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CONCEPTS IN STRONG LANGMUIR TURBULENCE THEORY*

D. F. DuBois and Harvey A.Rose
Theoretical Division

University of California
Los Alamos National Laboratory

Los Alamos, NM 89545

ABSTRACT

Some ofthebasicconceptsofstrongLangmuir turbulence(SLT) theoryare
reviewed. In SLT sys_erns, a major fraction of the turbulent energy is carried by
local, time-dependent, nonlinear excitations called environs. Modulational insta-
bility, localization of Langmuir fields by density fluctuations, caviton nucleation,
collapse, and burnout and caviton correlations are reviewed. Recent experimen-
tal evidence will be presented for SLT phenomena in the interaction of powerful
HF waves with the ionosphere and irl laser-plasma interaction experiments.

1. Introduction

The study of Langmuir turbuience is usually defined as the study of the tur-
bulent stategenerated by the interaction of high frequency electrostatic Langmuir
(or electron plasma) waves and low frequency ion sound waves. The system is
usually driven into the turbulent state by the interaction of these waves with
high energy density beams of electromagnetic energy (e.g. lasers) or charged
particles (e.g. electron beams). In recent years it has been increasingly realized
that the approximation of weakly interacting, linear waves, as embodied in the
so called weak turbu.lence theory (WTT), has a very limited domain of validity
in describing the Langmuir turbulence driven by high energy density coherent
external beams.

In the seminal work of Zakharov 1 in 1972 many of the basic concepts of strong
Langmuir turbulence (SLT) theory were developed. Primary among these were
special collapsing state solutions consisting of a high frequency Langmuir field

*This article is based on three lectures given by the authors at the Summer
Institute in Theoretical Physics On Nonlinear and Chaotic Phenomena in Plas-
mas, Solids and Fluids, University of Alberta, Edmonton, Can.ada, July 16-27,
1990.



trapped in a self-consistent ion density depression which collapsed to a singularity
in a finite time. We shall refer to such structures as cavitons. It was clear that
if such solutions had a wide, and physically interesting, basin of attraction they
would lead to an important source of dissipation of Langmuir energy. When
the caviton's spatial dimensions collapse to a few electron Debye lengths, strong
wave-particle damping occurs and energy is_transferred .'from tlm electric field
to accelerated electrons: This has now been well verified in experiment 2 a.nd' in
particle-in-cell simulations 3 of isolated, undriven,' collapsing cavitons.

Understanding of a truly turbulent, ma.ny caviton, state has been achieved
using large spectral numerical simulation of the basic nonlinear "Zakharov" equa-
tions describing Langmuir turbulence. 4-12 These studies have Shown that col-
lapsing caviton states are indeed important 'and often the dominant attractors
for a wide range of driving and initial conditions. In many cases a significant
(sometimes dominant) fraction of the turbulent electric field energy is contained
in collapsing cavitons. The simulation studies have also isolated the mecha-
nisms through which energy is' transferred from the external driving beams to
the collapsing eavitons, which are usually the dominant dissipation sink. AI-
though the details differ, depending on the drivin_ source aald parameter regime,
a common element is that cavitons are nucleate_ _ in preexisting ion der, sity de-
pressions. These preexisting ion density depressions are often the remnants of
previous caviton collapse events. The nucleation concept has led to an increased
awareness of the controlling influence that the ion density fluctuations have on
determining the state of the Langmuir electric field. This has led, for example, to
experimentally verified 13,14 predictions 15 of the nonlinear coupling of stimulated
Raman scattering (SRS)-which excites Langmuirwaves-to stimulated Brillouin
scattering (SBS)-which excites ion density fluctuations (or ion sound waves).

The previous concept that the nonlinear state of SLT was sustained by re-
peaced action of linear instabilities, such as the modulational instability, is not
in agreement with the results of numerical simulation in many cases.

There are many linear instability mechanisms which can excite Langmuir
r . "_waves from quiescent initial conditions and which evolve into states of SLT. fhe,_e.

maybe used to define the physical domains in which SLT phenomena are impor-
tant.

In the interaction of intense electromagnetic radiation withplasmas, the para-
metric decay instability 16,i7 (PDI), the ?XOpe decay instability 18 and the SRS
instability 19 can all excite Langmuir waves and the modulationa120 instability
(MI) of the pump field can also drive up large Langmuir fluctuations. In Short-
wave-length, laser-plasma interactions the SRS and perhaps 2Wpe instabilities
seem to be the most important. In ionospheric modification by powerful HF
waves the MI and PDI play the dominant role. The latter experiments haw:
been particularly fruitful in verifying some of the predictions of SLT theory. 21 A
detailed discussion of SLT and its application to ionospheric heating phenomena
near critical density is given in ref. 21 which we also refer to as I.

Intense charged particle beams can also excite various Langmuir wave in-
stabilities. The electron bursts from solar flares are argued to excite SLT in
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the solar wind plasma; the turbulent current fluctuations produce Type III ra-
dio emissions. 22'23 Laboratory experiments using nonrelativistic 2 and relativistic
electron beams 24 may also excite SLT. The excitation of SLT by electron beanls
in the earth's electron foreshock has recently been studied. 25 Generally, we ex-
pett that states of SLT will be excited by any instability which strongly excites
Langmuir waves in plasmas whose density gradients are smq-iciently weak so that
cavitons, accelerated in the gradient, move less than a typical caviton width
before collapsing.

In this article we wish to review the basic concepts which are developing in
our understanding of SLT. The approach will be highly heuristic and qu_itative.
A more complete list of references to work in this field can 'be found for ex_maple
in references 21 (I), mid 23. No attempt will be made'here to give derivations.

2. Model equations for strong Langmuir turbulence
.

The most common model of SLT has become known as the "Zakharov model"
although equivalent or closely related equations had been used previously by
several other authors. Zakharov's seminal work 1 on collapse was the first to
reveal the important nonlinear content of these equations.

The equations are a nonlinear set of PDE's coupling the envelope, E(x,t),
(V × __E)-- 0, of the longitudinal Langmuir field to the fluctuation, n(x, t), in the
ion density. Quasi neutrality is assumed. In dimensionless form the equa,_,ions
are

_v. [i(c3+ + v - = V. Sz(x, t) (1)
and

+ .0t - v2), - V21EI2+ S (x,t) ('v.')

The units are' time-(3/2) M w_-1, space_(3./2)M1/2,_d, electric field-(47rnoTe )1/_

(647r/3)(M/rl) -1/2 and density-(4/3) M-lno where M = 7/ mime, rl is a con-
stant of order 1, no and Te are the background density and electron temper--
ature, respectively. 21 The physical electric field is Re[E(x, t)e-iWp t] where the
carrier frequency is the mean plasma frequency Wp. As a further point of nota-
tion we adopt the following convention for spatial Fourier transforms: _E_(k)=

(L) -D f dOx exp [-ik. z_]__E(x)where D is the dimension of space.

The equations (1) and (2) are coupled through theirnonlinear terms. _The
-n E term in (1) takes into account the density dependence of the electron

plasma frequency; wp(n) = (47r e2/rne)l/2(no + n)l/2 __Wp(O)(1 + n/2 no) where

Wp(O) = Wp is the mean. The V2E2 term in (2) is the gradient of the lowfrequency ponderomotive force of the Icangmuir field which tends to expell ion
(and electron) density from high field regions.

