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CONCEPTS IN STRONG LANGMUIR TURBULENCE THEORY*

D. F. DuBois and Harvey A.Rose
Theoretical Division
University of California
Los Alamos National Laboratory
- Los Alamos, NM 89545

ABSTRACT

Some of the basic. concepts of strong Langmuir turbulence (SLT) theory are
reviewed. In SLT systems, a major fraction of the turbulent energy is carried by
local, time-dependent, nonlinear excitations called cavitons. Modulational insta-
bility,‘ localization of Langmuir fields by density fluctuations, caviton nucleation,
collapse, and burnout and caviton correlations are reviewed. Recent experimen-
tal evidence will be presented for SLT phenomena in the interaction of powerful
HF waves with the xonosphme and in laser-plasma interaction experiments.

1. Introduction

The study of Langmuir turbulence is usually defined as the study of the tur-
bulent state generated by the interaction of high frequency electrostatic Langmuir
(or electron plasma) waves and low frequency ion sound waves. The system is
usually driven into the turbulent state by the interaction of these waves with
high energy density beams of electromagnetic energy (e.g. lasers) or charged
particles (e.g. electron beams). In recent years it has been increasingly realized
that the approximation of weakly interacting, linear waves, as embodied in the
so called weak turbulence theory (WTT), has a very hmlted domain of validity
in describing the Langmuir turbulence driven by high energy density coherent

external beams.

In the seminal work of Zakharov! in 1972 many of the basic concepts of strong
Langmuir turbulence (SLT) theory were developed. Primary among these were
special collapsing state solutions consisting of a high frequency Langmuir field

*This article is based on three lectures given by the authors at the Summer
Institute in Theoretical Physics on Nonlinear and Chaotic Phenomena in Plas-
mas, Solids and Fluids, University of Alberta, Edmonton, Canada, July 16-27,.
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trapped in a self-consistent ion density depression which collapsed to a singularity
in a finite time. We shall refer to such structures as cavitons. It was clear that .
if such solutions had a wide, and physically interesting, basin of attraction they
would lead to an nnpcntant source of dissipation of Langmuir energy. When
the caviton's spatial dimensions collapse to a few electron Debye lengths, strong
wave-particle damping occurs and energy is transferred from the electrlc field
to accelerated electrons. ThlS has now been well verified in experiment? and in
particle-in-cell simulations® of isolated, undriven, collapsing cavitons.

Understanding of a truly turbulent, many caviton, state has been achiwod
using large spectral numerical simulation of the basic nonlinear “Zakharov” equa-
tions describing Langmuir turbulence. 4-12 These studies have shown that col-
lapsing caviton states are indeed important ‘and often the dominant attractors
for a wide range of driving and initial conditions. In many cases a significant
- (sometimes dominant) fraction of the turbulent electric field energy is contained
in collapsing cavitons. The simulation studies have also isolated the mecha-
nisms through which energy is transferred from the external driving beams to
the collapsing cavitons, which are usually the dominant dissipation sink. Al-
though the details differ, depending on the driving source and parameter regime,
a common element is that cavitons are nucleatca"% in preexisting ion density de-
pressions. These preexisting ion density depressions are often the remnants of
previous caviton collapse events. The nucleation concept has led to an increased
awareness of the controlling influence that the ion density fluctuations have on
‘determining the state of the Langmuir electuc field. This has led, for example, to
experimentally verified!3:14 predictions!® of the nonlinear couplmg of stimulated
Raman scattering (SRS)-which excites Langmuir waves-to stimulated Brillouin
scattering (SBS)-which excites ion density fluctuations (or ion sound waves).

The previous concept that the nonlinear state of SLT was sustained by re-
peated action of linear instabilities, such as the modulational instability, is not
in agreement with the results of numerical simulation in many cases.

There are many linear instability mechanisms which can excite Langmuir

~waves from quiescent initial conditions and which evolve into states of SLT. These

~maybe used to define the physical domains in which SLT phenomena are impor-
tant.

In the interaction of intense electromagnetlc radiation w1th plasmas, the para-
metric decay instability16: 17 (PDI), the Zwpe decay instability!® and the SRS

instabilityl¥ can all excite Langmuir waves and the modulational?0 instability
(MI) of the pump field can also drive up large Langmuir fluctuations. In short-
wave-length, laser-plasma interactions the SRS and perhaps 2wpe instabilities
seem to be the most important. In ionospheric modification by powerful HF
waves the MI and PDI play the dominant role. The latter experiments have
been particularly fruitful in verifying some of the predictions of SLT theory.?! A
detailed discussion of SLT and its application to ionospheric heating phenomena
near critical density is given in ref. 21 which we also refer to as I.

Intense charged particle beams can also excite various Langmuir wave in-
stabilities. The electron bursts from solar flares are argued to excite SLT in
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the solar wind plasma; the turbulent current fluctuations produce Type III ra-
dio emissions.22:23 Laboratory experiments using nonrelativistic? and relativistic
electron beams?® may also excite SLT. The excitation of SLT by electron beams
in the earth’s electron foreshock has recently been studied.?5 Generally, we ex-
pect that states of SLT will be excited by any instability which strongly excites
Langmuir waves in plasmas whose density gradients are sufficiently wealk so that
cavitons, accelerated in the gradient, move less than a typical caviton width
before collapsing. ‘ ‘ ‘

In this article we wish to review the basic concepts which are developing in
our understanding of SLT. The approach will be highly heuristic and qualitative.
A more complete list of references to work in this field can be found for example’
in references 21 (I), and 23. No attempt will be made here to give derivations. .

2. Model equations for strong Langmuir'turbulence:

The most common model of SLT has bécome known as the “Zakharov model”
although equivalent or closely related equations had been used previously by

several other authors. Zakharov’s seminal work! on collapse was the first to
reveal the important nonlinear content of these equations.

The equations are a nonlinear set of PDE’s coupling the envelope, E(z,t),
(¥ x E) =0, of the longitudinal Langmuir field to the fluctuation, n(z,t), in the -
ion density.  Quasi neutrality is assumed. In dimensionless form the equations
are ‘ ‘

YV [((& +veo) + V2 —n)E =Y Sp(a,t) ()

and
(0F + 200 8 — V?)n = VEIEP + Sn(a,t) @

The units are: time-(3/2) M w;,‘l, space-(B/Q)Ml/Q/\d, electric ﬁeld-(47rn0Te)l/2
(647r/3)(.M/17)‘1/2 and density-(4/3) M~1n, where M = n m;/me, 1 is a con-
stant of order 1, ny and T, are the background density and electron temper-
ature, respectively.?! The physical electric field is Re[E(z,t)e”*r!] where the
carrier frequency is the mean plasma frequency wp. As a further point of nota-
tion we adopt the following convention for spatial Fourier transforms: E(k) =
(L)‘D [dDw exp [—tk - z]E(z) where D is the dimension of space. |

The equations (1) and (2) are coupled through their nonlinear terms. The
—n E term in (1) takes into account the density dependence of the electron
plasma frequency; wp(n) = (47 cQ/me)l/Q(no + n)l/2 ~ wp(0)(14n/2 ny) where
wp(0) = wp is the mean. The VQI_E__|2 term in (2) is the gradient of the low

frequency ponderomotive force of the Langmuir field which tends to expell ion
(and electron) density from high field regions.
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To couple the collectwe ﬁelds E and n to the undexlymg discrete particle
fluctuations damping operators v, e dlld v;e, which are local in Fourier (&) space
~ but not in real space, have been included. The damping on the Langmuir waves
- 1 can contain the effects of collisional and Landau damping. An ad hoc element
~ of the theory, which is important to order to have well-resolved simulations, is
that ve(k) must increase at least as fast as LD/2, where D is the d1men51on of
space, to prevent singular collapse for D > 2. It can be argued, as in I, that
this type of damping models the nearly complete burnout of the E field observed
in PIC simulations of collapse’ and that many macroscopic properties of SLT,
including the average energy dissipation rate, are not sensitive to the details of
this damping. 2l In the simulation work 1epoxted here v;(k) = v;|k| is used as
a model of ion wave Landau damping. The source terms S and S, take into
account the coupling to the external electromagnetic beams. [In principle Sg
and S, also account for the particle noise related to the damping terms v, and -
v; so that (1) and (2) can be regarded as equations of the Langevm type.] For
systems driven by charged particle beams the usual approximation is to consider
ve(k) to be negative over some domain of k to account for the particle-wave beam

1nstab1hty 11,12,25 ‘ .

