
cortF-ycMWa - Q
SLAC-PUB-5241
April 1990
(T/E)

OBJECT ORIENTED PROGRAMMING SLAC-PUB—5241
Paul F. Kunz

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94309

DE90 011797

ABSTRACT

This paper is an introduction to object oriented programming techniques. It tries to
explain the concepts by using analogies with traditional programming. The object ori­
ented approach is not inherently difficult, but most programmers find a relatively high
threshold in learning it. Thus, this paper will attempt to convey the concepts with ex­
amples rather than explain the formal theory.

INTRODUCTION

In this paper, the object oriented programming techniques will be explored. We will
try to understand what it really is and how it works. Analogies will be made with tradi­
tional programming in an attempt to separate the basic concepts from the details of
learning a new programming language. Most experienced programmers find there is a
relatively high threshold in learning the object oriented techniques. There are a lot of
new words for which one needs to know the meaning in the context of a program.
Words like object, instance variable, method, inheritance, etc. As one reads this paper,
these words will be defined, but the reader will probably not understand at that point the
where and why of it all. Thus the paper is like a mystery story, where we will not know
who’s done it until the end. My word of advice to the reader is to have patience and keep
reading.

KEY IDEAS AND CONCEPTS

The first key idea that of an object. An object is really nothing but piece of execut­
able code with local data. To the FORTRAN programmer, an object can be considered a
subroutine with local variable declarations. By local, it is meant data that is neither in
COMMON blocks, nor passed as an argument. This data is private to the subroutine. In
object oriented parlance it is encapsulated. Encapsulation of data is one of the key con­
cepts of object oriented programming. The second key idea is that a program is a col­
lection of interacting objects that communicate with each other via messaging. To the
FORTRAN programmer, a message is like a CALL to a subroutine. In object oriented pro­
gramming, the message tells an object what operation should be performed on its data.
The word method is used for the name of the operation to be carried out. The last key
idea is that of inheritance. This idea can not be explained until the other ideas are better
understood, thus it will be treated later on in this paper.

ENCAPSULATION AND MESSAGING

An object is executable code with local data. This data is called instance variables.
An object will perform operations on its instance variables. These operations are called *

* Work supported by the Department of Energy, contract DE-AC03-76SF00515.

Invited paper presented at Computing in High Energy Physics, Santa Fe, N.M., April 9-13, 1990.

THIS DOCUMENT IS UNLIMI i EO

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

Subroutine anObject(msg, I)
Character msg*(*)
Integer I
Integer*4 aValue
If (msg .eq. "setValue") then

aValue = I
return

Elself(msg .eq. "getValue") then

methods. To clarify these concepts, con­
sider the FORTRAN code in Figure 1. This
is a strange way to write FORTRAN, but it
will serve to illustrate the key concepts. It
also uses FORTRAN extensions that are
commonly used. The style of capitaliza­
tion is that which is recommended for ob­
jective programming, but for the moment
is not important for the discussion. For
this sample code, the name of the object is
anObject. The subroutine has two argu­
ments. The first argument, msg, is used as
the message, while the second, i, is used
as a parameter. This object has one in­
stance variable with the name aValue

which is of type integer. The are two methods defined: setValue, and get value.
What operations are performed on the data is defined in the FORTRAN statements. That
is, if the value of the character string msg is “setValue” then the instance variable
aValue is set to the value of the argument i, while the string is “getvaiue” then the

I = aValue
return

Else
print("OError")
Endlf

return
end

Fig. 1. Sample FORTRAN code.

current value of the instance variable is returned via i.
To send a message to anObject from some other FORTRAN routine, one might find

code fragments that look like

Call anObject("setValue", 2)
Call anObject("getValue", I)

In the first line, anObject will set its instance variable to value 2, while in the sec­
ond line, the current value of the instance variable will be returned into the argument i.

Now the reader should have some of the key concepts understood, at least in their
simplest sense. Why we are programming this way is probably not yet apparent; that
will come later. But for now, the reader should note the very different style of manipu­
lating data. In languages like FORTRAN, we think of passing data to a routine, via argu­
ments or COMMON blocks. Here the routine, i.e. the object, holds the data as instance
variables and we change or retrieve the data via methods implemented for the object.

