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Comparison of Lanczos and Subspace Iterations

for Hyperspherical Reaction Path Calculations

J, D. Kttss, G. A. Parker*, R. T Pack and B. J. Amhcr**

Group T- 12, MS-J569

Los Alamos National LdJomtory

Los Afamoa, New Mezico 875~5

ABSTRACT

In an accurate treatment of 3-dimcnsionaJ reactive scattering using Adiabatically-adjusting, Principal

axes Hypersphcrical (APH) coordinates, we obtain a 2-dimensional Schrodingcr equation de.finml on the

surface of a hypersphere. The surface Hami]tonian, which depends parametrically on the sector hypcrradius

~h, must be diagonalized for many (100 - 200) va.lucs of ~h. The surface (eigcn)functions arc expanded in a

finite element basis, where a non-uniform finite element mesh is allowed to adjust for each ~h. Projection

of the finite element basia onto the surface Harniltonian yields a generalized eigcnvaluc prd.dcm, Typically

the lowest 50- 100 eigenvalucs and eigcnfunctions arc required at each Ph. Since the calculation of the

surface functions is currently the expensive step for our rcactivc scattering proccdum, it is ncccssary to

caiculatc these functions M c~cicntly as possildc. In this paper, we usc both the su hspacc itcrat ion and

Mock Lanczos (with sclcctivc orthogonalization) methods to calculate the surface functions. Using hot h

solution rncthods, we diagonidize the finite element matrices (of order = 1729 and of half bandwidth

= 10!I) constructed for the Lifl + F ~ Li + {IF system. CPU timings for both mrthods arc ~~i~ll)il)(’(1 i~~

a function of tiw numbrr of convcrgcd cigcnvalucs. Since we ran goncratc a good initial subspnm frolll III(I

cigcnvcctors calculated at the previous value of ~h, wc find that the suhspacc itmiltion is rompct it iv(’ wil h

the IIlock Lanc:os mctho(l when many (90) cigcnvalucs arc calculated. Wr also consid(~r ii Iiirgvr prt~ldi’1]1

(matrices of order * 3300 and of half bandwidth N 135) construrtcd for the 1’+ Ill ~ fl II’+ /1 syslrm.

For this problcm, wc present the C1’U timings requirwl to calculate 100 cigcnvidum for i, squ(lII(T of Iiw

/Ih vducs using the sllk~ac(? iteration n]ct], odm
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I. INTRODUCTION

Rearrangement scattering or reactive collision processes form the heart of chemistry, and the quantum

theory thereof is one of the most important unsolved problems in theoretical chemistry or thcorctiriil

molecular physics .1 Recently, an accurate quantum theory to treat such processes haa been dcvclopcd

using Adiabatically-adjusting, Principal axes Hyperspherica.1 (APII ) coordinates.2 Central to this throry

is the diagonalization of a 2-dimensional surface Hamiltonian which depcndends parametrically on the

hypcrradius ph. For a typical scattering system, the surface Hamiltonian must be diagonalizml for manj.

(N 200) values of ph. The surface (eigen)functions arc expanded in a 2-dimensional finite element (FE)

basis. The resulting surface eigcnvalue problem is then solved using either the Subspacc Iteration (S1 ) or

block Lanczos method.

The outl.inc of this paper is as follows. First, we review the APH coordinates and write down the

full interaction and surface HamiltonianB. Next, we discuss the construction of the FE meshes and the

functional form of cad] element. Examples of potential encr~ surfaces and sclcctcd surface functions for

the F + Hz = HI’ + H systcm superimposed on non-uniform meshes are Fr~scntcd. Then, wc pr~~i~f’

the algorithms for the subspace iteration and block Lanczos methods. WP compare CPU timings using

both solution methods to solve a test problem (FE matrices of order = 1729). Finally, wc present thr

CPU timings for a larger problcrn [FE matrices of order -~ 3300), which reflects the size of tlw paramclms

required to provide converged surface eigenvalucs, using the subspacr iteration method, W{’ then concludr

with a brief discussion.

II. REACTIVE SCATTERING

In this scrt.ion wc hricfly outlirm the Al’It rcactivr srattcring formitlism to givo tlw rwd{’r a flavor of

our approach-

A. Coordinates

G3nsidcr th generic rtwmic,al reaction for a three particlv syhlmil comprisml of atoms A, l) iiIId (_’

(1)
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We have specified three of the hyperspherical angles as being the Euler angles. M’e i-Iow define t}ic

hyperradius

p=(s:+ s:)+ (2)

and two additional angles 0,

tano = [(S: - ‘~)’+ (22?,. J,)’]*
25’,$lSin@,

and, X,

(3)

(4)

These coordinates describe the relative position of the three bodies [or shape (determined by O and ~,)

and size (determined by p) of the triangle]. Equations (2) and (3) are valid for any i because p and O are

independent of :. Also, for the xi, the three choices for i are equivalent since the X, differ only in a choice

of origin [see Eq. (3’2) in Ref. (2b)]. The vectors S, and F, are mass scale4 Jacobi vectors,3-6 (m, is the

mass of particle i) Mass scaled Jacobi coordinates are related to the usual unscaled coordinates by

where the scaJe factors, di$ three-particle reduced mass, p, and the total mass, M, are

(5)

(6)

The vector ?: in Eqs. (5) is the position of particle i in a laboratory fixed system. The vector ~, is the

vector from particle i to the center-of-mass of particles j and k, Finally, F, is the vector from particle j tu

particle k, [See Ref, (2b) for diagrams of the various coordinate systems],

To aid in visutizing the APH internal coordinates we note that t? represents a bending angle; O = O

corresponds to oblate top triangular configurations, On the other hand, O = x/2 corresponds to collinear

arrangements. The APH coordinates, unlike most 3D hyperspherica.1 coordinates, reduce dirvctl! to III(J

hyperspherical coordinates usually used in collinear model calculations. While p describes the ovrrall siz(’

of the ,IBC system, O and ~i describe its shape, and it is often helpful to view things on the surfarc of a

sphere as functions of @and Xi with p fixed. # and ~, cover the upper half of th~ surfacv of a sphorv so

that we can make plots using the projection used in maps of the earth as viewed from the north polv i,r,

the slcr-wgrnphir pmjcction.

