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THREE-DIMENSIONAL MHD FLOWS IN RECTANGULAR DUCTS
OF LIQUID-METAL-COOLED BLANKETS

T. Q. Hua, J. 8. Waiker, B, F. Picologlou, and C. B. Reed

ABSTRACT

Magnetohydrodynamic flows of liquid metals in rectangular ducts with thin conducting
walls in the presence of strong nonuniform transverse magnetic fields are examined. The
interaction parameter and Hartmann number are assumed to be large, whereas the
magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and
inertial effects are confined in very thin boundary layers adjacent to the walls. A
significant fraction of the fluid flow is concentrated in the boundary layers adjacent to
the side walls which are parallel to the magnetic field. This paper describes the analysis
and numerical methods for obtaining 3-D solutions for flow parameters outside these
layers, without solving explicitly for the layers themselves. Numerical solutions are
- presented for cases which are relevant to the flows of liguid metals in fusion reactor
blankets. Experimental results obtained from the ALEX experiments at Argonne
National Laboratory are used to validate the numerical code. In general, the agreement

is excellent.



L0 INTRODUCTION

In a self-cooled liquid-metal blanket for a magnetically confined fusion reactor,
the magnetohydrodynamic (MHD) effects are of paramount importance in the design
process [1]. The interaction between the circulating liquid metal with the strong toroidal
magnetic field results in large electromagnetic body foreces which determine the flow
distribution of the liquid metal, and produce large MHD pressure gradients. The resulting
MHD pressure drop may cause excessive pumping power loss and large material
stresses. Also, the MHD flow disiribution may affect drastically the heat transfer
characteristics of the blanket in general and the first wall coolant channels in particular.

An experimental and analytical program is being carried out at Argonne National
Laboratory (ANL) to investigate the MHD effects in liquid metal flows in electrically
conducting conduits of various geometries. Experiments are conducted in the Argonne
Liquid Metal Experiment (ALEX) facility [2). A recent summary of the experiments and
code development efforts for a round duct and a rectangular duct can be found in
Reference 3. This paper concentrates on the theoretical analysis and the numerical
methods for a straight rectangular duct, with applications to a fusion blanket module.
Some representative experimental data obtained through the ALEX experiments are
presented for comparison with the numerical predictions.

2.0 THEORETICAL CONSIDERATIONS

2.1 Formulation of the Problem

o We consider the steady flow of an incompressible liquid metal driven by a
pressure gradient along a rectangular duct with thin metai walls and with an imposed
transverse magnetic field whose strength varies along the duet (Figure 1). A transverse
magnetic field variation in the axial direetion requires a non-zero axial magnetic field.
This weaker axial magnetic field is neglected in this model because the major magnetic
body foree in the liquid metal arises from the interaction between the fluid flow with the
transverse field. The ratio of the induced to applied fields is given by ¢ 172 R, Here,
owt
¢=ol

Rm =.uaUL
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FIGURE 1. SCHEMATIC DIAGRAM OF THE PHYSICAL MODEL



are the wall conductance ratio and magnetie Reynolds number. u and o are the magnetic
permeability and electrical conductivity of the liquid metal, o, and t are the electrical
conductivity and thickness of the duct wall, U, is the average axial velocity of the fluid
and L is a characteristic transverse dimension of the duct. For a self-cooled blanket in a
fusion device, e'/? R, is at most of order 10'2; therefore, it is appropriate to neglect

the induced field.

Neglecting induction, the magnetic field B satisfies

v-R=0,

We consider plane fields, B = Bx (x,y) £ + By (x,y) ¢, where £ and ¢ are unit vectors. We
assume that B is symmetric about the y = { plane and that B varies in the x direction over
a characteristic axial length Lg >> L. Then the solution for B is

B=Byk)y
neglecting O(L/Lg) terms.