3



i

ro couple the collective fields, __Eand n to the underlying discrete particle
fluctuations d_unping operators ue. and ui. , whicll are local in Fourier (_) space
but. not in real space, have been irlcluded. The damping on the Langrnuir waves
ue can contain the effects of collisional and Landau damping. An ad hoe element
of the theory, which is important to order to have well-resolved simulations, is
that ue(k) must increase at least as fast as k D/2, where D is the dimension of
space, to prevent singular collapse for D k 2. It can be argued, as i_ I, that
this type of damping models the nearly complete burnout of the E field observed
in. PIC simulations of collapse 3 and that many macroscopic properties of SLT,
including the average energy dissipation rate, m'e not sensitive to the details of
this dmnping. 21 In the simulation work reported here vi(k) = uilk[ is used as
a model of ion wave Landau damping. The source terms St; and Sn take into
account the coupling to the external electromagnetic beams. [In principle S E
and Sn also account for the particle noise related to the damping germs ue and
vi so that (1) and (2) can be regarded as equations of the Langevin-type.] For
sYstems driven by charged particle beams the usual approximation is to consider
Ue(k) to be negative over some domain of _kto account for the particle-wave beam
inst abili ty. 11,12,25

I

A nice property of equations (1) and (2) is that they contain, when properly
linearized, all the instabilities 15,21 (except 2Wpe) referred to in Section 1. [Very
similar equations apply to the 2Wpe case.]

In most of the specific examples which we will give here the sources will
be those appropriate for the interactions of a spatially uniform pump field at a
frequency ('to = £'o + _op in physical Units. In 'the envelope representation used in
(1) we have

where a;o = (3/2)(,Tmi/mel(Coo/_Op) in scaled units. In this case

_E = n(x, t)E--oe'i_°°t

sn = V2[E_;*J. +_Eo-iot . (4)

We will refer to this type of driving as parametric drive. This drive is appropriate
for electromagnetic drivers near the critical density (coo ,'- 0) such as in HF
modification of the ionosphere.

d
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3. Weak turbulence theory (WTT)

The a.I)proximation of WTT can be applied to(l)and (2)to obt,ain stan-
dard results. A basic _sumption of WTT is that the power spectral densities

E(_k,w)l ) and ( n(k,w)l 2} contain only the frequencies associated with free o1"
inear Langmuir waves and ion acoustic waves, respectively:

(E* (lc, w). E(_t,wt)) -- n/(_'.)27r_(w - CoL (k))(27r)D+ 15(w -J )_D (_. _ _:.l)

(n*(Lw)n(k',J)) [ns(k)27rS(w-ws(k) + ns(-L)27rS(w+ o_x(--k)]

x (27r)D+ls(w -w)sD(.k: - k_/) (5)

Here WL(k ) k2 which is the linear Langmuir wave frequency (relative to the
envelope frequency _op) and wS(k ) = k__k, is the ion acoustic frequency (k, =

lx/i-'Z--v7 in our dimensionless units is also the ion sound speed).

WTT is basically a perturbation theory of linear waves based on the 3 wave
interaction represented.in Fig. 1. Tliis interaction involves the familiar decay-
type interactions with the frequency resonance conditions

_L(,&)= _L(L')±_,S'(L- -_'1). (6)

The source' term (4) also introduces the direct 'decay' of the pump

_Oo= _L(L)+ _s(-L) (7)

There are very many works on WTT. Here we refer to recent work 26 on the
validity' of WTT and in which references to other work can be found.

t

III. Modulational instability and localization by density fluctuations

The concept of the modulational instability of extended Langmuir wave pack-
ets is well-known. 20 The mechanism is illustrated in Fig. 2. If a ripple is im-
posed on an othe,'wise, nearly uniform Langmuir field (or on the driving field _.Eo)
the ponderomotive force associated with the peaks in E(x, t)t 2 tends to expell
electrons and ions, causing density depressions in the high field regions. These
density depressions tend to further confine (or trap) the E field increasing the
sharpness of the peaks in ]E 2 further depleting the density and leading to an
instability. Mainly from numerical simulation, we know that the nonlinear stage
of this instability is an array of solitons in one dimension (D=I) and in D _>2
an,array of collapsing cavitons. The wavenumber of the domina,nt perturbation

excited by the instability is kMi ,,, HT1/2 where I'V = __E2 is the electric fi('.l¢l
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energy density of the original extended Langmuir wave. If the wavepacket is not,

uniform so that _.E(_k)l2 has a spectrum of width &/,: peaked say at k = 0, t,hen
there is a threshold 32 for modulation al instability W >_2(Ak) 2. Thus for a given

vtdue of the spatial averaged I,V = f d__',lE(k)l2, if Ak __ km1 , i.e. if the spatia,1
structure of E(x,t) 2 is on the same scale as 2rr/kMl , the MI is suppressed.
Generally, the spectrum of ( E(k)l _>of the developed SLT state is so broad that
the MI is suppressed.

Localized E fields can also arise through their coupling with ion density fluc-
tuations n. From (1) we can find an eigenvalue equation 21 determining a complete
orthonormal set of curl free vector eigenstates _(i, t) of the Langmuir field in a
given ion density fluctuation profile n(i, t)

5_.(;,.(t) + v 2- = 0 (s)

where

Ex_eu=O ,and fdx De*u(x,t).eu,(xt)-(eu_e",}=6"", (9)

In D=I this reduces to a familar Schr6dinger equation in a "potential" n(_z, t).
Depending on the profile of n(x_, t) the eigenstates ev(x, t) may be localized iri

nature or extended. Plane wave solutions e_v = ._ eiba2L-D/2 exist for A =
k2 when k2 >> Inl,naa:, corresponding to free Langmuir waves. Since n(x,t) is
generally a function of time we have a different set of ev(z , t) at cacti t which
are continuously related. [In a finite box with a countable number of states the
Hilbert space has the same dimension for all t.]

In general it is difficult to characterize the properties of this complete set of
states. In one dimension (D=I) the eigenstates can be computed quite easily 6
for a given realization of n(x, t). The states with the lowest (negative) eigenfre-
quencies Au correspond to eigenfunctions which are mainly localized on density
depressions. The localization of most interest here is on the scale of a single

density depression not the more global localization of states, say, on the' scaleof the correlation lengths as,._ociated with random potentials. The short scale
localization produces a ponderomotive force which may lead to collapse. The
deep density depression where Au <<'0, of the collapsing caviton produces a very
localized or truly bound state.

We can specify these sta,tes for simple, idealized cases such as an isolated
caviton at x=0. For Au < 0 we have truly bound states which for exaanple in

D=I die as exp - Aull/2 x as x --+ oo; for Au > 0 we have extended or nem'ly free
Langmuir waves (for kk__ k2 > nmaz), In section 5 we will generalize the concept
of localized states to include iong-liw_d metastable states with nmax > A_,> O,
The condition for true bound states or for long-lived metastable states to exist
is that nmin[6 2 _ 0(1) where nmin < 0 is the depth of t,he density well and 6 is
its spatial width.

Formally we may expa.nd _.E(x,t) in this complete set. of states
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_E(m,t) = t) ' (Io)
lY

In tile case Wo _ 0 the states in this sum can be divided into localized and
extended so that __Ecan be represented as the sum of a localized and extended
part (see I). In other cases _.Ehas the same two component form but tile us(:_of
the eigenstate expansion is not useful. An alternative approach is discussed in
Section 7. The density wells which trap these localized states might arise from
initiM background density fluctuations, from density wells remmning from earlier
collapse events or from density fluctuations driven by some instability such a,s
SBS.

