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Seismic modeling and reverse-time
depth migration by flux-corrected transport

Tong Fei

ABSTRACT

Where the Earth's subsurface is generally inhomogeneous, lateral and vertical
variation in velocity and density should be considered when doing seismic model-
ing and migration. Finite-difference modeling and reverse-time depth migration
based on the full wave equation are approaches that take such wriation into ac-
count.

Here, through a change of dependent variables, the second-order acoustic wave
equation is replaced by four first-order partial differential equations. The flux-
corrected transport (FCT) method, commonly used in hydrodynamics for shock-
wave simulation, can then be used in solving these equations. The FCT method
offers the opportunity to preserve a broader range of frequencies at lower com-
putational cost than in conventional finite-difference modeling and reverse-time
wave extrapolation. Moreover, it is also applicable in circumstances involving dis-
continuities in the wavefield, where other conventional finite-difference approaches
fail. Computed two-dimensional impulse responses and synthetic data indicate
that this method can accurately image positions of reflectors with greater than
90-degree dip for variable-velocity media.

INTRODUCTION

Finite-difference methods, following the approaches of Claerbout (1985), have
-- been widely implemented for wave extrapolation in modeling and migration. Those

approaches employ a one-way wave equation that allows energy to propagate either
downward or upward, but not both. Although successful in many situations, such
methods are limited by the assumptions made in deriving the one-way wave equation.
In particular, it is assumed that the spatial derivatives of the velocity 2_ld can be ig-
nored. However, such terms are significant in the presence of strong velocity contrasts.
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Moreover, most finite-difference schemes based on the one-way wave equation contain
a limit on the maximum dip angle of the reflector. To deal with a variable velocity
field, Kosloff and Baysal (1983) developed a two-dimensional migration scheme in the
frequency and space domain based on a direct integration in depth of the acoustic
wave equation.

Reverse-time migration methods based on full wave equation potentially can
address ali issues - arbitrary velocity variations, turning waves, shear waves and
anisotropy - anything that can be treated in seismic modeling. This method, how-

ever is costly, placing heavy demands on computer memory and input/output devices
(Reshef and Kessler, 1989; Blacquiere et al., 1989; Hale and Witte, 1992).

Some finite-difference schemes for numerically solving the wave equation suffer
from undesirable ripples, particularly near large gradients in wavefields or when too
coarse a computation grid is used. Alford et al. (1974) and Kelly et al. (1976)
have studied the numerical dispersion existing in finite-difference methods. They
concluded that the signals computed by finite-difference methods become strongly
dispersed if the grid is too coarse. For eliminating the numerical dispersion, they
state that at least 11 and 5.5 points per wavelength must be used for the second-
order and fourth-order finite-difference methods, respectively. Other schemes, such
as a two-step explicit method on a staggered grid, produce no ripples, but suffer
from excessive smoothing of waveforms and loss of amplitude (numerical diffusion).
The flux-corrected transport (FCT) method developed by Boris and Book (1973)
has been successfully applied in the solution of the continuity equation for acoustic
media in circumstances involving large gradients and discontinuities, where standard
algorithms fail. The FCT algorithm can treat strong gradients, shocks and impulses,
without the usual dispersively generated ripples, even for five or fewer points per
wavelength.

Here, the second-order accuracy, FCT finite-difference technique, is applied to
forward seismic modeling and reverse-time depth migration. The method requires
that the second-order acoustic wave equation first be replaced by an equivalent set
of first-order partial differential equations. This method can be applied with full
consideration of variable velocity and density, and can image reflectors with a wide
range of dips. It can also be used on a relatively coarse grid to achieve accuracy
comparable to that of conventional finite-difference approaches on a finer grid.

TtlEORY

The key steps in deriving equations used for FCT modeling and reverse-time depth
migration here are (1) to define new dependent variables, (2) to form four _,rst-order,
so-called conservative, equations in these variables, based on the original second-
order acoustic wave equation, and (3) apply the FCT technique to the conservative
equations.
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Equations

For velocity and density fields that are functions of space, the acoustic wave equa-
tion is

_ {1oe_ o (_oe/ o _ae

where p = p(x,y,z) is density, c = c(z,y,z) is wave velocity, and f(x,y,z,t) is the
source function.