For this problem we assume the same conductance ratio, Cys for the top and
bottom walls (perpendicular to the magnetic field B), and the same conductance ratio, Cyqs
for the side walls (parallel to B). By symmetry, the solution is sought in one quadrant of
the duet; namely for 0<y<a, -1<z<0 (all lengths are nondimensionalized by L, half the
distance between the side walis). The present analysis can be extended in a
straightforward manner to treat the entire duct with unequal conductance ratios on all

walls, as well as varying conductance ratio along the length.

The two important parameters in any general MHD problem are the
interaction parameter, N, and Hartmann number, M, defined by

M=1B, (2 )'/?
pv



where p and v are the fluid's density and kinematic viscosity, respectively, and B, is a
characteristic magnetic flux density. The interaction parameter represents the ratio of
the electromagnetic (EM) force to the inertia body force, and the Hartmann number
represents the square root of the ratio of EM force to the viscous body force. The values
for M and N in a tokamak reactor are typically of the order of 10° - 10°[1]. This means
that the EM force is the dominant force determining the flow and pressure distributions
throughout the liquid-metal flow, except for thin boundary and possibly free shear
layers. Outside these layers, the 3-D distributions of the flow parameters (velocities,
eleetric current densities, electric potential and pressure) can be derived from two
classes of scalar functions of two space variables. The functions are the pressure in the
fluid and the electric potential at the walls.

The inertialess, inviscid, dimensionless equations governing the flow of a

liquid metal in the core of the flow are:

%p=jxB (1a)
j=-Y%e+yxB (1b)
vev=10 (1e)
vej=0. (1d)

Here p, j, v, and ¢ are the pressure, electric current density, veloeity, and electric
potential, normalized by oU B, "L, oU,B,, U, and U B, L, respectively. For N =10", M
= lﬂl', and ¢ = 0.01, and in the core where ¥ = O(1), v = O(1), the errors

-1 1 -3

associated with the inertialess and invisecid assumptions are of order N™ ¢ /% =10 and

-2 -1 -6
M e =10 .

The x,y,z core velocity components u, v, W, and electric current density
components j,.., jyc' jzo» which satisfy the equations (1) and the symmetry conditions,
jyc=vc=0 at y =0, are:

uglay,z) = 8 —¢ - g2 22  (2a), (Ct. 1b)



o 29P

wo(x,y,2) = - 8 o B~ (2b), (CI. 1b)
' , I 3,
Velaiys2) = -y B(X) —— + y — (8 ;;]
1 y2 32p '
+yle’+-@ -1 — | 20), (Ct. 1¢)
2 3 iz /
3
Jpcxyi2) = 8 ;:- @d), (Cf. 1a)
] "
jzc(x’Y’z) =- B ;g‘ (23), (Cf. l.)
< o 3P
Jyc(yz) = - y8 . (), (Ct. 1d)

where p(x,z) is the pressure which is constant along magnetic field lines by virtue of
Eq. (1a), 8(x) = B'lu(x), and g' = dg/dx. The electric potential in the core varies along the

magnetic field lines according to
= 1 2 _ .2 3
L (x,y,2) = L (x,z)‘ - "2— (a y)# __a{_; » 2g)

where ¢, (x,z) is the eleetric potential at the top wall at y = a. Equation (2g) is obtained
by integrating the y- component of equation (1b), and using equation (2f).

2.2 Governing Equations

The three-dimensional problem with eight variabies in the core (pressure,
electric potential, three components of velocity and three components of current
density) is completely solved once the funetions p(x,z) and ¢t(x,z) are determined. The
equations necessary for the determination of p(x,z) and ot(x,z) are provided by the
boundary eonditions. The boundary conditions at the inside surface of the top wall, at
y = a, are: '

5



v=0 (3a)

2 2
- 84 3% -
ye=-epl—7 +—=1 aty=a (3b)
3x oz
These conditions neglect the O(M'l) jumps in v, jy and ¢ across the Hartmann layer,
which separates the inviscid core region from the top. Condition (3b), also known as the
thin conducting wall condition, neglects terms which are O(tzlaz) compared to those
retained [4]. Neglecting O(M'l/ 2), the jump across the side wall layer which has
O(M'l/ 2) thickness leads to the additional eondition
2 2
- 3 4s 34 -
jzc‘*"s[ > +—?] atz=-1, (3c)
ax ay

where ¢4(x,y) is the electric potential at the side.