Such a prc,jwtion of a contour plot for the F+ llz = liF + H potential energy surfaw (l)l; s), Ivrsioll

5A of ref, (7), is shown for p = 7.3u0 in Fig, (la). The circle on this plot is the equator of thr upl~vr half

sphere, The prmont plot shows what happens w thr system bends out of the collinear Pliil)t’ (0 < T/?) AI

this largr distance, th~ arrangement channels arc WCUacparated, Th~ shaded regions are strongly rvpulsiw

regions where V > 10 eV, Motion parallel to the dotted contours rcpresentri rotation of atI /li friigll]tltlt

in challne] A (// 1’ fragment in chunncls H and C), and motiotl pcrpondicular to these contours rrprw~’llts

vibration of an }/i fragmcmt in ch~nncl A (}IF fragment in cha.nnrls lJ and c), Six channvls itpi)~!i\r in }’ig
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(1) instead of 3, because behavior at ,X+ m is related to behavior at x by inversion, giving each chaI~IIcl

twice.

A similar plot at p = 5.2a. is shown in Fig. (lb). Motion along the equator betwxwu cha]lnels .4

and B, and between channels A and C, corresponds to motion across the transition state. The rotational

hindering or bending potential is shown by the shape of the full contours at 1.44 eV, and of the inner

contours at 2.1 and 2.8 eV, butween channels A and B, and between channels A and (7, These specific

contours are riot semicircular but consist of narrow fingers extending up the surface of the sphere froIIl thtt

collinear equator for 1.44 eV, and of wider fingers extending down the surface of the spllerc from tht~ pol(I

(oklate top) for 2.1 and 2.8 eV.

B. Full interaction Harniltonian

W’e must solve the time independent Schrtidinger equation

subject to the usual scattering

independent of the three Euler

(E-7’ -V)W=O (7)

bound s-y conditions. The total energy E and interactioli potent i;ll 1’ arc

angles,

The kinetic energy operator T expressed

h2 ~~il
T=-–—— —-

qlps ilp p ilp
12

V = V(p, O,x:). (8)

in API1 coordinates, is

/l\\

J; J:
\;, )

~.r ih cos 0 d
+ + + — .—

ppz(l + Sinfl) 2pp2sin28 pp2(l – sin 0) pp2 sin2 t7J”z”

Defining the first term on the right hand ,ide of (9) to be T~, and th,e terms in braces (including the

pre(actor) to be ‘rh, we have, T = 2) + ‘l’h+ Tr + Tc, Y’here ‘l; is tho rotational kinetic energy (terms ~vitll

J:) and ?; is the Coriolis term associated with the tumbling motion of the triat:lmic systcm. Th(I J, ill

M]. (9) refer to the body-fixwl f.omponmlts (z-axis alignmi with the small(’st pril~ci])lc nl(jl]lvnt of inl’rlia )

Of th~ tOt:d iillgUliil’ lllOIllCIlt Ulll J-l ‘1’11(’ 71th solution that is rcyzylar at the origin (p = O) is

IJ ‘tfri = ~p-5/~~,f~l(,))@~~ (#,~,;,)h)~~~~, ((i,/j,~) (10)
t,A

whm(’ l>~hf ((e, /~, ~ ) are the normidiz(’(i Wigrwr rotiition mat rix (Jlvmwlts. Tho rii(ljal W’iiVofllllCti{ }IIS ~’~~’(1))

arv fullrtions of tile hypcrra(iiu:i. TiIe O~A(O,~,; pF ) are functions of d an(i }, an(i (if’p(’hd pllralll(’1 ricidly

ou thv fixwi svctor iiypmra~iius+ ‘1’iiv iattvr functions are tilv surfac(’ fun( tions, (f’ig(’llfllllcti(llls at ii fixwl

sw’tor hJ’l)Orril{iius), rvforrwi to in til[’ intro(iuctic~n.

C!, Surfnc:! Functions

‘1’110ilyl)(~rsl)ilf’ric;ii SU1’fiiC(~ functionti O/A(fl, ~,;p},) arv obtaillwl ijj’ solving illl (’ig(’111’illll(’ wlllatitln ill

a fixwi swtor ilyl)vrril(iius p}t

(11)
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J *J
Hs*fA = cth tA

at a large but finite collection of hyperradii {ph}. In Eq. (11) A, B, and C are defined by

A
1 1 1=

pp~(l + sin O) B = 2pp~sin2 O
c=

PP:( 1 - sin 0)”

July 20, 198(S

(12)

(13)

The surface function Hamiltonian includes T~ and the symmetric top portion of tic rot;ltional IIamiltonian

T,. The asymmetric top portion of the rotational Hamiltonian and the Coriolis tcrln induc( coupling in

the coupled-channel equations. The surface function Harniltonian in Eq. (1 1) ccmtains the full interaction

potential and all diagonal angular operators. Therefore the surface functions should form a : apidly cml-

vergcnt basis for the coupled-channel equations,

scattering S-matrix, transition probabilities, etc.

111. COMPUTATIONAL PROCEDURE

A. Overview

equations which must be solved in order to extract thu

See Ref. (2b) for the detailti.

