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Abstract 

The development of Hot Dry Rock (HDR) geothermal systems a t  the Fenton 

H i l l ,  Wew Mexico site has required the d r i l l i n g  of four deep boreholes into 

hot,  Precambrian granitic and metamorphic rocks . Thermal gradient hol es , four 

observation wells 200 m (600 f t )  deep, and an exploration core hole 800 m 

(2400 f t )  deep guided the s i t i n g  o f  the four deep boreholes. Results derived 

from the exploration core hole, GT-1 (Granite Test No. 11, were especially 

important i n  providing core fran the granitic rock, and establishing the 

conductive thermal gradient and heat flow for the granitic basement rocks. 

Essential stratigraphic data and l o s t  d r i l l i n g - f l u i d  zones were identified for 

the volcanic and sedimentary rocks above the contact w i t h  the crystalline 

basement. Using this information d r i l l i n g  strategies and well designs were 

then devised for the planning of the deeper wells. 

The four deep wells were drilled i n  pairs, the shallowest were planned 

and drilled t o  depths o f  3 km i n  1975 a t  a bottom-hole temperature of nearly 

200'C. These boreholes were followed by a pair of wells, completed i n  1981, 

the deepest o f  which penetrated the Precambrian basement to  a vertical depth 

of 4.39 km a t  a temperature of 3 2 O O C .  The d r i l l i n g  experience and develop- 

ments w i l l  be of especially significant value i n  the planning of future 

d r i l l i n g  for the Thermal Regfmes portion of a Continental Scientific D r i l l i n g  

Program (CSDP) . Reviews of .problems and solutions i n  the areas of circulating 

f l u i d s ,  cuttings removal, b i t  selection and rate-of-penetration, casing design 

and cementing, wellbore directional control, and costs form a framework for 

that project planning. The i nfl uences of high temperatures, hardware 1 i m i  t a -  

tions, hard and abrasive formatfons, equipment fatigue, and remedial opera- 

t ions ( f i s h i n g )  must be considered and understood to  ensure the achievement Of 

desf red scf enti f ic  goal s. . Successful completion of the four deep boreholes a t  
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the Fenton Hi1 1 H D R  geothermal development s i t e  has produced hardware, 

technology, techniques, and provides practical examples and recommendations 

that can aid w i t h  the effective planning and conduct of future deep scientific 

d r i l l i n g  campaigns i n  the continental crust. 

1. Introduction 

T h i s  paper recounts the experience of deep d r i l l i n g  i n t o  hot  crystalline 

rock by the Fenton Hill HDR project (Fig.  1) to i l lustrate  t h a t  such opera- 

tions for scientific purposes are indeed possible. The discussion is intended 

t o  provide general guidance fo r  project  planning f o r  fu ture  s c i e n t i f i c  

d r i l l i n g  operations . The discussion a1 so supports the thesis that  experience 

fran past  ambitious d r i l l i n g  projects can aid i n  the design of the strategy of 

d r i l l i n g  and coring programs and help reduce costs and risks of such efforts 

i n  order t o  maximize the l ike l ihood of success and scientific yield. D r i l l i n g  

hardware, operations, problems, and costs are described t o  give information t o  

those interested i n  future deep, scientific d r i l l i n g  projects i n  the conti- 
r 

nental cause. The focus is  on deep (>3 km) large diameter 131.1 an (12-1/2 

in . )  t o  22.2 an (8-3/4 i n . ) ]  boreholes w i t h  spot coring of selected sections. 

The experience related here is i n  contrast t o  the relatively shallow, small 

diameter, continuous scientific coring operations such as those conducted t o  a 

depth of about 2 km by the Iceland Research D r i l l i n g  Project, Fridleifsson, e t  

al. (1982). 

The high  formation temperatures and very hard, often fractured, abrasive 

rocks penetrated a t  Fenton Hill are potentially to be encountered i n  the 

deeper portions of deep (el0 km) boreholes i n  areas o f  typical or average geo- 

thermal gradients (e.g., 25°C/km1, bu t  especially i n  future projects planned 

to perform deep sampling i n t o  geothermal anomalies. These types of projects 

4 



have been discussed as p a r t  o f  the "Thermal Regimes" e f f o r t  o f  the Continental 

Scient i f ic  D r i l l i n g  Program (CSDP) . Potential s i t es  include the Valles 

Caldera, NM, Long Valley, CA, Yellowstone Natfonal Park, MY, and the Salton 

Sea, CA. Detai ls of thermal regime d r i l l i n g  objectives are recorded i n  the 

Natfonal Research Council, If Continental Scient i f ic  D r i l l i n g  Program" (1979) 

and Goff and Waters (1980). D r i l l i n g ,  coring, borehole measurements, and 

sampling f o r  s c i e n t i f i c  purposes i n  such h o s t i l e  environments can be unex- 

pectedly cos t l y  unless detai led planning and supervision o f  the d r i l l i n g  and 

cor ing operations by those experienced i n  s im i la r  operations i s  careful ly 

performed . 
Pro3 ects contempl a t i  ng core and f l  u i  d sampl i ng operations under these 

more severe conditions , especi a1 l y  higher temperature, w i  11 benef i t  f ran the 

technology improvements out l ined here. The special cor ing hardware and 

d r i  11 i ng procedures successful l y  devel oped f o r  the Deep Sea D r i  11 i ng Proj e c t  

and summarized by Larson, e t  a1 ., (1981) f o r  deep ocean sediment sampling are 

i l l u s t r a t i v e  o f  those developments proposed here. The value o f  spec ia l ly  

designed d r i l l i n g  equipment and procedures s p e c i f i c a l l y  f o r  such s c i e n t i f i c  

d r i l l  i n g  projects cannot be overemphasized. The high-temperature rated, 

hf  gh-performance t u r b o d r i l l  s designed and f ie lded f o r  the HDR geothermal 

pro ject  (Neudecker and Rowley, 1982) are an example o f  the type o f  advanced 

technology development po ten t i a l l y  required f o r  successful 8chf evement o f  

d i rect ional  control o f  deep crustal  boreholes. A second example, o f  wider 

i n t e r e s t  t o  CSDP, i s  the hybrid core b i t  t h a t  was needed t o  8chieve adequate 

core quali ty, r e l i a b i l i t y ,  and recovery i n  the deep c r y s t a l l i n e  rock a t  Fenton 

H i l l  ( P e t t i t t  e t  a l . ,  1980). Finally, i t  should be noted that most d r i l l i n g  

technology advances and case h i s to r i es  o f  potent ia l  i n t e r e s t  t o  the s c i e n t i f i c  

community are reported i n  the engineering l i t e r a t u r e  and are usually f am i l i a r  
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only t o  a very small and specialized segment o f  the d r i l l i n g  and related 

industries. Thus, J .  Oliver (1982) 

o f  r i g  capability t o  perhaps 15 Ian 

harder rocks, scientific coring and 

tures i n  d r i l l i n g  case of potential 

quite correctly stresses the ava i lab i l i ty  

(50,000 f t )  depths. I t  is likely t h a t  

sampl i ng requirements , and high  tempera- 

thermal regime targets w i l l  necessi t a te  

significant shifts i n  d r i l l i n g  strategy away from t h a t  used i n  the petroleum 

industry procedures, which primarily focus on optimm penetration rate for 

commercial exploration and development. In a d d i t i o n ,  new technological 

developments away from the main stream of commercial d r i l l i n g  activity are 

d i f f icu l t  t o  transfer w i t h i n  the petroleum industry [Knight  (198311. Know- 

ledgeable and experienced personnel w i l l  play a most important role i n  the 

appropri ate pl anning , supervf s i  ng and on-1 i ne probl em sol v i  ng necessary t o  

successfully conduct and field CSDP deep sampling projects. Costs can 

escalate rapidly and projects may f a i l  if effective p lanning  and experienced 

supervision are neglected. 

1.1 Drill Site Location 

The Fenton H i l l  s i t e  i s  located i n  Sandoval County, New Mexico, approxi- 
Fenton Hill mately 32 km west of the Los Alamos National Laboratory (Fig. 1). 

is  i n  the Jemet Mountains (Fig. 2)  and l i e s  about 1 km outside the western 

topographic rim of the Valles Caldera i n  a region termed the Jemez Plateau. 

Laughl in  (19811, and Laughlin et a l .  (1983) review the selection and the 

regional setting of the si te.  The brief sumnary here from Laughlin,  e t  81. 

(1983) is intended as background for the d r i l l i n g  technology discussions t h a t  

follow: 

"The Jemez Mountains l i e  on the boundary between the Colorado 

Plateau and the Rio Grande r i f t  i n  north-central New Mexico. 
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Volcanism occurred over the in t e rva l  from roughly 10 t o  0.1 m.y. ago 

(Bailey e t  al . ,  1969) w f t h  major ca ldera  co l lapses  occurring a t  1.4 

and 1.1 m.y. ago t o  form the Toledo and Valles calderas .  Rhyolite 

domes were extruded along r ing  f a u l t s  of the Val les  Caldera and they 

surround a l a r g e  resurgent s t r u c t u r a l  dome, Redondo Peak. The 

Redondo Peak area ,  which is highly f au l t ed ,  is the site of a conven- 

t i ona l  (hydrothermal ) geothermal prospect currently under i nvestiga- 

t i o n  by Union Geothermal Company of New Mexico. 

The p la teaus  t h a t  surround the Valles and Toledo ca lderas  a r e  

capped by ash-flow sheets of Bandelier Tuff  erupted during formation 

of the two calderas .  Beneath the tuff  i n  descending order  a r e  older 

volcanic  rocks of  the Jemer Mountains (Tschicma and Pa l i za  Canyon 

Formations), the Miocene Abiquiu Formation (Abiqu iu  Tuf f  of Smith,  

19381, the Permfan Ab0 Formation (red beds), the Carboniferous 

Magdalena Group (mainly 1 fmestone), and Precambrian metamorphic and 

igneous rocks. The Precambrian su r face  l ies a t  a depth of about 730 

m a t  Fenton H i l l .  Precambrian rocks a r e  exposed a t  the sur face  a few 
kilometers south and west of Fenton Hi1 1 . 

The Valles Caldera region and assoc ia ted  subjacent magma reser- 

v o i r s  provide an idea l  s e t t i n g  ‘for developnent of both hydrothermal 

and HDR [geothermal] systems. Only the presence o r  absence of 1 

secondary permeabi l i ty  d i s t ingu i shes  these two systems. 

During e a r l y  s t ages  i n  the s e l e c t i o n  of the Fenton Hill site, 

eleven holes  were d r i l l ed  t o  determine the hea t  flow around the 

periphery of  the Valles Caldera [Potter, 1973; Reiter e t  a1 . , 19763. 

The four deepest holes ,  which reached depths of 152 t o  229 m and so 

are believed t o  yfeld the most r e l i a b l e  data ,  i n d i c a t e  hea t  flow 



2 values of 92 t o  247 mW/m . The drill hole y ie ld ing  the 92 mW/m2 

value was r a d i a l l y  f a r t h e r  from the ca ldera ,  and probably sampled the 

regional heat  flow." 
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1.2 Geologic Section 

The loca t ions  of the shallow hea t  flow holes  a r e  shown i n  Fig. 2. 

Geologic f ea tu res  of interest t o  d r i l l i n g  technology a r e  sunnnarized i n  the 

s t r a t i g r a p h i c  section of Fig. 3 based upon results from subsequent deep 

d r i l l i n g  of boreholes, designated a s  GT-1, GT-2, EE-1, EE-2, and EE-3 i n  Fig. 

1. 

The geologic section a t  Fenton Hill c o n s i s t s  of approximately 152 m (500 

f t )  o f  welded volcanic tuff overlying 244 m (800 f t )  of Permian red-beds 

( sha le s  and sandstones),  335 m (1100 f t )  o f  Pennsylvanian l imestone, and below 

732 m (2400 f t )  Precambrian c r y s t a l l i n e  basement of extremely low permeabi l i ty  

and poros i ty  t o  4.5 km (14,000 f t ) .  The l i t ho logy  represented i n  Fig. 3 was 

e s t ab l i shed  by spo t  cores  and cuttings, and general ly  without the benefit of 

geophysical logging i n  the deeper hotter sections. The temperature a t  the top 

of the Precambrian formations i s  100°C (212"F), and the geothermal conductive 

g rad ien t  i n  this c r y s t a l l i n e  rock increases  from 55"C/km (3O0F/10O0 ft) t o  

89"C/km ( 4 9 O F / l O O O  f t )  a t  4.7 lan (15,000 ft) '  depth (Fig. 3). The temperature 

a t  the bottom o f  the deepest borehole (EE-2) i s  32OOC (608°F). 