One thing the reader might note is that this messaging style of programming is a
rather tedious way to get to the data that we want to operate on. Its time to invent a new
syntax, one that could be read through some preprocessor that would generate the code
that could be compiled. An example of such a preprocessor is Objective-C1-, a prepro­
cessor to the C programming language. Objective-C is a proper super-set of C. It adds
only one new data type, the object, and only one new operation, the message expres­
sion.

An example of Objective-C code is given in Figure 2. This Objective-C code is
equivalent to the FORTRAN code shown in Figure 1. In the Objective-C syntax, the code
is divided into two parts. The first part is called the interface', it is all the code between
the @ interface and the next Send. The interface part of the code serves two purposes.
It declares the number and type of instance variables, in this case only one, and it de-

2

#import <objc/Object.h>
@interface anOjbect:0bject
{

int ^Value;
}
- setValue:(int) i;
- (int) getValue;
@end

@implementation anObject
- setValue:(int) i
{

aValue = i; (
return self;

{

}

(int) getValue

return aValue;

@end

Fig. 2. Objective-C sample.

To send a message to the above
lowing code fragments

dares to what methods the object will respond.
The interface is usually placed in a separate file,
then included via the standard C include mecha­
nism. Once again, the author can only say that the
reasons for doing this are certainly not apparent
at this time, but will be explained later. The sec­
ond part of the code is the implementation; this is
all the code between the Himpiementation and
the next @end. Within the implementation, one
writes the code for all the methods that make up
the object. Each method begins with a and the
name of the method. Between the curly brackets
(“ {} ”) can be any amount of plain C code, includ­
ing calls to C functions, and message expres­
sions. Even calls to other compiled languages,
such as FORTRAN can be placed here. The exam­
ple in Figure 2 admittedly doesn’t show very
much of that possibility.

object, from another object, one might find the fol-

id anObject;
[anObject setValue: 2];
i = [anObject getValue];

In these fragments, anObject is declared to be data of type object, while i is declared
to be type integer. The message expression is signaled by an expression starting with
the left square bracket (“[”) and ending with the right square bracket (“]”). The syntax
is a very strange to a FORTRAN programmer, or even a C programmer. There is a lot
more behind it then can be understood now, so the reader would do best by not ques­
tioning its rational at this point.

So far, we’ve introduced a lot of new terms and a very different syntax. But what
is important is the very different way of handling data. Where we are headed is probably
not yet clear, but like I said in the beginning, this paper reads like a mystery story, we
wouldn’t know until the end. I don’t want to lose you, so the next section will work on
a much more concrete example using what we already are beginning to understand.

ANOTHER EXAMPLE: A HISTOGRAM OBJECT.

Its time to take another example, something more concrete. I’ve chosen to treat a
histogram as an object. We’ll examine the code to do one histogram. Figure 3 shows
what the interface part might look like.

The object shown is of the class Hist which inherits from the root class object.
The meaning of the words class md'inheritance will be defined latter. The instance
variables of the histogram object (shown between the curly brackets) are the title, the
low edge of the histogram, the bin width, the number of bins, etc. To make the example

3

♦import <objc/Object.h>
Sinterface HistrObject
{

char title [80]; /* title of histogram */
float xl, xw; /* low edge and bin width */
int nx; /* number of bins */
int bins[100], under, over;/* bins and under/overflows */

}
- setTitle: (char *)atitle; /* set the title */
- setLow:(float) x width:(float) y; /* set the edge and width */
- setNbins:(int) n; /* set the number of bins */
- acum:(float) x; /* accumulate */
- zero; /* zero the histogram */
- print; /* print it */
@end

Fig. 3. Objective-C interface for Hist object.

simple, we have a fixed maximum number of bins (100) and a fixed maximum title size.
This is unnecessary in C because these arrays can be dynamically allocated when the
histogram is defined, but for our present purposes, we’ll avoid introducing this feature
of the C language.

Once the histogram object is created, the user would first send it messages to fix its
title, set its low edge, bin width, etc. These messages might look like the following code
fragments

[hist setTitle:"my histogram"];
[hist setLow:0 width:!.];

To accumulate and print, the messages might look like...