In this section we will outline the pertinent parts of our cnmputationa,! procedure for reactive scattering

which relate to the calculation of tk,e surface functions. First, an optimized mesh (or element {Icfinition)

is constructed in program MESIIER at a multitude of fixed hypcrradii. This program w= dcsignwl

to minimize computational time, to improve the accuracy of the surface functions, and to aut[mlatc the

creation of inp,lt data for the surface function program. Then, the optimized mesh is employed t.q progritln

SURFUNC [which is a modified version of the engineering finite element code ADINAB) to goncrato

eigenfunctions and eigenvalucs of the surface function IIami]tonian Eq. (1 1). The numerical valuvs of

three surface functions at each mesh point are essential for all of the subsequent steps. This stop rum 11/ly

requires significant computer time and disk titoragc. These two steps will now bc discussed in murv detail.

B. Meshing

MES1lER etitahlishes an optimized mcd for the surface function ~}rogram. SUI{FIINC rwlllirm illl

input mesh made up of discrete points (unique t?, xi pairs) called nodes and boundary conditions that m’

placcrl on the mesh.

For the reactions considcrm] in this piip~r thr potential is a function of the intmnid Al)ll rt)cmlil];~t~’s

p, 0, and ~1. m surfdco functions are calrulalwl at a scrios t}f fixwl p valum on the (0, 1, ) fiurfilcv. ‘1’lw

nodal points arc slwcifiwl by uniqur l?, ~1 coordinate pairs. W(! aro using (lUiMlf’ililt(’riLl (’IPIII(’III;. wil h !)

ndrs pm ulwncnt. l[undrvds of ll(~[lot’crlal)l)illg Amwts of diffi’:(lnt sixvs make a mrsh,

‘1’hc shape of tho mmh (fiizc of oarh of the el(’lllcnt~) ifi drtvrmillcd by two con flictin~ Cllill’il ‘vrist irs

of any finite clcnwnt c.mlo. First, the more nodal points includvd in thu mmh, tlw morv ~crurat v will IN’

the cigcnfunction~ and cigcnvalucs. Sorond, the mm nodal poiut~ in the rmwh, thv morr r(mlplllrr tinw

will b~ roquirml to ciilculatf’ the dwirwl suihm functions, ‘1’hc finilc rlvmrwt c(JA* usvs ii pldyllcllliill ill

(1?, \) spaco for w-Irh Plmu(int a.. a basih for th6J ~urfiirr funrtions. 111rogi(ms wlwrc thv itll)plilu(lvli of llItI

~urfacc funclibnti art’ largu it ifi dvhiralh to haw as fino a III(’SII w oh{’ C!LII idlidi llmv~wrr, in III(I rl’~ifms
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where the surface functions are nearly zero one can use fairly large elements or a coarse grid. Ideally, the

mesh would be very dense in the strongly attractive regions, very sparse in tt~e very repulsive classically

forbidden regions, and have a smooth transition between the two regions. To obtain this desired result we

start with a very sparse mesh and then subdivide it many times, concentrating each &ime on the deeper part

of the potential. In actual practice, we now base the subdivision process on the root mean square (Rhl S) of

the surface functions calculated for the previous vafue of ph. Qualitatively, the regions of maximum R\fS

surface function density usually correspond to the regions of the deeper parts of the potentia!. But, for

example, in the case of higiily excited vibrational states, th - surface functions can be very delocalized with

respect to the wells of the potential. Therefore, basing the the mesh on the RMS of the surface functions

places the nodes in all the regions where they are needed to accurately represent the surface functions. An

optimized mesh has about 3,oOO to 5,000 nodal points instead of the ZX50,000 nodaJ points of a uniform

mesh. This procedure allows one to obtain highly accurate surface functions with minimal cost.

A mesh for the F+ Hz * HF+ H system superimposed on the 5A-PES and on some surface functions

k ShOWII in Fig. (2) fOr flh = 7.3a0. This mesh is one division coarser than the mesh required to give

ne~rly converged surface eigenvalues. The 5A-PES for F + H2 * HF + H with the superimposed mesh is

displayed in Fig. (2a). The dense mesh is conveniently restricted to the lower regions of the potential, Note

the height of the barriers to reaction which exist between the H2 channel (which faces the reader at xi = O)

and the well of the H F channels (which are located at ~i ~ +7r/4). The function in Fig. (2t~) correlates

asymptotically wit!, the v = 3,j = O state for HI’. [This function is presented un a mesh one division finer

than the others in Fig. (2).] This function lacks noties along the rotational motion path (indicative of a

j = O state), and also contains an increased amount of density in the O = n/2 region with respect to the

8 % T/4 region (indicative of the preference of the three-atom system to remain collinear). Tho function

in Fig. (2c) correlates with the a v = ?,j = 14 state for l{F. This function has many nodes present along

the rotational motion path (indicat~vc of a high j state). Fig. (2d) correlates with the II = (), j = () stat[’

of 11~.

l’ig. (3) is sin)ilar to Fig, (2), except that now ph = 5.2w, which is near the 11 , .Jf . .}’ transition

Stiit(’ regiol:$ in Fig, (3a), th[’ transition statt’ between the 112 chimnel and the 113’ chtinnels orcuri 011tllv

collinvar equator at the position of the arrows. This transition state is in the same position as the harrivr

descrihmi in I“ig. (’2a), As p is decreased from m to 5.2a0 the height of the barrier dwreams frol~l a vwy

likl’g(’ value tf~ thv value olwrvw[ in Fig, (3a) for tlw transition statv, The function in i’ig. (31)), whiull

Corrcslx)il(ls to tllr low~’st (’ig(’ll\’ill U(’ for this valuv of ph, correlates with the ?’ = O,j = O stat(’ for II J’.

