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"SPECIAL FUNCTIONS ASSOCIATED WITH SU(3)
WIGNER-CLEBSCH-GORDAN COEFFICl ENTS

J.D. LOUCK AND L.C. BIEDENHARN

LOS ALAMOS NATIONALLABORATORY, THEORETICAL DIVISION

LOS ALAMOS, NM 87545

ABSTRACT

The Wigner-Clebsch-Gordan (WCG) coefficients of the

unitary groups are a rich source of multivariable special

functions. The general algebraic setting of these

coefficients is reviewed and several special functions
associated with the SU(3) WCG coefficients defined and

their properties presented.

i. Introduction "

The relation between group representations of symmetry groups and
special functions has been well-known since the classic lectures of

Wigner I in 1955, Talman's 2 monograph (based on Wigner's lectures), and
3

Vilenkin's more extensive monograph. The application of Lie

algebraic methods has also led to a uniform approach to many special

functions as developed, for example, by Miller. 4 Not as well-known

are the relations between Wigner-Glebsch-Gordan (WCG) coefficients of

symmetry groups andspecial functions, although they are equally rich
in structure. Examples are the classic relations of the

WCG_oefficients of the quantal rotation group ISU(2), and the

associated Racah coefficients to terminating 3F2 and 4F3

hypergeometric series. Only recently has thisrelation been put into
the perspective of a general theory of orthogonal polynomials by

Wilson 5 and Askey. 6

lt is this second type of relationship, between WCG-coefficients
and special functions, that is the subject of this paper. Indeed, we

shall develop it in detail only in the context of the WCG-coefficients

of the group SU(3) of 3x3 unitary unimodular matrices. We shall show

that already in this case one is led to the discovery of new classes

of special functions of intrinsic interest in their own right, and



going far beyond what one might expect from such a specialized

problem. One can only speculate what a complete theory of SU(p) and

other symmetry groups will unveil, as already indicated by the

extensive work of Milne 7 and Gustafson. 8

Much of what is presented here is already appeared in the

literature 9-20 but is somewhat scattered. The goal here is to present

a somewhat more organized viewpoint of this subject, showing how the

original problem of calculating WCG-coefficients has led naturally to
new special functions and the development of their properties.

lt is important to piace the subject in its appropriate general
framework, lt is no accident that the subject is rich in its detailed

structure, since it is rooted in combinatorics and invariant theory

through Young-Weyl standard tableaux, in analysis through

representation theory, and in algebra through the multiplication

properties of basis functionsand operators.

Let us outline the contents of this paper. In Section 2, the

general mathematical setting of the subject is reviewed In

Section 3, we motivate and discuss how a certain class of U(3)

invariant polynomials with remarkable symmetries and structural zeros

enter into the problem of WCG-coefficients. Indeed, it was inproving

these properties that all the subsequent discoveries of other special

functions were made. In the sections following, we discuss the

relationship of these various special functions to the original

polynomials and sununarize their important properties. These include'

Section 4. Symmetric Generalized Hypergeometric Functions and

Coefficients. Section 5. Two New Classes of Symmetric Basis
Functions.

2 Review of Basic Concepts

2.1. Standard Tableaux and Gel'fand Patterns. Young-_eyl

standard tableaux and Gel'fand-Zetlin-Weyl patterns are two distinct,

but equivalent, methods of codifying information relevant to the

representations of the general linear group GL(n,_) and its subgroups.

(For brevity, we call these patterns simply Gel'fand patterns). We

shall require these entities both in the special context of &(3) and

in general form. We present briefly their definitions.

A Young frame YA of shape A=[AI_2...An], where the _.i are

nonnegative integers satisfying AlaA2_'''aAn' is a diagram consisting

of AI boxes (nodes) in row i, 12 boxes in row 2, ..., An boxes in row

n, arranged as illustrated below'

=



A Young-Weyl tableau is a Young frame in which the boxes have

been "filled in" with integers selected from i, 2, ... ,n. The tableau

is standard if the sequence of integers appearing in each row of YA is

nondecreasing as read from left to right and the sequende of integers

appearing in each column is strictly increasing as read from top to

bottom. The weight or content of a Young-Weyl tableau Y A is defined

to be the row vector _ - (_I' _2' ''" '_n )' where ok equals the number

of times integeL k appears in the array• If AI+A2 +. ..+An=N, then also

_i+_2+...+_ =N. We shall call A a partition of N into n parts orn

more often, a partition when N is unspecified. We always count the

zeros in determining the parts of a partition.

A Gel'fand pattern is a triangular array of n rows of integers,

there being one entry in the first (bottom) row, two entries in the

second row ..., and n entl'ies in the nth row. The entries in each row

I, 2, .... n-1 are arranged so as to fall between the entries in the

row above, as displayed irl
4

mln m2n . . . mnn

(m)= ml3 m23 m33 . (2.2)

ml2 m22

roll

The integral entries m[j, i<_j=l, 2 .... , n, in this array are required

to satisfy the following rules'

(i) mln>_m2n >. ..>_mnn ' (l.3a)

], the entries in(i.i) For each specified partition [mln...mnn

the remaining rows j=n-l, n-2 ..... 1 may be any integers that satisfy
the "betweenness conditions""

m I j+l>_mlj>_m2j+l>_m2j>_m33+l>_m33 > ...___nj_lj>_mjj>_mj+lj+l. (I. 3b)

We denote by GA the set of all Gel'fand patterns corresponding to

the partition A=[m](A.=m. ). There is a natural one-to-onel Z12

iI -



correspondence between the set GA of Gei'fand patterns and Lne set WA

of _Young-Weyl standard tableaux.

