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Comparison of Lanczos and Subspace Iterations

for Hyperspherical Reaction Path Calculations

J. D. Kress, G. A. Parker*, R. T Pack and B. J. Archer**
Group T-12, MS-J569
Los Alamos National Laboratory
Los Alamos, New Mezico 87545

ABSTRACT

In an accurate treatment of 3-dimensional reactive scattering using Adiabatically-adjusting, Principal
axes Hyperspherical (APH) coordinates, we obtain a 2-dimensional Schrodinger equation defined on the
surface of a hypersphere. The surface Hamiltonian, which depends parametrically on the sector hyperradius
pn, must be diagonalized for many (100 - 200) values of p,. The surface (eigen)functions are expanded in a
finite element basis, where a non-uniform finite element mesh is allowed to adjust for each p,. Projection
of the finite element basis onto the surface Hamiltonian yiclds a generalized eigenvalue problem. Typically
the lowest 50 - 100 eigenvalues and eigenfunctions are required at each p,. Since the calculation of the
surface functions is currently the expensive step for our reactive scattering procedure, it is necessary to
caiculate these functions as efficiently as possible. In this paper, we use both the subspace iteration and
tlock Lanczos (with selective orthogonalization) methods to calculate the surface functions. Using both
solution methods, we diagonalize the finite element matrices (of order = 1729 and of half bandwidth
= 109) constructed for the Li/l + F = Li+ H F systemm. CPU timings for both methods are examined as
a function of tiie number of converged cigenvalues. Since we can generate a good initial subspace from the
cigenvectors calculated at the previous value of p,, we find that the subspace iteration is competitive with
the Block Lanczos method when many (90) eigenvalues are calculated. We also consider a larger problem
(matrices of order ~ 3300 and of half bandwidth ~ 135) constructed for the F' + Hy = HF 4+ I system.
For this problem, we present the CPU timings required to calculate 100 cigenvalues for 4 sequence of five

pn values using the subspace iteration metl od.

* Preaent Address: Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma
73019

** Present Address: Department of Physies, Rice University, Houston, Teras 77251-1892
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I. INTRODUCTION

Rearrangement scattering or reactive collision processes form the heart of chemistry, and the quantum
theory thereof is one of the most important unsolved problems in theoretical chemistry or theoretical
molecular physics.! Recently, an accurate quantum theory to treat such processes has been developed
using Adiabatically-adjusting, Principal axes Hyperspherical (APH) coordinates.? Central to this theory
is the diagonalization of a 2-dimensional surface Hamiltonian which dependends parametrically on the
hyperradius p,. For a typical scattering system, the surface Hamiltonian must be diagonalized for many
(~ 200) values of ps. The surface (eigen)functions are expanded in a 2-dimensional finite element (FE)
basis. The resulting surface eigenvalue problem is then solved using either the Subspace Iteration (SI) or
block Lanczos method.

The outline of this paper is as follows. First, we review the APH coordinates and write down the
full interaction and surface Hamiltonians. Next, we discuss the construction of the FE meshes and the
functional form of cach element. Examples of potential energy surfaces and selected surface functions for
the F + II; = HF + H system superitaposed on non-uniform meshes are presented. Then, we provide
the algorithms for the subspace iteration and block Lanczos methods. We compare CPU timings using
both solution methods to solve a test problem (FE matrices of order = 1729). Finally, we present the
CPU timings for a larger problem {FE matrices of order ~. 3300), which reflects the size of the parameters
required to provide converged surface eigenvalues, using the subspace iteration method. We then conclude

with a brief discussion.

II. REACTIVE SCATTERING

In this section we briefly outline the APH reactive scattering formalism to give the reader a flavor of

our approach.

A. Coordinates
Consider the generic chemical reaction for a three particle system comprised of atoms A, I} and ¢

wenoa 4036

We use the free particle to label the three different arrangement channels Channel A is for the arrangement
on the left-hand side of Eq. (1) and channels C and B refer to the arrangements on the right-hand side
respectively. We also define 1,5 and k to be any cyclic permutation of the lai sis A, ¥ and (.

To uniquely specify the positione of particles A, B and (' for a rearrangement scattering process
in a center-of-mass gystem requires six coordinates. A hyperspherical coordinate system consists of a
hyperradius and five angular coordinates. We choose three of these hyperangles (the three Fuler angles)
to describe the tumbling and rotational motion of the three vody system (the trinngle that is defined by
the positions of the three particles). For the hyperspherical coordinate system described herein we choose
to align the z-axis with the smallest principle moment of inertia (this axis lies in the plane of the triatomie

aystem). We also choose the y-axis to be perpendicular to this plane
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We have specified three of the hyperspherical angles as being the Euler angles. We now define the
hyperradius
p= (5! +s0)} (2)

and two additiona! angles 4,

[(§2 - o2)? + (25, -5)%)