The Permian red beds and the Pennsylvanian c lays ,  sha les ,  and l imestones 

a r e  sensitive t o  a fresh water based d r i l l i n g  f l u i d  and conta in  several  highly 

permeable zones t h a t  can cause l o s t  c i r c u l a t i o n  of d r i l l i n g  f l u i d .  Several 

u n i t s  i n  the Permian and Pennsylvanian formations i n  this sec t ion  will a l s o  

swell and becane unstable causing sloughing o f  the wellbore (E. 8. Nuckols, e t  

a1 ., 1981). I n  addi t ion ,  a cavernous zone i n  the Pennsylvanian l imestone just  

above the c r y s t a l l i n e  basement rock a t  about 800 m (2400 f t )  caused many 
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extremely diff icul t  d r i l l i n g  and casing problems related primarily t o  severe 

lost circulation (Laughlin, e t  al., 1983). 

The Precambrian c rys t a l l i ne  basement has h i g h  i n t a c t  compressive 

strengths, low penneablity and is very abrasive. Much of i t  is gneiss w i t h  no 

d i  scerni b l  e large-scal e hori zontal beddi ng . Several 1 arge interval s of grano- 

diorite were encountered w i t h i n  the gneiss, and a number of narrow fractured 

zones t h a t  contained chl ori te ,  pyrite, and consi derabl e amounts o f  cal ci  t e  . 
Vuch chemical alteration has occurred i n  these zones. They evidently are 

shear zones or  locally shattered zones sealed or mineralized by the forceful 

la te  injection of f l u i d s  and volatiles into the host rock (Laughlin e t  a l . ,  

1983). Variations i n  d r i l l i n g  performance and unexpected directional-drill i n g  

problems further indicated the presence of faults or altered zones i n  the 

we1 1 bores. 

D r i l l i n g  the f i r s t  slim (small diameter) core hole, GT-1, was an 

essential step i n  developing the scientific and engineering aspects of the 

s i t e  exploration strategy. The GT-1 borehole also served to delineate the 

potential d r i l l i n g  problems and provided a means t o  forecast for the larger 

diameter holes t o  be Prilled through the section above the Precambrian rocks. 

The G f - 1  corehole also discovered a shallow water-bearing u n i t  used to supply 

d r i l l i n g  f l u i d  for the la te r  wells. Analysis of the crystalline rock core 

fran the bot tan o f  GT-1 established an i n l t i a l  baseline for the d r i l l i n g  

properties of this u n i t .  Such a slim diameter, shallow, core hole should be 

considered as an essential element of a deep CSDP :hole, especially i n  a 

frontier area where no previous d r i l l i n g  records are available. The effort  

could usually be justified on the basis o f  the drilling-related lithologic 

da ta  alone. 
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2. The Hot Dry Rock (HDR) Project 

Natural geothermal r e se rvo i r s  can fonn where water has contacted rocks 

heated by shallow hea t  sources w i t h i n  t h e  crust. In a few places,  l a r g e  

c i r c u l a t i n g  convection systems exist w i t h i n  porous or fractured reservoirs. 

These na tura l  hydrothermal systems, often capped by an impervious l aye r ,  a r e  

charac te r ized  by high hea t  f l ux  a t  the surface and are sometimes assoc ia ted  

w i t h  leakage of f l u i d s  forming hot  spr ings ,  geysers, and fumaroles. These 

n a t u r a l  hydro thermal  r e s e r v o i r s  a r e  r a r e ,  b u t  may be e x c e l l e n t  ene rgy  

resources  when properly exploi ted.  Wort dwide development of such high-grade 

hydrothermal r e se rvo i r s ,  g r e a t e r  than 18OOC a t  depth,  is  a t  an i n s t a l l e d  

e l e c t r i c a l  capac i ty  of about 3200 MW(e) (DfPippo, 1983) i n  13 nat ions,  from 

about 3000 drilled production wells. Exploration a c t i v i t i e s  have loca ted  147 

hydrothermal reservoirs located i n  43 count r ies  . The current worldwide .growth 

r a t e  of i n s t a l l e d  geothermal generat ing capac i ty  is approximately 15% per yea r  . 
Pursuit of research and development p ro jec t s  f o r  innovat ive geothermal 

energy ex t r ac t ion  systems has been motivated by the recogni t ion t h a t  many 

conventional hydrothemal explorat ion and development we1 1 s do not  produce 

fluids. Furthermore, the ratio o f  dry t o  productive wells i n  hydrothermal 

explora t ion  averages somewhat g r e a t e r  than 3 t o  1. The major i ty  of the dry 

holes  are hot,  b u t  pene t ra te  rocks t h a t  l ack  sufficient f lu ids  and na tura l  

penneabi l i ty .  Such hot ,  dry holes  can be e x c e l l e n t  prospects  for stimulation, 

(Campbell, et  a l . ,  1981) o r  for possible developnent as h o t  dry rock energy 

e x t r a c t i o n  r e se rvo i r  systems. The latent energy contained i n  the HDR resource 

is imnense, and its successful developnent offers one pranis ing  a l t e r n a t i v e  t o  

supply a p a r t  of the world's increasing energy demands. Several HDR geo- 

thermal p ro jec t s  have been i n i t i a t e d  around the world, w i t h  those i n  the 
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United States, England, Germany, France, and Japan being the most advanced 

(Heiken and Goff, 1983). 

Production of heat energy by the HDR technique involves creation of - i n  

- situ permeability i n  hot  rock formations by hydraulic fracturing followed by 

injection and circulation of water. A two-well HDR reservoir system (GT-2 and 

EE-11, was created i n  the hot  crystal l ine rock a t  Fenton Hill. Water was 

circulated and heat energy extracted t o  demonstrate t h e  basic f eas ib i l i t y  of 

the concept. 

The HDR project was in i t ia ted  a t  the Fenton Hill experimental s i te  i n  

1974. The f i r s t  two deep boreholes (GT-2 and EE-1, see Fig. 4 and Table 1) 

were drilled t o  about 3 km (10,000 f t )  depth, a t  a bot tan hole temperature o f  

about 200°C (400'F). T h i s  well pa i r  was fractured i n  1975-1977, t o  create the 

f i r s t  reservoir. Results of extensive c i rcu la t ion  and heat  e x t r a c t i o n  

experiments dur ing  1978-1980 (Dash, e t  al . ,  1983) produced power a t  a 3 t o  5 

M W  (thermal) level for  about one year and motivated the d r i l l i n g  of the deeper 

well pair ,  EE-2 and EE-3, i n  an a t tempt  t o  develop a larger and hotter H D R  

geothermal reservoir. 

T h i s  paper concentrates on the d r i l l i n g  experience from EE-2 and EE-3. 

These wellbores are inclined a t  35" from the vertical and configured so t h a t  

parallel fractures could be made between the wellbores to create a HDR general 

reservoir (Fig. 5). The d r i l l i n g  of EE-2 and EE-3 was finished i n  August 1981 

(Helrnick, e t  al., 1982 and Rowley and Carden, 1982). The boreholes were 

dr i l led  w i t h  open hole reservoir sections a t  22.2 an (8-3/4-in.) d r i l l e d  

diameters. The EE-2 injection well was d r f l l e d  t o  a measured depth of 4.66 km 

(15,298 ft) and had a bot tan  hole static temperature o f  3 2 0 O C  (608OF). EE-3, 

the production well, was drilled t o  a measured depth of 4.25 km (13,933 f t )  

11 
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and had a bottan hole temperature of 28OOC (580°F). High-precision direc- 

tional d r i l l i n g  was used to posit ion EE-3 a t  370 f 15 m (1200 f 50 f t )  above 

EE-2 and w i t h i n  lateral location tolerances of k30 m (9100 f t ) .  T h i s  was done 

t o  maximize the possibilities for connection dur ing  post-dr i l l  i n g  fracturing 

operations. Figure 6 depicts the directionally drilled wellbore t rdec tor ies  

for the EE-2/EE-3 well pair, and Fig.  7 summarizes the d r i l l i n g  hfstories for 

these two boreholes . 

3. HDR Experience Relevant t o  Scientific D r i l l i n g  i n  the Continental Crust 

Scientific objectives of a deep scientific hole i n  the continental crust 

should be considered as early as possible t o  allow time for the developnent of 

equi went and d r i  11 i ng procedures t h a t  are speci f ical ly  desi gned for the 

anticipated downhole conditions. 

princlpals should dominate this developnent phase: 

Fenton Hi1 1 experience indicates that  three 

o Do not assume that the d r i l l i n g  industry or another project has 

already developed a solution t o  a specific problem. 

o - Do seek multiple and alternative solutions w i t h  in-depth backup. 

Duplication o f  potential solutions will considerably reduce risk. 

. o - Do expect special problems caused by high  temperature. E 1 e v a t e d 

temperature performance for  conventional d r i l l  i n g  equipment and 

related services generally are limited t o  15OoC, b u t  service t o  200°C 

can be obtained i n  a few instances. 

3.1 Core Bits 

Coring technology and hardware is an area of special importance t o  CSDP 

projects and i l lustrates  the above principals very well. The original 

dril l ing plan for the first deep borehole, granite t e s t  No. 2, GT-2, i n  the 

crystalline rock a t  Fenton Hill called for continuous coring using Deep Sea 
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Dril l ing Program (DSDP) core b i t .  The DSDP had succeeded i n  developing a 

successful rotary coring technology ( S o  Larson, e t  a1 ., 1981) for the sea 

f loor  sediments. The variety o f  coring tools t h a t  resulted were designed t o  

obtain quality cores fran the unique conditions and l i  thologies represented by 

the deep sea sediments. These tools include: (1) a piston corer for 

unconsolidated near sea bed surface, oozes and sediments, (2)  a rotary driven, 

extended retractable core barrel for layered sections of h ighly  variable 

hardness, and (3) a wireline deployed core barrel, coupled to  a rotary driven 

four roller cone b i t  w i t h  tungsten carbide insert (TCI) cutting structure 

(Fig .  8). T h i s  core b i t  was designed t o  provide very long b i t  l i f e  through 

imposition of low loads on the roller cone bearings and long cutting structure 

l i f e  for both the core trimming and d r i l l i n g  functions. These design features 

resulted i n  long b i t  l i f e  and therefore long intervals could be cored w i t h o u t  

t r i p p i n g  the b i t ,  and provided h igh  qual i ty  core. The annulus of the borehole 

drilled by t h i s  b i t  might be viewed as excessive w i t h  25.1 cm (9-7/8-in.) 

outer b i t  diameter needed t o  cut a 7 cm (2-7/8-in0) diameter core. However, 

thfs b i t  design provided a very effective solution and a single b i t  could 

often be used t o  core the entire sedimentary section before i t  was dulled by a 

short penetration in to  the basa l t  basement below. Init ial  trials a t  Fenton 

Hi11 , however, showed rather poor core recovery, slow penetration rates, and 

short  b i t  l i f e  for the DSDP four-cone core b i t .  The primary causes were the 

hardness and extreme abrasiveness of the crystalline rock which rapidly wore 

the cor.e-trimning TCI buttons.  T h i s  caused the core diameter t o  gradually 

increase and t o  jam i n  the core catcher a t  the entrance of the core barrel. 

T h i s  jamning resulted i n  breakage o f  the core in to  5-10 ,m pieces, which were 

ground and abraded i n t o  near-spheres. Also, the TCI buttons on the roller 

cones t h a t  preform well i n  sea bed sediments, wore rapidly i n  the deep GT-2 
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borehole. A solution t o  the core  problem was sought using conventional 

diamond core b i t s ,  b u t  recovery was often very poor (Table 11). Fina l ly ,  

during the GT-2 d r i l l i n g  a so lu t ion  was devised by a b i t  manufacturer who used 

a hybrid four roller cone and drag b i t  (Fig. 9 ) .  The drag cutters were 

f a s h i o n e d  from p o l y c r y s t a l 1  ine diamond compact ( P D C )  c u t t i n g  elements 

(Herrick, 1978). The core trimming was t h e r e a f t e r  successful because o f  the 

low wear r a t e  of these PDC drag cutters. Good core recovery and reasonable 

pene t ra t ion  r a t e s  of approximately 0.6 m/h 42.0 f t / h )  were achieved. 