‘1’hfI~lfr(l(t (If th(’ str(mgly hil]d(’rml rotati[)llid nl(~tion, disrusscd {~arli(lr in coutcxt with h’ig, ( 11)), ii~)l)(’ilr?i

ill l:ig. (:{1)) idoll~ tll(’ c(dlillvar rquat~)r in thv fornl of thv incr~’a.sed wavefunction dvnsity for III(I 1/ , 1’//

(’(lllill(’iLr iil’riillg(’1ll (’llt with rvs]wct t{) t 11(’Ii.,II1“iil’I’illlg(’ll l($llt. I’igs, (:{(’) and (3(1) arv (’Xii lIl~)l(’S of hl~lll(’

of thr ful~rtit)us which pr(widr M’il(’til)ll flllx to thv tr)titl wavvfullrtiol~, Iloth functions iil)lJ(’ilr to I)(’ ii Illix

l)(It~(I(~IIa ?) = () Ilz St,iit(’ i{ II(l it i} T :] }1 J!’Stiit(l,
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The surface function Hamiltonian in Eq. (11) is a partial differential equation in the two variables 9

and xi. The finite eler.lent (FE) method is used to solve this eigenvalue equation for the eigenfunctions

[surface functions @~A(O,Xi, Ph)] and eigenenergies &~h(p~).

The FE methodg is a powerful numerical technique for solving partial differential equations. The

fundamental idea of this method is that surface functions which are continuous can be approximated by

a set of piecewise-continuous polynomials defined over a finite number of subdomains called elemer,ts. ‘A

major advantage of the finite element method is that the size of the elements can be varied across the

domain. Hence small elements can be used in physically accessible regions of space and large elements

in physicaUy inaccessible regions of space. Two types of elements are commonly used to model a t~vo-

dimensional domain, the triangie and quadrilateral. Originally triangular shaped elements were used

almost exclusively. It is now generally accepted that the quadrilateral elements are more Micient. In

each element the surface function is approximated by an interpolating polynomial. This polynomial has

9 coefficients, so the element must have 9 nodes to uniquely determine the polynomial cocfhcients. These

nodes are at the corners of the quadrilateral, the midpoint of each of the sides, nd the center of the

quadrilateral. The various shapes and nodal patterns exhibited by the surface functions presented in Figs.

(2) and (3) illustrate the need for a flexible basis capable of describing both localized and global topologies

on the hypersphere. W’e believe that the FE basis described above can provide such flexibility. Although

at this stage in our research we are finding that the FE basis cannot provide at a reasonable cost surface

eigenvalues which are converged and consistent over the fuli range of p~ for the F + 112 = JI F + }1 sysfcm.

The surface function eigenenergies for the lowest 20 states of d~l + t * tp + d, ti,~ exchange of a Inuon

between a deuteron and a triton, are plotted as a function of p in Fig. (4). For large values of p, the

eigenenergies are approaching the eigenenergies of the isolated atoms dp and tp as one would cxprct.

IV. ITERATIVE METHODS

Projection of the FE basis onto Eq. (11) for a particular wdue of J, A, and ph yields the genmalized

eigenwdue problt’m

Ho = S*E /11)

where S is an overlap matrix. Since the calculation of the surface functions is currently the expensive stci)

of our procedure, it is imperative that wc solve Eq, ( 14) a.. ef!lciently as possible. For the matrircs required

for our scattering problelus [ord(’r n = 3000- 5000, half bandwidth m = 100- 200], the method of choice

is to solve Eq, ( 1,1) iteratively versus solving for the complete spectrum of (H, S).

A. Subspt*ce Iteration

onc approach used wi(lely by t hv engineering community to solve problems like khi. ( 11) is the

Subspace Itcratioll (S1) method. ‘1’hf’version of S1 irl]l)l(’tllt~tlt(’(! in our scattering code was obtainwl from

the AIJINA wlgillw’ring packag(’. 9 ‘1’hv itrration is started by choosing a set of q vectors, rcprmentwl

as the columds of Xl, which span the starting subspareo Constructing Xl from a good estinlatc to thv

eigvnvertors of IJq, ( 14) greatly enhances the convergence rate, as we shall show later. lJsually tht’ sul)spacv

size is chosen according to standard practict? as q = ?lmr(2p, p+ 8) whvre p = numlwr Of (Icsirwl {Iigcll})ilirs,
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Before iterating, H is factored as LDLT to facilitate the linear equation solution step. Then the algorithm

proceedsg fork= 1,2,.. . (the subscripts denote the k ‘h iteration):

1. Solve: HYk+l = Sxk.

2. Form the projected matrices:

H~+l = Y$+lHYk+l and S:+l = y:+lsyk+~.

3. Solve the projected (p x p) eigenvalue problem using the generalized Jacobi meth~d:

H~+l@~+l = S~+l@~+lE~+l.

4. Update the approximation: Xk+l = Y~+l@~+l.

5. Check E~+l for convergence of the lowest p eigenvalues. Iterate back tc jtep 1 if necessary.

The procedure con~erges; that is E~+l -+ E and Xk+l ~ ~ as k ~ cm.