A nice property of equations gl) and (2) is'that they contain, when properly
' linearized, all the instabilities!®2] (except 2wpe) referred to in Section 1. [Very
similar equations apply to the 2wpe case.]

In most of the specific examples which we will give here the sources will
be those appropriate for the interactions of a spatially uniform pump field at a

frequency Qo = &, +wp in physxcal units. In the envelope repxesentatlon used in
(1) we have

Eolt)= (Be™™t) ®)

~ where wo = (3/2)(nm;/me)(Wo/wp) in scaled units. In this case

Sg =n(z,t)Eye” !
Sn= VB! Bl )+ Boe™ - B (2, 1) (4)
We will refer to this type of driving as parametric drive. This drive is appropriate

for electromagnetic drivers near the critical density (w, ~ 0) such as in HF
modification of the ionosphere. ‘



3. Weak turbulence theory (WTT)

The approximation of WTT can be applied to (1) and (2) to obtain stan-
dard results. A basic assumption of WTT is that the power spectral densities
(|E(_Ig,w)t2) and (|n(_lg,w)|2) contain only the frequencies associated with free or
linear Langmuir waves and ion acoustic waves, respectively:

(B* ()« B(E ")) = mi()278(w = wp (1)(20) 0+ 6w =162k ~ &)
(koK) = ()28 = wis(E) + ns(~B2md(w + (k)
o x 2mPHsw —w)sP (k- &) “ G

Here wp (k) = k% which is the linear Langmuir wave frequency (relative to the
envelope frequency wp) and wg(k) = |k|k#* is the ion acoustic frequency (k* =
V13- 1/—,7 in our dimensionless units is also the ion sound speed).

WTT is basically a perturbation theory of linear waves based on the 3 wave

interaction represented in Fig. 1. This interaction involves the familiar decay-
type interactions with the frequency resonance conditions ‘

o =w ) tusle-KD. (@)

The source term (4) also introduces the direct ‘decay’ of the pump

&

wo =wr (k) ws(-k) (7)

There are very many works on WTT. Here we refer to recent work% on the
validity of WT'T and in which references to other work can be found.

ITI. Modulational instability and localization by density fluctuations

The concept of the modulational instability of extended Langmuir wave pack-
~ets is well-known.20 The mechanism is illustrated in Fig. 2. If a ripple is im-
posed on an otherwise nearly uniform Langmuir field (or on the driving field E,)
the ponderomotive force associated with the peaks in |E(z, t)l2 tends to expell
electrons and ions, causing density depressions in the high field regions.” These
density depressions tend to further confine (or trap) the E field increasing the
sharpness of the peaks in |E|? further depleting the density and leading to an
instability. Mainly from numerical simulation, we know that the nonlinear stage
- of this instability is'an array of solitons in one dimension (D=1) and in D > 2
an array of collapsing cavitons. The wavenumber of the dominant perturbation
excited by the instability is kpr; ~ W/ where W = |E|? is the electric field
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energy density of the original extended Langmuu wave. If the wavepacket is not
uniform so that ]ES |2 has a spectrum of width Ak peakcd say at k = 0, then
there is a threshold®? for modulational insbability Wz AL)Q Thus for a given
‘value of the spatial averaged W = [ dk|E(k )2, if A/l ~ kpg, Le. if the spatial
‘structure of |E(a‘,,t)[2 is on the same scale as "n’/M,”, the MI is suppressed,

" Generally, the spectrum of (|E(k)|?) of the developed SLT state is so broad that
the MI is suppressed.

Localized E fields can also arise through their coupling with ion density fluc-
tuations n. From (1) we can find an eigenvalue equation?! determining a completc
orthonormal set of curl free vector eigenstates ¢,(z,t) of the Langmuir field in a
given ion density fluctuation profile n(g, t)

T O+ mne e =0 (9

where

Z X e, =0 and fdx ‘31/(I t) _u/(mt) = (ev +‘el/’> = by ‘ (9)

In D=1 this reduces to a familar Schrodinger equation in a “potential” n(z,t).
Depending on the profile of n(z,t) the eigenstates ¢, (z,t) may be localized in

~nature or extended. Plane wave solutions ¢, = k e" 21~D/2 exist for A =

k? when k% > " maz, conespondmg to free Langmuu waves. Since n(z, t) is
generally a function of time we have a different set of e,(z,?) at each t which
are continuously related. (In a finite box with a countable numbel of states the
Hilbert space has the same dimension for all t.]

In general it is difficult to characterize the properties of this comple te set of
states. In one dimension (D=1) the elgenstates can be computed quite easily®
for a given realization of n(z,t). The states with the lowest (negative) eigenfre-
quencies ), correspond to eigenfunctions which are rnamly localized on density.
depressions. The localization of rmost'interest here is on the scale of a single
density depression not the more global Jocalization of states, say, on the'scale
of the correlation lengths associated with random potentxals The short scale
localization produces a ponderomotive force which may lead to collapse. The
deep density depression where A, <0, of the collapsing caviton produces a very
localized or truly bound state. :

We can specify these states for simple, idealized cases su(:h as an isolated
caviton at x=0. For A\, < 0 we have {ruly bound states which for example in
D=1 die as exp - | Ay |1/2|CL| as ¢ — oo; for A, > 0 we have extended or nearly frec

Langmuir waves (for A & k% > nmaz). In section 5 we will generalize the concept
of localized states to include long-lived metastable states with npez > Ay > 0.
The condition for true bound states or for long-lived metastable states to exist

is that |nmin)6% 2 0(1) where nypip < 0 1s the depth of the density well and é is
its spatial width.