The mapping between Gel'fand patterns and standard tableaux is

described as follows: [The shape of the frame is A=[mlnm2n .. mnn] and

row j of the frame as read from left to right has mjj js, m..+l-_n..' jj JJ

(j+l)s,..., mjn-mjn_l ns for j=l,2, ..... , n-l, and row nhas mnnnS.

Using this rule, we see that the set of patterns GA is mapped to

the set of tableaux WA. Conversely, from each standard tableau TeW A

we construct in an obvious way the pattern in the set GA'

The weight or content of a Gel.'fand pattern (m) is the row vector

w=(w 1, w2, .... wn), where wj is defined to be the sum of the entries

in row j Of(m) minus the sum of the entries in row j-l(Wl_mll)'

j g-1

mzj-)._ mij _1. ( 2.3 )w j=

i=1 i=1

This definition of weight coincides with that oi" a standard tableau.

The constraint in a standard tableau that each row (column)

should comprise a set of nondecreasing (strictly increasing)

nonnegative integers is realized in a Gel'fand pattern by the

"geometric" rule that the integers (mij) satisfy the betweenness
conditions.

The significance of the integer mij-mij-I in terms of the

corresponding standard tableau is

= ntunber of times integer j appears in row i. (2.4a)
mij -mij -1

, , ..., is the sum of
We define mjj_l=O,j=l 2 n Similarly, mij

entries in row j of the corressponding standard tableau given by

m.. = (number if is) + ... + (number of js). (2.4b)
z2

The number of standard tableaux in the set WA (number of patterns

in the set GA) is given by the Weyl dimension formula'



dim X= (xi,-hj+j-i)/l!2t... (n-1)t. (2,5)

For subsequent results, we require the measure MA of Yh defined by

n

Mh=(dim h)-ll_(Xi+n-i)!/(i-l) ,
(2.10)

s=l
,,

2'2 Algebra of the General _Linear Group. So-called integral

representations of the general linear group GL(n,_) are irreducible

under restriction to the unitary subgroup U(n)cGL(n,_).. lt is

convenient to formulate results for the unitary group in this general
framework of GL(n,_).

The integral representations of GL(n,_) are enumerated by

partitions having n parts; that is by the elements of the set P =' n

([hlX2 ''' Xn]l Xl>-h2> ... >bn>0;_ _ Xi_q). The finite subset of Pn such

that hl+X2 + .... +h =N (partitions of fV into n parts) is denoted pNn ' f2'

and the set of ali partitions by P' that is P= U P Thus for each
' n ' '

n>_l

__P there corresponds a matrix Dh(Z) such that the correspondence Zn'

----_Dh(Z), each ZEGL(n,_), is an irreducible matrix representation fo

GL(n,_). The dimension of D"\ is dim ._as given by Eq. (2.7).

The matrices Dh(Z) are well-studied objects, and their explicit

form has been given by many authors, based on many methods of analysis

(see, for example, Grabmeier and KerberV). The form favored by

physicists is one in which these matrices are unitary under the

group-subgroup restriction GL(n,_)$U(n). lt is also customary to

label the rows and columns of the matrix Dh(Z) by Gel'land patterns in

the following way' Let _=[hl_2' ''_n]=[mlnm2n '''mnn ]EPn and define a

double Gel'fand pattern by , e.g., for n=2, )'1 , where
; mll )

denotes the n-rowed triangular array (2.2) and is a similar

pattern, inverted above the first for convenience of display. Since

the partition h is shared, it is written only once.

The representation functions in the rows and columns of the

matrix Dh(Z) are now denoted



[!Dk (Z)=D (Z). (2 8)
mm p , ,

One could also' use double standard tableaux for this row-column

enumeration. Important properties of the representation functions

(2.8) include' (a) they are homogeneous polynomials of _otal degree

Al+ .... +A =N' (b) they are a basis of the ring of all polynomials inn 9 ,

any number of variables as A runs over all AeP.

Implicit in our definition of the ,representation matrices (2.8)

is the group-subgr0up GL(n,_)$GL(n-I,_)reduction given explicitly by
p p

the direct sum of matrices, DA (Z)=_®D_(Z), where Z is the

(n-1)×(n-l) matrix obtained from Z by setting z. =z .=i, i=l, 2 ......In nl

n. The summation is over all partitions #-[#i_ 2 ... _n_l]ePn_l such

that the betweenness conditions Al>_#l>A2>...>#n_l>An are satisfied,

The Kronecker product of two irreps 'D_ and Dw of GL(n,f) is

completely reducible into irreps of GL(n,_',) by the rule

• l(#xu' _,+A)Dw+a (2 9)
D#xDu= ) ,

_ew(_)

where the _summation is over all distinct weights A of irrep #. The

intertwining numbers I(#xu; _+A) in this relation express the number

of times irrep A=u+A is contained in the direct product irrep #xv.

The are related to the Littlewood-Richardson numbers g(#uA) by

(#x_;A)=g(#vA)=0, unless A-u+A for some weight A6W(#), (2.23)

Indeed, the properties Of these numbers when v_ewed as functions over

the set of all partitions weP n that is, I 'P _ L ={0 i ...#,A n #,A ' ' '

K(#,A)), with values I (u) in the set L are crucial to the
#,A _,A'

definition and construction of unit tensor (Wigner) operators in U(n)

(see below).