B. Block Lanczos

The second iterative method we considered for solving Eq. (14) is the block Lanczos reduction

algorithm. 10 Although a Lanczos algorithm could be designed to solve the genemlized eigenvalue prob-

lem directly, the Lanczos package 11 v e used is based upon the block Lanczos reduction for an ordinary

eigenvalue problem. We therefore convert Eq. ( 14) to an ordinary eigenvalue problem using a spectral

transformation of the farm as suggested by Ericsson and Ruhe. 12 The transformed problem is then solved

using the Lanczos method, with the solutions to Eq. (14) obtained by a back-transformation. The idea

behind the transformation is to invert the spectrum of Eq. (14). This inversion spaces the transformed

spectrum “hyperbolically” [see Ref. (12)] which allows for a more efficient calculation since th(’ eigenvalues

will be more distinct. Specifically we form the transformed matrix

H’ = ~-1/2L-lsL-TD-l/2 (1.5)

where H is factored as LDLT. We then solve the transformed problem

H’@’ = @’E’ (16)

using Lanczos, The spectrum and eigenvectors of Eq. (16) are related to those of Eq. (14) by

E: = l/E~ and ~’ :- D112LT@. (17)

Since the I,anczos algorithm only requires the formation of a mat]ix U = H’V upon input of V, Fq. ( 15)

is never constructed explicitly. L]stead U is formed from L,D, and S using linear equation SOIY(IS an(] a

matrix multiplication.

The central result of the block Lanczos procedure is to reduce H’ to a block tridiagona.1 forlll Tk =

Q~H’Qk. Qk is constructed as (~1, ~z,.. . Qk) where each Qk is a block of nb column vectt)rs ( n~ is

defined as the I,anczos block size). Qk forms a distinguished basis for the Krylov subspacc Kk(Ql ) =

span[Q1, H’Q1, (H’)2Q1, . . . (H’)k-l Q1]. Explicitly,

Tk =

Al 13~ O 0

B1 A2 ““. O

0 . “o. B:_l“.

00 Bk.1 Ak

(5)



.
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where the Ak and Bk are of order nb. If nb = 1, one recovers the simple Lanczos reduction scheme

where: 1) Qk ~ qk, a single COIUrnn vector; 2) 4ik ~ ~k and Bk ~ ~k, both constants, and; 3) Tk

becomes strictly tridiagonal. The ~k are constructed iteratively once a starting residual (n x nb ) mat rix

RO ([IRoII # O) is specified. Then the algorithml” proceeds for k = 1,2,... (again, the subscripts denote

the kth iteration):

1. Or+.honormalize Rk.1 (QR factorization): &_l = ~kBk.1

2. Rk t H’& – &-@f_l (&l = O).

3. & * ~;~k.

4. Rk t Rk – &&.

5. Solve using Rayleigh Quotient Iteration: Tk@k = @kEk.

6. Check Ek for convergence of the p lowest eigenvalues. Iterate back to step 1 if necessary.

The eigenvectors of H are obtained via Eq. (17) as @ = L-TD-li2Qk@k.

The advantage to using the block Lanczos (as well as the disadvantage to using simple Lanczos) is

the property that the Lanczos reduction can only determine degenerate roots of multiplicity n~. Certainty

in determining degenerate eigenvalues requires a value of nb one greater than the expected maximum

degeneracy in the problem. This choice prevents errors from accidental degenercies due LO numerical

tolerances, crossings of adiabatic eigenvalues, etc. The version of Lanczos implemented in our scattering

code was derived from the SNLASO code of Scott. 11 This code finds the eigenvalues at either end of

the spectrum using the block Lanczos reduction in conjunction with the selective orthogonalization (S0 )

technique. The Lanczos reduction breaks down if [II – Q~Qkll de~;iaies from zero (> f) due to numerical

roundoff. Using Paige’s theorem,13’10 it has been shown 14 that purging the residual Rk in step 4 of the

converged eigenvectors determined from the previous iteration at step 5 maintain: the linear independence

of the columns of the Qk. The SO can be inserted as step 4.5 in the algorithm. [See Refs. (10) and (14)

for more details].

V. TEST PROBLEhf: LiH + F

One three body reactive scattering system of interest is LiH + F s Li + 111’. A bond order 1’1S

for this system has been constructed by Lagana and coworkers 15Ufit to the ab initio energies of Cllen and

Schaefer.15b Using this PES, the FE solution to Eq. (11) for J = A = O has been calclllated at two values

of Ph, (P1 = 5.f)aP and pz = 5.1ao). A uniform FE mesh was col’,structed. This mesh was chosen for test

purposes only, and is in no way an optimal choice for a mesh. (See Sec. 111. R,) The H and S obtained art’

of oruer n = 1729 and half bandwidth 7n = 109, (The half bandwidths quoted in this pa]wr are avcrag(’

values, since the symmetric matrices are stored in a skyline format .9 The average half bandwidth of a

symmetric matrix is defined here as the number of matrix elements between the diagonal and the skylilic,

inclusive, divided by the order n.)

The resulting generalized eigenvalu(’ problem was then solved using both the S1 and the blocli Lanczos

(lIL) methods for both values of Ph. Within the S1 method, two variations with regards to the choic~’

of the starting subspacc X1 were at tcmptwl. In one case, X1 at both values of ph was constructed from
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random vectors [which we denote as SI(random)]. In the other case, Xl was constructed from random

vectors for pl, but then Xl for P2 was constructed from the eigenvectors obtained at PI [which we denote

as SI(good)]. If we consider the difference in Eq. (14) evaluated at pl and at p2 as a perturbation, we

may expert the eigenvectors from PI to be a “good” approximation to the span of the subspace for the

eigenvectors at pz. This has been verified by comparing the eigenvalues at both p~ values, and we find this

perturbation argument to be valid. In practice, the eigenvectors from the previous ph are available to us

at no cost, since the solution to our scattering problem requires us to calculate the eigenfunctions to Eq.

(1) sequentially in pk for a set of 100-200 values of ph.