The conditions (3a) and (3b), when applied to equations (2¢) and (2f), give
two coupled partial differential equations governing p(x,z) and ¢,(x,z):

2 2

? ? a ? o
—IBZ—E]+[32+-—3'2]—92=9'-—!- (4a)
ax ax 3 z dce

2 2

3 3 ?
e, | o, ——-?—t] =ag 22, (4b)

2 2
ax 3z oz

Likewise, condition (3c) applied to equation (2e) at z = -1 gives the
governing equation for ¢4 (x,y)

2 2
3¢ 3¢ p
e l—2+ —F1=-8—(x-1 (40)

ax y ax

2.3 Boundary Conditions

Sufficiently upstream and downstream of the region where the magnetic
field is changing, the flow will be fully developed. For fully developed flow, there are no
axial currents in the core or In the walls. The appropriate boundary conditions at the ;
upstream cross section, x,, and at the downstream cross section, x,, are:

6



—3% =9 atx=x,, (Sa,b,c)

and

—t =_73 - atx = x,. (5d,e,f)

The constants p, and p; (p, > p2) can be arbitrarily chosen. After the
solution is found, every variable is multiplied by a sealing factor to get the desired
volumetric flux. The dimensionless axial velocity must satisfy the total volumetric

condition
a o
] ] uxyz)dydz=a ®
o -1

at every cross section. Initially, we choose p, = 1 and p, = 0. Then each variable is
multiplied by the correct value of p, whieh is given by the ratio of "a" to the integral of
the initial u over a quarter eross section.

Additional boundary conditions are provided by symmetry about the z = 0
and y = 0 planes, namely:

4 =0
3
——-p—- =0 atz =0,
9z
and
30, ,
—_— =0 aty=0. (7a,b,c)
3y

Finally, we must also ensure that electric potential and electrie currert
density are continuous at the corner y = a and z = -1. This requires that



‘t (x, -1) = ‘8 (x,a) (7d)

(Te)

3¢ T
e —t(x,-1)-= e, — (x,8)
z ay

We need one more boundary condition for p at z = -1 to completely define
the problem. This boundary condition can be derived from the side layer probiem.

2.4 Side Layer

At z = -1 in the core, the transverse current jz leaves the core, flows
unchanged ecross the side layer and enters the side wall, if M7% ey << 1 [4]. Some of
the current entering the side wall flows up the wall {for y > 0) to the topaty = a, z -1,
The rest of the current entering the side wall flows in the x direction. However, the side
wall current flowing in the x direction must eventually”thrn to the y direction and enter
the top. For ¢, comparable to c,, the current flowing along y in the side wail results in
an O(1) electric potential in the side, ¢4(x,y), having a specific variation with y. Because
the core potential at z = -1 has a different specific variation with y, given by equation
(2¢), there is a jump in the O(1) electric potential across the side layer. The O(1) jump
and the O(M'l/ 2) thickness of the side layer result in an O(MI/ 2) voltage gradient,
3¢/3z. At the same time, jz in the side layer can be at most O(1). ‘As a result, the z
com!)qngnt of Ohm's law (1b), Jp=- 2e/3z + uBy, dictates that the veloeity u be of
O(M v/ 2) to balance the O(M'/ 2) voltage gradient 34/3z. Thus, in the side layer:

3
u=8g e (8a)
[ udz = 8(x) [s,(xy, -1) - a4(x,¥)] . (8b)

s.l.