There are two important algebras associated with OL(n,_). The

first is that of the homogeneous polynomials (2.8); the second that of

U(n) unit 'tensor operators, as we now explain by giving the product

law for basis elements of these algebras'

(i) Product law for representation functions:



II!
The bracket, coefficient is expressed in terms of U(n) WCG coefficients

by

IAmm',m_. _ I E/7 \ I_ # /1 _ [_7 _1 _
# m m2 ' _
ml m2j mi m' m_ ' (2,11b)

The bra-ket notation

ml m2 (2.11c)

for a WCG coefficient is further explained below.

(ii) Product law for Wigner operators'

, 71 72 7 711 72 7

# _ _ v , (2,12a)

mI m2 mI m2

The curly-bracket object denotes an invariant operator in U(n).

lt is expressed in terms of Racah invarian_ operators and Wigner

coefficients by

I! 71 72_E< __3_[vI_ _ mX m2 [_3]
\ml/ [AT) [_2] (2.12b)

mI m2j 73\ [71j ,

Let us explain the notations in these product laws.

[Xm) [_ I [v2] are ali Gel'fand patterns in which theThe patterns ' mI ' m

labels in ro_s n, n-l, . , . , I have the significance of

gr0up-subgroup reductions for the chain U(n)DU(n-I)D . . . DU(1), in
accordance with the Weyl rule. The n-rowed pattern ..., which
inverted in the notation for a Wigner operator has no such

group-subgroup significance, a]though, by definition, its entries 7ij

I '
'WNIBP" "lp



run over ali Values satisfying the betweenness relations, The

discovery that patterns numerically identical to Gel!land patterns

enumerate ali Wigner coefficients for U(n) was one of the significant

discoveries in the early 1960'_: (see Ref. ), It takes into account

beautifully the fact that the intertwining function I takes on only

values in the set L This accounting is made through the weight
#,A'

AB(A1, A2, ..., an) of an operator pattern, where each Aj is defined

in terms of the entries 7ij of the pattern exactly as in Eq, (2.5) foe

a Gel'fand pattern. A given weight AeW(_) has a multiplicity K(#,A),

and there are exactly this number of distinct operator patterns 7

having this weight. Thus, the Wigner coefficient (2.11c) is, first of

all, equal to zero, unless %=v+A, where AeW(#) [the property of the

intertwining number in Eq. (2.10)]; secondly, there are exactly K(#,A)

operator patterns 7 pro¢iding us with K(_,A) sets of orthog0nal W_gner

coefficients (this orthogonality is expressed in terms of summations

over the Gel'fand patterns m I and m2). These sets of orthogonal

coefficients then effect completely the reduction of the direct

product (D#×DU)$D V+A, AeW(#), in the region of maximum multip].icity'

that is, for ali #, u, and A=v+A such that I(#×u, u+A)=K(u,A).

Operator patterns must have still, further structure. This is

because the intertwining nualber can assume any value in the set L
#,A

for certain v. This means then that certain w'hole sets of Wigner

coefficients must vanish. This property is best expressed through the

notion of a Wigner operator and its characteristic null space. In its

very conception, a U(n) Wigner operator is to have certain mapping

properties when acting in the Hilbert space over which it is defined.

We take this Hilbert space H to be a direct sum H=_ ®Hk, where HX is

keP
n

the carrier space of irrep A of U(n) [or GL(n,_)], each such irrep

space occurs exactly once in the direct sum, and the sum is over all
AeP

n

An (abstract) Wigner operator, denoted <_> below, is then a map H

---+ H with the following specific properties for each u E P where An'

denotes the weight of the operator pattern 7'

7

'H --4 0 if w+A_#×w; (2,13a)



'Hw _ 0 or Hu ---_ Hw+A ;if _+Ae#xw, (2,13b)
L

Among the K(#,A) unit tensor operators in the set

A =AeW (#) (2.14 )
m '

exactly K(#,A)-I(#xw; _,+A) of them annihilate the irrep space H [have

the first property (2.13b)], while the remaining I(#×_, _+A) operators
effect maps H ---+ H [have the second property (2 13b] as given

explicitly by the sets of orthogonal Wigner coefficients that effect

the reduction (D#xDW)$D u+A

v + A v + A (2.15)
m2 m m1mI m

{i>L }u m2 is a lexical Gel'fand pattern is an
Here the set of vectors m2
orthonormal basis of H . As v runs over all w6P these vectors are

V n'

to be an orthonormal basis of the (separable) Hilbert space H.

The curly bracket object in Eq. (2.12b) denotes a Racah

invariant. It is particularly significant that Racah invariants are

fully labelled by operator pa_terns. There are other important forms

of Eqs. (2.11) and (2.12), derived from these relations by using the

orthogonality relations for Wigner coefficients and Racah invariants
(see Ref. ). We refer to the literature for these properties.

Let us note here, however, that under the unitary transformation

K'H _ H given by

mI mlm I m1
m'

the unit tensor operators transform irreducibly according to

_-I= Dm:m (U) . (2.16b)



lt is useful to remark that the existence of the algebraic

structures, Eq. (2,11) for functions and Eq. (2.12) for operato_j, is

assured, since D#xD V is completely reducible. The important question
is whether or not their exists canonical or natural realizations of

these algebras, free of arbitrary choices. The answer for U(2) and

U(3) is that the algebra of Wigner operators is canonically determined

by characteristic null space alone, and is implied definitively by the

intertwining number function. This structure is made precise for U(2)

in Ref. and for U(3) in numerous publications (see, for example,

Re fs. ) .