Although this hybrid core  b i t  was an adequate so lu t ion  f o r  the HDR 

p r o j e c t ,  which only required spo t  cor ing through c r y s t a l l i n e  rock a t  the 3 t o  

5 km depth i n t e r v a l ,  i t  seems c l e a r  t h a t  improvements i n  core  b i t s  and coring 

systems will be needed if deep, ex tens ive  or continuous coring of c r y s t a l l i n e  

rocks a r e  required f o r  CSDP projects .  I t  i s  judged t h a t ,  even when optimized, 

a limit on b i t  l i fe,  penetrat ion r a t e ,  and core  qua l i t y  w i l l  be reached for 

t h i s  type of hybrid core  b i t  i f  a ro ta ry  drive i s  used a t  g r e a t  depths.  

A suggested development approach i n  cor ing technology research t o  so lve  

this problem would involve use of a hollow s h a f t  t u rbodr i l l  such as t h a t  

i n i t i a l l y  proposed by the Moho project for cor ing  o f  sea f l o o r  basement rocks. 

Section 4, Fig. 16, i nd ica t e s  a conceptual design f o r  such a coring system. 

The hollow s h a f t  t u rbodr i l l  would allow wi re l ine  core ba r re l  r e t r i e v a l .  The 

core  b i t  and core trimer should be developed based on the same philosophy as 

used for the DSDP tool designs. Long b i t  l i f e  can be enhanced through designs 

t h a t  use mul t ip l e  cones ( f o r  low bearing loads)  t ha t  are cambined w i t h  drag 

cutters, and include heavy gauge and c u t t i n g  structure wear protect ion.  

Optimizations to  increase  b i t  l i fe,  and thereby reduce t r i p p i n g  of the d r i l l  

s t r i n g ,  and improve core qua l i ty  should dominate the developnent. The 

1 

tu rbodr i l l  would provide the high b i t  torque necessary t o  d r ive  the PDC drag 
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cutters. A higher  r o t a t i n g  speed of the tu rbodr i l l  r e l a t i v e  t o  conventional 

r o t a r y  drives will enhance penet ra t ion  r a t e  and core q u a l i t y  through better 

b i t  dynamics, and improved bottom hole and d r i l l  string mechanics. In 

addi t ion ,  the fatigue l i fe  o f  the d r i l l  string will be much longer,  a d i s t i n c t  

advantage when long cored intervals a r e  planned. Another design f ea tu re  t o  be 

considered i s  t o  allow the opportunity t o  replace or redress the core cutters 

w i t h  each core bar re l  run .  

Turbodrill technology as appl ied t o  deep d r i l l i n g  opera t ions  i n  c r y s t a l -  

llne rocks was furthered by the HDR pro jec t  when several  deep d i r ec t iona l  

d r i l l i n g  opera t ions  were conducted below 3 km and a t  temperatures exceeding 

26OOC ( 5 0 0 O F ) .  The successful developnent and use of such a high-temperature 

rated, high-torque, low ro ta t iona l  speed turbodri l l  (Row ley and Neudecker, 

1982) could form the bas i s  for design and developnent of hollow s h a f t  

t u r b o d r i l l  s for  CSDP coring appl ica t ion .  These h igh - t empera tu re  r a t e d  

t u r b o d r i l l s  could uniquely be used fo r  hole s t ra ighten ing ,  s ide t racking ,  and 

d i r ec t iona l  d r i l l i n g  opera t ions  for CSDP pro jec t s ;  especially i n  deep hot  

boreholes i n  the harder c r y s t a l l i n e  rocks. 

Rezanov (1981) describes deep s c i e n t i f i c  d r i l l i n g  i n  the Soviet  Union. 

Frun a l i t e r a t u r e  study, and a v i s i t  t o  one deep d r i l l  s i te (Rowley and 

Watkins, 1977) , i t  appears , t h a t  the deeper geologic and s t r a t i g r a p h i c  studies 

i n  the Soviet Union rely heavi ly  on c u t t i n g s ,  and t h a t  a deep cor ing  

technology has not  yet  been developed. A core  b i t  w i t h  21b4 cm (8-1/2-in.) 
outer diameter and 5.0 an (2-in.) core diameter is mentioned, b u t  apparent ly  

used only f o r  the shallower p a r t s  of the boreholes. Ioanesyan and others 

(1981) discuss a hollow s h a f t  Soviet turbodri l l  used wi th  high pressure drag 

b i t s ,  bu t  no mention was, made of use w i t h  cor ing too ls .  Deep continuous 

cor ing  is discussed as a needed and des i r ab le  goal b These very deep ( g r e a t e r  
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than 5 t o  7 h) scientific boreholes i n  the Soviet Union a r e  being drilled by 

both r o t a r y  and tu rbodr i l l  b u t  most of the Soviet  o i l  and gas explora t ion  and 

production drill i ng is accmpl i shed near ly  excl usi vely w i t h  turbodri  11 s . 
Indeed, the Soviet  petroleum indus t ry  personnel ind ica ted  t h a t  the deep d r i l l -  

ing program was looked upon by them a s  a d r i l l i n g  technology developnent 

e f f o r t ,  and was directed toward the future when deeper petroleum production 

d r i l l i n g  would be more heavi ly  dependent on d r i l l i n g  i n  deeper, harder sedi- 

mentary rocks. I t  is c e r t a i n l y  true, as experience w i t h  t h e  deep HDR 

boreholes has demonstrated, t h a t  the high temperatures,  h igh  dynamic forces 

and f a t igue  stresses imposed on a l l  downhole hardware, represent a very good 

test bed f o r  f ind ing  weaknesses i n  d r i l l i n g  hardware, and f o r  developing 
improved dri 11 ing hardware and techniques . 

The Soviets a l s o  repor t :  

o Development of a high torque, low ro ta t iona l  speed turbodri l l  s u i t a b l e  

for crystal1 ine rock d r i l l i n g .  

o That the 21.4 cm (8-l/2-in0) r o l l e r  cone b i t  size is optimum f o r  b i t  

l i f e  and penetrat ion r a t e  i n  c r y s t a l l l n e  rock. 

o Difficulty i n  s t a b i l i z i n g  turbodril l  assemblies t o  maintain a s t r a i g h t  

hole  

These technological developnents and observat ions by the Soviets for deep 

The s ign i f i cance  of the d r i l l i n g  are i n  accord w i t h  Fenton Hill experience. 

p o s s i b i l i t y  of long, deep, open-hole sections has many p rac t i ca l  advantages 

for the planning and d r l l l i n g  aspec ts  of OSDP pro jec t s ,  and e spec ia l ly  f o r  the 

po ten t i a l  scientific y i e ld .  The use of a protective or sacrificial casing 

s t r i n g  (see section 3.5 below) is worth serious considerat ion.  This  approach 

could be very valuable  i f  long open-hole sections a r e  t o  be r o t a r y  drilled or 

cored because wear of permanent casing s t r i n g s  and d r i l l i n g  of the shallow 
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l a r g e r  diameter holes can be very costly and possibly present high risks. The 

Fenton Hill experience confirms the long-term s t a b i l i t y  of open hole  c r y s t a l -  

line rock sections. The EE-1 and GT-2 boreholes have remained s t a b l e  s ince  

1975 from about 800 m t o  about 3 km. Also the EE-2 and EE-3 wellbores a r e  

open hole below the production 23.5 cm (9-5/8-in.) casing poin t  w i t h  about 900 

m of open hole  below a s  shown i n  Fig. 3. 

3.2 Rock Bits 

T h i s  section summarizes from the HDR project deep c r y s t a l l i n e  rock d r i l l -  

i ng  experiences i n  b i t  performance and selection t h a t  should be consjdered i n  

any deep CSDP d r i l l i n g  plan and represent a reas  where se r ious  and c o s t l y  

d r i l l i n g  problems could arise. Technical r epor t s  by Helmick et  a l .  (19821, 

and Rowley and Carden (1982) give d e t a i l s .  

The d r i l l i n g  of the deeper borehole p a i r  EE-2/EE-3, summarized i n  Table 

1, s t a r t e d  w i t h  the spudding of the deeper borehole, EE-2, on April 3, 1979. 

T h i s  deeper well was drilled t o  a measured depth of 4.66 km (15,299 ft); a 

true v e r t i c a l  depth of  4,398 m (14,405 f t ) .  The bottam open hole sec t ion  was 

d r i l l e d  t o  22.2 cm (8-3/4-in.) diameter and inclined a t  35' from the v e r t i c a l  

by d i r ec t iona l  d r i l l i n g .  The d r i l l i n g  time was 409 days. The second, 

shallower borehole, EE-3, was d r i l l ed  t o  a measured depth of 4.25 km (13,933 

f t ) ;  o r  a true v e r t i c a l  depth of 3,977 m (13,049 f t ) .  EE-3 was d r i l l e d  

p a r a l l e l  t o  EE-2, a s  shown i n  Fig. 6, a t  a v e r t i c a l  depth of 370 m (1200 f t )  

above EE-2. EE-3 took 461 days to  drill and complete. The d r i l l i n g  h i s t o r y  

vs. depth p l o t s  f o r  the two boreholes are depicted i n  Fig. 7. T h i s  type o f  

presenta t ion  is used throughout the d r i l l i n g  industry, and i s  a valuable  way 

t o  summarize a d r i l l i n g  program or plan. As noted on the f igu re ,  both wells 

suffered major mechanical problems; EE-2 a col lapsed intermediate  (34.0-m, 
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13-3/8-in.) casing string and EE-3 a severe drill string twist o f f  and 

subsequent s ide t racking  operat ion.  

The proper choice of d r i l l  b i t s  is an important aspect of deep d r i l l i n g  

i n  hard and abras ive  c r y s t a l l i n e  rocks. Attention t o  e a r l y  downhole b i t  

eva lua t ion  and tests can optimize drill b i t  performance i n  a given l i t ho logy  

and avoid serious problems t h a t  otherwise could lead  t o  lengthy remedial 

( f i sh ing )  operat ions.  In this and the following sec t ions  i t  is assumed t h a t  

i n i t i a l  deep CSOP pro jec t s  w i l l  r e ly  mainly on ro ta ry  d r i l l i n g  w i t h  s p o t  

coring. The major considerat ion i n  b i t  selection i n  deep d r i l l i n g  i s  b i t  

l i f e ,  w i t h  r a t e  of penetrat ion a secondary concern. T h i s  is because of the 

l e n g t h  of time required f o r  round trips i n  deep holes  g rea t e r  than 3 km. 

Deep ro ta ry  d r i l l i n g  experience a t  Fenton Hill through over 7.6 km 

(24,000 ft) of hot c r y s t a l l i n e  Precambrian rock has led t o  the following 

concl usi ons about d r i  11 b i t s  : 

B i t  l i fe  is the major f a c t o r  i n  b i t  se lec t ion .  

Dr i l l i ng  rates i n  c r y s t a l l i n e  rock a r e  uniform w i t h  depth,  ranging 

roughly f r a n  3 t o  10 m/h (10 t o  30 f t / h ) .  

D r i l l i n g  r a t e  is pr imari ly  dependent upon b i t  c u t t i n g  s t r u c t u r e  

too th  configurat ion,  and the force on the b i t .  

Outer diameter gauge wear i s  the major b i t  problem. 

Sealed b i t  bear ings are temperature limited; open bearing bits a r e  

required above about 2OO0C (4OOOF) 

B i t  bearing l i f e  decreases w i t h  increas ing  temperature ( i  .e. depth) 

Only tungsten carbide insert (TCI)  c u t t i n g  structures were found 

e f f e c t i v e  f o r  g ran i t e  drill i ng . 
Severe d r i l l i n g  condi t ions i n  hard c r y s t a l l i n e  rock will rap id ly  destroy poor 

q u a l i t y  rock b i t s .  Even minor manufacturing defects l ead  t o  rap id  b i t  
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failures, which might  not have occurred i n  less severe d r i l l i n g  conditions. 