In the case of SBS-generated ion sound waves, we can sometimes regard
these density fluctuations as being periodic in space with a wavelength con'e-
sponding to the fastest growing SBS mode, The eigenstates e, (x, t) in this case
can be regarded as one dimensional Bloch waves in a perio"_c potentia,1, with
lattice wave vector k and with eigenvalues Ak,u(t ) which lie in bands, labelled
by the index u, just as in solid state physics. 15 As the periodic density fluc-
tuation grows exponentially in time due to the SBS instability the. Langmuir
mode eigenfrequencies Auk(t) change in time. If a stimu 1'ted Raman instability

is simultaneously excited, the SRS frequency matching condition, Aw wlC_'ose'-
t _ coscatteredlight

Ak_,'u(j- k_.o_k = 0, can only be satisfied instantaneously_form given Lang-

muir Bloch mode with lattice wave vector-k' In fact if IdAa_TI = d Ak,u > 7_;

where 7R is the instantaneous SRS growth rate, then it can' be' shown_5-'- tliat the
SRS instability is det uued by the growing SBS ion sound wave and sRS is sup-
pressed. Experiments carried out at the NRC Laboratory in Canada 13,14appear
to be consistent with this scenario. The experiment by Villeneuve et al. 14 veri-
fied the theoretical prediction 15 that a "seeded" SBS instability could suppress
SRS. In other parameter regimes where SRS is not suppressed the (weaker) SBS
ion sound wave may still impose its spatial periodicity on the SRS Langmuir
eigenfunctions. I5 These envelope eigenfunctions have a periodic array of maxima

of lE 2 (or ]ek,v 2) which have a finite ponderomotive force (PMF). This periodic
PMF causes a periodic array of density wells to develop in which the Langmuir
waves are t;rapped and can be driven to collapse. [Note the ponderomotively
driven periodic density wells do not coincide in general with the density minima
of the SBS sound waves but they have the same periodicity.] In Fig, 3 ta,ken
from rdf. 15, we show typical spatial comqgurations of E 2 and n, before and
_ter collapse and burnout.

The impulsive time signature of the Thomson-scattering signal from Lang-
muir fluctuations in the experiment of Walsh et al.,13 is consistent with the
collapse of SRS driven Langmuir fluctuations. The large ion density fluctua-
tions remaining from the burntout cavitons then act as seeds for the subsequent
strong SBS pulse. In Fig. 3 the time signatures of the Langmuir and ion sound
fluctuations, obtained from numerical solutions of the SRS-SBS driven Zakharov
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equations, are shown, Further evidence consistent with the controlling effect of
SBS generated ion sound waves on tile SRS process is found in the exl_eriments
of Baldis et al.27

5. Langmuir collapse of cavitons

In 1972 Zakharov introduced the concept of Langmuir collapse. 1 He sliowed
that for D _>2 the ponderomotive pressure can overcome the thermal pressure
(the V2n term) in (2) leading to collapsing solutions which reach singularities in
a finite time (without dissipation). These collapsing solutions are localized states
and have self-similar asymptotic forms.

E(£,t)= g(t)D/2 _ _ exp i dtA(t) (10)

and

,n(x_,t) = _2(t--_ _ (11)

where for supersonic collapse

5(t) = (tc - t) 2/D (12)

and _(t) ,_ 5(t) -2. Here tc is the time of collapse.

This solution conserves an invariant of (1) and (2) (in the absence of dissipa-
tion) which is the electrostatic energy in the ca'_iton

/ /N = d_lE(m,t ) 2 = dD_l¢__(__2 (13)

In two dimensions, for the scalar form of Zakharov's equations in D=2, it is
known 28 that at least a criticM amount, Nc, of electrostatic energy must be
carried into collapse where Nc _- 10 in our units. For the full vector equations
(1) nothing to known rigorously but empirically we find Nc ,._50. In D=3 collapse
is possible for any value of N.

It is generally found 3,8,10 that the shape of the collapsing solution, as deter-
mined by I£(&'/,8(t)l2 and fl(k/6(t)),has a "pancake" shape with the ratio of the
thin dimension to the thick (radial) dimension in the range of 1:2 to 1:3. In the
case of parametric pump drive the axis of the pancake, along the thin dimension,
tends to be along the. direction of E__o.(At least in the case where there is direct
nucleation by the pump at::discussed in Section 5,)
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The bound state eigenfunctions _(_,t) associated with collapse have this
self-sinfilar form except that they are normalized to c_._rrya unit of energy i.e.

f,dD{ e_a.(__)2 = 1. Such a state is excited with a.n amplitude h,.(t) such t,hat the
contribution to .E(z, t) is h,u(t)eu(z, t) and the energy carried into colla.pse is then
N = hu(t)[ 2,

The energy taken into c'ollapse maybe gathered by the evolution of a nlodl.t-
lational instability (MI) or by the tra,nsfer of energy, from the driving source to
the localized Langmuir states 29 in the nuclea.tion process discussed in the next
section.

6. Nucleation of localized caviton states al_d cavlton cycles

How does the energy from the external driving sourc'es communica.te with
the cavitons which dissipate most of the energy? A rather detailed under-
standing 6-9'9_1 has been gained for the case of parametric drive where coo < _,r,za_
where n,nax is defined below. This includes the case of overdense drive, a;o < 0,
when the pump frequency is slightly less than the drive frequency. 21 In this case
the parametric pump directly' couples to the localized states of the cavitons.
Forwo >> nma x and for beam drive 12 it appears that the long wavelength, free
Langmuir Waves, which are driven by coupling to the drive, couple to the local-
ized states in. the nucleation process. Tiffs indirect nucleation case is less well
understood on the microscopic level.

An equation of motion for the amplitudes hu(t) can be obtained by the sub-
stitution of (10) into (1) using the source in (4). The complete result is given
elsewhere. 21 If the coupling between a given localized state e%(z, t) and all othe:'
states and damping is ignored t.he equation of motion for ho(t) is21

i

i ho(t)- ko(t)h.o(t) = E_.o ./dDx _(_,t)n.(:r,,t). (14)

Which has the form of a driven oscillator which has a time dependent (or chirped)
frequency ao(t). To use this equation n(x_, t) must be determined, si,y, from a
simulation of the complete turbulent system. We have been able to cm'ry out
this program in one dimensional models where it, is relatively easy to compute
all of the Au's and eu's. In this case (14) represents very well the evolution of a
localized state as it gathers energy and begins to collapse. 6'7 In Fig. 4 we show
results for the evolution of a localized state for the case of the scalar Zakharov
equations where the density perturbation n is taken to have radial symmetry
rz = n(r,t) in 3 dime,_sions. This scalar model has the same collapse scaling
exponents as the aD vector Zakharov equation and also has the common property
that a bound (or localized) state can be lost as the density well expands which
results in a finite nucleation threshold for Eo. In Fig. 4a the dashed line shows
the relaxation of the density well, n(r 0, t), beginning from a deep negative
vNue and relaxing to a small negative va.lue before suddenly dropping tovery
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negative values corresponding to collapse. The density fluctuation is driven by
the ponderomotive force, h.o(t)l2 '2

V leo(,',t)] 2, of this sii@e localized state aridthe case of strong ion damping 1mi>_0.6 Is taken SOthat tlie density well doesnot
bifurcate sigllifictmtly following the burnout of the electric riehl. The solid line
shows the corresponding IE(r = 0, t)l 2 which suddenly pe_:d_sduring coll6pse. The
subsequent sudden ch'op is the burnout process in which the Langmuir eiiergy is
dissipated by wt,ve-pa,rticle damping. In Fig. 4b the solid line sliows tlie evolution
of the localized sta.te eigenvalue, AO(t), which evolves from very negative vtthles
(since the st_tte is originallydeeply bound in a deep well) to a srnaller negative

wtlue. [The dashed line shows t!le evolution of the time derivative of the 1)base @,)ho(t)= ho(t) i¢o(t), i co,  pieedisc s ion:] thi
the drive frequency is at Wo = 0. As t,he eigenvalue Ao(t) appro_tc!aes the pump
frequency the energy Iho(t)l 2 (Fig. 4c) in the localized state increases rapidly
as the mode frequency comes into closer resonance witli the pump frequency
(Wo = 0). This rapidly increases the PMF associated with the localized s,_,ate,
and as the density well deepens agmri in response to this PMF, Ao(t) ag_ili
decreases rapidly during collapse.

A number of scaling laws for the dependence of various caviton parameters on
the pump strength Eo have been deduced from these isolated caviton studies. 21

For example, the peak va,hie of E(r, t)[2 in the caviton a,t collapse scales as Eo2;
ttie peak field in the caviton actually cmerea.ses with increasing driving strength.

