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THREE-DIMENSIONAL MHD FLOWS IN RECTANGULAR DUCTS
OF LIQUID-METAL-COOLED BLANKETS

T. Q. Hua, J. S. Walker, B. F. Picologlou, and C. B. Reed

ABSTRACT

Magnetohydrodynamic flows of liquid metals in rectangular ducts with thin conducting

walls in the presence of strong nonuniform transverse magnetic fields are examined. The

interaction parameter and Hartmann number are assumed to be large, whereas the

magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and

inertial effects are confined in very thin boundary layers adjacent to the walls. A

significant fraction of the fluid flow is concentrated in the boundary layers adjacent to

the side walls which are parallel to the magnetic field. This paper describes the analysis

and numerical methods for obtaining 3-D solutions for flow parameters outside these

layers, without solving explicitly for the layers themselves. Numerical solutions are

presented for cases which are relevant to the flows of liquid metals in fusion reactor

blankets. Experimental results obtained from the ALEX experiments at Argonne

National Laboratory are used to validate the numerical code. In general, the agreement

is excellent.
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1.0 INTRODUCTION

In a self-cooled liquid-metal blanket for a magnetically confined fusion reactor,
the magnetohydrodynamic (MHD) effects are of paramount importance in the design
process [1]. The interaction between the circulating liquid metal with the strong toroidal
magnetic field results in large electromagnetic body forces which determine the flow
distribution of the liquid metal, and produce large MHD pressure gradients. The resulting
MHD pressure drop may cause excessive pumping power loss and large material
stresses. Also, the MHD flow distribution may affect drastically the heat transfer
characteristics of the blanket in general and the first wall coolant channels in particular.

An experimental and analytical program is being carried out at Argonne National
Laboratory (ANL) to investigate the MHD effects in liquid metal flows in electrically
conducting conduits of various geometries. Experiments are conducted in the Argonne
Liquid Metal Experiment (ALEX) facility [2]. A recent summary of the experiments and
code development efforts for a round duct and a rectangular duct can be found in
Reference 3. This paper concentrates on the theoretical analysis and the numerical
methods for a straight rectangular duct, with applications to a fusion blanket module.
Some representative experimental data obtained through the ALEX experiments are
presented for comparison with the numerical predictions.

2.0 THEORETICAL CONSIDERATIONS

2.1 Formulation of the Problem

We consider the steady flow of an incompressible liquid metal driven by a
pressure gradient along a rectangular duct with thin metal walls and with an imposed
transverse magnetic field whose strength varies along the duct (Figure 1). A transverse
magnetic field variation in the axial direction requires a non-zero axial magnetic field.
This weaker axial magnetic field is neglected in this model because the major magnetic
body force in the liquid metal arises from the interaction between the fluid flow with the
transverse field. The ratio of the induced to applied fields is given by c ' Rm. Here,

-Sr
oL

Rm = yoUL



Liquid Metal

FIGURE 1. SCHEMATIC DIAGRAM OF THE PHYSICAL MODEL



are the wall conductance ratio and magnetic Reynolds number, u and a are the magnetic

permeability and electrical conductivity of the liquid metal, ow and t are the electrical

conductivity and thickness of the duct wall, U. is the average axial velocity of the fluid

and L is a characteristic transverse dimension of the duct. For a self-cooled blanket in a
1/2 -2

fusion device, c Rm is at most of order 10 ; therefore, it is appropriate to neglect
the induced field.

Neglecting induction, the magnetic field B satisfies

v • B = 0,

v x B = 0.

We consider plane fields, B = B (x,y) i + B (x,y) $, where ft and $ are unit vectors. We

assume that B is symmetric about the y = 0 plane and that B varies in the x direction over

a characteristic axial length Lfi >> L. Then the solution for B is

B = By(x) y

neglecting O(L/Lg) terms.

For this problem we assume the same conductance ratio, c t, for the top and

bottom walls (perpendicular to the magnetic field B), and the same conductance ratio, c5,

for the side walls (parallel to B). By symmetry, the solution is sought in one quadrant of

the duct, namely for 0<y<a, -l<z<0 (all lengths are nondimensionalized by L, half the

distance between the side walls). The present analysis can be extended in a

straightforward manner to treat the entire duct with unequal conductance ratios on all

walls, as well as varying conductance ratio along the length.