where indicates integration across the side laiyer. Therefore, the electric potentials
in the core and in the side wall determine the volumetric flux per unit length in the y
direction. The details of the side layer solution can be ignored, provided we guarantee
that the boundary value problem for the side layer variables is well-posed. A sufficlent
condition for this guarantee is that the side-layer volumetric flux, given by equation (8b),
plus the volumetric flux in the core of the flow must be invariant at all cross sections,

namely:



a o
-53— J { [ udz+ [udz ] dy=0. 9
X o s.l. -1

Condition (9) is necessary because the solution for ¢4> p and ¢, completely determines
wc(x,y,—l), which provides the flow into or out of the side layer. Unless the flow which
enters the side layer is the same as that which leaves the core, the side layer problem is
not well-posed. Introducing equations (2a, 2g, 4a, 8b) into condition (9) and using the
symmetry conditions {7a, b), we obtain the sufficient condition on the core and side wall
variables for the side-layer problem to be well-posed:

ap 2 a’ 2, -1
—@x-D=0{8"+— 8] x
3z 3

P ?‘ (x,y) dy 1}. 14)
dx o 8

{ 8o (x-1) -~ a
Condition (14) can also be derived by manipulation of the equations governing the side
layer variables. These variables satisfy the boundary conditions at the side wall
(u=v=w = 0, and Eq. (4¢)), and match the core variables at the core/side layer
interface. Integration of the governing equations across the side layer and use of the
boundary conditions at the wall and the matching conditions at the core/side layer

interface results in a condition identical to (14).
3.0. NUMERICAL METHODS

Equations {4a) and {4b) constitute a set of coupled partial differential equations
which are solved simultaneousiy in the rectangular xz domain. Egquation (4c) is solved in
the rectangular xy domain. The finite difference method is employed. The grid point
layout from y = 0 to y = a and from z = -1 to z = 0 at a given x is shown in Figure 2 with
staggered grids in the z direction for p and ¢,. The finite difference approximations are
derived as follows:

3.1 Integrate equation {(4a) over a molecule centered at Pi,j and equation (4b)
over a molecule centered at b4i (Figure 3). The resulting finite difference
equations can be rearranged in the form



zZ=-] z=0

b1 G2 N bin1 &in &0
yaa —— o Y@ \—e—x—e—x—e
Py PBR» Pn1 Bin
bSi.L ¢L
boi L1
| l y
’--/

FIGURE 2. MESH LAYOUT AT THE WALLS AT ANY CROSS SECTION
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-Xx B+l

bi1i ¢ 9 ® %1y

FIGURE 3. A COMPUTATIONAL MOLECULE FOR *ti, and P“
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3.2

3.3

811 81z | | b,
= (15)

821 822 || Pjj b,

The coupled equations (4a) and (4b) exhibit rather different characteristics
in different regions of g'. For small values of e, the equations alternate
between elliptic and parabolic forms. In the uniform field region, where g'
is small, these equations should be treated as Poisson's equations. They are
used to determine P and ’ti,j due to small perturbations in 3¢/3z and
ap/az. In the non-uniform field region, g' is large, and for ¢, small but
finite, these equations give the values of 3¢/3z and ap/az along the
characteristic surfaces (x = constant) which in turn determine the values of
i, and Pij The simultaneous solution scheme allows the equations'
characteristics to change with g. In addition, if equations (4a) and (4b) are
solved independently by taking the right-hand-side as known, the truncation
error in (4b) would be (Az)zlet, and for e, << 1, this error would quickly .
destroy the solution after just a few iterations. In the simultaneous
scheme, the truncation error is (Az)z.

Integrate equation (4c) over a2 molecule centered at "’si,k 1o obtain the
genersl five-point formula expression. If mesh sizes are Ax and Ay, and if

AX > Ay, then the leading truneation error from the Laplacian operator is

(Ax)z, whereas the truncation error on tls% right-hand side term is divided
by ¢, & small number. The term 8(x) pon (x, :1) is expanded to higher

order so that the truncation error is at least (Ax) /cs which will be smaller
than (Ax)2 everywhere, as long as ¢, > (Ax)z.