It is against the background of the very general algebraic

setting put forth in this section that one must view the results on
special functions to follow in Sections 4 and 5. For structures of

such sweeping scope, one must expect equally exquisite mathematics to

appear in its concrete imp]ementation.

3. The G t Polynomials of SU(3). We have surveyed in the preceding
q

subsection the general theory of representations and unit tensor

operators in U(n). All of these results apply directly to U(3) by

specialization to n=3.. In the case of U(3), however, all

representations and all unit tensor operators, that is, all WCG

coefficients are canonically determined by the null space of each unit

tensor operator which itself is implied by properties of the

intertwining number function I Indeed the specific set of
#,A' '

conditions implied by null space is that a class of Wigner

coefficients must be zero [see Ref, ], which, in turn, leads to a

unique (up to phase) determination of all coefficients. In

implementing this, one is lead to the study of some remarkable
t

polynomials, denoted G , describe in this section.
q

We need some symbol definitions for describing the polynomials G t
q

and their properties'

(i) The set of real numbers and the set of nonnegative integers

are denoted by _ and N, respectively.

(ii) The MObius plane and the subset of (lattice) points of M

with integral coordlnates %re demoted by M and L, respectively,

(iii) Integers such that qeN, p=q, q+l, ... are denoted by q and

p,

, , ,eN, O<Ai<p, and(iv) The three-tuple (A 1 A 2 A3) wuch that A

AI+A2+A3=p+q is denoted A=(A I,A 2,A3).

(v) A point in M, which is sometimes restricted to L, is



s

denoted x=(xl,x2,x3 ).

(vi) Pochhammer' s notation for the rising for the rising

=x(x+l)... (x+a-l)factorial for a eN with. (X)o=l is (x_ a

(vii) A=[AIA2...A t ] denotes an irrep label of U(t). The symbols

#, w .... denote irrep labels of the same type as A.

(viii) h(A#up) denotes the number of times irrep [q-t+l .... ,

q-t+l](q-t+l repeated t times) is contained in the direct product

Ax#xuxp, and is defined to be zero if [q-t+l .... ,q-t+l]_Ax#×u×p.

(ix) The symbol A denotes the 3x3 array of variables defined by

A=At (,% ;x)=(a,t j)

A 1 - t + i A 2 -- t + I + x I A 3 - t + i -.x I

= A 2 - t.+ I A 3 - t + i + x 2 A I -- t + i -X 2 (3.1)

A 3 -. t + I A1 - t 4. i + x 3 A 2 - t + I -x 3

(x) For t=0 and t=q+l, we define G°(A;x)-G_+l(A;x)-l.q

(xi) The notation

(A)=Gt(A;x) (3.2)q

is used to signify that __ is a polynomial in the variables aij of

the array A, hence, of the A I and x..3

We can now give explicitly the polynomials Gt(A;x), qeN t=l 2
q _ , ,

..., q, using the terms defined above, and forward referencing to

Section 4 for the definitions of hypergeometric coefficients in

Eqs. (4.10, (4.45), and (4.6b)'



I

p.

t 3 t

Gt(A'x)=<(Ai'H (q -s + l)!q' (s - i)! x H H
s=l i=I s=l

(-a -s+l)
ii q-4:+l

xE h(k#vP)( IJO (K-l) lP>

k#vp

X<2 _i (-al2, -al3, ;all-2) [k>

x<2 _I (-a22, -a23, ;a21-2)1#>

X<2 Jl( _a32, -a33, ;a31-2) [v> (3.3)

where we have defined _=q-2t+l, K+AI+A2+A3-3t+3.

Let us summarize the properties of the Gt
q polynomials"

(i) Total degree 2t(q,t+l) in x. By this we mean that Gt(A;x)
q

7 where _ ft, 7 are
is a sum of monomials of the form xI x3,

non-negative integers such that _+fl+Ts2r(8-t+l) and the sum is over
all such monomials multiplied by real coefficients that are themselves

functions of A.. This polynomial property is placed in evidence whenI

Eq. (3.3) is rewritten in terms of the quantities (see Ref. )
(keN)'

t

Fk, A(x'y'z)= I_ (x+t'kk-s-l)k<2 J]-(-Y'-z; x+t-klA>. (3.4)
s=l

(ii) Determinantal symmetry. This symmetry refers to the

invariance of Gt(A'x) under the transformation of the six variables
q '

(AI,A2,A3,Xl,X2,X3) induced by row interchange, column interchange,

and transposition of the 3x3 array A defined by Eq. (3.1). For

example, under matrix transposition of A, that is, A _ A, we have

(Al,A2, AB, xi 'x2 'x3 )_ (AI,A2+Xl, A3-xi, -xi, -x3, -x2). (3.5 )



P.

