

JUL 20 1990

DOE/PC/88881--T7

DE91 000989

Topical Report #2 for DOE Contract No. DE - AC22 - 88PC88881

Controlled Comparison of Advanced Froth Flotation Process Technology and Economic Evaluations for Maximizing BTU Recovery and Pyritic Sulfur Rejection

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

JUNE 1990

By

K. E. Harrison and D. D. Ferris of ICF Kaiser Engineers, Inc.

R. M. Kosky of Consolidation Coal Company

J. J. Warchol, W. F. Musiol, and S. Y. Shiao of Babcock & Wilcox

**G. H. Luttrell, G. T. Adel, and R. H. Yoon of Virginia Polytechnic
Institute and State University**

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DOE CONTRACT NUMBER DE-AC22-88PC 88881

TOPICAL REPORT #2

CONTROLLED COMPARISON OF ADVANCED FROTH FLOTATION PROCESS
TECHNOLOGY AND ECONOMIC EVALUATIONS FOR MAXIMIZING
BTU RECOVERY AND PYRITIC SULFUR REJECTION

BY

K. E. HARRISON AND D. D. FERRIS, ICF KAISER ENGINEERS, INC.

R. M. KOSKY, CONSOLIDATION COAL COMPANY

J. J. WARCHOL, W. F. MUSIOL, AND S. Y. SHIAO BABCOCK & WILCOX

G. H. LUTTRELL, G. T. ADEL, AND R. H. YOON, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

"This report was prepared as an account of work performed by ICF Kaiser Engineers under sponsorship of the United States Government. Neither the United States nor the United States Department of Energy, ICF Kaiser Engineers, its subcontractors, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

799/43II/044/901

TABLE OF CONTENTS

	PAGE
LIST OF FIGURES	ii
LIST OF TABLES	iii
1.0 INTRODUCTION	1
2.0 TEST PROGRAM PROCEDURE	1
2.1 Coal Crushing and Feed Preparation	3
2.2 Slurry Preparation	6
2.3 Coal and Slurry Characterization	9
2.4 Round Robin Participants	12
2.5 Phase I - Tests 1 through 3	19
2.6 Phase II - Test 4	21
3.0 TEST RESULTS	24
3.1 Size Analysis	24
3.2 Washability Analysis	32
3.3 Release Analysis	32
3.4 Material Balance Analysis	43
3.5 Results	47
4.0 ECONOMICS	53
5.0 CONCLUSIONS	61
6.0 DISCLAIMER	64
7.0 ACKNOWLEDGEMENTS	64
APPENDIX I	
APPENDIX II	

LIST OF FIGURES

- 2.1 Flowsheet of Coal and Slurry Preparation for Round Robin Test Participants.
- 2.2 Histogram of Pulverized Pittsburgh No. 8 Coal Coal Water Slurry Product
- 2.3 Photograph of a 2.5 gallon stirred ball mill (attritor mill).
- 2.4 Histogram of Pittsburgh No. 8 Coal-Water Slurry.
- 2.5 The Degree of Liberation of Pittsburgh No. 8 Coal with 5 and 15 minutes grinding.
- 3.1 Test #1 Size Analysis By B&W
- 3.2 Test #1 Size Analysis By B&W
- 3.3 Test #2 Size Analysis By Participate
- 3.4 Test #3 Size Analysis By Participate
- 3.5 Test #4 Size Analysis By Participate
- 3.6 Washability-Btu Recovery versus Pyritic Sulfur Rejection for minus 200M and minus 325M.
- 3.7 Participant results versus washability plot of Btu Recovery versus Pyritic Sulfur Rejection for Test #3.
- 3.8 Participant results versus washability plot of Btu Recovery versus Pyritic Sulfur Rejection for Tests #1, #2 and #4.
- 3.9 Comparison of Round Robin Test #1 results with release analysis curve for sulfur rejection.
- 3.10 Comparison of Round Robin Test #2 results with release analysis curve for sulfur rejection.
- 3.11 Comparison of Round Robin Test #3 results with release analysis curve for sulfur rejection.
- 3.12 Comparison of Round Robin Test #4 results with release analysis curve for sulfur rejection.
- 4.1 Carrying Capacity Curve.