The two important parameters in any general MHD problem are the

interaction parameter, N, and Hartmann number, M, defined by

LB0 (^-



where p and v are the fluid's density and kinematic viscosity, respectively, and BQ is a

characteristic magnetic flux density. The interaction parameter represents the ratio of

the electromagnetic (EM) force to the inertia body force, and the Hartmann number

represents the square root of the ratio of EM force to the viscous body force. The values

for M and N in a tokamak reactor are typically of the order of 10 - 10 [1]. This means

that the EM force is the dominant force determining the flow and pressure distributions

throughout the liquid-metal flow, except for thin boundary and possibly free shear

layers. Outside these layers, the 3-D distributions of the flow parameters (velocities,

electric current densities, electric potential and pressure) can be derived from two

classes of scalar functions of two space variables. The functions are the pressure in the

fluid and the electric potential at the walls.

The inertialess, inviscid, dimensionless equations governing the flow of a

liquid metal in the core of the flow are:

?P = j x B (la)

j = - T * + v x B (lb)

v • y = 0 (lc)

v • j = 0 . (Id)

Here p, j , y, and • are the pressure, electric current density, velocity, and electric

potential, normalized by oUoBo L, oUoBo, Uo, and UOBOL, respectively. For N = io", M

= i o \ and c = 0.01, and in the core where V = 0(1), y = 0(1), the errors

associated with the inertialess and inviscid assumptions are of order N" c ' =10" and

M - V 1 = 10-6.

The x,y,z core velocity components uc, vc, wc, and electric current density

components j x c , j v c , j z c , which satisfy the equations (1) and the symmetry conditions,

iyc = vc = ° a t y ~ °» ares

uc(x,y,z) = 8 i ^ e - 62 — (2a), (Cf. lb)
az ax



wc(x,y,z) = - 6 -^S- - S2 — (2b), (Cf. lb)
C 3X 3Z

a*t 3
 2

3P
v.(x,y,z) = - y 6 (x) + y — [6 —]

c 3Z 3X 3x

2 2

+ y [B2 + - (a2 - —) B'2] —?- j (2c), (Cf. lc)
2 3 3z ;

j (x,y,z) = 6 — (2d), (Cf. la)
* c 3Z

jzc(x,y,z) = - 6 — (2e), (Cf. la)

j (x,y,z) = - ye- — (2f), (Cf. Id)
* 32

where p(x,z) is the pressure which is constant along magnetic field lines by virtue of

Eq. (la), 6(x) - B"'u(x), and e' = de/dx. The electric potential in the core varies along the

magnetic field lines according to

• c (x,y,z) = * t (x,z) - ± (a2 - y2) 6' ^ , (2g)

where +t (x,z) is the electric potential at the top wall at y = a. Equation (2g) is obtained

by integrating the y- component of equation (lb), and using equation (2f).

2.2 Governing Equations

The three-dimensional problem with eight variables in the core (pressure,

electric potential, three components of velocity and three components of current

density) is completely solved once the functions p(x,z) and 4>t(x,z) are determined. The

equations necessary for the determination of p(x,z) and +t(x,z) are provided by the

boundary conditions. The boundary conditions at the inside surface of the top wall, at

y = a, are:
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v = 0 (3a)

Jyc^M^-r+ 14i aty = a <3b>
ax az

These conditions neglect the O(M ) jumps in v, j y and 41 across the Hartmann layer,

which separates the inviscid core region from the top. Condition (3b), also known as the
2 2

thin conducting wall condition, neglects terms which are O(t /a ) compared to those

retained [4], Neglecting O(M~ / ), the jump across the side wall layer which has

<XM"1/2) thickness leads to the additional condition

a2* a2*
i*c = + M — T + T ] « « = -!. <3c)

ax ay
where *s(x,y) is the electric potential at the side.

The conditions (3a) and (3b), when applied to equations (2c) and (2f), give

two coupled partial differential equations governing p(x,z) and +t(x,z):

2 2

a 2 3p 2 a 9 3 P a+*
— [ft — ] + I 6 + — B'2 J - ^ = e1 - 3 - (4a)
ax ax 3 az ae

(4b)
ax az az

Likewise, condition (3c) applied to equation (2e) at z = -1 gives the

governing equation for +A (x,y)

s 4
ax ay ax

2.3 Boundary Conditions

Sufficiently upstream and downstream of the region where the magnetic

field is changing, the flow will be fully developed. For fully developed flow, there are no

axial currents in the core or in the walls. The appropriate boundary conditions at the

upstream cross section, x, , and at the downstream cross section, x2, are:

