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ABSTRACT 91990

Near the gel point, light scattering studies of silica sol-gels reveal fractal
clusters whose size diverges as a power law, in accord with the predictions of
percolation theory. More surprising is the appearance of a fractal time
description of the dynamics of these clusters. This novel dynamics has recently
been revealed by quasielastic light scattering from the density fluctuations that
occur at the sol-gel transition. Since the relaxation of fluctuations in these
branched polymer systems is self-similar, decay processes occur on all time
scales (fractal time), and average decay times diverge. An interpretation of this
observation will be presented that relies on a length-scale-dependent viscosity
and the geometrical self-similarity of the sol-gel transition. The scattering
theory is extended to the calculation of time- and frequency-dependent
viscoelastic properties, as well as mechanical properties such as the shear
modulus, steady state creep compliance, and viscosity. The viscoelastic
predictions are found to be in good agreement with experimental data.

INTRODUCTION

Silica gels are technologically important materials with a rich chemistry,
yet relatively little is known about the evolution of structure of these complex
materials. In part, the complexity of silica gels arises from the wealth of
synthetic routes used to produce them. A typical synthetic process depends on
such parameters as the pH, concentration of monomer, water, catalyst, salt etc.,
and these parameters are usually varied in an empirical fashion to produce a
suitable gel time, gel density and so forth. That the evolution of structure in
these gels is so poorly understood is partially due to the fact that researchers are
unable to agree on exactly what is meant by structure. Once a suitable definition
of structure is adopted, one might then ask some very basic questions, such as
"What structural characteristics are strongly affected by the chemistry and what
properties are largely immutable?" Since the most dramatic physical changes
occur in the vicinity of the sol-gel transition, this regime would seem to offer
the most fruitful initial avenue of investigation.

The investigations we have made on the sol-gel transition include relatively
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straightforward static structure measurements as well as more complex
determinations of dynamical properties. To interpret these measurements we
have used the well known analogy [1-4] between the sol-gel transition and a
second-order thermodynamic phase transition to develop theories of the elastic
and inelastic light scattering behavior, and viscoelastic phenomena. In this
article we give a overview of the various aspects of the sol-gel transition in
silica, and briefly discuss the less universal aspects of growth that occur at early
times.

THE SOL-GEL TRANSITION
Length Scales

At the gel point many physical properties have the value o or for
example, the shear modulus is 0, the viscosity is o, the gel fraction is 0 and the
average cluster mass is  One way to quantify structure is to ascertain exactly
how things come to be 0 or °. This critical point approach to gelation produces
a family of exponents that can then be understood in terms of a model of
growth that predicts a length scale divergence at a finite time. The obvious
practical question thus becomes whether this family of exponents can be affected
by the choice of chemistry - the standard lore of critical phenomena would
suggest that chemistry is irrelevent. However, the sol-gel transition is more
complex than a thermodynamic phase transition and in the presence of solvent
there are two length scales [5]. One of these length scales, the spatial correlation
length, is sensitive to chemistry and the other length scale, associated with the
connectivity divergence, is not. The spatial correlation length is finite and arises
from the aggregation phase of growth that occurs at early time, whereas the
connectivity correlation diverges at the gel point.

In a chemical gel bond energies are large compared to kT, so it is not
obvious that the quenched randomness of the resulting structures can be
described by an equilibrium model. However, if the bonding between
neighboring monomers is completely random, the structure of the gel will be
described by the bond percolation model. As applied to gelation, percolation
may be thought of as a kinetic model that generates a frozen equilibrium
ensemble. We will consistently use the percolation model as a basis for
comparison of our data.



Fractal Dimensions and Scattering

Near the gel point, the percolation model generates a self-similar ensemble
of branched polymers. Any single polymer has a fractal dimension [1] D=2.5,
1.e. the radius R scales with the mass M as M-R2-5. However, the distribution of
cluster masses is also self-similar, in the sense that the mean separation distance
between polymers of radius R is proportional to R for all R, implying an ever
increasing number of smaller clusters It is easily shown [6] that the number of
clusters of mass M is N(M)=MX where the polydispersity exponent

T=1+3/D=2.2 (1)

Since this relates a critical exponent to the dimension of space (in eq. | d=3), it
is known as a hyperscaling relation [1]. A light or x-ray scattering experiment
allows us to probe the net self-similarity of this twice fractal ensemble, which is
a combination of the self-similarity of a single cluster and the self-similarity of
the size distribution. The combined effects give [7,8]

1~q-D(3-x) (2)

where | denotes the scattered intensity and q is the scattering wavevector
[q=47tsin(B/2)A, where 0 is the scattering angle and X is the wavelength in the
scattering medium]. The dimension D(3-T) is called the ensemble fractal
dimension and is a distinct concept from the fractal dimension D of a single
cluster. That this point is essential to the existence of a sol-gel transition is not
universally appreciated and some investigators [9] have incorrectly assumed that
the standard mass fractal scattering behavior I~q'D applies near the gel point.