For example, each new b i t  run must ream the previous hole diameter s l igh t ly  

because of hole taper due to  gauge wear and hole diameter reduction from the 

previous b i t  run .  Also, b i t s  w i t h  weak leg structures readily "pinch," lose 

cutting structure teeth and cone t i p s ,  and torque-up quickly. B i t  configura- 

t ions based on b l a s t  hole type rock b i t s  proved superior for reaming and 

d r i l l i n g  granitic and gneissic rocks. 

Based upon these considerations, a special geothermal threeicone rock b i t  

was used t o  great advantage and almost exclusively t o  dri l l  the deep, 22.2 cm 

(8-3/4-in.) diameter sections of the EE-2 and EE-3 boreholes. T h i s  b i t  (see 

Fig. lo), is a nonsealed, air circuation, TCI b i t .  Several special design 

features t h a t  account for t h i s  superior performance are: 

o harder and more abrasive resistant carbide TCI buttons were placed on 

the gauge row o f  the cones, 

o hard facing for extra wear resistance was used on the leg skirt-tails, 

o wear pad bui ld-up and carbide inserts were included on the shanks of 

the legs, 

o use of nonsealed bearings, and 

o additional bearing clearances allowed for increased f l u i d  circulation. 

These features increased b i t  l i f e  end reduced the number of trips t o  an extent 

t h a t  more t h a n  offset  the modest (10%) additional cost of the b f t .  These b i t s  

routinely provided b i t  runs greater t h a n  60 m (200 f t ) ,  w i t h  average b i t  l i f e  

greater t h a n  90 m (300 f t ) .  These long runs were made i n  the 35" inclined 

sections of the holes where abrasive wear is especially severe. sections of the holes where abrasive wear is especially severe. 
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3.3 Bottom Hole Assembly (BHA) and Drill St r ing  

The selections of a proper bottom hole  assembly (BHA) and d r i l l  s t r i n g  

The following a r e  equal ly  important fo r  hard, abras ive  c r y s t a l l i n e  rocks. 

f a c t o r s  a r e  most important: 

o A near-bi t  roller reamer (Fig. 12) should be placed immediately above 

the b i t  t o  a id  w i t h  the undersize hole gauge problem caused by b i t  

gauge wear. Blade type s t a b i l i z e r s  (Fig.  11) wear f a r  t oo  rap id ly  t o  

be used effectively. 

o Drill s t r i n g  diameter and s t r eng th  should be chosen w i t h  stress 

f a t i g u e  condi t ions a s  a primary guide. Generally, heavy wall d r i l l  

s t r i n g s  w i t h  diameters equal t o  o r  g r e a t e r  t h a n  12.5 cm (5  in . )  will 

be necessary to accommodate the fa t igue  assoc ia ted  w i t h  extended hours 

of deep ro t a ry  d r i l l i n g  and coring. I t  should be noted t h a t  the 

l a r g e r  inside d i a m e t e r s  provided  by these l a r g e r  diameter d r i l l  

s t r i n g s  w i  11 accommodate w i  re1 i ne c o r e  b a r r e l  o p e r a t i o n s  o f f e r s  

po ten t i a l  for through-core-bit logging. 

o A very thorough and r igorous drill s t r i n g  inspec t ion  program is a l s o  

necessary 

o The bottcnn hole d r i l l i n g  configurat ion should be a well s t a b i l i z e d ,  

s t rong  pendul um-effect assembly used w i t h  modest b i t  forces  . This 

w i l l  p r o v i d e  for s t r a i g h t  hole d r i l l i n g ;  an  e x t r e m e l y  i m p o r t a n t  

ob jec t ive  i n  very hard formations. Crooked holes  con t r ibu te  t o  drill 

s t r i n g  wear and stress cyc le  f a t igue  t h a t  result i n  downhole f a i l u r e s .  

Further, it is extremely d f f f i cu l t  t o  s t r a igh ten ,  or ream-out, a 

crooked hole  i n  c r y s t a l l i n e  rocks; therefore it i s  far  more important 

t o  d r i l l  a s t r a i g h t  hole  than t o  drill a t  a h igh  pene t ra t ion  r a t e .  
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o For very deep holes, greater than 5 t o  7 km depths, a specially 

designed, tapered diameter d r i  11 string w i  11 be required. 

The importance of h igh  dynamic forces on BHA, fatigue l i fe ,  and the influence 

of BHA design has recently been stressed by an analytical and experimental 

study reported by Darring (1983). These results relate especially t o  d r i l l i n g  

or coring of harder rocks, and the problems avoiding resonance conditions i n  

the BHA collars that are driven by b i t  rotational impact forces. 

3.4 D r i l l i n g  Flu id  System 

Choice of suitable d r i l l i n g  f l u i d  systems for deep CSDP boreholes will be 

dictated by many canplex and possiby conflicting factors. The primary and 

essential function of the circulating f l u i d  is t o  clean the d r i l l  cuttings 

from the hole. I t  may also be necessary to  stabilize the upper formations, or  

those deeper zones, found t o  be water susceptible. T h i s  is accomplished by 

increases i n  f l u i d  density and viscosity and additions of chemicals. The 

density and viscosity enhancements are usual l y  accompl i shed by adding various 

clays (muds). .It is often necessary t o  add chemicals t o  neutralize reactions 

between the formations and the f l u i d ,  i n  order t o  prevent excessive wash out 

of or squeezing i n t o  the hole. In the deeper, hotter portion of the boreholes 

cooling of bottom-hole hardware is an important considerat 

additions for corrosion i n h i b i t i o n  are necessary, especially 

These circulating f l u i d  requirements may be i n  conflict w i t h  

requirements t o  minimize the contamination of borehole, cores 

on. Chemical 

i n  h o t  holes. 

the scientific 

cuttings, and 

formation f l u i d  samples. To partially counter the contamination problem i t  is 

possible t o  consider the use of appropriate tracers injected i n t o  the cir -  

culating f l u i d s  t o  monitor the extent and nature of the invasions and contam- 

ination. 



* 

Many crystalline rocks are water insensitive, and are mechanically stable 

and therefore a so-called "clear water" circulating f l u i d  system can be 

considered. Such a circulating f l u i d  system is  relatively clean, b u t  i t  has a 

relatively low viscosity and lacks efficient carrying capacity for the cut- 

tings. T h i s  leads t o  poor bottom hole cleaning of ch ips  so t h a t  the cuttings 

are reground t o  a fine powder and results i n  inefficient drilling. Surface 

inspection of fine cuttings i s  more difficult and can reduce the scientific 

qual i ty  of this evaluation. The fine cuttings increase abrasive wear of 

downhole hardware. Higher f l u i d  pumping rates, t h a t  is higher f l u i d  velo- 

cities, and periodic sweeps w i t h  dtscrete slugs ("pills") of h i g h  viscosity 

mud can be used t o  clean the hole. A second mdor disadvantage of the clear 

water f l u i d  system is t h a t  only s l i g h t  lubricity of the wellbore is provided. 

T h a t  is ,  h i g h  friction between drillstring, bottom-hole assembly and t h e  

borehole wall can develop. Formations of low pemeability cause l i t t l e  or no 

mud cake t o  form on the borehole walls and lubricity will be reduced further. 

Low lubrici ty  leads t o  both high drag forces w i t h  increased risks of d r i l l  

string failure (twistoffs), stuck drillstring, and increased abrasive wear of 

downhole hakdware. A complex mud system will not always be a drilling 

advantage, or a clear water system may be dictated by the scientific goals. 

In t h a t  circmstance, lubricity agents must also be added; a selection will be 

based on the chemical contamination restrictions of the project. Most mud 

systems have temperature limits, and tend t o  degrade a t  h igh  temperatures. In 

a d d i t i o n ,  if circulation is halted (for example to  change a dulled b i t )  muds 

w i l l  harden i n  the ho t  wellbore sufficiently so t h a t  they must be drilled out. 

If fracture permeability i s  encountered mud loss can be very severe and, w i t h  

temperature hardening the mud w i l l  plug deep into the fractures and possibly 

restrict desired f l u i d  sampling from fracture zones. Fluid sensitive or 
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highly permeable shallower zones, perhaps sedimentary or metamorphic rocks , 
n i g h t  best be sampled w i t h  a separa te  small diameter (slim), shallow core 

hole,  as outlined i n  Section 3.5. T h i s  approach has the advantages of 

p r o v i d i n g  good c o r e  q u a l i t y  f o r  these sha l low zones ,  and  the d e t a i l e d  

s t r a t ig raphy  needed t o  e f f e c t i v e l y  plan the subsequent, deeper, much l a r g e r  

diameter,  holes  t h a t  can then be drilled w i t h  no core requirements and 

therefore w i t h  an optimum c i r c u l a t i n g  f l u i d  program t h a t  is designed t o  

m i t i g a t e  hole s t a b i l i t y  and lost  c i r c u l a t i n g  f l u i d  problems. 

3.5 Casing Design 

A casing design for a deep CSOP borehole w i l l  usua l ly  be quite different 

than t h a t  f o r  a deep oi l  and gas well. (1) different 

rock types expected, (2) s t a b l e  formation can be an t i c ipa t ed ,  and (3) larger 

diameter b i t s  w i l l  be required to  yield long b i t  l i f e  i n  the deeper, hard rock 

This  is due mainly t o :  

sections of the holes. One design option might be t o  consider  an open hole 

method prac t iced  by the Soviets. T h i s  element of the Soviet "ultra deep" 

d r i l l i n g  technology t h a t  might p o t e n t i a l l y  be very important i n  future U.S. 

deeper boreholes i s  the procedure termed by the Soviet  drillers a s  the 

"advance open borehole d r i l l i n g  method.'' I t  is i l l u s t r a t e d  i n  Fig. 12. The 

more usual cas ing  design t h a t  involves cementing a sequence of progressively 

smal le r  cas ing  diameters and d r i l l i n g  below w i t h  successively smaller  b i t s ,  is 

replaced by a casing program t h a t  drills a t  an i n i t i a l  l a rge ld iameter  of  92.0 

cm (36-1/4-in.) w i t h  a cemented-in 72.0 cm (28-l/2-in0) casing,  Fig. 12(a) .  A 

24.5 an (9-5/8-in*.) diameter pro tec t ive ,  or s a c r i f i c i a l ,  casing string is  r u n  

i n  b u t  - not cemented. Dr i l l ing  w i t h  a turbodril l  below t h i s  p ro tec t ive  casing 

string proceeds w i t h  a 21.4 an (8-1/2-in.) diameter b i t  and the hole remains 

i n  an open condition t o  a depth and for as long a duration as the borehole 

wall remains reasonably s t ab le .  When hole caving o r  sloughing occurs the 
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d r i l l i n g  assembly is  pul led  from t h e  hole  and the p r o t e c t i n g  24.5 cm 

(9-5/8-in.) casing s t r ing  is retrieved. The hole is  reamed t o  a la rger  

diameter below the unstable zone, or t o  the bottan of the previous dr i l l ing .  

Typically a 39.4 cm (15-1/2-in.) diameter d r i l l  b i t  (or reamer) size is used 

t o  open the hole diameter and clean out the borehole. Then a deep cemented-in 

casing of 32.5 cm (12-3/4-in.) diameter is ins ta l led ,  Fig. 12(b). Dri l l ing 

operations continue, Fig. 12(c), following the in s t a l l a t ion  i n  the reamed and 

cased hole again of the protective or s ac r i f i c i a l  24.5 cm (9-5/8-in.) casing 

t h a t  i s  - not cemented i n  place. 

(8-1/2-in.) b i t .  

procedure of long open hole intervals for geophysical logging. 

reported heavy casing wear of the protective s t r ings  from just the tripping i n  ~ 

and out of the very deep holes. 

Dril l ing below proceeds w i t h  the 21.4 cm 

The Soviet reports stress the obvious advantages of such a 

Also they have 

T h i s  technique was f i r s t  used i n  the Kola 

peninsula borehole (abbreviated as UD-3; ultradeep No. 3) successfully t o  a 

10,780 m (35,367 f t )  depth i n  1981. 

