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'SPECIAL FUNCTIONS ASSOCIATED WITH SU(3)
‘WIGNER-CLEBSCH-GORDAN COEFFICIENTS

J.D. LOUCK AND L.C. BIEDENHARN
'LOS ALAMOS NATIONAL LABORATORY, THEORETICAL DIVISION

LOS ALAMOS, NM 87545

ABSTRACT

The Wigner-Clebsch-Gordan (WCG) coefficients of the
unitary groups are a rich source of multivariable special
functions:. The general algebraic setting of these
coefficients is reviewed and several special functions
associated with the SU(3) WCG coefficients defined and-
thelr properties presented.

1. Introduction

The relation between group representations of symmetry groups and
special functions has been well-known since the classic lectures of
Wignerl in 1955, Talman's2 monograph (based on Wigner'’'s lectures), and

Vilenkin's3 more extensive monograph. The application of  Lie
algebraic methods has also led to a uniform apprcach to many special

functions as. developed, for example, by Millet.a Not as well-known
are the relations between Wigner-Clebsch-Gordan (WCG) coefficients of
symmetry groups and special functions, although they are equally rich

in structure. Examples are the classic relations of the
WCG-coefficients of the quantal rotation group ASU(2), and the
associated Racah coefficients to terminating 3F2 “and 4F3

hypergeometric series. Only recently has this relation been put into
the perspective of a general theory of orthogonal polynomials by

Wilson5 and Askey. 6

It is this second type of relatlonship, between WCG—oefficients

‘and special functions, that is the subject of this paper. Indeed, we

shall develop it in detail only in the context of the WCG-—coefficients
of the group SU(3) of 3x3 unitary unimodular matrices. We shall show
that already in this case one is led to the discovery of new classes
of special functions of intrinsic interest in their own right, and



going far beyond what one might expect from such a specialized
problem. Orne can only speculate what a complete theory of SU(r) and
other symmetry groups will wunveil, as already indicated by the

extensive‘work of Milne7 and Gustafson.8

‘Much of what is presented here 1is already appeared in the

literatureg-zo but is somewhat scattered. The goal here is to present

a somewhat more organized viewpoint of this subject, showing how the
original problem of calculating WCG-coefficients has led naturally to
new special functions and the development of their properties.

It is important to place the subject in its appropriate general
framework. It is no accident that the subject is rich in its detailed
structure, since it is rooted in combinatorics and invariant theory
through.  Young-Weyl standard tableaux, in analysis through

. representation theory,. and in algebra through the multiplication

properties of basis functions and operators.

Let us outline the contents of this paper. In Section 2, the
general mathematical setting of the subject 1is reviewed. In
Section 3, we motivate and discuss how a certain class of U(3)
invariant polynomials with remarkable symmetries and structural zeros
enter into the problem of WCG-coefficients. Indeed, it was in‘proving
these properties that all the subsequent discoveries of other special
functions were made. In the sections following, we discuss the
relationship of these wvarious special functions to the original
polynomials and summarize their important properties. These include:

Section 4. Symmetric Generalized Hypergeometric Functions and
Coefficients, Section 5. Two New Classes of Symmetric Basis
Functions.
2. Review of Basic Concepts

2.1. Standard Tableaux and Gel'fand Patterns. Young-Weyl

standard tableaux and Gel'fand-Zetlin-Weyl patterns are two distinct,
but equivalent, methods of codifying information relevant to the
representations of the general linear group GL(n,{) and its subgroups.
(For brevity, we call these patterns simply Gel'fand patterns). Ve
shall require these entities both in the special context of &(3) and
in general form. We present briefly their definitions.

A Young frame YA> of shape lA=[A1A2..‘An], where the ki are
nonnegative integers satisfying‘AlZAzz.;.ZAH,‘is a diagram consisting

of A, boxes (nodes) in row 1, A, boxes in row 2, ..., An boxes in row

1 2
n, arranged as illustrated below:



A, ' (2.1)

A
n

A Young-Weyl tableau is a Young frame in which‘fhe boxes have
been "filled in" with integers selected from 1, 2, ...,n. The tableau
is standard if the sequence of integers appearing in each row of YA is

nondecreasing as read from left to right and the sequence of integers
appearing in each column is strictly increasing as read from top to
bottom. The weight or content of a Young-Weyl tableau YX is defined

to be the row vector a = (al, az,‘...,an), where ak‘equals the number
of times integer k appears in the array. If X +X +...+AnnN.‘then also
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a1+a2+...+an=N.‘ We shall call X a partition of N into n parts or,

more often, a partition when N is unspecified. We always count the
zeros in determining the parts of a partition.

A Gel'fand pattern is a triangular array of n rows of integers,
there. being one entry in the first (bottom) row, two entries in the
second row ..., and n entries in the nth row. The entries in each row

1, 2, ..., n-l are arranged so as to fall between the entries in the
row above, as displayed in ‘

M n Mon Mn
(m)= Myq Myq Myq : (2.2)
Mo Mo
M1
The integral entries mij’ izj=1, 2, ..., n, in this array are required

to satisfy the following rules:

(1) m1n2m2n2"'2mnn ' (1.3a)

(ii) For each specified partition [nhn"'mnn]’ the entries in

the remaining rows j=n-l1, n-2, ..., 1 may be any integers‘that satisfy
the "betweenness conditions": ‘ '

.3b
TS s e DS R W W NS S § R T iy § i FS N TS (1.36)

We denote by GA the set of all Gel'fand patterns corresponding to

the partition Au[m](kimmin). There 1s a natural one-to-one



of Young-Weyl standard tableaux.

correspondence between the set G, of Gel’fand patterns and _he set W

A A

'The mapping between Gel'fand patterns and standard tableaux is

described as follows: |[The shape of the frame is An[mlnmzn,L;mnn] and

row j of the frame as read from left to right, has m., js, m,, ,-m..
‘ ‘ L JJ JJ+l " jJ

(J+l)§,...f mjn‘mjn—l ns for j=1,2,..., n-l, and row n has mnnns.