Formally we may expand E(z,t) in this complete set of states
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Eah =Y hMelty (0

In the case wy £ 0 the states in this sum can be divided into localized and
extended so that E can be represented as the sum of a localized and extended
part (see I). In other cases E has the same two component form but the use of
the eigenstate expansion is not useful. An alternative approach is discussed in
Section 7. The density wells which trap these localized states might arise from
initial background density fluctuations, from density wells remaining from earlier
collapse events or from density fluctuations driven by some instability such as

SBS." , ‘

~ In the case of SBS-generated ion sound waves, we can sometimes regard
these density fluctuations as being periodic in space with a wavelength corre-
.sponding to the fastest growing SBS mode. The eigenstates g, (z,?) in this case
can be regarded as one dimensional Bloch waves in a periogjic potential, with
lattice wave vector k and with eigenvalues Ag ,(t) which lie in bands, labelled

by the index v, just as in solid state physics.!5 As the periodic density fluc--
tuation grows exponentially in time due to the SBS instability the Langmuir
mode eigenfrequencies A, (t) change in time. If a stimu' ‘ted Raman instability
is simultaneously excited, the SRS frequency matching condition, Aw = wlk“se" -

—0

)\k;u(t)—wzc'ﬂer’id“ght = 0, can only be satisfied instantaneously for a given Lang-
‘muir Bloch mode with lattice wave vector k. In fact if (—%—‘5 = lﬂdl’\k‘.l/ > '71‘,23,

where yp is the instantaneous SRS growth rate, then it can be shown!® that the
SRS instability is detuned by the growing SBS ion sound wave and SRS is sup-

sed. Experiments carried out at the NRC Laboratory in Canadal3:!4 appear
presse perirn arried out a wtory ppear.
to be consistent with this scenario. The experiment by Villeneuve et al.!4 veri-
fied the theoretical prediction!® that a “seeded” SBS instability could suppress
SRS. In other parameter regimes where SRS is not suppressed the (weaker) SBS
ion sound wave may still impose its spatial periodicity on the SRS Langmuir
eigenfunctions.'® These envelope eigenfunctions have a periodic array of maxima
of |E|? (or |.€k,u|2) which have a finite ponderomotive force (PMF). This periodic
PMF causes a periodic array of density wells to develop in which the Langmuir
waves are trapped and can be driven to collapse. [Note the ponderomotively
driven periodic density wells do not coincide in general with the density minima
of the SBS sound waves but they have the same periodicity.] In Fig. 3 taken
from ref. 15, we show typical spatial configurations of IEI2 and n, before and
after collapse and burnout.

The impulsive time signature of the Thomson-scattering signal from Lang-
muir fluctuations in the experiment of Walsh et al.,!® is consistent with the
collapse of SRS driven Langmuir fluctuations. The large ion density fluctua-
tions remaining from the burntout cavitons then act as seeds for the subsequent.
strong SBS pulse. In Fig. 3 the time signatures of the Langmuir and ion sound
fluctuations, obtained from numerical solutions of the SRS-SBS driven Zakharov
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equations, are shown. Further evidence consistent with the controlling effect of
'SBS generated ion sound waves on tle SRS process is found in the experiments
of Baldis et al.?

Iy

5. Langmuir collapse of cavitohs

In 197‘) Zakharov introduced the concept of Langmuir collapse.! He shiowed
that for D > 2 the ponderomotive pressure can overcome the thermal pressure
(the V2n term) in (2) leading to collapsing solutions which reach singularities in
a finite time (without dissipation). These collapmng solutions are localized states
zmd have self-similar asymptotic forms.

1“ » z . t ‘. ‘
Bzt = 57 e(555) e - [ dan (10)
and |
Mt = gy (6<lt>) - ()

where for supersonic collapse
8(t) = (te — )P (12)

and A(t) ~ 6( )2, Here ¢ is the time of collapse.

'This solution conserves an invariant of (1) and (2) (in the absence of dissipa-
tion) which is the electrostatm energy in the caviton

- / de|E(z, ) = / dPele(g)? (13)

In two dimensions, for the scalar form of Zakharov’s equations in D=2, it is
known?8 that at least a critical amount, Ne, of electrostatic energy must be
carried into collapse where N ~ 10 in our units. For the full vector equations
(1) nothing to known rigorously but empirically we find N, ~ 50. In D=3 collapse
is possible for any value of N.

It is generally found®®:10 that the shape of the collapsing solution, as deter-
mined by |g(z/6(t)|* and (z/6(t)), has a “pancake” shape with the ratio of the
thin dimension to the thick (mdml) dimension in the range of 1:2 to 1:3. I the

case of parametric pump drive the axis of the pancal\e along the thin dirension,
tends to be along the direction of E,. (At least in the case where there is divect
nucleation by the pump ac discussed in Section 5. )
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The bound state eigenfunctions g, (z,t) associated with collapse have this
self-similar form except that, they are normalized to carry a unit of energy i.c.
[dPele, ()2 = 1. Such a state is excited with an amplitude h,(t) such that the
' cc>nt1‘i1)1,1ti_o1}to E(a,t)is hy(t)e,(z,1) and the energy carried into collapse is then
N = |h(8)]*. ]

The‘energy taken into collapse maybe gathered by the evolution of a modu-

lational instability (MI) or by the transfer of energy from the driving source to

the localized Langmuir states?? in the nucleation process discussed in the next
section. o ‘ -

6. Nucleation of localized caviton states and caviton cycles

How does the energy from the external driving sources communicate with
the cavitons which dissipate most of the energy? A rather detailed under-
standingﬁ"g’21 lias been gained for the case of parametric drive where w, < 102
where nmqz is defined below. This includes the case of overdense drive, w, < 0,
when the pump frequency is slightly less than the drive frequency.?! In this case

the parametric pump directly. couples to the localized states of the cavitons.

- For wy > nymqr and for beam drivel? it appears that the long wavelength, free
' Langmuir waves, which are driven by coupling to the drive, couple to the local-

©1zed states in the nucleation process. This indirect nucleation case is less well

understood on the microscopic level. ‘

An equation of motion for the amplitudes hy(t) can be obtained hy the sub-
stitution of (10) into (1) using the source in (4). The complete result is given
clsewhere.?! If the coupling between a given localized state ¢,(z,t) and all other
~ states and damping is ignored the equation of motion for hy(t) is?!

1 ho(t) = Ao(t)ho(t) = J_E_O~/dDa: el(z,t) n(z,t) . o (14)

Which has the form of a driven oscillator which has a time dependent (or chirped)
frequency Ao(t). To use this equation n(z,t) must be determined, say, from a
simulation of the complete turbulent system. We have been able to carry out
this program in one dimensional models where it is relatively easy to compute
all of the Ay’s and e,’s. In this case (14) represents very well the evolution of a
localized state as it gathers energy and begins to collapse.%7 In Fig. 4 we show
results for the evolution of a localized state for the case of the scalar Zakharov
equations where the density perturbation n is taken to have radial symmetry
n = n(r,t) in 3 dimensions. This scalar model has the same collapse scaling
exponents as the 3D vector Zakharov equation and also has the common property
that a bound (or localized) state can be lost as the density well expands which
‘results in a finite nucleation threshold for E,. In Fig. 4a the dashed line shows
the relaxation of the density well, ni(r = 0,t), beginning from a deep negative
value and relaxing to a small negative value before suddenly dropping to very

9



negatlvo values conecpondlng to collapse. The density fluctuation is driven by

the ponderomotive force, |ho t)|2V2|c0(7‘ t)l , of this single localized state and
the case of strong ion dampmg v; 2 0.6 1s taken so that the density well does not

bifurcate significantly following the burnout of the electric field. The solid line
shows the corresponding |E(r = 0,1 )|2 which suddenly peaks during collapse. The
subsequent sudden drop is the burnouf process in which the Langmuir cuorgy is
dissipated by wave-particle damping. In Fig. 4b the solid line shows the evolution
of the localized state eigenvalue, /\Og ), which evolves from very negative values
(since the state is originally deeply bound in a deep well) to a smaller negative
value. }The dashed line shows the evolution of the time derivative of the phase 3, -
where ho (1) = |ho(t )lexp i®o(t); see I for a more complete discussion.] In this case

the drive fxequency is at wp = 0. As the eigenvalue A\y(t) approaches the pump

frequency the energy |ho(t) |2 (F 153 4c) in the localized state increases. rapidly
as the mode frequency comes into closer resonance with the pump frequency
(wo = 0). This rapidly increases the PMF associated with the localized state,
and as the density well deepens again in response to this PMF, Ay(¢) agaiu
decreases rapidly during collapse.