A second scheme is i l l u s t r a t ed  i n  Fig. 13, a possible design for a 

A sequence o f  successively deeper holes provides thermal regime C!DP project. 

data for the casing design for the next deeper core hole, while l i ke ly  

assuring higher qual i ty  cores, logging, and sampling of the upper par t  of the 

section. This approach provides the opportunity t o  design a suf f ic ien t ly  

durable and s t ab le  f inal  casing program so t h a t  wear and collapse conditions 

can be projected and accounted for. The major wear w i l l  cane from the  many 

round t r i p s  into the deep holes and the long rotat ing hours caused by the Slow 

penetration rates experienced i n  hard rocks for both coring and dr i l l ing .  

Uphole casing collapse can result from wear, poor cementing due t o  lost  

circulation zones, and exposure t o  high temperature f lu ids  produced from deep 

formations. Geologic knowledge fran the earlier shallower core holes and 
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knowledgable d r i l l i n g  and casing designs can avoid or help mitigate these 

problems. A collapsed casing can require lengthy  remedial operations 

( f i s h i n g )  and repair, or i n  a worst case, the hole may be lost. This  second 

example is i n  reali ty a brief discussion o f  a general strategy for CSDP- 

thennal regimes deep d r i l l i n g .  First, it must be appreciated that there is a 

necessity t o  design the d r i l l i n g ,  coring, and sampling program i n  response to  

the scientific requiranents of a particular thermal regimes project. T h i s  i s  

i l lustrated here by an example project that  requires continuous coring through 

and below an active hydrothennal systan t o  a depth of about 8 km. T h i s  

example strategy is intended t o  maximize the recovery and quality of core, 

provide appropriate f l  u i d  samples, and preserve open-hole sections f o r  

geophysical measurements . CSDP-thermal regimes d r i l l  i n g  and coring planning 

m u s t  focus on the specific s i t e  scientific goals and objectives of the 

particular CSDP project. These are expected t o  concentrate on coring and 

sampling. Therefore the d r i l l i n g  strategy t o  optimize the scientific yield 

w i l l  also be very site specific. The strategy proposed to,achieve these goals  

suggests a sequence o f  progressively deeper and larger diameter core holes. 

The sketches i n  Fig. 13 i l lus t ra te  one possible approach intended to 

optimize the scientific yield. I t  is assumed that the scientific objectives 

require essentially continuous core, f l u i d  samples and open-hole logging. A 

three-stage, dri 1 l i ng and cori ng program is proposed : 

(1) S1im hole core t o  the t o p  of the hydrothermal system, Fig. 13(a), 

shown a t  about 1 km depth. 

(2 )  Use the lithology from this first stage t o  plan a second, larger 

diameter hole designed t o  core through the hydrothennal system, and 

below the depth reached by the first slim core hole. This  second 

section is expected t o  be primarily i n  permeable fractured rock 
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format ions; problems o f  l o s t  c i r c u l a t i o n  o f  d r i l l i n g  f l u i d s ,  

borehole i n s t a b i l i t y ,  and h i g h  temperatures w i l l  dominate t h i s  

stage. A dual str ing, gas l i f t  core d r i l l i n g  system (Darring and 

Kelsey, 1981) i s  suggested, Fig. 13(b) as one method o f  minimizing 

l o s t  c i r cu la t i on  problems. A depth o f  3 km i s  presumed t o  j u s t  

penetrate i n t o  t h e  un f rac tu red  c r y s t a l  1 i n e  format ion below t h e  

act ive hydrothermal convection system. 

(3) D r i l l  a th i rd ,  larger  diameter hole through the hydrothermal system. 

The knowledge from the f i r s t  and second holes i s  used t o  design the 

upper port ion o f  t h i s  t h i r d  hole. It i s  a s t ra igh t  d r i l l i n g  

section, wi th  no coring. An extra heavy casing i s  set and cemented 

a few hundred meters i n t o  t h e  c r y s t a l l i n e  rock. A second, I 

protective, o r  s a c r i f i c i a l  casing i s  set  inside t h i s  primary casing 

str ing, Fig. 13(c). Coring below i s  assumed t o  be i n t o  completely 

unknown formations. The heavy casing program i s  suggested because 

core d r i l l i n g  t o  a depth o f  8 km and perhaps temperature o f  &OO0C 

are anticipated. Very slow coring r a t e  (many r o t a t i n g  hours) and 

t h e  t ime  needed f o r  s o l u t i o n  of downhole problems must be 

ant ic ipated t o  ensure good recovery o f  high qua l i t y  core. A 21.6 cm 

(8-1/2-in.) diameter b i t  i s  suggested f o r  th is  deepest core hole t o  

assure long b i t  l i f e .  

A l l  three holes would be s i t ed  i n  close proximity a t  the surface so t h a t  

d r i l l  i ng surprises would be m i  nimi zed . 
T h i s  b r i e f  e x p o s i t i o n  ill 'ustrates t h e  types and range o f  d r i l l  i ng 

strategy, hole designs, and casing schemes that might be necessary t o  conduct 

a CSDP deep d r i l l i n g  project. Other CSDP projects w i l l  require d i f f e r e n t  

d r i l l i n g  and sampling strategies. However, i t  i s  probably always wise t o  
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consider an exploratory, s l im core hole t o  1.5 o r  2 km depths as an i n i t i a l  

step i n  any unknown or  wi ldcat area. 

3.6 Fishing 

As a f i n a l  top ic  from the experience gained from the Fenton H i l l  d r i l l -  

ing, i t  i s  necessary t o  discuss the subject o f  problem solving operations i n  

deep boreholes. These remedial operat ions a re  u s u a l l y  r e f e r r e d  t o  as 

" f ishing" i n  the d r i l l i n g  industry. The important consideration i s  that, next 

t o  avoiding problems, e f fec t i ve  and e f f i c i e n t  dounhole problem solving i s  

extremely important. Experienced personnel and the proper equipnent and tool  s 

are the essential ingredients t o  successful removal o f  broken hardware from 

the borehole. It should be recognized t h a t  f o r  the hot hole conditions t o  be 

encountered i n  thermal regimes CSDP projects, many f i sh ing  too ls  are tempera- 

ture l imi ted, or  have temperature degradable canponents. Examples are the 

o f t e n  needed wi re l ine conductor cables and high explos'ive charges used t o  

unscrew (backoff) downhole threaded connections. One s l i g h t  advantage can be 

c i t e d  f o r  the very hard deeper formations anticlpated i n  many CSDP projects, 

i t  f s  generally easier t o  f ish objects ( junk) frun holes i n  the harder forma- 

t i ons  because there i s  less l i ke l i hood  f o r  the junk t o  become jammed o r  pushed 

out  i n t o  the rocks, as i s  o f ten the case i n  sof ter  fonnatlons. Fai lure t o  

remove (f ish) junk from the hole can have s i g n i f i c a n t  impact on a d r i l l i n g  

pro ject  because then the decision must be made whether t o  abandon the hole o r  

t o  d r i l l  around the junk (sidetrack the hole) from above the unretrieved 

objects and thus bypass the junk i n  order t o  continue d r i l l i n g .  Sidetracking 

i n  c r y s t a l l i n e  rock has proven t o  be very d i f f i c u l t  ( P e t t i t t  and Carden, 1981) 

and when canpleted, the crooked hole section produced introduces addi t ional  

d r i l l s t r i n g  drag forces and increased stress levels. These hole conditions 

w i l l  add t o  the d r i l l i n g  r i s k s  i n  the deeper parts o f  the hole. Especially 
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important is  the addi t ional  fa t igue  induced during deep ro tary  d r i l l i n g  o r  

cor ing  . 
. Both EE-2 and EE-3 were problem wells, and plagued w i t h  lengthy f i sh ing  

opera t ions  a s  shown on Fig,  7. EE-2 suffered a col lapsed intermediate  cas ing  

string and 34.5% of the 409 d r i l l i n g  days were needed t o  c l e a r  the problem. 

The EE-3 borehole suffered fran a l a r g e  number (26) of d r i l l s t r i n g  failures 

(twistoffs). One espec ia l ly  bad tw i s to f f  required s ide t racking .  These 

assoc ia ted  f i s h i n g  and s ide t racking  problems occupied near ly  50% of the 461 

d r i l l i n g  days. 

3.7 D r i l l i n g  Costs 

The usual method of der iving de ta i l ed  d r i l l i n g  cost es t imates  is t o  sum 

up a l l  the individual  c o s t  element es t imates  o f  a specific d e t a i l e d  d r i l l i n g  

plan and borehole design. For a hole i n  the 7 t o  9 km depth range, this is a 

consfderahle  task.  Such a design, engineering opt imizat ion,  and c o s t  a n a l y s i s  

effort  might  require one t o  two yea r s  of time, and this e f f o r t  should be 

allowed f o r  i n  any CSDP planning and scheduling process. A quick order-of- 

magnitude c o s t  es t imate  can be gained from h i s t o r i c a l  data.  An example of 

this type of da ta  is shown i n  Fig. 14. D r i l l i n g  costs are p lo t t ed  on a log 

s c a l e  a g a i n s t  well depth f o r  intermediate  diameter holes between 15.0 cm 

(6-in,) and <30.5 an (12-in.). These a r e  cost da ta  for geothermal production 

and explora t ion  well d r i l l i n g  and a r e  refered t o  I979 dollars, w i t h  an 

e sca l a t ion  f a c t o r  of about 17% per y e a r  used through 1981. For reference and 

comparison the average c o s t  trends for U.S. oi l  and gas wells are a l s o  

p lo t t ed ,  as are the c o s t s  o f  d r i l l i n g  the five Fenton Hill boreholes, adjusted 

t o  the value of 1979 do l l a r s .  As an important observation, the increased cost 

effects of hard, f rac tured  rocks and higher temperatures experienced I n  

geothermal and HDR d r i l l i n g  are evident, when compared t o  the o i l  and gas 
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d r i l l i n g  experiences a t  the same depths. The cost depth trends are seen t o  be 

exponential with depth. Clearly s c i e n t i f i c  boreholes d r i l l e d  t o  9-10 km 

depths w i l l  be dear. 

4. Recommended D r i  11 i n g  Techno1 ogy Improvements 

This discussion i s  an out l ine of needed d r i l l i n g  technology improvements, 

w i t h  special emphasis on solut ions t o  problems associated wi th  deep, high 

temperature d r i l l i n g ,  coring and sampling i n  the continental crust. These 

needs are drawn from d i r e c t  r ig-f loor, f i e l d  experience attained during the 

t o s  Alamos HDR d r i l l i n g  operations and fran interact ions wi th  d r i l l e r s  from 

Italy, France, England, the Federal Republic o f  Gennany, Japan, and Canada, as 

well  as many U.S. geothermal d r i l l i n g  operators. Experience was also gained 

through col laborat ion wi th the pr ivate sector t o  develop high temperature 

downhole d r i l l i n g  too ls  such as hydraulic d r i l l i n g  jars,  core b i ts ,  shock 

absorbers, and tu rbodr i l l s .  I n  addition, involvement wi th  developnent f i e l d  

t r i a l s  and o f  advanced rock melt ing d r i l l i n g  systems (Fbwley, 1974) provided a 

unique perspective on problems of high temperature d r i l l i n g .  Generally, these 

b r i e f  technology descriptions proceed f ran the simpler canponents needing 

improvements t o  longer term, more complex hardware items. Discussions o f  

advanced d r i l l i n g  methods or techniques t h a t  might be required f o r  coring and 

sampling i n  deep formations a t  temperatures i n  excess o f  6 O O O C  are not 

f ncl uded . 
Th is  o u t l i n e  o f  needed improvements i s  organized i n t o  f i v e  major 

categories f o r  the purpose of focusing the presentation. The topics selected 

are d r i l l  pipe and bottom-hole assemblies, coring systems, c i r c u l a t i n g  f lu ids,  

fishing, and special too ls  and instruments. 
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4.1 Drill Pipe and Bottom-Hole Assemblies (BHA) 

P n  - A special high-temperature thread lubricant (pipe dope) is  

needed when temperatures exceed 3 0 0 O C .  Adequate 1 ubrication must be provided 

t o  prevent ga l l i ng ,  seisure, and tool j o i n t  (thread) make-up downhole. A 

positive seal must be maintained t o  prevent drilling f l u i d  leaks and washouts. 