Using this rule, we see that the set of patterns GA i1s mapped to

the set of tableauwik. Conversely, from each standard tableau TEWA
we construct in an obvious way the pattern in the set GA'

The weight or content of a Gel'fand pattern (m) is the row vector

Wm(wl, WZ’ e, wn), where wj is defined to be the sum of the entries
in row j O0f(m) minus the sum of the entries in row j—l(wlamll):
J J-1 .
D2 | | |
W= m, .- ) m, . \ 2.3
Vi oM (2.3)
i=1  i=1 ‘

This definition of weight coincides with that of a standard tableau.

The constraint in a standard tableau that each row (column)
should comprise a set of nondecreasing (strictly increasing)
nonnegative integers 1is realized in a Gel'fand pattern by the
"geometric" rule that the integers <mij) satisfy " the betweenness

conditions.
The significance of the integer mij_mij—l in terms of the
corresponding standard tableau is
mij—mij—l = number of times integer j appears in row i. (2.4a)
We define m,.. ,=0,j=1, 2, ..., n. Similarly, m,, is the sum of
Jij-1 i

entries in row j of the corressponding standard tableau given by

mij = (number if is) + ... + (number of js). (2.4b)

The number of standard tableaux in the set WA (number of patterns

in the set GA) is given by the Weyl dimension formula:



dim A=]j[?(xf—xj+jei)/1!2| Co (n=D) 0 . (2.5)
‘ i<j | ‘

 For subsequent results, we require the measure M, of YA defined by

A

n ‘ ‘ : o
M, =(dim A)~1]i[(xi+n—i)!/(i—l)!. , L (2.10)
ok v
2.2 Algebra of the General Linear Group. So—called integral
representations of the general linear group GL(n,{) are irreducible
under restriction to the unitary subgroup U(n)cGL(n,C). - It is

convenient to formulate results for the unitary group in this general
framework of GL(n,().

The integral repreéentatibns of GL(n,C) are enumerated‘ by
partitions having n parts; that 1is, by the elements of the setrPn =
{[A Ay ¢ A ]IA 2A.2 -+ =X 20; X,eN}, The finite subset of P_ such

172 n 1772 n i n
that A]+A2+ < +Xn=N (partitions of N into n parts) is denoted Pz,

and the set of all partitions by P, that is P= U Pn' Thus, for each
‘ nx1

AEPn, there corresponds a matrix DA(Z) such that the correspondence Z
— DA(Z), each‘ZeGL(n,C), is an irreducible matrix representation‘fo‘

GL(n,C). The dimension of D) is dim A as given by Eq. (2.7).

The matrices DA(Z) are well-studied objects, and theilr explicit
form has been given by many authors, based on many methods of analysis

(see, for example, Grabmeier and Kerbefv). The form favored by
physicists is one in which these matrices are unitary under the
group-subgroup restriction GL(n,O)4U(n). It is also customary to

label the rows and columns of the matrix DA(Z) by Gel'fand patterns in

the following way: Let A=[A1A2--vkn]m[mlnm2n--»mnn]ePn and defing a

: : m’ mil ]\
double Gel'fand pattern by |A |, e.g., for n=2, Al‘ A2 , Where [m}
‘ m m, .
‘ , 11
denotes the n-rowed triangular array (2.2) and [T ] is a similar
pattern, inverted above the first for convenience of display. Since
the partition A\ is shared, it is written only once.
The representation functions in the rows and columns of the

matrix DA(Z) are now denoted



A\ my) ‘. ‘ ‘ ‘ C
Dmm’(z)aD A (2). . - (2.8)

m

‘One could also use double standard tableaux for this row-column

enumeration. = Important properties of the representation functions
(2.8) include: (a) they are homogeneous polynomials of total degree
Al+ . +An-N;’(b) they are a basis of the ring of all polynomials in

any number of variables as A runs over all \eP,

Implicit in our definition of the representation matrices (2.8)
is the group-subgroup GL(n, C)tGL(n—l €) reduction given expliCLtly by

‘the direct sum of matrices, D (Z)=Z@D“(Z ), where Z  is the

(n-l)x(n=1) matrix‘obtained from Z‘by setting zlnszni=1, i=1, 2, ..

n, The summation is over all partitions pw[plpz ce un—llepn-l such

that the betweenness conditions A >u12A2_ Z“n—lZAn are satisfied.
The Kronecker product of two irreps 0¥ and DY of GL(n,{) is
completely redgcible into irreps of GL(n,{) by the rule

pHxp” = 2 ®I (uxv: v+a)D” T8 (2.9)
AeW (p) ‘

where the summation is over all distinct weights A of irrep u. The
intertwining numbers I1(uXv; v+A) in this relation express the number
of times irrep A=v+A 1s contained in the direct product irrep uxv.
The are related to the Littlewood-Richardson numbers g(uvd) by

(uXv; Ay=g(urA)=0, unless A=v+A for some weight AEW (). (2. 23)

Indeed, the properties of these numbers when viewed as functions over

the set of all partitions veP_; that is, 1 P — L ={0, 1, .
n p,A by A
K(p,A)), with values I (u) in the set L A are crucial to the
definition and construction of unit tensor (Wigner) operators in U(n)
(see below)

’

There are two important algebras associated with GL(n,C). The
first is that of the homogeneous polynomials (2.8); the second that of
U(n) unit tensor operators, as we now explain by giving the product
law for basis elements of these algebras:

(i) Product law for representatlon functions:
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The bracket coefficient is expressed in terms of U(n) WCG coefficients

by
m’ m' m
R ,
B Z{m ', (2.11b)
m m, m m
1 72 .
The bra-ket notation
(2.11c)

for a WOG coefficlent is further explained below.

