
NUREG/CR-4639
OCT 2 0 1988 egg-2458

Volume 2

Nuclear Computerized Library
for Assessing Reactor
Reliability (NUCLARR)

Programmer's Guide

Prepared by 0 . J. Call, J. A. Jacobson

Idaho National Engineering Laboratory
EG&G Idaho, Inc.

Prepared for
U.S. Nuclear Regulatory
Commission

DiSTRIBUTiON OF THIS L'OCUMcNT 15 U^rLiniiTIS

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

NOTICE

This report was prepared as an account o f work sponsored by an agency o f the United States
Government. Neither the United States Government nor any agency thereof, or any o f their
employees, makes any warranty, expressed or Implied, or assumes any legal liab ility of re­
sponsibility for any th ird party's use, or the results of such use, o f any Information, apparatus,
product or process disclosed In this report, or represents that Its use by such th ird party would
not Infringe privately owned rights.

NOTICE

Availability of Reference Materials Cited In NRC Publications

Most documents cited In NRC publications w ill be available from one of the following sources:

1. The NRC Public Document Room, 1717 H Street, N.W.
Washington, DC 20555

2. The Superintendent of Documents, U.S. Government Printing Office, Post Office Box 37082,
Washington, DC 20013-7082

3. The National Technical Inform ation Service, Springfield, VA 22161

Although the listing tha t follows represents the majority o f documents cited In NRC publications.
It Is not Intended to be exhaustive.

Referenced documents available for Inspection and copying for a fee from the NRC Public Docu
ment Room In '.uile NRC correspondence and Internal NRC memoranda; NRC Office of Inspection
and Enforcement bulletins, circulars. Information notices. Inspection and Investigation notices;
Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and
licensee documents and correspondence.

The fo llow ing documents in the NUREG series are available fo r purchase from the GPC Sales
Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and
NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations In the Code o f
Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service Include NUREG series
reports and technical reports prepared by other federal agencies and reports prepared by the Atomic
Energy Commission, forerunner agency to the Nuclear Regulatory Commission,

Documents available from public and special technical libraries Include all open literature Items,
such as books, journal and periodical articles, and transactions. Federal Register notices, federal and
state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference
proceedings are available fo r purchase from the organization sponsoring the publication cited.

Single copies o f NRC dra ft reports are available free, to the extent o f supply, upon w ritten
request to the Division o f In form ation Support Services, D istribution Section, U.S. Nuclear
Regulatory Commission, Washington, DC 20555.

Copies o f Industry codes and standards used In a substantive manner In the NRC regulatory process
are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available
there fo r reference use by the public. Codes and standards are usually copyrighted and may be
purchased from the originating organization or. If they are American National Standards, from the
American National Standards Institute, 1430 Broadway, New York, NY 10018.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof

NUREG/CR-4639
EGG-2458
Volume 2
RX

Nuclear Computerized Library
for Assessing Reactor
Reliability (NUCLARR) NUREG/CR--4639-Vol„2

TI89 001453

Programmer's Guide

Manuscript Completed: September 1988
Date Published: September 1988

Prepared by
0. J. Call, J. A. Jacobson

Idaho National Engineering Laboratory
Managed by the U.S. Department of Energy

EG&G Idaho, Inc.
Idaho Falls, ID 83415

Prepared for
Division of Systems Researcli
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555
NRC FIN A6850
Under DOE Contract No. DE-AC07-761D01570

>l3iSVW

ABSTRACT

The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) is an
automated data base management system for processing and storing human error probability
and hardware component failure data. The NUCLARR system software resides on an IBM
(or compatible) personal micro-computer and can be used to furnish data inputs for both
human and hardware reliability analysis in support of a variety of risk assessment activities.

The NUCLARR system is documented in a five-volume series of repoits. Volume n
of this series is the Programmer's Guide for maintaining the NUCLARR system software.
This Programmer's Guide provides, for the software engineer, an orientation to the software
elements involved, discusses maintenance methods, and presents useful aids and examples.

FIN No. A6850 ~ Nuclear Computerized Library for Assessing Reactor
ReUabiUty (NUCLARR)

i

SUMMARY

The Nuclear Computerized Library for Assessing Reactor ReUability (NUCLARR) is
documented in a series of five volumes. Volume I: Summary Description is a general
overview of the NUCLARR system. Volume I provides the background of the NUCLARR
program, including a description of methods for data collection, system specification, data
structures, and taxonomies. Volume 11: Programmer's Guide provides information for
maintaining the software for the NUCLARR system. Volume ni: Data Base Management
Guide for Processing Data and Revising the Data Manual contains the procedures for
processing human error probability and hardware component failure data and entering the
data values into the NUCLARR system. Volume IV: User's Guide instructs the end user in
operating the NUCLARR software. Volume V: Data Manual is a hard-copy report of the
data residing in the NUCLARR system.

This report, Volume n, is addressed to experienced software engineers who will be
responsible for maintenance of the NUCLARR system software. The narrative sections of
this Programmer's Guide present discussions of the resources and methods used for system
development and maintenance. Besides providing in-depth explanatory material here, the
reader is directed in obtaining more detailed technical information by identification of
specific tools and other products used. Also included are several appendices which provide
examples and other maintenance aids.

Requests for information or for obtaining the NUCLARR software and/or
documentation should be directed to either of the following:

Thomas G. Ryan
U.S. Nuclear Regulatory Commission - RES
Reliability and Human Factors Branch
5640 Nicholson Lane, NUN-316
Rocl<ville, MD 20852 USA
(Phone) 301-492-3550

David I. Gertman
NUCl^RR Data Clearinghouse
Idaho National Engineering Laboratory
P. O. Box 1625
Idaho Falls, ID 83415 USA
(Phone) 208-526-0652

// ui

ACKNOWLEDGMENTS

We are grateful to Dr. T. G. Ryan, of the U.S. Nuclear Regulatory Commission
(NRC), for his continued contributions as Technical Monitor for this program. We
appreciate the technical direction and recommendations contributed by D. I. Geitman and
W. E. Gilmore from the Human Factors Research Unit at the Idaho National Engineering
Laboratory (INEL). The authors would also like to thank G. H. Beers, D. J. Fink, P. M.
McGuire, and T. H. Tucker, from the Special Applications Unit at die INEL, for their
efforts in software development and for their insight and willing response to questions about
the software during document preparation.

In addition, we owe special appreciation to N. L. Wade, also of the INEL, for her
assistance as technical editor in the preparation of this report.

Finally, we thank R. N. Hagen of the Special Applications Unit at the INEL for his
support and guidance in the mechanics of producing this report.

iv

CONTENTS

ABSTRACT i

SUMMARY iii

ACKNOWLEDGMENTS iv

ACRONYMS xi

INTRODUCTION 1

PROGRAMMING ENVIRONMENT 2

DATA STRUCTURE 3

SOFTWARE ORGANIZATION 4

PROGRAM COMPILATION AND LINKING 8

Retrieval Access 9

HEP Data Processing 9

HCF Data Processing 12

DATA BASE COMPILATION 15

DESCRIPTION OF SYSTEM PROGRAMS AND LIBRARIES 15

Retrieval Access Programs 16

HEP Data Processing Libraries 17

HEP Data Processing Programs 19

HCF Data Processing Libraries 24

HCF Data Processing Programs 29

HOW TO USE THIS GUIDE 38

Overview of the Guide 38

An Example of Appendix Usage 39

Requests for Additional Information 40

REFERENCES 41

APPENDIX A - LIBRARY KEY A-1

V

APPENDIX Bl - HEP DATA PROCESSING LIBRARY CHARTS . . . \ Bl-1

APPENDIX B2 - HEP DATA PROCESSING MODULE CHARTS B2-1

APPENDIX CI - HCF DATA PROCESSING LIBRARY CHARTS Cl-1

APPENDIX C2 - HCF DATA PROCESSING MODULE CHARTS C2-1

APPENDIX D - RETRIEVAL ACCESS D-1

APPENDIX E - SAMPLE THOR REPORTS FOR DATABANK DATA BASE E-1

APPENDIX F - SAMPLE THOR REPORTS FOR HARDWARE DATA BASE F-1

APPENDIX G - SAMPLE SOURCE LISTING FOR HEP DATA PROCESSING G-1

APPENDIX H - SAMPLE SOURCE USTING FOR HCF DATA PROCESSING H-1

INDEX INDEX-1

vi

I

' I
I

*; FIGURES

Figure 1. File structure used for retrieval access 5

Figure 2. Overlay structure for the program Retrieve 6

Figure 3. Overlay structure for the program DataNtry 6

Figure 4. Overlay structure for the Program RetrHard 7

Figure 5. Overlay structure for the module DHardw in program RetrHard 7

Figure 6. Overlay structure for the module AHardw in program RetrHard 8

Figure 7. Library dependencies for the program MainMenu 16

Figure 8. Library dependencies for the program HEPNotes 16

Figure 9. Library dependencies for the program HWNotes 17

Figure 10. No library dependencies for the program NUCGEN 17

Figure 11. Library dependencies for the program NUCPRINT 17

Figure 12. Library dependencies for the program StorageM 18

Figure 13. Library dependencies for the program BReports 18

Figure 14. Library dependencies for the program Calc 18

Figure 15. No Ubrary dependencies for the program Grf 19

Figure 16. Library dependencies for the program NUCFILE 19

Figure 17. Library dependencies for the program Setup 19

Figure 18. Library dependencies for the program Nuclarr 20

Figure 19. Library dependencies for the program Retrieve 20

Figure 20. Library dependencies for the program DescrHum 21

Figure 21. Library dependencies for the program GetRpHEP 21

Figure 22. Library dependencies for the program GetRpNoG 21

Figure 23. Library dependencies for the program DocHuman 22

Figure 24. Library dependencies for the program AdHocHum 22

vii

Figure 25. Library dependencies for the program GetRep 22

Figure 26. Library dependencies for the program PltHuman 22

Figure 27. Library dependencies for the program HEPAgg 23

Figure 28. Library dependencies for the program GenASCH 23

Figure 29. Library dependencies for the program GetFileP 23

Figure 30. Library dependencies for the program SavFileP 24

Figure 31. No library dependencies for the program StatLib 24

Figure 32. Library dependencies for the program HardFile 24

Figure 33. No library dependencies for the program CkHouse 25

Figure 34. No library dependencies for the program General 25

Figure 35. No library dependencies for the program StoreMan 25

Figure 36. No library dependencies for the program OlayHw 26

Figure 37. Library dependencies for the program HWDispla 26

Figure 38. Library dependencies for the program HWReport 26

Figure 39. Library dependencies for the program HWFile 27

Figure 40. No library dependencies for the program Graphics 27

Figure 41. Library dependencies for the program HWPlot 27

Figure 42. Library dependencies for the program HardAg 27

Figure 43. Library dependencies for the program AdHocHw 28

Figure 44. Library dependencies for the program DescrHw 28

Figure 45. Library dependencies for the program SFilelO 29

Figure 46. Library dependencies for the program DataNtry 29

Figure 47. Library dependencies for the program ManualDE 30

Figure 48. Library dependencies for the program LoadDB 30

Figure 49. Library dependencies for the program Aggreg 30

Figure 50. Library dependencies for the program SorcDump 30

viii

Figure 51. Library dependencies for the program DManual 31

Figure 52. Library dependencies for the program EdDocumt 31

Figure 53. Library dependencies for the program EdPlants 31

Figure 54. Library dependencies for the program HWTables 31

Figure 55. Library dependencies for the program RetrHard 32

Figure 56. Library dependencies for the program DHardw 32

Figure 57. Library dependencies for the program DHwGetF 32

Figure 58. Library dependencies for the program DHwSrch 33

Figure 59. Library dependencies for the program TailrdAg 33

Figure 60. Library dependencies for the program DHwView 33

Figure 61. Library dependencies for the program DHwAgg 34

Figure 62. Library dependencies for the program DHwRep 34

Figure 63. Library dependencies for the program DHwPlot 34

Figure 64. Library dependencies for the program DHwFile 34

Figure 65. Library dependencies for the program DHwSaveF 35

Figure 66. Library dependencies for the program AHardw 35

Figure 67. Library dependencies for the program AHwGetF 35

Figure 68. Library dependencies for the program AHwSrch 36

Figure 69. Library dependencies for the program AHwView 36

Figure 70. Library dependencies for the program AHwAgg 36

Figure 71. Library dependencies for the program AHwRep 37

Figure 72. Library dependencies for the program AHwPlot 37

Figure 73. Library dependencies for the program AHwFile 37

Figure 74. Library dependencies for the program AHwSaveF 37

Figure 75. Library dependencies for the program DocHardw 38

ix

TABLES

Table 1. Environment Summary for NUCLARR System Maintenance 3

X

ACRONYMS

ASCn American Standard Code for Information Interchange

DOS disk operating system

HEP human error probability

HCF hardware component failure

IBM International Business Machines Corporation

INEL Idaho National Engineering Laboratory

NRC U.S. Nuclear Regulatory Commission

NUCLARR Nuclear Computerized Library for Assessing Reactor Reliability

PC personal computer

xi

NUCLEAR COMPUTERIZED LIBRARY FOR
ASSESSING REACTOR RELIABILITY (NUCLARR)

VOLUME II: PROGRAMMER'S GUIDE

INTRODUCTION

The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) is a
data base management system used to process, store, and retrieve human and hardware
reliability data in a ready-to-use format. The NUCLARR system was developed by the
U.S. Nuclear Regulatory Commission (NRC) to provide the risk analysis community a
repository of data that can be used to support a variety of risk assessment activities. The
system provides a broad range of data base management functions, computational algorithms
for aggregating the source data, and mechanisms for report and plot generation. The system
software is designed for operation on an IBM* personal computer (PC) or compatible micro­
computer.

The purpose of this particular volume is to provide information necessary for
maintaining and modifying the NUCLARR system software. The material presented is
intended for use by software engineers with experience in using the programming language,
specialized data base and system development tools, procedure libraries, and disk operating
system (DOS) used in the development and implementation of NUCLARR. For more
detailed information than is provided herein, the software engineer wiU need to access
documentation on the tools and other products identified in subsequent sections of this
volume. The remainder of this introduction reviews the presentation format used for the
rest of this document.

The next three sections describe the environment, structures, and organization of the
software elements used in the NUCLARR system, providing insights into the design and
functions of NUCLARR. Further details on the design and implementation of the
NUCLARR system may be found in the other volumes of this five-volume series. Of
special interest would be Volume I: Summary Description' and Volume IV: User's Guided

The subsequent two sections describe the processes involved with generating an
updated form of the NUCLARR software and of data base records and forms.

The following section provides descriptions of NUCLARR system programs and
libraries to assist in locating specific procedures while resolving software problems. These
descriptions also contain some information regarding methodology and techniques involved
in coding.

The final narrative section presents a summary regarding use of this volume.

In order to provide further support to users of this volume, a series of appendices, A
through H, is available with either examples or detailed maintenance aids mentioned
previously in this volume.

'Mention of specific products and/or manufacturers in this document implies neither
endorsement of preference nor disapproval by the U.S. Government, any of its agencies, or
EG&G Idaho, Inc., of the use of a specific product for any purpose.

1

PROGRAMMING ENVIRONMENT

Software for the NUCLARR system was developed and is to be maintained using the
Modula-2 programming language on an IBM (or compatible) micro-computer. The design
and implementation of NUCLARR was done using Modula-2/86 from Logitech, Inc. of
Redwood City, California. The Modula-2 language environment includes a compiler, linker,
debugger, and libraries. A set of libraries, referred to as the Ad Hoc Standard Library, is
used to augment the Logitech-supplied libraries. The Ad Hoc Standard Library was
originally supplied by Pacific Systems Group of Coos Bay, Oregon. Further, the Logitech-
supplied utility L0D2EXE is used to transform load files (generated by the linker) into
executable files.

The SAGE^ application development system, developed at the Idaho National
Engi Bering Laboratory (INEL), is used to increase programmer productivity and to greatly
reduce software maintenance costs. SAGE provides efficient and versatile relational data
base took, graphics, formatted screens and menus, online helps, editing, and many other
capabilities used in NUCLARR. The SAGE features used were also written using the
Modula-2 programming language.

Within the SAGE system, a new ad hoc library was developed to augment the
Logitech-supplied libraries. This library set has replaced the one supplied by Pacific
Systems Group.

SAGE system utilities used in developing and maintaining the NUCLARR system are
THOR, REBUILD, and DOCUPROC. The THOR utility is used to create and edit forms,
develop and maintain data base record structures, generate reports of forms and data base
structures, and compile the data base definition file. The REBUILD utility is used to
rebuild lost or damaged data base index files and to restructure data base data files when
record structures are added or revised. The DOCUPROC utility is used to generate ASCII
file reports such as Modula-2 module listings. It may be of interest to note that the names
SAGE and THOR are not acronyms but simply names.

Plotting/graphics capabilities are provided through the CRYSTAL Graphics* set of
libraries developed at INEL. These libraries make calls to Graphics Kernel System (GKS)
modules which in turn use the HALO Graphics interface which is an efficient set of
assembly language graphic primitives. HALO is supplied by Media Cybernetics, Inc. of
Silver Spring, Maryland. CRYSTAL Graphics was specifically designed to function within
the SAGE system.

Appendix A identifies where to locate documentation for the libraries accessed from
the above described software environment of the NUCLARR system. In the high level flow
charts of Appendices Bl, B2, CI, C2, and D, references are made to procedures from
libraries covered by Appendix A as weU as to procedures coded explicitly for NUCLARR,
some of which are found charted in Appendices Bl and CI.

Of course, a text editor is also necessary for developing and editing program source
code. So far, the text editor of choice has been Kedit from Mansfield Software Group of
Storrs, Connecticut.

The micro-computer used for NUCLARR system maintenance must be IBM or IBM
compatible and should be at the IBM PC-AT level or above in capability with disk
operating system at DOS 3.0 or above capabilities. This computer needs to have at least

2

640 k bytes of memory, an enhanced graphics card, a math 8087 coprocessor card, a color
monitor, at least 30 megabytes of fixed disk space, and a disk drive for 5 1/4 inch floppy
disks. A printer which has the IBM graphics font should be accessible from this computer.

To give an idea of the size of the NUCLARR system, it is here noted that the number
of lines of code in the current software developed for NUCLARR is 66,583.

A summary of the items addressed in this section is shown in Table 1.

Table 1. Environment Summary for NUCLARR System Maintenance

Major Elements Key Subunits or /Associated Units

Modula-2 language environment Ad Hoc Standard Library
L0D2EXE utility

SAGE system Ad Hoc Standard Library
THOR utility
REBUILD utility
DOCUPROC utility

CRYSTAL Graphics Library Graphics Kernel System (GKS)
HALO Graphics interface

Text editor

Hardware IBM PC-AT or compatible computer
Printer with IBM graphics font

DATA STRUCTURE

NUCLARR data are structured and managed in relational data base form. In a
relational data base, there are multiple relations, with each relation consisting of data
records. Each data record has one or more fields defined for it, and that field definition
applies to every record in a given relation. These fields are the references to the data
stored in the data base. Each record type resides in its own relation.

In the data base structure used for NUCLARR, there are up to three files associated
with each relation: a data file, an index file, and a blockdata file. A data file contains
fixed-length data values. A blockdata file contains variable-length data values, with each
data value managed as a block of connected data rather than as a single piece of data.
Index files keep track of where the data is stored on the data files and the blockdata files.
See Appendices E and F for the data base file names used in the NUCLARR system.

The definition of the structure of the fields in data records for a given relation
constitutes what is called the 'schema' for that relation. This schema defines the type,
format, and value range allowed for data entered into each field of the data record type
assigned to the given relation. Also in this schema a name and description are specified for

3

each field. How fields are used in search processing is also prescribed in this schema.
Such a schema provides the uniformity of data handling within each relation; i.e., every
record in a given relation will have data organized using the same field structure. The set
of all these relation schemas constitutes the schema for the data base.

Also associated with a data base is a collection of forms. These forms may be used for
various purposes such as on-screen helps, selection menus, and data presentation for user
data handling and for reporting mechanisms.

When schemas or forms are created or modified using THOR, the data base source file
needs to be compiled and the resulting definition file made available for use in the
NUCLARR system before these alterations will be effective in NUCLARR. In this volume,
see the section tided DATA BASE COMPILATION for more details concerning this
process.

In the NUCLARR system, three data bases are used. Data base records and forms are
reviewed by using THOR to either view them on-screen or to generate a hard copy report.
DATABANK is the name of the data base used for human error probability (HEP) data.
HARDWARE is the name of the data base used for hardware component failure (HCF)
data. MASTER is the name of the data base used to select which of the other two data
bases will be accessed for data retrieval. Appendix D shows a THOR report of the only
record and form in MASTER. Appendices E and F provide sample THOR reports showing
some records and some forms from DATABANK and HARDWARE, respectively.

SOFTWARE ORGANIZATION

The NUCLARR system is organized as a series of Modula-2 programming language
modules. These modules consist of definition blocks and procedures. Procedures can also
have their own definition blocks. AU procedures begin with the reserved word
PROCEDURE. Two special types of modules are used in combination to define a library.
A module beginning with the reserved words DEFINITION MODULE defines what is
exportable from the library whose name follows these reserved words. A module beginning
with the reserved words IMPLEMENTATION MODULE contains the executable code of
the library whose name follows these reserved words. Such a module pair will be what is
referenced when the word 'library' is used in the remainder of Volume n. Modules other
than those used to create Ubraries begin with the reserved word MODULE and will be what
is referenced when the word 'module' is used in the remainder of Volume n.

Through use of the SAGE system, modules and libraries access the appropriate
elements of the three data bases, MASTER, DATABANK, and HARDWARE. Such
interfacing and other processing actions make use of library sets which are provided by the
Modula-2 vendor and the SAGE system or by associated products. See Appendix A for the
key to locating documentation on these library sets.

The modules and Ubraries programmed for NUCLARR are segregated into three
categories. There are modules and libraries used for HEP data processing, modules and
libraries used for HCF data processing, and modules used to set up retrieval access to the
selected data type. Figure 1 shows the relationships involved between batch files (.BAT
suffixed) and module executable files (.EXE suffixed) in the file strucmre used to set up
retrieval access.

4

DOS
<

X
NUCLARR.BAT

•>./•

MainMenu.EXE

\ /
ZOPT.BAT

J.
1.BAT

s f

Retrieve.EXE

I
2.BAT

\^
RetrHard.EXE

X
3.BAT

N ^

HEPNotes.EXE

I
4.BAT

s^

HWNotes.EXE

\/ \^ \^
DOS

F igure 1. File structure used for retrieval access.

The modules programmed for NUCLARR data processing can be further classified as
to whether they are used for maintaining a data base or for retrieving data from a data
base. Only the modules used to maintain DATABANK and those used to set up retrieval
access do not become involved with overlay structuring.

An overlay structure provides for holding in memory only those modules of the system
which are needed for current processing activities. Such a structure consists of a base
overlay and one or more additional levels of overlay with one or more modules in each
overlay. However, there can be only one module in the base overlay. Once a base overlay
is invoked, it remains in memory until its associated overlay structure is released. One, and
only one, module from as many overlay levels as desired may be memory resident at one
time. Each module is kept on a separate file. Overlay structure is established at the time
compiled modules are linked. Then the L 0 D 2 E X E utility is used to create .EXE-suffixed
files for base overlay modules.

There is one more term used in association with modules. This term, 'program', is a
reference to a functionally complete unit of software. In general, 'program' is a reference
to a module together with all the software units it imports. However, when overlay
structures are used, the term 'program' refers to all the modules, and their imported units,
included in the structure.

A series of five figures are presented to show the executable file structure of those
modules involved in overlay structures. A base overlay file has a suffix of .EXE. Files
used in other overlay levels have a suffix of .LOD. Program entry occurs at the base
overlay l eve l As the program executes, modules are accessed based on options selected by
the user.

Figure 2 shows the file structure used in the retrieval of data from the data base

5

named DATABANK. Figure 3 shows the file structure used in maintaining the data base
named HARDWARE.

Retrieve.EXE

DescrHum.LOD

DocHuman.LOD

AdHocHum.LOD

GetRep.LOD

base overlay

GetRep.LOD

level 1 overlays

PltHuman.LOD

HEPAgg.LOD

GenASCILLOD

GetFileP.LOD

GetRpHEP.LOD

SavFileP .LOD

GetRpNoG.LOD level 2 overlays

Figure 2. Overlay structure for the program Retrieve.

ManualDE.LOD

LoadDB.LOD

Aggreg.LOD

DataNtry.EXE base overlay

SorcDump.LOD

level 1 overlays

DManual.LOD

EdDocumt.LOD

EdPlants.LOD

HWTables.LOD

DBUtU.LOD

Figure 3 . Overlay structure for the program DataNtry.

6

Figures 4 through 6 show the file structure used in the retrieval of data from the
data base named HARDWARE. Figure 4 shows the base overlay, level 1 overlays, and
access to level 2 overlays. Figure 5 shows the descriptive search level 1 overlay and its
associated level 2 overlays. Figure 6 shows the ad hoc search level 1 overlay and its
associated level 2 overlays.

DHardir.LOD

see Mardw.LOD
overlajr structure

RetrHard.EXE

AHardw.LOD DocHardTr.LOD

see AHardw-LOD
oreriay stnicture

base overlay

level 1 overlays

level 2 overlays

Figure 4. Overlay structure for the program RetrHard.

DHardw.LOD

DHwGetF.LOD

DHwSrch.LOD

TaUrdAg.LOD

level 1 overlay

DHwView.LOD

DHwAgg.LOD

level 2 overlays

DHwAgg.LOD

DHwRep.LOD

DHwPlot.LOD

DHwFUe.LOD

DHwSaveF.LOD

Figure 5. Overlay structure for die module DHardw in program RetrHard.

7

AHardw.LOD 1

AHwGetF.LOD

AHwSrch.LOD

AHwView.LOD

AHwAgg.LOD

level 1 overlay

le

AHwRep.LOD

^el 2 ov

AHwPlot.LOD

^rlays

1 AHwFile.LOD

AHwSaveF.LOD

Figure 6. Overlay structure for the module AHardw in program RetrHard.

PROGRAM COMPILATION AND LINKING

The Sage system tools used are all compiled using the math coprocessor option for
more efficient real number arithmetic. Therefore, this option must be selected when
compiling NUCLARR modules.

Version checking exists in the Modula-2 language environment to prevent version
mismatches. This version checking enforces the following rule: if file 1 is to be used by
file 2, then file 1 must have a version time-stamp which is earlier than that of file 2. The
two following statements are a consequence of this rule.

1. For library files, a DEFINITION MODULE (file name suffixed with .DEF)
must have a time stamp which is earlier than that of its corresponding
IMPLEMENTATION MODULE (file name suffixed with .MOD).

2. Any library files accessed must have a time stamp which is earlier than that of
the file which makes the import request.

After modules and libraries are created or modified, it is necessary to be sure that the
version checking rule is complied with while compiling modules and libraries and while
linking programs. Compilation and/or linking will not be successful if the version checking
rule is violated.

After a library's DEEDSdnON MODULE is compiled, its IMPLEMENTATION
MODULE must be compiled before the Ubrary can be used and any software unit importing
from that library must then be compiled. After a module is compiled, it must then be

8

linked before that version can be executed. Also, any module importing from a library
must be linked after that Ubrary's compilation in order to access die current version of that
Ubrary.

A module which is to be executed directly from DOS should be processed by the
L0D2EXE utility after its .LOD suffixed file is generated by the link process. Using
L0D2EXE generates a .EXE suffixed file, e.g. RETRIEVE.EXE. The .EXE-suffixed file is
used when execution is requested by a DOS command which is simply a program name,
e.g. RETRIEVE.

The remainder of this section shows the normal ordering of commands used to compile
Ubraries and modules and to link modules. These command lists are grouped into usage
categories and should be used in the order given within a category. All of the commands
Usted would be used if recompiling aU Ubraries and programs of the NUCLARR system.
Such a universal recompUation would be needed, for example, whenever an upgrade to
Modula-2 or to the SAGE system needs to be implemented.

Retrieval Access

Note that the Ubraries Ch-House, NUCGEN, and General must be available before these
commands are used.

These modules can be compiled singly or in any order, and they can be linked singly
or in any order.

Commands to compile modules:

c:\m21od\m2c mainmenu.mod/c
c:\m21od\m2c hepnotes.mod/c
c:\m21od\m2c hwnotes.mod/c

Commands to link modules (use after compilation):

c:\m21od\m21 mainmenu
c:\m21od\m21 hepnotes
c:\m21od\m21 hwnotes

HEP Data Processing

If compilation is needed for a single Ubrary's DEFINITION MODULE, not only
should it be compiled but each DEFINITION MODULE following in the list should also be
compiled because of import dependencies among the Ubraries. Alternatively, one may
review the import dependencies (by looking in the Ubrary source Ustings) for all libraries
foUowing the Ubrary of interest, compile the Ubrary of interest, and then selectively compile
diose following DEFINITION MODULES dependent on the Ubrary of interest. Having
compiled DEFINITION MODULES. aU corresponding IMPLEMENTATION MODULES
would then need to be compiled in the same sequence; and then aU modules which import
from these compiled libraries would need to be compiled. FinaUy, linking should be done

n

file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21od/m21

for aU modules which import from these compUed Ubraries.

If compUation is needed for a smgle library's IMPLEMENTATION MODULE widiout
having compiled the corresponding DEFINITION MODULE, diat IMPLEMENTATION
MODULE may be compUed without regard to others in the list. In this same circumstance,
it would not be necessary to compUe modules which import from the library whose
IMPLEMENTATION MODULE was just compiled; but Unking should be done for diese
modules.

In each command Ust for compiling modules in the HEP data processing category, the
modules can be compiled singly or in any order as needed.

If linking is needed for a single module and that module is to be linked as a base
overlay, not only should that module be linked but each module foUowing in the list should
also be linked because of overlay structuring.

If linking is needed for a single module and that module is to be linked as a level 1
overlay node, not only should that module be Unked but each module foUowing in the Ust
for that particular node should also be linked because of overlay structuring.

If linking is needed for a single module and that module is to be linked simply as a
level 1 or level 2 overlay, or without overlay structuring, then that module may be linked
without regard to others in the list.

Commands to compile libraries:

(die DEFINITION MODULE part of Ubraries)

c:Nm21o(fvm2c grf.def/c
c:Nm21od\m2c nucgen.def/c
c:Nm21odNm2c nucprint.def/c
c:\m21od\m2c storagem.def/c
c:\m21odSm2c retrieve.def/c
c:\m21od\m2c breports.def/c
c:Nm21odSm2c calc.def/c
c:Nm21od\m2c nucfile.def/c

(die IMPLEMENTATION MODULE part of libraries)

c:\m21odSm2c grf.mod/c
c:\m21odNm2c nucgen.mod/c
c:Nm21odSm2c nucprint.mod/c
c:\m21od\m2c storagem.mod/c
c:\m21od'aTi2c retrieve.mod/c
c:\m21odSm2c breports.mod/c
c:\m21od\m2c calc.mod/c
c:\m21od\m2c nucfile.mod/c

Commands to compile modules for maintaining DATABANK (use after compiling
Ubraries):

c:\m21od\m2c setup.mod/c

10

file://c:/m21od/m2c
file://c:/m21odSm2c
file://c:/m21od/m2c
file://c:/m21odSm2c
file://c:/m21odNm2c
file://c:/m21od/m2c
file://c:/m21odSm2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c

c:\m21od\m2c nuclarr.mod/c

Commands to link modules for maintaining DATABANK (use after compilation):

c:Nm21od\m21 setup
c:\m21odSm21 nuclarr

Commands to compile modules for retrieving DATABANK data (use after compiling
Ubraries):

c:\m21od\m2c descrhum.mod/c
c:\m21odNm2c dochuman.mod/c
c:\m21odNm2c adhochum.mod/c
c:\m21od\m2c getrep.mod/c
c:\m21od\m2c plthuman.mod/c
c:\m21od\m2c hepagg.mod/c
c:\m21od\m2c genascii.mod/c
c:\m21od\m2c getfilep.mod/c
c:\m21od\m2c savfilep.mod/c
c:\m21od\m2c getrphep.mod/c
c:\m21od\m2c getrpnog.mod/c

Commands to link modules for retrieving DATABANK data (use after compilation):

(linking the Retrieve Ubrary/module as a base overlay)

c:\m21od\m21 retrieve/m

(linking level 1 overlays to the Retrieve module)

c:\m21od\m21 dochuman/b retrieve
c:\m21od\m21 adhochum/b retrieve
c:\m21od\m21 getrepA> retrieve
c:\m21odNm21 plthuman/b retrieve
c:\m21odNm21 hepagg/b retrieve
c:\m21od\m21 genascii/b retrieve
c:\m21od\m21 getfilep/b retrieve
c:\m21od\m21 savfilep/b retrieve

(linking DescrHum, as a level 1 overlay node, to the Retrieve module)

c:\m21od\m21 descrhum/nVb retrieve

(linking level 2 overlays to the DescrHum module)

c:\m21od\m21 getrphep/b descrhum
c:\m21od\m21 getrpnog/b descrhum

11

file://c:/m21od/m2c
file://c:/m21odSm21
file://c:/m21od/m2c
file://c:/m21odNm2c
file://c:/m21odNm2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21odNm21
file://c:/m21odNm21
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21od/m21

HCF Data Processing

If compUation is needed for a single Ubrary's DEFINITION MODULE, not only
should it be compUed but each DEFINITION MODULE foUowing in die Ust should also be
compiled because of import dependencies among the Ubraries. Altematively, one may
review the import dependencies (by looking in the library source Ustings) for all libraries
foUowing the Ubrary of interest, compUe the Ubrary of interest, and then selectively compUe
diose following DEFESTITION MODULES dependent on die Ubrary of interest. Having
compiled DEFINITION MODULES, aU corresponding IMPLEMENTATION MODULES
would then need to be compiled in the same sequence; and then aU modules which import
from these compUed libraries would need to be compUed. FinaUy, Unking should be done
for aU modules which import from these compUed Ubraries.

If compUation is needed for a single library's IMPLEMENTATION MODULE widiout
having compiled die correspondmg DEFINITION MODULE, diat IMPLEMENTATION
MODULE may be compUed without regard to others in the list. In this same circumstance,
it would not be necessary to compUe modules which import from the library whose
IMPLEMENTATION MODULE was just compUed; but Unking should be done for diese
modules.

In each command Ust for compUing modules in the HCF data processing category, the
modules can be compUed singly or in any order as needed.

If linking is needed for a single module and that module is to be linked as a base
overlay, not only should that module be linked but each module foUowing in the list should
also be linked because of overlay structuring.

If linking is needed for a single module and that module is to be Unked as a level 1
overlay node, not only should that module be linked but each module foUowing in the Ust
for that particular node should also be Unked because of overlay structuring.

If linking is needed for a single module and that module is to be linked simply as a
level 1 or level 2 overlay, then that module may be linked without regard to odiers in the
Ust.