In making comparisons to experiment there is an additional subtlety;
gelation is a transition in connectivity, and in order to probe the connectivity
scattering measurements must be done on diluted samples. Otherwise, the
self-similar packing of clusters cancels the scattering. As explained below,
clusters swell upon dilution [10,11], reducing the single cluster fractal
dimension D from 2.5 to 2. Thus the anticipated scattering behavior from a
dilute bath of percolation clusters is I-q-1-6, since D(3-T)=2(3-2.2)=1.6. Our
light scattering experiments [12,13] on tetramethoxysilicon (TMOS) gels,
catalyzed by either acids, bases, or with fluoride ion, give I~q-1-60+0.06 in
excellent agreement with percolation. Similar results were obtained on TEOS
gels, indicating that this aspect of the structure is insensitive to the chemistry.

The structural evolution that occurs far before the gel point is controlled



by aggregation and is therefore much more sensitive to chemistry. By carefully
controlling pH and ionic strength a wide variety of structures can be produced,
and growth rates can easily be changed over § orders of magnitude. In fact, it is
possible to observe [5] the exponential growth associated with reaction-limited
aggregation, as well as the power-law growth [14] associated with
diffusion-limited aggregation. However, no matter how complex and
chemistry-dependent the initial growth is, near the gel point the aggregates
percolate to create a universal sol-gel transition.

Polydispersity

An important aspect of the critical approach to the sol-gel transition is the
prediction that the polydispersity exponent T=1+3/D is greater than 2. In fact,
x>2 is absolutely essential if one is to have a gel point in finite time. The reason
is clear enough; at the gel point the average cluster radius diverges to infinity,
yet clusters of comparable size cannot overlap. Thus if all clusters were more
or less the same size, they would tend to occupy an infinite volume at the gel
point. Of course, in reality the volume of the gel doesn't diverge at the gel
point. It turns out that the only way in which the average radius can diverge
without the total volume diverging is to have the polydispersity algebraically
decay as N(M)~M'X with x=1+3/D. From lineshape analysis of the intensity
correlation autocorrelation function, we have determined [15] T=2.3+.15, in
accord with the critical point analogy of the the sol-gel transtion.

Divergence of the Cluster Size

Let us now return to our original point of how things come to be 0 or °o.
In short, all divergences are due in one way or another to the divergence of the
average cluster mass, i.e. the appearance of an infinite cluster at the gel point.
In the percolation model divergences follow standard critical point formulae [1]
A~ea, where in practical measurements e is the time from the gel point and the
critical exponent a may be positive or negative. For example, the percolation
model predicts that the average cluster radius and mass diverge as

Rz~e-v(-9), Mw~e-Y(L76) 3)

respectively, where the numerical value of the exponent is in parenthesis. Using
quasielastic and elastic light scattering we found that [16] Rz~£-1.1-0.06
(exponent corrected for swelling) and Mw~£-2-7+0-3, in excellent support of the
critical point analogy, but only in qualitative agreement with percolation. Data



on organic systems are in better agreement with percolation exponents.

These light scattering measurements demonstrate that ~10 min before a gel
time of -170 min, silica cluster radii were already well over 10,000 A. This
observation differs with previous small angle x-ray scattering measurements on
TEOS gels [9], where the 'Guinier' radius was reported to be only -200 A just |
min before a gel point of -500 min. and no critical divergence of the radius was
found at the gel point. The lack of a critical divergence in this work is due to
the 200 A resolution of the Kratky SAXS camera and insufficient dilution of the
sol-gels. When the 'Guinier' radius exceeds the instrumental resolution the
scattering is intermediate, I-g~a, and no information about the radius can be
obtained (a result of mass conservation.) Likewise, when a sample is
insufficiently diluted, the Guinier' radius of the solution is much smaller than
the true cluster size. Thus the study of critical divergences requires high
resolution measurements on highly dilute samples.