(ii) Product law for Wigner operators:

v 71 72
| (2.12a)
7 m m, m,

The curly-bracket object denotes an invariant operator in U(n).
It is expressed in terms of Racah invariant operators and Wigner
coefficients by .

TV Y /7 4

A uov :E: A u v [A] L [u ) ‘ (2.12b)
m' \ m m 2 BRZNRY!

m m; m, T3 1 2 1‘ 2

Let us explain the notations - in these product laws.

The patterns‘[;],[“ ],[; ] are all Gel’'fand patterns in which the
1 2

m

labels in rows n, n-l, . . ., 1 have the significance of
group-subgroup reductions for the chain U(n)2U(n-1)> . . . 2U(1), in
accordance with the Weyl rule. The n-rowed pattern ..., which

inverted in the notation for a Wigner operator has mno such
group-subgroup significance, although, by definition, its entries yij




run over ‘all +values satisfying the betweenness relations. The
discovery that patterns numerically identical to Gel'fand patterns
enumerate all Wigner coefficients for U(n) was one of‘the slghificant
discoveries in the early 1960': (see Ref. ~ ). It takes into account
beautifully the fact that the intertwining function I# A takes on only

values in the set L“ A" This accounting is made through the weight
Au(Al, AZ’ ey An) of an operator pattern, where each Aj is defined

“in terms of the entries 7ij of the pattern exactly as in Eq. (2.5) for

a Gel’fand pattern. A given welght AeW(u) has a multiplicity K(u,a),
and there are exactly this number of distinct operator patterns vy
having this weight., Thus, the Wigner coefficient (2.1lc) is, first of
all, equal to zero, unless A=v+A, where AeW(u) [the property of the
intertwining number in Eq. (2.10)); secondly, there are exactly K(u,A)
operator patterns <y providing us with K(u4,A) sets of orthogonal Wigner
coefficients (this orthogonality is expressed in terms of summations
over the Gel’fand patterns my and mz). These sets of orthogonal

coefficients then effect completély the reduction of the direct
v+A

| product (D“XDV)¢D , AEW(p), in the region of maximum multiplicity;

that 1s, for all u, v, and A=p+A such that I(uxv, v+A)=K(v,A).
Operator patterns must have still further structure. This is
because the intertwining number can assume any value in the set Lu A

for certain v. This means then that certain whole sets of Wigner
coefficients must vanish. This property 1s best expressed through the
notion of a Wigner operator and its characteristic null space. 1In its
very conception, a U(n) Wigner operator is to have certain mapping
properties when acting in the Hilbert space over which it is defined.

We take thig Hilbert space H to be a direct sum H=:§: @HA’ where HA is
‘ AP
n

the carrier space of irrep A of U(n) [or GL(n,{)], each such irrep
space occurs exactly once in the direct sum, and the sum is over all
AeP_,

n

An (abstract) Wigner operétor, denoted (u) below, is then a map H
— H with the following specific properties for each v € Pn’ where A

denotes the weight of the operator pattern 7v:

7] :HV — 0 if v+Aguxv; (2.13a)



<i :> H — 0 or Hu — Hu+A (1f v+Aeuxv, (2.13b)

Among the K(u,A) unit tensor operators in the set

A[’:]=AEW(;J) | | C(2.14)

exactly‘K(p;A)—{(pxu; v+A) “of them annihilate the irrep space Hu [have

the fifst property (2.13b)], while the remaining I(uxv, v+A) operators
effect maps Hu — Hu+A [have the second property (2.13b] as gilven

explicitly by the sets of orthogonal Wignef coefficierits that effect
the reduction (D“XD )iDV+A

; \. v + A
2 m
m

Here the set of vectors {‘V >
)

vV + A (2.15)

m

2

orthonormal basis of Hv' As v runs over all uePn, these vectors are

1s a lexical Gel'fand pattern} is an

to be an orthonormal basis of the (separable) Hilbert space H.

The curly bracket object 1n Eq. (2.12b) denotes a Racah
invariant. It is particularly significant that Racah invariants are

fully labelled by operator patterns. There are other important forms

of Eqs. (2.11) and (2.12), derived from these relations by using the
orthogonality relations for Wigner coefficients and Racah invariants
(see Ref. Y. We refer to the literature for these properties.
Let us note here, however, that under the unitary transformation
K:H — H given by

v M
94 m1>‘2 Dmlml L)
m’

the unit tensor operators transform irreducibly according to

)
hN o l=2b“, ()
m mlm

m’

",>, | | (2.16a)
™

2w =

(2.16b)

L B . .