The discussion above strictly only applies for COog 0, for sufficiently strong
Ec,, where the eigenvalue satisfies AO(t) <_ ,\,naz < 0, In this case the state a.t
any time t,e_.o is a true boundstate whose amplitude is exponentially small as
IEI --+ exp. However, we know from simulations that a similar scenario applies
for a range of a.'o > 0. In tl-iis case the near resonance condition, ,_o(t) _- COo
can imply ,_o(t) > 0 during the nucleation phase and such a state cannot be a
true bound state. [During the collapse phase Ao(t)<< 0 arid the state is a true
bound state.] This case can be understood in terms of metastable states (o,'
resonance scattering states) which occur in quant'um mechanics (a,id elsewhere)
in the well-known problem of a potential well. surrounded by a potential barrier.
[A good reference is D. Bohm, "Quantum Theory," Prentice Hall, 1952]. In tile
problem at hand a one dimensiona.1 example illustrates wliat we believe are t'he
important points': Consider a density flucttlation profile, n(E, t)(our "potential"),
consisting of a potential well at x= 0 and a maximum (or barrier) atm = 8 where
n(x = ¢5,t) = nmaz(t). For simplicity take n(x) = n(-x). It is well known that
localized metastable states can be constructed in the well which have all the
properties of bound states except that they may have a finite lifetime, AtN, due
to the leakage of the wavefuntion through the barrier. In the WKB approximation
the lifetime of this state can be written as

/XrN -- ro exp[2 z'bdx(n(x,t)- AN(t)) 1/21 (15)
N

' _0 ;_N
where ro = 2 dm(AN - n) -1/2 is the _ime (in the WKB approximation) for

a trapped Langmuir wave (packet) to cross the well and back. Iii (15), XN(t ) is
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the classical turning point inside the well where n(xN,t ) = ,_N'(t) and :rb is the
turning point (if any) outside of the barrier. [In the WKB approxim_ttion the
eigenvalue, AN, is determined by the Born-Sommerfeld quantization condition,

_O xN
2 dxv/A N - n = (N + 1/2), where N is an integer. The general' form of At

may be valid for a thick barrier even if the WKB qu_tization condition is not.]
The nucleation picture discussed above applies to the metastable states so long
as their lifetime is long compared to other times of interest. For example near the

maximum of Ao(to)= A',nax.,where d)_o(to)/dt = 0 if ('&tN) -1 < (d2Ao/dt '2'1/3, ' • It=to
the lifetime of the metastable state will not strongly effect the direct nucleation
by the pump as calculated from (14). "

For an isolated collapse with sufficiently strong ion sound damping the io1t
density profile of the evolving burntout cavity has the well-plus-barrier form
where nmi n < 0 and n.maz > 0 and where the positive and negative regions are
such as to conserve particle number: f dzn(z_,t) = 0. In this ease for coo _<
O,/_maz < 0 for sufl:iciently strong Eo. the outside turning point is at z b = oo a.nd
At = ce, characteristic of a true bound state. For 0 < ,_rnaz _ Wo, At can still
be large if "_rnax<_Wo << 'nmaz.

This illustrates what we believe to be the typical nucleation behavior in
this regime of direct coupling of cavitons to the pump' As the relaxing density
well becomes shallower and broader its eigenvalue approaches resonance with the
pump causing a rapidly increasing PMF which initiates the next collapse.

Fbr isolated ca.vitons this behavior can evolve into a strict linfit cycle of
repeated nucleation-collapse-burnout. (The minimum value of Eo which can
sustain collapse at a given site is the nucleation threshold referred to above.)
}'or overdense drive, coo < 0, we have found limit Cycle behavior even in the
multicaviton case. In such regimes neighboring caviton's cycles are either in
phase or _ out of phase. (The phase is defined a,s 2rrAt/rc where Tc is the cycle
period and At the collapse time modulo rc.) Caviton correlations are discussed
in some detail in Section 8.

A numerical diagnostic of how the r.,ump energy is injected into the system is
the injection spectrum Id(k) - Ira(E__o . E__*(_k)n(-_k)}.For ptu'ametric drive with
COo__O, Id (k) is a relatively broad spectrum extending from lc ,,_ 27rEo to va.lues
of k just below the dissipation scales. This is consistent with the direct coupling
of the pump to the collapsing cavitons. For Wo sufficiently large the injection
spectrum h_Lsa completely different character, as discussed in See. 7, from wtlich
we conclude that the cavitons are driven by the low lying free modes, Which are
driven up by the pump, and not driven directly by the pump.

Detailed studies of SLT driven by long wavelength negative dmnping 12 (beam
instabilities) also seem to clearly demonstrate that eavitons are locally nucleated
in preexisting density wells but the nucleation coupling is to the driven free modes
rather than directly to the negative damping source.

It is easy to seeformally 21 that, because n(x, t) is generally time dependent
in SLT, the modes _(E,t) do not behave independently. This introduces, for

11
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example, an additional term -i _ f d Dxe.;(aZ, t)[d/dt eu(x, t)]hu(t) oi1 the right

hand side of (14) involving the time derivative of the eigenstate ev and therefore
couples the amplitude ho to other amplitudes hu. It was shown in I that this
leads to a coupling of bound (or localized) states to free mode states. When a
caviton collapses it radiates away some energy in the form of free modes. This
is a relatively weak effect for _oo <_0 but accounts for the presence of both free
mode and caviton contributions in the power spectrum of fluctuations (Section
6).

The tunneling of trapped modes through the density barrier, discussed above
where Au > 0, is another way that free or extended modes can communicate
with localized modes. The two kinds of coupling are different since the first
mechanism, depending on d/dt ev, is observed 21 to occur even for _Oo< 0 where
there is no tunneling. As ¢0oincreases the tunneling mechanism probably becomes
dominant.

It is interesting to observe that a free Langmuir wave incident (in the scat-
tering sense) on a potential well plus a barrier can undergo resonance scattering

When the (quantization) condition- _) d.rv/A-n(xt) (N +-_)_-is sa.t-

isfied where now we take A =' k9 to be the energy of the incident free mode.
When this condition is satisfied the wavefunction inside the well is much larger
than that outside (and there is perfect transmission of the incident wave in one
dimension). In the Langmuir wave problem the PMF' of the resonance-enhanced
confined Wavefunction in the well could nucleate collapse. It will be interesting
to see if this resonance scattering phenomena can account for the nucleation of
caviton fields by low lying free modes in time dependent density wells. •

7. Power spectra of turbulent fluctuations for COo< k2

The power spectra E(_k,co) 2 and n(k_',w) 2 of the turbulent fluctuation time
series are a very useful diagnostic of SLT dynamics. In Fig. (5) are shown
E(k_,CO2 for various values of k where the direction of _.kis at an angle of 45°

from the x axis which is the direction of _Fo. The spectra consist of two main
features: a broad continuum supported by frequencies generally less than w = 0
(frequencies are measured from the heater frequency Wo=5 in these Figures),
and a sharper but weaker feature a_ positive frequencies. The broad 'spectrum
for w <_ coo is the "caviton continuum;" it arises from the caviton dynamics
of mmleation-collapse-burnout. The extent of this spectrum toward negative
frequencies reflects the depth 'of collapse and the negativity of the eigenvalue
Ao(t). 9'21 The positive frequency "free mode peak" is a,t exactly the free Langmuir

wave frequency. [In the case of Fig. 5 a weak magnetic field ,alon_ the x axis was
included so that the free Langmuir frequency is co = k2 + fl:_ sinZ0 where in our

units f/2 =½(coc2/COp)(Tlmi/me) with C0cthe electron gy_:ofrequency and 0 is the
angle between _kand Bo.]
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In 1988 Cheung and coworkers 30 investigated the turbulence induced in the
i0nsophere shortly, (within 30 ms), after tile turn-on of a powerful HF wave which
was periodically turned on and off, the off periods being much longer than the
on periods. Examples of the spectra of the Langmuir fluctuations which they
observed with 1 ms long pulses of the Arecibo Thomson scattering radar are
shown in Fig. 6. There is remarkable qualitative and quantitative agreement
between the theoretical (numerical) spectra and the observed spectra. Space

does not allow us to discuss the many detailed comparisons with theory which
have been made in this and subsequent experiments. 30'21

These observations are a drt_matic verification of the predictions of SLT the-
ory since WTT cannot account ,eor any aspect of these observations.