At y = a, z = -1, we apply the same scheme as in #1 and #2 to solve for Pi,1
and Qﬁ’ j- Here the grid point ¢ﬁ’ 1 is at the corner, the molecule around it
consists of one part in the xz plane (z = -1 to z = -1 + Az/2) and the other
part in the xy blane {y =a - Ay/2 to y = a). The equation (4b) is integrated
over the part in the xz plane, whereas the equation (4c) is integrated over
the part in the xy plane; the boundary conditions (7d, e) at the corner are
implicitly incorporated because they involve precisely the terms from the
integrals of equations (4b, c¢) evaluated at z = -1 and y = a. The

v

12



coefficients in the system (15) include the integral of sik fromy =0 to
y = a' '

For the solution of the systems of finite difference equations, the Gauss-Seidel
method was employed with successive over-relaxation (SOR). In general, the problem is
intrinsically fast convergent. The relaxation facior may be arbitrarily chosen in the
range 1.3 ~ 1.6. However, for very small ¢ (¢ < 0.01) the relaxation factor should be
chosen closer to 1, or even less than 1 (under-relaxation). The iteration was terminated
when nodal pressures and potentials were different by less than 0.1% in consecutive

steps.

4.0 RESULTS AND DISCUSSION

4.1 FlowOutofa Fritging Magnetic Field

The dimensionless transverse magnetic field model employed is as follows:

€ -
1 X <-x,

1 . WX
B, &) = 3 (i- sin — ) X, SX £ X, (16)

0 X2x

The field gradients are symmetric about the point x = 0, By = 0.5. The field decays to
zero from its maximum value of 1 over a distance equal to 2x, . The parameter xo'l
characterizes the magnitude of the field gradient. For practical purposes, the tail of
B'ly(x) (near and beyond X,) is smoothly leveled to a maximum value of 1,000, which
corresponds to By = 0.001, to avoid overflow/ underflow in the computations. Results
presented here are for Xg =3 eg=¢ = 0.02, a = 1. They are shown in the range
x=-6 (By =1)tox=2 (By = 0.07). As the field becomes too small the local Hartmann
number and interaction parameter become small and the inertialess, inviscid assumptions

are no longer valid.

Figures 4 and 5 show the electric potential at the top wall and side wall,
respectively, divided by the local magnetic field. If the flow were locally fully developed
everywhere, all the curves in these figures would coincide with the one shown at
x = -4.2. In reference to equation (2g), the electric potential in the fluid will exhibit

13
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simiiar behavior as in Figure 4. The axial potential differences drive axial electric
currents in the fluid and in the walls in the + x direction for z 2 0. The slopes of the
curves in Figure 4 are proportional to the local velocity. At x = -4.2 where the flow is
fully developed, the velocity is uniform across z. As the flow evolves downstream
(increasing x), the 3-D effects cause the velocity to increase near the side and decrease
elsewhere. The axial veloeity profiles in the y = 0 plane and at various eross sections sre
shown in Figure 6. A companion plot of axial velocity distributions along x, at various z
locations, is shown in Figure 7. For fully developed flow, the fraction of the total
volumetrie flux thst flows inside the two side layers is given by: [1 + 3¢,
(llact + llaz)]'l. It can be deduced from Figure 7 that 3-D effects increase this fraction,
leaving a slowiy moving region in the center.

Figure 8 shows the variation of pressure at z = ¢ and z = -1. In contrast to
locaily fully developed flow for which pressure is uniform at each cross section, here the
pressure at z = 0 is smaller than that at the side. The difference arises from the

interaction between axial current and magnetic field.