EoL



It is useful to remark that the exlstence of the algebrailc
“structures, Eq. (2.11) for functions and Eq. (2.12) for operatoirs, is

assured, since p#xp” 1is completely reducible, The important question
1s whether or mnot their exists canonical or natural realizations of
these algebras, free of arbitrary choices. The answer for U(2) and
U(3) is that the algebra of Wigner operators 1s canonically determined
by characteristic null space alone, and is implied definitively by the
intertwining number function. This structure is made precise for U(2)
in Ref. . and for U(3) in numerous publications (see, for example,
Refs. ). ‘

It is against the background of the very general algebraic
setting put forth in this section that one must view the results on
special functions to follow in Sections 4 and 5. For structures of
such sweeping scope, one must expect equally exquisite mathematics to
appear in 1its concrete implementation, ‘

3. The G: Polynomials of SU(3). We have surveyed in the preceding

subsection the general theory of representations and unit tensor
operators in U(n). All of these results apply directly to U(3) by
specialization to n=3.. In the «case of U(3), however, all
representations and all unit tensor operators, that is, all WCG
coefficlents are canonically determined by the null space of each unit
tensor operator which {itself  1is implied by properties of the

intertwining number function IH Al Indeed, the specific set of
conditions implied by null space is that a class of Wigner
coefficients must be zero [see Ref, 1, which, in turn, leads to a
unique (up to phase) determination of all coefficlents. In

implementing this, one is lead to the study of some remarkable

polynomials, denoted G:, describe 1in this section.

We need some symbol definitions for describing the polynomials G;
and their properties:

(i) The set of real numbers and the set of nonnegative integers
are denoted by R and N, respectively.

(ii) The MObius plane and the subset of (lattice) points of M
with integral coordinates are demoted by M and L, respectively,

(1i1) Integers such that ¢eN, p=q, gq+l, ... are denoted by g and

(iv) The three-tuple (Al’A2’A3) wuch that A €N, OsAiSP, and
A1+A2+A3=p+q is denoted A=(A1,A2,A3).

i

(v) A point in M, which 1is sometimes restricted to L, is



denoted xé(xl,xé,xa).

(vi) Pochhammer’'s notation for the rising 'for the rising
factorial for a €N with‘(x)0=l is (x\aux(x+l)'~~(x+a-1).

(vii) A=[A1A2...At]‘denotes an irrep label of U(t). The symbols
4, v, ... denote irrep labels of the same type as A.

(viii) h(Apvp) denotes the number of times irrep [q-t+1, ...,
q-t+1](g-t+l repeated t times) 1is contained in the direct product
Axuxyxp, and is defined to be zero if [q-—t+l, ...,q—t+l]eAxuxvXp.

(ix) - The symboi A denotes the 3x3 array of variables defined by

A=At(A;x)a(aij)
Ay «-’t+’l By ~t+ 14 x Ay —t+l-x
=8y~ 4l Ay -t 4 lHx, A -E+ 1 —x (3.1)
A3 -t + 1 Al -t + 1+ X4 Az -t +‘1 = X,
L o
(X) For t=0 and t=q+l, we define GZ(A;X)-G2+1(A;X)—1.
(x1) The notation
t
P (=0 (8530) (3.2)

is used to signify that ﬁz is a polynomial in the variables aij of
the array A, hence, of the A, and xj. ‘

We can now give explicitly the polynomials GS(A;X), geN, t=1, 2,

..., 4, using the terms defined above, and forward referencing to
Section 4 for the definitions of hypergeometric coefficients in
Eqs. (4.10, (4.4b), and (4.6b):

B AN
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where we have defined £=q-2t+l, K+A1+A2+A3—3t+3.

. Let us summarize the properties of the Gz polynomials:

(i) Total degrée 2¢(q-t+1l) in x. By this we mean that G;(A;x)

is a sum of monomials of the form xlxgxg, where «, ﬁ; ¥y are

non-negative integers such that a+f+y<27(f-t+l) and the sum is over
all such monomials multiplied by real coefficients that are themselves
functions of Ai' This polynomial property is placed in evidence when

Eq. (3.3) is rewritten in terms of the quantities (see Ref. )
(keN):
-t
F A(x,y,z)= Ii[ (x+t—kk-s-1) < (-y,-z; x+t—k|A). (3.4)
s=1
(ii) Determinantal symmetry. This symmetry refers to the

invariance of G (A x) under the transformation of the six variables

(Al 2, X)Xy, x ) induced by row interchange, column interchange,

and transposition of the 3x3 array A defined by Eq. (3.1). For

example, under matrix transposition of A, that is, A — A, we have

(A A2,A 1 X1 1%y, Xq )——»(A A2+x1 A xl,—x1,<x3,—x2). (3.5)

il



(iii) Weight - space W;(A) are in one-to-one éorrespondénqe with
those of the weight space of irrep [q-t,0,—t+1] of U(3). With each
point eré(A), we associate a multiplicity number M;(A;x),

M;(A;x)zmin[c,q—c+1,1+-at<x)], - o (3.6)

where ‘dt(x) is the "distance" from lattice point xewg(A) to the

nearest boundary point as measured along the direction of a coordinate
axis (one lattice spacing = one unit of distance, with dt = 0 at the

boundary); The multiplicity function M;(A;x) assigns to each point

XEWS(A)' exactly the value of the Hmultiplicity of the weight.

w=(wl,w2,w3) of irrep {q-t,0,-t#+l], where w is related to the point
l: ' ' .

erq(A) by xlﬂA3—t+1-w1,x2=A2—A3+q-l—w2,x3=A2~t+1-w3. By the ph;gse

"a polynomial has the weight space W;(A) of zeros,".we mean that each

XEW;(A) is a zero of tﬁe polynomial with multiplicity M;(A;x).

Property (i) is already evident from the definition (2.44) of G:,

. . : t ‘ .
as 1is the invariance of Gq(A;x) under the transformation of the

variables (A;x) corresponding to the column interchanges in the array

A, Accordingly, the proof of the determinantal symmetry stated in
(ii) requires only that for the invariance under the transformation
(3.5) corresponding to transposition of the array A. This

transpositional symmetry is also  the key to proving that GS(A;X)

possesses the zeros described in (iii), a result proved in Ref.