It has recently been observed _1 that when the radar observations are made
with a longer delay after the turn-on of the HF pump the turbulent layer spreads
out to fill an altitude layer about 1 to 2 km ttfick below the reflection altitude.
This coincides with qualitative and quantitative changes in the Langmuir fluctu-
ation power spectrum; an example is shown in Fig. 7.

8. Coexistence of parametric decay cascades and Langmuir collapse

Spectra of the type shown in Fig. 7 have long been associated with a cascade
of parametric decay processes of the type discussed in Section 2. WTT was
used to describe this process but it has become increasingly clear that it is,
at most, only qualitatively correct and that it fails to describe several features
of the observations. For several years it was believed that _he altitude of the
turbulence producing spectra like Fig; 7 was inconsistent with a decay cascade of
free Langmuir waves. Very recent experiments 31 have shown that this is probably
not true. To understand these experiments we have recently undertaken a study
of SLT, with parametric drive at densities well below the critical or reflection at
which the matching condition for parametric decay can be satisfied.

For the primary decay of the pump, which we assume to be spatially uniform,
we have the matching condition

U_o= wR(zl)(l + _ ) ICs (I

which determines xp(Zl) the electron plasma frequency at the "matching" alti-
tude Zl, in terms of the radar-observed k.

In Fig. 8 we show time-averaged electrostatic energy spectra in the well-
developed, quasi stationary t,;_bulent state <lE(k)[ 2} as a function of the mag-
nitude of k and its angle 8 v, : the geomagnetic field. The heater E_.oand the
geomagnetic field B_ are in the x direction. The simulations used a_256x128)

2_r 1 k, Ak - 2_ -- _ k, wheregrid in(k_,,ky) space where Akz = _ = _ ,,--, x - _ --
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k* / - z_._= .96, in our dimensionless units, for an ion acoustic dmnping pa.-

rmnetcr, tji = _ = 0.280. [In physical units k, 96 (2/8)('m.i/,,_.c)l/'2l,,t_)c.]
This allows us to adequately resolve the decay cascade and the small scales of
collapse'. . '

We zfote that in addition to the cascade peak s at k I = 7.68, k3 = /,:l - k, =
6.72 and k5 = kl - 2k.= 5.761 there is a broad background of turbulence which
contains a significant fraction of the turbulent electrostatic'energy and which is
not accounted for in WTT. We will refer to this set Of modes kl, k3, ks, a,s the
primary ca_cade whichresults from the decay of thepump. The notation 1:3:5'
-:- is used because the decay conditions (5) and (6) imply'that the freq_Ler_ciesof
these modes will be shifted by' 1,3,5-,- units Of the ion acoustic frequency, Ikl o's,
below the pump frequency. There is also an apparent enhancement in the zero-
frequency-shift mode at ko = 8.!6 and ii1 the anti-Stokes mode at ka = hl + k,
= 8.64. In Fig. 8 we also show, for the same'parameters, the time averaged
ion fluctuation energy spectrum (n(k)12). Again tiffs is dominated bya 1)rottd

also contains a sharp feature at k1 = 7.68,'spectrum associated with collapsebut -
associated with the primary decay of the pump.

In Fig. 9 we show the power spectra IE(_k,w)2 for kz; 0 (corresponding
to 0 = 0) and for severn values of kz including two of the three primary decay-
resonant values kl = 7.68, k3 = 6.72. [Note'that the cascade proceeds along
l:z in the .steps kl_ -k3 --, +k5 etc. but, since-' k, is equally likely to be
excited in the primary decay, the spectra are on the average Symmetric between
k and- _k.] The power spectra consist of free mode peaks at w __ kz2, (In pt_ysical
units at la) -- _p __ imbedded in a weaker broad continuum. This
continuum is more prominent in the modes not in the primary cascade Such as
kz = 3.36, 7.20 and 8.64. The free mode peaks at the prima,ry cascade vah.ms,
kz = kl, k3, kS, are enhanced over the peaks for neighboring k values consistent
with the enhancement of these modes in the energy spectrum of Fig..7. The broad
background in the power spectra is due to caviton excitations. This background
is relatively weak compared to the free mode peak for k2 < Wo and relatively
much stronger for k2 > Wo.

In Fig. 9 we also show ion fluctuation (ion line) power spectra, (n.(L,a.') 2},
for the same parameters. Note that these consist of(usually) unequal wings at
cz = :hkcs associated with free ion acoustic waves and a central feature near
a_ 0, a_sin the observed spectra.

In Fig. 10 we show the maximum electric field E(x_, 2t) maz in the simulation
cell as a function of time. The sharp peaks are associated with caviton events.
In Fig. 10e,f,g we show the time series of the modulus squ_e Fourier coefficients
of the density fluctuations, n(k,t) 2. Note that there is a positive correlation of
the peaks in 17_(k,t)2 with the caviton event in Fig. 10d which is consistent with
our claim that collapse is the primary source of ion fluctuations. For even higher
values of k (not shown)the correlation is nearly 100%. Other diagnosticsshow
that most of the electrostatic energy is dissipated by caviton collapse.

We can get a better estimate of the fraction of energy involved in caviton
collapse comparedwith the energy in free modes by looking _tt the time histories
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of lE(k, t)'2 for va,'ious Fourier modes. Some examples are also shown in Fig.
10a,b and c. Notice the fast modulations or "buzzes" on these signals, which
occur during the collapse periods, as can be verified by compa.rison with Fig.
10d.

We can interpret these signals by writing the total electrostatic envelop,.' field
_:E(x, t) = E____.(xt)+ E__/(xt) where El(x, t) is the nonlocalized oi"free mode part.
The same two component ansatz forE. was made in I (and in refs. 7 and 8) whet',:
COo_ 0 and a similar" approacli has recently been used to describe beam drivm..

SLT 12 Here we cern get a microscopic description of this decomposition from
the power spectra and from the following argument' The localized or caviton
part, Ec, can be written as a sum over N(T) discrete events occuring during the
observation time T[see I.]

N(T)

= (17)
' i=1

With this decomposition we can write,for the Fouriermodes

E(!, 2 = IE/(!,t) 2+ _E,,(L 2
+ _ 2 si(k_,_)lE/(k,t - ti)l cos(w/_t- k. mi-- ¢i(t)) (18)

i

where we have written El(k, t) = lE/(&, t) exp -iwkt , where, f,'om the 0bse,'ved
power spectra, w k is close to the Bohm-Gross frequency. The caviton phase [II
el(t), obtained from si(kt)= le/(k,t)l expiCe(t),is _ rapidly varying 'chi,'pped'

phase arisin_ f,'om tlae nucleation and collapse of cavitons. 21 The 'buzzes' in
the IE(k,t)z can be identified with the rapidly varying interference terms in
(18). From this and from estimates of the fraction of power in the broad, cavito,l
background i,, the power spectra we caaaestimate the fraction of the time averaged
electrostatic energy, in free ,nodes compared to that involved in collapse. We
find, roughly, that in the case of the parameters of Fig. 8-10 that at low k
(k 2 << coo) about half of the total time averaged energy is in free modes while for
k2 > Wo the fraction of free mode energy decreases from about 50% to zero as k
increases. A more complete discussion of this point will be publist_ed elsewhere
For smaller, including negative, values of Wo the relative fraction of energy in
collapsing, localized states increases dramatically.