Sulfur must be excluded from the lubricant because of associated corrosion 

problems. (a )  an a n t i - g a l l i n g  

metallurgical treatment or coating on the threads, and (b)  a high-temperature 

"grease" t h a t  is i n  t u rn ,  canposed o f  two components; one t h a t  w i l l  assure 

proper flow characteristics a t  ambient temperatures and a high-temperature 

portion t h a t  will remain i n  place as a seal and lubricating film. An 

A two-component system appears t o  be required: 

essential property of the thread dope or compound is t h a t  i t  must be capable 

of breakout (being unscrewed) a f t e r  extended stress cycles  a t  h i g h  

temperatures . 
Drill Collars and Drill Pipe Design - Special alloy collars w i t h  tailored 

dimensions, and connection designs w i l l  be needed. The inside diameter o f  the 

BHA and d r i l l p i p e  should be selected t o  be a t  least 10 an (4  i n . )  so t h a t  wire- 

line core barrels can be r u n  and logging can be performed w i t h i n  the d r i l l  

string. This will require special connection design t o  increase h i g h  tempera- 

ture strength and fatigue life. The alloy should be selected to provide 

enhanced high-temperature \hardness (abras ion  resistance), corrosion 

resistance, and extended fatigue life. Developnent of a special d r i l l  pipe is  

recommended w i t h  a minimum 10 m (4-in.) inside diameter for the casing given 

above. I t  w i l l  be necessary t o  design a special d r i l l  string for the extreme 

depths (>5 t o  7 km), w i t h  larger diameter and thicker walled sections located 

a t  the top  o f  the hole. 
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Drill Pipe  and BHA Inspect ion Strategy L Equipment - I t  is suggested t h a t  

two drill pipe s t r i n g s  be used i n  the coring of very deep formations, i.e., 

g r e a t e r  than 5 km. Avoidance of d r i l l  pipe f a i l u r e s  i n  CSDP d r i l l i n g  p ro jec t s  

is very important, and therefore  frequent and de ta i l ed  inspect ion will be 

necessary. One e f f e c t i v e  s t r a t e g y  is t o  inspect one s t r i n g  while the second 

i s  i n  use. A second element of an effective s t r a t egy  should be t o  develop a 

special dedicated set of inspection equipment t h a t  will provide s e n s i t i v e  and 

h igh  r e l i a b i l i t y  de tec t ion  of flaws and allow re j ec t ion  of flawed sec t ions  

( j o i n t s )  of  the drill s t r i n g .  

Drill Pipe Inden t i f i ca t ion  System - A technique t o  uniquely and reliably 

identify each length  ( jo in t )  of d r i l l  pipe is needed. The system should 

include r i g  f loor i d e n t i f i c a t i o n  reading scanners w i t h  on-line t a l l e y ,  d r i l l  

string stress canputat ions,  and accumulated stress f a t i g u e  cyc le  evaluat ions . 
A schematic sketch of  such a system is presented i n  Fig. 15. 

Heavy Weight Drill P i p e  Jo in t s  - To improve BHA d e s i g n  and downhole 

d r i l l i n g  dynamics, and t o  reduce drag fo rces  during ro t a ry  d r i l l i n g  and 

coring, a spec ia l  set of heavy wall drill pipe joints should be provided t o  

replace upper s ec t ion  of the drill collars f n  the BHA. Special a l l o y  

s e l e c t i o n  cons idera t ions  should be s i m i l a r  t o  those  suggested above f o r  d r i l l  

s t r i n g s  and c o l l a r s .  

Hardbandi ng - Adequate h i  gh-temperature hardbanding methods shoul d be 

developed to  p ro tec t  the d r i l l  pipe connections and c o l l a r s  from excessively 

high abras ive  wear r a t e s .  T h i s  is  e spec ia l ly  important i n  c r y s t a l l i n e  rock.- 

F l o a t  Values - Both rock b i t  d r i l l i n g  and cor ing  opera t ions  i n  high-  

temperature boreholes require the use o f  r e l i a b l e  check valves  i n  the BHA 

above the b i t .  Otherwise c u t t i n g s  and well f l u i d s  a r e  prone t o  backflow U P  

inside the d r i l l  string and tend t o  plug the components of the bottom-hole 
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assembly. The problem is espec ia l ly  severe f o r  wireline coring opera t ions  

:- 

e 

t h a t  tend t o  swab the d r i l l  pipe when the bar re l  is retrieved, and for use 

w i t h  downhole motors or  other components t h a t  have t i g h t  c l e a r a n c e s .  

Temperature upgrading of fl o a t  Val ves is recanmended. 

Dual Str ing Drill Pipe System - Dri l l i ng  and coring of a c t i v e  hydro- 

thermal systems, w i t h  h i g h  penneabil i ty  formations , usually involve severe 

lost d r i l l i n g  f l u i d  c i r cu la t ion .  Fractured rock units w i t h  extremely high 

permeabi l  i t i e s  a r e  commonplace and s u b h y d r o s t a t i c  condi t ions a r e  o f t e n  

encountered. Solutions for these d i f f i cu l t  condi t ions can sanetimes be 

achieved by use of concentric, duel drill s t r i n g s  as ind ica ted  by Darring and 

Kelsey (1980). Design and a v a i l a b i l i t y  of such a dual string system t h a t  can 

be used t o  a t  l e a s t  3 km depths,  w i t h  wireline core  r e t r i e v a l  [lo-cm (4-in.) 

1.0.1 c a p a b i l i t y  for the inner s t r i n g ,  is recmended. 

Reamers and S t a b i l i z e r s  - In hard, abras ive  rock, d r i l l i n g  o r  cor ing 

bottom-hole assemblies ( B H A )  will require use of r o l l e r  s t a b i l i z e r s  i n  place 

of blade s t a b i l i z e r s  t h a t  wear too rapidly. A near-bi t ,  roller reamer should 

be r u n  w i t h  a l l  d r i l l i n g  and cor ing  assemblies. Excessively rapid b i t  guage 

wear results i n  d r i l l i n g  of a tapered hole diameter. A tapered hole i n  hard 

rock can cause the BHA t o  becane f r i c t i o n  jammed i n  the hole. Extended 

reaming of the borehole w i t h  each new b i t  will be minimized by use of the 

n e a r - b i t  reamer.  Use o f  rol ler  reamers is  a l s o  recommended, because  

blade-type t o o l s  wear too  rap id ly  and this l o s s  of  diameter can cause the BHA 

t o  lose d i r ec t iona l  control  e f fec t iveness .  D r i l l i n g  of a crooked hole can 

result, and this is an espec ia l ly  severe problem i n  hard rock. 

Drill B i t  Selection - In the d r i l l i n g  o f  hard, crystallfne rock, b i t  

Development of  sea led  bearing, 

Blas t  
s e l e c t i o n  should pr imari ly  emphasize b i t  l i fe .  

high-temperature b i t s  would be an important and d i s t i n c t  improvement. 
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hole type b i t s ,  w i t h  heavy-section l e g  structures a r e  suggested, t o  avoid l e g  

bending and cone pinching. Heavy guage wear pro tec t ion  is essential t o  r e t a r d  

b i t  guage wear r a t e s .  B i t  c u t t i n g  structures must emphasize tungsten carb ide  

insert (IC11 button selection t h a t  provides wear r e s i s t a n c e  on guage rows and 

high impact r e s i s t ance  f o r  the insert cutters on the cones. Air cooled type 

b i t s ,  designed for high-temperature geothermal d r i l l i n g ,  can be used t o  

advantage w i t h  c l e a r  water o r  high-temperature mud f l u i d  c i r c u l a t i o n  systems . 
B i t  selection should emphasize b i t  l i fe  f o r  deep d r i l l i n g  i n  c r y s t a l l i n e  rock. 

Penetrat ion r a t e  is a secondary f a c t o r  i n  b i t  s e l ec t ion  f o r  hard, c r y s t a l l i n e  

rock. 

4.2 Coring Systems 

Rate d e t a i l s  o f  the c u t t i n g  structure design, f o r  these rock types. 

Rotary Diamond Coring - Technology and equipment e x i s t s  f o r  slim hole 

Effor t s  t o  develop and extend these coring t o  depths of 1.5 t o  2.0 km depths. 

techniques and equipment t o  beyond 3 km depths  a r e  recommended w i t h  emphasis 

on development of higher -temperature diamond b i t  capabi 15 t ies . 
Downhol e Motor Dr iven  Systems One dri l l  i n g  method f o r  p o t e n t i a l  

improvement o f  deep core qua l i ty  and recovery is the use of a downhole motor 

t o  d r i v e  the core b i t .  For high temperature use this requires a t u rbodr i l l  , a 

40-m (120-ft)-long core  bar re l  i n  f r o n t  of the downhole motor, and spec ia l  

co re  b i t s .  Downhole motor drives will improve bottom-hole b i t  dynamics 

compared t o  ro t a ry  drive coring systems. In addi t ion ,  d r i l l  pipe,  stresses, 

f a t i g u e ,  and wear will be s i g n i f i c a n t l y  reduced, and up-hole cas ing  wear 

m i  nimi zed. 

Wireline Barrel ,  Downhole Motor Driven System - A recommended system 

conceptual design is sketched i n  Fig. 16. The system includes a 10-cm 

(4-in.) O.D. wire l ine  b a r r e l ,  a hollow s h a f t  (high-temperature) t u r b o d r i l l  , a 

cmbfned multi-cone and po lyc rys t a l l i ne  diamond canpact (PDC) b i t ,  and a PDC 
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core t r i m e r  included on the retrievable barrel. Significantly extended b i t  

runs can possibly be achieved w i t h  such a system. T h i s  concept is based 

directly on the original Mohole and the DSDP coring system ideas, designs, and 

experience. 

Rotary B i t  Improvements - Improvement of hybrid mu1 ti-cone plus PDC core 

b i t s  will improve rotary core recovery and extend b i t  l i fe .  Efforts to  improve 

this existing type of b i t  for specific rock types should accelerate the 

developnent of improved core bits for hard rocks. Coring effectiveness 

depends on long b i t  l i f e ,  stable downhole b i t  dynamics, and effective core 

cutting and trimning; features t h a t  are possible w i t h  hybrid core bits. 

4.3 Circulating Flu ids  

Clear Water Systems - Scientific coring and d r i l l i n g  usually requires 

that wellbore f l u i d s  and formation contamination be minimized. T h i s  often 

requires use of a clear water circulating f l u i d .  D r i l l i n g  problems associated 

w i t h  this approach are poor cuttings removal and ineffective bottom-hole 

cleaning. Solutions t o  these problems w i t h  clear water circulation include 

use of circulation of discrete h igh  viscosity mud pills, and use of high f l u i d  

flow velocities. An additional problem w i t h  a clear water system, i s  the 

absence of f i l ter  cake (solids fran the mud) deposited on the borehole wall. 

Th i s  condition leads to h igh  rates of abrasive wear o f  downhole hardware and 

extremely high torque and p u l l  friction drag forces on the d r i l l  string. A 

lubr ic i ty  agent can be used t o  offset these l a t t e r  conditions; however, an 

suitably inert and stable high-temperature additive does not yet  exist. 

Cuttings Removal - Removal o f  very fine cuttings from the d r i l l i n g  f l u i d  

The 

Use of 

i s  difficult ,  b u t  important i n  scientific d r i l l i n g  or coring situations. 

clear water systems are diff icul t  to  remove cuttings a t  the surface. 

h i g h  viscosity pills as mentioned above are an aid t o  solving this problem, 
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b u t  more e f f e c t i v e  f i l ter  and cent r i fuga l  mud solids removal systems a r e  

needed. 