(iii) Weight space Wt(A) are in one-to-one correspondence with
q

those of the weight space of irrep [q-t,0,-t+l] of U(3). With each

point xEWt(A) we associate a multiplicity number Mt(A;x)
q ' q ,

[ )Mt(A;x)--min (t q-t+l l+d (x) (3.6)q , , P

where dt(x ) is the "distance" from lattice point xEWt(A) to theq

nearest boundary point as measured along the direction of a coordinate

axis (one lattice spacing = one unit of distance, With dt = 0 at the

boundary). The multiplicity function Mt(A;x) assigns to each point
q

xEWt(A) exactly the value of the multiplicity of the weight
q

w=(wl,w2,w3) of irrep [q-t,0,-t.l], where w is related to the point

xeWt(A) by Xl=A3-t+l-Wl,X2=A2-A3+q-l-w 2,x3-A2-_+l-w3. By the phraseq '

"a polynomial has the weight space Wt(A) of zeros," we mean that each

xEWt(_) is a zero of the polynomial with multiplicity Mt(A;x).
q q

Property (i) is already evident from the definition (2.44) of Gt,
q

as is the invariance of Gt(A;x) under the transformation of the
q

variables (A;x) corresponding to the column interchanges in the array

A. Accordingly, the proof of the determinantal symmetry stated in

(ii) requires only that for the invariance under the transformation

(3.5) corresponding to transposition of 'the array A. This

transpositional symmetry is also the key to proving that Gt(A'x)
q '

possesses the zeros described in (iii), a result proved in Ref.

lt was the search for a proof of transpositional symmetry that led to

the discovery of many of the special functions discussed in Sections 3

and 4, although the discovery of the 2Jl generalized hypergeometric

function and the associated Saalschiltz identity came earlier in

of the Gai(t=l) polynomials. We outline next how'developing properties
&

generalized hypergeometric coefficients enter into the proof of

transpositional symmetry.



q

3

q (84)! (,rail--s+l)q-t+l h(A#up)
s=l i=l s=l k#vp

<IFo(K-_)IP> <2Fl(-al2,-ml3,;all-_Ik> <2Fl(-a22, -a23,

a21-_[#> <2Fi(,a32 ,-a33,;a31-_l_>, (3 7>

where we have defined 2=q-2t+l, K = magic square parameter of A.

We now use the known identity h(;_#up)=_,_g(#p_)g(vl[), and the

SaalschUtz identity (4.8)with (a,b,c,)=(-_22,-a23,a21-1)u---*p, I---*_

to effect a transformation of (3.3). In this intermediate result, we

rename dummy summation partitions # to by w and _ to be u, and then

use g(#l_-) = g(#u_). This brings to the new form'

t 3 t

_q(A)= H (q- S + 1), H'H(s - i) ' (-_ail"-s+l). q-t+l
s=l i=I s=l

xlx<2 Jl(-al2 ,-ai3, ;ali -2)Ik>

xZg(#u_-) <2Jl (-a32,-a33,;a31-2)1_>

X <2Jl(a21+a22-2,a21+a23-2;a21-2)lu> (3.7)
,r

<We continue with the transformation of as given by gq. (3.7)

in the following manner' Define new variables a, b, c, d, e by

a=--a33 , b_-.a32, d=-.a22, e=--a23 , c=K-2 and define the polynomial .Ak of

these variables by '

s=l s s

xZg(_vA)<23¢l(a,b;a+b+c)l,> <2Jl(d+c,e+c;d+e+c)lu>. (3.8)

Combining definition (3.8) and Eq. (3.7) and carrying out some

1
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simplifying algebraic steps, we find the following expression for <

in terms of the A A functions'

"li ]q(A)=(_l)t(q-_+l)[ (q - s + I)_-s=l (s l)t

x M-I (_) (-I) (-_i i-s+l) q__+l_A (-al 2-s+l) A
s s

13_s+l ,b,d,e×(-a )_ (-a21-s+l) _ (-a31-s+l)x . (3.9)
S S S

The array A is given in terms of the variables a, b, c, d, e by

all=-(c+_)-(a+b+d+e), al2=(c+2)+(b+d), al3=(c+£)+(a+e),

a21=(c+2)+(d+e), a31=(c+2)+(a+b), where we recall that 2=q-2t=l.

The summation in Eq. (3.9) is over all partitions A such that

. q-t+q_Ala..._it_0. The functions AX, given by Eq. 3.8) are defined

for ali partitions, hence, for the A occurring in (3.9). We see from

Eq. (2.54) that a sufficient condition for transpositional symmetry of

the polynomial <, that is, for <(A) = _qq(2) is

I: IAn!1AX ,b,d,e a,e,d,b . 43.10)
' C

The above transformations of the original .<. (A;x) polynomial to

the forms given by Eqs. (2.51) and (2 54), respectively, show that we
can prove transpositional Symmetry by proving (_) the generalized
Saalsch_tz identity; (ii) the b and e interchange symmetry of the

functions A_.

This task has led to the discovery of the special functions discussed
in Sections 4 and 5.

4, Symmetric Generalized Hypergeometric Coefficients and Functions.

Two basic identities are required to prove the determinantal symmetry

of the polynomials Gr(A) defined and discussed in Section 2.4. These
q

are the generalized Saalschutz__iden_ity [relation (4.8) below] and

the generalized Bailey identity of the second kind [relation (4.16)
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below], lt was the need for proofs of these relations between

generalized hypergeometric coefficients that led to the introduction

of a class of symmetric generalized hypergeometric functions in an

arbitrary number _of variables (indeterminates) and the development of

some of their properties. In this section, we summarize the results

obtained thus far, pointing out that the general theory is still

incomplete.

