,40,40,35,35,40,40,40,40),J
ISN 0039      40 DO 35 JJ=NA,NN
ISN 0040      IJ=IJ+1
ISN 0041      FARDAM(IJ)=JJ
ISN 0042      35 CONTINUE
ISN 0043      N=NN
ISN 0044      42 CONTINUE
ISN 0045      IMYR=0
ISN 0046      RETURN
ISN 0047      30 DO 36 J=1,INDEX
ISN 0048      IF (NTREES(J).EQ.0) GO TO 36
ISN 0050      KSPRT(J)=-1
ISN 0051      NTREES(J)=0
ISN 0052      36 CONTINUE
ISN 0053      DO 37 J=1,700
ISN 0054      DBH(J)=0.
ISN 0055      37 CONTINUE
ISN 0056      PRINT 38
ISN 0057      38 FORMAT (5X,'SEVERE FIRE--ALL TREES WERE BURNED')
ISN 0058      RETURN
ISN 0059      END

```

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

Appendix A-4

Sample Output of Program FORAR

SAMPLE OUTPUT OF PROGRAM FORAR

PLOT NUMBER 1				
YEAR	SPEC.	NUM.	NAME	BIOMASS
0		YEAR	0 NO TREES LIVING	
YEAR	SPEC.	NUM.	NAME	BIOMASS
50				
5	3	CARYA LACINIOSA		0.674E 00
	DBH	1.270	1.364	1.271
6	3	CARYA OVATA		0.251E 02
	DBH	9.260	1.472	1.289
11	2	CORNUS FLORIDA		0.506E 02
	DBH	9.385	9.378	
12	5	DIOSPYROS VIRGINIANA		0.182E 03
	DBH	10.426	10.307	11.507
		10.728		11.528
13	6	FAGUS GRANDIFOLIA		0.144E 01
	DBH	1.383	1.270	1.276
		1.362	1.451	1.288
14	7	FRAXINUS AMERICANA		0.497E 03
	DBH	14.376	14.365	16.780
		16.222	15.875	0.138
15	3	ILEX OPACA		0.303E-02
	DBH	0.118	0.172	0.106
18	11	LIQUIDAMBAR STYRACIFLUA		0.450E 03
	DBH	12.194	13.847	12.539
		12.277	12.960	13.946
		1.388	1.270	1.427
19	1	MORUS RUBRA		0.963E 01
	DBH	6.265		
23	13	PINUS TAEDA		0.692E 04
	DBH	30.691	31.511	39.092
		35.729	38.035	37.236
		31.520	33.687	29.159
		32.883		29.154
24	8	PRUNUS SEROTINA		0.752E 03
	DBH	17.908	17.181	17.240
		16.766	17.733	16.634
				0.168
25	3	QUERCUS ALBA		0.708E 00
	DBH	1.438	1.270	1.270
26	17	QUERCUS FALCATA		0.531E 03
	DBH	11.952	11.824	12.001
		12.748	12.252	11.821
		12.555	12.221	11.820
		5.289	1.451	1.277
		1.273		1.321
27	1	QUERCUS MARYLANDICA		0.226E 01
	DBH	3.418		
28	7	QUERCUS SHUMARDII		0.170E 03
	DBH	10.143	11.432	10.429
		10.708	1.371	1.458
31	8	SASSAFRAS ALBIDUM		0.224E 02
	DBH	8.677	1.503	1.301
		0.192	1.437	1.389
				0.113
				1.399

32	19	ULMUS ALATA	0.628E 03	
	DBH	14.744 13.260 12.779 12.770 12.772 15.100 14.269 12.770 0.100 1.287 1.409 0.126 1.528 1.298 1.270	13.492 14.663 1.289 1.270	
33	8	ULMUS AMERICANA	0.560E 02	
	DBH	6.175 6.507 6.619 5.771 5.768 0.102	6.079 1.570	
	125	0.124E 03 METRIC TON/HA. LEAF AREA =	7.171	
YEAR	SPEC.	NUM.	NAME	BIOMASS
100				
10	3	CELTIS LAEVIGATA	0.773E 00	
	DBH	1.271 1.368 1.487		
18	2	LIQUIDAMBAR STYRACIFLUA	0.460E 00	
	DBH	1.271 1.359		
21	6	Ostrya VIRGINIANA	0.191E 01	