F lu id  Cooling - High temperature downhole condi t ions  w i l l  usual ly  require 

use of a su r face  f l u i d  cooling system. A heat  exchanger system w i t h  low 

c i r c u l a t i n g  f l u i d  ae ra t ion  o r  oxygen entrainment is most des i r ab le  i n  order t o  

reduce corrosion control  problems . 
Corrosion Control - A c a r e f u l l y  designed corrosion control  system i s  

Minimization of exposure t o  a i r  and suppression o f  oxygen en t r a in -  important. 

ment a r e  necessary. Consideration o f  use of a n i t r i t e  a d d i t i v e  a s  an oxygen 

scavanger is r e c m e n d e d .  A complete and effective f l u i d  chemistry and 

cor ros ion  monitoring system is es sen t i a l  . 
Rig Pumps - I t  is necessary t o  provide fo r  sufficient excess r i g  pump 

flow and pressure capaci ty  t o  handle high flow and pressure requirements 

needed for extended cooling and problem solving demands t h a t  will a r i s e  i n  

deep, ho t  thermal regimes boreholes . 
Lightened Flu ids  - Use of ni t rogen gas, water mixture and use o f  nit rogen 

foams can be e f f e c t i v e  i n  f l u i d  l o s s ,  corrosion and formation contamination 

problem s i t u a t i o n s .  Lightened f l u i d  columns w i t h  good c u t t i n g s  removal can be 

achieved w i t h  foams. Developnent and f ab r i ca t ion  of diesel exhaust n i t rogen  

gas production systems (Osgerby e t  al., 1981) is  s t rongly  recmended. Coring 

opera t ions  w i t h  such l igh tened  f l u i d s  and ni t rogen gas must be developed. 

Higher Temperature Rated Muds - I t  can be expected t h a t  deep formations 

t h a t  are  unstable  due t o  in t e rac t ions  w i t h  water o r  high pressure condi t ions  

w i l l  be encountered i n  some CSDP thermal regime t a rge t s .  An improved high 

temperature mud system w i l l  be needed t o  cope w i t h  these problems. Capabi l i ty  

beyond the present  sepiol  i t e  cl ay-based systems ( 300' C) is requi red. 
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Lost Ci rcu lat ion Control - Improved high temperature "additives" and 

placement too ls  f o r  l o s t  c i r cu la t i on  mater ia ls (LCM) should be developed. 

Lost c i r cu la t i on  zones can jeopordize coring. Systems designed special ly t o  

control c i r cu la t i on  l o s t  t o  fractures need t o  be developed. 

4.4 Fishing 

Fishing Tool Upgrade - Downhole problems can be expected i n  any deep, hot 

hole, and therefore an essential task o f  d r i l l i n g  and cor ing procedures i s  t o  

solve these problems e f fec t i ve l y  and rapidly. This requires a review, and 

then developnent e f fo r t ,  t o  upgrade the temperature r a t i n g  o f  the usual 

downhole t o o l s  r e q u i r e d  t o  conduct such ' f i s h i n g "  operat ions.  Typ ica l  

equipnent upgrading needs are 

0 

0 

D r i l l  i ng  and f ish ing jars,  hydraul i c a l  l y  operated un i t s  are most 

desirable 

M i l  1 s, especi a1 l y  the cu t t i ng  structure 

Back-off h igh  exp los i ve  shots, e s p e c i a l l y  h l g h  temperatures, 

detonators and wi re1 i nes 

Seals f o r  grapples and overshots. 

Impression blocks . 
cut-of f  too ls  

Free-poi n t  detection too l  s. 

These improvements are important because the downhole problems of ten 

preclude the use of fluid c i r cu la t i on  f o r  cool ing t h a t  can help marginal o r  

underrated too l  s function. 

Experience - An essential element i n  any successful 

the select ion and a v a i l a b i l i t y  o f  experienced personnel 

f ishing operation i s  
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4.5 Special Tools and Ins t runents  

Sand Line - The cables  used t o  run various downhole t o o l s  i n  ho t  bore- 

holes must have steel wire cores  and be high temperature rated.  Socket 

connections must be mechanical i n  design, because commonly used b a b b i t t  meta ls  

melt well below 300'C. 

Boreho le  Survey I n s t r u m e n t s  - D r i l l i n g  o f  s t r a i g h t  or d e l i b e r a t e l y  

deviated holes demands good s ingle-  and mu1 t i - s h o t  survey ins t runents .  Both 

magnetic (compass) and gyro instruments for higher  temperature service a r e  

needed. Steer ing t o o l s  f o r  d i r ec t iona l  d r i l l i n g  monitoring and control  of 

d i rec t iona l  co r rec t ions  must be ava i l ab le  ' for the more extreme temperatures 

an t i c ipa t ed  i n  CSDP thermal regimes pro jec ts .  Crooked hole condi t ions  a r e  

spec ia l  hazards i n  the high-drag condi t ions  encountered i n  boreholes i n  hard 

c r y s t a l l i n e  rock. Excessive crooked hole condions ("doglegs") can seldan be 

el iminated or cured by even extended reaming w i t h  stiff reaming assemblies. 

Hole Cal iper  - Knowledge of borehole wall rug ic i ty ,  is e s s e n t i a l  t o  many 

d r i l l i n g ,  c o r i n g ,  c a s i n g ,  and downhole t o o l - r u n n i n g  o p e r a t i o n s .  As an 

example, a top p r i o r i t y  need exists f o r  a c a l i p e r  run  before any drill stem 

test  or packer s e t t i n g  operat ions are attempted. 

Drill Stem T e s t e r  - I t  i s  often very desirable t o  obta in  a f l u i d  sample 

during d r i l l i n g  or coring operat ions.  I f  a wire l lne  core system is employed, 

then B sampler can be r u n  w i t h i n  the drill pipe and, i f  contamination by 

d r i l l i n g  f l u i d  is not  considered t o  be a problem, a sample can be obtained by 

reversing flow i n t o  t h e  sampler. However, if d r i l l i n g  f l u i d  contamination is 

t o  be avoided, a d r i l l  stem tester ( D S T )  as shown i n  Fig. 17 can be used. The 

packer sea l  t o  the wellbore wall need not  resist l a r g e  pressure d i f f e rences ,  

because i t  functions mainly as an i s o l a t i o n  sea l  from the d r i l l i n g  f l u i d s  i n  

the annulus. The packer is only t o  be used once so high temperature 
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non-elastomeric materials and compression-type packer, activated upon 

set-down, can be considered. The d r i l l  stem tester i s  run only pa r t i a l ly  

filled w i t h  (clean) water so suction draws the sample from the zone being 

tested. A reliable high-temperature mechanically opened valve and a flow 

check valve are required. The scheme shown i n  Fig. 17 includes a smaller 

diameter bottomhole drilled section, or rathole. D r i l l i n g  this reduced 

section can enhance the wellbore surface finish for improved packer setting 

and sealing. Subsequent ream-out of the r a t  hole is possible, and s p a l l ,  or 

hole sloughing, caused by the f l u i d  sample withdrawal can be removed. Such a 

scheme also minimizes hole swabbing a t  retrieval of the DST system, and can 

al leviate  packer washout during runn ing  i n t o  the borehole. 

Packer Systems - Developnent o f  h i g h  temperature packer systems should be 

given a h i g h  priority. A variety of configurations, i.e., single set and 

straddle; both hydraulic and mechanical setting mechanisms; and inf la table  and 

canpression systems should be persued. 

Cementing - Improved high  temperature cements, cementing hardward and 

placement techniques are needed t o  assure adequate hole casing programs and t o  

support many remedial operations; e.g., bore'hole sidetracking and hole 

s tab i l iza t ion .  Re1 iable cement slurry fonnulations t h a t  are stable against 

adverse downhole chemistry, gases, and h igh  temperatures are needed. The 

set-up and cured cement should be durable, o f  low permeability and retain 

strength. Improvements i n  placement hardware and procedures are  a1 so 

necessary. 

Downhole Coring Monitoring - The requirements for h i g h  quali ty core and 

good recovery o f  scientific drilling projects dictate t h a t  the development of 

a downhole data-while-coring (DWC) system is warranted. Core quality and 

recovery are directly related t o  the control of the drilling parameters, and 
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BHA and core b i t  dynamics. Therefore developnent o f  an instrumented, high 

temperature rated subassembly ( c o l l  ar )  wi th  appropriate d r i l l  ing parameter and 

dynamic force and motion sensors i s  recomnended. I n  addition, i f  a hollow 

shaft turbodr i  11 , with w i  re1 i ne core barrel  r e t r i e v a l  i s  devel oped, a sensor 

package can be included i n  the barrel, and the data telemetered on the cable. 

Because the d r i l l  s t r i n g  i s  not ro ta t i ng  i n  such a system the cable can be 

l e f t  latched onto the barrel and connected i n t o  the instrunentation during 

coring operations. 

Logging While D r i l l i n g  o r  Coring - A number o f  advantages would r e s u l t  

from the developnent o f  a special d r i l l i n g  subassembly tha t  contained an 

appropriate su i te  o f  geophysical measurements (logs) t h a t  could be monitored 

a t  the surface. I d e n t i f i c a t i o n  o f  l i t h o l o g i c  changes could provide input  for 

decisions on coring runs o f  s c i e n t i f i c a l l y  s ign i f i can t  intervals.  The a b i l i t y  

t o  review real  time geophysical data and make spot cor ing decisions could 

u l t ima te l y  r e s u l t  i n  more e f f i c i e n t  coring procedures and operations than 

continuous coring or  cut t ings observations 

5. Discussion and Conclusions 

The Los Alamos Fenton H i l l  HDR d r i l l i n g  experience and several other 

deep, hot  hole d r i l l i n g  projects have been used t o  provide th is  perspective on 

s c i e n t i f i c  d r i l l i n g  i n  the continental crust. The resul ts  from the two 2 km 

deep HDR wells i n  Cornwall, England; the three 3 km deep wel ls i n  B r i t i s h  

Columbia, Canada; the  geothermal w e l l  a t  Puna i n  Hawaii; t h e  I t a l i a n  

geothermal d r i l l i n g  experience, and the deep d r i l l i n g  i n  the Soviet Union have 

provided addit ional background information on d r i l l i n g  and coring i n  c rys ta l -  

l i n e  rock. Future CSDP thermal regimes projects can bene f i t  frum the d r i l l i n g  
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experience from geothermal production wells w i t h  bottom-hole s t a t i c  tempera- 

tures i n  the range of 300 t o  4OOOC. These wells a r e  now drilled r a t h e r  

rout ine ly .  However, cor ing and geophysical logging i n  t h a t  environment a r e  

n o t  we1 1 devel oped techno1 ogies  . 
The S o v i e t  deep c r y s t a l l i n e  rock  d r i l l i n g  e x p e r i e n c e ,  e s p e c i a l l y  

represented by the Kola peninsula borehole ( abbrevi a ted as UD-3) d r i  11 ed 

successfully t o  a 10,780 m (35,367 f t )  depth,  supports  several  of the results 

and technology needs out1 i ned above . 
The Soviets r epor t :  

o Developnent of a high torque, low ro ta t iona l  speed tu rbodr i l l  s u i t a b l e  

f o r  c r y s t a l l i n e  rock d r i l l i n g .  

o Tha t  the 21.4 cm (8-1/2-in.) d i a m e t e r  r o l l e r  cone, TCI c u t t i n g  

structure b i t  is optimun r e l a t i v e  t o  b i t  l i f e  and penet ra t ion  r a t e  i n  

c r y s t a l l i n e  rock. 

o Developnent of hollow s h a f t  turbodrills. 

o The d e s i r a b i l i t y  of continuous coring i n  scientific d r i l l i n g  pro jec ts .  

o The general s t a b i l i t y  of  long open hole sections i n  c r y s t a l l i n e  rock; 

and the advantages o f  open hole f o r  both d r i l l i n g  and geophysical 

1 oggi ng 

Experience bas accumulated i n  d r i l l i n g  technology, i nd ica t ing  t h a t  f o r  

downhol e tool  and spec ia l  su r f ace  equi v e n t  development , several general  

principles should be observed: 

(1) Always develop a t  l e a s t  

(2 )  Labora to ry  and f ie ld  

deployment o f  equipment 

- two prototypes of hardware. 

tes ts  and t r ia ls  a r e  necessary p r i o r  t o  

t o  a CSDP drill s i te .  

( 3 )  Avoid hardware and technology developnent e f f o r t s  i n  scientific 

bore hol es . 
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(4 )  Develop and p rov ide  a t  l e a s t  one (or more) backup p rocedure ,  

approach or hardware so lu t ion  to  a d r i l l i n g  problem. Experience 

i n d i c a t e s  t h a t  the best ideas  and concepts may not  apply downhole 

due t o  unant ic ipated borehole condi t ions.  I t  is essential t h a t  more 

than one new hardware approach, source of a service, and method of 

so lu t ion  be ava i lab le .  Canpetitive so lu t ions  a r e  very important 

elements i n  obtaining s a t i s f a c t o r y  results downhole, and t o  devise 

e f f e c t i v e  so lu t ions  t o  d r i l l i n g  problems. 