LIST OF TABLES

- 2.1 Particle Size Distribution on 1/4" x 0 fraction Pittsburgh No. 8 Coal
- 2.2 Particle Size Distribution on Pulverized Pittsburgh No. 8 Coal
- 2.3 Coal Analysis of Pittsburgh No. 8 Coal (from B&W)
- 2.4 Coal Analysis (from University of California at Berkeley)
- 2.5 Particle Size Distribution of Pittsburgh No. 8 Coal Slurry Product Coal-Water Slurry Product
- 2.6 Characterization of Pittsburgh No. 8 Coal Slurry Product
- 2.7 Washability of Fine Grind by TraDet
- 2.8 Washability of Coarse Grind by Praxis
- 2.9 List of Participants
- 2.10 Report Form for Tests 1-3
- 2.11 Report Form for Test 4
- 2.12 Verification Tests
- 3.1 Test #1 Size Analysis By B&W
- 3.2 Test #2 Size Analysis By Participant
- 3.3 Test #3 Size Analysis By Participant
- 3.4 Test #4 Size Analysis By Participant
- 3.5 Washability Data for Pittsburgh No. 8 Crushed to minus 200M
- 3.6 Washability Data for Pittsburgh No. 8 Crushed to minus 325M
- 3.7 Flotation Performance Results for Phase I
- 3.8 Flotation Process Variables for Phase I
- 3.9 Flotation Performance Results for Phase II
- 3.10 Flotation Process Variables for Phase II
- 4.1 Required Clean Coal and Raw Coal for Economic Evaluation
- 4.2 Common Equipment and Reagent Costs
- 4.3 Frother Concentration
- 4.4 Economic Parameters
- 5.1 Final Evaluation Ranking

1.0 INTRODUCTION

In October 1988, the Department of Energy (DOE), Pittsburgh Energy Technology Center (PETC) awarded a contract to ICF Kaiser Engineers (ICF KE) entitled "Engineering Development of Advanced Physical Fine Coal Cleaning Technologies - Froth Flotation". The contract is a multiple task contract that includes conceptual design, laboratory scale testing for reducing uncertainties discovered during the conceptual design, building and operating a 2-3 TPH advanced flotation proof of concept (POC) module, and based on POC operating data completing a final conceptual design at 20TPH feed rate.

The overall goal of Task 5 of the Engineering Development Contract is to develop the necessary unit operation design and process performance data to (1) reduce or eliminate the technical and engineering uncertainties of the preliminary 20 TPH advanced flotation semiworks plant and (2) design, build and operate a 2-3 TPH advanced flotation POC module.

There are several alternative advanced flotation techniques currently being developed by others to commercial or near commercial size unit operations. These alternatives differ primarily in the procedure and chemistry used to generate bubbles and/or treat the coal surfaces during flotation, procedures for injecting fine bubbles into the flotation cell, and the physical design of the flotation cell. A round robin program using devices from most of the process developers working in the advanced flotation area has been organized as part of this Task. Two process developers who were contacted declined to participate.

The conceptually designed advanced flotation unit will be initially scaled-down to operate at 100 pounds per hour. The unit will then be scaled up, using the process developers' guidance, and information obtained from Task 6, Component Development, to operate at 20 tons per hour. From this design a proof of concept scale size will be designed, constructed and operated at a feed rate of 2-3 tons per hour. After the testing of the POC size unit, a final 20 tons per hour feed rate machine will be designed.

During subtask 1.5.11, advanced flotation evaluation on a semi-continuous basis, an advanced flotation machine capable of processing 100 pounds per hour is required. This flotation machine will be utilized to verify operating conditions, quality performance, and generating material for filtration, dewatering and clarification equipment testing.

The tests will use the most efficient, cost effective flotation cell available to improve the possibility of attaining the maximum amount of BTU recovery and maximum amount of pyritic sulfur rejection possible for a given coal at a given particle size distribution. Therefore, the objective of this round robin testing is to select the "best available" advanced flotation technology for installation into the semi-continuous process at Babcock and Wilcox (B&W) Alliance Research Center.

2.0 TEST PROGRAM PROCEDURE

Approximately 120 pounds of fine coal slurry and 120 pounds of dry 1/4" x 0 coal were prepared by Babcock & Wilcox at its Alliance Research Center (ARC) for use by each participant in the Round Robin Testing of advanced flotation. Figure 2.1 is a flowsheet outlining the major steps performed in preparing the dry coal sample and the fine slurry. The methodology of grinding, sampling, inerting, and analyzing the samples during preparation is described in detail below.