	DBH	1.316 1.272 1.287 1.519 1.281 1.299	1.392 1.305	
23	6	PINUS TAEDA	0.111E 05	
	DBH	63.029 70.297 57.756 53.833 50.296	46.638	
26	5	QUERCUS FALCATA	0.575E 03	
	DBH	18.933 19.034 20.430 1.304	19.059	
27	2	QUERCUS MARilandica	0.553E 00	
	DBH	1.517 1.316		
32	1	ULMUS ALATA	0.211E 00	
	DBH	1.270		
	27	0.148E 03 METRIC TON/HA. LEAF AREA =	6.904	
YEAR	SPEC.	NUM.	NAME	BIOMASS
150				
2	1	CARPINUS CAROLINIANA	0.323E 00	
	DBH	1.516		
5	1	CARYA LACINIOSA	0.231E 00	
	DBH	1.317		
18	1	LIQUIDAMBAR STYRACIFLUA	0.214E 00	
	DBH	1.276		
21	3	Ostrya VIRGINIANA	0.768E 00	
	DBH	1.399 1.288 1.426		
23	3	PINUS TAEDA	0.130E 05	
	DBH	102.195 58.679 71.723		
25	6	QUERCUS ALBA	0.162E 01	
	DBH	1.275 1.409 1.308 1.492 1.270	1.436	
26	11	QUERCUS FALCATA	0.391E 03	
	DBH	29.130 3.746 4.503 0.116 0.110 1.516 1.291 1.281 1.316	3.188 1.323	
32	5	ULMUS ALATA	0.142E 01	
	DBH	1.284 1.550 1.479	1.541	
33	2	ULMUS AMERICANA	0.472E 00	
	DBH	1.367 1.292		
	33	0.161E 03 METRIC TON/HA. LEAF AREA =	6.774	

YEAR SPEC. 200	NUM.	NAME	BIOMASS
2	2	CARPINUS CAROLINIANA	0.534E 00
	DBH	1.502 1.286	
7	2	CARYA TEXANA	0.442E 00
	DBH	1.316 1.270	
10	7	CELTIS LAEVIGATA	0.168E 01
	DBH	1.270 1.327 1.288 1.289 1.439 1.270	1.465
21	1	OSTRYA VIRGINIANA	0.264E 00
	DBH	1.394	
23	2	PINUS TAEDA	0.157E 05
	DBH	125.903 69.541	
26	10	QUERCUS FALCATA	0.739E 03
	DBH	38.387 1.508 1.273 1.270 1.302 1.286 1.516 1.289	1.270 1.272
27	11	QUERCUS MARilandica	0.274E 01
	DBH	1.325 1.270 1.393 1.542 1.270 1.340 1.271 1.350 1.389	1.276 1.285
29	7	QUERCUS STELLATA	0.174E 01
	DBH	1.281 1.454 1.271 1.488 1.314 1.391	1.303
32	4	ULMUS ALATA	0.902E 00
	DBH	1.331 1.270 1.303	1.313
46		0.197E 03 METRIC TON/HA. LEAF AREA =	7.786
YEAR SPEC. 250	NUM.	NAME	BIOMASS
6	5	CARYA OVATA	0.832E 01
	DBH	3.490 3.159 3.150 1.600	3.142
8	7	CARYA TOMENTOSA	0.260E 01
	DBH	1.503 1.562 1.574 1.598 1.808 1.525	1.658
10	8	CELTIS LAEVIGATA	0.476E 01
	DBH	2.083 1.856 1.865 2.026 1.897 2.172	1.856 1.865
11	4	CORNUS FLORIDA	0.805E 01
	DBH	3.344 3.124 3.418	3.124
15	13	ILEX OPACA	0.148E 02
	DBH	3.421 3.399 3.563 2.586 2.617 2.482 1.274 1.271 1.283 1.319	3.420 2.454 1.270
18	7	LIQUIDAMBAR STYRACIFLUA	0.355E 01
	DBH	1.822 1.843 1.812 1.886 1.841 1.805	1.810
21	6	OSTRYA VIRGINIANA	0.532E 01
	DBH	2.615 2.700 2.030 2.034 2.273	2.090
26	2	QUERCUS FALCATA	0.147E 04
	DBH	51.207 4.339	

27	15	QUERCUS MARYLANDICA	0.985E 01	
DBH	2.676	2.363	2.429	2.417
	2.001	2.299	2.035	2.340
	1.582	1.534	1.641	1.753
	1.656	1.534	1.549	
29	1	QUERCUS STELLATA	0.377E 01	
DBH	4.234			
32	6	ULMUS ALATA	0.311E 02	
DBH	5.226	4.915	5.346	4.915
	4.917	3.335		
	74	0.188E 02 METRIC TON/HA. LEAF AREA =	0.954	