6



ax ax

and

a*.
* =0 atx = x,, (5a,b,c)

ax ax
(5d,e,f)

The constants p, and p2 (pi > p2) can be arbitrarily chosen. After the

solution is found, every variable is multiplied by a scaling factor to get the desired

volumetric flux. The dimensionless axial velocity must satisfy the total volumetric

condition

a o

/ / u(x,y,z) dydz = a (6)

o -1

at every cross section. Initially, we choose Pi = 1 and p2 = 0. Then each variable is

multiplied by the correct value of p, which is given by the ratio of "a" to the integral of

the initial u over a quarter cross section.

Additional boundary conditions are provided by symmetry about the z = 0

and y = 0 planes, namely:

ap
— =0 atz = 0,
dz

and

ay
= 0 at y = 0. (7a,b,c)

Finally, we must also ensure that electric potential and electric current

density are continuous at the corner y = a and z = -1. This requires that



(x, -1) = *a (x,a) (7d)

(7e)

az s ay

We need one more boundary condition for p at z = -1 to completely define
the problem. This boundary condition can be derived from the side layer problem.

2.4 Side Layer

At z = -1 in the core, the transverse current j 2 leaves the core, flows

unchanged across the side layer and enters the side wall, if M~i/<2 « cg << 1 [4]. Some of

the current entering the side wall flows up the wall (for y > 0) to the top at y = a, z -1.

The rest of the current entering the side wall flows in the x direction. However, the side

wall current flowing in the x direction must eventually turn to the y direction and enter

the top. For c5 comparable to c t , the current flowing along y in the side wail results in

an O(l) electric potential in the side, +8(x,y), having a specific variation with y. Because

the core potential at z = -1 has a different specific variation with y, given by equation

(2g), there is a jump in the O(l) electric potential across the side layer. The O(l) jump

and the O(M~1/2) thickness of the side layer result in an O(M1/2) voltage gradient,

3+/az. At the same time, j z in the side layer can be at most O(l). As a result, the z

component of Ohm's law (lb), \z = - a+/az + uBy, dictates that the velocity u be of

O{M i /2) to balance the O(MI/2) voltage gradient d*/az. Thus, in the side layer:

a *

/ udz = 6(x) Uc(x,y, -1) - ^ (x t f ) ] . <8b)
s.l.

where f indicates integration across the side layer. Therefore, the electric potentials

in the core and in the side wall determine the volumetric flux per unit length in the y

direction. The details of the side layer solution can be ignored, provided we guarantee

that the boundary value problem for the side layer variables is well-posed. A sufficient

condition for this guarantee is that the side-layer volumetric flux, given by equation (8b),

plus the volumetric flux in the core of the flow must be invariant at all cross sections,

namely:



a o
f { / udz + / u_dz } dy = 0.

ax

o s.l. -1

Condition (9) is necessary because the solution for * t, p and +3 completely determines

wc(x,y,-l), which provides the flow into or out of the side layer. Unless the flow which

enters the side layer is the same as that which leaves the core, the side layer problem is

not well-posed. Introducing equations (2a, 2g, 4a, 8b) into condition (9) and using the

symmetry conditions (7a, b), we obtain the sufficient condition on the core and side wall

variables for the side-layer problem to be well-posed:
2

(X.-1) = [B + 8' 1 X
3z 3

{ (»••( (x -1) - a'1 ^ - t 6 J *t (x,y) dy ] } . <14>
1 dx o °

Condition (14) can also be derived by manipulation of the equations governing the side

layer variables. These variables satisfy the boundary conditions at the side wall

(u = v = w = 9, and Eq. (4c», and match the core variables at the core/side layer

interface. Integration of the governing equations across the side layer and use of the

boundary conditions at the wall and the matching conditions at the core/side layer

interface results in a condition identical to (14).