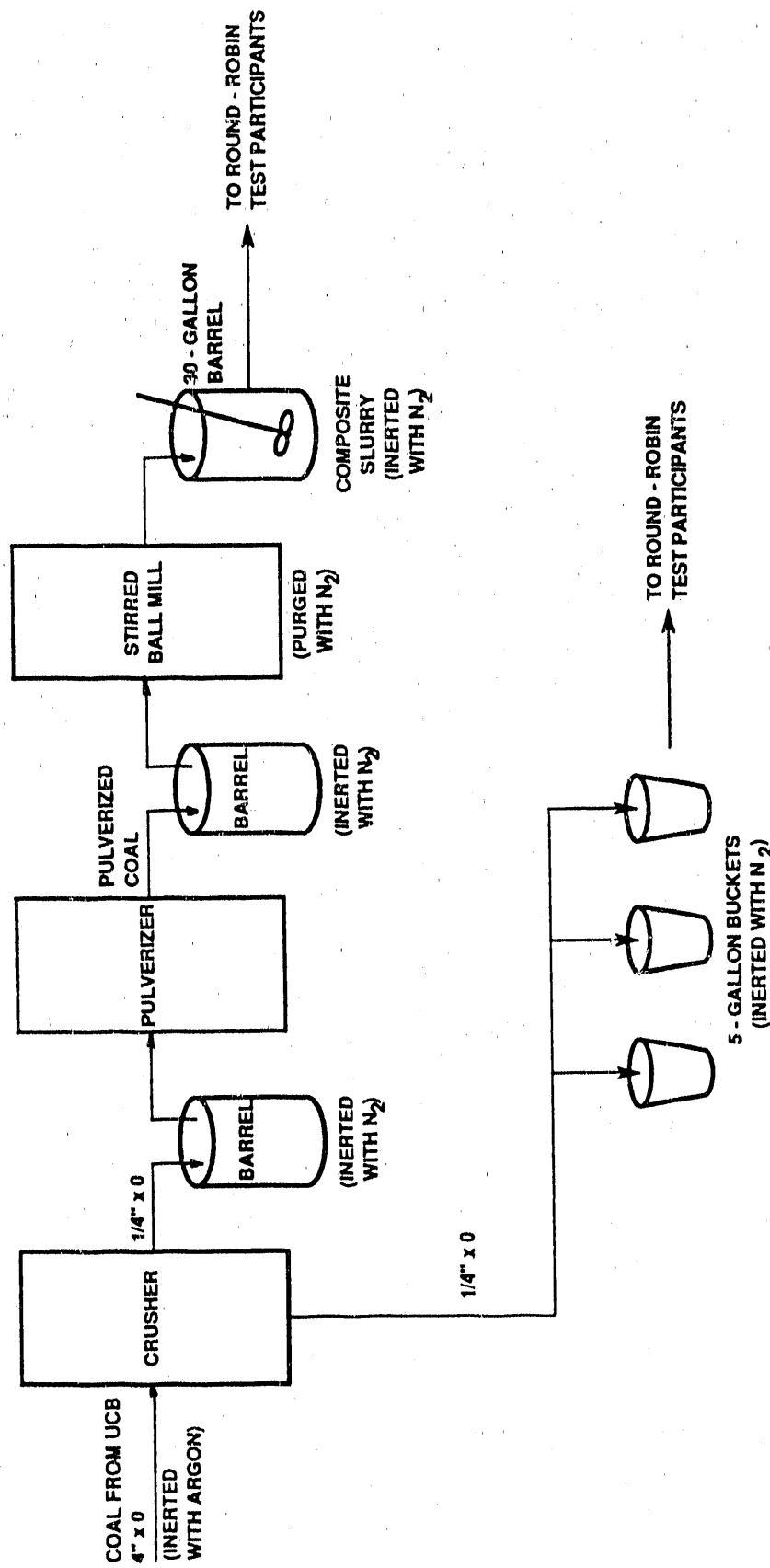


FIGURE 2.1
FLOWSHEET OF COAL AND SLURRY PREPARATION FOR ROUND - ROBIN TEST PARTICIPANTS

2.1 Coal Crushing and Feed Preparation

2.1.1 Coal Crushing

Five Barrels (approximate 1400 lbs) of Pittsburgh No. 8 coal were shipped from Praxis Engineers, Inc. This coal was obtained from Belmont County, Ohio and was supplied by R&F Coal Company. This channel sample of coal was set aside from the DOE/PETC "Coal Surface Control for Advanced Fine Coal Flotation" project. The coal was 4" x 0 and was stored in plastic lined drums, inerted with argon, and taped prior to shipment to the B&W ARC.