YEAR 300	SPEC.	NUM.	NAME	BIOMASS	
2	4	CARPINUS CAROLINIANA	0.103E 01		
	DBH	1.569	1.386	1.270	1.270
5	3	CARYA LACINIOSA	0.692E 00		
	DBH	1.376	1.279	1.293	
6	16	CARYA OVALIS	0.283E 03		
	DBH	16.100	13.134	9.369	9.139
		9.157	6.338	6.737	6.385
		6.815	6.083	2.824	2.813
		2.962	3.227	2.873	2.909
7	2	CARYA TEXANA	0.493E 00		
	DBH	1.431	1.271		
8	10	CARYA TOMENTOSA	0.229E 03		
	DBH	15.015	14.841	8.482	8.763
		7.965	7.749	1.270	1.345
		1.270	1.352		
10	11	CELTIS LAEVIGATA	0.216E 03		
	DBH	11.299	10.962	11.454	8.471
		8.459	8.625	8.345	6.664
		4.288	3.522	3.508	
11	14	CORNUS FLORIDA	0.640E 02		
	DBH	7.389	7.159	7.297	4.481
		4.555	1.480	2.127	1.918
		1.505	1.480	1.902	1.588
		1.486	1.486		
13	1	FAGUS GRANDIFOLIA	0.218E 00		
	DBH	1.288			
15	6	ILEX OPACA	0.260E 03		
	DBH	15.932	13.160	12.649	12.019
		7.631	0.102		
18	11	LIQUIDAMBAR STYRACIFLUA	0.498E 03		
	DBH	18.288	18.504	15.747	13.676
		8.819	8.557	8.461	8.461
		5.405	5.225	0.101	
21	2	OSTRYA VIRGINIANA	0.275E 00		
	DBH	0.101	1.417		
25	5	QUERCUS ALBA	0.838E 02		
	DBH	11.629	11.258	2.438	2.455
		1.477			
26	34	QUERCUS FALCATA	0.482E 04		
	DBH	77.409	25.001	15.814	16.623
		15.784	15.972	15.789	10.441
		6.992	6.904	6.164	5.724
		6.056	5.721	5.719	6.029
		5.413	5.870	3.911	3.587
		3.723	3.592	2.895	2.862
		2.862	2.864	2.977	2.862
		2.874	2.862	3.148	2.896
		2.921	2.995		

27	3	QUERCUS MARILANDICA	0.659E 02	
	DBH	9.811 8.891 7.628		
29	20	QUERCUS STELLATA	0.799E 03	
	DBH	20.563 13.642 13.651 13.999 13.784 13.587 13.728 13.638 13.641 14.575 7.393 5.898 6.067 5.897 6.470 5.896 1.276 1.272 1.270 0.173		
32	11	ULMUS ALATA	0.446E 03	
	DBH	22.916 17.756 16.466 4.480 4.242 4.289 3.538 3.548 1.294 1.665 0.152		
33	1	ULMUS AMERICANA	0.224E 00	
	DBH	1.300		
154		0.931E 02 METRIC TON/HA. LEAF AREA =	5.125	
YEAR	SPEC.	NUN.	NAME	BIO MASS
350				
2	2	CARPINUS CAROLINIANA	0.430E 00	
	DBH	1.280 1.278		
5	1	CARYA LACINIOSA	0.223E 00	
	DBH	1.299		
6	16	CARYA OVATA	0.792E 03	
	DBH	27.565 19.406 15.211 14.672 14.207 9.856 9.837 10.460 0.136 0.112 1.407 1.329 1.303 1.282 1.370 1.270		
7	3	CARYA TEXANA	0.675E 00	
	DBH	1.284 1.306 1.320		
8	7	CARYA TOMENTOSA	0.349E 03	
	DBH	28.040 1.464 1.452 1.347 1.366 1.270 1.493		
10	3	CELTIS LAEVIGATA	0.399E 03	
	DBH	19.806 20.004 16.148		
11	3	CORNUS FLORIDA	0.788E 00	
	DBH	1.288 1.349 1.521		
15	1	ILEX OPACA	0.342E 00	
	DBH	1.553		
18	11	LIQUIDAMBAR STYRACIFLUA	0.192E 04	
	DBH	37.444 38.465 29.044 16.818 1.425 0.127 1.271 1.276 1.412 1.557 1.488		
21	2	USIRTA VIRGINIANA	0.515E 00	
	DBH	1.475 1.273		
26	18	QUERCUS FALCATA	0.386E 04	