We shall encounter several types of generalized hypergeometric

functions all belonging to same general _5; class, which we now
P q

define. Let a=(al,...,ap) , b==(bl,. .,b ), and z=(zl,.. ,zt) denote

arbitrary complex numerator _and denominator.parameters, p and q in

number, respectively, and z a set of t indeterminates, We define

generalized hypergeometric coefficients by

H_'=l(a±i -s + l)#s

(P_(a;b) l_>=_I H , (4.1)

where #=[#I #2"'_t ] is an arbitrary partition and M is the measure

factor defined by Eq, (2.6). These coefficients are now used to

define a generalized hypergeometric function by the formal series

Z _ (a b) l.>e#(z), ' (4.2)(a;b;z)= <p q ,P q

where e (z) denotes a Schur function, The Schur functions are
#

themselves defined in terms of a standard Young-Weyl tableaux by the
formula'

,.

Z al a 2 a te (z)= zI z2 ...z_ . (4.
3)

a

where a=(a I ..... at) is a weight of the partition _. Equivalently, a

is the content of a Young frame # "filled in" with I, 2,. ,., t

according to the usual rules for a standard tableau. The summation in

Eq. (4.3) is over all weights a of m, including repetitions,

Shukla v introduced the coefficients (4. i) as the natural

generalization of the _; functions defined earlier in Ref. and
P q

defined in Eq. (4.6) below. We will encounter several of these

functions in the sequel.

One of the simplest functions we require in the class (4.1) is



iJ0 . This function already occurs in the work of Littlewood.V lt

has the explicit definition from Eqs. (4.1)-(4.3) given by
t

E H, _ # - Zs) ,(4.4a)

# s-i
, ,

where the hypergeometric coefficient is given by

t

H (a-s+l) #
<i_0 (a) I#)>=(dim #) (t-s+i)#' (4.4b)

s_l

This function then satisfies the addition rule

The second type of generalized hypergeometric functions we
require from the general, class (4.2) which are the generalized Gauss

series given by

2_l(a,b;c;z)-_,._<2_l(a,b;c) l#>e#(z). (4.6)
#

For t=l definition (4.6) reduces to the classic Gauss series.

The main results proved in Refs. are the following theorem

and properties (i)-(iv):

TIIEORF_, The generalized Gauss series obeys the Euler identity:

2_l(a, b; c; Z)l_0(c-m-O' , z)=2_l(c-a, c-/9',c; z). (4,7)

An immediate consequence of this theorem is

(i) Generalized SaalschUtz identity'

<4.8>
#w

This relation is an easy consequence of the Euler identity and the

multiplicative property of Schur functions,

e (z)ev(z)=_g(_v,\)e,x(z) (4,9)
# __

A



where g(#u%) denotes the Littlewood-aichardson numbers for CL(t,_)

For t=l, we have g(#uA)-6 +_,_, and Eq, (4,8) reduces to the classic

Saalsch_tz identity [ ],

(Ii) Generalized Bailey Identity of the First Kind:

_u

=Zg(#uA)<2_l(a,b',c)l#<2_l(a' ,b';c')iu>, (4.1.0)

#u

where the parameters are to satisfy c-a-O+c'-_'-0'=0. Relation (4,10)

is called a generalized Bailey identity because for t=l, we have

<2Jl(a,b; c)l#><2Jl(_',b' ;_'>I_>
l_+W=A

(a)A(b) A la" , b" , I - c - A, - A; ]

= 4F3 [ Jkl(c))_ c' , 1 - a - 3_, 1 - b - )_

)_l(c')_ 4F3 , 1-a' -,_, 1-b" -)_

in which c-m-O+c' -a' -/_'-0. The identity between the two 4F3

hypergeometric series (of unit argument) is the reversal identity

(reverse the order of terms in the finite series expression). Using

(4.11) in the identity (4.10) for t=l now gives Bailey's identity.

Shukla v independently obtained relation (4.10).

(iii) Generalized Addition Rule of Binomial Type:

#u

For t=l, this relation reduces to

E (x) (y) _ (x + y)
# _= X (4 13)

#Irl ,kl '
#+u=A

hence, the designation of (4.12) as a generalized binomial identity.

(iv) Generalized Balley Identity of the Second Kind"
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t

s-I s s

t

=It (a+e+c -s+l) A (b+d+c -s+l) A
! s=l s s
i

Ex g(l_vA)<2_N(a,e;a+e+c)ll_>l<#_,_l(b+c,d+c;b+d+c)lv >,_____ (4.14)

For t=l, this relation reduces to

l

n ( 4F3 '
(c+d) c+e) n + b + c,1 - c - d - n,1 ' c e - n

=(a+c+d)n(a+c4"e) n 4F3
+ b + c,a + c + d,a 4. c + e

(4,15)

which is again an expression of Bailey's identity, Since relation
(4,14) is distiDct from (4,10), it is called a generalized Bailey

identity of the second kind.

Let us remark that the proof of relation (4,14) [glven in

Ref. ] is equivalent to the proof of the b,e interchange symmetry

of the A A coefficients defined by Eq. (3.8). The proof of the

generalized Bailey identity of the second kind is quite difficult.

This proof was achieved in Ref_ by showing that the left-hand

side of Eq. (4.14) could be expressed in terms of yet another

generalization of hypergeometric functions going beyond definition

(4.2). This generalization, in turn, led to the discovery of a new

class of symmetric functions, as we describe in the next section.

Si[ice the present section is about hypergeometric functions and their

generalizations, we will describe here this second generalization in

terms of the new symmetric functions, leaving the definition of the

latter for the next section. The symmetric functions in question are

the T (_',z) defined in Eq. ( ), in which # is an arbitrary
#

partition #=[#l#2...#t ] , = is an arbitrary parameter, and the z i in

z=(zl,z2, ..,,zt) are indeterminates.