# = :
tan 25,8,sin 0, 3)
and) Xi
tan(2x;) = ;f s; (4)

These coordinates describe the relative position of the three bodies [or shape (determined by € and y,)
and size (determined by p) of the triangle]. Equations (2) and (3) are valid for any i because p and 6 are
independent of i. Also, for the x,, the three choices for 1 are equivalent since the x, differ only in a choice
of origin {see Eq. (3%) in Ref. (2b)]. The vectors S; and 5, are mass scaled Jacobi vectors,®=¢ (m, is the

mass of particle i) Mass scaled Jacobi coordinates are related to the usual unscaled coordinates by

= = m'?’+mk?’ - - - - - 1 =
S, =d, [T'-W]=d«& 5 =d]\(F - 7)) =d]'T, (5)

where the scale factors, d,, three-particle reduced mass, u, and the total mass, M, are

w05 el emimine o

The vector 7% 1n Egs. (5) ic che position of particle i in a laboratory fixed system. The vector R, is the
vector from particle 1 to the center-of-mass of particles j and k. Finally, f, is the vector from particle j to
particle k. [See Ref. (2b) for diagrams of the various coordinate systems).

To aid in visualizing the APH internal coordinates we note that @ represents a bending angle, § = 0
corresponds to oblate top triangular configurations. On the other hand, 6 = 7 /2 corresponds to collinear
arrangements. The APH coordinates, unlike most 3D hyperspherical coordinates, reduce directly to the
hyperspherical coordinates usually used in collinear mode! calculations. While p describes the overall size
of the ABC system, 8 and x; describe its shape, and it is often helpful to view things on the surface of a
sphere as functions of # and x; with p fixed. # and x, cover the upper Lalf of the surface of a sphere so
that we can make plots using the projection used in maps of the earth as viewed from the north pole i.c.
the stereographic projection.

Such a prejection of a contour plot for the F 4+ Hy = HF 4+ H potential energy surface (ES), version
5A of ref. (7), is shown for p = 7.3ap in Fig. (1a). The circle on this plot is the equator of the upper half
sphere. The present plot shows what happens as the system bends out of the collinear plane (8 < 7/2). At
this large distance, the arrangement channels are well scparated. The shaded regions are strongly repulsive
regions where V > 10 eV. Motion parallel to the dotted contours represents rotation of an M, fragment
in chanunel A (H F fragment in channels B and C), and motion perpendicular to these contours represents

vibration of an /{, fragment in channel A (M F fragment in channels B and C). Six channels appear in Vig,
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(1) instead of 3, because behavior at x £ r is related to behavior at x by inversion, giving each channel
twice.

A similar plot at p = 5.2a¢ is shown in Fig. (1b). Motion along the equator betweer channels A
and B, and between channels A and C, corresponds to motion across the transition state. The rotational
hindering or bending potential is shown by the shape of the full contours at 1.44 eV, and of the inner
contours at 2.1 and 2.8 eV, between channels A and B, and between channels A and C. These specific
contours are riot semicircular but consist of narrow fingers extending up the surface of the sphere from the
collinear equator for 1.44 eV, and of wider fingers extending down the surface of the sphere from the pole
(oblate top) for 2.1 and 2.8 eV.

B. Full interaction Hamiltonian

We must solve the time independent Schrodinger equation
(E-T-V)¥=0 (M)

subject to the usual scattering bounda-y conditions. The total energy E and interaction potential V' are

independent of the three Euler angles,

V=V(p,0,xi) (R)
The kinetic energy operator T expressed in APH coordinates, is
2 i 2 fa 2y
=__f_l_-2_ s—q-——h— _4 -,2'511120-,9—+'—IT-7(——.]2
2upS Op" Op  2up* \sin26 08 00  sin“ 0 0x; )

2 . (M)
J? Jy J? th cos @ d

+ up*(1 + sin @) + 2up*sin® @ + pp?(l —sin @) - pp? sin® 4 VEZ

Defining the first term on the right hand uide of (9) to ve 7,, and the terms in braces (including the
prefactor) to be Tx, we have, T'= T, 4+ T, + T 4+ T,. where T is the rotational kinetic energy (terms with
J?) and T is the Coriolis term associated with the tumbling metion of the triatomic system. The J, in
Eq. (9) refer to the body-fixed components (z-axis aligned with the smallest principle moment of inertia)
of the total angular momentum J. The n'* solution that is regular at the origin (p = 0) is
g /M o Zp“"/"cj»{,\"(p)(b;',\((), x,;/)h)l)l(h,((x,/i,y) (10)
t,A

where I)XA,(.~,13,7) are the normalized Wigner rotation matrix elements. The radial wavefunctions ¢J'(p)
are functions of the hyperradius. The &, (6, \,:pr) are functions of 8 and y; and depend parametrically
on the fixed sector hyperradius. The latter functions are the surface functions, (eigenfunctions at a fixed
sector hyperradius), referred to in the Introduction.
C. Surface Functions

The hyperspherical surface functions d’;’A((), \i; n) are obtained by solving an eigenvalue equation at

a fixed sector hyperradius p),

2 ; ] )2 41y .
[_ h { L0 gd 10 }4_(’“ D2y

2ipl | sin 20 99 80 " sin 6 0N} 2 0
, l ) 24 l-r)h2 J ] J
4 (( -—;2-/\-— 5”)’1 Al + Vipn,8,0:) 4 m (bl,A :{M(ph)d)m‘
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or
H, ) = L o)h (12)

at a large but finite collection of hyperradii {ps}. In Eq. (11) A, B, and C are defined by