With new dependent variables defined as

1 OF (2)
q = pc 2 _ '

OP

u___T_' (3)

OP

v= _, (4)

OP (5)
W---- 0Z'

the second-order acoustic wave equation (1) is reduced to a new first-order partial
differential equation that has the conservative form, and three additional first-order
partial differential equations are derived from definitions (2) through (5). The four
new equations give a complete set of equations in the form required for doing the
wavefield extrapolation by the FCT technique. These equations take the form

Oq 0 0 0

0u0()-_ = o-7°_'q ' (7)

oy o()= o_ pc_q' (s)

0_ 0( )o-7= o-7°c2q" (9)

From equation (2), note that the new dependent variable q(x, y, z, t) has a 90-

degree phase shift relative to the variable P.
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Multi-dimensional flux-corrected transport

Conceptually, the FCT algorithm consists of two major stages -- a transport stage
(Stage I), followed by an anti-diffusive or corrective stage (Stage II). Interaction of
these two stages enables FCT algorithms to treat strong gradients and shocks with
almost none of the usual dispersively generated ripples.

In the first stage, a standard finite-difference method, such as leapfrog, is used.
Stage II is devoted to correcting numerical errors introduced in Stage I.

The Appendix gives the procedure for solving equations (6) through (9) by the
flux-corrected transport (FCT) finite-difference method. In the computer implemen-
tation, the absorbing boundary condition of Clayton and Engquist (1980) has been
applied to the two side boundaries and the lower boundary.

With this flux-corrected transport technique, we obtain a depth migration image
for spatially variable media at less computational effort (generally five times less)
than in conventional finite-difference reverse-time methods, which require a finer grid
and smaller time step to achieve comparable accuracy.

NUMERICAL EXAMPLES

The FCT algorithm was tested on one-dimensional forward problems and on two-
dimensional reverse-time depth migration. The reverse-time depth migration, which
basically is the same as forward modeling, simply runs time backwards.

For the one-dimensional case, where _ = _ = 0, forward modeling tests are
made for a wavelet that is an isolated full-cycle of a sinusoid, 0.5 cos(2rft)+0.5, with
different frequencies f, as well as for a rectangle function with different widths. The
medium is homogeneous in this case.

For the two-dimensional case where o_ = 0, input data in one set of tests consista_
of unit impulses for three media, the first with a constant velocity, the second with a
constant velocity gradient in depth z, and the third with a constant lateral velocity
gradient. In other tests involving a reflector model, both constant velocity and v(x, z)
velocity fields are considered.

One-dimensional tests

In these one-dimensional tests, the medium has a constant density and a constant
velocity of 2 km/s. The spatial step size Ax is 0.01 km, and the time step /kt is
2 ms. In each of the modeling tests, I specify a time sequence at the surface and
examine a snapshot of the wavefield generated in depth. Figures 1 through 4 show
the snapshots at 1 s, generated by three isolated sinusoids at the surface 0.33-s apart.
The frequencies for these tests are 10 Hz (twenty samples per wavelength), 15 Hz
(thirteen samples per wavelength), 25 Hz (eight samples per wavelength) and 40 Hz
(five samples per wavelength) respectively. Similarly, Figures 5 through 7 show the
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snapshots at 1 s for rectangle function pulses at the surface with eight, four and two
samples per pulse width, respectively.

In each of the seven figures, I compare the results for the ideal solution with those
obtained by a standard finite-difference method and by the FCT algorithm. The
ideal solution has a waveform that is unchanged during propagation. In Figure 1, the

low-frequency simulation (large dominant wavelength relative to Ax), the standard
leapfrog method applied to first-or(!er equations gives a good result with only a small
amount of dispersion, while the dispersion ripples are absent in the FCT solution.

For the relatively higher-frequency (15 Hz) case shown in Figure 2, the dispersive
ripples generated from the standard leapfrog method are increased, but again no
dispersion is evident in the FCT result. The FCT solution, however, has amplitudes
that are less than 3 percent Weaker than the correct solution, while the leapfrog
solution has no amplitude loss. The weakened amplitudes are the result of applying
diffusion and anti-diffusion in the FCT method; the anti-diffusion did not fully correct

for the amplitude loss in the diffusion stage.

For the waves with short periods, eight samples per wavelength (Figure 3) and five

samples per wavelength (Figure 4), the standard leapfrog method yields a progres-
sively more distorted and weakened waveform, with large precursor oscillations. The
FCT method still produces a good waveform shape, without the dispersive ripples,
but with the amplitude losses of about 5 percent in Figure 3 and about 10 percent
(for the deepest event) in Figure 4. The results suggest that the FCT method can
give the correct position of the wavefront even when few samples per wavelength are
used, but the error in amplitude seems to be unavoidable.