Commands to compUe Ubraries:

(die DEFDSfrnON MODULE part of Ubraries)

c:Nni21od\m2c statUb.def/c
c:Nm21od\m2c hardfUe.def/c
c:Nm21od\m2c clrhouse.def/c
c:\m21odNm2c general.def/c
c:\m21od\m2c storeman.def/c
c:\m21odVm2c olayhw.def/c
c:\m21od\m2c hwdispla.def/c
c:\m21od^«i2c hwreport.def/c
c:\m21od\m2c hwfile.def/c
c:\ni21odSm2c graphics.def/c
c:\m21od\ni2c hwplot.def/c
c:\m21od\m2c hardag.def/c
c:\m21odSm2c adhochw.def/c

12

file://c:/m21odNm2c
file://c:/m21od/m2c
file://c:/m21odVm2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/ni21odSm2c
file://c:/m21od/ni2c
file://c:/m21od/m2c
file://c:/m21odSm2c

c:\m21od\m2c descrhw.def/c
c:\m21odSm2c sfUeio.def/c

(die IMPLEMENTATION MODULE part of libraries)

c:\m21od\m2c statUb.mod/c
c:\m21od\m2c hardfUe.mod/c
c:\m21odSni2c clrhouse.mod/c
c:\m21od\m2c general.mod/c
c:\m21od\m2c storeman.mod/c
c:\m21odNm2c olayhw.mod/c
c:\m21odVm2c hwdispla.mod/c
c:\m21od\m2c hwreport.mod/c
c:\m21od\m2c hwfUe.mod/c
c:\m21odVm2c graphics.mod/c
c:\m21odVm2c hwplot.mod/c
c:\m21od\m2c hardag.mod/c
c:\m21odSm2c adhochw.mod/c
c:\m21od\ni2c descrhw.mod/c
c:\ni21od\ni2c sfUeio.mod/c

Commands to compUe modules for maintaining HARDWARE (use after compUing
Ubraries):

c:\m21od\m2c datantry.mod/c
c:\m21od\m2c manualde.mod/c
c:\m21od\m2c loaddb.mod/c
c:\m21od'an2c sorcdump.mod/c
c:\m21od^«i2c dmanual.mod/c
c:\m21od\m2c aggreg.mod/c
c:\m21odSm2c edplants.mod/c
c:\m21od\m2c eddocumt.mod/c
c:\m21od\m2c hwtables.mod/c
c:\m21odSm2c dbutiI.mod/c

Commands to link modules for maintaining HARDWARE (use after compilation):

(linking the DataNtry module as a base overlay)

c:\m21odNni21 datantry/m

(linking level 1 overlays to the DataNtry module)

c:\m21od\m21 manualde/b datantry
c:\m21odNm21 loaddb/b datantry
c:\m21odNm21 sorcdump/b datantry
c:\m21od\m21 dmanual/b datantry
c:\m21odNm21 aggreg/b datantry
c:\m21odNm21 edplants/b datantry
c:\m21odVm21 eddocumt/b datantry
c:\m21od\m21 hwtables/b datantry
c:\m21od\m21 dbutil/b datantry

13

file://c:/m21od/m2c
file://c:/m21odSm2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21odSni2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21odNm2c
file://c:/m21odVm2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21odVm2c
file://c:/m21odVm2c
file://c:/m21od/m2c
file://c:/m21odSm2c
file://c:/m21od/ni2c
file://c:/ni21od/ni2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21odSm2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21odSm2c
file://c:/m21odNni21
file://c:/m21od/m21
file://c:/m21odNm21
file://c:/m21odNm21
file://c:/m21od/m21
file://c:/m21odNm21
file://c:/m21odNm21
file://c:/m21odVm21
file://c:/m21od/m21
file://c:/m21od/m21

Commands to compUe modules for retrieving HARDWARE data (use after compiling
Ubraries):

c:\m21od\m2c dhwsrch/c
c:\m21od\m2c dhwrep/c
c:\m21odSm2c dhwagg/c
c:\m21odSm2c dhwfUe/c
c:\m21od\m2c dhwview/c
c:Nm21odSm2c dhwplot/c
c:\m21od\m2c dhwsavef/c
c:\m21od\m2c dhwgetf/c
c:\m21o(fvm2c tailrdag/c

c:\ni21odSm2c dhardw/c

c:\m21od\m2c ahwsrch/c
c:\m21od\m2c ahwrep/c
c:\m21od\m2c ahwagg/c
c:\m21od\m2c ahwfUe/c
c:\m21od\m2c ahwview/c
c:\m21od\m2c ahwplot/c
c:\m21odvm2c ahwsavef/c
c:\m21odSm2c ahwgetf/c

c:\m21o(Nn2c ahardw/c

c:\m21od\m2c dochardw/c

c:\m21odSm2c retrhard/c

Commands to link modules for retrieving HARDWARE data (use after compilation):

(linking the RetrHard module as a base overlay)

c:Nm21od\m21 retrhard/m

(linking DHardw, as a level 1 overlay node, to the RetrHard module)

c:\m21od\m21 dhardw/m/b retrhard

(linking level 2 overlays to the DHardw module)

c:\m21od\m21 dhwsrch/b dhardw
c:\m21od^21 dhwrep/b dhardw
c:\m21od\m21 dhwagg/b dhardw
c:\m21od\m21 dhwfUeA) dhardw
c:\m21odVn21 dhwview/b dhardw
c:Nm21od\m21 dhwplot/b dhardw
c:Nm21od\m21 dhwsavef/b dhardw
c:\m21odvm21 dhwgetf/b dhardw
c:Nm21odSm21 tailrdagA) dhardw

14

file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21odSm2c
file://c:/m21odSm2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/ni21odSm2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21od/m2c
file://c:/m21odvm2c
file://c:/m21odSm2c
file://c:/m21od/m2c
file://c:/m21odSm2c
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21odVn21
file://c:/m21odvm21

(Unking AHardw, as a level 1 overlay node, to the RetrHard module)

c:\m21od\m21 ahardw/m/b retrhard

(linking level 2 overlays to the AHardw module)

c:\m21od\m21 ahwsrch/b ahardw
c:\m21odSm21 ahwrep/b ahardw
c:\m21od\m21 ahwagg/b ahardw
c:\m21od\m21 ahwfUe/b ahardw
c:\m21odSm21 ahwview/b ahardw
c:\ni21od\m21 ahwplot/b ahardw
c:\ni21odNm21 ahwsavef/b ahardw
c:\m21od\m21 ahwgetf/b ahardw

(linking a level 1 overlay to the RetrHard module)

c:\m21od\m21 dochaidw/b retrhard

DATA BASE COMPILATION

Through an option within THOR, the definition file for a data base is created by
compiling its source file. The file name for a data base source fUe consists of the data
base name with the suffix .SRC appended. The file name for a data base definition file
consists of die data base name with the suffix .DFL appended. For example,
'DATABANK.SRC' is die source file and DATABANK.DFL is die definition file for die
data base named DATABANK.

When relation schemas or data base forms are created or modified in THOR, these
changes are made in the data base source file. But, the Modula-2 programs in the
NUCLARR system access a data base by referencing its definition file. Therefore, the data
base source file needs to be compUed and the resulting definition file made avaUable for
use in the NUCLARR system before such changes wiU be effective in NUCLARR.

DESCRIPTION OF SYSTEM PROGRAMS AND LIBRARIES

The programs and Ubraries of the NUCLARR system are briefly described in this
section. The descriptions are organized according to previously defined categories: retrieval
access, HEP data processing, and HCF data processing. A series of figures are presented to
show the Ubrary dependencies associated with each of the NUCLARR system modules and
Ubraries.

Sample charts showing high level flow structure for Ubraries and modules arc avaUable
in Appendices Bl, B2, CI, C2, and D. Listings of source code can be reviewed on screen
by using a text editor such as Kedit. Use DOCUPROC to print source Ustings with a table
of contents and indexing for ready reference. Samples of source code Ustings generated by
DOCUPROC can be found in Appendices D, G, and H.

15

file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21odSm21
file://c:/m21od/m21
file://c:/m21od/m21
file://c:/m21odSm21
file://c:/ni21od/m21
file://c:/ni21odNm21
file://c:/m21od/m21
file://c:/m21od/m21

Appendix A states where to obtain descriptions of Ubraries accessed by the NUCLARR
system, but which are not part of NUCLARR.

Retrieval Access Programs

The three programs described here are used to set up retrieval access to data resident
in the NUCLARR system. This access may be to the HEP data in the data base
DATABANK or to die HCF data in die data base HARDWARE. Batch fUes are used in
concert with program fUes to accompUsh this processing.

See Figure 1 to review the relationships involved between those batch files and
program executable files used to provide this retrieval access. See the batch fUe listmgs in
Appendix D to review the DOS commands used for this access processing.

Retrieval access is initiated from the DOS root directory by requesting execution of the
batch file NUCLARR.BAT. When retrieval access is terminated, the user is returned to the
DOS root durectory.

The program MainMenu presents the menu for selecting retrieval access options.
Access to data in one of the data bases may be requested. Access to information on
aggregation processing for either HEP data or HCF data may be requested. Based on the
option selected, an appropriate batch fUe is created to provide the desired access or to leave
the NUCLARR system. NUCLARR Ubrary dependencies are shown in Figure 7.

MainMenu.MOD

ClrHouse

program

library

Figure 7. Library dependencies for the program MainMenu.

The program HEPNotes presents information on aggregation processing for H E P data.
This information may be viewed, one screen at a time, until the option to return to the
previous selection menu is taken. NUCLARR library dependencies are shown in Figure 8.

HEPNotes.MOD

NUCGEN

program

library

Figure 8. Library dependencies for the program HEPNotes.

The program HWNotes presents information on aggregation processing for H C F data.
This information may be viewed, one screen at a time, until the option to return to die

16

previous selection menu is taken. NUCLARR library dependencies are shown in Figure 9.

HWNotes.MOD

General

program

library

Figure 9. Library dependencies for the program HWNotes.

HEP Data Processing Libraries

This set of Ubraries provides procedures used by the programs which process HEP
data. Each Ubrary consists of procedures which are related to one another in terms of
fiinctionaUty or other features. Some procedures from these Ubraries are used many times
by various programs, modules, or odier libraries importing them. In some cases, a
procedure is imported and used only once. Regardless of how much they are used,
procedures are grouped into these Ubraries for convenience of maintenance, to provide for
needed overlay structuring, to minimize the amount of source code, and to minimize
memory required during execution.

The Ubrary NUCGEN provides general purpose procedures for accessing and
combining data elements. There are no NUCLARR Ubrary dependencies, as shown in
Figure 10.

NUCGEN.MOD

NUCGEN.DEF

program

defim'Uon
module

Figure 10. No library dependencies for the program NUCGEN.

The Ubrary NUCPRINT provides procedures for displaying data and its associated
descriptions. NUCLARR Ubrary dependencies are shown in Figure 11.

NUCPRINT.MOD

__ L _
1

NUCPRINT.DEF

NUCGEN

program

definition
moduJe

library

Figure 11. Library dependencies for the program NUCPRINT.

17

The Ubrary StorageM provides for storage buffer manipulation. StorageM procedures
are used to add values to, retrieve values from, and clear a predefined storage buffer.
NUCLARR library dependencies are shown in Figure 12.

1
StorageU.DEF

StorageM.MOD

-I

NUCGEN NUCPRINT

program

definition
module

libraries

Figure 12. Library dependencies for the program StorageM.

The Ubrary Retrieve is used both as a program and as a Ubrary. The reason for this
double duty is to aUow for the passing of needed variables into the overlay structure
associated with the program Retrieve. See the description of the program Retrieve for more
information.

The Ubrary BReports provides procedures for generating reports on records referenced
in the storage buffer. NUCLARR Ubrary dependencies are shown in Figure 13.

BReports.UOD

Breports.DEF

Retr ieve StorageM NUCGEN NUCPRINT

program

definitioa
module

libraries

Figure 13. Library dependencies for the program BReports.

The Ubrary Calc provides procedures for calculating HEP and associated values.
NUCLARR library dependencies are shown in Figure 14.

1
Calc.DEF

Calc.MOD
-\

1

1
NUCGEN

— — 1
NUCPRINT

program

definition
module

library

Figure 14. Library dependencies for the program Calc.

18

The Ubrary Grf provides procedures for plotting,
dependencies, as shown in Figure 15.

There are no NUCLARR Ubrary

Grf .MOD program

Grf .DEF
definition
module

Figure 15. No Ubrary dependencies for the program Grf.

The Ubrary NUCFILE provides procedures for loading specified data from the data
base to an ASCII file. NUCLARR Ubrary dependencies are shown in Figure 16.

NUCFn.E.DEF

NUCFn.E.MOD

1

1

NUCGEN NUCPRINT

program

definition
module

libraries

Figure 16. Library dependencies for the program NUCFILE.

HEP Data Processing Programs

There are three programs used for HEP data processing. The two programs Setup and
Nuclarr are used to maintain the DATABANK data base, while die program Retrieve is for
retrieving data from DATABANK.

The program Setup is used to maintain the qualifying records of the DATABANK data
base. Qualifying records are those records used to evaluate the vaUdity of data being
entered. Examples of qualifying records are plant code (faciUty identification) records and
matrix definition records. NUCLARR Ubrary dependencies are shown in Figure 17.

Setup.UOD

__ 1 _
NUCGEN NUCPRINT

program

libraries

Figure 17. Library dependencies for the program Setup.

19

The program Nuclarr is used to enter and modify data in the DATABANK data base
as well as to perform other maintenance chores such as HEP calculations and generation of
various data reports. NUCLARR Ubrary dependencies are shown in Figure 18.

NucIarr.llOD

Calc NUCGEN NUCPRINT

program

libraries

Figure 18. Library dependencies for the program Nuclarr.

The program Retrieve makes DATABANK data available for review but not for
alteration. This program uses an overlay structure (see Figure 2) and is also written as a
Ubrary so that needed variables can be passed into the overlays. The following module
descriptions are for those modules included in Retrieve's overlay structure. AU these
modules, except for GetRpHEP and GetRpNoG, are accessed by selection from the menu
presented in Retrieve. The module DocHuman is the only one which does not make use of
the search storage buffer for its processing. The search storage buffer is used to
accumulate HEP data record references located by one of the two search processes. This
buffer is cleared by expUcit user request or by exiting from Retrieve. NUCLARR library
dependencies are shown in Figure 19.

Retrieve.lfOD

Retrieve.DEF

NUCGEN StorageM

program

definition
module

libraries

Figure 19. Library dependencies for the program Retrieve.

The module DescrHum performs a descriptive search for HEP data. To perform this
search processing, the user selects a taxonomy level, job classification, and plant ID; these
selections determine the matrix number needed. Next, the matrix row and column are
chosen by the user. Now, records which meet the criteria determined by the user 's
selections are located and then referenced in the search storage buffer. Through the overlay
structure, DescrHum provides access to the three modules GetRep, GetRpHEP, and
GetRpNoG, for reporting on data referenced in the search storage buffer. NUCLARR
Ubrary dependencies are shown in Figure 20.

The module GetRpHEP provides for reporting on HEP records referenced in the search
storage buffer. Aggregated HEP values from the data base wiU be included in any report

20

DescrHum.MOD

Retrieve StorageM NUCGEN NUCPRINT

program

libraries

Figure 20. Library dependencies for the program DescrHum.

from this module. These data base values wiU be at the task level, cell level, and
functional group level. GetRpHEP is accessed from DescrHum. NUCLARR library
dependencies are shown in Figure 21.

GelRpHEP.MOD

BReports

program

library

Figure 21. Library dependencies for the program GetRpHEP.

The module GetRpNoG provides for reporting on HEP records referenced in the search
storage buffer. Aggregated HEP values from the data base wiU be included in any report
from this module. These data base values wUl be at the task level and ceU level, but not
at the functional group level. GetRpNoG is accessed from DescrHum. NUCLARR Ubrary
dependencies are shown in Figure 22.

GetRpNoCMOD

BReports

program

library

Figure 22. Library dependencies for the program GetRpNoG.

The module DocHuman aUows the user to review identification of documents
referenced in the NUCLARR system for HEP data. NUCLARR Ubrary dependencies are
shown in Figure 23 .

The module AdHocHum performs an ad hoc search for HEP data. The user selects
parameter values which are used to establish search criteria for this search processing.
These search restriction selections are specified on a single form with the aid of an
elaborate set of help forms. Once the request is made to locate data records, the specified
criteria are cross-checked for consistency and validity. The user is prompted for necessary
changes to selections before data records are located. Records which meet the criteria
determined by the user 's selections are located and then referenced in the search storage

21

DocHuman.MOD

Retrieve Calc NUCGEN

program

libraries

Figure 23. Library dependencies for the program DocHuman.

buffer. A variable is used for message handling so that a proper message appears when the
search criteria form is presented. NUCLARR Ubrary dependencies are shown in Figure 24.

AdhocHum.MOD

Retrieve StorageM NUCGEN NUCPRINT

program

libraries

Figure 24. Library dependencies for the program AdHocHum.

The module GetRep provides for reporting on HEP records referenced in the search
storage buffer. No aggregated HEP values from the data base wUl be included in a report
from this module. GetRep can be accessed either from Retrieve or from DescrHum.
NUCLARR library dependencies are shown in Figure 25.

GetRep.MOD

BReports

program

library

Figure 25. Library dependencies for the program GetRep.

The module PltHuman is used to plot HEP data which are referenced in the search
storage buffer. This set of data must be aggregated before plots can be generated since the
plots include aggregation values. NUCLARR Ubrary dependencies are shown in Figure 26.

PltHuman.MOD

Grf

program

Calc NUCGEN NUCPRINT libraries

Figure 26. Library dependencies for the program PltHuman.

22

The module HEPAgg provides for aggregation of HEP data which are referenced in the
search storage buffer. An aggregation is done for each task, and then an aggregation is
done using aU the task HEP values just calculated, creating an HEP for the entire set of
data referenced. NUCLARR Ubrary dependencies are shown in Figure 27.

HEPAgg.yOD

Calc

BReports

program

Retrieve

NUCGEN

StorageM

libraries

NUCPRINT

Figure 27. Library dependencies for the program HEPAgg.

The module GenASCH generates an ASCII fUe of data taken from HEP data records.
This ASCn file can be created by using aU HEP data records in DATABANK or by using
just that data referenced in the search storage buffer. NUCLARR library dependencies are
shown in Figure 28.

GenASClLMOD

NUCFILE Retrieve

program

libraries

Figure 28. Library dependencies for the program GenASCn.

The module GetFUeP moves a copy of die contents of a DOS file into the search
storage buffer after first clearing the buffer. If the file is other than one which was created
by SavFUeP, the resuhs of then using the search storage buffer wiU be unpredictable.
NUCLARR library dependencies are shown in Figure 29.

GetFileP.MOD

StorageM

program

library

Figure 29. Library dependencies for the program GetFileP.

The module SavFUeP moves a copy of the contents of the search storage buffer into a
DOS file. If the requested DOS file already exists, it is overwritten with the buffer
contents. NUCLARR Ubrary dependencies are shown in Figure 30.

23

SavFUeP.MOD

StorageM

program

library

Figure 30. Library dependencies for the program SavFileP.

HCF Data Processing Libraries

This set of libraries provides procedures used by the programs which process HCF
data. Each Ubrary consists of procedures which are related to one another in terms of
fimctionaUty or other features. Some procedures from these libraries are used many times
by various programs, modules, or other libraries importing them. In some cases, a
procedure is imported and used only once. Regardless of how much they are used,
procedures are grouped into these libraries for convenience of maintenance, to provide for
needed overlay stracturing, to minimize the amount of source code, and to minimize
memory required during execution.

The library StatLib provides statistical calculation procedures for data aggregation
processing. There are no NUCLARR library dependencies, as shown in Figure 31.

StatUb.MOD

StatUb.DEF

program

definition
module

Figure 31. No Ubrary dependencies for the program StatLib.

The Ubrary HardFUe provides procedures for copying hardware data from an ASCII
file into the data base named HARDWARE. NUCLARR Ubrary dependencies are shown in
Figure 32.

HardFUe.MOD

1 HardFile.DEF
n

J

Stat.Lib

program

definition
module

library

Figure 32. Library dependencies for the program HardFUe.

24

The Ubrary ClrHouse provides the information needed to make contact with the data
clearinghouse. There are no NUCLARR library dependencies, as shown in Figure 33.

ClrHouse.MOD

ClrHouse.DEF

program

definition
module

Figure 33. No Ubrary dependencies for the program ClrHouse.

The Ubrary General provides general purpose procedures for accessing and combining
data elements. There are no NUCLARR library dependencies, as shown in Figure 34.

General.MOD

GeneraLDEF

program

definition
module

Figure 34. No Ubrary dependencies for the program General.

The Ubrary StoreMan provides for storage buffer manipulation. StoreMan procedures
are used to add values to, retrieve values from, and clear a predefined storage buffer.
There are no NUCLARR library dependencies, as shown in Figure 35.

StoreMan.MOD

StoreMan.DEF

program

definition
module

Figure 35. No Ubrary dependencies for the program StoreMan.

The Ubrary OlayHw provides procedures which monitor overlay processing. There are
no NUCLARR Ubrary dependencies, as shown ia Figure 36.

The Ubrary HWDispla provides procedures for on-screen viewing of hardware event
records referenced in the search storage buffer. NUCLARR Ubrary dependencies are shown
in Figure 37.

25

01ayHw.M0D

01ayHw.DEF

program

definition
module

Figure 36. No Ubrary dependencies for the program OlayHw.

HWLispla.MOD]

1 HWDispla.DEF

1 StoreMan ClrHouse General StoreMan

program

definition
module

libraries

Figure 37. Library dependencies for the program HWDispla.

The library HWReport provides procedures for reporting on hardware event records
referenced in the search storage buffer. NUCLARR library dependencies are shown in
Figure 38.

HWReport.MOD~|

1 HWReport.DEF
J

General StoreMan

program

definition
module

libraries

Figure 38. Library dependencies for the program HWReport.

The library HWFUe provides procedures for creating an ASCII file from hardware
event data. NUCLARR Ubrary dependencies are shown in Figure 39.

The Ubrary Graphics provides procedures for plotting. There are no NUCLARR
Ubrary dependencies, as shown in Figure 40.

The Ubrary HWPlot provides procedures which create plots using data referenced in the
search storage buffer. NUCLARR library dependencies are shown in Figure 41.

26

HWFile.MOD 1

1 HWFile.DEF
n

General StoreMan

program

definition
module

libraries

Figure 39. Library dependencies for the program HWFUe.

Graphics.MOD

Graphics.DEF

program

definition
module

Figure 40. No Ubrary dependencies for the program Graphics.

HWPlot.MOD 1

1 H¥Plot.DEF

General StoreMan
i

Graphics

program

definition
module

libraries

Figure 41. Library dependencies for the program HWPlot.

The library HardAg provides procedures for data aggregation processing. NUCLARR
Ubrary dependencies are shown in Figure 42.

HardAg.MOD

HardAg.DEF

program

definition
module

StatLib General StoreMan libraries

Figure 42. Library dependencies for the program HardAg.

27

The library AdHocHw provides procedures for ad hoc searching of hardware event
records. Found records are then referenced in the search storage buffer. NUCLARR
Ubrary dependencies are shown in Figure 43.

1 AdHocHw.MOD

1 AdHocHw.DEF 1

ClrHouse General StoreMan

1
AHwAgg.LOD

OlayHw HwDispla

program

definition
module

level 2
overlay

libraries

Figure 43. Library dependencies for the program AdHocHw.

The library DescrHw provides procedures for hardware event descriptive searching.
Found records are then referenced in the search storage buffer. NUCLARR library
dependencies are shown in Figure 44.

1 DescrHw.MOD

1 DescrHw.DEF 1

ClrHouse General

program

StoreMan

definition
module

1

DHwAgg.LOD

OlayHw

level 2
overlay

HwDispla libraries

Figure 44. Library dependencies for the program DescrHw.

The Ubrary SFilelO provides procedures for copying data record references between a
DOS file and the search storage buffer. NUCLARR Ubrary dependencies are shown in
Figure 45.

08

SFUeI0.M0D

SFilelCDEF

program

definition
module

ClrHouse General StoreMan libraries

Figure 45. Library dependencies for the program SFilelO.

HCF Data Processing Programs

There are two programs used for HCF data processing. The program DataNtry is used
to maintain the HARDWARE data base, whUe the program RetrHard is for retrieving data
from HARDWARE.

The program DataNtry is used to enter and modify data in the HARDWARE data base
and to maintain the qualifying records of HARDWARE. QuaUfying records are those
records used to evaluate the vaUdity of data being entered. Examples of qualifying records
are records for plant codes (faciUty identification), component codes, component design
codes, failure mode codes, normal state codes, and application codes. DataNtry is also used
to perform other maintenance chores such as data aggregation calculations and generation of
various data reports. This program uses an overlay structure (see Figure 3). The foUowing
nine module descriptions (ManualDE through DBUtU) are for those modules included in
DataNtry's overlay stracture. These modules are all accessed by selection from the menu
presented in DataNtry. NUCLARR Ubrary dependencies arc shown in Figure 46.

DataNtry.M0D

OlayHw

program

library

Figure 46. Library dependencies for the program DataNtry.

The module ManualDE is used to enter and modify data in the HARDWARE relation
named Source. Calculations associated with the data are done during add and modify
operations. NUCLARR Ubrary dependencies are shown in Figure 47.

The module LoadDB copies HCF data from an ASCII file into die HARDWARE
relation named Source. NUCLARR Ubrary dependencies are shown in Figure 48.

29

ManuaU)£.MOD

StatLib General

program

library

Figure 47. Library dependencies for the program ManualDE.

LoadDB.M0D

HardFile

program

library

Figure 48. Library dependencies for the program LoadDB.

The module Aggreg aggregates HCF data and calculates the associated probabiUties.
This aggregation may be done for aU basic events or for only those events not yet
aggregated. NUCLARR Ubrary dependencies are shown in Figure 49.

Aggreg.MOD

HardAg

program

library

Figure 49. Library dependencies for the program Aggreg.

The module SorcDump controls the dumping of records from the relation named
Source to a disk file. NUCLARR Ubrary dependencies are shown in Figure 50.

SorcDump.MOD

General

program

library

Figure 50. Library dependencies for the program SorcDump.

The module DManual controls the generation of raw data reports based on records in
the relation named Source. NUCLARR Ubrary dependencies are shown in Figure 51.

The module EdDocumt provides for editing and reporting on documents referenced in

30

DManual.MOD

General

program

library

Figure 51. Library dependencies for the program DManual.

the NUCLARR system for HCF data. NUCLARR Ubrary dependencies are shown in
Figure 52.

EdDocumt.MOD

General

program

library

Figure 52. Library dependencies for the program EdDocumt.

The module EdPlants provides for editing and reporting on plant code (facUity
identification) records. NUCLARR library dependencies are shown in Figure 53.

EdPlants.MOD

General

program

library

Figure 53. Library dependencies for the program EdPlants.

The module HWTables provides for editing and reporting on HARDWARE qualifying
records (other than plant codes). NUCLARR Ubrary dependencies are shown in Figure 54.

HVTables.M0D

General

program

library

Figure 54. Library dependencies for the program HWTables.

The module DBUtU is used for miscellaneous data base utUity fimctions such as
counting the number of records in data base relations and deleting all records in the AgStat

31

relation. There are no NUCLARR Ubrary dependencies.

The program RetrHard makes HARDWARE data avaUable for review but not for
alteration. This program uses an overlay stracture (see Figures 4, 5, and 6). The foUowing
module descriptions are for those modules included in RetrHard's overlay stracture. The
three level 1 overlay modules, DHardw, AHardw, and DocHardw, are accessed by selection
from the menu presented in RetrHard. The otiier modules are level 2 overlay modules
which are accessed from DHardw or from AHardw. NUCLARR Ubrary dependencies are
shown in Figure 55 .

RetrHard.MOD

ClrHouse OlayHw

program

libraries

Figure 55. Library dependencies for the program RetrHard.

The module DHardw provides for descriptive search processing and access to the
search storage buffer. The search storage buffer is used to accumulate HCF data record
references located by the search process. This buffer is cleared at entry to DHardw and by
expUcit user request whUe search criteria are being estabUshed. The following nine module
descriptions (DHwGetF through DHwSaveF) are for those modules included in DHardw's
overlay stracture (see Figure 5). These modules are aU accessed by selection from the menu
presented in DHardw. NUCLARR library dependencies are shown in Figure 56.

DHardw.M0D

ClrHouse General StoreMan OlayHw

program

libraries

Figure 56. Library dependencies for the program DHardw.

The module DHwGetF moves a copy of the contents of a DOS file into the search
storage buffer after first clearing the buffer. If the file is other than one which was created
by DHwSaveF or AHwSaveF, the results of then using the search storage buffer wiU be
unpredictable. NUCLARR Ubrary dependencies are shown in Figure 57.

DHwGetF.MOD

OlayHw SFUelO

program

libraries

Figure 57. Library dependencies for the program DHwGetF.

32

The module DHwSrch performs a descriptive search for HCF data. To perform this
search processing, the user selects a hardware category, hardware component, hardware
component design, hardware event faUure mode, hardware event normal state, and
appUcation. Records which meet the criteria determined by the user's selections are located
and then referenced in the search storage buffer. Through the overlay stracture, DHwSrch
provides access to the module DHwAgg for aggregation of that data referenced in the
search storage buffer. NUCLARR library dependencies are shown in Figure 58.

DHwSrch.MOD

OlayHw DescrHw

program

libraries

Figure 58. Library dependencies for the program DHwSrch.

The module TaUrdAg provides a taUored search and aggregation of specified failure
and exposure data combinations. This is an example of a customized search taUored to a
specific class of data or type of analysis. Records which meet the criteria determined by
the user's selections are located and then referenced in the search storage buffer. Through
the overlay stracture, TailrdAg provides access to the module DHwAgg for aggregation of
that data referenced in the search storage buffer. NUCLARR Ubrary dependencies arc
shown in Figure 59.

TaUrdAg.MOD

ClrHouse General StoreMan OlayHw HwDispla

program

libraries

Figure 59. Library dependencies for the program TaUrdAg.

The module DHwView provides on-screen viewing of those hardwarc event records
currently referenced in the search storage buffer. NUCLARR Ubrary dependencies arc shown
in Figure 60.

DHwView.MOD

OlayHi HWDispla

program

libraries

Figure 60. Library dependencies for the program DHwView.

The module DHwAgg aggregates data from hardware event records referenced in the
search storage buffer. NUCLARR library dependencies are shown in Figure 61.

?3

1 DHwAgg.MODl

OlayHw HardAg

program

libraries

Figure 61. Library dependencies for the program DHwAgg.

The module DHwRep provides reports on hardware event records referenced in the
search storage buffer. NUCLARR library dependencies are shown in Figure 62.

DHwRep.MOD program

OlayHw HWReport libraries

Figure 62. Library dependencies for the program DHwRep.

The module DHwPlot is used to plot probabUity data from hardware events which are
referenced in the search storage buffer. This set of data must be aggregated before plots can
be generated because the plots include aggregation values. NUCLARR Ubrary dependencies
are shown in Figure 63.

1 DHwPloLMOD 1

OlayHw HWPlot

program

libraries

Figure 63. Library dependencies for the program DHwPlot.

The module DHwFile creates an ASCII fUe of hardware event data based on that
hardware event data referenced in the search storage buffer. NUCLARR library
dependencies are shown in Figure 64.

DHwFile.MOD

OlayHw HWFile

program

libraries

Figure 64. Library dependencies for the program DHwFUe.

34

The module DHwSaveF moves a copy of the contents of the search storage buffer into
a DOS file. If the requested DOS file abeady exists, it is overwritten with the buffer
contents. NUCLARR Ubrary dependencies are shown in Figure 65.

DHwSaveF.MOD

OlayHw SFilelO

program

libraries

Figure 65. Library dependencies for the program DHwSaveF.

The module AHardw provides for ad hoc search processing and access to the search
storage buffer. The search storage buffer is used to accumulate HCF data record references
located by the search process. This buffer is cleared at entry to AHardw and by expUcit
user request while search criteria are being established. The foUowing eight module
descriptions (AHwGetF through AHwSaveF) are for those modules included in AHardw's
overlay stracture (see Figure 6). These modules are aU accessed by selection from the
menu presented in AHardw. NUCLARR library dependencies are shown in Figure 66.

AHardw.MOD

ClrHouse General StoreMan OlayHw

program

libraries

Figure 66. Library dependencies for the program AHardw.

The module AHwGetF moves a copy of the contents of a DOS file into the search
storage buffer after first clearing the buffer. If the fUe is other than one which was created
by AHwSaveF or DHwSaveF, the results of dien using the search storage buffer wiU be
unpredictable. NUCLARR Ubrary dependencies are shown in Figure 67.

AHwGetF.MOD

OlayHw SFUelO

program

libraries

Figure 67. Library dependencies for the program AHwGetF.

The module AHwSrch performs an ad hoc search for HCF data. The user selects
parameter values which are used to estabUsh search criteria for this search processing.
These search restriction selections are specified on a single form with the aid of an
elaborate set of help forms. Once the request is made to locate data records, the specified
criteria are cross-checked for consistency and validity. The user is prompted for necessary

35

changes to his input before data records are located. Records which meet the criteria
determined by the user's selections are located and then referenced in the search storage
buffer. A variable is used for message handling so that the proper message appears when
the search criteria form is presented. Through the overlay stracture, AHwSrch provides
access to the module AHwAgg for aggregation of that data referenced in the search storage
buffer. NUCLARR Ubrary dependencies are shown in Figure 68.

r

1 AHwSrch.MOD 1

OlayHw AdHocHw

program

libraries

Figure 68. Library dependencies for the program AHwSrch.

The module AHwView provides on-screen viewing of those hardware event records
currentiy referenced in the search storage buffer. NUCLARR Ubrary dependencies are shown
in Figure 69.

|AHwView.MOD 1

OlayHw HWDispla

program

libraries

Figure 69. Library dependencies for the program AHwView.

The module AHwAgg aggregates data from hardware event records referenced in the
search storage buffer. NUCLARR library dependencies are shown in Figure 70.

1 AHwAgg.MOD 1

1
OlayHw HardAg

program

libraries

Figure 70. Library dependencies for the program AHwAgg.

The module AHwRep reports on hardware event records referenced in the search
storage buffer. NUCLARR Ubrary dependencies are shown in Figure 71.

The module AHwPIot is used to plot probability data from hardware events which are
referenced in the search storage buffer. This set of data must be aggregated before plots can
be generated because the plots include aggregation values. NUCLARR Ubrary dependencies
are shown in Figure 72.

36

AHwRep.MOD program

OlayHw HWReport libraries

Figure 7 1 . Library dependencies for the program AHwRep.

AHwPlot.MOD

OlayHw HWPlot

program

libraries

Figure 72. Library dependencies for the program AHwPlot.

The module AHwFUe creates an ASCII file of hardware event data based on that
hardware event data referenced in the search storage buffer. NUCLARR library
dependencies are shown in Figure 73 .

AHwFUe.MOD

OlayHw HWFile

program

libraries

Figure 73 . Library dependencies for the program AHwFUe.

The module AHwSaveF moves a copy of the contents of the search storage buffer into
a DOS fUe. If the requested DOS file already exists, it is overwritten with the buffer
contents. NUCLARR Ubrary dependencies are shown in Figure 74.

AHwSaveF.MOD

I
OlayHw SFUelO

program

libraries

Figure 74. Library dependencies for the program AHwSaveF.

The module DocHardw allows the user to review identification of documents
referenced in the NUCLARR system for H C F data. NUCLARR Ubrary dependencies are
shown in Figure 75.

37

DocHardw.MOD

ClrHouse

program

library

Figure 75. Library dependencies for the program DocHardw.

HOW TO USE THIS GUIDE

The purpose of this programmer's guide is to help an experienced software engmeer
understand how various products are used together to develop and maintain NUCLARR.
Although this guide may help a less experienced software engineer to better understand the
products used, it is not intended to supplant the technical documentation associated with
these products.

Overview of the Guide

The preceding sections of this guide give an overview of the information a software
engineer wiU need to understand in order to maintain the software of the NUCLARR
system. The associated tools and products needed are also specified. In addition to the
overview, a significant amount of in-depth information is included and, throughout this
guide, references are found to material in the appendices which foUow. Furthermore, those
software engineers maintaining the NUCLARR system software wiU need to have access to
documentation for the various tools and products identified in this guide.

This volume, along with the other volumes of this series, should be used in training a
software engineer newly assigned to maintenance of NUCLARR. For training purposes, the
sections of this volume should be read in the order written. The content of this particular
volume wUl be of Umited use to anyone other than a software engineer.

The most common usage of this guide wiU be that of locating specific modules and
reviewing the design and the implementation stractures of NUCLARR while resolving
execution problems or implementing enhancements to the software. An aUied usage would
be that of determining appropriate compUe and link sequences after making software
changes. For all of these purposes, only sections or appendices appUcable to the issue(s) of
interest need be consulted.

The remainder of this section describes the content of the sections and appendices of
this programmer's guide.

The PROGRAMMING ENVIRONMENT section specifies die programming language,
system development tools and products, and hardware needed for system maintenance. The
DATA STRUCTURE section describes the data base stracture used and its associated
mechanisms. The SOFTWARE ORGANIZATION section defines software terminology
used and reviews organizational methodology and stractures implemented in the NUCLARR
system.

38

The section named PROGRAM COMPILATION AND LINKING covers general issues
regarding the compile and link processes for software elements in the NUCLARR system.
Next, the expUcit compile and link commands to be used are listed.

The DATA BASE COMPILATION section explains issues concerning the compUing of
the NUCLARR data bases and associated terminology.

In die section named DESCRIPTION OF SYSTEM PROGRAMS AND LIBRARIES,
descriptions are provided for those software units programmed for the NUCLARR system.
These descriptions are not detaUed because their main purpose is to lead the programmer to
the proper source code listing for understanding the details of a code's function. When it is
expected that further help is needed, some of these descriptions do include references to
methodology and techniques used or other additional details.

Appendix A provides a key used to locate documentation for those Ubraries accessed
by but not part of the code programmed for the NUCLARR system.

Appendices Bl, B2, CI, and C2 aU contain high level flow charts for procedures
programmed for the NUCLARR system. These charts provide an overview of what each
procedure charted is doing and how it is done; consequently, these charts can serve as road
maps to the source code listings when the software engineer is searching for particular
elements of a procedure. These four appendices also provide procedure reference Usts and
a list of messages at the library or module level, depending on the specific appendix. The
B appendices apply to HEP data processing, with Bl for Ubraries and B2 for modules. The
C appendices apply to HCF data processing, with CI for Ubraries and C2 for modules.

Appendix D presents the software elements involved with the set up of retrieval access.
These elements are the DOS batch fUes used; module charts and reference Usts (as
explained above for appendices Bl, B2, CI, and C2) for each module; THOR reports (as
explained below for appendices E and F) for the data base named MASTER; and source
code listings (as explained below for appendices G and H) for the three programs used in
providing retrieval access.

Appendices E and F contain sample THOR reports showing the format and type of
information available in such data base reports. These samples present a file summary,
record definitions (relation schemas), and forms. THOR reports include their own table of
contents and index. Appendix E is a sample from the data base named DATABANK, and
Appendix F is a sample from the data base named HARDWARE.

Appendices G and H contain sample source code Ustings generated by the
DOCUPROC utility. These samples show the form in which such Ustings are presented,
with line numbering, table of contents, and index suppUed. Appendix G is a sample for
HEP data processing source code, and Appendix H is for HCF data processing source code.

An Example of Appendix Usage

In Appendix D can be found a microcosm example of the usage and form of other
appendices in this volume. This presentation for retrieval access, including the module
charts and reference Usts, the schema and form for MASTER, and program Ustings, shows
the full set of information used in reviewing software elements and their interaction. The

39

elements used here are simple enough and smaU enough to be readUy understood whUe
looking at them coUectively. In contrast, consider the case for HEP data processing:
Appendix Bl contains some flow charts for libraries; Appendix B2 contains some flow
charts for modules; the schema for DATABANK takes about 5(X) pages to print; and the
fiiU set of source code Ustings would be a few hundred pages in printed form. By looldng
at these software elements together, their interaction can be observed. For example, in the
charts and listings for the program MainMenu one can see where the data base MASTER is
accessed and the form MenuMl is displayed for the user. Again, notice that the Ustings
and THOR reports include a table of contents and index for ease of locating elements of
interest.