3.0. NUMERICAL METHODS

Equations (4a) and (4b) constitute a set of coupled partial differential equations

which are solved simultaneously in the rectangular xz domain. Equation (4c) is solved in

the rectangular xy domain. The finite difference method is employed. The grid point

layout from y = 0 to y = a and from z = -1 to z = 0 at a given x is shown in Figure 2 with

staggered grids in the z direction for p and 4>t- The finite difference approximations are

derived as follows:

3.1 Integrate equation (4a) over a molecule centered at p(- • and equation (4b)

over a molecule centered at *^ • (Figure 3). The resulting finite difference

equations can be rearranged in the form



X • X-

•feu

i,L-l

Pi,2

• X • X •

i,n-l i, n

FIGURE 2. MEW LAYOUT AT THE WALLS AT ANY CRO8S 8ECTION
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R 5J

"ti-ij

4 *

i

ti.j+1

VH

ti+lj

FIGURE 3 . A COMPUTATIONAL MOLECULE FOR ^ and
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a l 2

a2I

b,

(15)

The coupled equations (4a) and (4b) exhibit rather different characteristics

in different regions of g1. For small values of ct, the equations alternate

between elliptic and parabolic forms. In the uniform field region, where 8'

is small, these equations should be treated as Poisson's equations. They are

used to determine p(-.• and *tl- .• due to small perturbations in a+/az and

ap/az. In the non-uniform field region, 6' is large, and for ct small but

finite, these equations give the values of 3+/3Z and 3p/az along the

characteristic surfaces (x = constant) which in turn determine the values of

•tl- j and pt- .-. The simultaneous solution scheme allows the equations'

characteristics to change with 6. In addition, if equations (4a) and (4b) are

solved independently by taking the right-hand-side as known, the truncation
2

error in (4b) would be (Az) /c£ , and for ct << 1, this error would quickly

destroy the solution after just a few iterations. In the simultaneous
2

scheme, the truncation error is (Az) .

3.2 Integrate equation (4c) over a molecule centered at 4>sj k to obtain the

general five-point formula expression. If mesh sizes are Ax and Ay, and if

Ax > Ay, then the leading truncation error from the Laplacian operator is

(Ax) , whereas the truncation error on the right-hand side term is divided
3p

by c_, a small number. The term e(x) (x, -1) is expanded to highet-
* az i,

order so that the truncation error is at least (Ax) / c . which will be smaller
2 2

than (Ax) everywhere, as long as cs > (Ax) .

3.3 At y = a, z = -1 , we apply the same scheme as in #1 and #2 to solve for p; .

and *tj 2> Here the grid point *t l-1 is at the corner, the molecule around it

consists of one part in the xz plane (z = -l to z = -1 + AZ/2) and the other

part in the xy plane (y = a - Ay/2 to y = a). The equation (4b) is integrated

over the part in the xz plane, whereas the equation (4c) is integrated over

the part in the xy plane; the boundary conditions (7d, e) at the corner are

implicitly incorporated because they involve precisely the terms from the

integrals of equations (4b, c) evaluated at z = -1 and y = a. The

12



coefficients in the .system (15) include the integral of +3j ^ from y = 0 to

y = a.

For the solution of the systems of finite difference equations, the Gauss-Seidel

method was employed with successive over-relaxation (SOR). In general, the problem is

intrinsically fast convergent. The relaxation factor may be arbitrarily chosen in the

range 1.3 ~ 1.6. However, for very small c (c < 0.01) the relaxation factor should be

chosen closer to 1, or even less than 1 (under-relaxation). The iteration was terminated

when nodal pressures and potentials were different by less than 0.1% in consecutive

steps.

4.0 RESULTS AND DISCUSSION

4.1 Flow Out of a Fringing Magnetic Field

The dimensionless transverse magnetic field model employed is as follows:

l
1 , TlX

(iŷ ** = <

x < - x o

- ( l - s i n — ) - x o * x < x o U6)
2

x>x 0

The field gradients are symmetric about the point x = 0, B = 0.5. The field decays to

zero from its maximum value of 1 over a distance equal to 2xo . The parameter xo

characterizes the magnitude of the field gradient. For practical purposes, the tail of

B~'(x) (near and beyond xQ) is smoothly leveled to a maximum value of 1,000, which

corresponds to By = 0.001, to avoid overflow/ underflow in the computations. Results

presented here are for x0 = 3, ca = c t = 0.02, a = 1. They are shown in the range

x = -6 (B = 1) to x = 2 (By = 0.07). A3 the field becomes too small the local Hartmann

number and interaction parameter become small and the inertialess, inviscid assumptions

are no longer valid.