For the rectangle pulses (Figures 5 through 7), the standard leapfrog finite-
difference method gives poor solutions for ali choices of sampling, whereas the FCT
solutions show little distortion in waveform and no numerical dispersion. Also for the

choices of eight and four samples per pulse width, the FCT method gives the correct
amplitudes (Figures 5 and 6), because relatively lower frequencies are dominant in
these two cases than in tests with the sinusoidal pulses. For the narrowest rectangle

pulse, with two samples per pulse width, which has wider range of frequency compo-
nents than that of the previous two cases, the distorted rectangle pulse has significant
loss of amplitude, as shown in Figure 7.

When the conventional second-order finite-difference method with eleven points

per wavelength and fourth-order finite-difference method with six points per wave-
length are used to solve wave equation (1), no dispersion is observed for both methods
if the wave is propagating for a sufficiently short time (Alford et al., 1974; Kelly et
al., 1976). If the wave propagates for a longer time (i.e., to a greater depth), both
the second-order and the fourth-order finite-difference methods would generate strong

numerical dispersion for a sinusoid with the above choices of points per wavelength
(Figure 8a and Figure 9a). When using twenty points per wavelength for the second-
order method and twelve points for the fourth-order method, the numerical dispersion
is much reduced (Figure 8b and Figure 9b). Applying the second-order and the fourth-
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FIG 1. One-dimensional test for isolated full-cycle of a sinusoid with a frequencyof 1(} -z (twenty samples per wavelength), for a constant velocity of 2 km/s and a
constant density. (a) Ideal wavefield. (b) Wavefield obtained by a standard leapfrog
finite-difference method. (c) Wavefield obtained with the FCT correction.
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FZG. 2. One-dimensional test for isolated full-cycle of a sinusoid with a frequency
of 15 Hz (thirteen samples per wavelength), for a constant velocity of 2 km/s and a
constant density. (a) Ideal wavefield. (b) Wavefield obtained by a standard leapfrog
finite-difference method. (c) Wavefield obtained with the FCT correction.
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Fm. 3. One-dimensional test for isolated full-cycle of a sinusoid with a frequency
of 25 Hz (eight samples per wavelength), for a constant velocity of 2 km/s and a
constant density. (a) Ideal wavefield. (b) Wavefield obtained by a standard leapfrog
finite-difference method. (c) Wavefield obtained with the FCT correction.
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FIG. 4. One-dimensional test for isolated full-cycle of a sinusoid with a frequency
of 40 Hz (five samples per wavelength), for a constant velocity of 2 km/s and a
constant density. (a) Ideal wavefield. (b) Wavefield obtained by a standard leapfrog
finite-difference method. (c) Wavefield obtained with the FCT correction.



Fei FCT modeling and reverse-time depth migration
i

Amplitude Amplitude Amplitude
-0.5 0 0.5 1.0 1.5 -0.5 0 0.5 1.0 1.5 -0.5 0 0.5 1.0 1.5o o
........................i ,..................., i i• . ..o._1......!-,....:i:_.......
......t......i.......i.......,.o.........................

1.5............i.......i......ili .... F
(a) (b) (c)

FIG. 5. One-dimensional test for isolated rectangle pulses (eight samples per pulse
width), for a constant velocity of 2 km/s and a constant density. (a) Ideal wavefield.
(b) Wavefield obtained by standard leapfrog finite-difference method. (c) Wavefield
obtained with the FCT correction.
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FIG. 6. One-dimensional test for isolated rectangle pulses (four samples per pulse
width), for a constant veloci'cy of 2 km/s and a constant density. (a) Ideal wavefield.
(b) Wavefield obtained by standard leapfrog finite-difference method. (c) Wavefield
obtained with the FCT correction.
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FIG. 7. One-dimensional test for isolated pulses (two samples per pulse width), for a
constant velocity of 2 km/s and a constant density. (a) Ideal wavefield. (b) Wavefield
obtained by standard _eapfrog finite-difference method. (c) Wavefield obtained with
the FCT correction.

Amplitude Amplitude Amplitude
-0.5 0 0.5 1.0 1.5 -0.5 0 0.5 1.0 1.5 -0.5 0 0.5 1.0 1.5

0- _ ' ' 0 ._ 00.5- _. 0.5...... 0.5..............