Requests for Additional Information

Programmers and other users of this volume desiring additional information are
requested to contact either the NRC technical monitor or the NUCLARR Clearinghouse at
the address listed below:

Thomas G. Ryan David I. Gertman
U.S. Nuclear Regulatory Commission - RES NUCLARR Data Clearinghouse
Reliability and Human Factors Branch Idaho National Engineering Laboratory
5640 Nicholson Lane, NUN-316 P- O. Box 1625
Rockville, MD 20852 USA Idaho Falls, ID 83415 USA
(Phone) 301-492-3550 (Phone) 208-526-0652

40

REFERENCES

1. D. I. Gertman, W. E. Gihnore, W. J. Galyean, M. R. Groh, C. D. GentiUon, and B. G.
Gilbert, Nuclear Computerized Library for Assessing Reactor ReliabUity (NUCLARR).
Volume I: Summary Description. NUREG/CR-4639, EGG-2458, February 1988.

2. W. E. Gihnore, C. D. GentiUon, D. I. Gertman, G. H. Beers, W. J. Galyean, and B. G.
Gilbert, Nuclear Computerized Library for Assessing Reactor ReUabUity (NUCLARR).
Volume IV: User's Guide. Parts 1. 2. and 3. NUREG/CR-4639, EGG-2458, May
1988.

3. H. D. Stewart and K. D. RusseU, SAGE: Modula-2 Tools and UtUities. Version 2.0,
EGG-CATT-8229 (to be pubUshed).

4. D. M. Snider and K. L. Wagner, CRYSTAL Graphics: Two-dimensional Graphics in
Modula-2. Version 2.0, EGG-CATT-8230 (to be pubUshed).

41

< x Q

Z

U
J

Q
.

Q
L

<

>
-

LU

DC
<
DC
C

Q

APPENDIX A

LIBRARY KEY

For a Ubrary not coded as part of the NUCLARR system software but accessed by
NUCLARR, it is not obvious in which Ubrary set that Ubrary resides. The purpose of this
Ubrary key is to identify which Ubrary set within the programming environment contains a
particular Ubrary of interest. The Ust, on the left side of the Ubrary key page, names the
Ubrary sets accessed by NUCLARR system software.

The column labels at an angle across the top of the key refer to the names Usted to
the left of the key. The left-most column of the key Usts Ubrary names. An X to the right
of a Ubrary name indicates which Ubrary set contains that Ubrary.

Libraries coded explicitiy for NUCLARR are described in the text of this volume, and
high level flow charts for some of them are found in Appendices Bl and CI. These
NUCLARR libraries are not included on the Ubrary key.

A-2

LIBRARY KEY

(V

SAGE Sv.steni Libraries

Libraries provided within the
SAGE system developed at INEL.

Documentation for these librar­
ies can be found in the SAGE System
manual.

Ad Hoc iStandard Library

Set of libraries which augment
the Logitech supplied libraries. These
libraries are a part of the SAGE Sys­
tem.

Documentation for these librar­
ies can be found in die SAGE System
manual.

Modula-2 Libraries

Libraries provided by the
Modula-2 language environment.
supplied by Logitech, Inc. of Redwood
City, California.

Documentation for these librar­
ies can be found in the Modula-2 man­
ual.

CRYSTAL Graphics Libraries

Set of libraries developed at
INEL.

Documentation for these librar­
ies can be found in die CRYSTAL
Graphics manual.

l ibrary

ASCII

Binary

Convert
Disklib

Files

LCMath

MoveLib

MathUb

PltAsth

PltCurve

PltDAxis

PltMess

Pltlnit

PltOpen

PltPrnt

PltSet

PltTDef

Program

Reports

Sage
SageLib

ScroU

SimplelO

StandardIO

String

Strings

SYSTEM

Terminal

ThorPort

TimeLib

/ /

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

/ /

X

X

X

r

X

X

X

X

X

X

X

X

X

A-3

APPENDIX B1

HEP DATA PROCESSING LIBRARY CHARTS

Bl-l

APPENDIX B1

HEP DATA PROCESSING LIBRARY CHARTS

This appendix contains high level flow charts for some Ubraries used in HEP data
processing. Only charts for those Ubraries programmed expUcidy for NUCLARR are
included. These charts provide an overview of what each procedure is doing and how it is
done; consequentiy these charts can serve as road maps to the source code.

These charts are organized by Ubrary, with the charts of a Ubrary's procedures
presented in alphabetical order. Three Usts precede the charts for each Ubrary. An
alphabetic, itaUcized Ust of procedures local to the Ubrary is given first. This Ust is
subdivided into exported procedures and those which are not exported. These local
procedures are the procedures charted. The next list identifies procedures imported and
names the Ubrary from which each procedure is imported. This Ust is alphabetized by
procedure name with the procedure name italicized. If the Ubraries named here are not
Usted in Appendix A, they may be charted in this appendix. The final Ust is of messages
referenced in the charts. Each message is assigned a number by which the messages are
referenced and by which the list is ordered.

The elements in these charts are boxes and circles. Boxes contain descriptive
comments on the processes being charted. Circled numbers are used to show chart
continuation. Circled letters are used to show looping stractures. Path Unes, used to
connect chart elements, have an arrow head at one end, thus showing the direction of
activity flow from element to element.

Within boxes of the charts, procedure names are frequently used. These names are
bolded and itaUcized. If a procedure name is considered descriptive enough, it may be used
as a description of the process being shown; otherwise, the name wUl occur under a
description and be indented showing that this procedure is used in the process described. If
a local procedure is referenced, its name is followed by the dash character and then the
word 'local'.

When multiple lines exit from a box, the condition determining the use of a path line
wiU be indicated at the line. Any unlabeled path line exiting a box mdicates the normal
path to be taken.

When data base forms or relations are mentioned, they are shown within quotation
marks.

Bl-2

LIBRARY NUCGEN

Local Procedures

Exported

CalcMedHEPEF
Card2StrOFill
Clearinghouse
ClearStack
ConvertErrFailToUErrUFail
ConvertToDataManualPage

Other

-none-

DataCheck
DocCodes
DocType
GetCellType
GetCellValidity
GetMatrixDesc

GetRowDescr
GetVerb
MyCloseRelation
MyOpenRelation
OutputFile
SearchDoc

Procedures Imported

CardToStr Convert
ClearField Sage
ClearRelation Sage
CloseRelation Sage
CloseRelationFiles Sage
CloseReport Reports
CompareFieldC Sage
Concat String
CondRead Terminal
CopyField Sage
DefineHeader Reports
DisplayForm Sage

DisplayMessage Sage
Exp MathLib
FillChar SortLib
FindRecord Sage
GetFieldA Sage
GetFieldB Sage
GetFieldC Sage
GetFileName Files
GetRepeatName Sage
Ln MadiLib
OpenRelation Sage
OpenReport Reports

Pause ThorPort
Power MathLib
PutFieldA Sage
PutFieldC Sage
ReadRecord Sage
Sqrt MathLib
StrToCard Convert
TopOfPage Reports
WrForm Reports
WriteRecord Sage
WrLn Reports
WrString Reports

Messages

(1)
(2)
(3)
(4)
(5)
(6)
(7)

"* ERROR - error factor could not be calculated"
"* ERROR - CalcMedHEPEF, attempted: Ln(0)"
"Telephone Clearinghouse for assistance at (208)526-0735 or FTS 583-0735"
"* ERROR - could not open CellVal"
'** ERROR - could not open Columns"
"* ERROR - could not open MATRCOL"
"Invalid selection"

Bl-3

LIBRARY NUCGEN PROCEDURE CalcMedHEPEF

BEGIN

Calculate error factor
Sqrt

error
DisplayMessage (1)
Pause

Calculate mean HEP
Exp
Power
Ln

error
DisplayMessage (2)
Pause

RETURN

Bl-4

LIBRARY NUCGEN PROCEDURE Card2Stri)Fill

BEGIN

>v
Change cardinal
variable to string

CardToStr

no
M/

1st character in
string = " "?

yes

e
M/

Change character to "0"

..Nk

Get next character.

Last character?

no

yes

M,̂

yes

^ Character = " "?

no

RETURN

Bl-5

LIBRARY NUCGEN PROCEDURE Clearinghouse

BEGIN

\ /

DisplayMessage (3)

N /

RETURN

Bl-6

LIBRARY NUCGEN PROCEDURE ClearStack

BEGIN

Read and remove keyboard
input from stack

CoodBead

-i lk.

Success?
(character read)

yes
-^

Read and remove next
character

CondRead

no
_ iJ^

RETURN

Bl-7

LIBRARY NUCGEN PROCEDURE ConvertErrFailToUErrUfail

BEGIN

Initialize variables
FillCbar

M/
Determine Error/Fail
cardinal code

Nl/

Convert cardinal code to the
corresponding character codes
for error type and failure mode

FillChar

RETURN

Bl-8

LIBRARY NUCGEN PROCEDURE ConvertToDataManualPage

BEGIN

Change matrix cardinal value to
string and fill blanks with O's

CardToStrOFUl - local

Nl̂

Change row cardinal value to
string and fill blanks with O's

CardToStrOFill - local

Change column cardinal value to
string and fill blanks with O's

CardToStrOfW - local

^

RETURN

Bl-9

LIBRARY NUCGEN PROCEDURE DataCheck

BEGIN

^y.
Access specified relation

MyOpenRelation - local
PutFieldC
FindRecord

•^

Data exists?

MyCloseRelation - local
RETURN TRUE

MyCloseRelation - local
RETURN FALSE

Bl-10

LIBRARY NTTCGRN PROCF.DURF, DncCndes

BEGIN

^k_
Is document of usage-t3rpe
"o r ig ina l "?

no
-^ Clearfield

yes

M^
Prepare for display of
document usage- type

PutFieldA

f

Is document of usage-t3rpe
"o r ig ina l "?

no Clearfield

yes

Prepare for display of
document usage-t3T)e

PutFieldA

RETURN

Bl-11

LIBRARY NUCGEN PROCEDURE DocTvpe

BEGIN

•^

Determine document type and
assign description for display

CetFfeldA
PutFieldA

M/
RETURN

Bl-12

LIBRARY NUCGEN PROCEDURE GetCellTvpe

BEGIN

\ ^
Determine cell t)rpe
(Functional group
or individual)

\ -'
RETURN

Bl-13

LIBRARY NUCGEN PROCEDURE GetCellValidity

BEGIN 1

N /
Read record and determine cell
validity value

MyOpenRelation "CellVal" -
PutFieldC
ReadRecord
GetFieldC
MyCloseRelation "CeUVal" -

N

/

/
RETURN

local

local

error
N
/

DisplayMessage (4)

BM4

LgRARYNUCQQEN PRQCEPURE qgtMatrî gPgsc

BEGIN

i l ^

Bring requested matrix description
into memory

OpenRelation "MatrDesc"
PutFieldC
ReadRecord
CloseRelation "MatrDesc"

Ni^

RETURN

Bl-15

LIBRARY NUCGEN PROCEDURE GetRowDescr

BEGIN

Bring requested row description into memory

MyOpenRelation "MATRROW". "Rows" - local
ClearRela tion
PutFieldC
ReadRecord
CopyField
ReadRecord
MyCloseRelation "MATRROW". "Rows" - local

M/

RETURN

Bl-16

LIBRARY NUCGEN PROCEDURE GetVerb

BEGIN

OpenRelation "MATRCOL" error

OpenRelation "Columns" error

Get requested human action verb
ClearRela tion
PutFieldC
ReadRecord
CopyField
ReadRecord

-ik-

CloseRelation "MATRCOL". "Columns"

DisplayMessage (6)

^ DisplayMessage (5j ^

^
RETURN

Bl-17

LIBRARY NUCGEN PROCEDURE MyCloseRelation

1 BEGIN 1

N /
Check initial status
of specified relation

N

closed

CloseRelation

S

/

RETURN

open

\U
CloseRela tionFUes

Bl-18

LIBRARY NUCGEN PROCEDURE MyOpenRelation

BEGIN

^
Specified relation
open?

FindRecord
yes ^ RETURN TRUE

no

M^

OpenRelation

M^

RETURN FALSE

Bl-19

T.mRARYNlirrTFN PROrFDTTRFOntpntFile

BEGIN

Prepare for form display
PutFieldA
ClearField

Display output options
ClearStack — local
DisplayForm "Menunl"
GetFieldA

invalid
selection

DisplayMessage (7)

"E" exit

'S" s tar t

Open the WrForm
file for output

OpenReport

e
\ i /

RETURN

Bl-20

BEGIN

M /

Prepare for form display
PutFieldA
ClearField

Display output options
ClearStack — local
DisplayForm "Menunl"
GetFieldA

invalid
selection

DisplayMessage (7)

"E" exit

'S" s ta r t

) RETURN

Determine output destination

Set up for report and begin output
OpenReport
DefineHeader
WrForm "RepDocl", "RepDoc2"
OpenRelation "CellData"
ClearRela tion

Bl-21

LIBRARY NUCGEN PROCEDURE SearchDoc

-Mi-
Output cross references on usage-type
"original" for specified document

CopyField
ReadRecord
WrString
WrLn
WrForm

M/

Output cross references on usage-type
"reference" for specified document

CopyField
ReadRecord
WrString
WrLn
WrForm

\ i /

CloseRelation "CellData"
CloseReport

M/-

RETURN

Bl-22

LIBRARY StorageM

Local Procedures

Exported

ClearSBuffer
DecodeCellDataKey
GetFile

IncludeNewKey
RemoveKey
RetrieveKey

SaveFile
ShowBufferDescription
ViewBufferData

Other

GelDocumoBtAndPlant ReadyForFilelO ShowCombinedHEPs

Procedures Imported

ADR SYSTEM
BinaryDelete SortLib
Binarylnsert SortLib
BinarySearch SortLib
CalcMedHEPEF NUCGEN
ClearField Sage
ClearingHouse NUCGEN
ClearRelation Sage
ClearStack NUCGEN
Close Files
CloseRelation Sage
CloseRelationFiles Sage
CompareKey SortLib
Concat String
ConvertToDataManualPage

NUCGEN

CopyField Sage
DisplayBackground Sage
DisplayForm Sage
DisplayMessage Sage
DisplaySource NUCPRINT
FillChar MoveLib
GetCellType NUCGEN
GetFieldA Sage
GetFieldB Sage
GetFieldC Sage
GetFieldF Sage
Lookup DiskLib
MoveString ThorUtil
OpenRelation Sage

PutFieldA Sage
PutFieldB Sage
PutFieldC Sage
PutFieldF Sage
ReadBytes Binary
Remove Files
Reset Files
Rewrite Files
5/ZE SYSTEM
StrToCard Convert
Substring String
TSI2E SYSTEM
WriteBytes Binary

M£ssas£s

(1) - "A valid DOS file name is needed for this option"
(2) - ' 'Selected opdon is not provided' *
(3) - ' 'Current located records will be discarded if you proceed''
(4) - "Copying records from requested file. . . please stand by"
(5) - ' 'Can not read records on requested file"
(6) - "All records have been copied firom requested file' *
(7) - "Can not read description on requested file"
(8) - ' 'Can not read record count on requested file''
(9) - ' 'Requested file is not available''
(10) - "Last Sample Plot being displayed"

Bl-23

LIBRARY StorageM

- "Failed in attempt to copy the storage buffer to requested file"
- "Storage buffer is empty, there is nothing to copy to a file"
- "Records have been copied to requested file"
- "Description of storage buffer was updated"
- "No HEP available for this task"
- "Division by zero attempted (for mean or erf)"
- "No HEP available for tiiis cell"
- "Can not determine functional group"
- "No HEP available for this functional group"
- "First record in storage buffer, use 'P' again to see first record"
- "Last record in storage buffer, use 'N' again to see first record"
- "No data in buffer to be viewed"
- "Could not read search buffer"
- "Illegal Error/Fail code in data"
- "Requested record removed from search buffer"
- "Unselect was used to clear S buffer"

Bl-24

LIBRARY StorageM PROCEDURE ClearSBuffer

BEGIN

M /

Clear storage buffer description
and clear the buffer

FillCAar
ADR
SfZE

iiK.

RETURN

Bl-25

LIBRARY StorageM PROCEDURE DecodeCellDataKey

BEGIN

Mi^

Get "CellData" key
RetrieveKey

error

M.̂ .

RETURN FALSE

~7^

Break "CellData" key string into parts
Substring

Change substrings to cardinal values
StrToCard

error

RETURN TRUE

Bl-26

LIBRARY StorageM PROCEDURE GetDocumentAndPlant

BEGIN

j^^

Read plant code record into memory
OpenRelation "Plant"
CopyField
ReadRecord
CloseRelation "Plant"

M̂
Read document record into memory

OpenRelation "Referenc"
CopyField
ReadRecord
CloseRelation "Referenc"

M<

RETURN

D 1 ^n

LIBRARY StorageM PROCEDURE GetFile

BEGIN

Data in buffer? yes
^ DisplayMessage (3j

no
e

\ i /

P r e p a r e for file 10
PutFieldA
ClearField

M/
Read records from file?

ReadyForFilelO - local
no) RETURN

yes

P r e p a r e t o r e a d r e c o r d s
f r o m file

ClearSBuffer
DisplayMessage (4)
GetFieldA
Lookup
Reset

error
DisplayMessage (9)
RETURN

Read records from file
into buffer

Readbytes
error

DisplayMessage (5), (7), or (8)

Delete file
Remove

ClearSBuffer - local

Close file
Close
DisplayMessage (6)

^ Check record count =0

>0

M /

RETURN

Bl-28

LIBRARY StorageM PROCEDURE IncludeNewKey

BEGIN

M^

Get "CeUData" key
GetFieldA

Load "CellData" key into
buffer maintaining
sorted order

BinarySearch
Binarylnsert

M/

RETURN

Bl-29

LIBRARY StorageM PROCEDURE ReadyForFilelO

BEGIN

_ : J ^
Prepare for form display

ClearField

M /

Display file options
ClearStack
DisplayForm "BufferlO"
GetFieldA

"M" move
records

invalid
selection

^ DisplayMessage (2)

"?" hotline \ Clearinghouse
ClearJfield

"E" exit

RETURN FALSE

Valid filename?
CompareKey

no DisplayMessage (1)

yes

RETURN TRUE

Bl-30

LIBRARY StorageM PROCEDURE RemoveKey

BEGIN

s/
Remove "CellData" key
from storage buffer

BinaryDelete
TSfZE

Nk

RETURN

Bl-31

LIBRARY StorageM PROCEDURE RetrieveKey

BEGIN

vl/

Check storage buffer
position

invalid

valid

N/

Retrieve "CellData" key
from buffer

RETURN

RETURN

Bl-32

LIBRARY StorageM PROCEDURE SaveFile

BEGIN

Nl/

Data in buffer? no

yes
M/

Prepare for file 10
ShowBufferDescription
PutFieldA

M/

Save records to file?
ReadyForfilelO - local

no

yes
M/

P r e p a r e t o save r e c o r d s
to file

GetFieldA
DisplayMessage (12)
Lookup

error

M^

Allow for file rewrite
Rewrite

Write records to file
WriteBytes

DisplayMessage (13)

error

DisplayMessage (11)

RETURN

RETURN

^ DisplayMessage (10)

DisplayMessage (10)

Delete file
Remove

(-
„.M/ .

RETURN

Bl-33

LIBRARY StorageM PROCEDURE ShowbufferDescription

BEGIN

:y<i_

Show current buffer description
and allow for user modification

PutFieldA
ClearStack
DisplayForm "Menur40D"

-ilk-

Prepare for next buffer
description display

GetFieldA
DisplayMessage (14)

RETURN

Bl-34

LIBRARY StorageM PROCEDURE ShowCombinedHEPs

BEGIN

Set up key and read HEP
record into memory for a task

PutFieldC
ReadRecord
CloseRelationFiles "HEP"

Move task HEP data to "Utility"
CopyField

error
^

CloseRelationFiles "HEP"

DisplayMessage (15)

Calcula te add i t iona l t a s k HEP
data and put into "Utility"

GetFieldF
CalcMedHEPEF
PutFieldF
PutFieldC

error DisplayMessage (iff) ^

M/

RETURN

-̂ k_
Set up key and read HEP
record into memory for a cell

PutFieldC
ReadRecord
CloseRelationFiles "HEP"

Move cell HEP data to "Utility"
CopyField

error CloseRelationFiles "HEP"

DisplayMessage (17)

^

Calcu la t e a d d i t i o n a l cell HEP
data and put into "Utility"

GetFieldF
CalcMedHEPEF
PutFieldF
PutFieldC

error DisplayMessage (Iff)

Bl-35

LIBRARY StorageM PROCEDURE ShowCombinedHEPs

©
Search method? ad hoc

'yj^

descriptive

Was search for a
functional group?

no

yes

M/
Determine functional group

ReadRecord
GetFieldC
CloseRelationFiles "HEP"

error
"7F

Nk
Set up key and read functional
group record into memory

PutFieldC
ReadRecord
CloseRelationFiles "HEP"

Move functional group HEP data
into "Utility"

CopyField

error

M^

Calculate additional functional group
HEP data and put into "Utility"

GetFieldF
CalcMedHEPEF
PutFieldC

Display "UtiUty" values
DisplayBackground "Menur36"

RETURN

Display "Utility" values

CloseRelationFiles "HEP"
^ DisplayMessage (18)

DisplayBackground "Menur36"

M^

RETURN
'Tf-

error N DisplayMessage (16)

Display "Utility" values
DisplayBackground "Menur36G"

RETURN

Bl-36

LIBRARY StorageM PROCEDURE ViewBufferData

BEGIN

:5J<i_

Data in buffer? no

yes

DisplayMessage (22)
RETURN

M^

Prepare for record access in "HEP",
"CellData", "Columns", "MATRCOL".
"MatrDesc". "MATRROW", "Rows",
"TaskStmt"

OpenRela tion
CloseRelationFiles

Determine search t3rpe.

Display search header

PutFieldA
DisplayBackground "Menur32"

<r

Nl/
Get task cell information

DecodeCellDataKey error

Nk
Read record into memory

ReadRecordC
CloseRelationFiles "MatrDesc"

• ^

Close "HEP". "CellData". "Columns".
"MATRCOL". "MatrDesc". "MATRROW".
"Rows". "TaskStmt"

CloseRela tion
DisplayMessage (23)
RETURN

Bl-37

LIBRARY StorageM PROCEDURE ViewBufferData

0
^

Set up key and read record into
memory for "MATRROW". "Rows",
"MATRCOL", "Columns". "TaskStmt"
"CellData"

ClearRelation
PutFieldC
ReadRecord
ReadRecordR
CloseRela tionFUes

M/

Read records into memory
for "Plant" and "Referenc"

GetDocumentAndPlant

ik
Put values into "Utility"

DisplaySource
Con vertToDataManualPage
PutfieldA
GetFieldC

error

NI^

Display data heading "Menur33".
search header "Menur32",
t a s k s t a t e m e n t "Menur34".
e r ro r / f a i l heading "Menur29"

DisplayBackground

Clear command selection
ClearField

Close "HEP". "CellData", "Columns",
"MATRCOL". "MatrDesc". "MATRROW".
"Rows". "TaskStmt"

CloseRela tion
DisplayMessage (24)
RETURN

Bl-38

LIBRARY StorageM PROCEDURE ViewBufferData

® Display task statement "Menur34".
error / fai l heading "Menur29" |̂

DisplayBackground

^
Display viewing options

ClearStack
DisplayForm

"Menur35" or "Menur35A"
GetFieldA

"E" 'U '

RemoveKey

invalid
selection

DisplayMessage (2)

"7" hotline Clearinghouse
Clearfield

"N" next.
^ First time? no ^ Position at first

buffer record

Last buffer
record?

no Position at next
buffer record

yes
Nk

DisplayMessage (21)

^ First time?

^..
Buffer empty? no

yes •^
DisplayMessage (25)
Position at next or
last buffer record

.i>k:_

ClearSBuffer
DisplayMessage (26)

M^ M^
Close "HEP", "CellData".
"Columns", "MATRCOL".
"MatrDesc". "MATRROW".
"Rows". "TaskStmt"

CloseRelation

RETURN

no

yes

^ Position at last
buffer record

• ^

First buffer
record?

no
-^

yes
dis­

position at
previous
buffer record

DisplayMessage (20)

M /

\ Valid option?

Valid option? J12-
• ^

yes

yes Clearfield

no
M^

DisplayMessage (2)

ShowCombinedHEPs
ClearField

Bl-39

LIBRARY Retrieve

Local Procedures

Exported

CheckForError

Other

-None-

Procedures Imported

Call Program
Clearinghouse NUCGEN
ClearRelation Sage
ClearSBuffer StorageM
ClearScreen ThorPort

Messages

(1) - "The HRA Data Bank can not be accessed''
(2) - "Preparing ad hoc search screen - standby . . . "
(3) - "Preparing for plot processing - standby . . . "
(4) - "Invalid option"
(5) - "Missing module"
(6) -''VCTsion error' *
(7) - ' 'Selected overlay cannot be provided''
(8) - "CellData relation is open''
(9) - * 'CeUVal relation is open"
(10) - "Columns relatino is open"
(11) - "HEP relation is open"
(12) - "MATRCOL relation is open"
(11) - "MATRROW relation is open"
(12) - "MatrDesc relation is open"
(13) - "Plant relation is open"
(14) - "Refwenc relation is open"
(15) - "TaskStint relation is open"

Bl-40

FilesLeftOpen

ClearStack NUCGEN
CloseDataBase Sage
DisplayForm Sage
DisplayMessage Sage

FindRecord Sage
GetFieldA Sage
OpenDataBase Sage
Pause ThorPort

LIBRARY Retrieve

BEGIN

Prepare database for access
OpenDataBase "DATABANK.DFL"

Clear storage buffer
dearSSuffer

error
DisplayMessage (J)
RETURN

Display main menu options
ClearXelaiion "UtiUty". "UCommand"
ClearStack
DisplayForm "MenurOl"
GetFieldA

14 tl

Overlay the file "DocHuman.LOD"
Program. Call

"8"

invalid
option

-^ DisplayMessage (1)

^ ClearingHouse

"9"
Check for overlay errors

CheckForError - local

Overlay the file "SavFileP.LOD"
Program. Call

4
Overlay the file "GetFileP.LOD"

Program. Call

Overlay the file "GenASCH.LOD"
Program. CaD

^

-^

Overlay the file "HEPAgg.LOD"
Program. CaD

Overlay the file "PltHuman.LOD"
DisplayMessage (3)
Program. CaD

Overlay the file "GetRep.LOD"
Program. CaD

Overlay the file "AdHocHum.LOD"
DisplayMessage (2)
Program. CaD

Overlay the file "DescrHum.LOD"
Program. CaD

ClearScreen
CloseDataBase "DATABANK.DFL" RETURN

Bl-41

LIBRARY Reoieve PROCEDURE CheckForError

1 BEGIN 1

^ /
Overlay access error?

N

yes

no

DisplayMessage (6), (6). or (7)

\
/

RETURN

Bl-42

LIBRARY Retrieve PROCEDURE FilesLeftOpen

BEGIN

i l i -

Check rela t ions "relCellData", "relCellVal".
"relColumns". "relHEP". "relMATRCOL".
"relMATRROW", "relMatrDesc", "relPlant".
"relReferenc". "relRows", "relTaskStmt"
for files left open

Files left open? no

yes

M̂
DisplayMessage (8) (9) (10) (11)
(12) (13) (14) and/or (15)

(r

s/
RETURN fileCount

Bl-43

APPENDIX B2

HEP DATA PROCESSING MODULE CHARTS

B2-1

APPENDIX B2

HEP DATA PROCESSING MODULE CHARTS

This appendix contains high level flow charts for some modules used in HEP data
processing. These charts provide an overview of what each module and each of its
procedures is doing and how it is done; consequently, these charts can serve as road maps
to the source code.

These charts are organized by module. For a particular module, the chart of the
module is first, followed by charts of that module's procedures presented in alphabetical
order. Three lists precede the charts for each module. An alphabetic, italicized list of
procedures local to the module is given first. These local procedures are the procedures
charted. The next Ust identifies procedures imported and names the library from which
each procedure is imported. This list is alphabetized by procedure name with the procedure
name italicized. If the libraries named here are not listed in Appendix A, they may be
charted in Appendix Bl. The final list is of messages referenced in the charts. Each
message is assigned a number by which the messages are referenced and by which the list
is ordered.

The elements in these charts are boxes and circles. Boxes contain descriptive
comments on the processes being charted. Circled numbers are used to show chart
continuation. Circled letters are used to show looping structures. Path lines, used to
connect chart elements, have an arrow head at one end, thus showing the direction of
activity flow from element to element.

Within boxes of the charts, procedure names are frequently used. These names are
bolded and italicized. If a procedure name is considered descriptive enough, it may be used
as a description of the process being shown; otherwise, the name will occur under a
description and be indented showing that this procedure is used in the process described. If
a local procedure is referenced, its name is followed by the dash character and then the
word 'local'.

When multiple lines exit from a box, the condition determining the use of a path line
will be indicated at the line. Any imlabeled path line exiting a box indicates the normal
path to be taken.

When data base forms or relations are mentioned, they are shown within quotation
marks.

R9-2

MODULE Retrieve

Local Procedures

CheckForError FilesLeftOpen

Prftccdures Imported

Call Program ClearStack NUCGEN FindRecord Sage
Clearinghouse NUCGEN CloseDataBase Sage GetFieldA Sage
ClearRelation Sage DisplayForm Sage OpenDataBase Sage
ClearSBuffer StorageM DisplayMessage Sage Pause ThorPort
ClearScreen ThorPort

Mfissasfis

(1) - "The HRA Data Bank can not be accessed"
(2) - "Preparing ad hoc search screen - standby . . . "
(3) - "Preparing for plot processing - standby . . . "
(4) -"Invalidoption"
(5) - "Missing module"
(6) - "VCTsion error"
(7) - ' 'Selected overlay cannot be provided"
(8) - "CellData relation is open"
(9) - • 'CellVal relation is open''
(10) - "Columns relatino is open"
(11) - "HEP relation is open"
(12) - "MATRCOL relation is open"
(11) - "MATRROW relation is open"
(12) - "MatrDesc relation is open"
(13) - "Plant relation is open"
(14) - "Refo-enc relation is open"
(15) - "TaskStmt relation is open"

B2-3

MODULE Retrieve

BEGIN

sU
Prepare database for access

OpenDataBase "DATABANK.DFL"

Clear storage buffer
1 aearSBufter

/

error DisplayMessage (1)
^ RETURN

Display main menu options
ClearEelaUon "UtiUty". "UCommand"
ClearStack
DisplayForm "MenurOl"

\ GetFieldA

"E" ft 4 »

\

"2"

/'

"3" "4" "5" "6" ityii "8"

s
^

N

/

N
A

N
?

s
/

N

Overlay the file "DocHuman.LOD'
Program. CaD

/

N

/

"9

invalid
option ^

/
itntt

•

/

"

v i y

J DisplayMessage (1)

\ Cleariiigbouse

-^

\
)

Check for overlay errors
CheckForError - local

Overlay the file "SavFileP.LOD"
Program. Call

Overlay the file "GetFileP.LOD"
Program. Call

Overlay the file "GenASCH.LOD"
Program. Call

Overlay the file "HEPAgg.LOD"
Program.Call

y

s
}

\
/

V

/

\
/

Overlay the file "PltHuman.LOD" 1
DisplayMessage (3)
Program.CaU

Overlay the file "GetRep.LOD"
Program. Call

s
/

s
/

Overlay the file "AdHocHum.LOD"
DisplayMessage (2)
Program. Call

Overlav the file "DescrHum.LOD' 1
Program. CaD

\
}

s
/

\

ClearScreen
CloseDataBase "DATABANK.DFL" ^ RETURN

B2-4

MODULE Retrieve PROCEDURE CheckForError

BEGIN

Overlay access error? no

yes

DisplayMessage (5) (6) or (7)

e-
M̂

RETURN

B2-5

MODULE Retrieve PROCEDURE FilesLeftOpen

BEGIN

Check relations "CeUData". "CellVal".
"Columns". "HEP", "MATRCOL".
"MATRROW". "MatrDesc", "Plant".
"Referenc". "Rows". "TaskStmt"
for files left open

Files left open*? no

yes

i J ^
DisplayMessage (8) (9) (10) (11)
(12) (13) (14) and/or (15)

Nl/

RETURN fileCount

B2-6

MODULE HEPAgg

Local Procedures

AggregateHEP
CalculateForTasklnBuffer

GetCellDataRecord ReadCellDataRecord

Procedures Imnorted

CalcCellorFuncGrpHEP Calc
CalcTaskHEP Calc
Clearinghouse NUCGEN
ClearScreen ThorPort
ClearStack NUCGEN
Close Files
CloseDataBase Sage
CloseRelation Sage
CloseRelationFiles Sage
CloseReport Reports
CompareKey SortLib
Concat String
CondRead Terminal
ConvertToDataManualPage

NUCGEN

CreateBuffrReport BReports
DecodeCellDataKey StorageM
DefineReport Reports
DisplayForm Sage
DisplayMessage Sage
DisplaySource NUCPRINT
FillChar MoveLib
FindRecord Sage
GetFieldA Sage
GetFieldC Sage
GetFieldF Sage
Lookup DiskLib
OpenDataBase Sage
OpenRelation Sage

OpenReport Reports
Pause ThorPort
ReadBytes Binary
ReadRecord Sage
ReadRecordC Sage
ReadRecordR Sage
Remove Files
Reset Files
Rewrite Files
ShowBufferDescription StorageM
TopOfl*age Reports
WrForm Reports
WriteBytes Binary

Messages

(1) - ' 'No data in buffer, therefore no aggregation"
(2) - "Aggregation in process - please standby ..."
(3) - ' 'Failed opening cell data for HEP aggregation''
(4) - ' 'Can not access one of the located data records"
(5) - ' 'Aggregation of located records stopped as requested"
(6) - " Buffer aggregation completed, no report was requested''
(7) - "Invalid selection"
(8) - ' 'A valid DOS file name is needed for this option"
(9) - ' 'Error trying to open report file''
(10) - "Report with aggregate HEP sent to printer"
(11) - "Report with aggregate HEP sent to file 'xxxxxx"*
(12) - "Failed in reading cell data for HEP aggregation"

B2-7

MODULE HEPAgg

BEGIN

^l<i

Calculate HEP for records
located

AggregateHEP— local

M/

END

B2-8

MODULE HEPAgg PROCEDURE AggregateHEP

BEGIN

^^
Data in buffer? no ^ DisplayMessage (J)

yes

Prepare for aggregation
ShowBufferDescription
Pause
OpenRelation "CellData"
ClearScreen
DisplayMessage (2)

error ^ DisplayMessage (3)

Initialize arrays sourceHEPData
and taskHEPData. and load first
record into sourceHEPdata.
Initialize "previous" record
key value.

GetCellDataRecord - local

error

Make "initial" record key the
same as "previous" record key.

More records in buffer?

no

yes

M/

^ RETURN
71̂

DisplayMessage (4)

Set aggregated HEP equal
to source HEP value.

^ Assign aggregation
technique.

CloseRelation "CellData"

B2-9

MODULE HEPAgg PROCEDURE AggregateHEP

M/

Get next record
GetCellDataRecord local

error DisplayMessage (4)
RETURN

; 5 i l ^

Same t a s k ? yes

no

Last located
record?

: 5 l ^

Previous task has
only 1 source?

yes no

Set task HEP equal
to source HEP

no
• ^

yes

Current task
becomes
previous

-^

Calculate task HEP
Con vertToDa taMana ulPage
PutFieldA
PutFieldC
CalculateForTaskfnBuffer - local

M/

Current task
becomes previous

user abort

CloseRelation "CellData"
DisplayMessage (5)
RETURN

M/

Last loca ted r eco rd? no

yes
M/

CloseRelation "CellData"

Assign aggregation technique

Calculate buffer HEP
CalcCellorFuncGrpHEP

B2-10

MODULE HEPAgg PROCEDURE AggregateHEP

©-
Set up for form display

PutFieldA
^ PutFieldF

ClearField
Clear message line

DisplayMessage

e
•Nk

Display report options
ClearStack
DisplayForm "Menur43"
GetFieldA

"R" report

invalid
selection

^ DisplayMessage (7)

"?" hotline \ Clearinghouse
PutfieldA

'E" exit

^
Set up for a report

PutFieldA
Clearfield

DisplayMessage (6)
RETURN

^
Display output options

ClearStack
DisplayForm "Menur41"
GetFieldA

"S" s tar t

invalid
selection

^ DisplayMessage (7)

"?" hotline \ Clearinghouse
PutFieldA

"E" exit
DisplayMessage (6)
RETURN

Valid file name?
CompareKey

no ^ DisplayMessage (8)

yes

B2-11

MODULE HEPAgg PROCEDURE AggregateHEP

Nl̂

Generate buffer report
OpenReport
CreateBufferReport

M/
to file

DisplayMessage (11)

error

to console

Nl /
to printer

DisplayMessage (10)

^ DisplayMessage (9)

^

CloseReport

RETURN

B2-12

MODULE HEPAgg PROCEDURE CalculateForTasklnBuffer

BEGIN

Move data from sourceArray
into sourceData.

Update variables

Calculate HEP

CalcTaskHEP

-ilC

Put calculated HEP values
into taskArray.

RETURN

B2-13

MODULE HEPAgg PROCEDURE GetCellDataRecord

BEGIN

Get task cell information

DecodeCellDataKey
error

ReadCellDataRecord - local error

CloseRelation "CellData"
RETURN

N DisplayMessage (12)

Load cell HEP data into
dataArray

GetFieldF
GetFieldC

S /

RETURN

B2-14

MODULE HEPAgg PROCEDURE ReadCellDataRecord

BEGIN

M^

Set up key and read record
into memory

PutFieldC
ReadRecord

Nl/
RETURN

d 1 c

APPENDIX 01

HCF DATA PROCESSING LIBRARY CHARTS

Cl-l

APPENDIX 01

HCF DATA PROCESSING LIBRARY CHARTS

This appendix contains high level flow charts for some libraries used in HCF data
processing. Only charts for those Ubraries programmed explicitly for NUCLARR are
included. These charts provide an overview of what each procedure is doing and how it is
done; consequently, these charts can serve as road maps to the source code.