It was the search for a proof of transpositional symmetry that led to
' the discovery of many of the special functions discussed in Sections 3
and 4, although the discovery of the 25? generalized hypergeometric

function and the associated Saalschiitz identity came earlier in
developing properties of the G:(tal) polynomials. We outline next how

generalized hypergeometric coefficients enter into the proof of
‘transpositional symmetry.



t 3 t

<A SEROR | %’f_%—i'—n H (-2, _S+1)q—-t+1 Y, nOwe)

s=1 i=1 s=1 Auup
<1FO(K—}Z)|p> (,F (—alz, 1377411 ~2|\) <2F1(—a , Epy
azl—ﬁlu) <2F o, "8 3,,a31 BIV o (3.7)

where we have defined £¥q—2t+l, K = magicvsquare parameter of A.

We now use the known identity h(Aqu)=ZNg(upn)g(vA;3, and the

Saalschiitz identity (4.8) with (a,b,c,)=(—622,—a ~Dv—>p, Ak

a
23' 721
to effect a transformation of (3.3). In this intermediate result, we
rename dummy summation partitions g to by v and k to be v, and then

use g(uk53 = g(pvi}. This brings ;ﬁ to the new form:

t
(q — s + i
y;(A>=H Y HH(-a =D

s=1 i=]l s=1

XZ"(z F (810 81y 58170 [N
X

ng(uvx) (2571(—a32,‘—a33,‘;a31—£)|u>

x (,F (2, +ay, L,a,1%8,3 458, = -£) [v) (3.7)

We continue with the transformation of ;f as given by Eq. (3 7)

in the following manner: Define new varlables a, b, ¢, d, e by
a=-—a 33" bw—a32, dﬂ—azz, e=—8,4, c=K-£ and define the polynomlal‘AA of
these variables by -
t
‘ Ax{a,b,d,e]_ (a+b+c—s+l)A (d+e+c—s+1)A
c s s
s=1
ng(yu)‘)(z%(a,b;a+b+c) | 1) (2.9'1(d+c,e+c;d+e+c) [v). (3.8)
uv

Combining definition (3.8) and Eq. (3.7) and carrying out some



simplifying algebraic steps, we find the following expression for ;é

in terms of the AA functions:

?t(A) - 1)t(q—c+1)[li[ (g —s + 1)!}

(s = 1)!

) A
Z (/\)[ (—;) (—e —s+].)q_t+1 /\ (-19 -—s+l)

A s=1 S

x(—a13—5+l)A (—621_5+1)A (—a3l—s+l)k }Ak( (3.9)
, s

a,b,d,e
s s

c
- The array A is given in terms of the variables a, b, ¢, d, e by

a) =~(c+8) (atb+d+e), alzu(c+2)+(b+d) , a) 4= (c+8)+(ate),
a21=(c+2)+(d+e); a4 =(c+L)+(a+b), where we recall that L=q-2t=1.

The summation in Eq. (3.9) is over all partitions X such that
q~t+q>Al_-"2ACZO. The functions AA’ given by Eq. 3.8) are defined
for all partitions, hence, for the X occurring in (3.9). We see from
Eq. (2.54) that a sufficient condition for transpositional symmetry of

the polynomial ;ﬁ, that is, for ;ﬁ(A) = ;ﬁ(ﬁ) is

a,b,d,e a,e,d,b o |
AA[ ] Ak[ ]. (3.10)

c e

The above transformations of the original fjﬁ(A;x) polynomial to

the forms given by Eqs. (2.51) and (2.54), respectively, show that we
can prove  transpositional symmetry by proving (¢:) the generalized
Saalschiltz identity; (ii) the b and e interchange symmetry of the
functions AA' ‘

This task has led to the discovery of the special functions discussed
in Sections 4 and 5.

4. Symmetric Generalized Hypergeometric Coefficients and Functions.
Two basic identities are required to prove the determinantal symmetry
of the polynomials G;(A) defined and discussed in Section 2.4. These

are the generalized Saalschiitz identity [relation (4.8) below] and
the generalized Bailey identity of the second kind [relation (4.16)



~below]. It was the need for proofs of these reiations between

generalized hypergeometric coefficients that led to the introduction
of a class of symmetric generalized hypergeometric functions in an
arbitrary number of variables (indeterminates) and the development of
some of their properties. In this section, we summarize the results
obtained thus far, pointing out that the general theory is still
incomplete. : ‘ o ,

We shall encounter several types of generalized hypergeometric
functions all belonging to same general pﬁz class, which we now

define. Let a=(al,...,ap), b=(b1,.;.,bq), and z=(zl,.,L,zt) deno;e

arbitrary complex numerator and denominator.parameters, p and q in

number, respectively, and z a set of t indeterminates. We define
generalized hypergeometric coefficients by
t |18 _(a, -s + 1)
(_F (a;by|py=nt - Us |
a, =M , 4.1
0% )u)#H (4.1)

s=1

where u=[ul y2"~ut] is an arbitrary par;ition and Mp 1s the measure

factor defined by Eq. (2.6). These coefficients are now used to
define a generalized hypergeometric function by the formal series

p%(a;b;2>=z<p‘7q(a;b)|u>e#(2>, (4.2)
U

where e“(z) denotes a Schur function. The Schur functions are

themselves defined in terms of a standard Young-Weyl tableaux by the
formula: ‘

a a a ‘ )
: 1 2 t
¢=,-M(z)=z:z1 z, SRE . ‘ (4.3)
a ‘
where a=(al,...,ar) is a weight of the partition u. Equivalently, «
is the content of a Young frame p "filled in" with 1, 2,..., ¢

according to the usual rules for a standard tableau. The summation in
Eq. (4.3) is over all weights a of m, including repetitions,