Swelling of Clusters (Linear-Like Polymers?)

Since the growth that gives rise to branched polymers is a continuous
divergence in connectivity, it is not possible to determine the structure in the
reaction bath by using techniques that probe spatial correlations (e.g.
scattering). Thus we can only measure the ensemble fractal dimension of the
branched polymers after significant dilution. In practice it has been necessary to
dilute clusters as much as 1000:1.

Theories of branched polymers predict a dramatic swelling upon dilution
from the bulk state into a good solvent. In fact, the fractal dimension of a
branched polymer is predicted to change from 2.5 to 2 upon dilution [10,11]
Since this change cannot be determined directly, we have adopted indirect
methods of determining the change in fractal dimension AD. The first method is
to measure the divergence of the intrinsic viscosity [r|] near tgep In terms of the
typical cluster mass Mz this divergence depends on AD through [2,17]

[n]~Mz3AD/Ds (4)

where Ds is the swollen dimension. Thus if the fractal dimension doesn't change
upon dilution the viscosity does not diverge as a power law. Using percolation
exponents, eq. 4 can be expressed in terms of the weight average cluster mass as
[r]]~Mw3/8. Preliminary experiments show that the intrinsic viscosity diverges,
but that AD only changes by about 2/3 of its theoretically predicted value of 0.5.
A technical note: in the silica literature the intrinsic viscosity is sometimes
expressed in terms of the number average molecular weight as [Tj]~Mna. This is



correctfor linear polymers, butfor branched polymers formed near the sol-gel
transition this relation is incorrect, since Mn does not diverge at the gel point.
In other words, formally the exponent a="°°.

AD can also be determined by using light scattering to measure the
concentration dependence of the spatial correlation length ~ which may be
thought of as an apparent cluster size in solution (it has nothing to do with the
real cluster size, but is merely the radius that is measured in a scattering
experiment.) In the reaction bath % is small, typically -200 A, but when the
system is diluted, * increases rapidly, eventually becoming the true cluster size
(104 - 105 A) in the limit of infinite dilution. Physically, the correlation length
is the length scale beneath which the solution is essentially dilute. In any case, it
can be shown that * increases with dilution according to [18,19]

~A~c-D/3AD 5)

Using percolation exponents and the predicted swelling of AD=0.5 gives %~c5/3.
Light scattering measurements [19] on successively diluted silica clusters formed
very close to the gel point give ~~¢c*2.0+0.3 for both acid- and base-catalyzed
TMOS sols, in substantial agreement with eq. 5. It is important to note that the
observed concentration dependence is strong and independent of the method of
catalysis.

This observation conflicts with earlier studies [9] of silica that attempted to
determine whether acid or base catalysis leads to weakly branched polymers
with long linear chains between crosslink points or the densely branched
polymers one would normally expect from a tetrafunctional monomer. In fact,
these measurements are the basis of the well-known conjecture that acid
catalysis leads to the formation of linear-like structures. In these SAXS studies,
samples formed very close to the gel point were diluted and the change in the
'Guinier' radius was determined. However, because of the 200 A resolution of
the Kratky camera, it seemed that in the base-catalyzed samples the Guinier
radius did not change upon dilution, whereas light scattering measurements,
with a resolution of -10,000 A, demonstrate a large change in the spatial
correlation length. Also, in this work it was argued that a Guinier radius that
does not increase with concentration indicates branched polymers, since
branched polymers do not overlap, whereas a Guinier radius that does increase
with concentration indicates linear-like, weakly branched polymers. This led to
the conjecture that acid-catalyzed gels are linear-like, or weakly branched, and
base-catalyzed gels are densely branched. In fact, because of the effects of
polydispersity and swelling (see eq. 5), the concentration dependence of the
Guinier radius of densely branched polymers is actually much stronger than in



linear-like polymers. For example, linear polymers in good solvents have a
correlation length that diverges [4] as thus for a 10-fold dilution the
correlation length of branched polymers increases by -100, whereas for linear
polymers it increases by only -5.

These observations are further supported by 29Si NMR studies [20] that
show that the Q-distributions observed under conditions of acid catalysis are
consistent with the binomial distributions expected from percolation (the
Statistical Reaction Model [21] is a percolative system). Percolation clusters are
highly branched, having a topological dimension [22] of -1.8 (versus | for
linear structures and 2 for sheets) so the notion of linear-like chain formation in
acid catalyzed gels is not supported by extant experimental evidence.