1 1 1

= — B=—F— C=—:. :
ppi(1 + sin8) 2upi sin @ npi(1 - sin @) (13)

The surface function Hamiltonian includes T), and the symmetric top portion of the rotational Hamiltonian
T,. The asymmetric top portion of the rotational Hamiltonian and the Corioiis term induct coupling in
the coupled-channel equations. The surface function Hamiltonian in Eq. (11) contains the ful' interaction
potential and all diagonal angular operators. Therefore the surface functions should form a :apidly con-
vergent basis for the coupled-channel equations, equations which must be solved in order to extract the

scattering S-matrix, transition probabilities, etc. See Ref. (2b) for the details.

IIT. COMPUTATIONAL PROCEDURE

A. Overview

In this section we will outline the pertinent parts of our computationa! procedure for reactive scattering
which relate to the calculation of the surface functions. First, an optimized mesh (or element definition)
is constructed in program MESIIER at a multitude of fixed hyperradii. This program was designed
to minimize computational time, to improve the accuracy of the surface functions, and to autcmate the
creation of inpnt data for the surface function program. Then, the optimized mesh is employed by program
SURFUNC (which is a modified version of the engineering finite element code ADINA®) to gencrate
eigenfunctions and eigenvalues of the surface function Hamiltonian Eq. (11). The numerical values of
these surface functions at each mesh point are essential for all of the subsequent steps. This step currently

requires significant computer time and disk storage. These two steps will now be discussed in more detail.

B. Meshing

MESIHER establishes an optimized mesh for the surface function program. SURFUNC requires an
input mesh made up of discrete points (unique 8, \; pairs) called nodes and boundary conditions that are
placed on the mesh.

For the reactions considered in this paper the potential is a function of the internal APH coordinates
p, 8, and ;. The surface functions are calculated at a series of fixed p values on the (8,\,) surface. The
nodal points are specified by unique 8,y\; coordinate pairs. We are using quadrilateral element with 9
nodes per element. llundreds of nonoverlapping clements of different sizes make a mesh.

T'he shape of the mesh (size of cach of the elements) is determined by two conflicting chara ‘eristics
of any finite clement code. First, the more nodal points included in the mesh, the more accurate will be
the cigenfunctions and eigenvalues. Secound, the more nodal points in the mesh, the more computer time
will be required to calculate the desired suclace functions. The finite element code uses a polyncemial in
(8,1) space for each element as a basis for the surface functions. In regions where the amplituden of the

surface functicns are large it is desirable to have as fine a mesh as one can afford. However, in the regions
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where the surface functions are nearly zero one can use fairly large elements or a coarse grid. ldeally, the
mesh would be very dense in the strongly attractive regions, very sparse in the very repulsive classically
forbidden regions, and have a smooth transition between the two regions. To obtain this desired result we
start with a very sparse mesh and then subdivide it many times, concentrating each time on the deeper part
of the potential. In actual practice, we now base the subdivsion process on the root mean square (RMS) of
the surface functions calculated for the previous value of p,. Qualitatively, the regions of maximum RMS
surface function density usually correspond to the regions of the deeper parts of the potential. But, for
example, in the case of higily excited vibrational states, th-~ surface functions can be very delocalized with
respect to the wells of the potential. Therefore, basing the the mesh on the RMS of the surface functions
places the nodes in all the regions where they are needed to accurately represent the surface functions. An
optimized mesh has about 3,000 to 5,000 nodal points instead of the ~50,000 nodal points of a uniform
mesh. This procedure allows one to obtain highly accurate surface functions with minimal cost.

A mesh for the F+ Hy = HF + H system superimposed on the 5A-PES and on some surface functions
is shown in Fig. (2) for pp = 7.3ap. This mesh is one division coarser than the mesh required to give
nearly converged surface eigenvalues. The 5A-PES for F 4+ H, = HF + H with the superimposed mesh is
displayed in Fig. (2a). The dense mesh is conveniently restricted to the lower regions of the potential. Note
the height of the barriers to reaction which exist between the fr; channel (which faces the reader at x; = 0)
and the well of the HF' channels (which are located at x; ~ £7/4). The function in Fig. (2b) correlates
asymptotically with the v = 3,7 = 0 state for H F'. [This function is presented on a mesh one division finer
than the others in Fig. (2).] This function lacks nodes along the rotational motion path (indicative of a
7 = 0 state), and also contains an increased amount of density in the @ = 7 /2 region with respect to the
6 = r/4 region (indicative of the preference of the three-atom system to remain collinear). The function
in Fig. (2¢) correlates with the a v = 2,7 = 14 state for HF. This function has many nodes present along
the rotational motion path (indicative of a high j state). Fig. (2d) correlates with the v = 0,7 = 0 state
of If;.