These charts are organized by library, with the charts of a Ubrary's procedures
presented in alphabetical order. Three Usts precede the charts for each Ubrary. An
alphabetic, itaUcized Ust of procedures local to the Ubrary is given first. This list is
subdivided into exported procedures and those which are not exported. These local
procediu-es are the procedures charted. The next list identifies procedures imported and
names the Ubrary from which each procediure is imported. This list is alphabetized by
procedure name with the procedure name italicized. If the Ubraries named here are not
Usted in Appendix A, they may be charted in this appendix. The final list is of messages
referenced in the charts. Each message is assigned a number by which the messages are
referenced and by which the list is ordered.

The elements in these charts are boxes and circles. Boxes contain descriptive
comments on the processes being charted. Circled numbers are used to show chart
continuation. Circled letters are used to show looping structures. Path lines, used to
cotmect chart elements, have an arrow head at one end, thus showing the direction of
activity flow firom element to element.

Within boxes of the charts, procedure names are frequently used. These names are
bolded and itaUcized. If a procedure name is considered descriptive enough, it may be used
as a description of the process being shown; otherwise, the name will occur under a
description and be indented showing that this procedure is used in the process described. If
a local procedure is referenced, its name is followed by the dash character and then the
word 'local'.

When multiple lines exit fi-om a box, the condition determining the use of a path line
wiU be indicated at the line. Any unlabeled path line exiting a box indicates the normal
path to be taken.

When data base forms or relations are mentioned, they are shown within quotation
marks.

Cl-2

LIBRARY ClrHouse

Ixical Prncgdures

Exported

Clearinghouse

Other

-none-

Procgdurw Imported

DisplayMessage Sage

Mes.sage.s

(1) - "Telq)hone Clearinghouse for assistance at (208)526-0735 or FTS 583-0735"

Cl-3

LIBRARY ClrHouse PROCEDURE Clearinghouse

BEGIN

N /

DisplayMessage (J)

N /

RETURN

Cl-4

LIBRARY General

Local Procedures

Exported

Among
BlankData
CheckRelationStatus
ClearMessage
ClearStack
ClearUEvent

ConvertMilitaryDate
DisplaySageError
FailureGroupMember
GetCatName
GetFailureGroups
MilitaryDate

MyCloseRelation
MyOpenRelation
PlacesC
ShowSageError

Other

-nonc-

Procedures Imported

ADR SYSTEM
CardToStr Convert
ClearField Sage
ClearRelation Sage
ClearScreen ThorPort
CloseDataBase Sage
CloseRelation Sage
CloseRelationFiles Sage
Compare String
CompareFieldA Sage
CompareFieldC Sage
CompareKey SortLib
Concat String
CondRead Terminal
CopyField Sage
CurrentDatel TimeLib
CursorMove ThorPort
DefineFieldCheck Sage
DeleteRecord Sage

DeleteRelation Sage
DisplayForm Sage
DisplayFormV Sage
DisplayFormVIP Sage
DisplayMessage Sage
FillChar SortLib
FindRecord Sage
FixFileName ThorPort
GetBlock Sage
GetFieldA Sage
GetFieldB Sage
GetFieldC Sage
GetFieldF Sage
GetFieldl Sage
GetFieldF Sage
GetRepeatName Sage
Length String
MoveLeft SortLib
MoveString ThorUtil

OpenDataBase Sage
OpenRelation Sage
PflMjc ThorPort
Position String
PutFieldA Sage
PutFieldC Sage
PutFieldF Sage
PutFieldl Sage
ReadRecord Sage
ReadRecordA Sage
RelationlsOpen Sage
ReWriteRecord Sage
ScanChar SortLib
5ort SortLib
StrToCard Convert
Substring String
WriteLn Terminal
WriteRecord Sage
WriteString Terminal

Messages

-none-

Cl-5

LIBRARY General PROCEDURE Among

1 BEGIN 1

NU

Initialize test array
FillCbar

N

X
Compare check—item to
next item in list

MoveLeft
Compare

no

N /

Match?

N

1 yss

1)
no

1

End of l i s f

\

yes

RETURN FALSE

RETURN TRUE

Cl-6

LIBRARY General PROCEDURE BlankData

BEGIN

M/̂

First character nul?
yes

^ RETURN TRUE

no

M/..

First character " - "?

yes

M^

More characters?

no

no ^ RETURN TRUE

yes

\1/

Second character " - "?
yes

RETURN TRUE

no

e
vl/

Initialize character
index

f

Character "nul"?
yes

^ RETURN TRUE

no

Character " "? no
RETURN FALSE

yes

M/
Get next character

Last character?
no

yes

RETURN TRUE

Cl-7

LIBRARY General PROCEDURE CheckRelationStatus

BEGIN

Check to see if specified
relation is open

ReadRecord

Nk

Successful read?
yes

RETURN TRUE

no

\ i ^

RETURN FALSE

Cl-8

LIBRARY General PROCEDURE ClearMessage

BEGIN

Clear message line on screen
DisplayMessage

iU
RETURN

Cl-9

LIBRARY General PROCEDURE ClearStack

BEGIN

M^

Read and remove keyboard
input from stack

CondRead

<r

^
Success?
(character read)

yes Read and remove next
character

CondRead

no

RETURN

Cl-10

LIBRARY General PROCEDURE ClearUEvent

BEGIN

M^

Clear relation
OpenRelation "UEvent"
DeleteRelation "UEvent"
CloseRelation "UEvent"

RETURN

Cl-11

LIBRARY General PROCEDURE ConvertMilitaryDate

1 BEGIN

s /
Date < 10 characters? 1

\

no

Date > 11 characters? 1

N

no

yes J
\

yes J
/

Inform user of date error

Fill remainder of string
with nul character

FillChar

/

/
String, "str", for millitary
d a t e < 11 c h a r a c t e r s ?

\

no

Initialize " s t r " a r r a y
1 FillChar

s /

yes ^
/
J Inform user of string error

Move day and year into "str"

MoveLeft

\ /•
Change month to millitay format
and move into "str"

MoveLeft
FillChar
StrToCard
FillChar

\

1 error ^
)

Fill month with
dashes

FillChar

/ \
^
^

RETURN

/

NJ
A^

Cl-12

LIBRARY General PROCEDURE DisplaySageError

BEGIN

Initialize message strings
FillChar

Concatenate Sage error number
with specified message

CardToStr
Concat

Display the error message
DisplayMessage
Pause

RETURN

Cl-13

LIBRARY General PROCEDURE FailureGroupMember

BEGIN

\ /
Failure Mode matches given
failure Group?

\

no

RETURN FALSE

yes
N
)

RETURN TRUE

Cl-14

LIBRARY General PROCEDURE GetCatName

BEGIN

.•^

Determine category from given
number and return its name

MoveString

Success d e t e r m i n i n g ca tegory? no

yes

Fill name with nul character
FillChar

RETURN

Cl-15

LIBRARY General PROCEDURE GetFailureGroups

BEGIN

M^

Prepare relation "CmpValid" for access
MyOpenRelation - local

_ ^
Position at specified record and initialize
failure-group array and its count

ReadRecordA
FillChar

Nl^

Get failure group for current count
GetRepeatName
GetFieldA

M^

Failure group found?
BlankData- local

yes

no

Put failure group
into array

MoveLeft

Increment count

Count = 3?

no

e-
yes

M /

Return relation "CmpValid" to
state at procedure entry

MyCloseRelation - local

Nl/

RETURN

Cl-16

LIBRARY General PROCEDURE MilitaryDate

BEGIN

Nl/

Get current date from system
CurrentDatel

String, "str", for millitary
d a t e < 11 c h a r a c t e r s ?

yes

no

Fill remainder of string
with nul character

FillCbar

String > 11 characters? yes Inform user of string error

no

Initialize " s t r " a r r a y
FUlChar

M /

Move day and year into "str"

MoveLeft

Change month to millitay format
and move into "str"

MoveLeft
FillChar
StrToCard
FillChar

error
Fill month with
dashes

FillChar

e
M̂

RETURN

Cl-17

LIBRARY General PROCEDURE MyCloseRelation

1 BEGIN 1

\ /
Check initial status
of specified relation

N

closed

CloseRelation

N

/

/

RETURN

open

\ /
CloseRela tionfiles

CMS

LIBRARY General PROCEDURE MyOpenRelation

BEGIN

Specified relation
open?

FindRecord

no

OpenRelation

^
RETURN FALSE

yes
^ RETURN TRUE

Cl-19

LIBRARY General PROCEDURE PlacesC

BEGIN

Determine the number of character
places needed by cardinal value

RETURN

Cl-20

LIBRARY General PROCEDURE ShowSageError

BEGIN

M/
Convert Sage error number to
string for concatenation

CardToStr
PlacesC — local

^
Initialize message string

FillChar

M^
Concatenate Sage error with
specified message

Concat

Mr̂
Message successfully
concatenated? no ^ Place "?" as string

yes

^
Display the error message

Writeln
WriteString
Pause

RETURN

Cl-21

LIBRARY StoreMan

Local Procedures

Exported

ClearSBuffer
FreezeSBuffer

IncludeNewKey
RefreshSBuffer

RemoveKey
RetrieveKey

Other

-none-

Procedurcs Imported

ADR SYSTEM
BinaryDelete SortLib
Binarylnsert SortLib

BinarySearch SortLib
FillChar MoveLib
GetFieldA Sage

SITE SYSTEM
TSIZE SYSTEM

Messages

-none-

Cl-22

LIBRARY StoreMan PROCEDURE ClearSBuffer

BEGIN

Nl.^

Clear storage buffer
FrnChar
ADR
SfZE

^

RETURN

Cl-23

LIBRARY StoreMan PROCEDURE FreezeSBuffer

BEGIN

M /

Copy contents of the storage buffer
to a temporary buffer

M/
RETURN

Cl-24

LIBRARY StoreMan PROCEDURE IncludeNewKev

BEGIN

Get "Source" key
GetFieldA

M .̂..

Load "Source" key into
buffer maintaining
sorted order

BinarySearch
TSfZE
Binarylnsert

^J<i_

RETURN

Cl-25

LIBRARY StoreMan PROCEDURE RefreshSBuffer

BEGIN

N /

Copy contents of a temporary buffer
to the storage buffer

N /
RETURN

Cl-26

LIBRARY StoreMan PROCEDURE RemoveKey

BEGIN

\/

Remove "Source" key
from storage buffer

BinaryDelete
TSIZE

\ /

RETURN

Cl-27

LIBRARY StoreMan PROCEDURE RetrieveKey

BEGIN

M/

Check storage buffer
position

invalid
-^ RETURN

valid

M/

Retrieve "Source" key
from buffer

:ii^

RETURN

Cl-28

APPENDIX C2

HCF DATA PROCESSING MODULE CHARTS

C2-1

APPENDIX 02

HCF DATA PROCESSING MODULE CHARTS

This appendix contains high level flow charts for some modules used in HCF data
processing. These charts provide an overview of what each module and each of its
procedures is doing and how it is done; consequently, these charts can serve as road maps
to the source code.

These charts are organized by module. For a particular module, the chart of the
module is first, followed by charts of that module's procedures presented in alphabetical
order. Three lists precede the charts for each module. An alphabetic, italicized list of
procedures local to the module is given first. These local procedures are the procedures
charted. The next Ust identifies procedures imported and names the Ubrary fi^om which
each procedure is imported. This Ust is alphabetized by procedure name with the procedure
name itaUcized. If the libraries named here are not Usted in Appendix A, they may be
charted in Appendix CI. The final list is of messages referenced in the charts. Each
message is assigned a number by which the messages are referenced and by which the list
is ordered.

The elements in these charts are boxes and circles. Boxes contain descriptive
comments on the processes being charted. Circled numbers are used to show chart
continuation. Circled letters are used to show looping stractures. Path lines, used to
connect chart elements, have an arrow head at one end, thus showing the direction of
activity flow from element to element.

Within boxes of the charts, procedm^ names are frequendy used. These names are
bolded and italicized. If a procedure name is considered descriptive enough, it may be used
as a description of the process being shown; otherwise, the name wUl occur under a
description and be indented showing that this procedure is used in the process described. If
a local procedure is referenced, its name is followed by the dash character and then the
word 'local'.

When multiple lines exit from a box, the condition determining the use of a path line
wiU be indicated at the line. Any unlabeled path line exiting a box indicates the normal
path to be taken.

When data base forms or relations are mentioned, they are shown within quotation
marks.

C2-2

MODULE RetrHard

Lwal Prwcdurcs

-none-

Prftccdurcs Impflrted

Call Program ClearScreen ThorPort GetFieldA Sage
CheckForError OlayHw CloseDataBase Sage OpenDataBase Sage
Clearinghouse ClrHouse DisplayForm Sage
ClearRelation Sage DisplayMessage Sage

Messages

(1) - "The schema file, 'Hardware.DFL*, is not available"
(2) - "Loading Descriptive Search Programs ... please standby"
(3) - "Loading Ad Hoc Search Programs ... please standby"
(4) - " * Hardware Glossary is not yet complete *''
(5) - "Invalid Option"

r">,'5

MODULE RetrHard

BEGIN

^ .
Prepare database for access

OpenDataBase "Hardware.DFL"

Display main menu options
ClearSelation "Utility"
DisplayForm "MenurRHl"
GetFieldA

error
DisplayMessage (1)
RETURN

"3"

invalid
option \ DisplayMessage (5)

Clearingbouse

DisplayMessage (4)

Overlay the file "DocHardw.LOD"
Program. Call
CheckForError

Overlay the file "AHardw.LOD
DisplayMessage (3)
Program. Call
CheckForError

Overlay the file "DHardw.LOD"
DisplayMessage (2)
Program. Call
CheckForError

ClearScreen
CloseDataBase "Hardware.DFL" END

C2-4

MODULE DHardw

Local Procedures

-none-

Prftccdurcs Impftrted

Call Program ClearSBuffer StoreMan DisplayForm Sage
CheckForError OlayHw ClearStack General DisplayMessage Sage
ClearField Sage ClearUEvent General GetFieldA Sage
Clearinghouse ClrHouse

Messages

(1) - "Located records not saved, select *E* again for Exit WITHOUT Save!"
(2) - ' 'Selected option is not provided''

C2-5

MODULE DHardw

BEGIN

Initialize variables and buffer
ClearSBuffer
CJearUSvejjt

Initialize loop variables and display hardware
descriptive search main menu

ClearStack
ClearField
DJspJayForm "MenuRBl"
GetFieJdA

"1" "4" "5"

Overlay t h e file "DHwSrch.LOD"
Program. CaJJ

Buffer accessed
s ince save?

yes First "E"
request?

yes

CiearCJSvent
END

invalid
opt ion

^ JJispJayJfessetge {2J

s CJearinghouse

"8" "9"

^

Check for overlay errors
ChecJcForSrror

?I^
Overlay the file "DHwSaveF.LOD"

Program. CaD

^ Overlay the file "DHwFile.LOD"
frograjn. CaD

Overlay the fUe "DHwPlot.LOD"
Prograai. Call

Overlay the fUe "DHwRep.LOD"
Program. CaD

Overlay the file "DHwAgg.LOD"
Program. CaD

Overlay the fUe "DHwView.LOD"
frogram. Call

Overlay the fUe "TailrdAg.LOD"
Program. Call

Overlay the file "DHwGetF.LOD"
F'r-ogram. Call
ClearUEvent

•̂ DisplayMessage flj

C2-6

MODULE DHwAgg

Local Procedures

-none-

Procediires Imported

AggAdHoc HardAg FilesLeftOpen OlayHw

Mes.sages

-none-

C2-7

MODULE DHwAgg

BEGIN

\l^

Aggregate hardware event records
referenced in storage buffer

AggAdHoc
FilesLeftOpen

END

C2-8

MODULE AHardw

Local Procedures

-none-

Proccdures TmnortoH

Call Program ClearSBuffer StoreMan DisplayForm Sage
CheckForError OlayHw ClearStack General DisplayMessage Sage
ClearField Sage ClearUEvent General GetFieldA Sage
Clearinghouse Ch-House

Messages

(1) - ' 'Located records not saved, select 'E' again for Exit WITHOUT Save!''
(2) - ' 'Preparing ad hoc search screen ... standby"
(3) - ' 'Selected option is not provided''

C2-9

MODULE AHardw

BEGIN

Ini t ia l ize v a r i a b l e s a n d buf fe r
ClearSBuffer
ClearUSvent

In i t ia l ize loop v a r i a b l e s a n d d i sp lay h a r d w a r e
a d h o c s e a r c h m a i n m e n u

aearStacJc
ClearField
DisplayForm " M e n u R A l "
GetFieldA

Buffer a c c e s s e d
s ince save?

I n o

yes F i r s t "E"
r e q u e s t ?

n o

'8"

yes

inval id
o p t i o n

^ DisplayMessage (I)

s Clearinghouse

"8"
Check for over lay e r r o r s

CheckForError
7^

Overlay t h e file "AHwSaveF.LOD"
Program. Call

^ Overlay t h e file "AHwFile.LOD"
Program.Call

Overlay t h e file "AHwPlot.LOD"
Program. Call

Overlay t h e file "AHwRep.LOD"
Program. Call

Overlay the file "AHwAgg.LOD"
Program. Call

Overlay the file "AHwView.LOD"
Program. Call

Overlay t h e file "AHwSrch.LOD"
DisplayMessage fS)
Program. Call

Overlay t h e file "AHwGetF.LOD"

Program. Call
ClearUEvent

^ DisplayMessage (1)

ClearUEvent
END

C2-10

MODULE AHwAgg

Local Prwtdurcs

-none-

Proccdures Imported

AggAdHoc HardAg FilesLeftOpen OlayHw

Messages

-none-

C2-11

MODULE AHwAgg

BEGIN

M/

Aggregate hardware event records
referenced in storage buffer

AggAdHoc
FilesLeftOpen

\ i /

END

C2-12

APPENDIX D

RETRIEVAL ACCESS

APPENDIX D

RETRIEVAL ACCESS

This appendix presents the software elements involved with the set up of retrieval
access. These elements are the DOS batch files used, module charts for each module,
THOR reports for the data base named MASTER, and source code listings for the three
programs used in providing retrieval access.

CONTENTS

Batch Files Used for the Setup of Retrieval Access in the NUCLARR System D-3

Module Charts D-6

THOR Reports D-14

Source Code D-19

D-2

Batch Files
Used for the Setup of Retrieval Access

in the NUCLARR System

There are seven DOS batch files used to set up retrieval access for users of the
NUCLARR system. NUCLARR.BAT is used to initiate an access request. ZOPT.BAT is
generated by the program MainMenu. NUCLARR.BAT executes MainMenu and then
ZOPT.BAT. ZOPT.BAT always consists of a single DOS command which executes one of
the other 5 batch files: Q.BAT, 1.BAT, 2.BAT, 3.BAT, or 4.BAT.

Q.BAT execution returns the user to the DOS root directory.

1.BAT execution provides access to data in the data base DATABANK and then executes
NUCLARR.BAT again.

2.BAT execution provides access to data in the data base HARDWARE and then executes
NUCLARR.BAT again.

3.BAT execution provides access to information on aggregation processing for HEP data
and then executes NUCLARR.BAT again.

4.BAT execution provides access to information on aggregation processing for HCF data
and then executes NUCLARR.BAT again.

A listing of file statements follows for each of these seven DOS batch files.

NUCLARR.BAT (in DOS root directory)

echo off
els
cdsnuclarr
mainmenu
zopt

ZOPT.BAT (in DOS directory NUCLARR)
an example:

Q.BAT

D-3

Q.BAT (in DOS directory NUCLARR)

echo off
els
echo ****
echo ****
echo ****
echo ****
echo **** Reboot your PC to remove HALO Graphics Driver ****
echo **** ****
echo **** before proceeding to other PC applications. ****
echo ****
echo ****
echo ****
cd\
prompt pg

1.BAT (in DOS directory NUCLARR)

echo off
els
NhaloNthalo
IF ERRORLEVEL 1 GOTO NOLOD
MialoNhalorlm
:NOLOD
cdShuman
retrieve
cd\
nuclarr

2.BAT (in DOS directory NUCLARR)

echo off
els
MialoNthalo
IF ERRORLEVEL 1 GOTO NOLOD
^aloNhalorlm
:NOLOD
cd^ardware
retrhard
cd\
nuclarr

D-4

3.BAT (in DOS directory NUCLARR)

echo off
els
cd^ep
hepnotes
cd\
nuclarr

4.BAT (in DOS directory NUCLARR)

echo off
els
cd^ardware
hwnotes
cd\
nuclarr

D-5

Module Charts

This section contains high level flow charts for modules used to set up retrieval access.
These charts provide an overview of what each module is doing and how it is done;
consequentiy, these charts can serve as road maps to the source code.

For the first module, the chart of the module is followed by the chart of that module's
only procedure. The other modules have no procedures. Three lists precede the charts for
each module. An italicized list of procedures local to the module is given first. The next
list identifies procedures imported and names the library from which each procedure is
imported. This list is alphabetized by procedure name with the procedure name italicized.
The libraries named here are listed in Appendix A or charted in Appendices Bl or CI. The
final list is of messages referenced in die charts. Each message is assigned a number by
which the messages are referenced and by which the list is ordered.

The boxes used in these charts contain descriptive comments on the processes being
charted. Path lines, used to coimect boxes, have an arrow head at one end, thus showing
the direction of activity flow.

Within boxes of the charts, procedure names are frequently used. These names are
bolded and italicized. If a procedure name is considered descriptive enough, it may be used
as a description of the process being shown; otherwise, the name will occur under a
description and be indented showing that this procedure is used in the process described. If
a local procedure is referenced, its name is followed by the dash character and then the
word 'local'.

When multiple lines exit from a box, the condition determining the use of a path line
will be indicated at the line. Any unlabeled path line exiting a box indicates the normal
path to be taken.

When data base forms or relations are mentioned, they are shown within quotation
marks.

D-6

MODULE MainMenu

Lotal Proctdurts

WriteOutTheOption

Procedures Imported

BinTextMode Files
Clearinghouse ClrHouse
Close Files
CloseDataBase Sage
Create Files
DisplayForm Sage

DisplayMessage Sage
GetFieldA Sage
OpenDataBase Sage
RecordEdit SageLib
ReplaceMode Files
/?cjcf Files

SageOperations Sage
SetOutPut StandardIO
WriteLn SimplelO
WriteString SimplelO

Mes.sages

(1) - "DataBase not opened"
(2) - ' 'Invalid option selected''

D-7

MODULE MainMenu

BEGIN

:il<i_

OpenDataBase "MASTER.DFL" error DisplayMessage (1)
RETURN

e
M/

Display menu options
DisplayForm "MenuMl"
GetFieldA

invalid
selection

^ DisplayMessage (2)

'?" hotline
Clearinghouse

nr\ii II4 tt iirsit iinii _ „ HA"

tj , 1 , d , d , or 4

M /

Create batch file for chosen
option

WriteOutTheOption - local

Nl/
CloseDataBase "MASTER.DFL"

END

D-8

MODULE MainMenu PROCEDURE WriteOutTheOption

BEGIN

.Sv
Place selected option in a
batch file

Create "ZOPT.BAT"
SetOutput
WriteString
Writeln
Close "ZOPT.BAT"

.,N/
RETURN

D-9

MODULE HEPNotes

Local Procedures

-none-

Procediires Imported

BinTextMode Files
ClearScreen ThorPort
ClearStack General
Close Files
CondRead Terminal

Open Sage
ReadChar SimplelO
ReadLn SimplelO
ReadWriteMode Files
Reset Files

Setlnput StandardIO
WriteLn SimplelO
WriteString SimplelO

Messages

(1) - ' 'Press <Enter> for More Text or <E> to Exit to Main Menu"
(2) - " Press <Enter> to return to Main Menu''

D-10

MODULE HEPNotes

BEGIN

Open text file
Open "HEPNOTES"

Successful?

no

yes
._M/

Assign text as standard input file
Setlnput

<r
...M/

ClearScreen

<r

•^
Echo line of text to console

ReadLn

yes
M/

End of text file?

no
Mr

Screen full?

\ l /
Display message 2

WriteLn
WriteString
CondRead
ClearStack

no

yes

Display options (message 1)
WriteLn
WriteString
CondRead
ClearStack

<Enter>
more text

"E" exit

Close t e x t file
Close "HEPNOTES"

i
I i>k

ClearScreen

END

D-11

MODULE HWNotes

Local Procedures

-none-

Procedures Imported

BinTextMode Files
ClearScreen ThorPort
ClearStack General
Close Files
CondRead Terminal

Open Files
ReadChar SimplelO
ReadLn SimplelO
ReadWriteMode Files
Reset Files

Setlnput StandardIO
WriteLn SimplelO
WriteString SimplelO

Messages

(1) - "Press <Enter> for More Text or <E> to Exit to Main Menu"
(2) - "Press <Enter> to return to Main Menu''

D-12

MODULE HWNotes

BEGIN

yes

Display message 2
WriteLn
WriteString
CondRead
ClearStack

M^

Open text file
Open "HWNOTES"

Successful?

no

yes
M /

Assign text as standard input file
Setlnput

<r
M/

ClearScreen

e-
Echo line of text to console

ReadLn

_^i^
End of text file?

no

Screen full? no

yes

Display options (message 1)
WriteLn
WriteString
CondRead
ClearStack

• ^

<Enter>
more text

"E" exit

\ i /

Close t e x t file
Close "HWNOTES"

ClearScreen

END

D-13

THOR Reports

This section contains THOR reports for the data base named MASTER. Two reports
are included: a record report and a form report. There is no file summary report included
because there are no files for MASTER to maintain.

A record report shows the field stmcture defined for records in those relations selected
for the report. In other words, this is a report of some relation schemas. In the case of
MASTER, there is only one relation and it has only one field.

A form report gives defining and appearance information for those forms selected for
the report. In MASTER, there is only one form.

One or more THOR reports may be generated and sent to a DOS file for review or
printing. For each such file written, a table of contents and index is included by THOR.

D-14

Table of Contents

Record Report - MASTER 1
Utility - Utility relation for main menu 1

Form Report - MASTER 2
MenuMl - Main menu for NUCLARR 2

Index 3

D-15

RECORD REPORT FOR MASTER

... 1 ...

Record Name : Utility
Description : Utility relation for main menu
Fields : 1
Byte Length : 6

Field Name Description Length Key Type Sub-Fields
Repeat Type Decimals K/Nod N/Cr

UAl 1 UCA character 1 Non-keyed
1 2 (Upper Case Alphanumeric)

1988/07/18 page

D-16

FORM REPORT FOR MASTER

MenuMl Main menu for NUCLARR 6 Field(s)
packed picture size -> 503 bytes
predominant color -> light cyan on black

NUclear Computerized Library for Assessing Reactor Reliability
Main Menu
Version 1.1

Q - Quit NUCLARR System
? - NUCLARR Hotline #

1 - Human Reliability Data
2 - Hardware Failure Data
3 - HEP Aggregation Help File
4 - Hardware Aggregation Help File

Field Display Type Record & (Field) - rpt Field Type Help Frm

1 Highlighted
2 Highlighted
3 Highlighted
4 Highlighted
5 Highlighted
6 Highlighted

Utility (UAl)
Utility (UAl)
Utility (UAl)
Utility (UAl)
Utility (UAl)
Utility (UAl)

Upper Case
Upper Case
Upper Case
Upper Case
Upper Case
Upper Case

Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric

1988/07/18 page

D-17

Index

MenuMl (form) 2
UAl (field) 1
UAl (form field) 2
Utility (record) 1, 2

1988/07/18 page

D-18

Source Code

This section contains source code listings for the three programs used in providing
retrieval access. The DOCUPROC utility, which was used to generate these listings,
provides line numbering, a table of contents, and an index. The line numbering is restarted
for each module.

D-19

Table of Contents

MODULE MainMenu 1
MainMenu - Module to display the main NUCLARR menu and capture choice 1
WriteOutTheOption - procedure which writes mainmenu option to a file; 1

MODULE HEPNotes 3
HEPNotes - Control program for the viewing of aggregation help file 3

MODULE HWNotes 5
HWNotes - Control program for the viewing of aggregation help file 5

Index 7

1988/07/29 11:04:32 i

D-20

MODULE MainMenu;

r**

MainMenu - Module to display the main NUCLARR menu and capture choice

G. H. Beers - April 1988

Module displays main NUCLARR menu, reads the selected choice and puts it
out to a file for future capture for HEP or Hardware execution control.

CALLING SEQUENCE -

MainMenu

ENTRY -

data in

EXIT -

data out

FILES -

*)

FROM Sage IMPORT OpenDataBase, CloseDataBase, GetFieldA, SageError,
SageOperations, DisplayForm, DisplayMessage;

FROM Files IMPORT BinTextMode, Close, EOF, File, FileState, Create,

ReplaceMode, Reset;

FROM SageLib IMPORT RecordEdit;

FROM SimplelO IMPORT WriteString, WriteLn;

FROM StandardIO IMPORT SetOutput;

FROM ClrHouse IMPORT Clearinghouse;

VAR
option rCHAR;

PROCEDURE WriteOutTheOption (ch :CHAR};

WriteOutTheOption - procedure which writes mainmenu option to a file;

G. H. Beers - April 1988

Procedure is passed the valid option and then puts it to a file.

CALLING SEQUENCE -

WriteOutTheOption (ch);

ENTRY -

ch :CHAR - option character with value 1,2,3,4.

EXIT -

FILES -

zoptfile

*>

VAR
state : FileState;
btMode :BinTextMode;
roMode :ReplaceMode;
output :File;

1988/07/29 11:04:32 page

D-21

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

BEGIN
roMode := replace;
btMode := textMode;

Create (output, "ZOPT.BAT", btMode, roMode, state);
IF state = ok THEN
SetOutput (output);
WriteString (ch);
WriteString (".BAT");
WriteLn;
Close (output,state);

END;

END WriteOutTheOption;

BEGIN (* MainMenu *)
OpenDataBase ("MASTER.DFL", 5, 5, 10000);
IF SageError # 0 THEN
DisplayMessage ("DataBase not opened", TRUE);
RETURN;

END;

LOOP
DisplayForm ("MenuMl", "Utility", "UAl", FALSE);
GetFieldA ("Utility", "UAl", option);

CASE option OF

"Q",
Hill

• f
IIOII

"3",
"4" : WriteOutTheOption (option) ;

EXIT|

"?" : Clearinghouse;

ELSE
DisplayMessage ("Invalid option selected", TRUE);

END;
END; (* LOOP *)

CloseDataBase;

END MainMenu.

1988/07/29 11:04:32 page

D-22

MODULE HEPNotes;

(**
HEPNotes - Control program for the viewing of aggregation help file.

G. H. Beers - April 1988

Program reads and displays aggregation helps one page at a time. The reader
is able to quit at the end of any page and return to the main Nuclarr menu.
Uses SiirplelO to read and echo each line.

CALLING SEQUENCE -

HEPNotes ;

ENTRY -

EXIT -

FILES -

File HEPNotes

*)

FROM Files IMPORT BinTextMode, Close, EOF, File, FileState, Open,
ReadWriteMode, Reset;

FROM NUCGEN IMPORT ClearStack;

FROM SimplelO IMPORT ReadChar, ReadLn, WriteLn, WriteString, EOT, EOL;

FROM StandardIO IMPORT Setlnput;

FROM Terminal IMPORT CondRead;

FROM ThorPort IMPORT ClearScreen;

VAR
termComnand
success
endOfFile
readyToExi t
thisPage

state
btMode
roNode
input

:CHAR;
:BOOLEAN;
:BOOLEAN;
:BOOLEAN;
:CARDINAL;

:FileState;
:BinTextMode;
:ReadWriteMode;
:File;

BEGIN
roMode := readonly;
btMode := textMode;

readyToExit := FALSE;

Open (input, "HEPNOTES", btMode, roMode, state);
IF state = ok THEN
Setlnput (input);

WHILE NOT readyToExit DO
WriteLn;
ClearScreen;
thisPage := 1;
LOOP
ReadLn ;
IF EOTO THEN
readyToExit := TRUE;
LOOP
WriteLn;
IF thisPage < 23 THEN

INC(thisPage);

1988/07/29 11:04:32 page

D-23

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

ELSE
EXIT;

END;
END;
EXIT;

END;
IF thisPage < 23 THEN

INC(thisPage);
ELSE
EXIT;

END;
END; (* LOOP *)
WriteLn;

IF readyToExit THEN
WriteString ("Press <Enter> to return to Main Menu");

ELSE
WriteString ("Press <Enter> for More Text or <E> to Exit to Main Menu");

END;

REPEAT
CondRead (termComnand, success);
IF success THEN
IF NOT readyToExit THEN

IF (termComnand = "E") OR (termComnand = "e") THEN
readyToExit := TRUE;

ELSE
END;

ELSE
END;

END;
UNTIL success;

ClearStack;

END; (• WHILE *)

Close (input, state);

END;

ClearScreen;

END HEPNotes.

1988/07/29 11:04:32 page

D-24

MODULE HWNotes;

(*•
HWNotes - Control program for the viewing of aggregation help file.

G. H. Beers - April 1988

Program reads and displays aggregation helps one page at a time. The reader
is able to quit at the end of any page and return to the main Nuclarr menu.
Uses SimplelO to read and echo each line.

CALLING SEQUENCE -

HWNotes ;

ENTRY -

EXIT -

FILES -

File HWNotes

*)

FROM Files IMPORT BinTextMode, Close, EOF, File, FileState, Open,
ReadWriteMode, Reset;

FROM General IMPORT ClearStack;

FROM SimplelO IMPORT ReadChar, ReadLn, WriteLn, WriteString, EOT, EOL;

FROM StandardIO IMPORT Setlnput;

FROM Terminal IMPORT CondRead;

FROM ThorPort IMPORT ClearScreen;

VAR
termCommand :CHAR;
success :BOOLEAN;
endOfFile :BOOLEAN;
readyToExit :BOOLEAN;
thisPage :CARDINAL;

state :FileState;
btMode :BinTextMode;
roMode :ReadWriteMode;
input :File;

BEGIN
roMode :» readonly;
btMode :« textMode;

readyToExit := FALSE;

Open (input, "HWNOTES", btMode, roMode, state);
IF state = ok THEN
Setlnput (input);

WHILE NOT readyToExit DO
WriteLn;
ClearScreen;
thisPage := 1;
LOOP
ReadLn ;
IF EOTO THEN
readyToExit := TRUE;
LOOP
WriteLn;
IF thisPage < 23 THEN

INC(thisPage);

1988/07/29 11:04:32 page

D-25

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

ELSE
EXIT;

END;
END;
EXIT;

END;
IF thisPage < 23 THEN

INC(thisPage);
ELSE

EXIT;
END;

END; (* LOOP *)
WriteLn;

IF readyToExit THEN
WriteString ("Press <Enter> to return to Main Menu");

ELSE
WriteString ("Press <Enter> for More Text or <E> to Exit to Main Menu");

END;

REPEAT
CondRead (termCommand, success);
IF success THEN
IF NOT readyToExit THEN
IF (termCommand = "E") OR (termComnand = "e") THEN
readyToExit := TRUE;

ELSE
END;

ELSE
END;

END;
UNTIL success;

ClearStack;

END; (• WHILE *)

Close (input, state);

END;

ClearScreen;

END HWNotes.

1988/07/29 11:04:32 page

D-26

Index

HEPNotes (MODULE) 3
HWNotes (MODULE) 5
MainMenu (MODULE) 1
WriteOutTheOption (PROCEDURE from MODULE MainMenu) 1

1988/07/29 11:04:32 page

D-27

X

APPENDIX E

SAMPLE THOR REPORTS FOR DATABANK DATA BASE

E-l

APPENDIX E

SAMPLE THOR REPORTS FOR DATABANK DATA BASE

This appendix presents a sample of some THOR reports for the data base named
DATABANK. Three report types are included: a file summary repon, a record report, and
a form report.

A file sununary report identifies all files maintained by a particular data base.

A record report shows the field stmcture defined for records in those relations selected
for the report. In other words, this is a report of some relation schemas.

A form report gives defining and appearance information for those forms selected for
the report.

It should be noted that names of files, records (relations), fields, and forms are all
arbitrarily determined and not necessarily meaningful. However, there is also a description
associated with each name, except for files. Although it is intended that the names selected
be meaningful, their meaning may be obscure because of the need for so many names and
because of their length being limited to eight characters.

One or more THOR reports may be generated and sent to a DOS file for review or
printing. For each such file written, a table of contents and index is included by THOR.