One of the more important variables pertinent to fusion reactor Llanket
design is the axial pressure gradient, which, when integrated over a duct length of
interest, yields the overall MHD pressure drop. Miyazaki [5] asserted that the total
pressure drop in a nonuniform field could be obtained by integrating the pressure gradient
formula derived for fully developed flow. By coineidence, their experimental results
supported this assertion for the cases they investigated. In general, this is not true.
Depending on the wall conductance ratio and the rate of change of magnetic field, the
overall pressure drop calculated by assuming locally fully developed flow could
underestimate the actual pressure drop by a few percent to perhaps as much as one
hundred percent. Figure 9 shows our numerical results for the pressure gradient at z = 0
and z = -1. The dashed curve gives the locally fully developed pressure gradient which is
proportional to the square of the local field strength with a proportionality constant
given by K = (1 + —%t + ;—c ]'1. It is obvious that with 3-D effects, the proportionality
factor is not constant along x or 2. The overall pressure drop from x = -6 to x = 2 given
by the numerical analysis is 0.0932. A locally fully developed hypothesis yields a figure
of 0.0754, an underestimate of the pressure drop of 19%. .

16
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A parametric study was performed to investigate the additional pressure
drop resulting from 3-D effects, Ap3_p» for a square duct with the same conductance
ratios for all walls. The values of ¢ varied from 0.02 to 0.2, and the values of x,
considered were 2, 3 and 4. Results are plotted in Figure 10 which presents Ap3_D a
function of C 1/2 . Notice that Ap3_p increases linearly with ¢ /2 for ¢ < 0.1 which
covers the range of interest to most fusion hlanket conduits. The total pressure drop is

then given by

ap = apfd * 2P3-p an
where 18)
apfd © K f X B (x) dx
and
8pg_p = kcl/2 fore < 0.1. (19)

The values of k are also tabulated in Figure 10.

The results in Figure 10 are quantitatively valid for a square duct with the
same conductance ratics on all four walls. The results are also valid qualitatively for
‘different cross sectional aspect ratios and different wall conductances for the top and
side walls. If a detailed answer for a particular choice of the parameters a, s Cy and‘ X,
is required, the numerical solution reported here will simply have to be repeated for the
desired set of parameters. This is a straight forward task. Covering the entire range of
possible a's, ¢/'s, ¢;'s, and X,'s is outside the sc‘ope of this paper. Nonetheless, physical
reasoning can be used to indicate the way in which the results of Figure 18 would vary
with the aspect ratio "a", and the ratio ct"’s’ The formulae given in this section indicate
that the fraction of the total flow, carried by the side layers in fully developed flow,
increases with increasing "a" or ct/cs. Consequently, the velocity in the core would
decrease as would the induced transverse voltages which are proportional to the core
veloeity. It follows that the axial currents, which are driven by axial voltages
differences, would also decrease as would the 3-D perturbation. Therefore, an increase
in "a" or e,/c, decreases the addilional pressure drop caused by 3-D effects. The
quantiative aspects of this effect would, of course, depend on x,, or, more generally, on

the magnetic field distribution.
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4.2 Comparison with Experiments

An experimental facility, ALEX, described in detail elsewhere [2], was built
at Argonne National Laboratory to study liquid metal MHD phenomena relevant to fusion
blanket engineering. A recent test series involved a square duct made of stainless
steel. Its width, length, and wall thickness were 8.8 em, 610 cm, and 0.66 cm,
respectively. The working fluid was NaK. The wall conductance ratio was 0.07. The
transverse magnetic field was applied to the test section by a magnet which can generate
a maximum field of 2.1 T. The peak Hartmann number and a typical interaction
parameter were 6,400 and 100,000. These values are close to and in some cases overlap
with the values prevailing in a fusion reactor. Measurements at various axial locations
include axial and transverse pressure differences, axial and transverse potential
differences, and axial velocities. A full description of the test series and complete
analysis of experimental data for the numerous test cases will be presented in a future
paper. Typical results are given in Reference 3. Within the scope of this paper, we show
only a few representative results for comparison with the numerical predictions.