...........,.............._,.o..............;,......._......_,.o.
_:,.o-_ _,._.':::_: _,._._1.5 .............................

° ° 'ii iii °........,.oi ,.o.
2.5" _ 2.5 2.5

(a) (b) (c)

FzG. 8. One-dimensional tests using second-order finite-difference method for solving
equation (1). (a) Wavefield for isolated sinusoid with eleven samples per wavelength.
(b) Wavefield for isolated sinusoid with twenty samples per wavelength. (c) Wavefield
for isolated pulses with twenty samples per pulse width.
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FIG. 9. One-dimensional tests using fourth-order finite-difference method for solving
equation (1). (a) Wavefield for isolated sinusoid with six samples per wavelength. (b)
Wavefield for isolated sinusoid with twelve samples per wavelength. (c) Wavefield for
isolated pulses with twelve s__m.plesper pulse width.

order methods to the rectangle pulses, with sharp corners (Figures 8c and 9c), cannot
give the correct wavefield- no matter how many samples per pulse width are used.

From these one-dimensional tests, we see that the FCT technique can treat large
gradients and shocks without the usual dispersively generated ripples. The FCT
algorithm not only removes the dispersive errors, but also yields a waveform with
little distortion and only a few percent loss of amplitude if more than five samples
per wavelength are used for the sinusoid and more than four samples per pulse width
are used for the rectangular pulse. If too few samples per wavelength are used,
the FCT method produces a mildly distorted waveform, but has significant loss of
amplitude. For the narrowest pulse (two samples per pulse width), the amplitude
loss, depending on propagation distance, is as great as about 35 percent in this test.

Two-dimensional impulse responses

Figure 10 shows the post-stack migration response of the FCT algorithm to three
impulses (five samples per wavelength of the sinusoids) in 2.D space, where veloc-
ity is a constant 2.0 km/s. Here, density is again a constant, the spatial steps are
0.02 km (/Xx = /Xz = 0.02 km), and the time step/kt is 2 ms, running backward.
The three clear semi-circular reflectors seen in the figure are in the correct positions,
with no indication of numerical dispersion. Theory predicts that the migration im-
pulse response in two dimensions carries a 45-degree phase shift (Claerbout, 1985),

10
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so a symmetrical input pulse generates a phase-distorted migration response. The
migration impulse response in this test (Figure 10) has about 50-degree phase shift.

The theoretical amplitude variation with distance for 2-D impulse responses is
rather complicated. As an approximation, the amplitude should be inversely propor-
tional to the square-root of traveltime or distance (i.e. v_ or _ for homogenous
media (Bleistein 1984, 1986). In this test, the amplitude error increases with traveling
distance, for the first event the amplitude loss is about 3 percent, for the second event
the amplitude loss is about 11 percent and for the third event the amplitude loss is
about 15 percent.

Distance(km)
0 1 2 3 4 5

FIG. 10. Migration impulse responses by the flux-corrected transport method for a
constant background velocity of 2.0 km/s and constant density.

Figure 11 shows impulse responses (five samples per wavelength of the sinusoids)
for velocity linearly increasing with depth, c = 2.0 + 0.6z km/s, and with density
kept constant. The spatial steps are 0.02 km (Ax = Az = 0.02 km), and the time
step At is 1 ms. Two events seen in the figure are in the right positions. The third
event is out of the region of interest, but the result shows weak reflection of the third

event due to the use of an imperfect absorbing boundary condition. For this velocity
model, the FCT method can give good images for reflector dip beyond 90 degrees.

For lateral variable velocity, c = 1.6+0.2x km/s, the post-stack migration response
of the FCT algorithm to three impulses (five samples per wavelength of the sinusoids,
and At = 2 ms ) is shown in Figure 12. Again, three clear semi-circular reflectors seen
in the figure are in the correct positions, with no indication of numerical dispersion.

11
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FIG. 11. Migration impulse response for velocity linearly increasing with depth,
c = 2.0 + 0.6z km/s, and constant density.

Distance (km)
0 1 2 3 4 5

g
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FIG. 12. Migration impulse response for velocity linearly increasing with distance,
c = 1.6 + 0.2x km/s, and constant density.
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Due to the lateral velocity varliation, the centers of the semi-circular reflectors axe
shifted to the right.

Reflector Model
0_

u

A

E

r. 2-

(1)
c_

3-

I I I I I

1 2 3 4 5 6
Distance (km)

FIG. 13. Reflector model used to generate synthetic data for the tests described in
Figures 15 through 18.