E-2

Table of Contents

File Summary Report - DATABANK 1
Record Report - DATABANK 2
CellData - Source Statement Information 2
CellData - Source Statement Information 6
CellVal - Cell Validity 8
CellVal - Cell Validity 9
Columns - General Column Labels 10
Col umns - General Col umn Label s 11

Form Report - DATABANK 12
MenurOl - Retrieve - Main Menu 12

Form Report - DATABANK 13
zrOOl - Retrieve - MenurOl, continued 13
zr002 - Retrieve - zrOOl, continued 14
zrOl - Retrieve - Main Menu MenurOl 15

Index 16

E-3

FILE SUMMARY FOR DATABANK

Data File Name

1 CellData.DAT
2 CELLVAL.DAT
3 Columns.DAT
4 HEP.DAT
5 MATRCOL.DAT
6 MATRROW.DAT
7 REFERENC.DAT
8 ROWS.DAT
9 TaskStmt.DAT
10 MATRDESC.DAT
11 PLANT.DAT
12 DOCUMENT.DAT
13 ERROR.DAT
14 LER.DAT

Index File Name

CellData.IDX
CELLVAL.IDX
Columns.IDX
HEP.IDX
MATRCOL.IDX
MATRROW.IDX
REFERENC.IDX
ROWS.IDX
TaskStmt.IDX
MATRDESC.IDX
PLANT.IDX
DOCUMENT.IDX
ERROR.IDX
LER.IDX

Block Name

ROWS.BLK

Total Number of Files = 14

1988/08/10 page

E-4

RECORD REPORT FOR DATABANK

1 ---

Record Name
Description
Fields
Byte Length
File Number
Data File
Index File

CellData
Source Statement Information

49
125

1
CellData.DAT
CellData.IDX

Field Name
Repeat

Description
Type

Length Key Type
Decimals K/Nod N/Cr

Sub-Fields

AggFlag
1

Cell Colu
1

Cell Key
1

CellMatr
1

Cell Numb
1

Cell Row
1

CellTask
1

DateAdd
1

DocID

Docltem
1

DocKey

Aggregation flag (-,T,C,F)
2 (Upper Case Alphanumeric)

Column ID
3 (Integer)

I Non-keyed

Non-keyed

Primary Key
0 (Concatenated)

Matrix Number
3 (Integer)

Source Statement Number
3 (Integer)

Row ID
3 (Integer)

Task Statement Number
3 (Integer)

Date Added to Data Bank
7 (Date) (yyyy/mm/dd)

Document Number xxx of (xxx
3 (Integer)

-yy

Page, Paragraph, Figure, Line
1 (Alphanumeric)

Alternate Key for DocYear +
0 (Concatenated)

ID

11

2

2

3

2

10

3

20

5

Primary
20 5

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Alternate
20 5

Non-keyed

Non-keyed

Alternate
20 5

CellMatr
Cell Row
Cell Colu
CellTask
Cell Numb

DocYear
DocID

1988/08/10 page

E-5

RECORD REPORT FOR DATABANK

Field N<
Repeal

DocYear
]

E
]

EI
]

Erf
]

Erfl

ErrFail

HEP

HEPI

LCB

LCBI

Median

MedianI

N

NI

PSFExpe

PSFFb

me Description
Type

Document Year yy of (xxx-yy)
[3 (Integer)

Number of Errors
I 4 (Real)

Number of Errors - calculated
I 4 (Real)

Error Factor for Median HEP
I 3 (Integer)

Err Factr for Median HEP Input
I 3 (Integer)

l=rc/o 2=rc/c 3=rnc/o 4=rnc/c
I 3 (Integer)

Human Error Probability
I 4 (Real)

Human Error Probability Input
I 4 (Real)

Lower Confidence Bound
I 4 (Real)

Lower Confidence Bound Input
I 4 (Real)

Median HEP
I 4 (Real)

Median HEP Input
I 4 (Real)

No. Opportunities for Error
1 4 (Real)

No.Opportunities for Error Inp
1 4 (Real)

r Experience Perform Shaping Fac
1 2 (Upper Case Alphanumeric)

Feedback PSF
1 2 (Upper Case Alphanumeric)

Length
Decimals

2

8
1

8
1

3

3

1

9
7

9
7

9
7

9
7

9
7

9
7

8
I

8
1

1

1

Key Type
K/Nod N/Cr

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Sub-Fields

1988/08/10 page

E-6

RECORD REPORT FOR DATABANK

Field Name Description
Repeat Type

PSFPT

PSFProc

PSFStf

PSFStrej

PSFSup

PSFTA

PSFTag

PSFTrn

PlantCoc

RefID

RefKey

RefPage

RefYear

Source

UCB

UCBI

Performance Time PSF
14 (Short Time)(w/o microsec.)

Procedure Perform Shaping Fact
I 2 (Upper Case Alphanumeric)

Staffing PSF
2 (Upper Case Alphanumeric)

> Stress Perform Shaping Factor
2 (Upper Case Alphanumeric)

Supervision PSF
I 2 (Upper Case Alphanumeric)

Time Availalbe PSF
[14 (Short Time)(w/o microsec.)

Tagging Perform. Shaping Factr
i 2 (Upper Case Alphanumeric)

Training PSF
[2 (Upper Case Alphanumeric)

i Plant Code
[2 (Upper Case Alphanumeric)

Cited Document ID xxx of xxxyy
3 (Integer)

Alt. Key for Reference Doc Err
0 (Concatenated)

Cited Reference Document Page
1 (Alphanumeric)

Cited Document Year yy (xxx-yy
3 (Integer)

Data Origin (lab, field, etc.)
3 (Integer)

Upper Confidence Bound
4 (Real)

Upper Confidence Bound Input
4 (Real)

Length
Decimals

8

1

1

1

1

8

1

1

4

3

5

6

2

2

9
7

9
7

Key Type Sub-Fields
K/Nod N/Cr

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Alternate RefYear
20 5 RefID

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

1988/08/10 page

E-7

RECORD REPORT FOR DATABANK

Field Name
Repeat

Description
Type

Length Key Type Sub-Fields
Decimals K/Nod N/Cr

UKeyMC

UKeyMR
1

UKeyMRC
1

UKeyMRCT
1

UKyMRCTE
1

cell Used
1

Alt. matrix + col
0 (Concatenated)

Alt. matrix + row
0 (Concatenated)

Alt. matrix+ row + col
0 (Concatenated)

Alt. matrix+ row + col + task
0 (Concatenated)

Alt. Key for Cell + Task + Err
0 (Concatenated)

Source used in calculations

4

5

7

9

10

1

Alternate
20 5

Alternate
20 5

Alternate
20 5

Alternate
20 5

Alternate
20 5

Non-keyed

CellMatr
Cell Colu

CellMatr
Cell Row

CellMatr
Cel1 Row
Cell Colu

CellMatr
Cell Row
Cell Colu
CellTask

CellMatr
Cell Row
Cell Colu
CellTask
ErrFail

1 (Alphanumeric)

1988/08/10 page

E-8

RECORD REPORT FOR DATABANK

Field Validation Report

Record Name
Description

1

CellData
Source Statement Information

1) AggFlag Aggregation flag (-,T,C,F)

Enumerated List - 4 value(s)

- C F T

(Upper Case Alphanumeric)

2) Cell Colu Column ID (Integer)

Minimum Value -> 0
Maximum Value ->99

4) CellMatr Matrix Number (Integer)

Minimum Value -> 0
Maximum Value ->99

6) Cell Row Row ID (Integer)

Minimum Value -> 0
Maximum Value ->999

7) CellTask Task Statement Number

Minimum Value -> 0

(Integer)

13) E Number of Errors

Minimum Value -> .0

(Real)

14) EI Number of Errors - calculated (Real)

Minimum Value -> .0

17) ErrFail l=rc/o 2=rc/c 3=rnc/o 4=rnc/c (Integer)

1988/08/10 page 6
E-9

RECORD REPORT FOR DATABANK

Minimum Value ->1
Maximum Value ->4

22) Median Median HEP (Real)

Minimum Value -> .0000000

23) MedianI Median HEP Input (Real)

Minimum Value -> .0000000

24) N No. Opportunities for Error (Real)

Minimum Value -> .0

25) NI No.Opportunities for Error Inp (Real)

Minimum Value -> .0

41) Source Data Origin (lab, field, etc.) (Integer)

Minimum Value -> 0

1988/08/10 page

E-10

RECORD REPORT FOR DATABANK

Record Name
Description
Fields
Byte Length
File Number
Data File
Index File

CellVal
Cell Validity

5
7
2

CELLVAL.DAT
CELLVAL.IDX

Field Name
Repeat

Description
Type

Length Key Type Sub-Fields
Decimals K/Nod N/Cr

Cell Colu
1

CellMatr
1

Cel1 Row
1

PrimeKey
1

Column ID
3 (Integer)

Matrix
3 (Integer)

Row ID
3 (Integer)

Primary Key = Cell location
0 (Concatenated)

Non-keyed

Non-keyed

Non-keyed

Primary
20 5

CellMatr
Cel1 Row
Cell Colu

Validity 0=invalid, l=valid, 2=shaded
1 3 (Integer)

Non-keyed

1988/08/10 page

E-11

RECORD REPORT FOR DATABANK

Field Validation Report

Record Name : CellVal
Description : Cell Validity

1) CellColu Column ID (Integer)

Minimum Value -> 0
Maximum Value ->99

2) CellMatr Matrix (Integer)

Minimum Value -> 0
Maximum Value ->99

3) Cell Row Row ID (Integer)

Minimum Value -> 0
Maximum Value ->999

1988/08/10 page

E-12

RECORD REPORT FOR DATABANK

Field Name
Repeat

Record Name : Columns
Description : General
Fields : 3
Byte Length : 231
File Number : 3
Data File : Columns
Index File : Columns

Description
Type

Column Labels

DAT
IDX

Length
Decimals

Key Type Sub-Fields
K/Nod N/Cr

ColDef Definition for column verb
3 1 (Alphanumeric)

ColDescr Label for Column ID
1 2 (Upper Case Alphanumeric)

ColNumbr Column Number for Descriptions
1 3 (Integer)

72 Non-keyed

16 Non-keyed

2 Primary
20 5

1988/08/10 page 10

E-13

RECORD REPORT FOR DATABANK

Field Validation Report

Record Name : Columns
Description : General Column Labels

3) ColNumbr Column Number for Descriptions (Integer)

Minimum Value -> 0
Maximum Value ->99

1988/08/10 page 11

F-14

FORM REPORT FOR DATABANK

MenurOl Retrieve - Main Menu 11 Field(s) Help Form -> zrOl
packed picture size -> 957 bytes
predominant color -> light cyan on black

Retrieval of
NUclear Computerized Library for Assessing Reactor Reliability

Human Error Probability Data

Main Retrieve Menu
Version 1.1

E - Exit from HEP Retrieve Program
? - NUCLARR Hotline #

1 - Locate HEP Data Records by Description
2 - Review Documents
3 - Locate HEP Data Records by Ad Hoc Search
4 - Report on Located HEP Data Records
5 - Plot from Located HEP Data Records
6 - Calculate Aggregated HEP for Located Records
7 - Generate ASCII File for dBase III/SAS/SPSS
8 - Retrieve a Saved Data Records File
9 - Save Located Records to a File

Field Display Type Record & (Field) - rpt Field Type Help Frm

1 Highlighted
2 Highlighted
3 Highlighted
4 Highlighted
5 Highlighted
6 Highlighted
7 Highlighted
8 Highlighted
9 Highlighted
10 Highlighted
11 Highlighted

UCommand
UCommand
UCommand
UCommand
UCommand
UCommand
UCommand
UCommand
UCommand
UCommand
UCommand

(CommandA)
(CommandA)-
(CommandA)-
(CommandA)-
(CommandA)•
(CommandA)-
(CommandA)-
(CommandA)-
(CommandA)•
(CommandA)-
(CommandA)•

Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric

1988/08/10

E-15

page 12

FORM REPORT FOR DATABANK

zrOOl Retrieve - MenurOl, continued 0 Field(s) Help Form -> zr002
packed picture size -> 1124 bytes
predominant color -> light yellow on blue

Main Menu

4 Report on Located Data - A report is output to a device to show the cell
information, task statement, and source statement for all located
data records currently referenced in the storage buffer.

5 Plot from Located Data - Generate log plots from aggregated HEPs for located
data records (option 6 needs to be used before option 5). View
plots on the console and print them on an Epson or LaserJet printer.

6 Calculate Aggregated HEP - Combine HEPs for Source Statements from the same
Task Statement and then combine such Task Statement HEPs to
determine an aggregated HEP value with confidence bounds for all
located data records currently referenced in the storage buffer.

7 Generate ASCII File - Generate an ASCII file in a format compatible with the
dBase III, SAS, and SPSS systems. Source Statements are converted
for all located data records or for all data in the data base. For
the dBase III system. Task Statements and Documents may also be
converted.

Esc - View more help (options 8 & 9)
Enter - View previous help (options E, ?, 1 - 3)

1988/08/10 page 13

E-16

FORM REPORT FOR DATABANK

zr002 Retrieve - zrOOl, continued 0 Field(s)
packed picture size -> 695 bytes
predominant color -> light yellow on blue

Help Form -> EXIT

Main Menu

8 Retrieve a Saved Records File - Moves references to a set of previously
located records from a file into the active storage buffer.
Such a file must have been created by option 9 of this Main
Menu. Any data in the buffer when this Retrieve option is
selected will be replaced by that from the selected file.

9 Save Located Records to a File - Copies references (to located records),
currently in the storage buffer, out to a disk file named by
the user. If the named file currently exists, it will be
overwritten with the data passed to it through this option.

Esc - Return to Main Menu
Enter - View previous help (options 4 - 7)

1988/08/10 page 14

E-17

FORM REPORT FOR DATABANK

zrOl Retrieve - Main Menu MenurOl 0 Field(s) Help Form -> zrOOl
packed picture size -> 864 bytes
predominant color -> light yellow on blue

Main Menu

E Exit - Exit the NUCLARR Retrieval system. All located data record
references are cleared from the storage buffer.

? NUCLARR Hotline # - Display the NUCLARR Hotline telephone number for
information concerning the data or the utilization of NUCLARR.

1 Descriptive Search - Locate NUCLARR data records by using a series of
user-friendly menus. The storage buffer holds references to
located records.

2 Review Documents - Review of the source documents referenced in source
statements as original and reference documents. A report
option and a search of all references to a document are
available.

3 Ad Hoc Search - Locate NUCLARR data records by ad hoc search method. The
storage buffer holds references to located records.

Esc - View more help (options 4 - 9)
Enter - Return to Main Menu

1988/08/10 page 15

E-18

Index

AggFlag (field) 2
CellColu (field) 2, 8
CellData (record) 2, 6
Cel 1 Key (field) 2
CellMatr (field) 2, 8
CellNumb (field) 2
CellRow (field) 2, 8
CellTask (field) 2
CellVal (record) 8, 9
ColDef (field) 10
ColDescr (field) 10
ColNumbr (field) 10
Columns (record) 10, 11
CommandA (form field) 12
DateAdd (field) 2
DocID (field) 2
Docltem (field) 2
DocKey (field) 2
DocYear (field) 3
E (field) 3
EI (field) 3
EXIT (help form) 14
Erf (field) 3
Erfl (field) 3
ErrFail (field) 3
HEP (field) 3
HEPI (field) 3
LCB (field) 3
LCBI (field) 3
Median (field) 3
MedianI (field) 3
MenurOl (form) 12
N (field) 3
NI (field) 3
PSFExper (field) 3
PSFFb (field) 3
PSFPT (field) 4
PSFProc (field) 4
PSFStf (field) 4
PSFStres (field) 4
PSFSup (field) 4
PSFTA (field) 4
PSFTag (field) 4
PSFTrn (field) 4
PlantCod (field) 4
PrimeKey (field) 8
RefID (field) 4
RefKey (field) 4

1988/08/10 page 16
E-19

RefPage (field) 4
RefYear (field) 4
Source (field) 4
UCB (field) 4
UCBI (field) 4
UCommand (record) 12
UKeyMC (field) 5
UKeyMR (field) 5
UKeyMRC (field) 5
UKeyMRCT (field) 5
UKyMRCTE (field) 5
Validity (field) 8
cellUsed (field) 5
zrOOl (form) 13
zrOOl (help form) 15
zr002 (form) 14
zr002 (help form) 13
zrOl (form) 15
zrOl (help form) 12

1988/08/10 page 17

E-20

APPENDIX F

SAMPLE THOR REPORTS FOR HARDWARE DATA BASE

F-l

APPENDIX F

SAMPLE THOR REPORTS FOR HARDWARE DATA BASE

This appendix presents a sample of some THOR reports for the data base named
HARDWARE. Three report types are included: a file summary report, a record report, and
a form report.

A file summary report identifies all files maintained by a particular data base.

A record report shows the field stmctm-e defined for records in those relations selected
for the report. In other words, this is a report of some relation schemas.

A form report gives defining and appearance information for those forms selected for
the report.

It should be noted that names of files, records (relations), fields, and forms are aU
arbitrarily determined and not necessarily meaningfiil. However, there is also a description
associated with each name, except for files. Although it is intended that the names selected
be meaningful, their meaning may be obsciu-e because of the need for so many names and
because of their length being limited to eight characters.

One or more THOR reports may be generated and sent to a DOS file for review or
printing. For each such file written, a table of contents and index is included by THOR.

F-2

Table of Contents

File Summary Report - HARDWARE 1
Record Report - HARDWARE 2

Source - Source probabi 1 i ty data 2
Source - Source probability data 8
System - System descriptions 10
UEvent - Basic event information 11
UEvent - Basic event information 13

Form Report - HARDWARE 14
MenuRAl - Main Ad Hoc search menu (H/W) 14
MenuRBl - Main Browse/search menu (H/W) 15
MenuRHI - Main retrieve menu for hardwar 16

Form Report - HARDWARE 17
HMenuRAl - Hel p for Ad Hoc Search Menu 17
HMenuRBl - Hel p-Mai n Browse/search menu 18

Form Report - HARDWARE 19
HMnuRA-2 - Cont. help for Ad Hoc Search 19
HMnuRA-3 - Cont. hel p for Ad Hoc Search 20
HMnuRB-2 - Cont.Help-Main Browse/srch mnu 21
HMnuRB-3 - Cont.Help-Main Browse/srch mnu 22
HMnuRB-4 - Cont.Help-Main Browse/srch mnu 23

Index 24

F-3

FILE SUMMARY FOR HARDWARE

Data File Name

1 HCOMP.DAT
2 FAILMODE.DAT
3 HARDAPPL.DAT
4 HEVENT.DAT
5 HSOURCE.DAT
6 HSYSTEM.DAT
7 CMPVALID.DAT
8 DEGREE.DAT
9 DISTTYPE.DAT
10 EXPRTYPE.DAT
11 EXPOSROR.DAT
12 FAILORIG.DAT
13 FAILRTYP.DAT
14 FAILSEVR.DAT
15 NORMSTAT.DAT
16 PLANT.DAT
17 DOCUMENT.DAT
18 AGSTAT.DAT
19 UEVENT.DAT
20 REFERENC.DAT
21 ARCHENGR.DAT
22 RECCOUNT.DAT

Index File Name

HCOMP.IDX
FAILMODE.IDX
HARDAPPL.IDX
HEVENT.IDX
HSOURCE.IDX
HSYSTEM.IDX
CMPVALID.IDX
DEGREE.IDX
DISTTYPE.IDX
EXPRTYPE.IDX
EXPOSROR.IDX
FAILORIG.IDX
FAILRTYP.IDX
FAILSEVR.IDX
NORMSTAT.IDX
PLANT.IDX
DOCUMENT.IDX
AGSTAT.IDX
UEVENT.IDX
REFERENC.IDX
ARCHENGR.IDX
RECCOUNT.IDX

Block Name

HSOURCE.BLK

Total Number of Files = 22

1988/08/09 page

F-4

RECORD REPORT FOR HARDWARE

20

Record Name
Description
Fields
Byte Length
File Number
Data File
Index File
Block File

Source
Source probability data

75
343

5
HSOURCE.DAT
HSOURCE.IDX
HSOURCE.BLK

Field Name
Repeal

Description
Type

Length Key Type
Decimals K/Nod N/Cr

Sub-Fields

AggFlag

AggType

Appl

BayUpd

CatComp

Category

Comment

Comp

CompDmnd

CompF

CompFID

Aggregation allowed?
11 (Boolean) (T/F)

Aggregation method type
2 (Upper Case Alphanumeric)

Application
2 (Upper Case Alphanumeric)

Bayesian Update?
2 (Upper Case Alphanumeric)

Category/Component
0 (Concatenated)

Gen. component cat. (level 1)
2 (Upper Case Alphanumeric)

Additional source comments
12 (Variable Block Data)

Gen. component name (level 2)
2 (Upper Case Alphanumeric)

Average indiv. comp. demands
3 (Integer)

Component//fai1ure
0 (Concatenated)

Component/desi gn/fai1ure
0 (Concatenated)

I Non-keyed

1 Non-keyed

Non-keyed

1 Non-keyed

4

1

4

3

8

6

8

Alternate
20 5

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Category
Comp

Comp
Fail ID

Comp
Design
FaillD

1988/08/09 page

F-5

RECORD REPORT FOR HARDWARE

Field Name
Repeat

CompHrs

CompID

DataEnd

DataStrt

Degree

Demand

Design

Distrb

DocPage

DocRef

Domestic

ERecType
10

ErrFacC

ErrorFac

EventID

Description
Type

Component exposure time
3 (Integer)

Component identifier
0 (Concatenated)

Latest year of failure data
2 (Upper Case Alphanumeric)

Earliest year of failure data
2 (Upper Case Alphanumeric)

Deg-degraded or incipient fail
2 (Upper Case Alphanumeric)

Demand source data?
11 (Boolean) (Y/N)

Component design (level 3)
2 (Upper Case Alphanumeric)

Distribution type
2 (Upper Case Alphanumeric)

Document Reference page, etc.
2 (Upper Case Alphanumeric)

Document Reference number
3 (Integer)

Domestic Failure Data?
2 (Upper Case Alphanumeric)

Exposure recording type
2 (Upper Case Alphanumeric)

assigned error factor
5 (Floating Point Scientific)

Error factor
5 (Floating Point Scientific)

Basic event identifier
0 (Concatenated)

Length
Decimals

12

5

2

2

2

1

2

8

20

5

1

4

5
3

5
3

11

Key Type
K/Nod N/Cr

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Alternate
20 5

Sub-Fields

Comp
Design

Category
Comp
Design
FaillD
NormStat

1988/08/09 page

F-6

RECORD REPORT FOR HARDWARE

Field Name
Repeat

Description
Type

Length
Decimals

4

4

4

8
2

3

4

1

1

1

5
3

5
3

5
3

5
3

2

1

6

Key Type Sub-Fields
K/Nod N/Cr

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

ExpOrign Exposure data origin fields
1 2 (Upper Case Alphanumeric)

FID Plant (facility) code
4 2 (Upper Case Alphanumeric)

FRecType Failure recording type
10 2 (Upper Case Alphanumeric)

FStar Assigned number of failures
1 4 (Real)

FaillD Failure mode id.
1 2 (Upper Case Alphanumeric)

FailOrgn Failure data origin
1 2 (Upper Case Alphanumeric)

IRADAP IRADAP suitable data?
1 2 (Upper Case Alphanumeric)

InclCirc Circuit included?
1 2 (Upper Case Alphanumeric)

InclSys Include System
1 2 (Upper Case Alphanumeric)

LowerCon Lower confidence bound
1 5 (Floating Point Scientific)

LowerTol Lower tolerance bound
1 5 (Floating Point Scientific)

MeanRate Assigned mean from probability
1 5 (Floating Point Scientific)

MedRate Assigned median from probility
1 5 (Floating Point Scientific)

NormStat Normal state
1 2 (Upper Case Alphanumeric)

Nuclear Nuclear plan data origin?
1 2 (Upper Case Alphanumeric)

NumComp Number of components
1 3 (Integer)

1988/08/09 page

F 7

RECORD REPORT FOR HARDWARE

Field Name
Repeat

Description
Type

Length
Decimals

6

1

1

14

5
3

2

2

2

6

3

5
1

1

1

1

Key Type
K/Nod N/Cr

Non-keyed

Non-keyed

Non-keyed

Primary
20 5

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Sub-Fields

Category
Comp
Design
FaillD
NormStat
SourcelD

NumFail
1

PFOnly

PreAgg
1

PrimeKey
1

Prob

ProbCon
1

ProbEF

ProbTol
1

ProbType
1

ProbUnit
1

RateC

RawData
1

SafetyGr
1

Severity
1

Number of failures
3 (Integer)

Primary failure only?
2 (Upper Case Alphanumeric)

Pre-aggregated data?
11 (Boolean) (Y/N)

Primary Source Key
0 (Concatenated)

Failure probability
5 (Floating Point Scientific)

Confidence bounds probability
3 (Integer)

Error factor probability
3 (Integer)

Tolerance bounds probability
3 (Integer)

Failure probability type
2 (Upper Case Alphanumeric)

Failure probability units
2 (Upper Case Alphanumeric)

Assigned failure rate
5 (Floating Point Scientific)

Raw Data in recored?
11 (Boolean) (T/F)

Safety grade comp. (Y,N, or U)
2 (Upper Case Alphanumeric)

Failure severity (C,D,I, or X)
2 (Upper Case Alphanumeric)

1988/08/09 page

F-8

RECORD REPORT FOR HARDWARE

Field Name
Repeat

Description
Type

Length
Decimals

3

3

10

5
3

5
3

36

2

8

12

8

12

1

5
3

5
3

5
3

5
3

Key Type
K/Nod N/Cr

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Sub-Fields

SourcelD
1

SrceDEnt
1

SrceNtry
1

StanDev
1

StanDevC
1

SubSysTn
1

System

TotCDmnd
1

TotCmpHr
1

TotDmndC
1

TotHrsC
1

TypeEF

UndrLS2
1

UpperCon
1

UpperTol
1

UpprTolC
1

Source identifier
3 (Integer)

Data entry code
2 (Upper Case Alphanumeric)

Date source record entered
7 (Date) (yyyy/mm/dd)

Standard deviation
5 (Floating Point Scientific)

Assigned Standard deviation
5 (Floating Point Scientific)

Subsystem train
1 (Alphanumeric)

System codes
1 (Alphanumeric)

Total component demands
3 (Integer)

Total component exposure time
3 (Integer)

Assigned total demand
3 (Integer)

Assigned total time
3 (Integer)

Error factor type
2 (Upper Case Alphanumeric)

underlying variance
5 (Floating Point Scientific)

Upper confidence bound
5 (Floating Point Scientific)

Upper tolerance bound
5 (Floating Point Scientific)

assigned upper tolerance limit
5 (Floating Point Scientific)

1988/08/09 page

F-9

RECORD REPORT FOR HARDWARE

Field Name Description Length Key Type Sub-Fields
Repeat Type Decimals K/Nod N/Cr

VType Generic variance type 2 Non-keyed
1 2 (Upper Case Alphanumeric)

Variance Variance of the failure rate 5 Non-keyed
1 5 (Floating Point Scientific) 3

VariatnC Assigned variation 5 Non-keyed
1 5 (Floating Point Scientific) 3

1988/08/09 page 7

F-10

RECORD REPORT FOR HARDWARE

Field Validation Report

--- 20 ---

Record Name : Source
Description : Source probability data

4) BayUpd Bayesian Update? (Upper Case Alphanumeric)

Enumerated List - 3 value(s)

N U Y

6) Category Gen. component cat. (level 1) (Upper Case Alphanumeric)

Minimum Value ->1
Maximum Value ->2

22) Domestic Domestic Failure Data? (Upper Case Alphanumeric)

Enumerated List - 3 value(s)

N U Y

30) FStar Assigned number of failures (Real)

Minimum Value -> .00

33) IRADAP IRADAP suitable data? (Upper Case Alphanumeric)

Enumerated List - 3 value(s)

N U Y

34) InclCirc Circuit included? (Upper Case Alphanumeric)

Enumerated List - 3 value(s)

N U Y

35) InclSys Include System (Upper Case Alphanumeric)

1988/08/09 page 8
F-11

RECORD REPORT FOR HARDWARE

Enumerated List - 3 value(s)

- E I

41) Nuclear Nuclear plan data origin? (Upper Case Alphanumeric)

Enumerated List - 3 value(s)

- N Y

44) PFOnly Primary failure only? (Upper Case Alphanumeric)

Enumerated List - 3 value(s)

N U Y

55) SafetyGr Safety grade comp. (Y,N, or U) (Upper Case Alphanumeric)

Enumerated List - 3 value(s)

N U Y

1988/08/09 page 9

F-12

RECORD REPORT FOR HARDWARE

21 ---

Field Name
Repeat

Record Name : System
Description : System descriptions
Fields : 2
Byte Length : 57
File Number : 6
Data File : HSYSTEM.DAT
Index File : HSYSTEM.IDX

Description Length
Type Decimals

Key Type
K/Nod N/Cr

Sub-Fields

Des System description
1 2 (Upper Case Alphanumeric)

SystemID System identifier
1 1 (Alphanumeric)

70 Non-keyed

2 Primary
20 5

1988/08/09

F-13

page 10

RECORD REPORT FOR HARDWARE

22 ---

Record Name
Description
Fields
Byte Length
File Number
Data File
Index File

UEvent
Basic event information

22
57
19

UEVENT.DAT
UEVENT.IDX

Field Name
Repeat

Description
Type

Length Key Type
Decimals K/Nod N/Cr

Sub-Fields

CatComp Component ID (level 1 + 3 -f 2) 6 Alternate
0 (Concatenated) 20 5

Category Gen. component cat. (level 1) 1 Non-keyed
2 (Upper Case Alphanumeric)

Comp Gen. component name (level 2) 3 Non-keyed
2 (Upper Case Alphanumeric)

CompFID Component ID + Failure 8 Alternate
0 (Concatenated) 20 5

CompID Component ID (level 2 + 3) 5 Alternate
0 (Concatenated) 20 5

CompIDNS Component ID + Normal State 7 Alternate
0 (Concatenated) 20 5

CompNS Component + Normal State 5 Alternate
0 (Concatenated) 20 5

CompNSFM Component+Normal State+Failure 8 Alternate
0 (Concatenated) 20 5

Design Component design (level 3) 2 Non-keyed
2 (Upper Case Alphanumeric)

DmandAgP Demand aggregated probability 5 Non-keyed
5 (Floating Point Scientific) 3

Category
Design
Comp

Comp
Design
FaillD

Comp
Design

Comp
Design
NormStat

Comp
NormStat

Comp
FaillD
NormStat

1988/08/09 page 11

F-14

RECORD REPORT FOR HARDWARE

Field Name
Repeat

DmandAgU
1

DmandAsP
1

DmandAsU
1

EventID
1

Description
Type

Demand aggregated upper bound
5 (Floating Point Scientific)

Demand assigned probability
5 (Floating Point Scientific)

Demand assigned upper bound
5 (Floating Point Scientific)

Unique event identifier
0 (Concatenated)

Length
Decimals

5
3

5
3

5
3

11

Key Type
K/Nod N/Cr

Non-keyed

Non-keyed

Non-keyed

Primary
20 5

Sub-Fields

Category
Comp
Design
FaillD
NormStat

Fail ID Failure mode ID
1 2 (Upper Case Alphanumeric)

Non-keyed

HrAgP

HrAgU

HrAsP

HrAsU

1

1

1

1

NormStat
1

SrceCnt
1

SrceCntA
1

Hourly aggregated probability
5 (Floating Point Scientific)

Hourly aggregated upper bound
5 (Floating Point Scientific)

Hourly assigned probability
5 (Floating Point Scientific)

Hourly assigned upper bound
5 (Floating Point Scientific)

Normal state of comp/des/failr
2 (Upper Case Alphanumeric)

No, sources for this event
3 (Integer)

No. sources aggregated in Evnt
3 (Integer)

5
3

5
3

5
3

5
3

2

3

3

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

Non-keyed

1988/08/09 page 12

F-15

RECORD REPORT FOR HARDWARE

Field Validation Report

..- 22 ---

Record Name : UEvent
Description : Basic event information

2) Category Gen. component cat. (level 1) (Upper Case Alphanumeric)

Minimum Value ->1
Maximum Value ->2

1988/08/09 page 13

F-16

FORM REPORT FOR HARDWARE

MenuRAl Main Ad Hoc search menu (H/W) 10 Field(s) Help Form -> HMenuRAl
packed picture size -> 738 bytes
predominant color -> white on black

Ad Hoc Search of Hardware Data
Main Menu

E - Exit from Ad Hoc Search Program
? - NUCLARR Hotline #

1 - Retrieve a Saved Data Records File
2 - Ad Hoc Search
3 - View the Located Data Records
4 - Aggregate Probabilities for Located Records
5 - Report on Located Data Records
6 - Plot from Located Data Records
7 - Generate ASCII File for dBase III/SAS/SPSS
8 - Save Located Data Records to a File

Field Display Type Record & (Field) - rpt Field Type Help Frm

1
2
3
4
5
6
7
8
9
10

Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted

Utility (UAl)
Utility (UAl)
Utility (UAl)
Utility (UAl)
Utility (UAl)
Utility (UAl)
Utility (UAl)
Utility (UAl)
Utility (UAl)
Utility (UAl)

Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric

1988/08/09

F-17

page 14

FORM REPORT FOR HARDWARE

MenuRBl Main Browse/search menu (H/W) 11 Field(s) Help Form -> HMenuRBl
packed picture size -> 814 bytes
predominant color -> white on black

Descriptive Search of Hardware Data
Main Menu

E - Exit from Descriptive Search Program
? - NUCLARR Hotline #

1 - Retrieve a Saved Data Records File
2 - Begin Descriptive Search
3 - "Tailored" Selection and Aggregation
4 - View the Located Data Records
5 - Aggregate Probabilities for Located Records
6 - Report on Located Data Records
7 - Plot from Located Data Records
8 - Generate ASCII File for dBase III/SAS/SPSS
9 - Save Located Data Records to a File

Field

1
2
3
4
5
6
7
8
9
10
11

Display Type

Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted

Record & (Field) - rpt Field Type Help Frm

Utility (UAl) -]
Utility (UAl) - 1
Utility (UAl) -]
Utility (UAl) -]
Utility (UAl) -]
Utility (UAl) -]
Utility (UAl) - 1
Utility (UAl) -]
Utility (UAl) -]
Utility (UAl) -]
Utility (UAl) -]

I Upper Case Alphanumen
I Upper Case Alphanumen
I Upper Case Alphanumen
I Upper Case Alphanumen
I Upper Case Alphanumen

Upper Case Alphanumen
I Upper Case Alphanumen
I Upper Case Alphanumen
I Upper Case Alphanumen
I Upper Case Alphanumen
I Upper Case Alphanumen

c
c
c
c
c
c
c
c
c
c
c

1988/08/09

F-18

page 15

FORM REPORT FOR HARDWARE

MenuRHl Main retrieve menu for hardwar 6 Field(s) Help Form -> HMenuRHl
packed picture size -> 752 bytes
predominant color -> white on black

Retrieval of
NUclear Computerized Library for Assessing Reactor Reliability

Hardware Component Failure Data

Main Retrieve Menu
Version 1.1

E - Exit from Hardware Retrieve Program
? - NUCLARR Hotline #

1 - Locate Data Records by Description
2 - Locate Data Records by Ad Hoc Search
3 - Review Documents
4 - Hardware Glossary of Terms

Press <Esc> for general NUCLARR Help

Field Display Type Record & (Field) - rpt Field Type Help Frm

1
2
3
4
5
6

Highlighted
Highlighted
Highlighted
Highlighted
Highlighted
Highlighted

Utility (UAl) - 1
Utility (UAl) - 1
Utility (UAl) - 1
Utility (UAl) - 1
Utility (UAl) - 1
Utility (UAl) - 1

Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric
Upper Case Alphanumeric

1988/08/09 page 16

F-19

FORM REPORT FOR HARDWARE

HMenuRAl Help for Ad Hoc Search Menu 1 Field(s) Help Form -> EXIT
packed picture size -> 865 bytes
predominant color -> light yellow on blue

Ad Hoc Search of Hardware Data

E - Exit from Ad Hoc Search Program: Exit to Main Search
Program Menu. User will be reminded to save any existing
search results not already saved by option number 7 below.

Data Clearinghouse:
number.

Display Data Clearinghouse telephone

1 - Retrieve a Saved Search File: A previously saved search
file may be requested and brought into memory for report­
ing, aggregating, and ASCII file generation.

2 - Ad Hoc Search: Begin the Ad Hoc Search function which
will display a series of screens on which specific values
may be selected to initiate a search of the hardware
source data.

1 Press <Esc> to continue <Enter> return to Ad Hoc Menu

Field Display Type Record & (Field) - rpt Field Type

1 Entry/Display Utility (DAI) - 1 Alphanumeric

Help Frm

HMnuRA-2

1988/08/09 page 17

F-20

FORM REPORT FOR HARDWARE

HMenuRBl Help-Main Browse/search menu 1 Field(s) Help Form -> EXIT
packed picture size -> 708 bytes
predominant color -> light yellow on blue

Descriptive Search of Hardware Data

? -

Exit from Descriptive Search Program. Exit to Main Search
Program Menu. User will be reminded to save any existing
search results not already saved by option number 8 below.

NUCLARR Hotline # - Display Data Clearinghouse telephone
number for assistance or further system Information.

Retrieve a Saved Search File: A previously saved search
file may be requested and brought into memory for report­
ing, aggregating, and ASCII file generation.

1 Press <Esc> continue <Enter> return to Descriptive search

Field Display Type Record & (Field) - rpt Field Type

1 Entry/Display Utility (DAI) - 1 Alphanumeric

Help Frm

HMnuRB-2

1988/08/09 page 18

F-21

FORM REPORT FOR HARDWARE

HMnuRA-2 Cont. help for Ad Hoc Search 1 Fleld(s) Help Form -> EXIT
packed picture size -> 851 bytes
predominant color -> light yellow on blue

Ad Hoc Search of Hardware Data

5 -

View Located Data Records: View the Source records cur­
rently in the buffer and all associated Event aggrega­
tions. If the aggregation option has not yet been
selected. Auto aggregation values from the database will
displayed.

Aggregate Probabilities for Located Records: Compute
probabilities of the aggregated hardware source data which
results from the Ad Hoc search option number 2 above.

Report on Located Data Records: Report on the screen,
printer, or to a file all events and data sources result­
ing from the Ad Hoc search option number 2 above.

1 Press <Esc> to continue <Enter> for previous Help page

Field Display Type Record & (Field) - rpt Field Type

1 Entry/Display Utility (DAI) - 1 Alphanumeric

Help Frm

HMnuRA-3

1988/08/09 page 19

F-22

FORM REPORT FOR HARDWARE

HMnuRA-3 Cont. help for Ad Hoc Search 0 Field(s) Help Form -> EXIT
packed picture size -> 763 bytes
predominant color -> light yellow on blue

Ad Hoc Search of Hardware Data

Plot from Located Data Records: Generate log plots from
located data records. View plots on the console and/or
print on an Epson or laserjet printer.