Upon arrival, the coal was crushed to 1/4" x 0 using a Hammermill Crusher, Model #3296, from Holmes Bros, Inc. in Danville, Illinois. The size analysis of the 1/4" x 0 fraction is shown in Table 2.1. The crushing was done very quickly and without inerting. The crushed coal was stored in barrels purged with N₂ as it was produced. After all the coal was crushed, the barrels of product coal were dumped on the floor and mixed together before riffling. The sample was riffled down twice. The first time was to produce a sample of approximately 40 lbs. The 40-lb sample was further split into four 10-lb samples and used for coal analysis and flotation analysis to determine signs of oxidation.

The 10 pound samples were stored in separate plastic bags and purged with N₂ for approximately 4 times the volume of the coal. The plastic bags were sealed with a thermal sealer. The samples were then double bagged and again purged with N₂ before the outer bags were sealed. Two of the 10-lb samples were for ASTM coal analysis. The two other 10-lb samples were shipped to Professor D. W. Fuerstenau at the University of California at Berkeley (UCB) for standard flotation tests to verify the coal did not change. Professor Fuerstenau's group at UCB is the lead of the "Coal Surface Control for Advance Coal Flotation Project".

The remaining coal (approximately 1360 pounds) was remixed and riffled again to obtain 40 pound samples for the Round Robin Test participants. Each sample was weighed, bagged, purged with N₂ for approximately 4 times of coal volume, sealed with a thermal sealer, doubled bagged, purged with N₂ again, sealed, and stored in a 5-gallon plastic bucket. Each bucket was purged with N₂ before the lid was tightened. Three 40 pound samples of 1/4" x 0 coal (total of 120 pounds in 9 buckets) were shipped to each participant. The remaining crushed coal (approximately 400 pounds) which was used by B&W to prepare fine coal slurry was stored in a barrel with a plastic liner, purged with N₂, sealed with tape, double bagged, purged with N₂ again, taped, and the barrel was purged with N₂ before the lid was sealed.

2.1.2 Pulverized Feed Preparation

Prior to preparation of slurry, the remaining crushed 1/4" x 0 coal was further reduced in size by pulverizing with a hammermill, a Mikro-Pulverizer, Model 1SH. The pulverized coal has a size distribution of 99.5% less than 300 microns (48 mesh) and 74% less than 75 microns (200 mesh). The size analysis of the pulverized coal is shown in Table 2.2 and Figure 2.2. The pulverized coal fraction was used as feed to a stirred ball mill for fine coal slurry preparation.

TABLE 2.1

Particle Size Distribution of 1/4" x 0 Fraction of Pittsburgh No. 8 Coal

DOE/PETC
 ACG-90-4545-08
 September 7, 1989

Sample No.

C-20409

Description

Pittsburgh #8 Coal

<u>Sizing</u>	<u>Sieve No.</u>	<u>% Thru</u>
	1/2 inch	100.0
	1/4 inch	99.2
	#4	97.6
	8	78.8
	16	49.4
	30	29.7
	50	17.6
	70	12.9
	100	9.6
	140	6.9
	200	5.0
	270	3.0
	325	2.5

TABLE 2.2

Particle Size Distribution of Pulverized Pittsburgh No. 8 Coal

Pittsburgh #8 Coal, Pulverized
 For Attritor Round Robin
 PBRF0001, 8-29-89

MICRONS	%LESS	DIFF
2400.00		
1697.06		
1200.00		
848.53		
600.00	100.00	0.29
424.26	99.71	0.21
300.00	99.50	2.04
212.13	97.46	5.83
150.00	91.63	6.52
106.07	85.11	11.17
75.00	73.94	13.51
53.03	60.43	11.85
37.50	48.58	10.89
26.52	37.69	9.72
18.75	27.97	6.81
13.26	21.16	6.71
9.38	14.46	5.54
6.63	8.92	3.15
4.69	5.76	2.27
3.31	3.49	1.36
2.34	2.13	0.93
1.66	1.20	0.44
1.17	0.77	0.35
0.83	0.42	0.24
0.69	0.18	0.15
0.41	0.03	0.03
0.29	0.00	0.00
0.21		
0.16		

CSICAL SURF AREA 1=0.40 M==2/CM==3
 MMD(D43)=58.82 MICRONS
 SMD(D32)=15.12 MICRONS

2.2 Slurry Preparation

2.2.1 Mill Preparation

A laboratory batch stirred ball mill, an attritor mill from Union Process, Model 1S, was used to prepare the fine Pittsburgh No. 8 coal slurry. A photograph of the mill is shown in Figure 2.3. The dimension and the capacity of the mill are shown below:

Mill diameter:	9 inches
Mill depth:	8 inches
Mill volume:	2.5 gallons
Grinding medium:	3/16" 440 stainless steel beads
Medium charge:	60 lbs (approximately 60% of mill volume)

The mill was rinsed with a volume of tap water equivalent to three times the mill volume while the grinding shaft was turning at a slow speed (approximately 70 rpm) to remove any rust in the mill. The mill was then rinsed with distilled water to displace remaining tap water left in the mill. The wash water was drained out while the grinding shaft was rotated at a slow speed.