	DBH	31.984 33.457 31.863 32.422 31.914 24.189 19.686 19.530 18.363 18.182 17.503 18.110 16.980 14.216 13.026 12.955 12.952 12.952		
27	2	QUERCUS MARILANDICA	0.450E 00	
	DBH	1.332 1.274		
29	5	QUERCUS STELLATA	0.147E 04	
	DBH	36.984 25.371 24.921 24.983 0.100		
32	1	ULMUS ALATA	0.565E 03	
	DBH	34.347		

33 6 *ULMUS AMERICANA* 0.144E 01
 DBH 1.276 1.274 1.270 1.309
 1.310 1.562
 81 0.112E 03 METRIC TON/HA. LEAF AREA = 6.327

YEAR SPEC. 400	NUM.	NAME	BIOMASS
5	3	<i>CARYA LACINIOSA</i>	0.641E 00
	DBH	1.270 1.281	1.276
6	2	<i>CARYA OVATA</i>	0.263E 03
	DBH	24.955 1.271	
7	4	<i>CARYA TEXANA</i>	0.113E 01
	DBH	1.408 1.491	1.271 1.553
8	4	<i>CARYA TOMENTOSA</i>	0.902E 00
	DBH	1.270 1.270	1.326 1.350
10	5	<i>CELTIS LAEVIGATA</i>	0.239E 03
	DBH	23.952 1.283	1.280 1.285
13	1	<i>FAGUS GRANDIFOLIA</i>	0.216E 00
	DBH	1.282	
26	12	<i>QUERCUS FALCATA</i>	0.823E 04
	DBH	48.937 47.770 50.093 48.447 37.638 30.663 30.143 29.821 27.980 24.674 23.138 22.998	
27	5	<i>QUERCUS MARilandica</i>	0.132E 01
	DBH	1.271 1.392 1.510 1.473 1.296	
29	7	<i>QUERCUS STELLATA</i>	0.732E 03
	DBH	38.240 0.101 1.306 1.386 1.314 1.273 1.477	
32	1	<i>ULMUS ALATA</i>	0.218E 00
	DBH	1.287	
	44	0.114E 03 METRIC TON/HA. LEAF AREA =	5.819

YEAR SPEC. 450	NUM.	NAME	BIOMASS
2	3	<i>CARPINUS CAROLINIANA</i>	0.764E 00
	DBH	1.422 1.271 1.418	
6	1	<i>CARYA OVATA</i>	0.635E 03
	DBH	36.062	
7	1	<i>CARYA TEXANA</i>	0.215E 00
	DBH	1.278	
8	4	<i>CARYA TOMENTOSA</i>	0.911E 00
	DBH	1.275 1.285 1.382 1.294	
10	1	<i>CELTIS LAEVIGATA</i>	0.500E 03
	DBH	32.643	
15	2	<i>ILEX UHLALA</i>	0.466E 00
	DBH	1.325 1.319	
25	6	<i>QUERCUS ALBA</i>	0.156E 01
	DBH	1.461 1.418 1.271 1.564 1.280 1.270	

26	11	QUERCUS FALCATA	0.799E 04
	DBH	64.076 69.005 44.239	41.929
		33.531 2.805 1.480	1.321
		1.473 1.458 1.273	
27	3	QUERCUS MARilandica	0.754E 00
	DBH	1.475 1.270 1.338	
32	3	ULMUS ALATA	0.793E 00
	DBH	1.384 1.305 1.486	
	35	C.110E 03 METRIC TON/HA. LEAF AREA =	5.177

YEAR 500	SPEC.	NUM.	NAME	BIOMASS
2		1	CARPINUS CAROLINIANA	0.227E 00
		DBH	1.309	
6		1	CARYA OvATA	0.121E 04
		DBH	47.232	
7		3	CARYA TEXANA	0.848E 00
		DBH	1.271 1.461 1.551	
10		2	CELTIS LAEVIGATA	0.877E 03
		DBH	41.266 1.278	
13		3	FAGUS GRANDIFOLIA	0.780E 00
		DBH	1.540 1.271 1.323	
15		8	ILEX OPACA	0.189E 01
		DBH	1.272 1.565 1.275	1.360
			1.285 1.270 1.306	1.282
21		4	OSTRYA VIRGINIANA	0.990E 00
		DBH	1.511 1.274 1.349	1.272
26		3	QUERCUS FALCATA	0.119E 05
		DBH	81.316 68.389 58.141	
32		7	ULMUS ALATA	0.188E 01
		DBH	1.288 1.429 1.335	1.519
			1.374 1.559 1.293	
	32	C.167E 03 METRIC TON/HA. LEAF AREA =	7.284	

INTERNAL DISTRIBUTION