Let us refe_ back to the definition 4.2) of the hypergeometric

functions _q;, For the new definition, we retain exactly the
P q

hypergeometric coefficients as defined by Eq, (4.i), We now, however,

replace the Schur functions by the new symmetric functions (T (_;z)},
#

in this way, we define the formal series:

<
#

[Clearly, one could equally well consider generalizations of Eq. (4.2)

in which one makes the replacement e (z) _ S (z), where the (S#) are# #

an arbitrary basis of the ring of symmetric functions.]

The quite remarkable result for the generalized Bailey identity
(4.14) is that one can also write

3 ,,

' Lsi i=i

where a=(al,a2) , b=(bl,b2,b3) al=a , a2-a+c , bl=a+b+c , b2=a+c+d ,

b3=a+c+e ; Zs=P_=_s+C-s ' s=l , 2, . .., C;

a=2c+a+b+d+e-2c+l=bl+b2+b3-el-a2-2c+l. The identity (4.17), of

course, makes the b,e interchange symmetry evident and proves relation

(4.14). We also note that the summation over # in the definition of

2_3(a;b;p) is finite because of property (5.11) of the symmetric

functions T (_;z).
#

We conclude this section by noting the following class of
summation formulas for relations (4.14) and 4.17):

A)_[Oc'b ' d ' e]=.<3 _o (b+c , d+c , e-f.c) [ ),> , (4.18a)

AA b,d,e '=<3 (a,b,e) Ih> , (4,18d)



w

<3Jo(a,b,c) l_>=M_IH(a-_+l)_, (D-_+I)A (c-s+l)_ , (4,19)
S--I S S S

5. TWO New Classes of Symmetric Functions

5, i. The Symmetric Polynomials t#(z). The proof of the

generalized Bailey identity of the second kind, (Eq. (4.!6), led to

the discovery of two new classes of symmetric functions. These will

be described in this section.

It is instructive to contrast the new synmLetric functions wlth

the classic Schur functions. In the definition (4.3) of the Schur

function eA(z ), we associate one and the same monomial to each

standard tableau having tile same weight. In this sense, the Schur

functions do not take into account all the "information" carried by

: the set of standard tableaux. This property is to be contrasted with

the symmetric functions defined below, where we associate a distinct

polynomial to each tableau and then sum over all tableaux.

We find it convenient to define the new symmetric functions in

terms of Gel'land patterns, although, since these are one-to-one with

standard tableaux, the definition could equally well be given in terms

of the latter, We remark that the symmetric functions tA defined

below in this paper are not homogeneous polynomials. [This contrasts

with the classic' symmetric polynomials, which are homogeneous (see

' MacdonaldV).] Because of this inh_mogeneity, their properties depend

on t'he number of variables. For this reason, and because it is

natural when using Gei'fand patterns to keep the zero parts of a

partition, we will always employ an explicit notation in which

symmetric functions labeled by partitions have a number of parts equal

to the number of variables, For example, the symbol, t[21](Zl,Z2,Z3)

is not defined,

We now define the class of symmetric polynomia]s mentioned

earlier. Let I e Pn be a partition. With each pattern (m)eGx, where

[mlnm2n., ,mnn]=l, we associate the following polynomial t(m)(Z) in. the

variables z = (zl,z 2,. ..,Zn ) (indetermlnates):

n 3

_(m)(z)=H H(zJ-_lJ-J+1+l)mij -mij -I' (5.1)
j=l i-i

The dependence of t'he polynomlal t((m)(z) on the variable zj is given[

fully in terms of the entries in row j and row J-i of the pattern (m)

,iml



as depicted by

m 1j ,,i2j mj -Ij mj j
(5._)

ml ,j-i m2 ,J -I "I3 -I ,J -I 0

where we have adjoined m33_i=0 to row 3-I, Thus, the zj factors in

the defining expression are

)mlj (zj-_jj+l)mjj' (5.3)(zj-miJ-J+2 -ml,j_1

The significance of the differences mij-mij_l and of the mij in terms

of the standard tableau corresponding to the Oel'fand pattern (m) is

noted in Eqs, (2,4), We now def'[ne the polynomial tA by

tA(z)- _ t(m)(z), (5,4)
(m)ecA

where the summation is carried out over all Oel'fand patterns (m)

having the specified nth row A=[mlnm2n,. ,mnn]; that is, over all

patterns, dim A in number, belonging to the set GA ,

The polynomials tA(z ) defined by expressions (5,1) and (5,4) are

not obviously symmetric in the variables z., It is nontrivlal toi

prove this property, This result and a ntunber of other principal

properties of the tA(z) are presented as theorems below, without

proofs, All t'hese results are proved in Ref, , These properties

establish the polynomials tA(z ) as an important class of symmetric

func tions,

Theorem 5,1.1. The polynomials tA(z) are syml.etrlc polynomials

in the variables (Zl,Z2,,,, ,Zn) for each partition A=[AIA2,, .An],

Theorem 5,1.2. The set of synmletrlc polynomials {tA(z)]AePn)

forms a Z-basls of the rln E A of symmetric polynomials.n

Theore,_ 5,1,3, The syn_netrlc polynomials tA(z ) satisfy the

followln E two relations:

_1_ In
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t[lll2,, ,An](zl,z2,,,, ,Zn)

, ,, _i](zi-1 ,,z-i,_n_l (5 5a)=(ZlZ2 ''Zn)t[ll-l,, An '' n ' '

t[%iA2,, ,An](Zl'Z2 '''' ,Zu_l ,0)