2.2.2 Fine Grinding

The amount of coal required for grinding was calculated based on the moisture in the coal and water left in the mill. Typical weights of water and coal for fine slurry preparation were as follows:

"Target" solids content in slurry:	35.5%
Moisture in pulverized coal:	3.4%
Water left in the mill:	300 gm
Weight of additional distilled water:	2430 gm
Weight of pulverized coal:	1550 gm

Prior to grinding, the distilled water for making the slurry was poured into the mill. The coal was then slowly fed into the mill while the shaft was rotated at 185 rpm and the timer was started. No dispersants or any other chemicals were used during grinding.

Generally, it took about 15 minutes to load and wet 1550 grams of coal. N_2 purging was not applied during coal feeding because the N_2 flow tended to blow the fine coal out of the mill. After the coal was completely blended into the water, the coal was ground for 5 minutes at 185 rpm while purging with N_2 . The temperature of the mill was controlled by circulating cold tap water through the water jacket provided with the mill.

2.2.3 Slurry Handling and Storage

Approximately seventeen, 0.75 gallon batches of slurry were prepared for each Round Robin Test participant. As each batch was ground it was transferred to a 30-gallon plastic container. The container was purged with N_2 after the slurry was transferred and the lid was then sealed. Residual slurry in the mill was cleaned with tap water and rinsed with distilled water, as described above, prior to grinding the next batch.