Viscoelasticity

Perhaps the most striking aspect of the sol-gel transition is the
transformation of a viscous liquid into a rubbery solid. Prior to tgei the
viscosity of the sol diverges as T|~E'k and beyond tgei the shear or tensile
modulus grows as E~ez [3,4]. The growth in the elastic modulus is related to the
appearance of a gel fraction - the fractional mass belonging to the infinite
network - which is given by yet another power law, G~¢P.

A less obvious aspect of the fluid near the sol-gel transition is the
appearance of dramatic viscoelastic properties [23,24]. An anomalous power
law frequency dependence of the complex viscosity is observed near tgei, which
results in a slow, power law decay of stress with time. By taking advantage of
the concept of self-similarity in the time domain, we have developed a
dynamical scaling approach to the calculation of normal modes in branched
polymers. By summing over these normal modes a complete description of the
linear viscoelastic properties can be obtained [24]. For example, at the gel point
the shear relaxation modulus decays algebraically in time according to

G(t)~t-3/(2+D) (6)

Using D=2.5 gives the percolation prediction G(t)~f2/3. Since the
frequency-dependent complex shear modulus G(0>)= G’(00)+iG"(a)) is a
transform of G(t), the same gel point power law behavior is observed,

G'(«)~G"(co)~c03/(2+D) (7)

Here G’(w) is the storage component and G"(co) is the loss component of the
modulus. Dividing by frequency then gives the percolation prediction for the



complex viscosity ri’(co)~ri"(co)~(0"1/3. Experimental data taken for the TMOS
system at the gel point, shown in figure 1, are in good agreement with this
prediction, as are data for many organic gels [24,25].

2.0 M TMOS gel in 1,4 butanediol

Fig. 1: The complex viscosity for a 2.0 M base cataylzed gel at the gel point
shows a power law frequency dependence in accordance with the percolation
prediction riXco”Ti'Xco)-"-1/3.

It turns out that these relations for the dynamical properties imply that
beyond tgei both the equilibrium shear and tensile moduli scale as [24]

E~KT/RZ3 (8)

where Rz is the radius of a typical branched polymer in the reaction bath (above
tgei Ms 1s just the mesh size of the infinite network.) Thus the modulus, an
energy density, is a statement of equipartition - in a unit shear deformation kT
is stored per elastic cell of volume Rz3. Since Rz decreases beyond the gel point,
the modulus increases as E~kT/e8/3; this has been experimentally verified in
organic resins [25], but not yet in silica gels.

Finally, the steady state shear viscosity diverges as

r,~Rz2-dc (9)



where the codimension dc=3-D. This leads to the percolation prediction ri~Rz3/2
-e*1-4. From the light scattering measurements described below, we have
determined r|~£-1.5+0.1 for base catalyzed 1M TMOS gels. Direct viscosity
measurements on organic resins are in excellent agreement with eq. 9.

Shear Modulus

The last topic we address 1s the dependence of the shear elastic modulus on
the initial monomer concentration, this having more to do with aggregation than
gelation. At the start of the reaction a dilute solution of silica monomers is
activated by a catalyst. In order to react, these monomers must first diffuse
together, colliding many times before reacting if the activation energy is large.
This diffusion process is not described percolation, but may be thought of as an
aggregation process in which clusters grow exponentially in time [5,26] until the
entire volume of the solution is filled. The situation is then much like a huge
container filled with tumbleweeds- the mass fraction is very small, but the
bushes occupy the entire volume of the container. At this point the aggregates
act as huge 'monomers' that then percolate to form a gel. The radius of these
monomers is a second, nondivergent length scale that is sensitive to the reaction
conditions. For example, the radius at cluster overlap is concentration
dependent, becoming large at low monomer concentrations. If ()0 is the initial
monomer volume fraction, cluster overlap will occur at an aggregate radius of

$s=b<))0-1/(3-D) (10)

where D is now the fractal dimension of the aggregates and b is the silica
monomer radius.

Light scattering experiments [5] on TMOS gels grown under dilute
conditions give D=2.3, so the radius "s~{)0'1'4- At this critical radius the system
crosses over to gelation, passes through the sol-gel transition and cures into a
more-or-less firm gel. However, being an inherently nonequilibrium structure,
the final gel maintains the remnants of the early stage of growth, and far
beyond the gel point the elastic modulus is dictated by the aggregation that
occurred at the earliest times! If we accept the aforementioned equipartition of
energy as a general rule, the shear modulus of the fully cured gel will be
E~kT/”*s3~kT(})04-2. Thus the final gel shows a strong sensitivity to the reaction
conditions. In fact, it is possible to maintain the initial monomer concentration
and vary the spatial correlation by an order of magnitude by modifying the pH
and ionic strength. This also has a large effect on the rigidity of the final gel.