A number of scaling laws for the dependence of various caviton pammctms on
the pump strength E, have been deduced from these isolated caviton studies. “1

For example, the peak value of |E(r, ()12 in the caviton at collapse scales as Ej’ 2,
the peak field in the caviton actually decreases with i mueasmg driving thng,fh

The discussion above strictly only applies for wo < 0, for sufficiently strong
E., where the exgenvalua satisfies A\p(t) < Apaz < 0. In this case the state at
any time t, e, is a true bound state whose amplitude is exponentially small as
|z] — oo. Howcvel ‘we know from simulations that a similar scenario applies
for a range of w, > 0. In this case the near resonance condition, Ao(t) ~ wy

can imply Ay(t) > 0 during the nucleation phase and such a state cannot be a
true bound state. [During the collapse phase /\0( ) € 0 and the state is a true
bound state.] This case can be understood in terms of metastable states (or
resonance scattering states) which occur in quantum mechanics (and elsewhere)
in the well-known problem of a potential well surrounded by a potential harrier.
[A good reference is D. Bohm, “Quantum Theory,” Prentice Hall, 1952}, In the
problem at hand a one dimensional example iilustrates what we believe are the
important points: Consider a density fluctuation profile, n(z,t) (our “potential™),
consisting of a potential well at z = 0 and a maximum (or b'1rr1er) at o = 6 where
n(r = 6,t) = nmaz(t). For simplicity take n(z) = n(—z). It is well known that
localized metastable states can be constructed in the well which have all the
properties of bound states except that they may have a finite lifetime, AtN, due
to the leakage of the wavefuntion through the barrier. In the WIKB appxo\mm*l(m
the lifetime of this state can be written as

7 .
Aty =1, exp[?/ dz(n(x,t) — /\N(t))l/z] - (15)
TN ‘
N . |
where 7, = ‘2/ dz(Ay — n)'l/g is the time (in the WKB approximation) for
o .

a trapped Langmuir wave (packet) to cross the well and back. In (15), xy(t) is
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the classical tmnmgj point inside the well where n(zy,t) = Ay (t) and zb is the
turning point (if any) outside of the barrier. [In the WKB approximation the
eigenvalue, Ay, is determined by the Born- -Sommerfeld quantization condition,

S [N
'2/ dzy/A\y —n = (N +1/2), where N is an. integer. The general form of At

may be valid for a thick barrier even if the WKB quantization condition is not. ]

The nucleation: pmfuxe discussed a“ove applies to the metastable states so long
as their lifetime is long comparerd to other times of interest. For example near the.
/3

maximum of Ao(to) = Amaz, Where dA\o(to)/dt = 0, if (Aty)~! < (d2Ao/dt?),L
the lifetime of the metastable state will not c:trong,ly d‘fect the duect mlcleahon
by the pump as calculated from (14). :

For an isolated collapse with sufficiently strong ion sound damping the ion
density profile of the evolving burntout cavity has the well-plus-barrier form
where n,,;, < 0 and nmge > 0 and where the positive and negative regions are
such as to conserve particle number: [dan(z,t) = 0. In this case for w, <
0, Amaz < O for sufficiently strong E,. the outside turning point is at z;, = oo and
At = 00, characteristic of a true bound state. For 0 < /\mm < wp, At can still
be large lf Amaz S wWo K Nmaz.

This illustrates what we believe to be the typical nucleation belavior in
this regime of direct coupling of cavitons to the pump: As the relaxing density
well becomes shallower and broader its eigenvalue approaches resonance with the
pump causing a rapidly increasing PMF which initiates the next collapse.

For isolated cavitons. this behavior can evolve into a strict limit cycle of
repeated nucleation- collapse-burnout. (The minimum value of E, which can
sustain collapse at a given site is the nucleation thresheld referred to above.)
Yor overdense drive, w, < 0, we have found limit cycle bchavior even in the
multicaviton case. In such regimes neighboring caviton’s cycles are either in
phase or 7 out of phase. (The phase is defined as 2rAt/7, where 7, is the cycle
perlod and At the collapse time modulo 7.) Caviton correlations are discussed
in some détail in Section 8. '

A numerical diagnostic of how the pump energy is injected into the system is
the injection spectrum I;(k) = Im(E, - E*(k)n(~k)). For parametric drive with
wo =~ 0,1;(k) is a relatively broad spectrum extending from k ~ 27 E, to values
of k Just below the dissipation scales. This is consistent with the direct <ouplm;>
of the purup to the collapsing cavitons. For w, sufficiently large the injection

epectrum his a completely different character, as discussed in Sec. 7, from which |

we conclude that the cavitons are driven by the low lying free modes, which are
driven up by the pump, and not driven directly by the pump.

Detailed studies of SLT driven by long wavelength negative damping!? (beam
instabilities) also seem to clearly demonstrate that cavitons are locally nucleated
in preexisting density wells but the nucleation coupling is to the driven free modes
rather than directly to the negative damping source.

It is easy to se(,’foxmallv21 that, because n(z,t) is generally time dependent
in SLT, the modes ¢,(x,t) do not behave m(lepondontly This introduces, for

11




example, an additional term —i Z / degf;(._q, t)[d/dt ey(x,t)]hy(t) on the right
— ,

“hand side of (14) involving the time derivative of the eigenstate e, and therefore
couples the amplitude h, to other amplitudes h,. It was shown in I that this
leads to a coupling of bound (or localized) states to free mode states.- When a
caviton collapses it radiates away some energy in the form of free modes. This .
is a relatively weak effect for w, < 0 but accounts for the presence of both free
mode and caviton contributions in the power spectrum of fluctuations (Section

6). | |

- The tunneling of trapped modes through the density barrier, discussed above
where A, > 0, 'is another way.that free or extended modes can communicate
with localized modes. The two kinds of coupling are different since the first
mechanism, depending on d/dt e,,, is observed?! to occur even for wo < 0 where
there is no tunneling. Asw, increases the tunneling mechanism probably becomes
dominant. . : ‘ '

It is interesting to observe that a free Langmuir wave incident (in the scat-
tering sense) on a potential well plus a barrier can undergo resonance scattering

z
. . v 3 1 L
when the (quantization) condition - ‘2/ dz\/A —n(zt) = (N + E)w— is sat-
o . .

isfied where now we take A ='k? to be the energy of the incident free mode.
When this condition is satisfied the wavefunction inside the well is much larger
than that outside (and there is perfect transmission of the incident wave in onc
‘dimension). In the Langmuir wave problem the PMF of the resonance-enhanced
confined wavefunction in the well could nucleate collapse. It will be interesting
to see if this resonance scattering phenomena can account for the nucleation of
caviton fields by low lying free modes in time dependent density wells. -