Shukla’ introduced the coefficients (4.1) as the natural
generalization of the Pﬁz functions defined earlier in Ref. and

defined in Eq. (4.6) below. We will encounter several of these
functions in the sequel. :

One of the simplest functions we require in the class (4.1) is

B L [TAN e 1T ' e e . . W . f o o nae



15% This function already occurs in the work of Littlewood.® It
has the explicit definition from Eqs (4 1) ~(4.3) given by

155<a; z>=2<l, (@] (2)= H Q-2 (hsa)
o m s=1 ‘ :

where the hypergeometric coefficient is given by

(a—s+l)
<15’O<a>|u>> (dim u)H (t_;;i—)—« , (4.4b)

5&1
This function then satisfles the addition rule

| Fyas 2y F (b z)=) I (avb;2) . | | h.5)

‘ The second type of generallzed hypergeometric functions we
require from the general class (4.2) which are the generalized Gauss
series given by

I (abicinm Y (Fabio)me . (4.6)
H

For t=1 definition (4.6) reduces to the classic Gauss series,

The main results proved in Refs. are the following theorem
and properties (1)—(iv): ’

THEOREM, The generalized Gauss series obeys the Euler identity:

9&(&, by ¢ z)l (c-a-b; z)uzﬁi(c—a, c-b; c; z). (4.7)

An lmmediate consequence of this theorem is
(i) Generalized Saalschiitz identity:
2g(pu)\)(2«71(a,b;c) |p)<1<f7‘0(c—a—biv>=(25’1(c—a,c—b;c) [A). (4.8)
pv |

This relation is an easy consequence of the Euler identity and the
multiplicative property of Schur functions,

e“(z)eu(z)ﬂjzlg(va)eA(z), (4.9)

T



whéré\g(uvA) denotes the Littlewood-Richardson wnumbers for GL(t,C).‘
and Eq. (4.8) reduces to the classic

For t=1, we have g(“UA)-6p+u,A’

Saalschlitz identity [ ].

(1i) Generalized Bailey Identity of the First Kind:

:E:g(uux)<25€(c—a,c-b;c)|u)(252(c'~a’,c’—b’;c’)|v>
u |
=Y A (5 3 (a,bio) |, F (o b e [v), (4.10)
uv , ‘

where the parameters are to satisfy c-a-b+c’ -’ -b’ =0, . Relation (4,10)
is called a generalized Bailey identity because for t=1, we have

| 2 (7 ta, b5 o) |w)(,F (@ b e ) |v)

JTESVED

F

C @), @ b L —e = -
XI(C)A 4" 3

¢, 1 —a =X, 1 ~-b =2

(a), (b), {a, b, 1 —¢’ =, =2X; } o)
, L
- A

-—2 2 F
MDDy 43 1 g =2, 1 b

in which" é—a—b+c’*a’—b'=0. The identity between the two 4F'3
hypergeometric series (of unit argument) 1is the reversal identity
(reverse the order of terms in the finite series expression). Using

(4.11) in the identity (4.10) for t=1 now gives Bailey's identity.
Shukla' independently obtained relation (4.10).

(iii) Generalized Addition Rule of Binomial Type:
zg<pux><19;)<x> [u) (L Ty ) [w)=() T (xety) [A). (4.12)
wv

For t=1, this relation reduces to

(4.,13)

2 (X)N(Y)u'a‘ (x + }’),\
plvl Al !

ptr=A
hence, the designation of (4.12) as a generalized binomial identity.

(iv) Generalized Bailey Identity of the Second Kind:

11



AA[a,b,d,e] ]TI (a+b+c«q+1) (d+e+c—s41)

(s} S

sm=]

x:E:g(qu)(251(ajb;a+b+c)|#><25q(d+§,e+c;d+e+c)|v).

ny
t .
]i[(a+e+c—s+1) (b+d+c—s+1)
s=1 s
:E:g(uux)(z (a e;atetc)|u)( 51(b+c,d+c;b+d+c)|u). (4.14)
. For tml this relation reduces to
_ ab,l -¢c —e ~e -n, -n;
(ct+d) _(c+e) F ‘ ‘
’n n 43 a+b+e¢,1 ¢ -d~-nl ~-c —e —-n

a,a+c,a+b+d+e+20+n-l,—n]
)

=(atc+d) (atc+e) F
f n 43 a+b+c,a+c+da+c+e

(4.15)

which 1s again an expression of Bailey's identity. Since relatlon
(4.14) 1is distirct from (4.10), it 1is called a generalized Bailey
identity of the second kind.

Let us remark that the proof of relation (4.14) ([given 1in
Ref . ] is equivalent to the proof of the b,e¢ interchange symmetry

of the AA coefficients defined by Eq. (3.8). The proof of the

generalized Bailey identity of the second kind is quite difficult.
This proof was achieved in Ref. by showing that the left-hand
side of Eq. (4.14) could be expressed in terms of yet another
generalization of hypergeometric functions going beyond definition
(4,2). This generalization, in turn, led to the discovery of a mnew
class of symmetric functions, as we describe in the next section.
Since the present section is about hypergeometric functions and their
generalizations, we will describe here this gsecond generalization in
terms of the new symmetric functions, leaving the definition of the
latter for the next sectlon. The symmetric functions in question are
the T#(a;z) defined in Eq. ( ), in which u is an arbitrary

partition ps[p1p2~-'pt], a 1s an arbitrary parameter, and the z, in

z=(zl,z2,--~,zt) are indeterminates,

W " . meon T no " - oy "



Let us refer back to the defiﬁition (4.2) of the hypergeometric
functions sz' For the new definition, we retain exactly the

hypergeometric coefficients as defined by Eq. (4.1)., We now, however,
replace the Schur functions by the new symmetric functions (1 (ajz) ).