Fig. (3) is similar to Fig. (2), except that now p, = 5.2ag, which is near the H . -H - -} transition
state region. In Fig. (3a), the transition state between the Hj channel and the I F channels occurs on the
collinear equator at the position of the arrows. This transition state is in the same position as the barrier
described in Pig. (2a). As p is decreased from oo to 5.2aq the height of the barrier decreases from a very
large value to the value observed in Fig., (3a) for the transition state. The function in Fig. (3b), which
corresponds to the lowest eigenvalue for this value of pn, correlates with the v = 0,5 = 0 state for I},
The effect of the strongly hindered rotational motion, discussed earlier in context with Fig. (1b), appears
in Fig. (3b) along the collinear equator in the form of the increased wavefunction density for the If - F' U
collinear arrangement wich respeet to the I - F arrangement. Figs, (3¢) and (3d) are examples of some
of the functions which provide reaction flux to the total wavefunction. Both functions appear to be a mix

between a v = 0 M, state and a v = 3 HF state,

C. Surface Functions
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The surface function Hamiltonian in Eq. (11) is a partial differential equation in the two variables
and y;. The finite eleraent (FE) method is used to solve this eigenvalue equation for the eigenfunctions
[surface functions &7, (6, xi,px)] and eigenenergies £, (pn).

The FE method® is a powerful numerical technique for solving partial differential equations. The
fundamental idea of this method is that surface functions which are continuous can be approximated by
a set of piecewise-continuous polynomials defined over a finite number of subdomains called elements.'A
major advantage of the finite element method is that the size of the elements can be varied across the
domain. Hence small elements can be used in physically accessible regions of space and large elements
in physically inaccessible regions of space. Two types of elements are commonly used to model a two-
dimensional domain, the triangie and quadrilateral. Originally triangular shaped elements were used
almost exclusively. It is now generally accepted that the quadrilateral elements are more officient. In
each element the surface function is approximated by an interpolating polynomial. This polynomial has
9 coefficients, so the element must have 9 nodes to uniquely determine the polynomial cocfficients. These
nodes are at the corners of the quadrilateral, the midpoint of each of the sides, nud the center of the
quadrilateral. The various shapes and nodal patterns exhibited by the surface functions presented in Figs.
(2) and (3) illustrate the need for a flexible basis capable of describing both localized and global topologies
on the hypersphere. We believe that the FE basis described above can provide such flexibility. Although
at this stage in our research we are finding that the FE basis cannot provide at a reasonable cost surface
eigenvalues which are converged and consistent over the fuli range of p, for the F'+ Hy = HF + H system.

The surface function eigenenergies for the lowest 20 states of du+ t = tju+ d, ti.» exchange of a muon
between a deuteron anc a triton, are plotted as a function of p in Fig. (4). For large values of p, the

eigenenergies are approaching the cigenenergies of the isolated atoms du and tu as one would expect.

IV. ITERATIVE METHODS

Projection of the FE basis onto Eq. (11) for a particular value of J, A, and p, yields the generalized
eigenvalue problem
H® = S®E r11)

where S is an overlap matrix. Since the calculation of the surface functions is currently the expensive step
of our procedure, it is imperative that we solve Eq. (14) as efficiently as possible. For the matrices required
for our scattering problems forder n = 3000 - 5000, half bandwidth m = 100 - 200}, the method of choice

is to solve Eq. (14) iteratively versus solving for the complete spectrum of (H,S).

A. Subspuace Iteratiocn

One approach used widely by the engineering community to solve problems like Eq. (14) is the
Subspace Iteration (SI1) method. The version of SI implemented in our scattering code was obtained from
the ADINA engincering package.? The iteration is started by choosing a set of ¢ vectors, represented
as the columus of Xy, which span the starting subspace. Constructing X; from a good estimate to the
eigenvectors of Eq. (14) greatly enhances the convergence rate, as we shall show later. Usually the subspace

size is chosen according to standard practice® as ¢ = maz(2p, p+8) where p = number of desired eigenpairs.
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Before iterating, H is factored as LDLT to facilitate the linear equation solution step. Then the algorithm
proceeds® for k = 1,2,... (the subscripts denote the k*» iteration):
1. Solve: HY k41 = SX.
2. Form the projected matrices:
H'k+1 = Yi 1 HY and S;:+1 = Y SYi41-
3. Solve the projected (p X p) eigenvalue problem using the generalized Jacobi methed:
HL+1‘I"}:+1 = S‘k+1‘p'k+1Elk+1- ’
4. Update the approximation: Xy,1 = Yk+1¢';+1-
5. Check E;‘Jd for convergence of the lowest p eigenvalues. Iterate back tc step 1 if necessary.
The procedure converges; that is E'k+1 — E and Xy41 — ® as k — oo.
B. Block Lanczos
The second iterative method we considered for solving Eq. (14) is the block Lanczos reduction
algorithm.!® Although a Lanczos algorithm could be designed to solve the generalized eigenvalue prob-
lem directly, the Lanczos package!! ve used is based upon the block Lanczos reduction for an ordinary
eigenvalue problem. We therefore convert Eq. (14) to an ordinary eigenvalue problem using a spectral
transformation of the form as suggested by Ericsson and Ruhe.!? The transformed problem is then solved
using the Lanczos method, with the solutions to Eq. (14) obtained by a back-transformation. The idea
behind the transformation is to invert the spectrum of Eq. (14). This inversion spaces the transformed
spectrum “hyperbolically™ [see Ref. (12)] which allows for a more efficient calculation since the eigenvalues

will be more distinct. Specifically we form the transforined matrix
H = D"1/2L-1SL-Tp-1/2 (15)
where H is factored as LDLT. We then solve the transformed problem
He =¢'E (16)
using Lanczos. The spectrum and eigenvectors of Eq. (16) are related to those of Eq. (14) by
E, = 1/E, and & - DVLTy. (17)