Thus we have evidence that at underdense altitudes a decay cascade can coex-
ist witti carlton collapse. Under these conditions the primary energy dissipation
is through caviton collapse but a large fraction of the time average electrostatic
energy is contained in free modes.

The value of Eo- 0.6 used in the examples here is about half the vaaue tyi>
ically used in I for the near critical density studies. This correspo,Ms to physic:d
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/_o _ .3V/m which is well above decay instability threshohts, If Eo is increased
to Eo = 1,2 the level of caviton activity is much greater, the distinct ca.sca,de
structur e disappears mid the nonresonant neighbor niodes of tile primai'y 1:3:5
modes are nem'ly equally excited. We believe this can be understood in terms
of the increased damping of free modes due to their interaction wit!l cavitons
and with their induced scattering from the density fluctuations resulting from
burnout cavitons, The dtunping of free modes due to the nucleation of. cavitons
is discussed below.

The level of ion density (ion acoustic) fluctuations observed in the simulations
is much larger than assumed by conventional WTT treatments. WTT estimates
that the enhanced level of ion fluctuations will be sm'all, because of the Manley-
Rowe relations obeyed by the parametric instability, mad locally distributed in
narrow regions of k space, e.g. at lc ,-, kl, 2kl -/_:*,2kl - 3k,, etc. Tliese peaks

are observed in (lTz(k 2) (Fig. 8)but do not account for a major.part' of the
ion fluctua(fion energy.' We attribute the spectrum and level Of ion fluctuations
to density cavities remaining from 'collapse. This is consistent with the level of
collapse deduced from other .properties.

The high level of ion density fluctuations implies that the sound wave induced
scattering of Languir waves from ion fluctuations is important here. From studies

• ¢)

of renormalized turbulence theoraes 3" we can abstract a renormalized, steady
state balance equation for free Langmuir waves (FLW's) of the form

, ,

-y_(_)w/(L)= .st.{_Q,k} (Io).
,

where I'Vf(_k)6(k- kt) = <E/(_,t)_.E)(_k',t)) The tota,1 freemode (linem' ph,s
nonlinear) damping can be written

_L(k) : ,]+(k)+ (_/2)_. E_o2n.(k, o)+ (_/2)/ dk'(_. _'?W/(k')R..Ck,_,')1

+ (I/4)/d]¢'(__')2<n(_k-_kt,k2 ' kt2)2) 9-Ucav ' (20

wher__,_,: (k2-_'2){[(k2-k'2)2-IL-_:'212+4(_2__,2)2,,]_(k_k,)]-,_,,,_
dk_','= d D l,"t(27r)- D. The nonlinear source term is

SL {I4_, L,}- _':E_E_o2( ..(A,k2 _o)/_>+/d_,(_.._')2(ltz(L_k.,,k2 k,_) 2t,Ig(L,)+S_.,,,'
(21)

In interpreting these equations it is important to note that k in these equations
is expressed in units of k, and to remember that in the envelope approxinlation

and, the conventional sealed units the Langmuir wave frequency is cok ,= /c2 and
the ion wave frequency is cos(_:) : /,' so that the usuM decay matching conditions

can b(-"written A:2 = A','2 + [_ A_2'I.
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In these expressions no assumptions have beenmade concerning the fot'm
of the density fluctuation spectrum which will take to be that observed' in the
simulations. Inparticular, we do not make the usual linear dispersion assumption
of WTT that (In(_k,w) 2> = ns(k)27r6(w -I__1) + + _i).

The first terrn in (20)isthe linear (collisional plus Landau) damping, the sec-
ond term the parametric gain (Stokes) or loss (antiStokes)induced by the pump ,
tlle third term contains the gain and loss from Langmuir-induced scattering fronl
equilibrium ion density fluctuations, and the last term, wlfich is neglected in con-
ventional treatments, i's the Scattering-out rate due to ion fluctuation ind_tcecl
scattering of FLW'S from enhanced ion fluctuations. [Except for the explicit
pump terms, all of these contributions in the linear dispersion, WTT limit for
D=I are given in Payne et al.33]

In the conventional WTT treatment of the cascade; the source terms are
neglected altogether and a, singular spectrum results from the balancing of the
linear damping against the second and third terms in (20). This leads to the

well-known cascade solutions. 34 The nuniber of steps in the cascade is rot@fly
m = lEo 2/Eotl2 where Eotl 2 ": ue(L'l)vi is the threshold field for the PDI. lu in
our simulations m >> (hl/k,) so conventional WTT would predict an unlimited
cascade to k=0. The ion sound wave induced scattering of FLW's from enlm,nced
ion fluctua.tions, the final term in (20), has the effect of replacing ve by ue//, which
is the sum of Ueand this final germ; since ue/I > Ue this induced scattering from
enhanced ion fluctuations reduces the number of steps in the cascade.

The source terms also play an important role. In (21) the first term is the
source at the Langmuir frequency, k2, due to the beating of the pump with
the turbulent ion fluctuations and the last term the ion fluctuation-'induced
scattering, in term. The ion density (ion line) power spectra in (n(_k,w)] 2) in
Fig. 9 have, in addition to the familar peaks at w. = :hkcs, a broad feature at
w = 0. We identify this with the ion density fluctuation during collapse which
is driven by a ponderomotive force (PMF) which has a power spectrum centered

at w = 0 and a width Aw _ 2TrrC where rc is the caviton lifetime. Such an
enhanced w = 0 feature has been observed at Arecibo 36'37 and is not accounted
for in WTT. The peaks at w = +kcs are generated by the free ionsound waves
radiated following collapse or by the decay interaction.

The spectral features of the ion line are essentially independent of Wo, i.e. of
altitude, unlike the features of the plasma line. The three peaks in the ion line

power spectrum produce three peaks iii the pump 1,_'at-source term in (21), at
wk = Wo+ kcs- corresponding to the Stokes (k = kl) and antiStokes (k = ka)
line and for wk -Wol < Aw corresponding to t,he "OTSI line." Note that tlIe kx
vMues associated with each of these resonances is excited above the background
in (E(k) 2}, Fig. 8. The Stokes or decay line mode, kl, is most strongly excited
because its damping is reduced by the parametric decay coupling to the purnp
in (20) where_ the damping for the anti-Stokes line is increased. The OTSI
mode damping is, to first approximation, uneffected by direct coupling to the
pump. The modes excited by this beat source term at wk __Wo initiate secondary
cascades to lower k. Signatures of this source term are particularly clear in the
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power Sl>ectra. of modes n0t in the primary cascade such a,s kx - 0,36 ili Fig, 9,
The cascades originating near ko are independent of the primary decay cas(:a,d(,

originating from/",1 1t.nd a:ppear to produce the free-mode component, of the modes
in the energy spectxum (E(_.k)[2}, which lie between the primary c_sca(t(., m(.)d_s,

At lower k values, the cascades die out and the ion fluctuation induced-
scattering terms become dominant, Part of the low k spectrum is also due to
localized caviton excitations,

The primary free Langmuir Wave (LW) cascade is init,ia.ted by ttie imm 1)
(.heater) and Langmuir energy tends to flow tow_u'd low k. The parametric decay
process driven by the ptunp produces LW's at _]_-1 and -t-k,t a.nd :t:ks, etc, In tll(:
early time development of the PDI from quiet initial conditions these modes form
,_.tanding LW's which have a ponderomotive force with spa.tia.1periods 7r/kl, 7r//,:a,

[ 'etc. This PMF digs a ,rmn of density cavities with the same period

The long wavelength LW's resulting from these cascades can drive the nu-
cleation of trapped Lmlgmuir fields in preexisting_ cavities which thell proceed
to collapse and burnout, The preexisting cavities may be generated from the
standing LW's , as mentioned above, or from previous burntout collapses The
collapsing cavitons emit tiot electrons, a broad spectra (in k) of ion waves and _t
broad spectrum of free modes. These ion waves and ft'ce modes interact in the
decay a,nd induced scattering processes, Again, these cascades in general de not
coincide with the primary cascade (kl, ha, k5 - - ") driven directly by the pun_l>,