[hist acum: x];
[hist print];

The implementation of the histogram should be obvious. In the acum: method for
example, one would find exactly the same kind of coding one would find in FORTRAN.
That is, something like...

- acum:(float) x
{

i = (x -xl)/xw;
if (i < 0) under = under+1;
elseif (i >= nx) over = over + 1;
else bins[i] = bins[i]+l;
return self;

}

There is nothing but ordinary C code in this particular method implementation. By
the way, I’ve written the C code like a FORTRAN program might do, so as to not confuse
the issue with short cuts a C programmer might normally use. If you’re looking for
something profound in all this, there isn’t, yet.

4

It is rare that one wants only one histogram, so we now examine what needs to be
changed to have more than one. First of all, if we have multiple histograms its clear that
they all behave the same way. In object oriented parlance, we say there is a class of ob­
jects called histogram. In our example, the name of the class is Hist, as seen on the
@interface line. The only difference between one histogram object and another is the
values of its instance variables. Using the right object oriented words we would say that
one histogram object is an instance of the class Hist. We create an instance of the class
Hist by sending a special type of message to the class Hist. It is called the factory meth­
od. The messages that are sent to the class are factory methods. The ordinary messages
are sent to an object, which is an instance of a class. Its is important to remember this
distinction.

We send a message to the class to create an object, then we can start sending mes­
sages to the object. The code might look like...

id aHist, bHist;
aHist = [Hist new];
[aHist setTitle: "histo one"];
bHist = [Hist new];
[bHist setTitle: "histo two"];

[aHist acum: x];
[bHist acum: y];
etc.

The first message, “new”, is sent the class Hist. This is known as a factory method.
All the classes that are linked together to form the program module are known at run
time, just like the subroutines and functions are known in FORTRAN. Classes can only
accept factory methods, so to distinguish them from objects, one capitalizes the first let­
ter of the class name. Factory methods return the id of the object created. An id is a
special variable type in Objective-C to identify objects. In the example, we’ve given
these ids the names aHist and bHist. Once an object has been created, i.e. an instance
of the class Hist, then we can send messages to the object to define the histogram, and
accumulate into it. What other changes do we need to make to have multiple histo­
grams? NONE. In fact, we don’t even have to write the factory method, “new”, because
it is inherited (we’ll explain inheritance in a later section).

At this point the FORTRAN programer is probably confused, since we have shown
code which seems to be written for only one histogram, and yet we have many. What’s
going on? One way to understand it is to look behind the scenes and see how memory
is being allocated, as shown in Figure 4. We write code for the class Hist which con­
tains the instance variables of the class, its normal methods, and maybe a factory meth­
od if it is not inherited. At run time, we message the class Hist with a factory method.
This method allocates space in memory for the instance variables, and some other stuff
we not need concern ourselves with for the moment. Thus each object of class Hist has
its private copy of the instance variables. The factory method returns the id of the ob­
ject just created. We can then send messages to this object. Program execution jumps to
one of the methods we see in class Hist, with the instance variables set to the private
copy that belongs to the object we sent the message to. The net result for the program-

5

Objects: Code:

aHist

bHist

isa:
title
xl
xw
nx
bins

isa:
title
xl
xw
nx
bins

►setTitle:
setLow: width:
setNbins:
acum:
zero
print

Fig. 4. Allocation of memory for objects.
mer is profound. He writes the code for the Hist class as if there is only one histogram
allowed. In the driver code, however, as many histograms as needed can be created via
the factory method, and the system does all the bookkeeping