Since the Lanczos algorithm only requires the formation of a matiix U=H'V upon input of V, Eq. (15)
is never constructed explicitly. lustead U is formed from L,D, and S using linear equation solves and a
matrix multiplication.

The central result of the block Lanczos procedure is to reduce H' to a block tridiagonal form Ty =
QEH'Qk. Qy is constructed as (Ql,Qz,... Qk) where each Qx is a block of n, column vectors (ny is
defined as the Lanczos block size). Qy forms a distinguished basis for the Krylov subspace A%(Q,) =
span(Q;,H' Q,,(H')?Q,,... (H)*"1Q,]. Explicitly,

A, B;r 0 0

T, = B, Aj * 0 (:
o . " BE_I
0 0 By.1 Ay

4
—
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where the Ay and By are of order n,. If n, = 1, one recovers the simple Lanczos reduction scheme
where: 1) Qx — qk, a single column vector; 2) Ax — ax and By — Jy, both constants, and; 3) Ty
becomes strictly tridiagonal. The Qi are constructed iteratively once a starting residual (n X np) matrix
Ro (J|Ro]|| # 0) is specified. Then the algorithm!® proceeds for k = 1,2,... (again, the subscripts denote
the k' iteration):

Orthonormalize Rx_; (QR factorizatio.n): Ry_; = QuBi_1

Ry — H'Qx — Qu-1BT_, (Qo =0).

Ay ~ QERR.

Ry « Ry - QiAx.

Solve using Rayleigh Quotient Iteration: Tx®y = O\Ey.

S

6. Check Ex for convergance of the p lowest eigenvalues. Iterate back to step 1 if necessary.
The eigenvectors of H are obtained via Eq. (17) as & = L-TD~1/2Q, ©,.

The advantage to using the block Lanczos (as well as the disadvantage to using simple Lanczos) is
the property that the Lanczos reduction can only determine degenerate roots of multiplicity ny. Certainty
in determining degenerate eigenvalues requires a value of n, one greater than the expected maximum
degeneracy in the problem. This choice prevents errors from accidental degenercies due vo numerical
tolerances, crossings of adiabatic eigenvalues, etc. The version of Lanczos implemented in our scattering
code was derived from the SNLASO code of Scott.!! This code finds the eigenvalues at either end of
the spectrum using the block Lanczos reduction in conjunction with the selective orthogonalization {SO)
technique. The Lanczos reduction breaks down if ||I — QF Q|| deviaies from zero (> ¢) due to numerical
roundoff. Using Paige’s theorem,!31 it has been shown! that purging the residual Ry in step 4 of the
converged eigenvectors determined from the previous iteration at step 5 maintains the linear independence
of the columns of the Qx. The SO can be inserted as step 4.5 in the algorithm. [See Refs. (10) and (14)

for more details).

V. TEST PROBLEM: LiH + F

One three body reactive scattering system of interest is LiH + F = Li+ HF. A bond order PES
for this system has been constructed by Lagana and coworkers!®® fit to the ab initio energies of Chen and
Schaefer.!®® Using this PES, the FE solution to Eq. (11) for / = A = 0 has been calculated at two values
of pr, (p1 = 5.0ac and p; = 5.1ag). A uniform FE mesh was corstructed. This mesh was chosen for test
purposes only, and is in no way an optimal choice for a mesh. (See Sec. 1IL. B.) The H and S obtained are
of oruer n = 1729 and half bandwidth m = 109. (The half bandwidths quoied in this paper are average
values, since the symmetric matrices are stored in a skyline format.? The average half bandwidth of a
symmetric matrix is defined here as the number of matrix elements between the diagonal and the skyline,
inclusive, divided by the order n.)

The resulting generalized eigenvalue problem was then solved using both the SI and the block Lanczos
(BL) methods for both values of py. Within the SI method, two variations with regards to the choice

of the starting subspace X; were attempted. In one case, X3 at both values of pp was construced from
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random vectors [which we denote as SI(random)]. In the other case, X; was constructed from random
vectors for py, but then X, for p, was constructed from the eigenvectors obtained at p, [which we denote
as SI(good)]. If we consider the difference in Eq. (14) evaluated at p, and at p; as a perturbation, we
may expect the eigenvectors from p; to be a “good” approximation to the span of the subspace for the
eigenvectors at pz. This has been verified by comparing the eigenvalues at both p, values, and we find this
perturbation argument to be valid. In practice, the eigenvectors from the previous p, are available to us
at no cost, since the solution to our scattering problem requires us to calculate the eigenfunctions to Eq.