In this way, we define the formal series:

«H ‘9‘ 1 ' ; ) 1
p5£(ﬂ»b,2>:E:(P o (8i0) [T (ai2) (4.16)

[Clearly, one could equally well congider generalizations of Eq. (4.2)
in which one makes the replacement e (z) (z), where the {S ) are

an arbitrary basis of the ring of symmetric functions ]

The quite remarkable result for the generalized Bailley identity
(4.14) 1s that one can also write

t 3 ‘
a (2Drdie]_yL (b, ~s+1)A, |, & (aibip), (4.17)
A A 1 2
C , .
sm] j=1
where au(al,az), ‘b=(b1,b2,b3) a,=a, a2=a+t, bl=a+b+c, b2=a+c+d,
b3=a+c+e; Z mp =\ +t-s, s=1, 2, . . £
s g s
am20+a+b+d+e—2t+1~b1+b2+b3«al—az—2t+1. The 1ldentity (4.17), of

course, makes the b,e interchange symmetry evident and proves relation
(4.14), We also note that the gummation over u in the definition of

23€(a;b;p) is finite because of property (5.11) of the symmetric
functiong TH(Q;Z)'

We conclude this section by noting the following class of
summation fotmulas for relations (4.14) and 4.17):

AA[O b.d, 9] (3% (bt dte, ete) [A), (4.18a)

C

AA[a’b’o’e]-<35%(a+c,b+c,e+c)|A>, | (4.18b)
(o]

Ax[a’b d, 9]=( F\(b,d,e)[A), (4.18c)
.—.a

Ak[a b.d, e] =(,F (a,b,0) ), (4.184)
-d



(=)

t
{BS%(a.b,c)|A)uM;lli[(a«s+1)As(b—s+l)As(c—s+l)AS. ‘ (4.19)

g=l
5. Two New Classes of Symmetric Functions

5.1. The Symmetric Polynomials t”(z). The proof of the

generalized Bailey identity of the second kind, (Eq. (4.16), led to
the discovery of two new classes of symmetric functions. These will

be described in this section.

It is instructive to contrast the new symmetric functions with
the classic Schur functions. In the definition (4.3) of the Schur
function eA(z),‘ we associate one and the same monomial to each

standard tableau having the same weight. In this sense, the Schur
functions do not take into account all the "information" carried by
the set of standard tableaux. This property is to be contrasted with
the symmetric functions defined below, where we assoclate a distinct
polynomial to each tableau and then sum over all tableaux.

We find it convenient to define the new symmetric functiomns in
terms of Gel’fand patterns, although, since these are one-to-one with
standard tableaux, the definition could equally well be given in terms

of the latter. We remark that the symmetric functions ey defined

below in this paper are not homogeneous polynomials. [This contrasts
with the classic symmetric polynomials, which are homogeneous (see

Macdonaldg).] Because of this inhgmogeneity, their properties depend

on the number of wvarilables. For this reason, and because 1t ls
natural when using Gel'fand patterns to keep .the zero parts of a
partition, we will always employ an explicit notation in which
symmetric functions labeled by partitions have a number of parts equal
to the number of variables, For example, the symbol t[21](21’22’23)

1s not defined.
We now define the class of symmetric polynomials mentioned
earlier. Let A € Pn be a partition. With each pattern (m)EGA’ where

[mlann"‘mnn]EA' we associate the following polynomial C<m)(Z) in the

variables z = (zl,zz,...,zn) (inde:cerminates):
n ‘
t (z)= (z ,~-m, ,—j+i+1) . (5.1)
w @] [eymyar0,
ol 1-1 i] "1j-1

The dependence of the polynomial t((m)(z) on the variable Zj 1s glven
fully in terms of the entries in row j and row J-1 of the pattern (m)



as depicted by

m

1] 2] My JJ
Mg M, My, 0

m m

(5.2)

=0 to row j-l1, Thus, the z,6 factors in

J

where we have adjoined m
] e

the defining expression are

+1) , (5.3)

(Zj_m1J~J+2)m1j'm1,J_i(zj—mjj mjj |

The significance of the differences m and of the m in terms

1y 1]
of the standard tableau corresponding to the Gel'’fand .pattern (m) 1is
noted in Eqs. (2.4). We now deflne the polynomial CA by

£, (2)= Z FINOE | | (5.4)
(m)EGA

where the summatlon is carried out over all Gel’fand patterns (m)
having the specifled nth row An[mlann"'mnn]; that 1s, over all

patterns, dim A in number, belonging to the set GA‘
The polynomials tx(z) defined by expressions (5.1) and (5.4) are
rniot obviously symmetric 1in the variables z,. It 1is nontrivial to

prove this property. This result and a number of other principal
properties of the tA(Z) are presented as theorems below, without.

proofs. All these results are proved in Ref, . These properties
establish the polynomials CA(Z) as an Important class of symmetric

functionsa,

Theorem 5.1.1. The polynomials tA(z) are symmetric polynomials

in the varlables (zl,zz,...,zn) for each partition A—[Alkz...kn].

Theorem 5.1,2. The set of symmetric polynomlals (tA(z)|AEPA]

forms a Z-basls of the ring Ay of symmetric polynomials.