Generate ASCII File for dBase III/SAS/SPSS: Generate and
save an ASCII file of aggregated event probabilities suit­
able for use by dBase III, or in SAS and SPSS programs.

Save Located Records to a Search File:
of the Ad Hoc search function number 2
data file for future use in NUCLARR.

Save the results
in a user named

<Esc> return to Ad Hoc menu <Enter> for previous Help page

1988/08/09 page 20

F-23

FORM REPORT FOR HARDWARE

HMnuRB-2 Cont.Help-Main Browse/srch mnu 1 Field(s) Help Form -> EXIT
packed picture size -> 1051 bytes
predominant color -> light yellow on blue

Descriptive Search of Hardware Data

Begin Descriptive Search: Begin the Descriptive Search
function which displays descriptions of all hardware
components, designs, failures, normal states, applica­
tions, etc., following the taxonomy described in report
number EGG-REQ-7742. Selections may be made at each
taxonomy level thus narrowing the number of source records
to be searched as each taxonomy level Is descended.

"Tailored" Aggregation and Selection: Extend the Descrip­
tive Search option 2 or file option 1 with a quick selec­
tion screen for Failure Data Origin; Domestic or Foreign,
Nuclear or Non-Nuclear, Safety or Non-Safety Grade, and
Quality Coded Data Fields. This function will complete
the selection, aggregate, and display the aggregated
events and selected source records.

1 Press <Esc> to continue <Enter> for previous Help page

Field Display Type Record & (Field) - rpt Field Type

1 Entry/Display Utility (DAI) - 1 Alphanumeric

Help Frm

HMnuRB-3

1988/08/09 page 21

F-24

FORM REPORT FOR HARDWARE

HMnuRB-3 Cont.Help-Main Browse/srch mnu 1 Field(s) Help Form -> EXIT
packed picture size -> 852 bytes
predominant color -> light yellow on blue

Descriptive Search of Hardware Data

View Located Data Records: View the Source records cur­
rently in the buffer and all associated Event aggrega­
tions. If the aggregation option has not yet been
selected, Auto aggregation values from the database will
displayed.

Aggregate Probabilities for Located Records: Compute
aggregated probabilites using the source data selected
during the Descriptive Search option number 2.

Report on Located Data Records: Report on the screen,
printer, or to a file all events and data sources result­
ing from the Descriptive Search option number 2 above.

1 Press <Esc> to continue <Enter> for previous Help page

Field Display Type Record & (Field) - rpt Field Type

1 Entry/Display Utility (DAI) - 1 Alphanumeric

Help Frm

HMnuRB-4

1988/08/09 page 22

F-25

FORM REPORT FOR HARDWARE

HMnuRB-4 Cont.Help-Main Browse/srch mnu 0 Field(s)
packed picture size -> 739 bytes
predominant color -> light yellow on blue

Help Form -> EXIT

Descriptive Search of Hardware Data

7 - Plot from Located Data Records: Generate log plots from
located data records. View plots on the console and/or
on an Epson or laserjet printer.

Generate ASCII File for dBase III/SAS/SPSS: Generate and
save an ASCII file of aggregated event probabilities suit­
able for use by dBase III, or in SAS and SPSS programs.

Save Located Records to a Search File: Save the results
of the Descriptive Search function number 2 in a user
named data file.

<Esc> to return to menu <Enter> for previous Help page

1988/08/09 page 23

F-?^

AggFlag (field)
AggType (field)
Appl (field)
BayUpd (field)
CatComp (field)
Category (field)
Comment (field)
Comp (field)
CompDmnd (field)
CompF (field)
CompFID (field)
CompHrs (field)
CompID (field)
CompIDNS (field)
CompNS (field)
CompNSFM (field)
DAI (form field)
DataEnd (field)
DataStrt (field)
Degree (field)
Demand (field)
Des (field)
Design (field)
Distrb (field)
DmandAgP (field)
DmandAgU (field)
DmandAsP (field)
DmandAsU (field)
DocPage (field)
DocRef (field)
Domestic (field)
ERecType (field)
EXIT (help form)
ErrFacC (field)
ErrorFac (field)
EventID (field)
ExpOrign (field)
FID (field)
FRecType (field)
FStar (field)
FaillD (field)
FailOrgn (field)
HMenuRAl (form)
HMenuRAl (help form)
HMenuRBl (form)
HMenuRBl (help form)
HMenuRHl (help form)
HMnuRA-2 (form)

1988/08/09

HMnuRA-2 (help form) 17
HMnuRA-3 (form) 20
HMnuRA-3 (help form) 19
HMnuRB-2 (form) 21
HMnuRB-2 (help form) 18
HMnuRB-3 (form) 22
HMnuRB-3 (help form) 21
HMnuRB-4 (form) 23
HMnuRB-4 (help form) 22
HrAgP (field) 12
HrAgU (field) 12
HrAsP (field) 12
HrAsU (field) 12
IRADAP (field) 4
InclCirc (field) 4
InclSys (field) 4
LowerCon (field) 4
LowerTol (field) 4
MeanRate (field) 4
MedRate (field) 4
MenuRAl (form) 14
MenuRBl (form) 15
MenuRHl (form) 16
NormStat (field) 4, 12
Nuclear (field) 4
NumComp (field) 4
NumFail (field) 5
PFOnly (field) 5
PreAgg (field) 5
PrimeKey (field) 5
Prob (field) 5
ProbCon (field) 5
ProbEF (field) 5
ProbTol (field) 5
ProbType (field) 5
ProbUnit (field) 5
RateC (field) 5
RawData (field) 5
SafetyGr (field) 5
Severity (field) 5
Source (record) 2, 8
SourcelD (field) 6
SrceCnt (field) 12
SrceCntA (field) 12
SrceDEnt (field) 6
SrceNtry (field) 6
StanDev (field) 6
StanDevC (field) 6
SubSysTn (field) 6
System (field) 6
System (record) 10
SystemID (field) 10

1988/08/09 page 25
F-28

TotCDmnd (field) 6
TotCmpHr (field) 6
TotDmndC (field) 6
TotHrsC (field) 6
TypeEF (field) 6
UAl (form field) 14, 15, 16
UEvent (record) 11, 13
UndrLS2 (field) 6
UpperCon (field) 6
UpperTol (field) 6
UpprTolC (field) 6
Utility (record) 14, 15, 16, 17, 18, 19, 21, 22
VType (field) 7
Variance (field) 7
VariatnC (field) 7

1988/08/09 page 26

F-29

APPENDIX G

SAMPLE SOURCE LISTING FOR HEP DATA PROCESSING

G-1

APPENDIX G

SAMPLE SOURCE LISTING FOR HEP DATA PROCESSING

This appendix presents a sample of some source Ustings for a Ubrary and a module
used for HEP data processing. The DOCUPROC utiUty, which was used to generate these
Ustings, provides line numbering, a table of contents, and an index. The line numbering is
restarted for each module-level code element.

G-2

Table of Contents

MODULE NUCGEN 1
CalcMedHEPEF - Calculate Error-Factor & Median-HEP 1
Card2StrOFill - Fill string with zeros 2
Clearinghouse - Displays clearinghouse number 2
ClearStack - Clears off any extraneous junk from stack 2
ConvertErrFai IToUErrUFai I - Conversion of ErrFai I to CHAR 3
ConvertToDataManualPage 3
DataCheck - Check if data exists for a matrix/row/cell 4
DocCodes - Retrieves "Original" and "Reference" 4
DocType - Expands the document type code into a description 5
GetCellType - Determination of cell type S
GetCellValidity - Cell validity check 6
GetMatrixDesc - Gets plant ID, job classification & taxonomy level 6
GetRowDescr - Retrieval of row description 7
GetVerb - Retrieves Human Action Verb 7
MyCloseRelation - Closes relation or data file as necessary 8
MyOpenRelation - Opens relation if necessary and returns initial status 8
OutputFile - Opens output file 9
SearchDoc - Search of source statements by document 9

MODULE NUCGEN 11
CalcMedHEPEF - Calculate Error-Factor & Mean-HEP 11
Card2StrOFiU - Fill string with zeros 12
Clearinghouse - Displays clearinghouse nunber 13
ClearStack - Clears off any extraneous junk from stack 13
ConvertErrFai IToUErrUFai I - Conversion of ErrFai I to CHAR 14
ConvertToDataManualPage 15
DataCheck - Check if data exists for a matrix/row/cell 15
DocCodes - Retrieves "Original" and "Reference" 17
DocType - Expands the document type code into a description 17
GetCellType - Determination of cell type 18
GetCellValidity - Cell validity check 19
GetMatrixDesc - Gets plant ID, job classification & taxonomy level 20
GetRowDescr - Retrieval of row description 20
GetVerb - Retrieves Human Action Verb 21
MyCloseRelation - Closes relation or data fi le as necessary 22
MyOpenRelation - Opens relation if necessary and returns initial status 23
OutputFi le ' Opens output fi le 23
SearchDoc - Search of source statements by document 25

MODULE HEPAgg 27
HEPAgg - Aggregation access to storage buffer 27
AggregateHEP - Calculate and display aggregated HEP 29
CalculateForTasklnBuffer - Calculate task HEP on buffer records 33
GetCellDataRecord - Get CellData record HEP data into an array 34
ReadCellDataRecord - Reads a CelIData record into memory 35

Index 37

1988/08/09 09:32:23 i

G-3

DEFINITION MODULE NUCGEN;

FROM Reports IMPORT FileRP;

EXPORT QUALIFIED (* procedures *)

TYPE

CalcMedHEPEF,
Card2StrOFill,
Clearinghouse,
ClearStack,
ConvertErrFaiIToUErrUFaiI,
ConvertToDataManualPage,
DataCheck,
DocCodes,
DocType,
GetMatrixDesc,
GetRowDescr,
GetVerb,
GetCellType,
GetCellValidity,
MyOpenRelation,
MyCloseRelation,
OutputFile,
SearchDoc,

(* types *)

CellType,
ValidType,

(* VAR *)

ftbl;

ValidType = (VALID, INVALID, SHADED);
CellType = (FUNCTIONALGROUP, CELL);

VAR
ftbl : FileRP; (* In overlays - each overlay must have

it own ftbl declared and report files must be
OPENED and CLOSED in side the overlay,
this is a different file then in the main
program.

*)

PROCEDURE CalcMedHEPEF (VAR meanHEP
UCB, LCB

VAR ef
VAR medianHEP
VAR success

REAL;
REAL;
CARDINAL;
REAL;
BOOLEAN);

C
CalcMedHEPEF - Calculate Error-Factor & Median-HEP

T. H. Tucker - March 1987.

CalcMedHEPEF calculates the Median HEP & Error Factor values
when given the Mean HEP & Upper Confidence Bound
values.

CALLING SEQUENCE -

CalcMedHEPEF (meanHEP, UCB, ef, MedianHEP, success);

ENTRY - meanHEP is the calling program provided Mean HEP value
UCB is the calling program provided Upper Confidence Bound
LCB is the calling program provided Lower Confidence Bound

EXIT - ef is the calculated Error Factor for Median HEP
medianHEP is the calculated Median HEP
success is a BOOLEAN flag indicating whether computation

was successful (TRUE = successful)

FILES -

1988/08/09 09:32:23 page

G-4

ALGORITHM - medianHEP » meanHEP / Exp (Power (sigma, 2.0) / 2.0)
ef - Exp (k * Sigma) <-- SUPERCEDED 111
ef ' Exp (ln(UCB/LCB)/2.0)

where, sigma > (UCB - meanHEP) / k
and k is a constant.

")

PROCEDURE Card2Str0Fill (i,width: CARDINAL; VAR string: ARRAY OF CHAR);

/**

Card2Str0Fill - Fill string with zeros.

T. H. Tucker - March 1986.

This procedure fills the blanks in a string with zeroes.

CALLING SEQUENCE -

Card2StrOFill (i, width, string)

ENTRY -
i - CARDINAL

The cardinal that is to change to a string,
width - CARDINAL

The width of the cardinal.

EXIT -

string - ARRAY OF CHAR
The string that represents the cardinal.

FILES -
*)

PROCEDURE Clearinghouse;

/**

Clearinghouse - Displays clearinghouse nunber.

P. M. McGuire - September 1986.

Display of the clearinghouse number.

CALLING SEQUENCE -

Clearinghouse ()

ENTRY -

EXIT -

FILES -

PROCEDURE ClearStack
()

{**

ClearStack - Clears off any extraneous Junk from stack

G. H. Beers - Decetnber 1987

description

CALLING SEQUENCE -

ClearStack ()

ENTRY -

1988/08/09 09:32:23 page

G-5

EXIT -

FILES -
')

PROCEDURE ConvertErrFaiIToUErrUFaiI(ErrFaiI: CARDINAL;
VAR UErr :ARRAY OF CHAR; VAR UFail :CHAR);

/**

ConvertErrFailToUErrUFail - Conversion of ErrFail to CHAR.

P. M. McGuire - Septefnber 1986

Converts the integer ErrFail to a two character representation.

CALLING SEQUENCE -

ConvertErrFaiIToUErrUFaiI(ErrFaiI, UErr, UFail)

ENTRY -

ErrFail - CARDINAL

The errfail for a source statement

EXIT -

UErr - ARRAY OF CHAR
The data type : RecoveryConsidered / RecoveryNotConsidered

UFail - CHAR
The failure mode : Connission or Omission.

FILES -
*

PROCEDURE ConvertToDataManualPage(VAR dataManualPage: ARRAY OF CHAR;
matrix, rowIO, colID:CARDINAL);

(**
ConvertToDataManualPage - Card to Char dataManualPage.

P. M. McGuire - September 1986.

Conversion of the cardinal matrix, row, and column to
character representation of dataManualPage nunber is completed
with the preceeding zeros filled in the dataManualPage nunber.

CALLING SEQUENCE -

ConvertToDataManualPage (dataManualPage, matrix, rowID,
colID)

ENTRY -

matrix - CARDINAL
Matrix number

row ID • CARDINAL
Row number,

colID - CARDINAL
Column number.

EXIT -

dataManualPage - ARRAY OF CHAR
Character representation of matrix, row and
column with zeros filled for blanks.

FILES -

1988/08/09 09:32:23 page

G-6

PROCEDURE DataCheck(matr
matrName
row
rowName
col
COIName
relationName
dataKey

(*

CARDINAL;
ARRAY OF CHAR;
CARDINAL;
ARRAY OF CHAR;
CARDINAL;
ARRAY OF CHAR;
ARRAY OF CHAR;
ARRAY OF CHAR):BOOLEAN;

DataCheck - Check if data exists for a matrix/row/cell

P. M. McGuire September 1986

Check if data exists in the relation specified in relationName,
matrix, row, or cell using "dataKey" to read the relation.
Return TRUE if data exists. The relation is opened and closed
in DataCheck with a no modify option. The record is read on an
alternate key with a EQ sage operation. The dataKey can be one
of three options: UKeyM - search on the matrix given only.

UKeyMR - search on the matrix and row given.
UKeyMRC - search on the matrix and row and

col given.

CALLING SEQUENCE -

DataCheck (matr, row, col, relationName, dataKey): BOOLEAN

ENTRY -

matr - CARDINAL
Matrix nunber

matrName - ARRAY OF CHAR
The field name for the matrix value,

row - CARDINAL
Row ID

rowName - ARRAY OF CHAR
The field name for the row value,

col • CARDINAL
Column ID

colName - ARRAY OF CHAR
The field name for the column value.

relationName - ARRAY OF CHAR
The relation being checked

dataKey - ARRAY OF CHAR
Alternate key name in HEP.
It can be UKeyM, UKeyMR or UKeyMRC

EXIT -

BOOLEAN - TRUE - data exists, FALSE = no data

FILES -

RELATION
NAME

relation-
Name

OPEN(T/F)
CLOSE

0(F)/C

READ/ SAGE
WRITE OP

read EQ

FIELDS/
KEYS

FIELD
CHANGES

*)

PROCEDURE DocCodes;

UKeyM
UKeyMR
UKeyMRC

DocCodes - Retrieves "Original" and "Reference".

P. N. McGuire September 1986

Expands Codes from "Referenc" to the description of
"Original" and "Reference" and loads it into the
Utility fields "Text" and "Text2" respectively for display.

1988/08/09 09:32:23 page

G-7

DocCodes gets the codes from the current "Referenc" record.

CALLING SEQUENCE -

DocCodes()

ENTRY -

EXIT -

FILES -

RELATION
NAME

Referenc

Utility

OPEN(T/F)
CLOSE

O(Prior)

READ/ SAGE
WRITE OP

read

write

FIELDS/
KEYS

Codes

FIELD
CHANGES

Text
Text2

PROCEDURE DocType;

(*
DocType - Expands the document type code into a description.

P. M. McGuire - September 1986

Using the 2 letter document code from "Referenc" the
description is loaded into the Utility "Text30" field.
DocType gets docType of the current "Referenc" record.

CALLING SEQUENCE -

DocTypeO

ENTRY -

EXIT -

FILES -

RELATION
NAME

Referenc

Utility

OPEN(T/F)
CLOSE

O(Prior)

READ/ SAGE
WRITE OP

read

write

FIELDS/
KEYS

docType

FIELD
CHANGES

Text30

PROCEDURE GetCellType (VAR typeOfCell : CellType;
rowID : CARDINAL);

GetCellType - Determination of cell type.

T. H. Tucker - March 1986.

GetCellType determines the cell type, either Functional
Group Celt or an individual Cell. Row nunbers ending in
0 are functional groups.

CALLING SEQUENCE -

GetCellType (typeOfCell, rowID)

ENTRY -

rowID - CARDINAL
The row number of the cell selected.

1988/08/09 09:32:23 page

G-8

EXIT -

typeOfCell - CellType
CellType = (FUNCTIONALGROUP, CELL)
Returns the type of the cell selected.

FILES -
')

PROCEDURE GetCellValidity (matrix, rowID. colID : CARDINAL;
VAR validity : ValidType);

GetCellValidity - Cell validity check.

T. H. Tucker - March 1986.

GetCellValidity determines if the cell requested by the
user is valid. "CellVal" is opened and closed with a no modify
option. The record is read on the PrimeKey with an EQ sage
operation. The PrimeKey consisting of the matrix, rowID, and
colID.

CALLING SEQUENCE -

GetCellValidity (matrix, rowID, colID, validity)

ENTRY -

matrix - CARDINAL
matrix number

rowID - CARDINAL
row identification nunber

colID - CARDINAL
column identification nunber

EXIT -

validity - ValidType
ValidType = (VALID, INVALID, SHADED)
Returns the validity of the cell selected.

FILES -

RELATION OPEN(T/F) READ/ SAGE FIELDS/ FIELD
NAME CLOSE WRITE OP KEYS CHANGES

*)
CellVal 0(F)/C read EQ PrimeKey

PROCEDURE GetMatrixDesc (matrix : CARDINAL);

(**
GetMatrixDesc - Gets plant ID, job classification & taxonomy level

D. J. Fink - July 1986.

Opens, reads, and closes the relation MatrDesc to get the
matrix's plant ID, job classification, and taxonomy level.

CALLING SEQUENCE -

GetMatrixDesc (matrix)

ENTRY -

matrix - CARDINAL
The matrix number associated with the description.

1988/08/09 09:32:23 page

G-9

EXIT -

FILES -

RELATION
NAME

MatrDesc

OPEN(T/F)
CLOSE

0(F)/C

READ/
WRITE

read

SAGE
OP

EQ

FIELDS/
KEYS

FIELD
CHANGES

Matrix
*)

PROCEDURE GetRowDescr (matrix, rowID: CARDINAL);

GetRowDescr - Retrieval of row description.

T. H. Tucker - March 1986.

Retrieval of row description. MATRROW and Rows are opened.
Sage operation GE and EQ is used in reading the records.

CALLING SEQUENCE -

GetRowDescr (matrix, rowID)

ENTRY -

matrix

row ID

EXIT -

FILES -

RELATION
NAME

MATRROW
Rows

CARDINAL
The matrix number.
CARDINAL
The row number.

OPEN(T/F)
CLOSE

0(F)
0(F)/C

READ/ SAGE
WRITE OP

FIELDS/
KEYS

FIELD
CHANGES

read
read

GE
EQ

PrimeKey
RowNumbr

PROCEDURE GetVerb (matrix, col ID : CARDINAL;
VAR sageerror : CARDINAL);

(**
GetVerb - Retrieves Human Action Verb.

P. M. McGuire - September 1986.

GetVerb retrieves the human action verb. Human action verb
is dependent on the matrix and col ID. MATRCOL and Columns are
opened and sage operation GE and EQ is used in reading the
records.

CALLING SEQUENCE -

GetVerb (matrix, col ID, sageerror)

ENTRY -
matrix -

colID -

EXIT -

sageerror

FILES -

CARDINAL
The matrix nunber.
CARDINAL
The column nunber.

CARDINAL
The sageerror from the MATRCOL read operation.

1988/08/09 09:32:23 page

G-10

528:
529: RELATION OPEN(T/F) READ/ SAGE FIELDS/ FIELD
530: NAME CLOSE WRITE OP KEYS CHANGES
531:
532:
533: MATRCOL 0(F)/C read GE PrimeKey
534: Colunns 0(F)/C read EQ ColNumbr
535: *)
536:
537:
538: PROCEDURE MyCloseRelation (relation :ARRAY OF CHAR;
539: status :BOOLEAN);
540:
541: (**
542: MyCloseRelation - Closes relation or data file as necessary
543:
544: G. H. Beers - December 1987
545:
546: Checks the initial status of a relation and returns it to its initial state.
547:
548: CALLING SEQUENCE -
549:
550: MyCloseRelation (relation,status)
551:
552: ENTRY -
553:
554: relation - ARRAY OF CHAR
555: Name of relation to be opened or checked.
556:
557: status - BOOLEAN
558: inital relation status flag
559: TRUE - Relation or index file was initially open
560: FALSE - Relation was initially closed
561:
562: EXIT -
563:
564: FILES -
565: *)
566:
567:
568: PROCEDURE MyOpenRelation (relation, key :ARRAY OF CHAR) :BOOLEAN;
569:
570: (**
571: MyOpenRelation - Opens relation if necessary and returns initial status
572:
573: G. H. Beers - December 1987
574:
575: Checks the current status of a relation and opens it if necessary.
576:
577: CALLING SEQUENCE -
578:
579: MyOpenRelation (relation,key)
580:
581: ENTRY -
582:
583: relation - ARRAY OF CHAR
584: Name of relation to be opened or checked.
585:
586: key - ARRAY OF CHAR
587: Name of key to use for testing relation current status
588:
589: EXIT -
590:
591: result - BOOLEAN
592: Initial relation status flag
593: TRUE - Relation or index file was initially open
594:
595: FALSE - Relation was closed
596:
597: FILES -
598: *)
599:
600:
601: PROCEDURE OutputFile (name : ARRAY OF CHAR;
602: VAR ok : BOOLEAN;

1988/08/09 09:32:23

G-11

dataManualPage: ARRAY OF CHAR;
VAR screenDisplay: BOOLEAN);

OutputFile - Opens output file.

P. M. McGuire - September 1986.

Opens the WrForm file for output.

CALLING SEQUENCE -

OutputFile(name, ok, dataManualPage, screenDisplay)

ENTRY -

name - ARRAY OF CHAR
Title of print menu

dataManualPage - ARRAY OF CHAR
The dataManualPage number for display.

EXIT -

ok BOOLEAN
Success of the opening operation

screenDisplay - BOOLEAN
Display to the screen = True
Write to a file or PRN - False

FILES -

FILE
NAME

ftbl
*)

PROCEDURE SearchDoc

(**

OPEN
CLOSE

0

r

DEVICE

filename

FORMS
WRITTEN DESCRIPTION

SearchDoc - Search of source statements by document.

P. M. McGuire - September 1986.

Generation of document listing by source statement.

CALLING SEQUENCE -

SearchDocO

ENTRY -

EXIT -

FILES -

RELATION
NAME

CellData

Referenc

FILE
NAME

OPEN(T/F)
CLOSE

0(F)/C

0(prior)

OPEN
CLOSE

READ/
WRITE

read

read

DEVICE

SAGE
OP

EQ

FORMS
WRITTEN

FIELDS/
KEYS

DocKey
RefKey

DocNunbr

DESCRIPTION

ftbl

FIELD
CHANGES

O/C PRN RepDocl doc. description

1988/08/09 09:32:23 page

G-12

678: Rep0oc2 header for
679: Celldata
680: RepDoc3
681: *)
682:
683:
684: END NUCGEN.

1988/08/09 09:32:23 page 10

G-13

IMPLEMENTATION MODULE NUCGEN;

FROM Sage IMPORT
DisplayMessage, DisplayForm, GetFieldA, GetFieldC,
PutFieldC, WriteRecord, CompareFieldC,
OpenRelation, CloseRelation, CloseRelationFiles,
CopyField, ClearRelation, ClearField, GetFieldB,
PutFieldA, ReadRecord, SageError,
SageOperations, GetRepeatName, FindRecord;

FROM SortLib IMPORT
FillChar;

FROM Reports IMPORT
OpenReport, DefineHeader, WrForm, TopOfPage,
CloseReport, WrString, WrLn;

FROM Convert IMPORT
StrToCard, CardToStr;

FROM Files IMPORT
File, FileState, GetFileName, State;

FROM MathLib

FROM String

FROM Terminal

FROM ThorPort

IMPORT
Exp, Ln, Power, Sqrt;

IMPORT
Concat;

IMPORT
CondRead;

IMPORT
Pause;

CONST
RingBell = TRUE;
NoBell - FALSE;
Modify = TRUE;
NoModify = FALSE;
Default = FALSE;

PROCEDURE CalcMedHEPEF (VAR meanHEP :REAL;
UCB, LCB :REAL;

VAR EF :CARDINAL;
VAR medianHEP :REAL;
VAR success :BOOLEAN);

(«
CalcMedHEPEF - Calculate Error-Factor & Mean-HEP

T. H. Tucker - March 1987.

CalcMedHEPEF calculates the Mean HEP & Error Factor values when
given the Median HEP & Confidence Bound values.

CALLING SEQUENCE -

CalcMedHEPEF (meanHEP,UCB,LCB,EF,MedianHEP, success);

ENTRY -

EXIT

medianHEP is the calculated Median HEP
UCB is the calling program provided Upper Confidence Bound
LCB is the calling program provided Lower Confidence Bound

EF is the calculated Error Factor for Median HEP
meanHEP is the calling program provided Mean HEP value
success is a BOOLEAN flag indicating whether computation

was successful (TRUE " successful)

FILES -

1988/08/09 09:32:23

G-14

ALGORITHM - meanHEP = medianHEP * Exp (Power (sigma, 2.0) / 2.0)
EF - Sqrt (UCB/LCB))

where, sigma = (UCB - meanHEP) / k
and k is a constant.

*)

CONST (* *••*•****•*•*•*•***•***********• *)
k = 1.6449; (* <-- NEVER ALLOWED TO BE ZERO *** *)

VAR
sigma :REAL;

BEGIN
success :s TRUE;
EF := 0;

IF (LCB > 0.0) THEN
EF :> TRUNC (Sqrt(UCB/LCB) * 0.5);

ELSIF (medianHEP > 0.0) THEN
EF :> TRUNC ((UCB/medianHEP) + 0.5);

ELSE
DisplayMessage ("* ERROR - error factor could not be calculated",TRUE);
Pause (2000);

END;

(* Use A6 algorithm to get meanHEP *)
IF (EF # 0) THEN
meanHEP := medianHEP * Exp(0.5 * (Power((Ln(FLOAT(EF))/1.6449),2.0)));

ELSE
success :- FALSE;
DisplayMessage ("• ERROR - CalcMedHEPEF, attempted: Ln(0)", TRUE);
Pause (2000);

END;

END CalcMedHEPEF;

PROCEDURE Card2StrOFill (i,width: CARDINAL; VAR string: ARRAY OF CHAR);

Card2StrOFill - Fill string with zeros.

T. H. Tucker - March 1986.

This procedure fills the blanks in a string with zeroes.

CALLING SEQUENCE -

Card2StrOFill (i, width, string)

ENTRY -

i - CARDINAL
The cardinal that is to change to a string,

width - CARDINAL
The width of the cardinal.

EXIT -

string - ARRAY OF CHAR
The string that represents the cardinal.

FILES -

VAR
done: BOOLEAN;
j: CARDINAL;

BEGIN
CardToStr (i, string, width, done);

1988/08/09 09:32:23

G-15

j := 0;
LOOP

IF (stringtj] = " ") THEN
stringCj] := "0";

ELSE
EXIT;

END;
INC (j);
IF (j >= width) THEN EXIT; END;

END;

END Card2Str0Fill;

PROCEDURE Clearinghouse;

Clearinghouse - Displays clearinghouse nunber.

P. M. McGuire - September 1986.

Display of the clearinghouse nunber.

CALLING SEQUENCE -

Clearinghouse ()

ENTRY -

EXIT -

FILES -

CONST
mess =

"Telephone Clearinghouse for assistance at (208)526-0735 or FTS 583-0735"

BEGIN
DisplayMessage(niess,NoBell);

END Clearinghouse;

PROCEDURE ClearStack
()

/**

ClearStack - Clears off any extraneous junk from stack

G. H. Beers - December 1987

description

CALLING SEQUENCE -
ClearStack ()

ENTRY -

EXIT -

FILES -
*)

VAR
ch :CHAR;
success :BOOLEAN;

BEGIN

1988/08/09 09:32:23 page 13

G-16

LOOP
CondRead (ch, success);
IF NOT success THEN
EXIT;

END;
END; (• LOOP *)

END ClearStack;

PROCEDURE ConvertErrFaiIToUErrUFaiI
(ErrFail : CARDINAL;
VAR UErr : ARRAY OF CHAR;
VAR UFail : CHAR);

(*
ConvertErrFailToUErrUFail - Conversion of ErrFail to CHAR.

P. M. McGuire - September 1986

Modified by T.H. Tucker, April 1987, for new Data-Type / Failure Mode
format:

= 1) RecoveryConsidered / omission
ErrFail = 2) RecoveryConsidered / conmission

= 3) RecoveryNotConsidered / omission
= 4) RecoveryNotConsidered / conmission

Converts the integer ErrFail to a two character representation.

CALLING SEQUENCE -

ConvertErrFaiIToUErrUFaiI(ErrFaiI, UErr, UFail)

ENTRY -

ErrFail

EXIT -

UErr

UFai I

FILES -

BEGIN

FillChar (UErr, " ", 4);
FillChar (UFail, " ", 1);

IF ErrFail = 1
FillChar (UE
FillChar (UE
UFail := "0"

ELSIF ErrFail
FillChar (UE
FillChar (UE
UFail := "C"

ELSIF ErrFail
FillChar (UE
FillChar (UE
FillChar (UE
UFail := "0"

ELSIF ErrFail
FillChar (UE
FillChar (UE
FillChar (UE
UFail := "C"

CARDINAL
The errfail for a source statement

- ARRAY OF CHAR
The Data Type : RecoveryConsidered / RecoveryNotConsidered

- CHAR
The Failure Mode : Conmission / Omission.

THEN
rrCO], "R",
r r [1] , "C",

= 2 THEN
rrCO], "R",
r r [1] , "C",

= 3 THEN
r r [0] , "R",
r rC I] , "N",
r r [2] , "C",

= 4 THEN
rr tO] , "R",
r r l l] , "N",
r r [2] , "C",

1) ;
1) ;

1) ;
1) ;

1) ;
1) ;
1) ;

1) ;
1) ;
1) ;

1988/08/09 09:32:23

G-17

END;

END ConvertErrFailToUErrUFail;

PROCEDURE ConvertToDataManualPage(VAR dataManualPage: ARRAY OF CHAR;
matrix, rowID, colID:CARDINAL);

ConvertToDataManualPage - Card to Char dataManualPage.

P. M. McGuire - September 1986.

Conversion of the cardinal matrix, row, and column to
character representation of dataManualPage nunber is completed
with the preceeding zeros filled in the dataManualPage number.

CALLING SEQUENCE -

ConvertToDataManualPage (dataManualPage, matrix, rowID,
colID)

ENTRY -

matrix

row ID

col ID

- CARDINAL
Matrix nunber

- CARDINAL
Row nunber.

- CARDINAL
Column nunber

EXIT -

dataManualPage - ARRAY OF CHAR
Character representation of matrix, row and
column with zeros filled for blanks.

FILES -

VAR
tempmat : ARRAY t0..1] OF CHAR;
temprow : ARRAY [0..2] OF CHAR;
tempcol : ARRAY [0..1] OF CHAR;

BEGIN

Card2StrOFill (matrix, 2,tempmat);
dataManualPage[0] := tempmat[0];
dataManualPage[1] := tempmat[1];

Card2StrOFill (rowID, 3,temprow);
dataManualPage[2] := temprowlOl;
dataManualPage[3] := temprow[1];
dataManualPage[4] := teniprow[2];

Card2StrOFiU (colID, 2,tempcol);
dataManualPage[5] := tempcol[01;
dataManualPage[6] := tempcol[13;

END ConvertToDataManualPage;

PROCEDURE DataCheck(n)atr
matrName
row
rowName
x:ol
colName

CARDINAL;
ARRAY OF CHAR;
CARDINAL;
ARRAY OF CHAR;
CARDINAL;
ARRAY OF CHAR;

relationName: ARRAY OF CHAR;
dataKey ARRAY OF CHAR):BOOLEAN;

1988/08/09 09:32:23

G-18

DataCheck - Check if data exists for a matrix/row/cell

P. M. McGuire September 1986

Check if data exists in the relation specified in relationName,
matrix, row, or cell using "dataKey" to read the relation.
Return TRUE if data exists. The relation is opened and closed
in DataCheck with a no modify option. The record is read on an
alternate key with a EQ sage operation. The dataKey can be one
of three options: UKeyM - search on the matrix given only.

UKeyMR - search on the matrix and row given.
UKeyMRC - search on the matrix and row and

col given.

CALLING SEQUENCE -

DataCheck (matr, row, col, relationName, dataKey): BOOLEAN

ENTRY -

matr - CARDINAL
Matrix nunber

matrName - ARRAY OF CHAR
The field name for the matrix value,

row - CARDINAL
Row ID

rowName - ARRAY OF CHAR
The field name for the row value,

col - CARDINAL
Column ID

COIName - ARRAY OF CHAR
The field name for the column value.

relationName - ARRAY OF CHAR
The relation being checked

dataKey - ARRAY OF CHAR
Alternate key name in HEP.
It can be UKeyM, UKeyMR or UKeyMRC

EXIT -

BOOLEAN - TRUE - data exists. FALSE = no data

FILES -

RELATION
NAME

relation-
Name

OPEN(T/F)
CLOSE

0(F)/C

READ/ SAGE
WRITE OP

read EQ

FIELDS/
KEYS

FIELD
CHANGES

UKeyM
UKeyMR
UKeyMRC

VAR
relationOpen :BOOLEAN;

BEGIN
relationOpen := MyOpenRelation(relationNanie, dataKey);

PutFieldC(relationName, matrName, matr);
PutFieldC(relationName, rowName, row);
PutFieldC(relationNanie, colName, col);

FindRecord(relationName, dataKey, EQ);

IF SageError = 0 THEN
MyCloseRelation(relationName, relationOpen);
RETURN TRUE;

ELSE
MyCloseRelation(relationName, relationOpen);
RETURN FALSE;

END; (* end if- SageError *)

1988/08/09 09:32:23

G-19

END DataCheck;

PROCEDURE DocCodes;

r**

DocCodes - Retrieves "Original" and "Reference".

P. M. McGuire September 1986

Expands Codes from "Referenc" to the description of
"Original" and "Reference" and loads it into the
Utility fields "Text" and "Text2" respectively for display.
DocCodes gets the codes from the current "Referenc" record.

CALLING SEQUENCE -

DocCodes()

ENTRY -

EXIT -

FILES -

RELATION
NAME

Referenc
Utility

OPEN(T/F)
CLOSE

O(Prior)

READ/ SAGE
WRITE OP

read
write

FIELDS/
KEYS

Codes

FIELD
CHANGES

Text
Text2

*)

BEGIN
(* check for original document *)

IF GetFieldB("Referenc", "Codes[1]") THEN
PutFieldA("Utility", "Text", "Original");

ELSE
ClearField("Utility", "Text");

END;

(* check for reference document *)

IF GetFieldB("Referenc", "Codes[2]") THEN
PutFieldA("Utility", "Text2", "Reference");

ELSE
ClearField("Utility", "Text2");

END;

END DocCodes;

PROCEDURE DocType;

(•*
DocType - Expands the document type code into a description.

P. M. McGuire - September 1986

Using the 2 letter document code from "Referenc" the
description is loaded into the Utility "Text30" field.
DocType gets docType of the current "Referenc" record.

CALLING SEQUENCE -

DocType()

ENTRY -

EXIT -

FILES -

1988/08/09 09:32:23

G-20

RELATION
NAME

Referenc
Utility

OPEN(T/F)
CLOSE

O(Prior)

READ/ SAGE
WRITE OP

read
write

FIELDS/
KEYS

docType

FIELD
CHANGES

Text30

VAR
codeText : ARRAY [0..29] OF CHAR;
docType : ARRAY [0..1] OF CHAR;

BEGIN
GetFieldA("Referenc", "DocType", docType);
IF (docTypetO] = "L") AND (docTypeCD = "D") THEN

codeText :» "Applicant/Licensee Document";
ELSIF

(docTypetO] = "B") AND (docTypeCU = "K") THEN
codeText := "Book";

ELSIF
(docTypeCO] = "C") AND (docTypeCI] = "P") THEN
codeText := "Conference Proceeding / Paper";

ELSIF
(docType[01 = "C") AND (docType[1] = "M") THEN
codeText := "Correspondence and Memoranda";

ELSIF
(docTypetO] = "J") AND (docTypeCI] = "A") THEN
codeText := "Journal Article";

ELSIF
(docTypeCO] = "U") AND (docTypetl] = »R") THEN
codeText := "Unpublished Report";

ELSIF
(docTypetO] = "N") AND (docTypetl] = "R") THEN
codeText := "NUREG Report";

ELSIF
(docTypetO] = "0") AND (docTypetl] = "P") THEN
codeText := "Other Federal Agency Pub.";

ELSIF
(docTypeCO] = "0") AND (docTypetl] = "D") THEN
codeText := "General document";

ELSE
codeText := " Unknown ";

END;
PutFieldA("Utility", "Text30", codeText);

(* LD *)

(* BK •)

(* CP *)

(* CM *)

(* JA *)

(* UR *)

(* NR *)

(* OP *)

(* 00 *)

END DocType;

PROCEDURE GetCellType (VAR typeOfCell : CellType;
rowID : CARDINAL);

GetCellType - Determination of cell type.