7. Power spectra of turbulent fluctuations for w, < k*

The power spectra |E'(E,w)|2 and ]n(]_g,w)|2 of the turbulent fluctuation time
series are a very useful diagnostic of SLT dynamics. In Fig. (5) are shown
|E(k,w|? for various values of k where the direction of k is at an angle of 45°
from the x axis which is the direction of F,. The spectra consist of two main
features: a broad continuum supported by frequencies generally less than w = 0
(frequencies are measured from the heater frequency w,=>5 in these Figures),
and a sharper but weaker feature at positive frequencies. The broad spectrum
for w £ wy is the “caviton continuum;” it arises from the caviton dynamics
of nucleation-collapse-burnout. The extent of this spectrum toward negative
frequencies reflects the depth of collapse and the negativity of the eigenvalue
/\o(t).g"zl The positive frequency “free mode peak” is at exactly the free Langmuir
wave frequency. [In the case of Fig. 5 a weak magnetic field along the x axis was

included so that the free Langmuir frequency is w = k% + Q% sin@ where in our

units Q2 = L(wl/w nm; /me) with w, the electron gyro frequency and 6 is the
2\ p)\N gy y

angle between k and B,.) : ‘




In 1988 Cheung and coworkers® investigated the turbulence induced in the
ionsophere shortly, (within 30 ms), after the turn-onof a powerful HF wave which
was periodically turned on and off, the off periods being much longer than the
on periods. Examples of the spectra of the Langmuir fluctuations which they
observed with 1 ms long pulses of the Arecibo Thomson scattering radar are
shown in Fig. 6. There is remarkable qualitative and quantitative agreement
between the theoretical (numerical) spectra and the observed spectra. ‘Space
does not allow us to discuss the many detailed comgarlsons with theory which
have been made in this and subsequent experiments.30:21

These observa.tlons are a dmmatlc verification of the predxctlons of SLT the
ory since WTT cannot account for any aspect of these observations.

It has recently been observed®! that when the radar observations are made
with a longer delay after the turn-on of the HF pump the turbulent layer spreads -
out to fill an altitude layer about 1 to 2 km thick below the reflection altitude.
This coincides with qualitative and qua,ntxta.twe changes in the Langmuir ﬁuctu-
ation power spectrum; an example is shown in Fig. 7.

8. Coexistence of parametric decay cascades and Langmuir collapse

Spectra of the type shown in Fig. 7 have long been associated with a cascade
of parametric decay processes of the type discussed in Section 2. WTT was
used to describe this process but it has become increasingly clear that it is,
at most, only qualitatively correct and that it fails to describe several features
of the observations. For several years it was believed that the altitude of the
turbulence producing spectra like Fig. 7 was mconsxstent with a decay cascade of
free Langmuir waves. Very recent expenments have shown that this is probably
not true. To understand these experiments we have recently undertaken a study
of SLT, with parametric drive at densities well below the critical or reflection at
which the matching condition for parametric decay can be satisfied.

For the primary decay of the pump, which we assume to be spatmlly uniform,
we have the matching condition

B0 = wp(z1)(1 + 3 (BADYY) + [Fles (16)

‘which determines wp(2]) the electron plasma frequency at the “matching” alti-
tude z1, in terms of the radar-observed k.

In Fig. 8 we show time-averaged electrostatic energy spectra in the well-
developed, quasi stationary trbulent state (|E(k) | ) as a function of the mag-
nitude of k and its angle § v : the geomagnetic field. The heater E, and the

geomagnetic field B, are in the x direction. The simulations used a ¢256x128)

2r 2r

grid in (kz, ky) space where Ok = - = %k*,Akz =1, = 3 kx where
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: 9 ap - . . ‘ . . . .
k¥ = /1 —vf = .96, in our dimensionless units, for an ion acoustic damping pa-

rameter, v; = 1'25; = 0.280. [In physical units k* = .96 (2/3) (m;/me)"/2kp, ]
This allows us to (deqtmtely 1esolve the decay cascade and the small scales of

collapse:

We note that in addition to the cascd(le peaks at k| = 7.68, kg = k| — A* =
6.72 and ks = k| — 2ks = 5.76, there is a broad background of turbulence which
contains a significant fraction of the turbulent electrostatic energy and which is
not accounted for in WTT. We will refer to this set of modes ky, k3, ks, as the
pmma,ry cascade which results from the decay of the pump. The notation 1:3:5:

- < - is used because the decay conditions (5) and (6) imply that the frequencies of
these modes will be shifted by 1,3,5 - - units of the ion acoustic frequency, [ky|cs,
below the pump frequency. There is also an apparent enhancement in the zero-
frequency shift mode at k, = 8.16 and in the anti-Stokes mode at kq = k| + b+

= 8.64. In Fig. 8 we also show, for the same pammetexs the time averaged
ion fluctuation energy spectrum <|ﬂ( |2) Again this is dominated by a broad
spectrurn associated with collapse but also contains a sharp feature at k) = 7.68
associated with the primary decay of the pump. .

In Fig. 9 we show the power spectra |E(k,w)|* for ky = 0 (couespouding
to § = 0) and for several values of k; including two of the three primary decay-
resonant values k) = 7.68,k3 = 6.72. [Note that the cascade proceeds along
ke in the steps by — —k3 — +kg etc. but, since - k, is equally likely to be
“excited in the primary decay, the spectra are on the average symmetnc between
k and - k ] The power spcctxa consist of free mode peaks at w ~ kx, (In physical

units at w —wp =~ 3/2(ky /\D) wp), imbedded in a weaker broad continuum. This
continuum is more prominent in the modes not in the primary cascade such as
ky = 3.36, 7.20 and 8.64. The free mode peaks at the primary cascade values,

ke = ki, A3, ks, are enhanced over the peaks for neighboring k values consistent
with the enhancement of these modes in the energy spectrum of Fig. 7. The broad
bacl\ground in the power spectra is due to caviton exr‘ltamons This background
is relatively weak compared to the free mode peak for k% < w, and relatively
much stronger for k% > w,. ‘

In Fig. 9 we also show ion ﬁu(‘tuamon (ion line) power spectra, (In(k, w)[?),
for the same parameters. Note that these consist of (usually) unequal wings at
w = j:AcS associated with free ion acoustic waves and a central feat ure near
w = 0, as in the observed spectra.

In Fig. 10 we show the maximum electric field |E(z, )|2,4, in the simulation
cell as a function of time. The sharp peaks are associated with caviton events.
In Fig. 10e,f,g we show the time serws of the modulus square Fourier coefficients
of the density fluctuations, |n(k,t | Note that there is a positive correlation of

the peaks in |n(k, )| with the caviton event in Fig. 10d which is consistent with
our claim that collapse is the primary source of ion fluctuations. For even higher
values of k (not shown) the correlation is nearly 100%. Other diagnostics show
that most of the electrostatic energy is dissipated by caviton collapse.

We can get a better estimate of the fraction of energy involved in caviton
collapse compared with the energy in free modes by looking at the time histories
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of |E(k,t)|* for various Fourier modes. Some examples are also shown in Fig,
10a,b and ¢. Notice the fast modulatxoub or “buzzes” on these signals, which
occur during the collapse periods, as can be verified by comparison with Fig.

. 10d.