Theorew 5.,1.3. The symmetric polynomials tA(z) satisfy the

following two relations:



t 12y 2oy ey 2 )
[AlAz.‘.xn] 172 n

:_(zlzz‘“zn)t[kl—l..;Anﬁl]<zlf1""Zn*l‘xnal‘ ‘ (5.5a)

t (Z4,250 00042 4,0)
[Alkz..ﬂxn] 172 n-1

5§ t (z,-1,2,-L,...,2 -1). (5,5b)
An,O [AIAZ“'An—l] 1 2 n-1

| Theorem 5.1.4. Let z=(ml,m2,...,mh), where minpi+n—4 with
uw[ulpz...un]ePn. Then
CASm)-O, unless AiSpi, i=1, 2,..., n, . (576)

Theorem 5.1.5. Let D(z) denote the Vandermonde determlinant

D(z)= ]TI (zi—zj). | (5.7a)
1si€j5n

Then tA(Z) may be written as

n
t/\(z)-ﬁ%z—)—zl((,\,a)D(z—a)H(zi—aiH)ai, (5.7b)
@ i=]

where the summation 1is over all distinct weights a of the set of
standard tableaux of shape .

Theorem 5.1.6. Let x be ‘an arbitrary parameter. Then the
following expansion is valid;

n
H(x~4—1—zi)k=2<1%(~k) IA)
1ml A

where (15%(-k)|A> denotes the hypergeometric coefflicient defined by

n
(x—n+1+l)k_A tA(z), (5.8a)
11 L



n
=
(1 F () | A)=tty ]iI(mk-i+1)A ,

) i

/\+la.+A‘ k*A

leay ! Pdim[y0 ] for A sk,

= ‘ (5.8b)

10 for Al > k,

1

where A’ ls the partition conjugate to X,
Remarks

(1) I.G, Macdonald has pointed out to us that ¢ (z) is obtained
from the Jacobi-Trudi determinantal form of the Schur functions e (z)
by replacing all the ordinary powers 2 by falling factorials
[x]a=x(x—l)-"(x—a+l). If it were possible to prove directly that the
GA(z) thus obtained has the tableau expansion (5.4), the proof of
Theorem 5.1.1 would be greatly simplified.

(1i) Theorem 5.1.6, whlch gilves the expansion of the symmetric

polynomial 2(x+l—zi)k of rising factorials in terms of the basgils

1=1
EA<Z)’ 18 the natural generalization of the expansion of this form to

ordinary powers k in terms of the Schur function basis eA(z) (see
Ref, ).

5.2, The Symmetric Polynomials Tk(a;z), In this section, we define
another class of symmetric polynomials, denoted Tx(a;z) and depending

on n varlables (Zl’ z ) and an arbltrary parameter «.  We

b4 LI
‘ 2! !
wlll show that these symmetric polynomials are the natural basis for
the expansion of the symmetric polynomial

n
Qn(x. Y z)-H (x+1-—zi)k(y+1—zi)k (5.9)
=1 .
{n terms of a basis. This polynomial is clearly invariant under the
action of the direct product group 52 X Sn’ where 82 is the group of
permutation of (x,y) and Sn that of (zl,zz,~-~,zn>. It 1is also

invariant under the transformation Aj defined by Aj:zi — z;



“(i=l,2,~n‘,n;lﬂj), Zj — —zj—a(iéj). Here j may be 1,2,..., n; that

is, there are n such transformations in all. We denote by H  the

group generated by these n commuting involution maps.

Having made these brief motivational remarks, let us now proceed
directly to the definltion of the TA(a;z). With each Gel'fand pattern

(m) 1,I.w.ving the nth row A=[A1A2v"xn]=[mlnm2n f'nynJ we associate a
polyromial T(m)‘ This polynomial is defined on an arbitrary parameter
a and n variables z=(zl,z2,'--,zn) by

T(m)(a:Z)=t<1n)(Z)t(m)(—z—a). (5.10a)
where a=(a, a,  ,a) in the right-hand side and |

z+a=(zl+a, Zota, e, zn+a). ‘ (5.10b)
Here t(m) is defined by Eq. (5.1). We define TA by

TA(a;z)= 2 T(m)(a;z). (5.10c)

(m)eGA

Onc again, 1t 1is not obvious that TA(a;z) are  symmetric
polynomials in the wvariables (zl,zz,-'-,zn), gince this symmetry is
not valid term-wise; that is, is not a‘property of each T(m)(a;z). It
is, however, obvious that each T(m)(a;z), hence, also TA(a;z),  is

invariant under each transformation Aj defined above,

We next state the principal properties of the polynomials
TA(a;z):

Theorem 5.2.1. The polynomials TA(a;z) are symmetric polynomials
in the variables (zl,zz,'-',zn) for each partition ka[A1X2~~'An] and

each parameter a,

Theorem 5.2.2. The set of symmetric polynomials [TA(a;z)IAEPn}

forms a Z-basis of the ring of polynomials invariant under the group
S xH :
n n

Theorem 5.2.3. Let z=m,,m -‘,mn)} where m =p;+n—i with w=[py

2" i

uz--~pn]ePn. Then



TA(a;m)mo, unless AiSui,‘i=l,2,-¥-,n. ‘ o (5.11)

, Theorem 5.2.4. .Let x and y be arbitrary parameters. Then the
following expansion is valid: . ‘

n

'H<x+1-zi)k(y+1—zi)k—2<l5{)(—k|A>
)

i=1 '

n .
x]i[(x—n+i+l)k_Ai(y7n+i+l)k_AiTx(a;z),' ‘ (5.18a)
i=1

where
a=-—x-y k-1, ‘ ‘ (5.12a)

Theorems 5.2.1-5.2.4 all have crucial roles in the proof that the

“function A, of the last section may be expressed in the form (4.17).

A ‘
(This is carried out in detail :n Ref. .) This latter work thus
completes, via the properties of the generalized hypergeometric
coerfficients of Section 4 and the symmetric functions of this

section, the proof that ﬁhe original G; polynomials are invariant

under the determinantal symmetries of the array A.
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