Now compare the object oriented style of writing a histogramming code with what
one usually finds in a FORTRAN implementation. If we had written FORTRAN code
to handle only one histogram, and decided that we needed multiple histograms, the
changes to the code would be extensive. First of all, the local variables that held the def­
inition and bin contents would all need to become arrays, dimensioned by some maxi­
mum number of histograms allowed. We would probably put these arrays in a COMMON
block and write one routine for each operation we wanted to perform on the histogram,
corresponding to the messages in object oriented approach. One of the arguments in
these routines would some kind of identifier of which histogram the operation was to
be performed. The identifier frequently is not just the index into the arrays, but some
character string, so we would need to write a lookup table to find the index from the
identifier. To allow the flexibility of using the package for a large number of histograms
with few bins, or a few histograms with many bins without re-compiling, one frequently
sees the program allocating space in some large COMMON block for the bins and the
definitions. The net result in the FORTRAN implementation is that the person who writes
the histogram package writes a lot of bookkeeping code, probably more bookkeeping
code than definition or accumulation code. Instead of methods within a class being held
together, we have independent routines, related only, perhaps, by some naming conven­
tions. The data instead of being encapsulated, is exposed since it is in COMMON block.
In short, everything is inside out when compared to the object oriented approach.

INHERITANCE

Another important aspect of object oriented programming is inheritance which has
been alluded to already. Lets start with an example. Let us define an object called

6

fimport <objc/Object.h>
@interface Hist2:Object
{

char title [80];
float xl, xw, yl, yw;
int nx, ny;
int bins[100] [100], . . .;

}
-setTitle:(char *)atitle;
-setXlow:(float)x Xwid:(float)y;
-setYlow:(float)x Ywid:(float)y;
-acum:(float)x;
-show;

Send

Fig. 5. Interface code for Hist2 class

Sinterface Lego:Hist2
{

float plotangle;
}
- setAngle:(float) degrees;
- show;
Send

Hist2, which will be a two dimension
histogram. The interface file might look
like the code shown in Figure 5. It is just
like the Hist object in the previous sec­
tion. We’ll assume that the show method
prints a table showing the accumulation in
each bin. Now suppose we want to define
another form of 2D histogram which
shows its contents in 3D form with the Z
axis being the contents of the bin, i.e. a
lego plot. We’ll call this class the Lego
class. We can write its interface file as
shown Figure 6.

There is only one instance variable
and two methods in the class Lego. The
instance variable plotangle is the angle
at which the x-y axis should be shown
when displaying. The two methods are to
set that angle and to plot the histogram. So
what happened to all the methods to de­
fine and accumulate the lego plot? They

Fig. 6. Interface code for lego class ^ taherited-No,ice the ei«erface line
in the code above. It says that the class

Lego is a subclass of Hist2. The use of the word subclass is a misnomer, because in
object oriented programing it doesn’t mean something smaller, it means something big­
ger. When one class is a subclass of another, it inherits all of its superclass’s instance
variables and all of its methods. Thus the Lego class has all the instance variables of the
Hist2 class and one additional: plotangle. It also inherits all the methods of Hist2
and adds one new one: setangie:. What about the show method? A subclass can either
take an inherited method exactly as it is in its superclass, or it may over-ride it. Since
the fashion that the Lego class displays its accumulation is very different from that of
Hist2, the class Lego needs to over-ride the definition of the show method with one of
its own. The use of the Lego object is just like any other object. That is, we might see
something like...

aLego = [Lego new];
[aLego setTitle:"this plot"];
[aLego setXlow: 0. Xwidth: 1.];

[aLego setAngle: 45.];

[aLego acum: x :y];
[aLego show];

Again, its worthwhile to look behind the scenes and understand how memory is be­
ing laid out. Figure 7 shows how memory is allocated after one lego plot object is cre­
ated. The object aLego consists of a concatenation of the instance variables of the

7

Code:

Objects:

aLego isa:
title
xl, xw
xw, yw
nx, ny
bins

plotangle

setiitie
setXLow:
setYLow:
setNbins
acum:
show

Xwidth:
Ywidth:

^setAngle:
show

Fig. 7. Allocation of memory for one Lego object.

Hist2 class and the Lego class. The isa pointer points to the code defined in the Lego
class. That class also has a pointer to the code of the Hist2 class. Thus, when aLego is
sent the message “setAngle:” the code defined in the Lego class is found. When aLego
is sent the message “setTitle: ”, the method is not found in the code for the Lego class.
Instead, the code found in Hist2 class is executed, because of inheritance. On the other
hand, when aLego is sent the message “show”, the show method in the Lego class is ex­
ecuted (not the show method in the Hist2 class), because the show method in Lego
over-rides the one in the Hist2 class.