~ We can interpret these signals by writing the total electrostatic envelope field
- E(z,t) = E.(at) + Ef(xt) where Ef(x,t) is the nonlocalized or free mode part.
The same two component ansatz for £ was made in I (and in refs. 7 and 8) where
wo < 0 and a similar approach has xecently been used to describe beam driver
SLT.!2 Here we can get a microscopic description of this decomposition from
the power spectra and from the following argument: The localized or caviton

part, E;, can be written as a sum over N(T') dxscrete events occuring during thc,
observation time T {see L]

N(T) \ ' ‘
= > sle—wt-t) ()

l:

—

With this decompositxon we can wrlte‘for the Fourier modes

Bl OF = Bk 0P + (k) o
+ Z 2le; (k,t) ||Ef( t—t;)| cos(wkt——k z; — ¢i(1)) (18)

where we have written Eg(k,t) = |Ef(k,t)| exp —iwgt, where, from the observed

power spectra, wy is close to the Bohm Gross frequency. The caviton phase [I]

$i(t), obtained from e;(kt) = |¢;(k,t)| exp 14;(t), is a rapidly varymg ‘chirpped’
phase arlsmg, from the nucleation and collapse of cavitons.?! The ‘buzzes’ in
the |E(k,t)| can be identified with the rapidly varying interference terms in
(18). From thls and from estimates of the fraction of power in the broad caviton
" background in the power spectra we can estimate the fraction of the time averaged
electrostatic energy in free modes compared to that involved in collapse. We
find, roughly, that in the case of the parameters of Flg 8-10 that at low k
(k2 < wp) about half of the total time averaged energy is in free modes while for

k% > w, the fraction of free mode energy decreases from about 50% to zero as k
increases. A more complete discussion of this point will be published elsewhere.
For smaller, including negative, values of w, the relative fraction of energy in
collapsing, localized states increases dramatically.

Thus we have evidence that at underdense altitudes a decay cascade can coex-
ist with caviton collapse. Under these conditions the primary energy dissipation
is through caviton collapse but a large fraction of the time average electrostatic
energy is contained in free modes.

The value of E, = 0.6 used in the examples here is about half the value typ-
ically used in I for the near critical density studies. This corresponds to physical
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E, < .3V/m which is well above docay instability thresholds. If E, is increased
to B, = 1.2 the level of caviton activity is much greater, the distinct cascade
structure disappears and the nonresonant 1101ghb01 modes of the prnnaxy 1:3:5
modes are nearly equally excited. 'We believe this can be understood in terms
of the increased damping of free modes due to their interaction with, cavitons
and with their induced scattering from the density fluctuations resulting from
burnout cavitons. The darnpmg of fxee modes due to the nucleation of cavitons
- is discussed below..

The level of ion density (ion acousnc) fluctuations observed in the simulations
is much larger than assumed by conventional WTT treatments. WT'T estimates
that the enhanced level of ion fluctuations will be small, because of the Manley-

- Rowe relations obeyed by the parametric instability, and locally distributed in
narrow regions of k space, e.g. at'k ~ ki, 2k; — kx,2k; — 3h*, etc. These peaks

are observed in (|n(k|?) (Fig. 8) but do not account for a major part of the

ion fluctuation energy. We attribute the spectrum and level of ion fluctuations

to density cavities remaining from collapse. This is consistent with the level of

- collapse deduced from other properties.

The high level of ion density fluctuations implies that the sound wave induced
scattering of Languir waves from ion fluctuations is important here. From studies
of renormalized turbulence theories®? we can abstract a renormalized, %eacly
state balance equation for fme Langmuxr waves (FLW’s) of the form

w@Wim = SwpE a9
where Wy(k)é(k — &) = (Ef(k,1) f( t)) The total free mode (linear plus

nonlinear) damping can be written

VL (k) = ve(k) + (1/2)|k By Ra(k, 0) + (/2) [ d' (k- B )2 W5 (K ) Ru(k, k)
+ (1/4) fdk (k- B2 (ntk = K k2 < K D)) + vea | (20)

where Ry = (K% = K2){[(k? = k%)% = |k = B[P +4(k? - K2)2 vk~ 1))
dk' dPK (2 (2m)~ . The nonlinear source term is

~

SLAWs kY = kB, 2(In(k, k2 ~wo)[*)+] di' (k) (&~ ¥ K2k W (& )+ Seu
| (21)

In intcrpreting these equations it js important to note that k in these Lquaiions

is expressed in units of k* and to remember that in the envelope approximation

and the conventional scaled units the Langmuir wave frequency is wy = k* and
the ion wave frequency is wg( k) = |k| so that the usual decay matching conditions

can be written K= a2 4k - 1)
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In these expressions no assumptions have been made concerning the form
of the density fluctuation spectrurn which will take to be that observed in the
simulations. In partlcular we do not make the usual linear dispersion assumption

of WT'T that (|n(k Lw)[?) = ns(k)2md(w — |k]) + ns(—k)276(w + [K]).

The first term in (20) is the linear (collisional plus Landau) damping, the sec-
ond term the parametric gain (Stol\es) or loss (antiStokes) induced by the pump,
the third term contains the gain and loss from Langmuir-induced scattering from
equilibrium ion densxty fluctuations, and the last term, which is neglected in con-
ventional treatments, is the scattenng -out rate due to ion fluctuation induced
scattering of FLW's from enhanced ion fluctuations. [Except for the explicit
pump terms, all of these contributions in the lmear dispersion, WTT limit for
D=1 dre given in Payne et al. ‘33]

In the conventional WTT treatment of the cascade, the source terms are
neglected altogether and a singular spectrum results fxom the balancing of the
linear damping against the second and third terms in (20). This leads to the
well-known cascade solutions.®® The number of steps in the cascade is xou;ﬁhly
m = |Eo|?/|Ent|* where |Eot|% o ve(ki)y; is the threshold field for the PDI!0 In
our simulations m 3> (k1 /k«) so conventional WTT would predict an unlimited

cascade to k=0. The ion sound wave induced scattering of FLW'’s from enhanced
ion fluctuations, the final term in (20), has the effect of replacing v, by Ve sy which

is the sum of ve and this final term; since Veff > Ve this induced scattering f10m o

enhanced ion fluctuations reduces the number of steps in the cascade.

The source terms also play an 1mportunt role. In (21) the first term is the

source at the Langmmr frequency, k2, due to the beating of the pump with
the turbulent ion Huctuations and the last term the ion fuctuation- mduce(l
scattering-in term. The ion density (ion line) power spectra in (|n(k,w)[?) in
Fig. 9 have, in addition to the familar peaks at w = £kc,, a broad feature at
w=0. We 1dent1fy this with the ion density fluctnation during collapse which
is driven by a ponderomotlve force (PMF') which has a power spectrum centered
at w = 0 and a width Aw < 27/7; where 7¢ is the caviton lifetime. Such an

enhanced w = 0 feature has been observed at Arecibo®%37 and is not accounted .
for in WTT. The peaks at w = tkc; are generated by the free ion sound waves
radiated following collapse or by the decay interaction.

The spectral features of the ion line are essentially independent of w,, i.e. of
altitude, unlike the features of the plasind line. The three peaks in the ion line
power spectrum produce three peaks in the pump I ~at-source term in (21), at
wp = wo £ keg- correspondmé, to the Stokes (A = kj) and antiStokes (k = k)
line and for |wt — wy| < Aw corresponding to the “OTSI line.” Note that the k,
values associated with each of these resonances is excited above the bacl\gxound
in (|E(k)|?), Fig. 8. The Stokes or decay line mode, ki, is most strongly excited
because xts damping is reduced by the parametric decay coupling to the pump
in (20) whereas the damping for the anti-Stokes line is increased. The OTSI
mode damping is, to first approximation, uneffected by direct coupling to the
pump. The modes excited by this beat source term at w;, >~ w, initiate socondmy
cascades to lower k. Signatures of this source term are particularly clear in the
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pawer spectra of modes not in the primary cascade such as ky = 0.36 in Fig. 0.
The cascades originating near ky are independent of the primary decay cascace
originating from &y and appear to produce the free-mode component of the modes
in the energy spectrum (|_E(L)|2), which lie between the primary cascade modes,

At lower k values, the cascades die out and the ion fluctuation induced-
scattering terms become dominant, Part of the low k spectrum is also duce to
localized caviton excitations. '

The primary free Langmuir wave (LW) cascade is initiated by thie pump
(heater) and Langmuir energy tends to flow toward low k. The parametric decay
process driven by the pump produces LW's at k) and £hq and £k, ete. In the
early time development of the PDI from quiet initial conditions these modes form
standing LW’s which have a ponderomotive force with spatial periods m/ky, n/kg,
ete. This PMF digs a train of density cavities with the same period.