Figure 11 compares the measured dimensionless average axial pressure
gradient in the fluid at z = -1 with the numerical results. The By(x) used for these
numerical results are the values actually measured in the experiment, normalized by the
uniform field value. The average pressure gradient is calculated as Ap/Ax, where Ap is
the pressure drop over a distance Ax (in the experiment, Ax = 7.6 c¢m in experiment).
The upper data curve is for N = 1.26 x 10° and M = 5800. The lower one is for N = 540
and M = 2900. The quality of the agreement between code predictions and experimenta!
data at high and low N seems to be similar, indicating that, the present numerical
analysis inay be valid for N as low as 500 or perhaps lower.

Figure 12 shows comparison the variation of the transverse pressure
difference, p (x, -1) - p (x, 0) with the axial position. As indicated earlier, a non-zero
value indicates 3-D MHD effects.

The axial currents in the side wall interact with the strong magnetic field .
to produce a pressure drop across the side wall, along the liquid-metal-filled hole in the
side wall through which the pressure at z = -1 is measured. The measured pressure
difference is inevitably modified by the pressure difference across the side wall. To
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compare appropriately the numerical predictions with experimental results, the
numerical results shown in Figures 11 and 12 also include the effect of the pressure drop
across the side wall.

Figure 13 compares the axial voltage difference at the side wall in the y=0
plane. In the nonuniform field region, some of the transverse current that leaves the
core and enters the side flows up the side wall to the top. The rest of the current flows
in the );4xial &irection in the side wall, which gives rise to these axial voltage
differences. The voltage diAfferences were measured over an axial distance of 7.6 cm.

4.3 Gradually Varying Magnetic Field

In the past, for the cases in which the magnetic field changes gradually
over the length of the duct, such as the inlet and outlet coolant ducts of the inboard of a
blanket module, the flow was generally assumed to be fully developed in caleculating the
pressure drop. At present, accurate criteria for establishing whether a variation of the
tield is sufficiently gradual do not exist. In this section we attempt to shed some light on
this issue for a square duct with uniform wall thickness.

In a tokamak, the toroidal field varies as A/R, where A is a constant and R
is the distance from the center of the torus. We formulate the probiem as follows: Let
r; and r, be the dimensionless radial positions of two locations on a duct which lies along
the radial direction of the torus; r is nondimensionalized by the half-width of the duect,
L. The magnetic field is normalized by A/r, so that the dimensionless field varies from 1
at r,/r to B, =r;/r, < 1 over the length of the duct l =r; - r;. Assume that the duct
extends beyond r; and r, where the conditions for fully developed flow apply. At a given
B, a decreasing value of 1 corresponds to either an increasing L or a decreasing duct
length for a fixed cross section, hence a larger magnetic field gradient. In either case
one would expect 3-D effects to increase. It is importan't to determine the range of ! for
which 3-D effects are important and a 3-D énalysis is required.

When 3-D effects exist, the axial velocity near the side increases from its
fully developed' value, whereas near the centerline it decreases. The difference between
the maximum and minimum velocities, AU, divided by U, is taken as an indication of the
extent of 3-D effects. The values of Bl considered are 0.6 and 0.4; 1 is varied in the
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range 5 - 20. Results for ¢ = 0.02 and 0.1 are shown in Figure 14. As expected, 3-D
effects increase when any one of the following variables decreases: ¢, I, and B. When
AU/Uo is less than 10% the 3-D effects are generally small enough to assume locally
fully developed conditions. In the cases investigated, this corresponds to 1l > 20. For the
BCSS liquid metal blanket[1], the values of the parameters for the inlet conduits were
B; = 0.6, ¢ = 0.01, and 1 = 40, so any errors associated with the fully developed flow
assumption made in that study would be minimal.
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