One result of inheritance is much less code modification when we want to add func­
tionality. Lego performs everything that Hist2 does and more. If Hist2 gets changed,
so does Lego, so it is easier to maintain code. The author of the Lego class never needs
to look at the code for Hist2; he only needs to know the methods he wants to over-ride
and can add his own new methods at will. It also works in the opposite direction. The
lego plot needed an extra instance variable, plotangle. This variable was added to the
class without needing to change anything in the Hist2 class to accomodate it.

AN OBJECT ORIENTED MONTE CARLO

Another example of the use of inheritance is a particle generation Monte Carlo ap­
plication written by Richard Blankenbecler.2- The application was written as a proto­
type to test the ideas of object oriented programming techniques on a real physics
problem. It consists of about a thousand lines of Objective-C code, and it takes unstable
particles and decays them into final state stable particles.

The class structure, or inheritance tree, for the Monte Carlo is shown in Figure 8.
The root class (which inherits from Object class) for this Monte Carlo is the class Par-
ticle.The instance variables of this class are the basic properties of all particles, such as
mass, charge, spin, etc. The methods in this class are those that are in common with all
particles, such as setting or returning any values of the instance variables. Under the
Particle class, there are two classes: Boson and Fermion. This is so, because these types
of particles behave differently under certain conditions, so the methods that handle
them are necessarily different. Under these two subclasses, one finds the names of

8

PiZeroPhoton NuElecNuMu

PiPlus

PiMinus

Positron

MuMinus

Boson

Particle

MuPlus

Electron

Fermion

Fig. 8. Class structure of an object oriented Monte Carlo.
known particle states. For example, under the Boson class, we find the classes Photon,
PiPlus, PiZero, Eta and JPsi, etc.

Each of these classes have a factory method with the name create in which the
mass, charge, and other instance variables are set. Thus, to create a particle a message
of the form

[PiPlus create];

is sent to a class, and an object is returned with the appropriate instance variables set
correctly.

Under some of the known particle classes, there is a subclass of the anti-particle.
For example, the PiMinus class is a subclass of PiPlus. In the create method of PiMi­
nus, the first statement will be to send a create message to its superclass, the PiPlus
class. After that, there is a message sent by the PiMinus class to itself to make a charge
conjugate of itself. This method is named makeAnti and it is an inherited method. The
instance variables of mass and charge, for example, are set to their real values in the
create method of the PiPlus class, thus the PiMinus will inherit the correct mass and the
mass is only written in the code once. The PiPlus class will set the charge to plus one,
while the makeAnti method will reset it to minus one when it is called by the PiMinus
factory method.

As a partial summary of the features of this OOP approach to particle decay Monte
Carlo, note the following characteristics. The program operations mirror the physics of
the process; particle objects respond to direct physics commands. The program opera­
tions are in English (strings) to enhance readability, maintainability, and ease of modi­
fication. Parameters occur at only one spot in the code, with the particle that it describes,
thereby avoiding possible conflicts. There are no arrays (and no exceeding array limits).
The program uses well-tested FORTRAN routines to assign phase space momenta to
the produced particles. The only “if’ statements in the code are in the sections that as­
sign a decay mode for the particle according to its branching fractions. Finally, there are
no do loops in the main code; this avoids the bookkeeping in keeping track of the limits.

9

Output is available in several formats. Finally, the programer does not do explicit mem­
ory management nor bookkeeping; the modification of the code is straightforward.

GRAPHICS USER INTERFACES AND OOP

An example of the use of object oriented programming for the graphics user inter­
face toolkit is shown in Figure 9. This example is the class structure of NextStep, the
GUI developed by NeXT, Inc. for use on their computers and licensed to IBM for use
on their UNIX workstations. In this figure we see that a button is implemented by the
Button class, which is a subclass of the Control class. Since controls are visible on the
screen, they are a subclass of the View class, and since all views might respond to
mouse input, they are a subclass of the Responder class. For those methods implement­
ed in the Responder class, all subclasses of View, e.g. Control, Box, Text, and Scroll-
View classes, will behave the same way, since they inherit these methods.