Reflector model

The model shown in Figure 13 has five reflectors,each with a horizontal segment
and a segment with dip varying from 30 degrees to 90 degrees, in 15-degreeincrements.
The iruut zero-offset time sectiion for each of four different velocity models (Figure
14) was obtained by a Kirchhoff modeling program. The first of the fo_.rmodels has
constant velocity, and the other three have linear velocity variation, with gradient in
the vertical, horizontal, and intermediate directions, respectively. Figures 15 through
18 show the result_ of the FCT reverse-time depth migration applied to each of the
zero-offset synthetic data sets in Figure 14. The spatial steps Ax and Az in these
tests axe both 0.02 km, and the time step At is 2 ms for the cases of constant velocity
and constant lateral velocity gradient, and is 1.5 ms for the other two cases. The
input zero-offset synthetic data contain a symmetric Ricker wavelet with dominant
frequency of 10 Hz.

For the constant-velocity model (zero-offsetsynthetic data shown in Figure 14a),
the migrated section (Figure 15) showl_that a good image is obtained for horizontal
reflectors and for reflectorswith dip up to 60 degrees. Forsteeper reflectors, the image
is poor because insufficient data were recorded. Fora vertical reflector, synthetic data
cannot be recordedin constant-velocity media, so no migrated image can be obtained.

13
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D_tar_ (km) O_tance(km)
0 _ 2 3 4 5 0 I 2 3 4 5

0
1

1' 1
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Fzc. 14. Zero-offset synthetic time sections generated by Kirchhoff modeling for
(a) constant velocity c = 1.6 km/s, (b) velocity linearly increasing with depth, (c)
velocity linearly increasing in the horizontal direction, (d) velocity model with linear
variation in (x, z).

14
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Distance (km)
0 1 2 3 4 5

FIO. 15. Migrated section for constant velocity, c = 1.6 km/s, and constant density.

Distance (km)
0 1 2 3 4 5

FIG. 16. Migrated section for velocity model c(z) = 1.6 + 0.6z km/s, and constant
density.

15
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Figure 14b gives the synthetic data for velocity linearly increasing with depth,
c(z) = 1.6 + 0.6z km/s. The migrated section (Figure 16) indicates that the FCT
method can accurately image the horizontal reflectors and dipping reflectors with ali
dips. The broadening of deeper events is caused by the increasing of velocity with
depth, and the small artifacts at the joint and end of the reflectors are the result of
insufficient synthetic data at the edges. These artifacts also are present in results
obtained by a different migration method -- the Kirchhoff integral method (Liu,
1992).

Distance(km)
0 1 2 3 4 5

FIC. 17. Migrated section for velocity model c(x) = 1.6 + 0.2x km/s, and constant
density.

In the third model, veloc;ty varies horizontally, c(x) = 1.6 + 0.2x km/s. The
migrated result (Figure 17) indicates that with laterally varying velocity, the FCT
method can give clear and correct reflector positions for horizontal reflectors and
for dipping reflectors with dip up to 75 degrees. The reflection from the 90-degree
reflector waz _ot recorded within the data aperture (Figure 14c), so no image of it is
generated. Note also in Figure 17 that amplitudes are weakened in the slow-velocity
region. This weakening in amplitude also happens for migration by the Gaussian
beam method with the same data set, suggesting that the weakening is related, in
part, to a shortcoming in the data. However, the choice of coefficient rh and r/2 (see
Appendix) in the FCT method also influences the amplitudes of the events. Here, I
find the best results when the coefficient 01 used in the FCT diffusion stage is linearly
increasing tow._rd the right, while the coefficient 02 used in the FCT anti-diffusion
stage is linearly decreasing in that direction.

16
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Distance(km)
0 1 2 3 4 5

FIc. 18. Migrated section for velocity model c(x, z) = 1.5 + 0.2x + 0.35z km/s, and
constant density.

For a velocity field that is changing both vertically and horizontally, c(x,z) =
1.5 + 0.2x + 0.35z km/s, the migrated section (Figure 18) shows accurate positioning
of the horizontal, dipping, and vertical reflectors. The result here is qualitatively
somewhere between that for the two preceding cases. Again, the small artifacts at
the joint and the end of the reflectors are the result of insufficient synthetic data at
the edges.