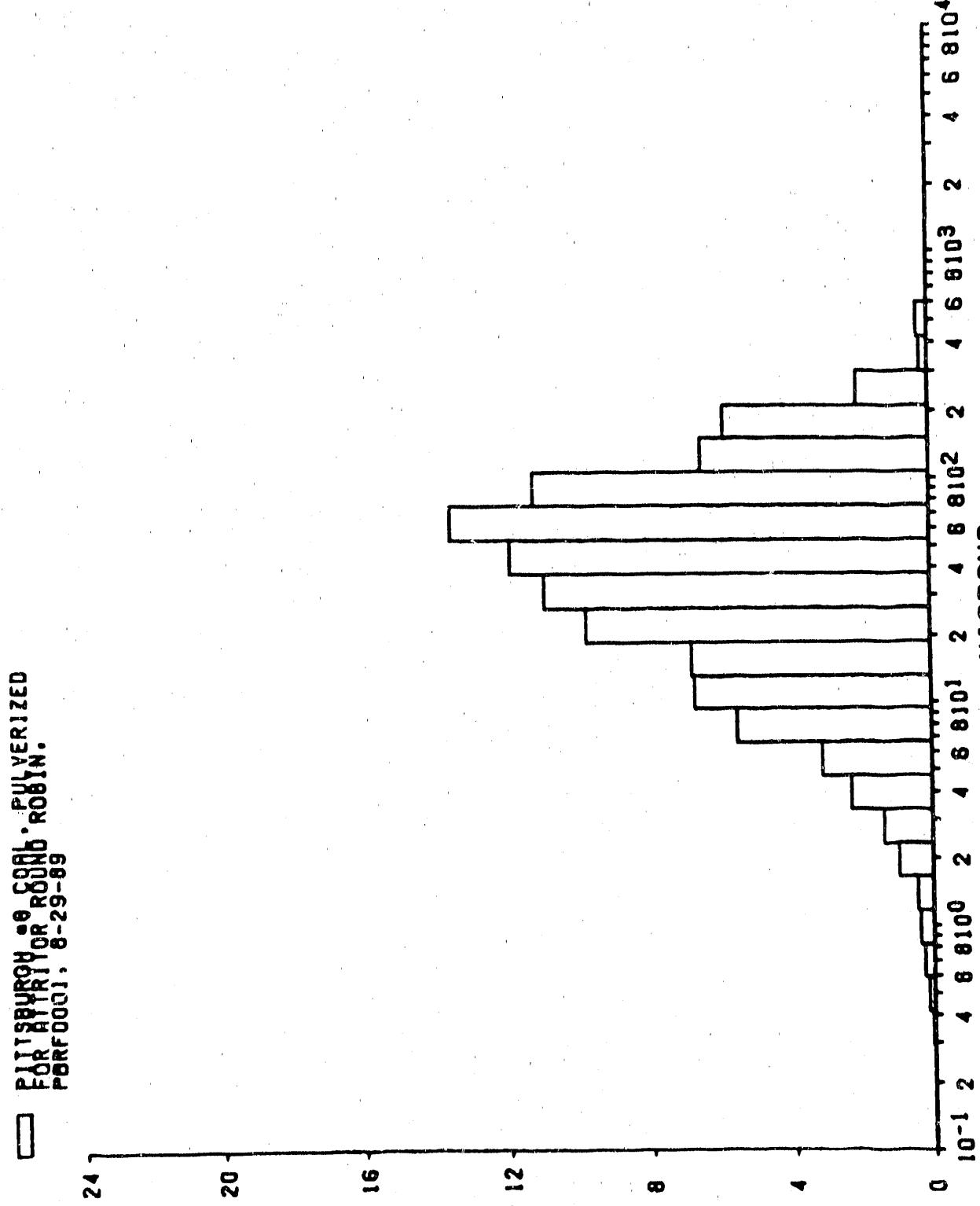
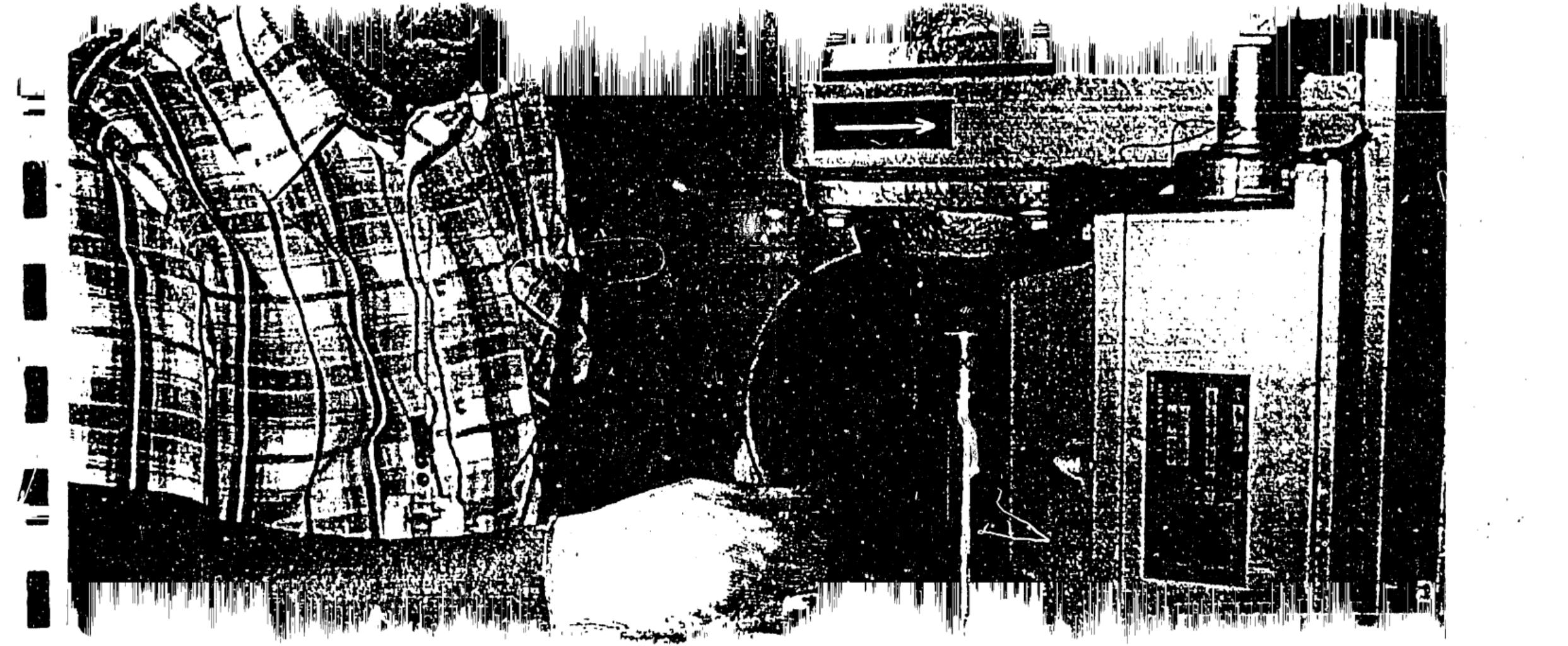