Critical Dynamics
Reaction bath

It has long been known that when a laser beam is directed through a gel, a
grainy pattern is discerned, indicating inhomogeneities in the gel. These
structural inhomogeneities have been dignified with the term microsyneresis [4].
It is commonly believed that these irregularities arise from microphase
separation and therefore would not occur in a perfectly compatible system.
However, in quasielastic light scattering investigations [6,26] of the dynamics of
the silica sol-gel transition, we have demonstrated that these inhomogeneities are
a fundamental part of the physics of chemical gels, being a natural manifestation
of the breaking of ergodicity at the gel point.

The scattering of light is due to spontaneous, thermally driven
concentration fluctuations. These fluctuations typically have a very short
lifetime (1-10" psec) so the eye only sees a time-averaged, apparently
homogeneous, emission from the sample. However, in a gel these fluctuations
become very slow so that the human eye can easily resolve the motion. To
quantify exactly how fluctuations slow down when a gel is formed, we used
quasielastic light scattering (QELS) to measure the decay of a concentration
fluctuation of wavevector q. We found that as the sol approaches the gel point,
the relaxation time of a concentration fluctuation diverges to °° in a proper
critical point fashion [6], as

<T>~s~h9+0.1 (11)

This critical slowing down of microscopic density fluctuations before tgei
forshadows the frozen inhomogeneities so commonly observed in gels.

More perplexing i1s the observed form of the relaxation of fluctuations.
Most relaxation processes decay exponentially in time, or nearly so, but at the
gel point, measurements of TMOS gels indicate that fluctuations relax via the
ultra-slow power-law decay [6]

S(q,t)~t-0.27 (12)

where S(q,t) is the homodyne, or self-beating, dynamic structure factor, which
is proportional to the relaxing part of the intensity autocorrelation function.
This power law decay is novel, being found only in gelling systems at or beyond
the gel point, and implies that the detected scattered photons break time into a
fractal set of dimension D=1-0.27=0.73. This fractal time set may be thought of



as a kind of random Cantor set [27].

To explain these dynamical phenomena we developed a theory that
describes this system as a heirarchically constrained dynamics where the
relaxation time of any mode is dependent only on the relaxation of faster
modes, not on the relaxation of slower modes. Physically, this implies the
existence of a length-scale-dependent viscosity: that is, at the gel point, where
the bulk viscosity is  a probe of radius R feels a finite viscosity that scales as
RK/V. This theory of the dynamics of concentration fluctuations correctly
predicts a homodyne power law decay of

S(q,t)~t-de/(3-de) (13)

along with the critical point divergence of two distinct relaxation times. The net
result is that QELS beneath the gel point allows determination of the viscosity
exponent in g-e-k and the gel fraction exponent in G~eP. Numerically, we find
k=1.5, in good agreement with eq. 7, and (3=0.35, in agreement with the
percolation prediction of (3=0.39.

Dilute solution

The relaxation of concentration fluctuations may also be studied in dilute
solutions of the sol. In this case the observed relaxations are due to the
translational and configurational diffusion of the polydisperse ensemble of
branched polymers, and the observed dynamics [12,13,28] is analogous to
critical slowing down at consolute points in binary fluids. In this case,
Kawasaki-Ferrel dynamics is expected [7,28] wherein the relaxation time x of a
concentration fluctuation of wavevector q scales as x~1/q3. This result is
consistent with self-similarity of the sol, and further justifies the critical point
approach to the sol-gel transition. However, internal modes of monodisperse
branched polymers can also give T-1/q3, so this result is not definitive.

Conclusions

The growth, structure, and dynamics of silica gels is well described by the
critical point analogy, and reasonable agreement with percolation exponents is
found. This implies that the chemistry is to a large degree an irrelevent aspect
near the sol-gel transition. The notion of linear-like polymers in acid catalyzed
gels conflicts with experimental evidence and proper theoretical analysis. The
early time growth of silica is a nonuniversal aggregation process and accounts
for many of the differences in the fully formed silica gels.
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