(1) sequentially in p;, for a set of 100 - 200 values of pj.

B. Few eigenvalue regime

In Fig. (5) we present the amount of CPU time required to diagonalize the LiH F' problem plotted
as a function of p for p < 20 (the “few eigenvalue” regime). (The CrU times quoted through out this
paper were determined on a CRAY-XMP.) Three approaches are presented: BL with n, = 2; SI(random);
and Sl(good). For p = 20, BL outperforms both SI(random) and SI(good) by a factor of ~ 4 and of ~ 3,
respectively. Note also that although both the SI and BL results appear to scale linearly in p, the BL curve
is of lesser positive slope than either SI curve. If this linearity held for large p, (it does not as we shall see
later) the BL method won!d still appear to be more efficient than SI(good) by a factor of ~ 3 - 4.

A similar scaling with respect to p was also observed in the few eigenvalue regime by Nour-Omid,
Parlett, and Taylor'® (hereafter referred to as NPT). NPT considered the FE solution for a structure
which when parameterized yielded matrices corresponding to H and S of order n = 468 and of m = 45.
In Fig. (6) of Ref. (16), NPT plot as a function of p (p < 9) the number of matrix-vector operations
(MVOPs) required to diagonalize their problem using both SI(random) and BL with n, = 1 and 2. NPT
defined a MVOP as a LDLT solve plus a matrix multiply for a single column vector. Using this measure,
step 1 of the SI algorithm costs ¢ MVOPs per iteration, whereas step 2 of the BL algorithm costs only n,
MVOPs per iteration. In Fig. (6) of NPT, the total 1VOPs scaled ~linearly for both BL and SI, with
the SI curve increasing much more steeply than the BL curve. This case parallels the behavior observed in
our Fig. (5) for BL vs. SI(random). Thus, NPT correctly concluded that the BL method was by far more
efficient than using SI for solving problems in the few eigenvalue regime, as long as a good initial subspace
is not available.

B. Many eigenvalue regime

Implicit in the above analysis is the assumpiion that the MVOPs are the rate limiting step in both
algorithins. The step in cach algorithm which competes with the MVOPs is: 1) the solution of the projected
generalized eigenvalue problem required at each iteration of the SI method (step 3); and, 2) the solution of
the reduced ordinary eigenvalue problem required at each iteration of the BL method (step 5). At the kth
iteration of the SI algorithm, the eigenvalue problem is of order ¢, independent of the value of k. At the A
iteration of the BL algorithm, the eigenvalue problem is of order (k- ny); the size of the problem increases
as a function of k. Eventually for a large value of p (which requires a large number of & iterations), the cost

to diagonalize the reduced eigenvalue problem exceeds the cost of the LDLT solve in the BL algorithm.
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This crossover of the rate determining step in the BL algorithm is apparent in Fig. (6a) where we
have plotted the CPU times vs. p in the “many eigenvalue” regime (p = 20-90). The SI(good) and BL
curves are approximately parallel to each other and are increasing as ~ quadratic as a function of p (which
we verified using a least squares fit of the data). The linear scaling observed in Fig. (5) for the few
eigenvalue regime does not hold in the many eigenvalue regime for either method. For BL, the totai cost in
multiplicative operations (OPs) for the Rayleigh Quotient Iteration (step 5) scales as cubic in the leading
term of p. This cost eventually approaches and overtakes the cost of the MVOPs which scales linearly in
p for the number of OPs. (The GP counts assume that the total number of iterations (k,,z) required to
converge p eigenvalues scales as linear in p. Through experience we have found that k5, ~ 3 p.)

The values reported in Fig. (6a) for BL were obtained using a modified version of the originai SNLASO
code, where step 5 of the algorithm was made more efficient. In the few eigenvalue regime only a negligible
decrease in CPU time was observed for p = 20 with respect to the original SNLASO code. Whereas in
the many eigenvalue regime, a ~ 30% decrease in CPU time was obtained for p = 90. Further research
has provided a BL code which is ~ 2.2 times faster than the original STWLASO code for p = 100 [see the
accompanyinz paper!” in this issue). But these further modifications have rendered the algortihm more
sensitive to the loss of orthogonality in the Qg such that the further modified version is not reliable enough
to use when generating sets of eigenfunctions for our scattering calculations. We alsc note that the SI
routine was used in an accelerated mode.!® One consequence of the acceleration is to deflate converged
eigenvectors from the the subspace Xy as they are found. This reduces the size of the subspace at nearly
every iteration, which in turn decreases the order of the projected eigenproblem which is solved. As k
increases, the amount of work needed to solve the projected eigenvalue problem decreases, which is exactly

opposite of the behavior of the BL algorithm.