24]
PITTSBURGH NO. 8 COAL - PULVERIZED
FOR AT&T ROUNDBROOK, 8-29-69
PDR 0001

FIGURE 2.2
Histogram of Pulverized Pittsburgh No. 8 Coal

After all 17 batches of slurry were ground, they were mixed at approximately 100 rpm for 10 minutes using an air driven stirrer with an 8-inch diameter impeller. Two, one quart size samples were then taken for solids, particle size distribution (PSD), pH, ash, Btu, total sulfur, and pyritic sulfur determinations. Also, a 2-gallon composite sample of slurry was obtained and shipped for washability analysis. These samples were placed in a plastic bag, purged with N_2 , taped, put in a 5-gallon plastic bucket, and purged with N_2 before the bucket was sealed for shipping. The remaining slurry was transferred to another 30-gallon plastic container with double plastic liners. The slurry was purged with N_2 and the inside and the outside plastic liners were sealed with tape. Finally, the container was purged with N_2 and the cover was tightly sealed. The slurry sample (approximately 120 lbs) and 9 buckets of dry coal (approximately 120 lbs) were shipped to each Round Robin Test participants.

2.3 Coal and Slurry Characterization

2.3.1 Coal Analysis

The as-received coal from Praxis Engineers, Inc. was analyzed at B&W for proximate analysis, ultimate analysis, and Btu. Comparison of the B&W coal analysis data from Table 2.3 with previous analysis obtained from UCB Table 2.4 showed that the coal B&W received from Praxis was the same coal used by UCB on "Coal Surface Control for Advanced Fine Coal Flotation" project.

2.3.2 Flotation Tests

UCB has developed standard grinding and froth flotation procedures for testing coals as part of the "Coal Surface Control for Advanced Fine Coal Flotation" project. They performed their standard grinding and flotation tests on the 1/4" x 0 Pittsburgh No. 8 coal samples obtained from B&W. The flotation results were similar to their previous flotation results on Pittsburgh No. 8 coal. This indicated that the batch of Pittsburgh No. 8 coal received by B&W from Praxis Engineers, Inc. did not oxidize during storage.

2.3.3 pH of Dry Coal

The pH of the dry coal was measured by suspending one gram of coal in 100 ml of distilled water. The pH for the dry coal are as follows:

As received coal:	3.1
1/4" x 0 fraction:	3.6
Pulverized coal:	3.8

2.3.4 Particle Size Distribution (PSD)

The PSD of the 1/4" x 0 samples was determined using standard ASTM screening methods. The PSDs of pulverized coal feed and the slurry product were measured using two Leeds and Northrup Microtrac particle size analyzers. Small dry coal and slurry samples were dispersed in dilute surfactant solutions to insure the particles were well dispersed before the PSDs were measured. A standard L&N particle analyzer measured the

TABLE 2.3

Coal Analysis of Pittsburgh No. 8 Coal (From B&W)

DOE/PETC
ACG-90-4545-08
September 7, 1989

Sample No.	<u>C-20369</u>	
Description	Pittsburgh #8 Coal	
Basis	<u>As Received</u>	<u>Dry</u>
Total Moisture, %	5.07	---
<u>Proximate Analysis, %</u>		
Moisture	5.07	---
Volatile Matter	36.28	38.22
Fixed Carbon	46.60	49.09
Ash	12.05	12.69
Gross Heating Value Btu per Lb.	12032	12675
<u>Ultimate Analysis, %</u>		
Moisture	5.07	---
Carbon	66.75	70.32
Hydrogen	4.58	4.82
Nitrogen	1.19	1.25
Sulfur	4.21	4.44
Ash	12.05	12.69
Oxygen (Difference)	6.15	6.48
Total	100.00	100.00

TABLE 2.4
Coal Analysis (From University of California at Berkeley)

<u>Coal</u>	<u>As Recd. Moisture %</u>	Proximate Analysis, Dry Wt %		
		<u>Vol. Matter</u>	<u>Fixed Carbon</u>	<u>Ash</u>
Illinois No. 6	9.5	36.2	46.3	17.5
Pittsburgh No. 8	2.3	35.7	52.5	11.8
Upper Freeport PA	1.0	26.2	61.8	12.0