. The long w_velength LW's resulting from the cascades arc expected to 1)(.,
much more efficient in driving the nucleation of new trapped electric fields in
preexisting density cavities, in these underdense regimes, than is the pump field,
whose frequency is too high relative to the local cavity resonance frequenciesl

Various diagnostics, including the calculated injection spectrum 6, indicate
that direct nucleation by the pump is not important_ in this regime, In I we
stressed the analogy of Zakharov's equation for E with Schr6dinger's equation
were the density fluctuation, n(x,t), plays th.e role of a.potentiN, The density
debris from burntout cavitons will generally consist of localized density cavities
surrounded by enhanced density shoulde/'s producing a 'barrier-plus-well pott:n-
tiM, \Ve make the conjecture that the nucleation of new electric fields in t,lm
burn.tout wells is through a resonant scattering of free modes from' such poten-
tials; a process well-knownin quantum mechanics, as The free mode frequencies,
a.,k = k2, for low values of k can resonate with rather shallow potential wells, in
which case the Langmuir wave function inside the well becomes very large and
can produce' a, strong PMF lea,ding to another collapse. This free mode-caviton
coupling is formally accounted for by the terms z/car andScav in (20) and (21).
At this point we do not have explicit expressions for them. Since most of the
energy is dissipated by caviton burnout, it follows from simple energy balaalce
estimates that '_i:'av_" (D)/(I'V/} where (D} is the observed dissipation ra,tc,

(D) __ _k__re(k)(Ec(_.kl2), and {W/) is the average energy density in free modes,

(I'Vf}= _t_.{l___E/(k)12);botli of these quantities may be estimated ft'ore the sim_-
lations. N)r weaker driving (E0=0.6) the widths of the lowest k free mode peaks
in (__E(_i,a.,)2) ai)pcm' to be Lt least a factor of 2 greater them for th(_ prinmry
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cascade modes m-Mthe widths imply 7t(_.k) >> _e(k) for ali It's _ 10, For stronger

driving (Eo ,._1,2) (spectra not shown here) the lines are dramatically broadenedto the ext_'nt that free mode peaks are not clearly identlfia'.fle, This broadening
is consist,( lit with the scenario outlined above but the relative contributions of

uc//(k) and lJcav still need to be determined. Further detailed parameter studies
are needed to validate this theoretical description of the mlmerical data, This
smoothing of the spectrum is also consistent with the transition from discrete t,(_
continuous spectra, with increasing laser intensity, in the second harmonic emis-

' , • _ ", "t "sion spectra arising from the PDI, in laser-plasma interactions, as chscu,.scd by
H. Baldis mad P, Young in their contribution to these proceedings.

The radars_ of course, measure only fixed values of k. 'the observed
cascade power spectra must arise as an altitude integrated effect. A compl.ete
altitude integrated spectrum requires a model for the altitude dependence of the
electron density, o,° the heater profile and a series of simulations for a range of
ase values, At most altitudes the primary cascade peaks cannot contribute to the
integration for the fixed value of k but the background turbulence can. In the
integration this background provides the observed enhanced background on which
the shm'per cascade structures sit, For stronger driving the 3: and 5: cascade
peaks become less distinct and the background becomes stronger. We believe
that the combination of these effects in the integrated spectrum may account for
the often observed "broad bump" in the Arecibo spectra. :_7 Note that at every
altitude there is a beat source for Langmuir excitations at frequency 0., whir'li
is just the first term in (21) where the frequency argument is w- COo(rath(_r
than k 2 -We). The three peaks in ( n(k,w -COo) 2} produce sour_:es at _0= We
and CO= We 4- k Cs. Only at special altitudes, for fixed k, will these sem'ees
Coincide with the free mode resonances at w = k2. Because of this nonresonant
excitation, the Mtitude integration will eT_Lancethe decay line, the zero frequency
shift (OTSI) line and the antiStokes line!

9, Caviton correlations and a carlton gas model

In Section 5 we mentioned that in tile case of overdense driving, &o = [)o -

cop < 0, for relatively strong ion wave damping , individual cavitons can ll]econ_elocked in limit cycles of nucleation, collapse and burnout. In I we presented
preliminary evidence, from D=2 Zakharov simulations, that in sucl_ regimes the
carlton gas could undergo transitions to states of high' temporal and spatial
order. This order produces distinctive line structure in the spectra 2
and ]n(_k,w) 2 which was discussed in I and will not be repeated here.

Here we outline ti_e elements of a caviton gas n mclel which elucidates th(._
mechanisms of caviton interactions leading to correlations. This model repro-

duces severtd features of the full simulations a,nd allows us to treat systems with
nmny more cavitons.

We assume, lo1' purposes of this discussion, that Ao(maz) < We < 0, and the
collapsing carlton gas is weakly coupled, For simplicity, we also restrict &'tailed
discussion to a scalar versi(_n of Zakha,rov s ,,quati(ms. _1.
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The enerEy density of free modes, I'Vf =< ]E 2 >, decreases rai)idly a,s one, T /', " ,' /considers i)lasnlas which are increa,smgly overdense, This is because the cavlt(m-
free mode coupling becomes increasingly non-resonant, However, the 1)roduction

of ion acoustic waves is relatively insensitive to the plasma density, _ hercfor(., ill
this regime, the coupling is primarily due to acousti, c w_wes,

Since the' cavitons are weakly coupled, we seek a perturbatioI,_ theory in whicll
the zeroth order state is one of uncoupled collapsing c_vitons, each of whictl is
executing the same stable limit cycle, This state !s described by the spa,tial
position, xi, and collapse time, tj, of each caviton, where, e,g., IEI2 of tlle itlt
collapse varies ns F(x-a'i,t-tj) = F(x-. xi,t-ti + r) where r is the cycle time.
Let ti =nr + (Oi/27r)r with 0 < Oi < 27r. Then we may describe the lth cycle: 1)5,
xi and Oi, the "collapse phase," The dynamics of the carlton gas will consist of
the equations of ,notion for its state variables, (Note'. for the real vector model of
.Langmuir waves, each collapse also has a direction which is needed for a complete
specification of the state.)

The assumption that the caviton coupling is weak is fM<en to mean that the
stttte chm_ges slightly in a time r. Therefore, tlm acoustic waves impinging on a
given carlton, which consists of the superposition of the emission of sound waves
front previous collapses of all other cavitons, may be taken _,obe periodic i,-itime
over the time scale of a few collapses,

Ion acoustic damping and geometrical attenuation imply tlmt the coupling
between all but nearby neighbors is negligible.

We also assume that the cavitons are separated by ' at least a few caviton
di_-uneters so that the acoustic perturbation from any single caviton may be ap-
proximated by a plane wave over the width of the given caviton, Its Wavelength,
,_, is simply the produc_ of the ion acoustic speed (reno,'malized by the ion ac,ous-
tic damping), Cs, and r.