1-50. S. I. Auerbach	90. C. R. Richmond
51. R. W. Brocksen	91-100. H. H. Shugart, Jr.
52. R. L. Burgess	101. E. G. Struxness
53. R. M. Davis	102. R. I. Van Hook, Jr.
54. R. A. Harris	103-107. D. C. West
55-64. W. F. Harris	108. Biology Library
65. J. M. Klopatek	109-110. Central Research Library
66-85. D. L. Mielke	111. ORNL Patent Office
86. W. M. Post	112. Laboratory Records, ORNL-RC
87. Herman Postma	113. ORNL Y-12 Technical Library
88. J. W. Ranney	114-115. Laboratory Records Dept.
89. D. E. Reichle	

EXTERNAL DISTRIBUTION

116. Cliff Amendsen, 408 10th Street, University of Tennessee, Knoxville, TN 37916
117. D. B. Botkin, Ecosystems Center Woods Hole Oceanographic Institute, Woods Hole, MA 02543
118. Edward Buckner, Dept. of Forestry, University of Tennessee, Knoxville, TN 37916
119. Richard Clements, Center for Energy and Environmental Research Caparra Heights Statra, San Juan, Puerto Rico 00935
120. Boyd Dearden, Dept. of Forestry, University of Tennessee, Knoxville, TN 37916
121. Richard Doub, Forest Fisheries and Wildlife Division, TVA Norris, TN 37828
122. B. Evison, Superintendent, Great Smoky Mountain National Park, Sugarlands Visitors Center, Gatlinburg, TN 37738
123. J. F. Franklin, Northwest Forest Research Laboratory, U.S. Forest Service, Corvallis, OR 97330
124. P. H. Gerhardt, Division of Regional Assessments, E201, DOE Washington, D.C. 20550
125. T. Gilbert, U.S. National Committee for MAB, Dept. of State, Annex 2, 515 22nd Street, N.W., Washington, D.C. 20520
126. Dale Hein, Dept. of Fishery and Wildlife Biology, Colorado State University, Ft. Collins, CO 80523
127. S. Hickerson, Director Orphan Mine Reclamation, State of Tennessee Department of Conservation, 2611 W. End Avenue, Nashville, TN 37203
128. A. Hirsch, Director, Office of Biological Services Fish and Wildlife Service, U.S. Department of Interior, Washington, D.C. 20240
129. W. C. Johnson, Department of Biology, Virginia Polytechnic Institute, Blacksburg, VA 24060

130. O. Loucks, Department of Botany, University of Wisconsin, Madison, WI 53706
131. J. Frank McCormick, Ecology Program, 408 10th Street, Knoxville, TN 37916
132. W. S. Osburn, Environmental Programs, Division of Biomedical and Environmental Research, Department of Energy, Washington, DC 20545
133. E. A. Pash, Group Leader, Eastern Energy and Land Use Group, Harper's Ferry Center, Harper's Ferry, West Va 25425
134. H. Quinn, Upland Ecosystems Chief, U.S. Fish and Wildlife, Service, Washington, D.C. 20240
135. J. L. Swinebroad, Manager, Environmental Programs Division of Biomedical and Environmental Research, Department of Energy, Washington, DC 20545
136. J. T. Tanner, Ecology Program, Hessler Biology Building, Knoxville, TN 37916
137. G. M. Van Dyne, Department of Range Science, Colorado State University, Ft. Collins, CO 80523
138. Research and Technical Support Division, DOE-ORO
- 139-165. Technical Information Center, Oak Ridge, TN 37830