EFFICIENCY

Comparisons of computational effort in the second-order FCT technique with that
in conventional second-order and fourth-oxder finite-difference methods for seismic

modeling and migration, suggests that the FCT method is more efficient.

For 2-D problems, the second-order conventional finite-difference method for solv-

ing equation (1) requires about kN 3 computations, here, assuming that the number
of grid points in horizontal and depth directions, and the number of time steps are
each equal to N. The second-order finite-difference method for solving equations (6)
through (8) increases the amount of computation to about 1.6kN 3, which is nearly
the same as that for the fourth-order finite-difference method for solving equation (1).
The diffusion and anti-diffusion steps in the second-order FCT method again increase
the computational effort, to about 4kN z, but the FCT method gains in efficiency
because fewer points per wavelength are required. In practice, twenty points per

17
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wavelength must be used for the second-order conventional finite-difference method
and twelve points must be used for the fourth-order method to achieve acceptable
accuracy. In contrast, for the FCT method, only five points need to be used to ob-
tain comparable accuracy. Thus, as seen in Table 1, the FCT method should gain
in speed by a factor of about sixteen compared with the conventional second-order
finite-difference method, and by a factor of about five compared with the fourth-order

method. For 3-D problems, the increased efficiency and speed of the FCT method
should be even greater.

Computational cost Points
Method proportional to per wavelength Time Speed

2nd-order (1 eqn) kN 3 20 1 1
2nd-order (3 eqn) 1.6kN 3 20 1.6 0.63
4th-order (1 eqn) 1.6kN 3 12 0.35 2.86

2nd-order (3 eqn) FCT 4kN 3 5 0.063 16

Table 1. Comparison of relative computation effort and speed of the second-order
FCT method with that of the second-order and the fourth-order conventional finite-
difference methods for 2-D problems, and with second-order st.lution of equations
(6), (7) and (9). Here, the time and the speed of the second-order conventional
finite-difference method for solving equation (1) are taken as unity.

CONCLUSIONS

Rewriting of the acoustic wave equation, gives a new set of the first-order partial
differential equations, with no additional assumptions. These first-order equations are
then amenable to solution by the flux-corrected transport method. The FCT finite-
difference mod;:!_ lg _ud reverse-time depth migration presented here can be applied
to arbitrary velocity and density fields. The additional FCT steps require about 1.5
times more computation than that of the standard explicit finite-difference step. The
FCT method, however, offers the opportunity to use a coarse grid (fewer samples

per wavelength) to obtain accuracy in wave field extrapolation that is comparable to
that obtained by conventional finite-difference methods. The FCT technique is still
about triple the cost of the Kirchhoff integral method for 2-D applications. For 3-D
migration and modeling, the computational effort of any finite-difference method (the
FCT method in particular) is proportional to N 4, while that of the Kirchhoff integral
method or Gaussian beam method is proportional to N 5, suggesting that the FCT
method and the Kirchhoff integral method or Gaussian beam method might have

competitive efficiency for 3-D problems.

The migrated results show that this method can produce good images of reflectors
with dip beyond 90 degrees for velocity that increases with depth. Moreover, the
FCT method can overcome problems of numerical dispersion that arise in standard
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non-diffusive, finite-difference algorithms where the wavefield has strong gradients or
discontinuities.

ACKNOWLEDGMENTS

Thanks to Ken Larner and Jack Cohen for their critical reading of this paper. I

also thank Dave Hale for helpful discussions and comments. I gratefully acknowledge
the support by the members of the Consortium Project on Seismic Inverse Methods
for Complex Structures at the Center for Wave Phenomena, Colorado School of Mines,
and the support of the United States Department of Energy, grant number DE-FG02-
89ER14079. (This support does not constitute an endorsement by DOE of the views
expressed in this paper.)

REFERENCES

Alford, R., Kelly, K., and Boore, D., 1974, Accuracy of finite-difference modeling of
the acoustic wave equation: Geophysics, 39, 834-842.

Blacquiere, G., Debeye, H., Wapena_r, C., and Berkhout, A., 1989, 3D table-driven
migration: Geophys. Prosp., 37, 925-958.

Bleistein, N., 1984, Mathematical methods for wave phenomena: Academic Press,
Inc.

Bleistein, N., 1986, Two-And-one-half dimensional in-plane wave propagation: Geo-
phys. Prosp., 34, 686-703.

Boris, J., and Book, D., 1973, Flux-corrected transport. I. SHASTA, A fluid transport
algorithm that works: J. Comput. Phys., 11, 38-69.