1. Good starting subspaces

Also evident in Fig. (6a) is the effect of providing a "good” starting subspace for the SI method. At
p =: 90, the savings in time is over a factor of 2 with respect the usc of a random starting subspace [SI(good)
vs. SI(random)]. In principle, a good guess to the starting Lanczos residual matrix Ro should also increase
the convergence of the BL method. We have tested two different ways to introduce the eigenvectors from
the previous p, value into the Rg for the present pp4y vaiue. First, we tried constructing the iy columns
of Rg as linear combinations of all of the p converged eigenvectors calculated at p,. This approach showed
a negligible increase in convergence speed with respect to using a random block of vectors for Ry. Second,
we placed the eigenvectors associated with the ny lowest ¢’ genvalues calculated at py one-by-one in each
column of Rp. For a given value of p, this provided on the average about a 5% increase in the convergence
spred with respect to the use of random vectors (even for p = 90). The latter procedure showed some
improvement because it allowed for the projection of the n, lowest eigenvalues at the first step of the
Krylov subspace generation, i.e. Q2 x H'Rg = RoE'. Thus the n, lowest cigenvalues converge quickly,

but (p - ny) eigenvalues must still be found on subsequent iterations.

2. Variation of block sizc
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The BV results reported in Fig. (6a) were not calculated with the same value of n, for each value of p.
Fig. (6b) shows the value of n; used as a function of p. For values of p > 50, we found that fixing n, = 2
resulted in a loss of orthogonality of the Qy matrix, even within the application of the SO procedure. We
can explain this behavior by assuming that a Qy+ matrix of a minimum order k' = (k- np) is needed to
adequately converge p eigenvalues. If k' is large and n, is small, a large number of k iterations must be
performed. Each iteration introduces round-off error which eventually accumulates to an amount too large
for the SO to correct. To decrease the number of iterations for a fixed value of k' (thus decreasing the
accumulated round-off error), we must increase ny.

Taking the above argument to an extreme, we might assume that n, should be set as large as possible
so to decrease the number of total itertations. In practice this is not true. We have verified that using the
smallest value of ny such that non-orthogonality is avoided yields the fastest solution for a given value of
p. Even though k decreases, the order of the reduced eigenvalue problem = (k- n}) increases by n, each
iteration. Thus, the work to diagonalize the increasingly larger eigenvalue problem offsets the decreased
number of iterations. Each vaiue of n, in Fig. (6b) is the minimum value (in increments of 2) which does

not introduce non-orthogcnality for a given value of p.

C. Summary

In summary, for tha few eigenvalue regime (p < 20) the dominant operatioral cost for both solution
methods resides in the MVOP step. With SI requiring ¢ = maz(2p,p + 8) MVOPs and BL requiring
ny, MVOPs per iteration, respectively, the BL method is more efficient. For the many eigeuvalue regime
(20 < p < 90), the cost of solving the reduced eigenvector problem becomes competitve with the cost of
the MVOPs in the BL algorithm. Therefore, the overall costs in BL are only a factor of ~ 2 less than the

costs to use SI for many eigenvalue regime.

VI. PRODUCTION EXAMPLE: F + I,

When we generate scattering information (a production run), we must calculate the surface functions
sequentially in ps for many values of pn. The sequence must not be broken as we accumulate the overlap
between functions functions evaluated at p, and at py4y and not the functions themselves. We have found
that the SI method is much more reliable than the block Lanczos method with respect to determining this
sequence of surface functions. The block Lanczos method is sensitive to the choice of np and tends to fail
duc to a loss of orthogonality. A failure cccuring at some point during a production run is not acceptable.

With the last paragraph in mind, we present the CPU times for the first five values of py from a
production run in Table I using the ST method. Using the SA-PES for the F'4+ Hy = HF 4 H system, we
constructed the FE matrices for J = A = 0 using a non-unifortm mesh of the type discussed in Sec. 111 B.
We required p = 100 converged and carried an extra 50 unconverged eigenfunctions for each value of py,
resulting in a subspace of size ¢ = 150. This choice for g was larger than the value dictated by standard
practice, but the extra functions were needed to complete the basis for the scattering calculations. In
Table 1 we present the CPU times required to solve Eq. (14) for sucessive values of py using the Sl

method. Except for py, the starting subspace X; was constructed from the eigenvectors caleulated at the
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previous ps. A random guess for X; was used at p;. The benefits of having a “good” starting subspace
is evident in Table 1. Nearly a 50% savings in time is realized between the calulations at p, and pj, an
amount magnified by the fact that the matrices at p; are ~ 50% smaller than those at p3 (n = 2081 vs.
n = 3301). (The difference in n is due to the fact that a coarse uniform mesh is used for p;, whereas a
finer and more localized mesh is used for subsequent p, values. The choice of non-uniform mesh is based
on the eigenfunctions of the previous p;, therefore a “guess” mesh is needed for p,.) One reason for the
tremendous time savings is the decrease in total number of iterations kyqx (16 vs. 52 for p; vs. p3). Table
I also shows the stability of the SI(good) method with respect to a change in pn. The CPU times for
the last three o, values are within 5% of each other. The time at p, is larger than the last three values
because the starting subspace generated from the eigenvectors at p; on the coarse mesh is not as good as

the starting subspace obtained from the eigenvectors calculated on the finer non-unifcrm meshes.