B. Few eigenvalue regime

In Fig. (5) we present the amount of CPU time required to diagonalize the LiHF problem plotted

as a function of p for p < 20 (the ‘few eigenvalue” regime). (The C#U times quoted through out this

paper were determined on a CRAY-XMP.) Three approaches are presented: BL with nb = 2; S](random);

and SI(good). For p = 20, BL outperforms both SI(random) and SI(good) by a factor of -4 and of * 3,

respectively. Note also that although both the S1 and BL results appear to scale linearly in p, the BI. curve

is of lesser positive slope than either S1 curve. If this linearity held for large p, (it does not as we shall see

later) the BL method wov!d still appear to be more efficient than SI(good) by a factor of -3-4.

A similar scaling with respect to p was also observed in the few eigenvalue regime by Nour-Ornid,

16 hereafter referred to as NPT). NPT considered the FE solution for a structureParlett, and Taylor (

which when parameterized yielded matrices corresponding to H and S of order n = 468 and of m = 45.

In Fig. (6) of Ref. (16), NPT plot as a function of p (p < 9) the number of matrix-vector operations

(MVOPS) required to diagonalize their problem using both Sl(random) and BL with nb = 1 and 2. NPT

defined a MVOP as a LDLT solve plus a matrix multiply for a single column vector. Using this measure,

step 1 of the S1 algorithm costs q MVOPS per iteration, whereas step 2 of the BL algorithm costs only nb

MVOPS per iteration. In Fig. (6) of NPT, the total ‘lVOPs scaled -linearly for both BL and S1, with

the S1 curve increasing much more steeply than the BL curve. This case parallels the behavior observed ill

our Fig, (5) for BL vs. SI(random). Thus, NPT correcily concluded that the BL method was by far ~llore

eff’cient than using S1 for solving problems in the few eigenvalue regime, as long as a good initial slihspacc

is not available.

B. Many eigenvalue regime

Implicit in the above analysis is the assumpiiuri that the k!VOPs are the rate limiting step in both

algorithms. The step in each algorithm which competes with the MVOPS is: 1) the solution of the projected

generalized eigenvalue problem required at each iteration of the S1 method (step 3); and, 2) the solution of

the reduced o[dinary eigenvaJue problem required at each iteration of the BL method (step 5). At the k~~

iteration of the S1 algorithm, the eigcnvalue problem is of order q, independent of the value of k. At the k~~

iteration of the BL algorithm, the eigenwdue problem is of order (k o ~lb); the size of the problerv in~reiiscs

as a function of k. Eventually for a large value of p (which requires a large number c)f k iterations), the cost

to diagonalize the reduced eigenvalue problem exceeds the cost of the LDLT solve in the BL algorithm.
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This crossover of the rate determining step in the BL algorithm is apparent in Fig. (6a) where we

have plotted the CPU times vs. p in the “many eigenvalue” regime (p = 20-90). The SI(good ) and BL

curves are approximately parallel to each other and are increasing as w quadratic as a function of p (which

we verified using a least squares fit of the data). The linear scaling observed in Fig. (5) for the few

eigenvalue regime does not hold in the many eigenvalue regime for either method. For BL, the totai cost in

multiplicative operations (OPS) for the Rayleigh Quotient Iteration (step 5) scales as cubic in the leading

term of p. This cost eventually approaches and overtakes the cost of the MVOPS which scales linearly in

p for the number of OPS. (The (3P counts assume that the total number of iterations (k~.r) required to

converge p eigen~:alues scales as linear in p, Through experience we have found that kma= * 3. p.)

The values reported in Fig. (6a) for BL were obtained using a modified version of the originaJ SNLASO

code, where step 5 of the algorithm was made more efficient. In the few eigenvalue regime only a negligible

decrease in CPU time was observed for p = 20 with respect to the original SNLASO code, Whereas in

the many eigenvalue regime, a N 30% decre~e in CPU time was obtained for p = 90. Further research

has provided a BL code which is * 2.2 times faster than the original S;t LASO code for p = 100 {see the

accompanying paperl’ in this issue). But these further modifications have rendered the algortihm more

sensitive to the loss of orthogonality in the Qk such that the further modified version is not reliable enough

to use when generating sets of eigenfunctions for our scattering calculations, We also note that the S1

routine was used in an accelerated mode, 18 one consequence of the acceleration is to deflate converged

eigenvectors from the the subspace Xk as they are found. ‘l’his reduces the size of the subspacc at nearly

every iteration, which in turn decreases the order of the projected eigenproblem which is so]vcd. As k

increases, the amount of work needed to solve the projected eigenva.lue problem dccrcascs, which is exactly

opposite of the behavior of the BL algorithm.

1. Good starting stibspaces

Also evident in Fig. (6a) is the effect of providing a “good” starting subspacc for the S1 method, At

p T 90, the savings in time is over a factor of 2 with respect the use of a random starting subspace [Sl(good)

vs. SI(random)], In principle, a good guess to the starting Lanczos residual matrix R. should also inrrvasc

the convergence of the BL rrwtlmd. WC have tested two different ways to introdur~ the eigcnvcrtors from

the previous p~ value into the R. for the present p~+l vaiue, First, wc tried constructing the ~lb rolumns

of R. as linear combinations of all of the p converged eigcnvectors calculated at ph. This approach showed

a negligible increase in convergence spmvi with respect to using a random block of vectors for Ro. !$econd,

wc placed the eigcnvectors associatt:d with the llb ]owcst c“gcnva]ucs calculated at ~}honwhy-onp in Carl)

column of Ro. For a given valu~ of p} this providwl on the average shout a 5% incrcasc in the convmgcncc

SIJ2M1 with respect to the use of random vectors (mwn for p = W). ‘No latter procw!ure showwd some

irtlprovcmlvnt because it dlOW(’(! for th~’ projccti(~ll of the nb lowest cig(!nvidues at the first step of thv

Krylov suhpace generation, i.e. Q2 m H’R.rI = RoE’. ‘~hlls tht’ nb bWf?St (!igVllVil]UCS collvrrg(’ (IU irkly,

but (p .- nb) cig(’llvd(]~s l]lu~t still b~! foun(! on subscqllcnt it~ratiOlls.