The long wavelength LW’s resulting from these cascades can drive the nu-
cleation of trapped Langmuir fields in preexisting cavities which then proceed
to collapse and burnout. The preexisting cavities may be generated from the
standing LW’s, as mentioned above, or from previous burntout collapses. The
collapsing cavitons emit Hot electrons, a broad spectra (in k) of ion waves and a
broad spectrum of free modes. These ion waves and free modes interact in the
decay and induced scattering processes. Again, these cascades in general do not
coincide with the primary cascade (&1, k3, k5 — — =) driven directly by the pump.

- The long wavelength LW’s resulting from the cascades are expected to he
much more efficient in driving the nucleation of new trapped electric fields in.
preexisting density cavities, in these underdense regimes, than is the pump ficld,
whose frequency is too high relative to the local cavity resonance frequencies.

Various diagnostics, including the calculated injection spectrum®, indicate
that direct nucleation by the pump is not important in this regime. In I we
stressed the analogy of Zakharov’s equation for E with Schrédinger’s equation
were the density fluctuation, n(x,t), plays the role of a.potential. The density
debris from burntout cavitons will generally consist of localized density cavities
surrounded by enhanced density shoulders producing a barrier-plus-well poten-
tial. We make the conjecture that the nucleation of new electric fields in the
burntout wells is through a resonant scattering of free modes from' such poten-
tials; a process well-known in quantum mechanics.38 The free mode frequencics,
Wp = k. for low values of k can resonate with rather shallow potential wells, in
which case the Langmuir wave function inside the well becomes very large and
an produce a strong PMF leading to another collapse. This free mode-caviton
coupling is formally accounted for by the terms teqy and Seqp in (20) and (21).
At this point we do not have explicit expressions for them. Since most of the
energy is dissipated by caviton burnout, it follows from simple energy balance
estimates that veq, ~ <D)/(T'Vf) where (D) is the observed dissipation rate,
(D)~ 5 z/e(k)(\_E_c(_IQIQ), and (Wy) is the average energy density in free modes,
(Wr) = 2L (1Ef(R) 2); both of these quantities may be estimated from the simu-
lations. For weaker driving (E(p=0.6) the widths of the lowest k free mode peaks
in (|_E_’(_l\_,w)|2) appear to be at least a factor of 2 greater than for the primary
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cascade modes and the widths imply v/, (k) 3> ve(k) for all k's £ 10, For stronger
driving (Ep ~ 1.2) §spe’ctm not shown here) the lines are dramatically broadened
to the extent that free mode peaks are not clearly identifiable, This broadening
is consist« nt with the scenario outlined above but the relative contributions of
‘ ueff(k) and Veqy still need to be determined. Further detailed parameter studies
are needed to validate this theoretical description of the numerical data. This
smoothing of the spectrum is also consistent with the transition from discrete to
continuous spectra, with increasing laser intensity, in the second harmonic emis-
sion spectra arising from the PDI, in laser-plasma interactions, as discussed by
H. Baldis and P, Young in their contribution to these proccedings.

The radars, of course, measure only fixed values of k. The observed frequency
cascade power spectra must arise as an altitude integrated effect, A complete
altitude integrated spectrum requires a model for the altitude dependence of the
electron demnsity, of the heater profile and a series of simulations for a range of
Wo values. At most altitudes the primary cascade peaks cannot contribute to the
integration for the fixed value of k but the background turbulence can. In the
integration this background provides the observed enhanced background on which-
the sharper cascade structures sit. For stronger driving the 3: and 5: cascade
peaks become less distinct and the background becomes stronger. We believe
that the combination of these effects in the integrated spectrum may account tor -
the often observed “broad bump” in the Arecibo spectra.®? Note that at every
altitude there is & beat source for Langmuir excitations at frequency w which
is just the first term in (21) where the frequency argument is w — w, (rather
than k% — w,). The three peaks in (In(k,w —‘wo)|2) produce sources at w = w,
and w = w, £ |k|cs. Only at special altitudes, for fixed &, will these sources
coincide with the free mode resonances at w = k%. Because of this nonresonant

excitation, the altitude integration will enhance the decay line, the zero frequency
shift (OTSI) line and the antiStokes line!

9, Caviton correlations and a caviton gas model

In Section 5 we mentioned that in the case of overdense driving, w, = 2, -
wp < 0, for relatively strong ion wave damping, individual cavitons can become
locked in limit cycles of nucleation, collapse and burnout. In I we presented
preliminary evidence, from D=2 Zakharov simulations, that in such regimes the
caviton gas could undergo transitions to states of high temporal and spatial
order. This order produces distinctive line structure in the spectra |E(k,w) 2

¢ . [ . ‘ .
and |n(_&',w)|2 which was discussed in I and will not be repeated here.

Here we outline tne elements of a caviton gas model which elucidates the
mechanisms of caviton interactions leading to correlations. This model repro-
duces several features of the full simulations and allows us to treat systems with
matly more cavitons, '

We assume, for purposes of this discussion, that Ag(maz) < w, < 0, and the
collapsing caviton gas is weakly coupled. For simplicity, we also restrict detailed
[} . . . ¢
discussion to a scalar version of Zakharov's equations.?!
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The energy density of free modes, Wy =< ],Ef|2 >, decreases rapidly as one
considers plasmas which are increasingly overdense. This is because the caviton-
free mode coupling bccomeq 111('1ensn1gly non-resonant. However, the production
of ion acoustic waves is re latlvely insensitive to the plasma denslty Thercfore, in
this regime, the couplmg is primarily due to acoustic waves,

Since the cavitons are weakly coupled, we seek a perturbatior theory in which
the zeroth order state is one of uncoupled collapsing cavitons, cach of which is
executing the same stable limit cycle. This state s described by the spatial
position, i, and collapse time, t;, of each caviton, where, e.g., |E|2 of the ith
collapse varies as F(x —a;,t —t;) = F(x —aj,t —t;+ 1) where 7 is the cycle time,.
Let t; = nt + (9 /2m)r with 0 < 6; < 27, Then we may describe the ith cycle by
a; and 6;, the collap e phase.” The dynamics of the caviton gas will consist of
the equations of motion for its state variables. (Note: for the real vector model of
Langmuir waves, each collapse also has a direction which is needed for a complete
specification of the state.) ‘

The wssumptlon that the caviton coupling is weak is taken to mean that the
state changes slightly in a time r. Therefore, the acoustic waves impinging on a
given caviton, which consists of the cmperpoqltlon of the emission of sound waves
from previous collapses of all other cavitons, may be taken to be periodic in time
over the time scale of a few collapses,

Ion acoustic damping and geometrical attenuation imply that the coupling
between all but nearby neighbors is negligible. ‘

We also assume that the cavitons are separated by at least a few caviton
diameters so that the acoustic perturbation from any single caviton may be ap-
proximated by a plane wave over the width of the given caviton, Its wnvelcngjth
A, is simply the product of the ion acoustic speed (renormalized by the ion acous-
tic damping), cs, and .