T. H. Tucker - March 1986.

GetCellType determines the cell type, either Functional
Group Cell or an individual Cell. Row nunbers ending in
0 are functional groups.

CALLING SEQUENCE -

GetCellType (typeOfCell, rowID)

ENTRY -

row ID

EXIT -

- CARDINAL
The row nunber of the cell selected.

typeOfCell - CellType
CellType = (FUNCTIONALGROUP, CELL)
Returns the type of the cell selected.

1988/08/09 09:32:23

G-21

FILES -

O

BEGIN
IF (((rowID DIV 10) * 10) - rowID) THEN
typeOfCell := FUNCTIONALGROUP;

ELSE
typeOfCell := CELL;

END;

END GetCellType;

PROCEDURE GetCellValidity (matrix, rowID, colID : CARDINAL;
VAR validity : ValidType);

GetCellValidity - Cell validity check.

T. H. Tucker - March 1986.

GetCellValidity determines if the cell requested by the
user is valid. "CellVal" is opened and closed with a no modify
option. The record is read on the PrimeKey with an EQ sage
ojseration. The PrimeKey consisting of the matrix, rowID, and
colID.

CALLING SEQUENCE -

GetCellValidity (matrix, rowID, colID, validity)

ENTRY -

matrix - CARDINAL
The matrix nunber

rowID - CARDINAL
The row identification number

col ID - CARDINAL
The colunn identification number

EXIT -

validity - ValidType
ValidType » (VALID, INVALID, SHADED)
Returns the validity of the cell selected.

FILES -

RELATION
NAME

CellVal

OPEN(T/F)
CLOSE

0(F)/C

READ/ SAGE
WRITE OP

read EQ

FIELDS/
KEYS

FIELD
CHANGES

PrimeKey

VAR
i : CARDINAL;
CVOpen :BOOLEAN;

BEGIN

CVOpen := MyOpenRelation ("CellVal", "PrimeKey");
IF (SageError = 0) THEN

validity := INVALID;

PutFieldC ("CellVal", "CellMatr", matrix);
PutFieldC ("CellVal", "CellRow", rowID);
PutFieldC ("CellVal", "CellColu", col ID);

ReadRecord ("CellVal", "PrimeKey", EQ);

1988/08/09 09:32:23

G-22

IF (SageError > 0) THEN
GetFieldC ("CellVal", "Validity", i);
IF ({ « 0) THEN
validity :> INVALID;

ELSIF (i « 1) THEN
validity :> VALID;

ELSIF (i > 2) THEN
validity :» SHADED;

END;
END;

MyCloseRelation("CellVal", CVOpen);
ELSE

DisplayMessage ("* ERROR - could not open CellVal",TRUE);
END;

END GetCellValidity;

PROCEDURE GetMatrixDesc (matrix : CARDINAL);

/•*
GetMatrixDesc - Gets plant ID, job classification & taxonomy level

D. J. Fink - July 1986.

Opens, reads, and closes the relation MatrDesc to get the
matrix's plant ID, job classification, and taxonomy level.

CALLING SEQUENCE -

GetMatrixDesc (matrix)

ENTRY -

matrix - CARDINAL

The matrix nunber associated with the description.

EXIT -

FILES -
RELATION OPEN(T/F) READ/ SAGE FIELDS/ FIELD
NAME CLOSE WRITE OP KEYS CHANGES

MatrDesc 0(F)/C read EQ Matrix
*)

VAR
i : CARDINAL;

BEGIN
OpenRelation("MatrDesc", NoModify);

PutFieldC ("MatrDesc","Matrix", matrix);
ReadRecord ("MatrDesc", "Matrix", EQ);

CloseRelation("MatrDesc");

END GetMatrixDesc;

PROCEDURE GetRowDescr (matrix, rowID: CARDINAL);

GetRowDescr - Retrieval of row description.

T. H. Tucker - March 1986.

Retrieval of row description. MATRROW and Rows are opened.

1988/08/09 09:32:23 page 20

G-23

Sage operation GE and EQ is used in reading the records.

CALLING SEQUENCE -

GetRowDescr (matrix, rowID)

ENTRY -

matrix

rowID

EXIT -

FILES -

RELATION
NAME

MATRROW
Rows

- CARDINAL
The matrix nunber.

- CARDINAL
The row nunber.

OPEN(T/F)
CLOSE

0(F)
0(F)/C

READ/ SAGE
WRITE OP

read GE
read EQ

FIELDS/
KEYS

FIELD
CHANGES

PrimeKey
RowNumbr

VAR
rowNumbr: CARDINAL;
MATRROWOpen :B0OLEAN;
RowsOpen :BOOLEAN;

BEGIN
MATRROWOpen := MyOpenRelation ("MATRROW", "PrimeKey");
RowsOpen :s MyOpenRelation ("Rows", "RowNumbr");

CIea rReIat i on("MATRROW");
PutFieldC ("MATRROW", "Matrix", matrix);
PutFieldC ("MATRROW", "RowID", rowID);
ReadRecord ("MATRROW", "PrimeKey", GE);

IF (SageError s 0) THEN
CopyField ("MATRROW", "RowNumbr", "Rows", "RowNumbr");
ReadRecord ("Rows", "RowNumbr", EQ);

END;

MyCloseRelation ("Rows", RowsOpen);
MyCloseRelation ("MATRROW", MATRROWOpen);

END GetRowDescr;

PROCEDURE GetVerb (matrix, col ID : CARDINAL;
VAR sageerror : CARDINAL);

/**
GetVerb - Retrieves Hunan Action Verb.

P. M. McGuire - September 1986.

GetVerb retrieves the human action verb. Hunan action verb
is dependent on the matrix and colID. MATRCOL and Columns are
opened and sage operation GE and EQ is used in reading the
records.

CALLING SEQUENCE -

GetVerb (matrix, col ID, sageerror)

ENTRY -

matrix - CARDINAL
The matrix number,

col ID - CARDINAL
The colunn nunber.

1988/08/09 09:32:23

G-24

EXIT

sageerror - CARDINAL
The sageerror from the MATRCOL read operation.

FILES -

RELATION
NAME

MATRCOL
Colunns

OPEN(T/F)
CLOSE

0(F)/C
0(F)/C

READ/ SAGE
WRITE OP

FIELDS/
KEYS

FIELD
CHANGES

read
read

GE
EQ

PrimeKey
ColNumbr

")

BEGIN
OpenRelation ("MATRCOL", NoModify);
IF (SageError = 0) THEN
OpenRelation ("Colunns", NoModify);
IF (SageError = 0) THEN

ClearRelation(»MATRCOL");
PutFieldC ("MATRCOL", "Matrix", matrix);
PutFieldC ("MATRCOL", "ColID", colID);
ReadRecord ("MATRCOL", "PrimeKey", GE);
sageerror := SageError;

IF (SageError = 0) AND
(CompareFieldC ("MATRCOL", "Matrix", EQ, matrix)) THEN
CopyField ("MATRCOL", "ColNumbr", "Colunns", "ColNumbr");
ReadRecord ("Columns", "ColNumbr", EQ);

ELSE
sageerror := 200;

END; (* IF-SageError *)

ELSE
DisplayMessage("* ERROR - could not open Columns", RingBell);
END;

ELSE
DisplayMessage("* ERROR - could not open MATRCOL", RingBell);

END;

CloseRelation("MATRCOL");
CloseRelation("Columns");

END GetVerb;

PROCEDURE MyCloseRelation (relation :ARRAY OF CHAR;
status :BOOLEAN);

MyCloseRelation - Closes relation or data file as necessary

G. H. Beers - December 1987

Checks the initial status of a relation and returns it to its initial state.

CALLING SEQUENCE -

MyCloseRelation (relation,status)

ENTRY -

relation - ARRAY OF CHAR
Name of relation to be opened or checked.

status - BOOLEAN
inital relation status flag
TRUE - Relation or index file was initially open
FALSE - Relation was initially closed

EXIT -

FILES -

1988/08/09 09:32:23

G-25

*)

BEGIN
IF status THEN
CloseRelationFiles (relation);

ELSE
CloseRelation (relation);

END;

END MyCloseRelation;

PROCEDURE MyOpenRelation (relation, key :ARRAY OF CHAR) :BOOLEAN;

MyOpenRelation - Opens relation if necessary and returns initial status

G. H. Beers - Decen<9er 1987

Checks the current status of a relation and opens it if necessary.

CALLING SEQUENCE -

MyOpenRelation (relation,key)

ENTRY -

relation - ARRAY OF CHAR
Name of relation to be opened or checked.

key - ARRAY OF CHAR

Name of key to use for testing relation current status

EXIT -

result - BOOLEAN
Initial relation status flag
TRUE - Relation or index file was initially open FALSE - Relation was closed

FILES -

VAR
result :BOOLEAN;

BEGIN
result := TRUE;
FindRecord (relation, key. Next);
IF SageError = 106 THEN
OpenRelation (relation, FALSE);
result := FALSE

END;
RETURN result;

END MyOpenRelation;

PROCEDURE OutputFile (name ; ARRAY OF CHAR;
VAR ok : BOOLEAN;
dataManualPage: ARRAY OF CHAR;
VAR screenDisplay: BOOLEAN);

(*
OutputFile - Opens output file.

P. M. McGuire - September 1986.

Opens the WrForm file for output.

CALLING SEQUENCE -

1988/08/09 09:32:23

G-26

OutputFile(naine, ok, dataManualPage, screenDisplay)

ENTRY -

name - ARRAY OF CHAR
Title of print menu

dataManualPage - ARRAY OF CHAR
The dataManualPage number for display.

EXIT -

ok - BOOLEAN
Success of the opening operation

screenDisplay - B(X)LEAN
Display to the screen = True
Write to a file or PRN = False

FILES -

FILE OPEN DEVICE FORMS
NAME CLOSE WRITTEN DESCRIPTION

ftbl 0 filename

VAR
select : CHAR;
filename: ARRAY [0..9] OF CHAR;
state: FileState;

BEGIN

LOOP
PutFieldA ("Utility", "DataMan", dataManualPage);
PutFieldA ("Utility", "Text2", name);
PutFieldA ("Utility", "CommandA", "S");
PutFieldA ("Utility", »Text25", "Cell Page Nunber : ") ;

ClearField("Utility", "Text");

ClearStack ();
DisplayForm ("Menunl", "Utility", "Text", FALSE);

GetFieldA ("Utility", "CommandA", select);
GetFieldA ("Utility", "Text", filename);

CASE select OF
"S" : IF (filenamelO] = »C") AND (filenamell] = "0") AND

(filenaffle[2] » »H») AND (filename[3] = " '•> THEN

screenDisplay := TRUE;
ELSIF (filenameCO] - " ") THEN

filename := "CON";
screenDisplay :» TRUE;

ELSE
screenDisplay i= FALSE;

END;

OpenReport (ftbl, filename, state);
ok ::: TRUE;
EXIT)

»E" : ok := FALSE;
EXIT

ELSE
DisplayMessage("Invalid selection", TRUE);

END; (* if- select *)

END;

END OutputFile;

1988/08/09 09:32:23

G-27

PROCEDURE SearchDoc;

(**
SearchDoc - Search of source statements by document.

P. M. McGuire - September 1986.

Generation of document listing by source statement.

CALLING SEQUENCE -

SearchDocO

ENTRY -

EXIT -

FILES -

RELATION
NAME

CellData

Referenc

FILE
NAME

ftbl

OPEN(T/F)
CLOSE

0(F)/C

O(prior)

OPEN
CLOSE

O/C

READ/
WRITE

read

read

DEVICE

PRN

SAGE
OP

EQ

FORMS
WRITTEN

RepDocl
RepDoc2

FIELDS/ FIELD
KEYS CHANGES

DocKey
RefKey

DocNunbr

DESCRIPTION

doc. description
header for
Celldata

RepDoc3

VAR
filename: ARRAY t0..9] OF CHAR;
select: CHAR;
state: FileState;
error: CARDINAL;
newPage: BOOLEAN;

BEGIN
LOOP (* Open printer file (device) *)
ClearField("Utility", "DataMan");
ClearField("Utility", "Text25");
PutFieldA("Utility", "CoimiandA", "S");
PutFieldA ("Utility", "Text2", "Search Doc.");
ClearField("Utility", "Text");

ClearStack ();
DisplayForm ("Menunl", "Utility", "Text", FALSE);

GetFieldA ("Utility", "CommandA", select);
GetFieldA("Utility", "Text", fileName);

IF select = "S" THEN (* start *)
EXIT;

ELSIF select = 'E' THEN (* exit *)
RETURN;

ELSE
DisplayMessage (" Invalid Selection ", TRUE);

END;

END; (* LOOP *)

IF (fiteNameCO] = " ") THEN
fileName := "CON";

1988/08/09 09:32:23

G-28

END;
OpenReport(ftbl, fileName, state);

DefineHeader(ftbl,"Search Report", 25);
WrFornKftbl,"RepDocl"," "," ".TRUE,error); (* document description *)
UrForm(ftbl,"RepOoc2"," ",» ",TRUE,error); (* headers for CellData *)

(* output original document references *)

OpenRelation("CelIData",NoModify);
ClearRelation("CelIData");
CopyField("Referenc","DocNunbr","CelIData","DocKey");
ReadRecord("CelIData","DocKey",EQ);
IF SageError = 0 THEN

WrString(ftbl." ") ; (* blank line •)
WrLn(ftbl,newPage);

WrString(ftbl," < ORIGINAL >");
WrLn(ftbl,newPage);

WrString(ftbl," ") ; (* blank line *)
WrLn(ftbl,newPage);

END;
WHILE SageError = 0 DO

WrForm(ftbl."RepDoc3","RepOoc2"," ",TRUE,error);
ReadRecord("CelIData"."DocKey",NextEQ);

END; (* while for original data *)

(* output referenced document *)

CopyField("Referenc"."DocNunbr","CelIData","RefKey");
ReadRecord("CelIData","RefKey",EQ);
IF SageError » 0 THEN

WrLn(ftbl,newPage); (* blank line *)

WrString(ftbl," < REFERENCE >");
WrLn(ftbl,newPage);

WrString(ftbl," ") ;
WrLn(ftbl,newPage);

END;
WHILE SageError » 0 DO

WrForm(ftbl,"RepOoc4"."RepOoc2"." ",TRUE,error);
ReadRecord("CelIData","RefKey",NextEQ);

END; (• while for original data *)

CloseRelation("CelIData");
CloseReport(ftbl,state);

END SearchDoc;

END NUCGEN.

1988/08/09 09:32:23

G-29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
S3
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

MODULE HEPAgg;

/**
HEPAgg - Aggregation access to storage buffer

Provides for aggregation on Hunan Error Probability (HEP)
records referenced in the storage buffer.

*)

IMPORT (* module *)
Program

FROM ASCII IMPORT (* constant *)
nul

FROM Binary IMPORT (* procedures *)
ReadBytes .WriteBytes

FROM BReports IMPORT (* procedure *)
CreateBufferReport

FROM Calc IMPORT (* type
HEPType

(* variable *)
case3UserAbort

(* procedures *)
CalcCellorFuncGrpHEP .CalcTaskHEP

FROM DiskLib IMPORT (* procedure *)
Lookup

FROM Files IMPORT (* types *)
FileState .File

(* procedures *)
Reset .Remove .Close ,Rewrite

FROM MoveLib IMPORT (* procedure *)
FillChar

FROM NUCGEN IMPORT (* variable *)
ftbl

(* procedures *)
Clearinghouse ,ClearStack ,ConvertToDataManualPage

FROM NUCPRINT IMPORT (* constant *)
recordsLimit

(* variables *)
recordsLocatedTotaI

(* procedure *)
DisplaySource

1988/08/09 09:32:23

G-30

FROM Reports IMPORT (* procedures *)
OpenReport. CloseReport. DefineReport. TopOfPage, WrForm

FROM Retrieve IMPORT dataManualPage ,bufferAggregated .bufferHEP
.bufferUCB .bufferLCB

FROM Sage IMPORT (* type
SageOperations

(* variable *)
SageError

(* procedures *)
OpenDataBase .CloseDataBase
.OpenRelation .CloseRelation .CloseRelationFiles
.ClearField .ClearRelation
.DisplayMessage
.DisplayForm
.GetFieldA .GetFieldC .GetFieldF
.PutFieldA ,PutFieldC ,PutFieldF
.ReadRecord .ReadRecordC .ReadRecordR
.FindRecord

FROM SortLib IMPORT (* procedure *)
CompareKey

FROM StorageM IMPORT (* variable *)
describeBuffer

(* procedures *)
ShowBufferDescription .DecodeCelIDataKey

FROM String IMPORT (• procedure *)
Concat

FROM SYSTEM IMPORT (* functions *)
ADR .SIZE

FROM SYSTEMToBelmpl
IMPORT (* type *)
BYTECOUNT

FROM Terminal IMPORT (* procedure *)
CondRead

FROM ThorPort IMPORT (• procedures *)
ClearScreen. Pause

CONST
NoModify s FALSE;
NoBell X FALSE;
RingBell > TRUE;
NoDefault = FALSE;

VAR
index : CARDINAL;
state : FileState;
input : CHAR;

PROCEDURE AggregateHEP

1988/08/09 09:32:23 page 28

G-31

()
AggregateHEP - Calculate and display aggregated HEP

0. J. Call - April 1987

Calculates an aggregated HEP for located data. First, an
aggregation is done for each task represented in the search
buffer. Then an aggregation is done using all the task HEP
values just calculated/identified. The final result is
displayed on the screen. The user may select to generate a
report of this aggregation process.

CALLING SEQUENCE -

AggregateHEP ()

ENTRY -

EXIT -

FILES -

FILE
NAME

ftbl

CONST
methodRecord
methodTask
methodCell
methodFun

OPEN
CLOSE

O/C

DEVICE

fileName

FORMS
WRITTEN DESCRIPTION

Task (a single record)
Task (Maximum Likelihood Estimate)

Cell (Median based on Geometric Average)
Functional (Median based on Geometric Average)

noOataMess = "Can not access one of the located data records";
case3StopMess = "Aggregation of located records stopped as requested";
noReportMess =

"Buffer aggregation completed, no report was requested";

VAR
fileName :
printer :
console :
blankName :
completeMess :
method :

sourceHEPData
taskHEPData

ARRAY [0..11] OF CHAR;
ARRAY [0..11] OF CHAR;
ARRAY [0..11] OF CHAR;
ARRAY CO..11] OF CHAR;
ARRAY [0..79] OF CHAR;
ARRAY CO..49] OF CHAR; (* aggregation technique

ARRAY CO..(recordsLimit - 1)] OF HEPType;
ARRAY [0..(recordsLimit - 1)] OF HEPType;

success : BOOLEAN;

case
index
iTask
iSource
iStart
iEnd

CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;

(* current previous
matrix : CARDINAL; matrixO : CARDINAL
row : CARDINAL; rowO
column : CARDINAL; columnO
task : CARDINAL; taskO
source : CARDINAL; sourceO

BEGIN (* AggregateHEP *)
bufferAggregated := FALSE;

CARDINAL
CARDINAL
CARDINAL
CARDINAL

initial *)
matrixl : CARDINAL;
rowl : CARDINAL;
colunni : CARDINAL;

1988/08/09 09:32:23

G-32

IF recordsLocatedTotaI - 0 THEN
DisplayMessage ("No data in buffer, therefore no aggregation"

,RingBell);
RETURN;

END; (• IF *)

ShowBufferDescr i pt i on ();
Pause (1000);

OpenRelation ("CelIData",NoModify);
IF SageError <> 0 THEN
DisplayMessage ("Failed opening cell data for HEP aggregation"

,RingBell);
RETURN;

END;

ClearScreen;
DisplayMessage ("Aggregation in process - please standby ...",NoBell);

(* initialize HEP data arrays *)
FOR index := 0 TO (recordsLimit - 1) DO
sourceHEPData[index].hep := 0.0;
sourceHEPData[index].ucb := 0.0;
sourceHEPData[index].Icb := 0.0;
sourceHEPData[index].E := 0.0;
sourceHEPData[index].N := 0.0;
sourceHEPData[index].med :- 0.0;
sourceHEPData[index].erf := 0;
sourceHEPData[index].sourceNumb := 0;

taskHEPData[index].hep := 0.0;
taskHEPData[index].ucb := 0.0;
taskHEPData[index].Icb := 0.0;
taskHEPData[{ndex] .E ::= 0.0;
taskHEPData[index].N := 0.0;
taskHEPData [index] .med ::: 0.0;
taskHEPData[index].erf := 0;
taskHEPData[index].sourceNumb := 0;

END; (* FOR •)

(* get initial source HEP data values *)
GetCellDataRecord (
0,matrixO.rowO.colunnO.taskO.sourceO.sourceHEPData,success);

IF NOT success THEN
DisplayMessage (noDataMess.RingBell);
RETURN;

END;

matrixl :» matrixO;
rowl := rowO;
colunni :s colunnO;

(* set initial matrix, row, colunn values *)

(* get any remaining values into HEP data arrays *)
IF (recordsLocatedTotaI = 1) THEN (* set aggregated HEP *)
bufferHEP := sourceHEPData[0].med;
bufferUCB := sourceHEPData[0].ucb;
bufferLCB := sourceHEPData[0].Icb;
method :- methodRecord;
CloseRelation ("CellData");

ELSE (* get remaining source HEP data *)
iStart := 0;
iEnd := iStart;
iTask := iStart;
FOR index := 1 TO (recordsLocatedTota! - 1) BY 1 DO
GetCellDataRecord (

index.matrix,row,colunn,task,source,sourceHEPData,success);
IF NOT success THEN
DisplayMessage (noOataMess,RingBell);
RETURN;

END; (* success IF *)

IF ((matrixO = matrix) AND (rowO = row) AND (colunnO = colunn)
AND (taskO » task)) THEN

1988/08/09 09:32:23

G-33

INC (iEnd); (• same task *)
IF (index >= (recordsLocatedTotal-1)) THEN

(* load final task HEP data values *)
ConvertToDataManualPage (dataManualPage,matrixO,rowO.colunnO);
PutFieldA ("Utility","DataMan",dataManualPage);
PutFieldC ("Utility","taskt1]",taskO);
CalculateForTasklnBuffer (iStart,iEnd,sourceHEPData,iTask,

taskHEPData);
IF case3UserAbort THEN
CloseRelation ("CellData");
D i splayMessage (case3StopMess,NoBe11);
RETURN*

END; (* case3UserAbort IF *)

INC (iEnd);
iStart := iEnd;
INC (iTask);

END; (* index IF *)

ELSE (* a new task found *)
IF (iEnd = iStart) THEN

(* only one source for previous task *)
iSource := index - 1;
taskHEPData[iTask].med := sourceHEPData[iSource].med;
taskHEPData[iTask].ucb := sourceHEPOatatiSource].ucb;
taskHEPData[iTask].Icb := sourceHEPDataliSource].Icb;

ELSE (* load previous task HEP data values *)
ConvertToDataManualPage (dataManualPage,matrixO,rowO,columnO);
PutFieldA ("Utility","DataMan",dataManualPage);
PutFieldC ("Utility","task[1]",taskO);
CalculateForTasklnBuffer (iStart,iEnd,sourceHEPData,

iTask,taskHEPData);
IF case3UserAbort THEN
CloseRelation ("CellData");
DisplayMessage (case3StopMess,NoBell);
RETURN;

END; (* case3UserAbort IF *)

END; (* iEnd IF *)

INC (iEnd);
iStart := iEnd;
INC (iTask);

END; (* matrix,row,colunn IF *)

(* current becomes previous *)
matrixO := matrix;
rowO := row;
colunnO := column;
taskO := task;
sourceO := source;

END; (* FOR *)

CloseRelation ("CellData");

(* set aggregation technique label *)
IF iTask := 1 THEN
method := methodTask;

ELSIF (matrix = matrixl) AND
(row = rowl) AND
(colunn = colunni) THEN

method := methodCell;
ELSE
method := methodFun;

END; (• iTask IF *)

(* call 4010 Procedure A10 to calculate aggregated HEP *)
C8S6 *~ 0'
CalcCellorFuncGrpHEP (
case,iTask,taskHEPData,bufferHEP,bufferUCB,bufferLCB);

END; (* recordsLocatedTotaI IF *)

bufferAggregated := TRUE;

1988/08/09 09:32:23

G-34

(* finish set-up for form display *)
PutFieldA ("UtilAhoc"."Describe",describeBuffer)
PutFieldA ("UtilAhoc","Text50" ,method
PutFieldF ("UtilAhoc","HEP" .bufferHEP
PutFieldF ("UtilAhoc"."UCB" .bufferUCB
PutFieldF ("UtilAhoc"."LCB" .bufferLCB

ClearField ("UtilAhoc"."CommandA");
DisplayMessage (" ".NoBell);

LOOP (* select to report or not *)
ClearStack ();
DisplayForm ("Menur43","UtiIAhoc"."CommandA".NoDefault);
GetFieldA ("UtilAhoc"."CommandA".input);

CASE input OF
"?" : Clearinghouse;

PutFieldA ("UtilAhoc","CommandA"," ") |

"E" : DisplayMessage (noReportMess,NoBell);
RETURN I

"R" : EXIT;
ELSE
DisplayMessage ("Invalid Selection",RingBell);

END; (* CASE *)

END; (• LOOP *)

(* set-up for a report *)
printer := "PRN ";
console := "CON ";
blankName :- " ";

PutFieldA ("UtiIity","CommandA","S");
PutFieldA ("Utility","Text40"," Aggregated HEP for Located Data");
ClearField ("Utility","Text2");

LOOP (* select to start report or not *)
ClearStack ();
DisplayForm ("Menur41","UtiIity","Text2",NoDefault);
GetFieldA ("Utility"."CommandA",input);

CASE input OF
"?" : Clearinghouse ();

PutFieldA ("Utility","ConmandA"," ") |

"E" : DisplayMessage (noReportMess,NoBell);
RETURN!

"S" : GetFieldA ("Utility","Text2",fileName);
IF (fileNamelO] = nul) OR

(CompareKey (fileName.blankName.12) = 0) THEN
DisplayMessage (

"A valid DOS file name is needed for this option"
.RingBell);

ELSE
EXIT;

END; (• IF *)
ELSE
DisplayMessage ("Invalid Selection".RingBell);

END; (* CASE *)

END; (* LOOP *)

(* generate buffer report *)
OpenReport (ftbl,fileName,state);
IF state <> ok THEN
DisplayMessage ("Error trying to open report file",RingBell);

ELSE
CreateBufferReport (fileName,console,TRUE);
IF ((CompareKey (fileNaflie,printer ,12) <> 0) AND

(CompareKey (fileName,console ,12) <> 0) AND
(CompareKey (fileName,blankName, 12) <> 0) AND
(fileNamelO] <> nul)) THEN

1988/08/09 09:32:23

G-35

Concat ("Report with aggregate HEP written to file ",
fileName,completeMess,success);

DisplayMessage (completeMess,NoBell);
ELSIF (CompareKey (fileName,printer,12) = 0) THEN
DisplayMessage (

"Report with aggregate HEP sent to printer",NoBell);
END; (* CompareKey IF *)

END; (* state IF *)
CloseReport(ftbl,state);

END AggregateHEP;

PROCEDURE CalculateForTasklnBuffer
(start : CARDINAL
; end : CARDINAL
;VAR sourceArray : ARRAY OF HEPType
; iTask : CARDINAL
;VAR taskArray : ARRAY OF HEPType);

CalculateForTasklnBuffer - Calculate task HEP on buffer records

0. J. Call - May 1987

Calculates task HEP for search buffer source statement records.
Procedure A9 in 4010 is used for calculation. Source HEPs are
the input for this procedure.

CALLING SEQUENCE -

CalculateForTasklnBuffer (
start,end,sourceArray,iTask,taskArray)

ENTRY -

start - CARDINAL
Starting position, in sourceArray, to use for
calculation.

end - CARDINAL
Ending position, in sourceArray, to use for
calculation.

sourceArray - ARRAY OF HEPType
Array of source statement HEP data.

iTask - CARDINAL
Pointer to next available entry position in
taskArray.

EXIT

taskArray - ARRAY OF HEPType
Array of task statement HEP data.

FILES -

VAR
case
Med
i
Ucb
Lcb
size

:CARDINAL;
:REAL;
:CARDINAL;
:REAL;
:REAL;
:CARDINAL;

sourceData :ARRAY [0..recordsLimit-1] OF HEPType;
sourceUsed :ARRAY [0..recordsLimit-1] OF BOOLEAN;
standAlone :BOOLEAN;

BEGIN (* CalculateForTasklnBuffer *)

1988/08/09 09:32:23

G-36

FOR i := start TO end DO
sourceData[i-start] := sourceArray[i];

END; (• FOR *)

size := end - start + 1;
StandAlone := FALSE;
case := 0;

(* call 4010 Procedure A9 *)

CalcTaskHEP (Med,Ucb,Lcb,size,case,sourceData,standAlone,sourceUsed);

taskArraytiTask].med := Med;
taskArray[iTask].ucb :s Ucb;
taskArray[iTask] .lcb := Lcb;

END CalculateForTasklnBuffer;

PROCEDURE GetCellDataRecord
(position
;VAR matrix
;VAR row
;VAR column
;VAR task
;VAR source
;VAR dataArray
;VAR success

CARDINAL
CARDINAL
CARDINAL
CARDINAL
CARDINAL
CARDINAL
ARRAY OF HEPType
BOOLEAN);

GetCellDataRecord - Get CellData record HEP data into an array

0. J. Call - June 1987

A CellData record is read into memory after determining a
key-value identified in the ad hoc buffer. HEP data from the
current CellData record is moved into dataArray.

CALLING SEQUENCE -

GetCellDataRecord (position,
matrix,row,column,task.source.dataArray.success);

ENTRY -

position - CARDINAL
Index of position within bufferAdHoc array.

matrix - CARDINAL
Numeric matrix identifier.

row - CARDINAL
Numeric row identifier for identified matrix.

colunn - CARDINAL
Numeric column identifier for identified matrix.

task - CARDINAL
Numeric task statement identifier.

source - CARDINAL

Numeric source identifier.

EXIT -

matrix - CARDINAL
Numeric matrix identifier.

row - CARDINAL
Numeric row identifier for identified matrix.

colunn - CARDINAL
Numeric column identifier for identified matrix.

1988/08/09 09:32:23

G-37

task - CARDINAL
Numeric task statement identifier.

source - CARDINAL
Numeric source identifier.

dataArray - ARRAY OF HEPType
Array for source HEP data values located. Index
positions in this array match up with positions
in the ad hoc buffer.

success - BOOLEAN
TRUE denotes success in reading cell data.
FALSE denotes failure in reading cell data.

FILES -
')

BEGIN (* GetCellDataRecord •)
IF NOT DecodeCellDataKey (position + 1,matrix,row,column,task,source)

THEN
CloseRelation ("CellData");
success :s FALSE;
RETURN;

END; (* DecodeCellDataKey *)

ReadCellDataRecord (matrix,row,colunn,task,source);
IF SageError <> 0 THEN
DisplayMessage ("Failed in reading cell data for HEP aggregation"

,RingBell);
CloseRelation ("CellData");
success := FALSE;
RETURN*

END; (*SageError IF *)
success :- TRUE;

GetF
GetF
GetF
GetF
GetF
GetF
GetF
GetF

eldF ("CelIData","HEP"
eldF ("CellData","UCB"
eldF ("CelIData","LCB"
eldF ("CellData",»E"
eldF ("CelIData","N"
eldF ("CelIData","Median"
eldC ("CelIData","Erf"

,dataArray[posit ion].hep
,dataArray[pos i t i on].ucb
,dataArray[position].lcb
,dataArray[position].E
,dataArray[position].N
,dataArray[position].med
,dataArray[position].erf

ieldC ("CellData","CellNumb".dataArraylposition].sourceNumb

END GetCellDataRecord;

PROCEDURE ReadCellDataRecord
(matrix : CARDINAL
;row : CARDINAL
;COIumn : CARDINAL
;task : CARDINAL
;source : CARDINAL);

(*
ReadCellDataRecord - Reads a CellData record into memory

0. J. Call - June 1987

Reads a CellData record into memory after specifying the
relation key-value.

CALLING SEQUENCE -

ReadCellDataRecord (matrix,row,column,task,source)

ENTRY -

matrix

row

CARDINAL
Numeric matrix identifier.

CARDINAL

1988/08/09 09:32:23

G-38

675: Numeric row identifier for identified matrix.
676:
677: colunn - CARDINAL
678: Numeric column identifier for identified matrix.
679:
680: task - CARDINAL
681: Numeric task statement identifier.
682:
683: source - CARDINAL
684: Numeric source identifier.
685:
686: EXIT -
687:
688: FILES -
689: *)
690:
691: BEGIN (* ReadCellDataRecord *)
692: PutFieldC ("CelIData"."CellMatr".matrix)
693: PutFieldC ("CelIData","CellRow" ,row)
694: PutFieldC ("CelIData","CellColu",colunn)
695: PutFieldC ("CelIData","CelITask",task)
696: PutFieldC ("CelIData","CellNumb",source);
697:
698: ReadRecord ("CelIData","CellKey",EQ);
699:
700: END ReadCellDataRecord;
701:
702:
703: BEGIN (* HEPAgg module *)
704:
705: AggregateHEP ();
706:
707: END HEPAgg.

1988/08/09 09:32:23

G-39

Index

AggregateHEP (PROCEDURE
CalcMedHEPEF (PROCEDURE
CalculateForTasklnBuffer..(PROCEDURE
Card2Str0Fi 11 (PROCEDURE
ClearStack (PROCEDURE
Clearinghouse (PROCEDURE
ConvertErrFaiIToUErrUFaiI.(PROCEDURE
ConvertToDataManualPage...(PROCEDURE
DataCheck (PROCEDURE
DocCodes (PROCEDURE
DocType (PROCEDURE
GetCel IDataRecord (PROCEDURE
GetCel IType (PROCEDURE
GetCel IValidity (PROCEDURE
GetMatrixDesc (PROCEDURE
GetRowDescr (PROCEDURE
GetVerb (PROCEDURE
HEPAgg (MODULE)..
MyCloseRelation (PROCEDURE
MyOpenRelation (PROCEDURE
NUCGEN (MODULE)..
OutputFi le (PROCEDURE
ReadCeI IDataRecord (PROCEDURE
SearchDoc (PROCEDURE

from MODULE HEPAgg) 28
1. from MODULE NUCGEN)

from MODULE HEPAgg)
from MODULE NUCGEN)
from MODULE NUCGEN)
from MODULE NUCGEN)
from MODULE NUCGEN)
from MODULE NUCGEN)
from MODULE NUCGEN)
from MODULE NUCGEN)
from MODULE NUCGEN)
from MODULE HEPAgg) 34
from MODULE
from MODULE
from MODULE
from MODULE
from MODULE

2,
2,
2,
3.
3,
4,
4,
5,

11
33
12
13
13
14
15
15
17
17

NUCGEN).
NUCGEN).
NUCGEN).
NUCGEN).
NUCGEN).

5,
6,
6.
7.
7,

18
19
20
20
21
27

8, 22
8, 23
1. 11

from MODULE NUCGEN) 8, 23
from MODULE HEPAgg) 35
from MODULE NUCGEN) 9, 25

from MODULE
from MODULE

NUCGEN).
NUCGEN).

1988/08/09 09:32:23 page 37

G-40

APPENDIX H

SAMPLE SOURCE LISTING FOR HCF DATA PROCESSING

H-l

APPENDIX H

SAMPLE SOURCE LISTING FOR HCF DATA PROCESSING

This appendix presents a sample of some source listings for a Ubrary and a module
used for HCF data processing. The DOCUPROC utiUty, which was used to generate these
Ustings, provides line numbering, a table of contents, and an index. The line numt)ering is
restarted for each module-level code element.