2. Variation oj block sizr
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The BTJ results reported in Fig. (6a) were not calculated with the same value of nb for each value of p.

Fig. (6b) shows the value of nb used as a function of p. For values of p >50, we found that fixing n~ = 2

resulted in a loss of orthogonality of the Qk matrix, even within the application of the SO procedure. JVe

can explain this behavior by assuming that a @ matrix of a minimum order k’ = (k . nb) is neerfed to

adequately converge p eigenvalues. If k’ is large and nb is small, a large number of k iterations must be

performed. Each iteration introduces round-off error which eventually accumulates to an amount too large

for the SO to correct. To decrease the number of iterations for a fixed value of k’ (thus decreasing the

accumulated round-off error), we must increase nb.

Taking the above argument to an extreme, we might assume that nb should be set as large as possible

so to decrease the number of total iterations. In practice this is not true. We have verified that using the

smallest value of nb such that non-orthogonality is avoided yields the fastest solution for a given value of

p. Even though k decreases, the order of the reduced eigenvalue problem = (k ‘ n~) increases by rlb each

iteration. Thus, the work to diagonalize the increasingly larger eigenvalue problem offsets the decreased

number of iterations. Each vaiue of nb in Fig. (6b) is the minimum value (in increments of 2) which dots

not introduce non-orthogcnality for a given value of p.

C. Summary

In summary, for tha few eigenvalue regime (p < 20) the dominant operational cost for both solution

methods resides in the MVOP step, With S1 requiring q = rnar(2p, p + 8) MVOPs and 111, rwiuiring

nb MVOPS per iteration, respectively, the 13L method is more efficient. For the many eigeuvaluc roginl(’

(20 < p < 90), the cost of solving the reduced eigenvector problem becomes competitive with tho cost of

the MVOPS in the BL algorithm, Therefore, the overall costs in Ill, arc only a factor of * 2 loss than thv

costs to use S1 for many eigenvalue regime.

VI. PRODUCTION EXAMPLE: F + llz

When we generate scattering information (a production run), wc must calculate the surfarr functi(ms

sequentially in ph for many values of ph. The sequence must not be broken as wv accumulate tho ov(’rla])

between functions functions evaluated at Ph and at ph+l and not the functions thwnsrlw’s. WV havv fou IId

that the S1 method is much more reliable tk,an the block Lanczos method with rospoct. to dot.ornliuing f Ilis

sequence of surface functions. The block ]~anczos method is sensitive to tho choice of Tlb and t (wds to fiti]

duc to a loss of orthogonality. A fiailuro cccuring at some point during a production run iri not arcvpt ahlv,

With the last paragraph in mind, wc present th(t CPU times for th~ first fivr valuvs of [J~, fr(m) a

production run in ‘1’ablv 1 using the S1 nlvth rd.Using the 5A-PIS for thu 1’ + 111 ~ }1}’ + II systulil, wv

constrllcted the 1?12matrirrs for J = A = O using a non-uniform mesh of the typo disrusswl ill SW. 1I1, 11,

Wc required p = 100 wnvcrgvd and carried an extra 50 utlconvcrgod eigcnfunctions for o:wh valll{’ of 1~},,

resulting in a subspaco of sizv q = 150, ‘1’his choice for q was Iarfy$r thim thv valuu dictatwl hy st:~ndar(l

practice, but the extra functions were nccdcd to complct~’ tho basis for thv ticatt.oril~g Cid~~]li{tions, In

‘l’able 1 we present the CI’(J times rcquirrd to SOIVCEq. ( 14) for surwwivc valuw of p~ usin~ tho S1

tncthod, F.xqt for PI, the starting riuhspacc X1 was construct frwn thr ~igwlvvctorB ca.lrulatvd At IIiv
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previous ph. A random guess for Xl was used at pl. The benefits of having a “good” starting subspace

is evident in Table I. Nearly a 50% savings in time is realized between the calculations at pl and P3, an

amount magnified by the fact that the matrices at PI are - 50% smaller than those at p3 (n = 2081 vs.

n = 3301). (The difference in n is due to the fact that a coarse uniform mesh is used for pl, whereas a

finer and more localized mesh is used for subsequent ph values. The choice of non-uniform mesh is based

on the eigenfunctions of the previous ph, therefore a “guess” mesh is needed for ph. ) One reason for the

tremendous time savings is the decrease in total number of iterations kma= (16 vs. 52 for pl vs. p2 j, Table

I also shows the stability of the SI(good) method with respect to a change in ph. The CPU times for

the last three oh values are within 5% of each other. The time at p2 is larger than the last three values

because the starting subspace generated from the eigenvectors at pl on the coarse mesh is not as good as

the starting subspace obtained from the eigent~ectors calculated on the finer non-u nifcrm meshes.