VII. CONCLUSIONS

We considered the finite element sclution to the surface eigenvalue problem derived from an accurate
treatment of 3-dimensional scattering formnlated using APH coordinates. Examples of potentials, surface
functions, and non-uniform meshes plotted on the surface of the hypersphere were displayed. Both the
subspace iteration (SI) and block Lanczos (with selective orthogonaliztion, BL) method were utilized to
calculate surface functions. Although the SI method is slower than the BL method in the many (~ 90)
eigenvalue regime, we use the SI method exclusively when determing the surface functions for a scattering
production run. The SI method is less sensitive tl.an the BL method with respect to the choice of initial
parameters for each method.

We are presently considering other approaches for solving the surface eigenvalue problem which are
fundamentally diffcrent than the finite element method. For some scattering systems (ie., F' + !, =
HF 4+ ), we have found that a very fine mesh is required to converge the surface eigenvalues, espocially
for highly excited vibrational and /or rotational surface functions. A fine mesh translates into finite element
matrices which are too large (too expensive) to diagonalize even with the jterative procedures considered
here in this paper. We are presently investigating the expansion of the surface function: in both an analytic
basis and a discrete variable ropresentation? basis. The matrices associated with these approaches should
be suflicientiy small?® that the full surface eigenvalue spectrum for many vaiues of p), can be obtained at

a reasonable cost,
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Table 1. Subspace Iteration method.
p = 100 converged eigenvalues.
g = 150 vectors in subspace.
h  pn n® m® kb,  CPU time*
(ao) (sec)
1 4.000 2081 98 52 783
2 4.020 3277 134 20 457
3 4.040 3301 135 16 367
4 4064 3325 136 16 359
5 4.093 3407 137 16 394

aOrder (n) and half bandwidth (m) of H and S.
®Total number of iterations.
¢CPU time on a CRAY-XMP.

July 20, 1988
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FIGURE CAPTIONS

Figure 1. a) Stereographic projection of a contour plot of the F + Hy = HF + H 5A-PES® as a function
of 6 and x; on the surface of the sphere wit'. p = 7.3ap. All contours are measured from the bottom
of the asymptotic well for H F; dashed contours are at .35, 0.75, 1.44 (a little above the bottom of the
asymptotic well for H,), 2.1, and 2.8 eV. The shaded regions lie above 10.0 ¢V. The distance {rom the
center of the plot (north pole) is a measure of 8, and the azimuthal angle x, is measured from the positive
r axis. Arrangement channel A is near x; = 0, B is near -3x/4, and C is near 3r/4. The channels at
m,7/4 and -7 /4 are A, B, and C, respectively plus inversion. b) Same as Fig. a) except with p fixed
at 5.2 ap. The transition states are the small barriers along the equator (on the circle) located near /6,
-n/6, 57/6, and —57/6.

Figure 2. a) Perspective plots of the 5A-PES” for the F + H, = HF + H system at a hyperradius
of 7.3ag. A H; channel, centered at x; = 0, faces the reader. Two of the I I’ channels are centered
near x; = xr/4. 0 runs from zero (the central point of the mesh) to /2 (the circular boundary of the
mesh). The potential is clipped at 5 eV (at the platcaus) and the zero of energy is relative to the HF
asymptotic well. The arrows point at the barriers between the .72 channel and the M F' channels. b) The
surface function &3¢ o(6, xi; pn) at pn = 7.3a0. A finer mesh with respect to the others is used here. The
coordinate system is the same as that in Fig. a). ¢) The surface function ®940(8, xi;pn) at pr = 7.3a0.
The coordinate system is the same as that in Fig. a) d) The surface function $8, o(8, xi;pn) at pp = 7.3a,.
The coordinate system is the same as that in Fig. a).

Figure 3. a) Perspective plots of the 5A-PES” fcr the F + Hy = HF + H system at a hyperradius of
5.2ap. The coordinate system and energy scale is the same as that used in Fig. (2). The arrows point
at the transition state regions between the Hy channel and the H F channels. b) The surface function
<I>‘,”o(0, X1 0n) at pu = 5.24¢9. The coordinate system is the same as that in Fig. a). ¢) The surface function
¢>23‘0(0,\.-;p,‘) at pp = 5.2ay. The coordinate system is the same as that in Fig. a). d) Tie surface
function d>84.(,((), Xii0n) at pp = 5.2ay. The coordinate systemis the same as that in Fig. a).

Figure 4. Plot of the surface function eigenvalues in eV for dp 4+ t = tj + d as a function of hyperradius
pin agy.

Figure 5. CPU time required to converge p eigenvidues for ihe Lill 4 F = Li + H} test problem, (O -
Sl(random), & = Sl{good), + = BL with n, = 2.

Figure 6. a) CPU time required to converge p eigenvadues for the Lill 4 F w2 Li 4 11 F test problem,
O = Slirandom), & = Sl(good), 4 = BL, The values of SI(random) for p = 80 and 90, which are off seale,
are 358 and 551 see, respectively. b) Block size used to generate the BL results in Fig, «).
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