( 5 )  T h e  CSDP the rma l  reg imes  envi ronment  i s  e x p e c t e d  t o  be very 

chal lenging,  and will require - a l l  the best d r i l l i n g  and cor ing  

developnent efforts t h a t  can be marshalled i n  order  t o  achieve 

successful projects . 
The worldwide experience of both d r i l l i n g  and cor ing  of boreholes i n t o  

hot c r y s t a l l i n e  rocks has demonstrated both the p o s s i b i l i t i e s  and problans of 

deep c r u s t a l  d r i l l i n g  f o r  scientific purposes. The d r i l l i n g  of 7 km of 

borehole i n  hot  crystalline rock a t  Fenton Hill should serve as a guide for 

both conceptual and de ta i l ed  planning of future CSDP pro jec t s .  The major 

issues t o  be considered i n  such d r i l l i n g  p ro jec t  planning i n  the a reas  of 

cas ing  design, b i t  selection, coring systems, downhole d r i l l i n g  assemblies, 

d r i l l i n g  procedures, d r i l l i n g  f l u i d  systems, and on-line problem solving have 

been received and recorded. 

A l i s t  has been developed of the most s i g n i f i c a n t  problem a reas  and 

needed improvements t o  successfully approach deep d r i l l i n g  i n  c r y s t a l l i n e  rock 

and extreme temperature envirornnents expected t o  be encountered i n  the deep 

CSDP thermal regimes inves t iga t ions  . These r e c m e n d a t i o n s  and judgements 

were derived from the experience gained a t  Fenton Hill and elsewhere, and 

include suggested approaches toward so lu t ions  
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Table I. Sumnary Descriptions of the Fenton Hill Deep Boreholes 

Date Dri 11 ed Bottomhol e 
Drill i ng Depth Temperature Designation Completed ( m )  ("C) Purpose/Resul ts 

GT- 1* 6/1972 785 

GT-2 10/1974 2928 

EE-1** 10/1975 3065 

EE-2 5/1980 4660 

EE-3 8/1981 4400 

* Granite Test Hole 
* Energy Extraction 

No. 1. 
Hole No. 1. 

100.4 

197 

200 

320 

280 

- Small diameter 
exploration, 143 m 
Precambrian core, d r i  11 i ng 
da ta ,  volcanic and 
sedimentary section. 

- Test conductive 

and test equip- Developed 
f i r s t  HDR 
reservoir - Energy produc- system 

gradient , core, 

ment. 

i n g ,  directional 
dr i  11 i ng. 

- Injection, 
core below 
3 km. 

Drilled as  
prototype 
HDR we1 1 
pai r,  

I 
1 - Production } $l;qd 

ver t ical ,  
current 
fractional J operations 



Table XI. Comparison o f  diamond core recover and i n i t i a l  t es t  of  hybrid COW b i t .  
(During 24.5 cm (9-5/8 in.) r e d r i l f  o f  61-2 borehole.) 

May 9 2799.3 0 D 24.5-cm 0.d.  by Junk basket run f i r s t ,  but  no reaming b i t  run. Experience0 
11.4-cm i.d. 
(9-5/8 by 
4-1/2 in.) (outside) surfaces. Probably no core cut. 

11.4-cm i.d. 
(8-1/2 by 
4-1/2 in.) 

11.4-~n i.d. 
(8-1/2 by 
4-1/2 in.) 

d i f f i c u l t y  gett ing past k ick-of f  po int  a t  24b2.3 m (8144 tt). 
Reamed to bottom w i th  coring b i t ;  b i t  badly worn on gauge 

r - May 29 267278-2674.0 52 D 21.6-cm 0.d. by B i o t i t e  Granodiorite. Previous d r i l l i n g  was 9 m (30 f t)  o f  
- /  

Ti ~ 1 2 ~  8 
st ra ight  hole c u t  wi th  24.5-cm (9-5/8-in. b i t ;  h i t  t racture zone 
a t  2672.M m (8769 ft). Core showed three fracture planes, two 
s t i l l  sealed wi th  ca l c i t e  and one reopened. 

June 9 2710.9-2712.1 0 0 21.6-cm 0.d. by Previous 18.3 m (60 ftl reamed wi th  rerun 24.5-cm (9-5/8-ln.) 
b i t ,  plus 4.6 m (15 ft) new hole. Supposedly cored 1.2 m (4 ft) 
i n  4 h. Core b i t  showed extreme wear on cut t ing surface, deep 
i n t o  matrix metal. Diagnosis: loose pieces o f  rock r o l l i n g  
around udder b i t ,  no core cut. 

/- 

June 15 2712.7 (8900) 0 D 24.5-cm 0.d. by Reamed hole to bottom wi th  new 24.5-cm (9-5/8-in. b i t  and junk 
14.0-cm i .d. 
( 9-5/8 by 

basket. Could only get core b i t  down to wi th in  12.8 m (42  f t )  O f  
bottom. Gauge diamonds o f  core b i t  completely worn of f .  

0 D 21.6-cm 0.d.  by Core b i t  was worn i n  same pattern as June 9; same diagnosis. 
14.0-~m i.d. 
(8-1/2 by 
5-1/2 in.) 

June 19 2713.3-2714.9 89 H 20.0-an 0.d. by B i o t i t e  Granodiorite, Penetration rate 0.6 m/h (2  f t /h) .  B i t  
( 8902-8907 ) 7.5-cm f.d. 

(7-7/8 by 3 in.) 
was retrieved wi th  three studs broken o f f  and chisel teeth worn 
smooth. 
possible evidence o f  pumping f low. 

Core contained several d i s t i n c t  f racture surtaces, wl th  

D - Conventional diamond. 
H - Hybrid, combined polycrystal l ine diamond compact (PDC) and chisel-tooth, tungsten carbide insert, r o l l e r  cone. 



Figore/Ta b le  Captions 

Fig.  1 

Fig. 2 

Fig. 3 

Fig,  4 

Fig. 5 

Fig. 6 

Location map of the Fenton Hill, New Mexico, Hot Dry Rock Geothermal 

S i t e ,  32 km west of the Los Alamos National Laboratory on the 

western flank of the Valles Caldera. Two deep borehole pairs 

(GT-2 and EE-1; EE-2 and EE-3) penetrate t o  3 km and  4.4 km depth i n  

the hot, crys ta l l ine  crust. 

Geologic map of Jemez Mountains (from Bailey and Smith, 1978 and M. 

C. S m i t h ,  1983) ind ica t ing  exploration d r i l l i n g ,  Small and large 

circles locate shallow and deeper heat flow holes. Squares are 

crystalline basement rock test holes GT-1 and GT-2. 

( a )  Temperature profile and ( b )  generalized geologic section a t  

Fenton Hill, w i t h  well configurations indicated.  Triangular f lags  

indicate cas ing  depths (set  points) and diameters as shown. 

Photograph of Fenton Hill site (1982) showing work towers over GT-2, 

EE-1, and EE-2 boreholes. Such towers can provide for pos t -d r i l l i ng  

logging ,  and sampling operations. A workover r i g  is set up over the 

€E-3 well bore. 

Schematic of HDR parallel fracture system reservoir to  be created i n  

open-hole, 35" inclined sections of EE-2 and EE-3 wellbores. 

Directional drilled configuration of the EE-2/EE-3 boreholes, ( a )  

plan view, (b)  vertical section projected into east-west plane. The 

accuracy of the t ra jectory surveys and relative position precision 

of the wellbores indicates the 

boreholes i n  future deep crustal 

poten t ia l  for measurements between 

d r i l l i ng  projects. 
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b 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

D r i l l i n g  history, solid curve, of (a )  EE-2 and ( b )  EE-3 boreholes. 

Cost of circulating f l u i d  chemical additives, dashed curve, is also 

shown (converted to  1979 dollars). A major mechanical problem is  

indicated for each borehole. The temperature profile a t  Fenton Hill 

i s  indicated i n  (a)  and the depths  shown are measured along the 

we1 1 bore. 

Four-cone, tungsten carbide insert  core b i t  developed by Deep Sea 

D r i l l i n g  Project for sea bed sedimentary rock coring. B i t  has 25.1 

cm (9-7/8-in.) diameter and cuts a 7.0 cm. (2-7/8-in.) diameter 

core . 
Hybrid core b i t  w i t h  both four-cone and polycrystal 1 ine diamond 

compact (PDC) drag c u t t i n g  structures. Developed for the Los Alamos 

HDR Geothermal Project for coring of deep crystalline rocks. (a )  

Before use, (b)  a f te r  f i rs t  t r i a l  r u n  (Table 11). B i t  has 20.0 cm 

(7-718 i n . )  diameter and cuts a 7.5 cm (3-in.) core. 

Special 22.2 cm (8-3/4-in.) diameter rock b i t  used for d r i l l i n g  i n  

deep, hot crustal crystalline rocks. Design features t u n g s t e n  

carbide insert (TCI) and gauge pad wear protection; and open, 

air-cooled type bearings. 

(a) Near b i t  roller reamer and (b)  blade stabil izer af ter  extreme 

abrasive wear. The rol ler  reamer and stabilizer configuration are 

preferred i n  abrasive hard rocks. 
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. 
Fig. 12 Sketches of the Soviet advance open hole d r i l l i n g  strategy f o r  

ultra-deep boreholes i n  stable formations. (a) I n i t i a l  borehole 

w i t h  24.5-cm (9-5/8-in.) diameter uncemented p r o t e c t i v e  casing 

s t r i n g  s e t  and d r i l l i n g  below w i t h  t u r b o d r i l l  and 21.4 cm 

(8-1/2-in.) b i t .  (b) When wellbore sloughing i s  encountered remove 

p r o t e c t i v e  s t r i n g ,  ream a t  39.4 cm (15-1/2- in0),  and s e t  and 

cement-in a 32.5 cm (12-3/4 in.) casing. (c)  I n s t a l l  a 24.5-cm 

(9-5/8-in. 1 protect ive casing and continue d r i l l i n g  below. This 

technique i s  apparently applicable t o  most crysta l1  in@ rocks, and 

can be a possible general approach to deep crustal  d r i l l i n g .  Fenton 

H i l l  c r y s t a l l i n e  rock borehole s t a b i l i t y  would appear t o  be 

s u f f i c i e n t  to apply the Soviet method. 

A recommended d r i l l i n g  strategy f o r  CSDP thermal regimes investiga- Fig. 13 

t ions of hydrothermal convection system. (a) S l i m  hole core to top 

of hydrothermal reservoir  zones o f  high permeability, (b) d r i l l  

second borehole through shallow formations previously cored and set 

casing i n t o  the caprock, and core through the permeable zones, 

possibly using a dual s t r ing  d r i l l  s t r i ng  d r i l l  r i g ,  to a depth of 

about 3 km. ( c )  The t h i r d  deep borehole i s  d r i l l e d  through the 

hydrothermal reservoir  and a heavy casing i s  set; possibly use two 

str ings. Then coring proceeds below t o  the 6-9 km depths. 

Fig. 14. H is to r ica l  d r i l l i n g  cost  comparisons f o r  hydrothermal, HDR, and o i l  

Costs normalized and gas wel ls  (adapted from Carson and Lin, 1981). 

t o  value of 1979 do l la rs  through use o f  a 17% escalat ion factor. 
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T 

Fig. 15 Schematic o f  use o f  bar code s t r i ps  to provide re l iab le,  unique, and 

automatic i den t i f i ca t i on  system for d r i l l  pipe sections ( jo in ts ) .  

Code can be used to calculate stress and estimate fat ique l i f e ,  and 

integrate inspection data wi th  the r e s u l t  o f  reduced d r i l l  pipe 

fa i lures.  

Fig. 16 (a) Turbocorer concept (b) conceptual design o f  a hard rock core 

b i t .  Adapted from deep sea d r i l l i n g  and HDR experience. 

Fig. 17. Sketch o f  d r i l l  stem tester f o r  deep crustal  applications. Used to 

obtain formation f l u i d  samples without contamination by c i rcu la t ing  

d r i l l i n g  f lu id .  

Table I Summary descript ions o f  the Fenton H i l l  deep boreholes. 

Table I1 Comparison o f  diamond core recovery and i n i t i a l  t e s t  o f  hybrid core 

b i t .  
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