A natural perturbation theory seeks to superpose the effect of all such plan(_
acoustic wt_ves. The response (Sx, 50) of the caviton in state (x, 0) to a given sraxall
amplitude wave, Sn, is linear in the'amplitude of the wttve. Tl._.(-_,only parameter
it can depe'nd cn is the relative phase, ¢ -0 where

6n(V,t)~ cos(/ (v- .) -wt + ¢)

and k = 27r/)_ ,w = 2_/r. Because of the nearly singular nat,lte of the collapse
cycle, the determination of this response function is nontrivial. It has been
numerically determined for a one dimensional version of the Zakharov equati(ms
which allow for collapse, The results are remarkably close to what is obtaine_l
from the following heuristic argument;

Since the acoustic dynamics is linear in tlm density, the only direct effect
un external acoustic wave has on a collapse cycle is through its effect on tlle
Langmuir waves which are trapped in the caviton. This effect is most lmporta,at
when the relative size of 5n is largest compared to the unperturbed caviton (:lepth.
The evolution of the Langmuir wave phase, which is crucial in determining tll(_
coupling to the heater field, can be taken to depend on Ao(t) + an(x, t). L_etAo
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_ttain i_s smallest value at a tlm,e r_/._Tr into the collapse cycle, We expect tliv
response of 0 to depend primarily ori the value of 5n at ihat time, T!mrefore one
might guess that

The response of the carlton location cml only depend (.m' the' gr_client, of &l.
Again, it is the gradient at a time r'l_,/27r into the collapse cycle wliich is most
important. Therefore we expect tha.t

&, ~ cos(¢- + #). 0) (23)

where lt ,,_ 7r/2, because the gradient of 6n peaks at; t, phase, which differs by
a'/2 from the phase at which 6n peaks, As m ntmned above, the numerically
determined lineal' response is very close to this heuristic result, The numerically
determined coefficients iii these relations have the property that the response (_t'

the collapse phase; in units of 2rr, is orders of magnitude larger than the response
of the collapse location, in units of a caviton diameter, This may be interpreted
us being due to the combined inertia of L_mgmuir waves and ion fluctuation which
m_dm up the caviton, which re.lsts acceleration by the gradiei_t of 6n wlnle rh(:,
eaviton phase primarily depends only on ,_o(t), (Note: Because of Langnmir wn.v(_
burnout and acoustic wave emission, the cavlton momentuni is effectively lost n.t
the end of the eaviton cycle, allowing a complete description ii1 terms of (a:, 0),

The one remaining step in the derivation of the carlton gas model is the de-
termination of the acoustic waves a distance r _way from a periodiea.lly collapsing
caviton, Asymptotically la.rge r is not appropriate because the wave amplitude
is a rapidly decreasing function of r and it is only within a few c_:_viton ra.(lii
that its eanplitude is large enough to matter, If one assumes that during that
portion of the caviton cycle, during which most acoustic emission occurs, tll(,
caviton size is small compared to r, then one may model the emission t)rocess
as being caused by a point ponderomotive force, If one also assllllles that the
emission effectivelytakes piace during a time interval short compared to r, then
one has the "impulse model" for acoustic production. In this eaae, it has b(.'ell
numerically determined, that the following is a good fit to the acoustic emission

' from a caviton with collapse phase 0 in three dimensions:

IA

n(rt) = )" +0] (24)(,'/rc.

t+rwhere A _ 100, a_ _ 8, and the impulse I = dtN(t)d't mid N(t)is tll(,
,1t,

caviton Langmuir wave energy, If one relaxes the ans_tz about the short emissi(m
duration, then 8 is replaced by 0 plus _a constant, _:md I is somewhat reduced
in amplitude, Since this is the same for all cavitons, it can be suppressed by
redefining 0 trod the scale of time for evolution of the caviton gas, The abov(,
fit is good for 2 < r/rc, < 4, Because 6n(rt) dccre_kses rapidly for r/rc,s > 4,
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and bectmse ce is largei there is no harm in using the _d.mvefit for larger r, D:n'
r/rcs <').., an rapidly becomes so large that the linear le,.ponse'._ model breaks
down, lt has been observed in two cltmensional simuh_tions of Za.khar()v's model
tha,t two cavitons will merge irl about a mingle es,viton cycle time if they approacll
each other to within a few e_,viton radii, We use this empMcal obserw._tion t()
.suI)'-'l,temen, t the caviton dynamics by _ merging rule which rephrcos t_caviton pair
by t_ single caviton hail way between the two, wltti a random collrtl_se plln.:_e, ii'
the pair spacing is less tlmn some cutoff, value and their rel,_tive displacement
would move them closer iri the next collapse cycle, The imposition of a rmldOln

phase mus_ be regarded am _dhoc, _f'l:ere are ,regimes, however,.where merging
events are :':a'e, so at, lea.st in those legimes, this adhoc fet_ture rn_w not be fatal,

Finally, equations (22), (23), aa:d (24)imply, in the Weakly coupled regime
where caviton-caviton interactions may be superposed, ttmt the eaviton st_:tt:,

_.fftern+l collapses (:},+1 01,4-1);is related to the state _ffter n collapses by
d

7'11

xl'+_ = _'+ BF,-_ co_[_,,,"e"-e l''u + J -("_+/,)]l(,i})" (_,_)
j _ _

01'+_ _-0;'+c _ _o:t_'a:,."u+ es"- 0;'--,/,]/(,,u)_'' (20)
.i#l

where C .,, IA(rcs) _ and B _ C/100. The I roi_ortlonaht) coei:fiments depend on
properties of the individual caviton cycle, For this model to .be consistent with
the superposition ansatz, the initial conditions must be suell that, for definite
vtdues ofB and C, the change in the carlton state must be small in any Olle
collapse cycle,

This model has a very rich structure. It turns out that, apart ft'ore initial
conditions, /L is the only parmneter which tdfeets the qualitative properties of

the evolution. While t, _ rr/2, very different behavior is obtained depending on
whether t._> _r/2, or t, < rr/2. A consideration of the two carlton model su_ces
to illustrate this point.

Let y = ]zl--x21 and (,"= 01-02. lt can be shown that for rr/2 < t_ < 3_r/2, the,>
' Qaretwostablefixedpoints: ky = ¢ + lz+ rr/.., (," O;and ky = #.,+ tz+ 3'_r/2, _,"= rr.

It is understood that changing ky by 2rr yields shot, tmr fixed point with the sam_
stability properties. Which of this pair of stable fixed points is obtained depen(ls
on initi_fl conditions, The one at. _,"= O has botl_ cavitons collapsing in unison,
while the one at ¢ = rr, has alternating collapses. For -_r/2 </_ < _r/2 there are
no stakle fixed points, but thereare sepa.ratrices wl_ich bound the motion in y.
However, if there are perturbations to the motion, for exmnple a third eaviton,
these seDaratrices wouM be crossed and tlmre would be no simple constraint o_
how large or sm_dl y could become.
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Figure 11 illustrates the genera.Lion of collapse phase correlations betwee:l
different cavitons in a nmlticaviton ease, The initial state had no such correia,-
Lions, but the eavitons were initially placed on a nearly regular squa.re lattice,
These correlations were strong triter, 10 collapses, Because the caviton mot;ion is
slow compa, red to its phase dynamics, i000 collapses were followed to show tha, t
some degree of spatirtl regularity is retained after a time long enough such that
spatial n:oti0n is significm_t, Note that the phase correlations are still strol]g
even though the spatial distribution of cavitons is somewh_tt irregular,

9. Concluding remarks

The set of concepts outlined in this m'ticle has been quite successful in dc..c.11b-:hs i ,_ -

ing, at least qualitatively, the numerical simulations and several well-diagnosed
experiments involving strong Langmuir turbulence. Certain of these concepts can
be described in more m_alyt;ical detail that we have given, here. Genera, lly, how-
ever, the ahalytic tools available in this subject have been quite limited. In our
work we have gained understa.nding by considering simpli,3ed, reduced models,
which tl_emselves usually require numerical solution, It is a great challenge .to
theoreticians to put some more analytical "mea, t,'' on these conceptual structures.
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Fig. II.illustrates the generation of collapse phase correlations between differ-
ent cavitons in a multicaviton case, The initial state had no such correlations,
but the cavitons were initially placed on a nearly regular square lattice. These
correlations were strong after 10 collapses. Because the caviton motion is slow
compared to its phase dynamics, 1000 collapses were followed to show that some
de6ree of spatial regularity is retained after a time long enough such that spa-
tim motion is significant, Note that the phase correlations are still strong even
though the spatial distribution of cavitons is somewhat irregular. The direction
of each arrow indicates the collapse phase at each site,