,6 A ot[_l_ 2 ,)_ ](Zl-l,z2-1, ....,Zn_l-l), (5,5b)n' '' n-I

Theorem 5,1,4, Let z=(ml,m2,,,,,mn) , where mi-#i+n-1 with

#=[#i#2 ,,,l_n]ePn, Then.

tA(m)=O , unless AiS#i , i=l, 2,,,,, n, (5,6)

Theorem 5,1,5, Let D(z) denote the Vandermonde determinant

H (zl-zJ)' (5,7a)
D(z)-

l<l<j<_n

Then tA(z ) may be written as

n

H ¸(Z) K(%,_)D(z-_) (zi-_i+l , (5,7b)
i=l

where the sununatlon is over all distinct welghts _ of the set of

standard tableaux of shape A,

Theorem 5,1,6, Let' x be an arbitrary parameter, Then the

following expansion is valid:

In n it_(z), (5,8a)
(x+l-'zi)k= <l_o(-k) IA,> (x-n+i+l) k_Ai

i--i i i-I

where <]._O(-k) IA> denotes the hypergeometric coefficient defined by



n

H
i-i

Ii Al+''' +% k-A 1

-i) ndlm[A' 0 ] for Al_k,

(5,8b)

for %1 > k,

where A' is the partition conjugate to %,

Remarks

(i) I.G, Macdonald has pointed out to us tha t tA(z) is obtained

from the Jacobi-Trudi determinantal form of the Schur functions eA(z )

by replacing all the ordinary powers x by falling factorials
Ix] =x(x-]) ,,o(x-_+l), If it were possible to prove directly that the

a

tA(z ) thus obtained has the tableau expansion (5,4), the proof of

Theorem 5,1.I would be greatly simplified.

(ii) Theorem 5,1.6, which gives the expansion of the symmetric
n

_(x+l-_zl) k of rising factorials in terms of the basispolynomial

i=l

t)_(z), is the natural generalization of the expansion of this form to

ordinary powers k in terms of the Schur function basis eA(z) (see

Ref, ) ,

5,2. The Symmetric Polynomials TA(_',z), lr, this section, we define

another class of symmetric polynomials, denoted TX(_;z) and depending

on n variables (Zl, z2, .,., Zn ) and an arbitrary parameter _, We

will show that these symmetric polynomials are the natural basis for

the expansion of the symmetric polynomial.

n

%(x,y; k (5.9)
i-I

in terms of a basis. This polynomial is clearly invariant under the

action of the direct product group S2 x Sn , where S2 is the group of

permutation of (x,y) and Sn that of (Zl,Z2,...,Zn), lt is also

invariant under the transformation Aj defined by Aj'z i _ zi
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(i=1,2, ....,n;i_j),. zj ----+-zj-_(i-j). Here j may be 1,2,.,., n; that

is, there are n such transformations in all, We denote by H then

group generated by these n commuting involution maps.

}laving made these brief motivational remarks, let us now proceed

directly to the definition of the TA(_',z), With each Gel'land pattern

(m) ihaving the nth row A-[AiA2,.,An]=[mlnm2n...mnn] we associate a

polynomial T(m ), This polynomial is defined on an arbitrary parameter

and n variables z=(zl,z2,...,z ) byn

T(m )(_;z)=t(m) (z) t(m) (-z-_) , (5.10a)

where _=(_, _,.,,,_) in tl_e right-hand side and

z+_(Zl+_ z2+_,.., z +_). (5 10b)' ' n

Here t(m) is defined by Eq. (5.1). We define TA by

TA(a;z)= E T( m)(_;z)' (5.10c)

(m)eG_

Onc again, it is not obvious that TA(a;z) are symmetric

polynomials in the variables (Zl,Z2,.,.,Zn)' since this symmetry is

not valid term-wise; that is, is not a property of each T(m )(a;z). lt

is, however, obvious that each T(m)(a;z), hence, also TA(a;z), is
invariant under each transformation A. defined above.

3

We next state the principal properties of the polynomials

T%(a;z) :

Rqleorem 5.2,1. The polynomials TA(a;z) are synm_etric polynomials

in the variables (zI z2,.,, z ) for each partition A-[AIA2...An] and' _ n

each parameter _,

Theorem 5,2.2. The set of symmetric polynomials {TA(a'z)IA62' n)

forms a Z_Sasis of the ring of polynomials invariant under the group
S XH ,
n n

Theorem 5.2.3. Let z=ml,m2,,.. ,mn), where m1=#i+n-_ with _*=[#i

#2' ''#n]6Pn' Then



Tl(_;m)=0, unless li<#i, i-l,2,...,n. (5.11)

Theorem 5.2.4. Let x and y be arbitrary parameters. Then the

' following expansion is valid'

n

II 'E(x+l-_i)k(Y+l-zi)k_<lJ0(_i_>
;

,I i=l l

i
i

I'I "x (x-n+i+l)k_ A (y--n.i+l)k_X TA(_; .z), (5.18a)• °

J. ./.
i=l.

I

where

a=--x-y-k-i. (5.12a)

Theorems 5.2.1-5.2.4 all. have crucial roles in the proof that the

function A l of the last section may be expressed in the form (4.17).

(This is carried out in detail _.n Ref.. .) This latter work thus

completes, via the properties of the generalized hypergeometric

coerfficients of Section 4 and the symmetric functions of this

section_ the proof that the original a t polynomials are invariant
q

under the determinantal s_nmetries of the array A.
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