A natural perturbation theory seeks to superposc the eﬁcct of all such planc
acoustic waves. The response (6, 66) of the caviton in state (x, 8) to a given small
amplitude wave, én, is linear in the amplitude of the wave. The only parameter
it can depend cn is the relative phase, ¢ — 6 where

én(y,t) ~ cos(k(y —z) —wt +¢)

and k = 2r/A ,w = 2r/7. Because of the nearly singular nature of the collupse
cycle, the determination of this response function is nontrivial. It has been
numerically determined for a one dimensional version of the Zakharov equations
which allow for collapse. The results are remarkably close to what is obtained
from the following heuristic argument;

Since the acoustic dynamics is linear in the dcmity, the only dircet cffect
an external acoustic wave has on a collapse cycle is through its effect on the
Langmuir waves which are tmppod in the caviton. This effect is most important
when the relative size of én is largest compared to the unperturbed caviton depth.
The evolution of the Langmuir wave phase, which is crucial in determining the
~ coupling to the heater field, can be taken to depend on Ao(t) + én(x,t). Let A,
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attain its smallest value at a time 7¢/2r into the collapse cycle. We expect the
response of 6 to depend primarily on the value of én at that time. Therefore one
might guess that '

66 ~ cos(¢p — 3 — 6) - (22)
The response of the caviton location can only depend on the gradient of én,
“Again, it is the gradient at a time ri//2r into the collapse cycle which is most
important. Therefore we expect that

bx ~ k cos(qb-(d)-}—u)—ﬂj ‘ - (23)

where p ~ 7/2, because the gradient of én peaks at a phase which differs by
m/2 from the phase at which én peaks, As mentioned above, the nwnerically
determined linear response is very close to this heuristic result, The numerically
determined coefficients in these relations have the property that the response of
‘the collapse phase, in units of 27, is orders of magnitude larger than the response
of the collapse location, in units of a caviton diameter, This may be interpreted
as being due to the combined inertia of Langmuir waves and ion fluctuation which
make up the caviton, which resists acceleration by the gradient of én, while the
caviton phase primarily depends only on Ao (1), (Note: Because of Langmuir wave
burnout and acoustic wave emission, the caviton momentum is effectively lost at
the end of the caviton cycle, allowing a complete description in terms of (z, §).

The one remaining step in the derivation of the caviton gas model is the de-
termination of the acoustic waves a distance r away from a periodically collapsing
caviton, Asymptotically large r is not appropriate because the wave amplitude
is a rapidly decreasing function of r and it is only within a few caviton radii
that its amplitude is large enough to matter. If one assumes that during that
portion of the caviton cycle, during which most acoustic emission occurs, the
caviton size is small compared to r, then one may model the emission process
as being caused by a point ponderomotive force, If one also assumes that the
emission effectively takes place during a time interval short compared to r, then
one has the “impulse model” for acoustic production. In this case, it has been
numerically determined, that the following is a good fit to the acoustic emission
from a caviton with collapse phase 6 in three dimensions:

ITA
(r/Tes )

on(rt) = cos[kr — wt + 6] (24)

t+r
where A ~ 100, o ~ 8, and the impulse I = / dtN(t)dt and N(t) is the

caviton Langmuir wave energy. If one relaxes the ansatz about the short emission
cduration, then 6 is replaced by 6 plus a constant, and I is somewhat reduced
in amplitude. Since this is the same for all cavitons, it can be suppressed by
redefining 6 and the scale of time for evolution of the caviton gas, The above
fit is good for 2 < r/7cy < 4. Because én(rt) decreases rapidly for r/reg > 4,
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and because « is large, there is no harm in using the above fit for larger r. For
r/res <2, 6n rapidly becomes so large that the linear response model breaks
down. It has been observed in two dimensional simulations of Zakharov's model
that two cavitons will merge in about a single caviton cycle time if they approach
each other to within a few caviton radii, We use this empirical observation to
supplement the caviton dynamics by a merging rule which replaces a caviton pair
by a single caviton half way between the two, with a random collapse phase, if
the pair spacing is less than some cutoff value and their relative displacement
would move them closer in the next collapse cycle. The imposition of a random
phase must be regarded as adhoc. There are regimes, however, where merging
events are rare, so at least in those regimes, this adhoc feature may not be fatal,

Finally, equations (22), (23), and (24) imply, in the weakly coupled regime
where caviton-caviton interactions may be superposed, that the caviton state

after n+1 collapses (a_:?“,ﬁ}““); is related to the state after n collapses by

W :

L ' . "
gt =g} + BY T’,% cos[krfs + 6 — 6]' = (¢ + w))/(5)" (25)
T |
where _7_}3 =\l?? - l_',la and 78 = |21?J|
| . , .
it = 0 +C " coslkefy + 67 — 6] — )/ (r]) (20)
il

where C' ~ I 4(71¢s)® and B = C/100. The proportionality coefficients depend on
properties of the individual caviton cycle, For this model to be consistent with
the superposition ansatz, the initial conditions must be such that, for definite
values of B and C, the change in the caviton state must be small in any onc
collapse cycle,

This model has a very rich structure, It turns out that, apart from initial
conditions, p is the only parameter which affects the qualitative properties of
the evolution, While p =~ 7/2, very different behavior is obtained depending on
whether ;1 > 7/2, or 4 < 7/2. A consideration of the two caviton model suffices
to illustrate this point,

Let y = |z) —-=z9| and ¢ = ] — . It can be shown that for 7/2 < j < 37/2, there
are two stable fixed points: ky = ¢ +pu+7/2,( =0; and by = ¢+, +37/2,( = 7.
It is understood that changing by by 27 yields another fixed point with the same
stability properties. Which of this pair of stable fixed points is obtained depends
on initial conditions. The one at ¢ = O has both cavitons collapsing in unison,
while the one at ¢ = =, has alternating collapses. For —m /2 < p < 7/2 there arc
no stalle fixed points, but there are separatrices which bound the motion in y.
‘However, if there are perturbations to the motion, for example a third caviton,
these separatrices would be crossed and there would be no simple constraint on
how large or small y could become.

Q]
(8]



Figure 11 illustrates the generation of collapse phase correlations between
different cavitons in a multicaviton case, The initial state had no such corréla-
- tions, but the cavitons were initially placed on a nearly regular square lattice,
These correlations were strong after 10 collapses. Because the caviton miotion is
slow compared to its phase dynamics, 1000 collapses were followed to show that
some degree of spatial regularity is retained after a time long enough such that
spatial motion is significant. Note that the phase correlations are still strong
“even though the spatial distribution of cavitons is somewhat irregular,

9. Concluding remarks

The set of concepts outlined in this article has been quite successful in describ-
ing, at least qualitatively, the numerical simulations and several well-diagnosed
experiments involving strong Langmuir turbulence. Certain of these concepts can
be described in more analytical detail that we have given here. Generally, how-
ever, the ahalytic tools available in this subject have been quite limited. In our
work we have gained understanding by considering simplilied, reduced models,
which themselves usually require numerical solution, It is a great challenge to
theoreticians to put some more analytical “meat” on these conceptual structures. -
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Fig. 11. illustrates the generation of collapse phase correlations between differ-
ent cavitons in a multicaviton case, The initial state had no such correlations,
but the cavitons were initially placed on a nearly regular square lattice. These
correlations were strong after 10 collapses. Because the caviton motion is slow
compared to its phase dynamics, 1000 collapses were followed to show that some
degree of spatial regularity is retained after a time long enough such that spa-
t a% motion is significant. Note that the phase correlations are still strong even
though the spatial distribution of cavitons is somewhat irregular. The direction
of each arrow indicates the collapse phase at each site.