Figures 4 and 5 show the electric potential at the top wall and side wall,

respectively, divided by the local magnetic field. If the flow were locally fully developed

everywhere, all the curves in these figures would coincide with the one shown at

x = -4.2. In reference to equation (2g), the electric potential in the fluid will exhibit

13
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similar behavior as in Figure 4. The axial potential differences drive axial electric

currents in the fluid and in the walls in the ± x direction for z < 0. The slopes of the

curves in Figure 4 are proportional to the local velocity. At x = -4.2 where the flow is

fully developed, the velocity is uniform across z. As the flow evolves downstream

(increasing x), the 3-D effects cause the velocity to increase near the side and decrease

elsewhere. The axial velocity profiles in the y = 0 plane and at various cross sections are

shown in Figure 6. A companion plot of axial velocity distributions along x, at various z

locations, is shown in Figure 7. For fully developed flow, the fraction of the total

volumetric flux that flows inside the two side layers is given by: (1 + 3cf

(l /ac t + I/a )]~ • It can be deduced from Figure 7 that 3-D effects increase this fraction,

leaving a slowly moving region in the center.

Figure 8 shows the variation of pressure at z = 0 and z = -1. In contrast to

locally fully developed flow for which pressure is uniform at each cross section, here the

pressure at z = 0 is smaller than that at the side. The difference arises from the

interaction between axial current and magnetic field.

One of the more important variables pertinent to fusion reactor blanket

design is the axial pressure gradient, which, when integrated over a duct length of

interest, yields the overall MHD pressure drop. Miyazaki [S] asserted that the total

pressure drop in a nonuniform field could be obtained by integrating the pressure gradient

formula derived for fully developed flow. By coincidence, their experimental results

supported this assertion for the cases they investigated. In general, this is not true.

Depending on the wall conductance ratio and the rate of change of magnetic field, the

overall pressure drop calculated by assuming locally fully developed flow could

underestimate the actual pressure drop by a few percent to perhaps as much as one

hundred percent. Figure 9 shows our numerical results for the pressure gradient at z = 0

and z = -1. The dashed curve gives the locally fully developed pressure gradient which is

proportional to the square of the local field strength with a proportionality constant

given by K = ( l + - | + — ) ~ \ It is obvious that with 3-D effects, the proportionality

factor is not constant along x or z. The overall pressure drop from x = -6 to x = 2 given

by the numerical analysis is 0.0932. A locally fully developed hypothesis yields a figure

of 0.0754, an underestimate of the pressure drop of 19%.
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A parametric study was performed to investigate the additional pressure

drop resulting from 3-D effects, Ap3_D, for a square duct with the same conductance

ratios for all walls. The values of c varied from 0.02 to 0.2, and the values of xQ

considered were 2, 3 and 4. Results are plotted in Figure 10 which presents l^p^-D a

function of C . Notice that Ap^.jj increases linearly with c " for c < 0.1 which

covers the range of interest to most fusion blanket conduits. The total pressure drop is
then given by

where „

Apfd"K J X iBy
Z(x)dx

and

Ap3_D = k c ' / 2 for c < 0.1 . (19)

The values of k are also tabulated in Figure 10.

The results i»'i Figure 10 are quantitatively valid for a square duct with the

same conductance ratios on all four walls. The results are also valid qualitatively for

different cross sectional aspect ratios and different wall conductances for the top and

side walls. If a detailed answer for a particular choice of the parameters a, c t , es and xQ

is required, the numerical solution reported here will simply have to be repeated for the

desired set of parameters. This is a straight forward task. Covering the entire range of

possible a's, c3's, ct's, and xo's is outside the scope of this paper. Nonetheless, physical

reasoning can be used to indicate the way in which the results of Figure 10 would vary

with the aspect ratio "a", and the ratio c f/c s . The formulae given in this section indicate

that the fraction of the total flow, carried by the side layers in fully developed flow,

increases with increasing "a" or e t/eg . Consequently, the velocity in the core would

decrease as would the induced transverse voltages which are proportional to the core

velocity. It follows that the axial currents, which are driven by axial voltages

differences, would also decrease as would the 3-D perturbation. Therefore, an increase

in "a" or et/cs decreases the additional pressure drop caused by 3-D effects. The

quantiative aspects of this effect would, of course, depend on xQ or, more generally, on

the magnetic field distribution.
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4.2 Comparison with Experiments