H-2

Table of Contents

MODULE General 1
Among - Boolean function to check presence of an item in a list 1
BlankData - Tests string for being all blanks (or blank-nul) 1
CheckRelationStatus - Checks for already open or closed relations 1
ClearMessage - Clears the currently displayed message from the screen 2
ClearStack - Clears off any extraneous junk from stack 2
ClearUEvent - Deletes the UEvent relation for adhoc aggregations 2
ConvertMilitaryDate - Convert date (yyyy/mm/dd) to Military form 3
DisplaySageError - Display provided message & associated SageError value 3
FailureGroupMember - Returns flag indicating if failure mode in given group 3
GetCatName - Return the category name 4
GetFailureGroups - assembles the valid failure groups for a component 4
Mi I itaryOate - Return the current date in Mi I itary format 4
MyCloseRelation - Closes relation or data file as necessary 5
MyOpenRelation - Opens relation if necessary and returns initial status 5
PlacesC - Determine character places needed for cardinal 5
ShowSageError - Write SageError (& string) below cursor position 6

MODULE General 7
Among • Boolean function to check presence of an item in a list 7
BlankData - Tests string for being all blanks (or blank-nul) 8
CheckRelationStatus - Checks for already open or closed relations 9
ClearMessage - Clears the currently displayed message from the screen 9
ClearStack - Clears off any extraneous junk from stack 10
ClearUEvent - Deletes the UEvent relation for adhoc aggregations 10
ConvertMilitaryDate - Convert date (yyyy/mn/dd) to Military form 11
DisplaySageError - Display provided message & associated SageError value 12
FailureGroupMember - Returns flag indicating if failure mode in given group 12
GetCatName - Return the category name 13
GetFailureGroups - assembles the valid failure groups for a component 13
Mi I itaryOate - Return the current date in Mi I itary format 14
MyCloseRelation - Closes relation or data file as necessary IS
MyOpenRelation - Opens relation if necessary and returns initial status 15
PlacesC - Determine character places needed for cardinal 16
ShowSageError - Write SageError (& string) below cursor position 17

MODULE RetrHard 18

Index 20

1988/08/09 09:15:27 i

H-3

DEFINITION MODULE General;

EXPORT QUALIFIED (* procedures *)
ClearUEvent ,ConvertMiIitaryOate ,DisplaySageError
,GetCatName ,GetFailureGroups ,MiIitaryOate
,MyCloseRelation ,ShowSageError
,ClearStack ,ClearMessage

(* functions *)
Among ,BlankData ,CheckRelationStatus
,FailureGroupMember ,MyOpenRelation ,PlacesC

PROCEDURE Among (VAR f,l :ARRAY OF CHAR;
w,n :CARDINAL) :BOOLEAN;

** (

Among - Boolean function to check presence of an item in a list

G. H. Beers - November 1987

CALLING SEQUENCE - Among (f,l,w,n)

ENTRY - f the item to test for
I the list to check
w width of each character string
n number of elements in list

EXIT -

*)

PROCEDURE BlankData (string :ARRAY OF CHAR; nChar :CARDINAL) :BOOLEAN;

/**
BlankData - Tests string for being all blanks (or blank-nul)

T. H. Tucker - Aug 1987.

ENTRY - string : array of characters to be tested
nChar : nunber of characters to be tested in string

EXIT - result : BOOLEAN function value
TRUE means string contains all blanks
FALSE means a non-blank resides in string

PROCEDURE CheckRelationStatus (relation :ARRAY OF CHAR;
key :ARRAY OF CHAR) : BOOLEAN;

/**
CheckRelationStatus - Checks for already open or closed relations

G. H. Beers - December 1987

Tests the initial state of a relation and returns status in a boolean
variable after opening the relation if not already open.

CALLING SEQUENCE -

CheckRelationStatus (relation; key) : BOOLEAN

ENTRY -

relation : ARRAY OF CHAR
Relation to test state and open if necessary

key : ARRAY OF CHAR
Key to use to test state

1988/08/09 09:15:27 page

H-4

EXIT -
result : BOOLEAN
TRUE - If relation already open
FALSE - if relation closed initially

relation is opened

FILES -

PROCEDURE ClearMessage;

(**

ClearMessage - Clears the currently displayed message from the screen.

G. H. Beers - April 1988

Issues a blank DisplayMessage to clear the message line on the screen.

CALLING SEQUENCE -

ClearMessage ()

ENTRY -

EXIT -

*)

PROCEDURE ClearStack ()
f

ClearStack - Clears off any extraneous junk from stack

G. H. Beers - December 1987

description

CALLING SEQUENCE -

ClearStack ()

ENTRY -

EXIT -

*)

PROCEDURE ClearUEvent ();

/**
ClearUEvent - Deletes the UEvent relation for adhoc aggregations

G. H. Beers - December 1987

Opens, deletes, and closes the UEvent relation for new set of buffer
records.

CALLING SEQUENCE -

ClearUEvent ()

ENTRY -

UEvent relation with or with records

EXIT -

1988/08/09 09:15:27 page

H-5

PROCEDURE ConvertMilitaryDate (date :ARRAY OF CHAR;
VAR str :ARRAY OF CHAR);

(**
ConvertMilitaryDate - Convert date (yyyy/mm/dd) to Military form

T. H. Tucker

Converts given date (yyyy/mm/dd) to Military: dd mon yyyy; i.e.,
change 1987/10/30 to 30 OCT 1987.

ENTRY - ARRAY OF CHAR: yyyy/nm/dd (i.e., 1987/10/30)

EXIT - str military date equivalent (i.e., 30 OCT 1987)
str is ARRAY OF CHAR, at least 11-chars long.

*)

PROCEDURE DisplaySageError (message :ARRAY OF CHAR);

/**
DisplaySageError - Display provided message & associated SageError value

T. H. Tucker

ENTRY - message messsage to be displayed
*)

PROCEDURE FailureGroupMember (VAR faillD, failGrp :ARRAY OF CHAR) : BOOLEAN;

/**
FailureGroupMember - Returns flag indicating if failure mode in given group.

G. H. Beers - December 1987

Returns BOOLEAN flag indicating if the given failure mode belongs to the
given failure group by locating the mode in relation FailureM and then
determining if the given group matches the group FailGrp in the relation.

CALLING SEQUENCE -

FailureGroupMember (faillD, failGrp) : BOOLEAN;

ENTRY -

failID - ARRAY OF CHAR
The given failure Mode which is to be matched to the given group

failGrp - ARRAY OF CHAR
The given failure Group which must match the given failure mode's
group in the relation FailureM if a TRUE result is returned.

EXIT -

result : BOOLEAN
TRUE - If the failure group of the given failure mode in FailureM

matches the given failure group "failGrp"

FALSE - If the failure group in FailureM does not match the given
failure group.

FILES -

PROCEDURE GetCatName (category : CARDINAL;
VAR catName : ARRAY OF CHAR);

1988/08/09 09:15:27

H-6

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

GetCatName - Return the category name

H.D. Stewart 07/10/87

This procedure returns the category name based on the
given category number.

CALLING SEQUENCE -

GetCatName (category,catName)

ENTRY -

category : CARDINAL

The category number

EXIT -

catName : ARRAY OF CHAR
The name of the category (Mechanical, Electrical, etc.).

FILES -

PROCEDURE GetFai lureGro<4>s(VAR comp :ARRAY OF CHAR;
VAR fgs :ARRAY OF CHAR;
VAR fCnt : CARD I NAD;

(**
GetFailureGroups - assembles the valid failure groups for a component.

G. H. Beers - December 1987

Locates and counts valid failure groups for a given component and inserts
the groups into an array.

CALLING SEQUENCE -

GetFailureGroups (comp, fgs; fCnt)

ENTRY -

comp - ARRAY OF CHAR
Component for which failure groups will be located in the "CmpValid"
relation.

EXIT -

fgs : ARRAY OF CHAR
Array of 9 characters which returns up to three valid failure groups
of three characters each.

fCnt : CARDINAL
Nunber of valid failure Groups located for given component.

FILES -

*)

PROCEDURE MilitaryDate (VAR str :ARRAY OF CHAR);

/**
MilitaryDate - Return the current date in Military format

T. H. Tucker

Returns the current date in Military format: dd nmm yyyy
e.g., 30 OCT 1987.

EXIT - str value of current date in Military format.
str is ARRAY OF CHAR, at least 11-chars long.

1988/08/09 09:15:27 page

H-7

303: *)
304:
305:
306: PROCEDURE MyCloseRelation (relation :ARRAY OF CHAR;
307: status :BOOLEAN);
308:
309: (**
310: MyCloseRelation - Closes relation or data file as necessary
311:
312: G. H. Beers - December 1987
313:
314: Checks the initial status of a relation and returns it to its initial state.
315:
316: CALLING SEQUENCE -
317:
318: MyCloseRelation (relation,status)
319:
320: ENTRY -
321:
322: relation - ARRAY OF CHAR
323: Name of relation to be opened or checked.
324:
325: status - BOOLEAN
326: inital relation status flag
327: TRUE - Relation or index file was initially open
328: FALSE - Relation was initially closed
329:
330: EXIT -
331:
332: FILES -
333:
334: *)
335:
336:
337: PROCEDURE MyOpenRelation (relation, key :ARRAY OF CHAR;
338: modify :B0OLEAN) :BOOLEAN;
339:
340: (**
341: MyOpenRelation - Opens relation if necessary and returns initial status
342:
343: G. H. Beers - December 1987
344:
345: Checks the current status of a relation and opens it if necessary.
346:
347: CALLING SEQUENCE -
348:
349: MyOpenRelation (relation,key)
350:
351: ENTRY -
352:
353: relation - ARRAY OF CHAR
354: Name of relation to be opened or checked.
355:
356: key - ARRAY OF CHAR
357: Name of key to use for testing relation current status
358:
359: EXIT -
360:
361: result - BOOLEAN
362: Initial relation status flag
363: TRUE - Relation or index file was initially open
364:
365: FALSE - Relation was closed
366:
367: FILES -
368:
369: *)
370:
371:
372: PROCEDURE PlacesC (m :CARDINAL) :CARDINAL;
373:
374: (**
375: PlacesC - Determine character places needed for cardinal
376:
377: T. H. Tucker

1988/08/09 09:15:27 page

H-8

378:
379: Determines how many character places are required to display the
380: CARDINAL nunber, m. This value is the number of digits m
381: takes up.
382:
383:
384: ENTRY - m: CARDINAL nunber
385:
386: EXIT - (FUNCTION) result: number of character places to display m.
387: •)
388:
389:
390: PROCEDURE ShowSageError (string :ARRAY OF CHAR);
391:
392: (*•
393: ShowSageError - Write SageError (& string) below cursor position
394:
395: T. H. Tucker
396:
397: Writes the value of SageError & user-supplied string 1-line
398: below the current cursor position.
399:
400:
401: ENTRY - string - string User wants to display following SageError value
402:
403: *)
404:
405:
406: END General.

1988/08/09 09:15:27 page

H-9

IMPLEMENTATION MODULE General;

FROM ASCII IMPORT (* constant *)
nul

FROM Convert IMPORT CardToStr, StrToCard;

FROM Sage IMPORT ClearField, ClearRelation, CloseDataBase,
CloseRelation, CompareFieldA, CompareFieldC,
CopyField, DefineFieldCheck, CloseRelationFiles,
DeleteRelation,
DeleteRecord, DisplayMessage, DisplayForm,
DisplayFormV, DisplayFormVIP, FindRecord,
GetFieldA, GetFieldB, GetFieldC,
GetFieldF, GetFieldl, GetFieldP,
GetRepeatName, OpenDataBase, OpenRelation,
PutFieldA, PutFieldC, PutFieldF,
PutFieldl, ReWriteRecord, ReadRecord,
SageError, SageOperations, WriteRecord,
GetBlock, ReadRecordA, RelationlsOpen;

FROM SortLib IMPORT CompareKey, FillChar, MoveLeft, Sort, ScanChar;

FROM String IMPORT Concat, Length, Position, Substring,
Compare, CompareResult;

FROM SYSTEM IMPORT (* function *)
ADR

I

FROM Terminal IMPORT WriteLn, WriteString, CondRead;

FROM ThorPort IMPORT ClearScreen, CursorMove, FixFileName, Pause;

FROM ThorUtil IMPORT (* procedure *)
MoveString

f

FROM TimeLib IMPORT CurrentDatel;

PROCEDURE Among (VAR f,l :ARRAY OF CHAR;
w,n : CARD I NAD : BOOLEAN;

r**

Among - Boolean function to check presence of an item in a list

G. H. Beers - Noveni>er 1987

CALLING SEQUENCE - Among (f,l,w,n)

ENTRY - f the item to test for
I the list to check
w width of each character string
n number of elements in list

EXIT -

VAR
result :BOOLEAN;
testit :ARRAY [0..19] OF CHAR;
i,m :CARDINAL;

BEGIN
i := 0;
result := FALSE;
FillChar (testit, " ", 20);
WHILE i < n DO

MoveLeft (Ui*w], testit, w);

1988/08/09 09:15:27 page

H-10

IF Compare (f, testit) = equal THEN
result := TRUE;
RETURN result;

ELSE
INC (i);
END;

END; (* WHILE *)
RETURN result;
END Among;

PROCEDURE BlankData (string :ARRAY OF CHAR; nChar :CARDINAL) :BOOLEAN;

(**
BlankData - Tests string for being all blanks (or blank-nul)

T. H. Tucker - Aug 1987.

ENTRY - string : array of characters to be tested
nChar : nunber of characters to be tested in string

EXIT - result : BOOLEAN function value
TRUE means string contains all blanks
FALSE means a non-blank resides in string

VAR
i :CARDINAL;
maxIndex :CARDINAL;
result :BOOLEAN;

BEGIN
result := TRUE;

IF (nChar > 0) THEN
IF stringtO] = CHR(O) THEN RETURN result; END;
IF (stringlO] = "-") THEN
IF nChar > 1 THEN
IF (string[1] = "-") THEN
RETURN result;

END;
ELSE

RETURN result;
END;

END;

maxlndex := HIGH (string);
i := 0;
LOOP

IF (i > maxlndex) THEN
WriteLn;
WriteString ("* ERROR - exceeded HIGH (String) in BlankData");
WriteLn;

END;

IF (stringli] = CHR(O)) THEN RETURN result; END;
IF (string[i] # " ") THEN
result := FALSE;
RETURN result;

END; (* IF •)
INC (i);
IF (i >= nChar) THEN EXIT; END;

END; (* LOOP *)
END; (* IF *)
RETURN result;

END BlankData;

1988/08/09 09:15:27

H-11

PROCEDURE CheckRelationStatus (relation :ARRAY OF CHAR;
key :ARRAY OF CHAR) : BOOLEAN;

/**
CheckRelationStatus - Checks for already open or closed relations

G. H. Beers - December 1987

Tests the initial state of a relation and returns status in a boolean
variable after opening the relation if not already open.

CALLING SEQUENCE -

CheckRelationStatus (relation; key) : BOOLEAN

ENTRY -

relation : ARRAY OF CHAR
Relation to test state and open if necessary

key : ARRAY OF CHAR
Key to use to test state

EXIT -
result : BOOLEAN
TRUE - If relation already open
FALSE - if relation closed initially

relation is opened

FILES -

VAR
result :BOOLEAN;

BEGIN
result := TRUE;
ReadRecord (relation, key. First);
IF SageError = 106 THEN (* relation not opened *)

result := FALSE;
END;

RETURN result;
END CheckRelationStatus ;

PROCEDURE ClearMessage;

/**
ClearMessage - Clears the currently displayed message from the screen.

G. H. Beers - April 1988

Issues a blank DisplayMessage to clear the message line on the screen.

CALLING SEQUENCE -

ClearMessage ()

ENTRY -

EXIT -

BEGIN
DisplayMessage (" ", FALSE);

END ClearMessage;

1988/08/09 09:15:27 page

H-12

PROCEDURE ClearStack ()

(**

ClearStack - Clears off any extraneous junk from stack

G. H. Beers - December 1987

description

CALLING SEQUENCE -

ClearStack ()

ENTRY -

EXIT -

FILES -

*)

VAR
ch :CHAR;
success :BOOLEAN;

BEGIN

LOOP
CondRead (ch, success);
IF NOT success THEN
EXIT;

END;
END; (* LOOP *)

END ClearStack;

PROCEDURE ClearUEvent ();

/**
ClearUEvent - Deletes the UEvent relation for adhoc aggregations

G. H. Beers - December 1987

Opens, deletes, and closes the UEvent relation for new set of buffer
records.

CALLING SEQUENCE -

ClearUEvent ()

ENTRY -

UEvent relation with or with records

EXIT -

FILES -

')

BEGIN
OpenRelation ("UEvent",TRUE);
DeleteRelation ("UEvent");
CloseRelation ("UEvent");

END ClearUEvent;

1988/08/09 09:15:27

"-13

PROCEDURE ConvertMilitaryDate (date :ARRAY OF CHAR;
VAR str :ARRAY OF CHAR);

ConvertMilitaryDate - Convert date (yyyy/mm/dd) to Military form

T. H. Tucker

Converts given date (yyyy/mm/dd) to Military: dd mon yyyy; i.e.,
change 1987/10/30 to 30 OCT 1987.

ENTRY - ARRAY OF CHAR: yyyy/nm/dd (i.e., 1987/10/30)

EXIT - str military date equivalent (i.e., 30 OCT 1987)
str is ARRAY OF CHAR, at least 11-chars long.

"•>

VAR
last :CARDINAL;
month :ARRAY [0..3] OF CHAR;
success :BOOLEAN;

BEGIN

IF (HIGH(date) < 9) THEN
WriteLn;
WriteString ("PROCEDURE ConvertMilitaryDate: ") ;
WriteString ("date is too small (10 ch. min.)");
WriteLn;
RETURN;

END;

last := HIGH(str);
IF (last > 10) THEN
FillChar (strdi], CHR(O), 1);
last := 10;

END;

IF (last < 10) THEN
WriteLn;
WriteString ("PROCEDURE Military: argument is too small (11 ch.
WriteLn;
RETURN;

END;

FillChar (str, CHR(32), 11);
MoveLeft (date[8], str[0], 2);
MoveLeft (datetO], str[7], 4);

MoveLeft (date[5], month, 2);
FillChar (month[2], CHR(O), 1);
StrToCard (month, last, success);

min.)");

CASE
1
2
3
4
5
6
7
8
9
10
11
12

last OF
FillChar(str[3],"J",1);
FillChar(str[3],"F",1);
FillChar(str[3],"M",1);
FillChar(str[3],"A",1);
FillChar(str[3],"M",1);
FillChar(str[3],"J",1);
FillChar(str[3],"J",1);
FillChar(str[3],"A",1);
FillChar(str[3],"S",1);
FillChar(str[3],"0",1);
FillChar(str[3],"N",1);
FillChar(str[3],"D",1);

ELSE
FillChar (str[3], "-", 3);

END; (* CASE *)

FiUChar(str[4]
FiUChar(str[4]
FillChar(str[4]
FillChar(str[4]
FillChar(str[4]
FillChar(str[4]
FillChar(str[4]
FillChar(str[4]
FillChar(str[4]
FillChar(str[4]
FillChar(str[4]
FillChar(str[4]

,"A",1
,"E",1
,"A",1

,"A",1
,»U",1
,"U",1
,"U".1
,"E",1
,"C",1
,"0",1
,"E",1

llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str

[5],"N
[5],"B
[5],"R
[5],"R
[5],"Y"
[5],"N
[5],"L"
[5],"G'
[5],"P'
[5],"T'
[5],"V'
[5],"C

M;
M:
M:
M!
M)
M:
' , 1 3
' , 1 3
' ,1)

END ConvertMilitaryDate;

1988/08/09 09:15:27 page 11

H-14

PROCEDURE DisplaySageError (message :ARRAY OF CHAR);

/**

DisplaySageError - Display provided message & associated SageError value

T. H. Tucker

ENTRY - message messsage to be displayed

VAR
errorNunber :ARRAY [0..6] OF CHAR;
str, string :ARRAY [0..79] OF CHAR;
success :BOOLEAN;

BEGIN

FillChar (str, CHR(O), 80);
FillChar (string, CHR(O), 80);

CardToStr (SageError,errorNunber,5,success);
Concat (message," > ", str, success);
Concat (str, errorNunber, string, success);
DisplayMessage (string, FALSE);
Pause (3000);

END DisplaySageError;

PROCEDURE FailureGroupMember (VAR fail ID, failGrp :ARRAY OF CHAR) : BOOLEAN;

(**
FailureGroupMember - Returns flag indicating if failure mode in given group.

G. H. Beers - December 1987

Returns BOOLEAN flag indicating if the given failure mode belongs to the
given failure group by locating the mode in relation FailureM and then
determining if the given group matches the group FailGrp in the relation.

CALLING SEQUENCE -

FailureGroupMember (failID, failGrp) : BOOLEAN;

ENTRY -

failID - ARRAY OF CHAR
The given failure Mode which is to be matched to the given group

failGrp - ARRAY OF CHAR
The given failure Group which must match the given failure mode's
group in the relation FailureM if a TRUE result is returned.

EXIT -

result : BOOLEAN
TRUE - If the failure group of the given failure mode in FailureM

matches the given failure group "failGrp"

FALSE - If the failure group in FailureM does not match the given
failure group.

FILES -

")

VAR
result : BOOLEAN;
alreadyOpen :BOOLEAN;

BEGIN
IF fail ID [0] = failGrp[0] THEN
result := TRUE;

ELSE

1988/08/09 09:15:27

H-15

result := FALSE;
END;
RETURN result;

END FailureGroupMember;

PROCEDURE GetCatName (category : CARDINAL;
VAR catName : ARRAY OF CHAR);

GetCatName - Return the category name

H.D. Stewart 07/10/87

This procedure returns the category name based on the
given category nunber.

CALLING SEQUENCE -

GetCatName (category,catName)

ENTRY -

category : CARDINAL

The category number

EXIT -

catName : ARRAY OF CHAR
The name of the category (Mechanical, Electrical, etc.).

FILES
*)

BEGIN
CASE category OF

1 : MoveString ("Mechanical",catName,0)|
2 : MoveString ("Electrical",catName,0);

ELSE
FillChar (catName,nul,HIGH(catName)+1);

END;
END GetCatName;

PROCEDURE GetFailureGroups(VAR comp :ARRAY OF CHAR;
VAR fgs :ARRAY OF CHAR;
VAR fCnt : CARD I NAD;

/**

GetFailureGroups - assembles the valid failure groups for a component.

G. H. Beers - December 1987

Locates and counts valid failure groups for a given component and inserts
the groups into an array.

CALLING SEQUENCE -

GetFailureGroups (comp, fgs; fCnt)

ENTRY -

comp - ARRAY OF CHAR
Component for which failure groups will be located in the "CmpValid"
relation.

EXIT -

fgs : ARRAY OF CHAR
Array of 9 characters which returns up to three valid failure groups
of three characters each.

fCnt : CARDINAL
Nunber of valid failure Groups located for given component.

FILES -

1988/08/09 09:15:27

H-16

*)
VAR

fg : ARRAY [0..2] OF CHAR;
no : ARRAY [0..10] OF CHAR;
alreadyOpen :BOOLEAN;

BEGIN
alreadyOpen := MyOpenRelation ("CmpValid", "Comp", FALSE);
ReadRecordA("CmpValid", "Comp", EQ, comp);
FillChar (fgs, " ", 9);
fCnt := 0;
LOOP
GetRepeatName("FailGrpH, fCnt^l, nO);
GetFieldA ("CmpValid", nO, fg);
IF BlankData(fg, 3) THEN
EXIT;

ELSE
MoveLeft (fg, fgs[(fCnt)*3], 3);

END;
INC (fCnt);
IF fCnt = 3 THEN EXIT; END;

END; (* LOOP *)
MyCloseRelation ("CmpValid", alreadyOpen);

END GetFailureGroups;

PROCEDURE MilitaryDate (VAR str :ARRAY OF CHAR);

(**
MilitaryDate - Return the current date in Military format

T. H. Tucker

Returns the current date in Military format: dd nrnn yyyy
e.g., 30 OCT 1987.

EXIT - str value of current date in Military format.
str is ARRAY OF CHAR, at least 11-chars long.

VAR
date :ARRAY [0..9] OF CHAR;
last :CARDINAL;
month :ARRAY [0..3] OF CHAR;
success :BOOLEAN;

BEGIN

CurrentDatel (date);

last := HIGH(str);
IF (last > 10) THEN
FillChar (str[11], CHR(O), 1);
last := 10;

END;

IF (last < 10) THEN
WriteLn;
WriteString ("PROCEDURE MilitaryDate: ") ;
WriteString ("argument is too small (11 ch. min.)");
WriteLn;
RETURN;

END;

FillChar (str, CHR(32), 11);
MoveLeft (date[8], str[0], 2);
MoveLeft (date[0], str[7], 4);

1988/08/09 09:15:27

H-17

MoveLeft (date[5], month, 2);
FillChar (month[2], CHR(O), 1);
StrToCard (month, last, success);

CASE
1:
2
3
4:
5
6:
7:
8:
9
10:
11
12

ELSE
Fil

END;

last OF
llChar(str[3]
llChar(str[3]
llChar(str[3]
llChar(str[3]
llChar(str[3]
llChar(str[3]
llChar(str[3]
llChar(str[3]
llChar(str[3]
llChar(str[3]
llChar(str[3]
llChar(str[3]

,"J"
lip II

["M"
,"A"
,"M"
,"J"
,"J"
,"A"
"S"
, "0"
,"N"
,"D"

,1); Fi
rD; Fi
,1); Fi
1); Fi
1); Fi
1); Fi
1); Fi
1); Fi
1); Fi
1); Fi
1); Fi
1); Fi

llChar(str[4]
llChar(str[4]
llChar(str(4]
llChar(str[4]
llChar(str[4]
llChar(str[4]
llChar(str[4]
llChar(str[4]
llChar(str[4]
llChar(str[4]
llChar(str[4]
llChar(str[4]

,"A",1
,"E",1
."A".1
,"P»,1
."A",1
,»U",1
,"U",1
,"U",1
,"E",1
."C»,1
,"0",1
,"E",1

llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str
llChar(str

[5],"N",1
[5],"B",1
[5],"R",1
[5],"R",1
[5],"Y",1
[5],"N",1
[5],"L",1
[5],"G",1
[5],"P»,1
[5],"T",1
[5],"V",1
[5],"C",1

IChar (str[3], "-», 3);
(* CASE •)

END MilitaryDate;

PROCEDURE MyCloseRelation (relation :ARRAY OF CHAR;
status :BOOLEAN);

MyCloseRelation - Closes relation or data file as necessary

G. H. Beers - December 1987

Checks the initial status of a relation and returns it to its initial state.

CALLING SEQUENCE -

MyCloseRelation (relation,status)

ENTRY -

relation - ARRAY OF CHAR
Name of relation to be opened or checked.

status - BOOLEAN
inital relation status flag
TRUE - Relation or index file was initially open
FALSE - Relation was initially closed

EXIT -

FILES -

*)

BEGIN
IF status THEN
CloseRelationFiles (relation);

ELSE
CloseRelation (relation);

END;
END MyCloseRelation;

PROCEDURE MyOpenRelation (relation, key :ARRAY OF CHAR;
modify :BOOLEAN) :BOOLEAN;

MyOpenRelation - Opens relation if necessary and returns initial status

G. H. Beers • December 1987

Checks the current status of a relation and opens it if necessary.

CALLING SEQUENCE -

1988/08/09 09:15:27

H-18

MyOpenRelation (relation,key)

ENTRY -

relation - ARRAY OF CHAR
Name of relation to be opened or checked.

key - ARRAY OF CHAR

Name of key to use for testing relation current status

EXIT -

result - BOOLEAN
Initial relation status flag
TRUE - Relation or index file was initially open FALSE - Relation was closed

FILES -

VAR
result :BOOLEAN;

BEGIN
result := TRUE;

(* IF NOT RelationlsOpen (relation) THEN *)

FindRecord (relation, key. Next);
IF (SageError = 106) THEN
OpenRelation (relation, modify);

(* CloseRelationFiles (relation); *)
result := FALSE

END;
RETURN result;

END MyOpenRelation;

PROCEDURE PlacesC (m :CARDINAL) :CARDINAL;

(**
PlacesC - Determine character places needed for cardinal

T. H. Tucker

Determines how many character places are required to display the
CARDINAL nunber, m. This value is the number of digits m
takes up.

ENTRY - m: CARDINAL number

EXIT - (FUNCTION) result: nunber of character places to display m.
*)

VAR
result :CARDINAL;

BEGIN

result := 6;
IF (m < 10000) THEN result := 4; END;
IF (m < 1000) THEN result := 3; END;
IF (m < 100) THEN result := 2; END;
IF (m < 10) THEN result := 1; END;

RETURN result;

END PlacesC;

PROCEDURE ShowSageError (string :ARRAY OF CHAR);

1988/08/09 09:15:27 page 16

H-19

750:
751: (**
752: ShowSageError - Write SageError (& string) below cursor position
753:
754: T. H. Tucker
755:
756: Writes the value of SageError & user-supplied string 1-line
757: below the current cursor position.
758:
759:
760: ENTRY - string - string User wants to display following SageError value
761:
762: *)
763:
764:
765: VAR
766: errorNunber :CARDINAL;
767: str :ARRAY [0..79] OF CHAR;
768: str6 :ARRAY [0..5] OF CHAR;
769: success :BOOLEAN;
770:
771:
772: BEGIN
773:
774: errorNunber := SageError;
775: CardToStr (errorNunber, str6, PlacesC(errorNunber), success);
776:
777: FillChar (str, CHR(O), 80);
778: IF (success) THEN
779: Concat ("SageError ",str6,str,success);
780: Concat (str, " ", str, success);
781: Concat (str, string, str, success);
782: ELSE
783: str := "?";
784: Concat (str, string, str, success);
785: END;
786:
787: WriteLn;
788: WriteString (str);
789: WriteLn;
790: Pause (2500);
791:
792: END ShowSageError;
793:
794:
795: END General.

1988/08/09 09:15:27 page 17

H-20

MODULE RetrHard; (* Retrieves results for hardware *)

(*

Program Title :

Developed For :

Date :

NRC Contact :

Code Developer:

Nuclear Computerized Library for Assessing Reactor
Reliability (NUCLARR)

U. S. Nuclear Regulatory Commission
Office of Research
Division of Reactor System Safety

FIN A6850

FY 86

T. G. Ryan Phone : FTS 443-7619

EG&G Idaho, Inc.
Idaho National Engineering Laboratory

G. H. Beers Phone : FTS 583-9288
0. J. Call Phone : FTS 583-9114
T. H. Tucker Phone : FTS 583-9123

This program was prepared for an agency of the United States
Government. Neither the United States Government nor any agency
thereof, or any of their employees, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for any
third party's use, or the results of such use, of any portion of this
program or represents that its use by such third party would not
infringe privately owned rights.

')

IMPORT (* module *)
Program

FROM ClrHouse IMPORT (* procedure *)
Clearinghouse

FROM OlayHw IMPORT (* procedure *)
CheckForError ,turnCheckOff

FROM Sage IMPORT (* variable *)
SageError

(* procedures *)
OpenDataBase ,CloseDataBase ,ClearRelation
,DisplayForm ,DisplayMessage
,GetFieldA

FROM ThorPort IMPORT (* procedures *)
ClearScreen

64
65:
66
67
68
69.
70:
71.
72:
73:
74:

1988/C

CONST
HaxForms = 5;
MaxScreens = 3;
BufferSize = 9000;

RingBell = TRUE;
NoDefault = FALSE;

VAR
aOption : CHAR;

8/09 09:15:27

H-91

olStatus : Program.CallResult;
index : CARDINAL;

BEGIN (* RetrHard *)

(* initialization

OpenDataBase ("Hardware.DFL",MaxForms,MaxScreens,BufferSize);
IF (SageError <> 0) THEN
DisplayMessage (

"The schema file, 'Hardware.DFL', is not available",RingBell);
RETURN;

END; (* SageError IF *)

(* set FilesLeftOpen Flag

turnCheckOff := TRUE;

(* main menu processing --

LOOP
ClearRelation ("Utility");
DisplayForm ("MenuRHl","UtiIity","UAl",NoDefault);
GetFieldA ("Utility","UAl",aOption);

olStatus := Program.normalReturn;

CASE aOpt i on OF
"E" : EXIT]

"?" : Clearinghouse ()|

"1" : DisplayMessage
("Loading Descriptive Search Programs ... please standby",

FALSE);
Program.CalI ("DHardw.LOO",olStatus);
CheckForError (olStatus)|

"2" : DisplayMessage
("Loading Ad Hoc Search Programs ... please standby",

FALSE);
Program.CalI ("AHardw.LOD",olStatus);
CheckForError (olStatus)|

"3" : Program.Call ("DocHardw.LOO",olStatus);
CheckForError (olStatus)]

"4" : DisplayMessageC"* Hardware Glossary is not yet complete *",
RingBell);

ELSE
DisplayMessage ("Invalid Option",RingBell);

END; (* CASE *)
END; (* LOOP *)

ClearScreen ();
CloseDataBase ();

END RetrHard.

1988/08/09 09:15:27

H-22

Index

Among (PROCEDURE
BlankData (PROCEDURE
CheckRelationStatus (PROCEDURE
ClearMessage (PROCEDURE
ClearStack (PROCEDURE
ClearUEvent (PROCEDURE
ConvertMi I itaryOate (PROCEDURE
DisplaySageError (PROCEDURE
Fai lureGroupMember (PROCEDURE
General (MODULE)..
GetCatName (PROCEDURE
GetFai lureGroups (PROCEDURE
Mi I itaryOate (PROCEDURE
MyCloseRelation (PROCEDURE
MyOpenRelation (PROCEDURE
PlacesC (PROCEDURE
RetrHard (MODULE)..
ShowSageError (PROCEDURE

from
from
from
from
from
from
from
from
from

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

General).
Genera I).
General).
General).
General).
General).
General).
General).
General).

from MODULE
from MODULE
from MODULE
from MODULE
from MODULE
from MODULE

General).
General).
General).
General).
General).
General).

from MODULE General).

1,
1 ,
1,
2,
2,
2,
3,
3,
3,
1,
3,
4,
4,
5,
5,
5,

6,

7
8
8
9
10
10
11
12
12
7
13
13
14
15
15
16
Ifl
16

1988/08/09 09:15:27 page 20

H-23

INDEX

(Excludes Appendices)

Accessing 17, 25
AdHocHum 11, 21, 22
AdHocHw 12, 13, 28
Aggreg 13, 30
AHardw 8, 14, 15, 32, 35
AHwAgg 14, 15, 36
AHwFile 14, 15, 37
AHwGetF 14, 15, 35
AHwPlot 14, 15, 36, 37
AHwRep 14, 15, 36, 37
AHwSaveF 14, 15, 32, 35, 37
AHwSrch 14, 15, 35, 36
AHwView 14, 15, 36
ASCn 2, 19, 23, 24, 26, 29, 34, 37
Block 3
Blockdata 3
BReports 10, 18
Calc 10, 18
CeU 21
Charts 2, 15, 39, 40
Classified 5
CkHouse 9, 12, 13, 25
Column 20
Compiling 8, 10-15, 39
Component 4, 29, 33
Coprocessor 3, 8
CRYSTAL 2 3 41
DATABANK . 4-6, 10, 11, 15, 16, 19, 20, 23, 39,' 40
DataNtry 6, 13, 29
DBUtil 13, 29, 31
DEFINITION MODULE 4, 8-10, 12
DescrHum 11, 20-22
DescrHw 13, 28
DHardw 7, 14, 32
DHwAgg 14, 33, 34
DHwFile 14, 34
DHwGetF 14, 32
DHwPlot 14, 34
DHwRep 14, 34
DHwSaveF 14, 32, 35
DHwSrch 14, 33
DHwView 14, 33
DManual 13, 30, 31
DocHardw 14, 15, 32, 37, 38
DocHuman 11, 20-22
DOCUPROC 2, 3, 15, 39

INDEX - 1

EdDocumt 13, 30, 31
EdPlants 13, 31
Enhancements 38
Environment 1-3, 8, 38
Execution 9, 16, 17, 24, 38
Exportable 4
Exposure data 33
Failure mode 29, 33
FieW 3, 4
How 2, 15, 39, 40
Form 1, 3, 4, 21, 22, 35, 36, 39, 40
GenASCn 11, 23
General 5, 9, 12, 13, 17, 25, 39
GetFileP 11, 23
GetRep 11, 20, 22
GetRpHEP 11, 20, 21
GetRpNoG 11, 20, 21
Graphics 2, 3, 12, 13, 26, 27, 41
Grf 10, 19
HardAg 12, 13, 27
HardFile 12, 13, 24
HARDWARE 4, 6, 7, 13, 14, 16, 24, 29, 31, 32, 39
HCF 4, 12, 15, 16, 24, 29-33, 35, 37, 39
HEP 4, 9, 10, 15-23, 39, 40
HEPAgg 11, 23
HEPNotes 9, 16
HWDispla 12, 13, 25, 26
HWFile 12, 13, 26, 27
HWNotes 9, 16, 17
HWPlot 12, 13, 26, 27
HWReport 12, 13, 26
HWTables 13, 31
IMPLEMENTATION MODULE 4, 8, 10, 12, 13
Import 8-10, 12
Job classification 20
Kedit 2, 15
Linking 8-15, 39
Load 2
LoadDB 13, 29, 30
Loading 19
L0D2EXE 2, 3, 5, 9
MainMenu 9, 16, 40
ManualDE 13, 29, 30
MASTER 4, 39, 40
Matrix 19, 20
Memory 3, 5, 17, 24
MODULE 4
Normal state 29, 33
NUCFILE 10, 19
NUCGEN 9, 10, 17
NUCPRINT 10, 17
OlayHw 12, 13, 25, 26

INDEX - 2

Overlay 5-8, 10-15, 17, 18, 20, 24, 25, 29, 32, 33, 35, 36
Plot 1, 22, 34, 36
Plotting 2, 19, 26
PltHuman 11, 22
Quahfying 19, 29, 31
REBUILD 2, 3
Record 2-4, 20, 28, 32, 35, 39
Relation 3, 4, 15, 29, 30, 32, 39
Relational 2, 3
RetrHard 7, 8, 14, 15, 29, 32
Retrieve 1, 6, 9-11, 18-20, 22, 25
Row 20
SAGE 2-4, 8, 9, 41
SavFileP 11, 23, 24
Schema 3, 4, 39, 40
Search 4, 7, 20-23, 25, 26, 28, 32-37
SFilelO 13, 28, 29
SorcDump 13, 30
StatLib 12, 13, 24
Storage buffer 18, 20-23, 25, 26, 28, 32-37
StorageM 10, 18
StoreMan 12, 13, 25
TaikdAg 14, 33
Taxonomy 20
THOR 2-4, 15, 39, 40
Upgrade 9

INDEX - 3