VII. CONCLUSIONS

Vle considered the finite element solution to the surface eigenvalue problcm derived from an accurate

treatment of 3-dimensional scattering formulated using APH coordinates, Examples of potentials, surface

functions, and non-uniform meshes plotted on the surface of the hypersphere were displayed. Both the

subspace iteration (S1) and block Lanczos (with selective orthogonaliztion, BL) method were utilized to

calculate surface functions, Although the S1 method is slower than the BL method in the many (~ 90)

eigcnvalue regime, we usc the S1 method exclusively when detcrming the surface functions for a scattering

production run. The S1 method is less sensitive ti,an the IIL method with respect to the choice of initial

parameters for each method,

We arc presently considering other approaches for solving the surface cigcrlvaluc problem whirh arc

funrlamcrrtally diffkrcnt than the finite elcrmmt method. For some scattering systems (i.e., 1’ + Ilz ~

11P + If), we have found tht.t a verl fine rncsh is required to converge the surface cigcnvaluvs, mp(’ci:dl.v

for highly cxcitcd vibrational and/or rotational surfare functions. A fin~ mesh translatm into firlitr (’l(IHIOIIt

matrims which arc too large (too cxpmrsive) to diagonalize even with the iterative procedures considrrcd

lwrc in this paper. Wo aro prcsontly investigating the expansion of the surface functiwi. in both an illlal~tic

biLSiS 8 nd a discrete Variilt)l(’ roprfwntat ion 19 \)Wis, ~he nlatri~(i~ ~s~~iat,(~(j ‘Nith I,]iOS{’ il~)proil(’h(’h S)l(~lll(i

Iw suffici{’ntiy smalizo thwt tho full surfacv cigenvalu~’ spectrum for many Vi\i U(’S Of p~, Ciill 1)(’ (Jl)tailw’(t ilt

a rwamnahlv cost,
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. Tables

Table I. Subspace Iteration method.
p = 100 converged eigenvalues.

q = 150 vectors in subspace.

Page 15 July 20, 1!?88

h no ma k~a= CPU time’

$.) (see).,

1 4.000 2081 98 52 783

2 4.020 3277 134 20 457

3 4.040 3301 135 16 367

4 4.064 3325 136 16 359

5 4.093 3407 137 16 394

“Order (n) and half bandwidth (m) of H and S.
~Total number of iterations,

CCPU time on a CRAY-XMP.
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FIGURE CAPTIONS

Figure 1. a) Stereographic projection of a contour plot of the F + Hz # HJ’+ H 5A- PES~0 as a function
of O and Xi on the surface of the sphere wit’,, p = 7.3ao. All contours are measured from the bottom
of the a..ymptotic well for HF; dashed contours are at 0.35, 0.75, 1.44 (a little above thr bottom of the
asymptotic well for 1/2 ), 2.1, and 2.8 eV, The shaded regions lie above 10.0 cV. The distance froll~ the
center of the plot (north pole) is a measure of 0, and the azimuthal angle ~, is measured frolli tllc pmitivc’
z axis. Arrangement channel A is near xi = O, 1? is near -37r/4, and C is near 37r/4, ‘1’hc channels at
7r, T/4 and -7r/4 are A, 11, and C, respectively plus inversion. b) Same as Fig. a) excrpt with p fisvd
at 5.2 ao. The transition states are the small barriers along the equiitor (on the circle) Iocatcd nc;ir ~/6,
–Ir/6, 5T/6, and -5r/6.

Figure 2. a) Perspective plots of the 5A-PES7 for the F + lf2 = HF + 11 system at a hypcrradius
of 7.3ao. A H2 channel, centered at xi = O, faces the reader, Two of the 111’ ~hanne]s arc cent{~rcd
near XI = +7r/4. O runs from zero (the central point of the mesh) to %/2 (the circular boundary of tho
mesh). The potential is clipped at 5 eV (at the p!atcaus) and the zero of energy is rolativc to th(’ II 1’
asymptotic well. The arrows point at the barriers between the ,’12 channd and the 11J’ cllill}[~(~ls, b) Thv
surface functi~n ‘l&, o(t?, ,Xi; ph) at ph = 7,3ao, A finer mesh with respect to the others is used hero. ‘!’hc
coordinate system is the same as that i!l Fig, a), c) ‘rhe surface function @~9,0(8, ~,; ph ) at ph = 7,3a0,
The coordinate systcm is the same as that in Fig, a) d) ‘1’he surface function @~O,t)(fl,~,; flh) at /)h = 7,3(/.,
The coordinate systcm is the same as that in Fig. a),

Figure 34 a) Pcrspectivc plots of the 5A-PES7 fcr th(’ F’ + }12 ~ }11’ + II Syst(’11) at ii IIylwrra(lius of

5.2a0. The coordinate system and cnwgy scale is the same as that used in Fig. (2), ‘IIIIQ ilrro~s point
at the transition state regions between the 1/2 channel and thu If F channels. b) TIIC s[]rfii~(l fuilcti(~tl
O~,o(O, ~,; n),) at p~ = 5.2:1., The cool(liniit~~” system is the same as that in Fig, a), c) ‘llhv sllrfii~{’ ful]ctit)ll
@~:],[~(O,}~;fl~) at ph = 502ao. Tht~ coordinate syst(’tn is the i+il]li~~ w that, in l:ig, ii), d) ‘1II(Isllrf:lcv
fU1l~tiOn @~~,[~(fl,~l;l)h) at flh = fi.2f10. ‘1’1)0coordiniitc systcmis th(’ samf’ as that in Irig, a),

Figure 4. PM of th(’ ~lirfil~(’ funrtioll t~igc]lvidl]{~s ill {*Vfor dp + I ~ Ip + d as a function of I)y])(’rrhflills

p in (10,

Figure 5. (~1’lJ titl)(’ rt’(llliro(l to c(mvwgo p (lg(~il~id~]~ls for iho l,i// + /’ =-’ IJi + 1/ l“ tmt l)rt~lllotii, (> -

SI(riitldotl]), A = SI(WNI), +- = Ill, with nt, = 2.
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