An experimental facility, ALEX, described in detail elsewhere [2], was built

at Argonne National Laboratory to study liquid metal MHD phenomena relevant to fusion

blanket engineering. A recent test series involved a square duct made of stainless

steel. Its width, length, and wall thickness were 8.8 cm, 610 cm, and 0.66 cm,

respectively. The working fluid was NaK. The wall conductance ratio was 0.07. The

transverse magnetic field was applied to the test section by a magnet which can generate

a maximum field of 2.1 T. The peak Hartmann number and a typical interaction

parameter were 6,400 and 100,000. These values are close to and in some cases overlap

with the values prevailing in a fusion reactor. Measurements at various axial locations

include axial and transverse pressure differences, axial and transverse potential

differences, and axial velocities. A full description of the test series and complete

analysis of experimental data for the numerous test cases will be presented in a future

paper. Typical results are given in Reference 3. Within the scope of this paper, we show

only a few representative results for comparison with the numerical predictions.

Figure 11 compares the measured dimensionless average axial pressure

gradient in the fluid at z = -1 with the numerical results. The By(x) used for these

numerical results are the values actually measured in the experiment, normalized by the

uniform field value. The average pressure gradient is calculated as Ap/Ax, where Ap is

the pressure drop over a distance Ax (in the experiment, Ax = 7.6 cm in experiment).

The upper data curve is for N = 1.26 x 105 and M = 5800. The lower one is for N = 540

and M = 2900. The quality of the agreement between code predictions and experimental

data at high and low N seems to be similar, indicating that, the present numerical

analysis may be valid for N as low as 500 or perhaps lower.

Figure 12 shows comparison the variation of the transverse pressure

difference, p (x, -1) - p (x, 0) with the axial position. As indicated earlier, a non-zero

value indicates 3-D MHD effects.

The axial currents in the side wall interact with the strong magnetic field

to produce a pressure drop across the side wall, along the liquid-metal-filled hole in the

side wall through which the pressure at z = -1 is measured. The measured pressure

difference is inevitably modified by the pressure difference across the side wall. To
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compare appropriately the numerical predictions with experimental results, the

numerical results shown in Figures 11 and 12 also include the effect of the pressure drop

across the side wall.

Figure 13 compares the axial.voltage difference at the side wall in the y = 0

plane. In the nonuniform field region, some of the transverse current that leaves the

core and enters the side flows up the side wall to the top. The rest of the current flows

in the axial direction in the side wall, which gives rise to these axial voltage

differences. The voltage differences were measured over an axial distance of 7.6 cm.

4.3 Gradually Varying Magnetic Field

In the past, for the cases in which the magnetic field changes gradually

over the length of the duct, such as the inlet and outlet coolant ducts of the inboard of a

blanket module, the flow was generally assumed to be fully developed in calculating the

pressure drop. At present, accurate criteria for establishing whether a variation of the

field is sufficiently gradual do not exist. In this section we attempt to shed some light on

this issue for a square duct with uniform wall thickness.

In a tokamak, the toroidal field varies as A/R, where A is a constant and R

is the distance from the center of the torus. We formulate the problem as follows: Let

Tx and r2 be the dimensionless radial positions of two locations on a duct which lies along

the radial direction of the torusj r is nondimensionalized by the half-width of the duct,

L. The magnetic field is normalized by A/rj so that the dimensionless field varies from 1

at ri/r to Bw = ri/r2 < 1 over the length of the duct I = r2 - r-j. Assume that the duct

extends beyond rt and r2 where the conditions for fully developed flow apply. At a given

Bu, a decreasing value of I corresponds to either an increasing L or a decreasing duct

length for a fixed cross section, hence a larger magnetic field gradient. In either case

one would expect 3-D effects to increase. It is important to determine the range of I for

which 3-D effects are important and a 3-D analysis is required.

When 3-D effects exist, the axial velocity near the side increases from its

fully developed value, whereas near the centerline it decreases. The difference between

the maximum and minimum velocities, AU, divided by Uo is taken as an indication of the

extent of 3-D effects. The values of Bj considered are 0.6 and 0.4; 1 is varied in the
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range 5 - 20. Results for c = 0.02 and 0.1 are shown in Figure 14. As expected, 3-D

effects increase when any one of the following variables decreases: e, 1, and Bj. When

AU/U0 is less than 10% the 3-D effects are generally small enough to assume locally

fully developed conditions. In the cases investigated, this corresponds to I >_ 20. For the

BCSS liquid metal blanket! 1], the values of the parameters for the inlet conduits were

Bj = 0.6, c = 0.01, and I = 40, so any errors associated with the fully developed flow

assumption made in that study would be minimal.
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