1 I 7
Speaker ListenerPrint Info PasteboardBitmap

Cursor

ActionCel f

FormCel TextHekJCell ButtonCel

MenuCeH

Window

Panel

FontPanel PrintPanelSavePane I

OpenPanel

ScrollerMatrix Text Re Id Button

Fig. 9. The Graphics User Interface class structure on the NeXT computer.

The NextStep class structure also illustrates another aspect of object oriented pro­
gramming that one frequently makes use of. That is, an object can be composed of
many different objects from different parts of the class structure. Imagine an application
that has a panel, which is an object for user input, such as the one shown in Figure 10.
Note that this application has panels which are a subclass of the Panel class, which in
turn is a subclass of Window and Responder classes. The panel contains buttons, slid­
ers, text field, etc., each of which are also objects which are subclasses of Control and
View subclasses. Thus the panel object for the application is made up of objects from
various classes and the ensemble is treated as one object by the application.

10

Iteason

Fig. 10. Example of application with panels.

OBJECT ORIENTED FORTRAN

So far we have given all the examples in the Objective-C language. This language
is C with one new data type, an object, and one new expression, the message, compared
to the C language. The Objective-C language was originally implemented as a pre-pro­
cessor to the C compiler. It generates C code which is then compiled and linked to the
Objective-C run time library. It was designed so that the syntax could be added to other
languages as well.

Such a pre-processor can also be written for FORTRAN. For the NeXT computer, the
Absoft company has done exactly that in order that programs written in FORTRAN can
make use of the NextStep class library. An example of object oriented FORTRAN code
is shown in Figure 11. One can tell this is FORTRAN source code because of the use of
symbols like .false. One can also recognize that it uses the same syntax as Objective-
C with statements like @implementation, and with message expressions imbedded in
the code. After passing this source code through a pre-processor, it is compiled by the
FORTRAN compiler and linked with the standard NeXT libraries. Thus one has an exist­
ence proof of an object oriented FORTRAN. However, the current implementation per­
mits only one instance of an object. This limitation will be removed by further
development by the compiler vendor and planned for release in the summer of 1990.

ll

INCLUDE "appkit.inc
INCLUDE "Timer.inc"
INCLUDE "Cube.inc"

m

\

! Include Application Kit

! Include the interface

@implementation Cube : View

+

+

@+ newView:REAL*4 rect(4)
self = [self newFrame:&rect]
[self setClipping:NO] ! This speeds drawing
width =2.0 ! Start with line width of 2.0
suspend = .false. ! Start with cube rotating

! Start Timer with a small delay
[Timer newTimer: @0.02D0

target: self
action: Selector("display\0")]

newView_ = self ! Return, by convention, self
Send

6- step
suspend = .false,
[self display]
suspend = .true,
step = self
Send

! Suspend rotation, do a single step
Temporarily turn off
Display new rotation of cube
Suspend cube
Return, by convention, self

Figure 11. Extract from object oriented FORTRAN code.

SUMMARY

This paper has presented an overview of object oriented programming. The basic
concepts have been explored. The meaning behind word like instance variables, meth­
ods, etc. has been explained. We have see that although the style of programming is
very different, it is not inherently difficult.

There are many benefits of object oriented programming. Generally the program is
much more readable and maintainable. Also the code is more easily re-usable and is
generally very modular. In short, the goals of software engineering are easily achieved
with the object oriented approach. Compared to traditional programming, object orient­
ed code has much fewer array declaration, thus minimizing the possibility of inadvert­
ently exceeding array boundaries. Through creation of objects, the system does the kind
of bookkeeping that one would need to do in the traditional programming approach. In­
heritance makes is easy to modify and extend existing objects, while preserving the en­
capsulation of data. Overall, it is much easier to implement large sophisticated
programs.

In an age where one frequently talks of a “software crisis”, the object oriented pro­
gramming approach seems to offer some real solutions and a programmer that uses the
object oriented techniques can be much more productive.

REFERENCES

1. Cox, Brad J., Object Oriented Programming, Addison-Wesley, 1986.
2. Blankenbecler, Richard, Private communication, to be published.

12