Claerbout, J., 1985, Imaging of the earth's interior: Blackwell Scientific Publications,
Inc.

Clayton, R., and Engquist, B., 1980, Absorbing side boundary conditions for wave
equation migration: Geophysics, 45,895-904.

Hale, D., and Witte, D., 1992, Migration: progress and predictions: Presented at the
62nd Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 610-612.

Kelly, K., Ward, R., Treitel, S., and Alford, R., 1976, Synthetic seismograms: a
finite-difference approach: Geophysics, 41, 2-27.

Kosloff, D. and Baysal, E., 1983, Migration with the full acoustic wave equation:
Geophysics, 48, 677-687.

Liu, Z., 1992, Seismic modeling and inversion for arbitrary velocity: CWP paper,
Colorado School of Mines.

Reshef, M. and Kessler, D., 1989, Practical implementation of three-dimensional post-
stack depth migration: Geophysics, 54, 309-318.

19



m

Fei FCT modeling and reverse-time depth migration

APPENDIX: FLUX-CORRECTED TRANSPORT

The flux-corrected transport (FCT) method (Boris and Book, 1973) was developed
primarily for solving the first-order continuity equation in hydrodynamics. To apply
the FCT method to seismic wavefield extrapolation, we need to solve equations (6)

through (9). In this application, two-dimensional problems are considered. Without
derivation, the FCT algorithm proceeds as follows.

1. Advance the solutions on a staggered grid by a standard finite-difference method

(leapfrog algorithm has been applied here) and obtain ui,j-n+l"/+1/25'"+xand _/d+l/2'n'l'l
at time level n + 1. (For example, q/"j is the value of q at time sample n, x-
coordinate sample i, and z-coordinate sample j). To save computation cost,
the FCT correction (next few steps) need be performed only on the variable
q. Such a correction is not necessary for computation of u and w. Once q is
corrected, u and w can be computed directly from equations (7) and (9).

2. Compute diffusive fluxes at time level n- 1 •
n--1 n-1 n--1

= -qid ) 0<r/i<lQZi+l/2,j 7}1(qi+ld -- --

n-1 n-1 n-1 (A-l)= -qij ) 0<7}1<1Qzid+ll2 _1(q/d+l - - ,

where 771is a coefficient that varies with position. In this application, 7}1is a
linear function, with values between 0.02 and 0.1. This function is empirically
determined from a few numerical experiments by considering the amplitude
treatment for horizontal events. Results are not critically sensitive to the choice

of 7/1once it is clo._e to a good value.

3. Compute diffusive fluxes at time level n + 1, for the use in stt u 6 below •

n+l {,.,n-bl ._n+l_ _z i+ l / 2 ,j -" r]2k_li+ l ,j --tli d ] 0 <_rl2 < 1

n-I-1 _.g.n+i _.n-l-I_ (A-2)zid+l/2 = 'rz_uid+l --tlid ) 0 < r12< 1,

with a similar choice for r/2 as for r/xin step 2. The values or the function of 02,
however, may differ from that of 7}1.

4. Modify (i.e. diffuse) the solution q using Q_ and Qz; this process smooths the
solution (also causes loss of amplitude) and eliminates the dispersive ripples •

=n+l _n+l n-1 n-1
"-- -- (_zi-1/2,j)(li,j tli d Jr (QZi+l/2d

n-1 n-1
- Q_ij-1"_ (Qzi,j-t-1/2 /2)" (A-3)

5. Take the differences of the diffused _ •

_---n-bl 7.n+l
Xi+l/2,j -" tli+l d - tli,j

xn+l =n+l (A-4)Zi,j+l/2 -" tlid+l -- tli,j •

2O
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6. Anti-diffuse the solution as follows, and obtain the corrected solution for q •

qn+l zn+l X c c c __ c , (A-5)i,_ = _i,_ - ( i+x/2j - Xi_x/2j) - (Zij+_/2 Zij-1/2)

where

- abs(Q_i+l/2d), S_Xi+312,.i]},XC+l/2d - Sx max{O, min[SxXi_ll2d, ~ n+x
-., n+l

Z_,./+I/2 = S. max{O, min[S.Zid-a/2, abs(Q.i_i+,/2), SzZid+3/2]},

n+l I
Sx = sign{,,_zi+x/2,jj,

• r.-_ n+l .,

Sz = mgnl(4zid+x/21.

21
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