<u>Coal</u>	<u>As Recd. Moisture %</u>	Ultimate Analysis, Dry Wt %				
		<u>Carbon</u>	<u>Hydrogen</u>	<u>Nitrogen</u>	<u>Sulfur</u>	<u>Oxygen</u>
Illinois No. 6	9.5	63.8	5.7	1.24	5.73	6.10
Pittsburgh No. 8	2.2	71.0	5.1	1.45	4.28	6.40
Upper Freeport PA	1.8	75.6	4.7	1.45	2.38	3.85

particle size range of 4.7 microns to 300 microns. A small L&N particle analyzer measured particles from 0.17 micron to 21.1 microns. The percentages of particles larger than 300 microns were determined using a wet screen method. The PSDs from the two analyzers and the oversized particles (greater than 300 microns) were overlapped using a computer program developed at B&W. The PSD of the composite slurry is shown in Table 2.5 and the histogram is shown in Figure 2.4.

2.3.5 Solids Content

The solids content of the slurry was measured using a Computrac model Max 50 moisture analyzer. The solids content of the slurry from each grinding and the composite slurry were measured. In general, the solids content ranged between 35.5 to 36.5%. The actual solids content for the composite slurry is given in Table 2.6.

2.3.6 Btu, Ash, Total Sulfur, Pyritic Sulfur, and pH for Composite Slurry

The composite slurry was analyzed for Btu, ash, total sulfur, and pyritic sulfur at B&W using ASTM methods. The pH of the composite slurry was measured by immersing the pH electrode in the slurry. The results are shown in Table 2.6.

2.3.7 Washability and Pyrite Liberation

Washability data on the composite slurry was determined by Tradet Laboratories for the fine grind and by Praxis Engineering for the coarse grind. The results are shown in Tables 2.7 and 2.8 respectively. The pyrite liberation tests on previous slurry samples prepared under similar grinding conditions was measured by Virginia Polytechnic Institute and State University (VPI). The results are shown in Figure 2.5.

2.4 Round Robin Participants

The following participants were contacted and agreed to participate in the advanced flotation Round Robin test program on a cost share basis.

Table 2.9
List of Participants

- Allmineral (Aufberetungstechnik GmbH & Co. KG)
- B. Datta Research
- Center for Applied Energy Research
- Deister Concentrator Company, Inc.
- Illinois State Geological Survey
- Michigan Technological University
- Virginia Polytechnic Institute and State University

Two other organizations were contacted to participate in the Round Robin. They are WEMCO and AFT, Inc. Both of these organizations declined to participate. A third organization was contacted to participate, Advanced Processing Technologies, Inc. A mutual decision between DOE/PETC and ICF KE determined that results from ongoing contracts would be used to compare results of the Air-Spared Hydrocyclone with the advanced flotation devices. Therefore, Advanced Processing Technologies, Inc. was not included in the Round Robin Test.

TABLE 2.5

Particle Size Distribution of Pittsburgh No. 8 Coal-Water Slurry Product

F-4193. ATTRITOR COMBINE SAMPLE.
 FOR ILL. ST. GEOL. . 17 BATCHES
 OF 5 MIN. GRINDING AT 185 RPM.
 96.9% SOLIDS. SPL. NO. PBRP0292. AT 52

<u>MICRONS</u>	<u>% LESS</u>	<u>DIFF</u>
2400.00		
1697.06		
1200.00		
848.53		
600.00	100.00	0.01
424.26	99.99	0.01
300.00	99.99	0.00
212.13		
150.00		
106.07		
75.00		
53.03	99.98	0.83
37.50	99.15	4.52
26.52	94.53	12.72
18.75	81.91	16.03
13.26	65.89	17.42
9.38	48.47	16.96
6.63	31.51	12.20
4.69	19.32	7.58
3.31	11.78	4.62
2.34	7.14	2.81
1.66	4.33	1.53
1.17	2.80	1.20
0.83	1.60	0.83
0.59	0.77	0.56
0.41	0.21	0.21
0.29	0.00	0.00
0.21		
0.15		

CS(CAL SURF AREA)=1.06 M==2/CM=3
 MMD(D43)=11.91 MICRONS
 SMD(D32)=5.67 MICRONS

24

20

16

12

8

4

0

10⁻¹ 2 4 6 8 10⁰ 2 4 6 8 10¹ 2 4 6 8 10² 2 4 6 8 10³ 2 4 6 8 10⁴

MICRONS

FIGURE 2.4

Histogram of Pittsburgh No. 8 Coal-Water Slurry Product

14

F-4193. ATTRITOR COMBINED SAMPLE.

FOR FULL ATTRITIONING DETAILS SEE

35.8x SOLID SP. NO. 188R0131.

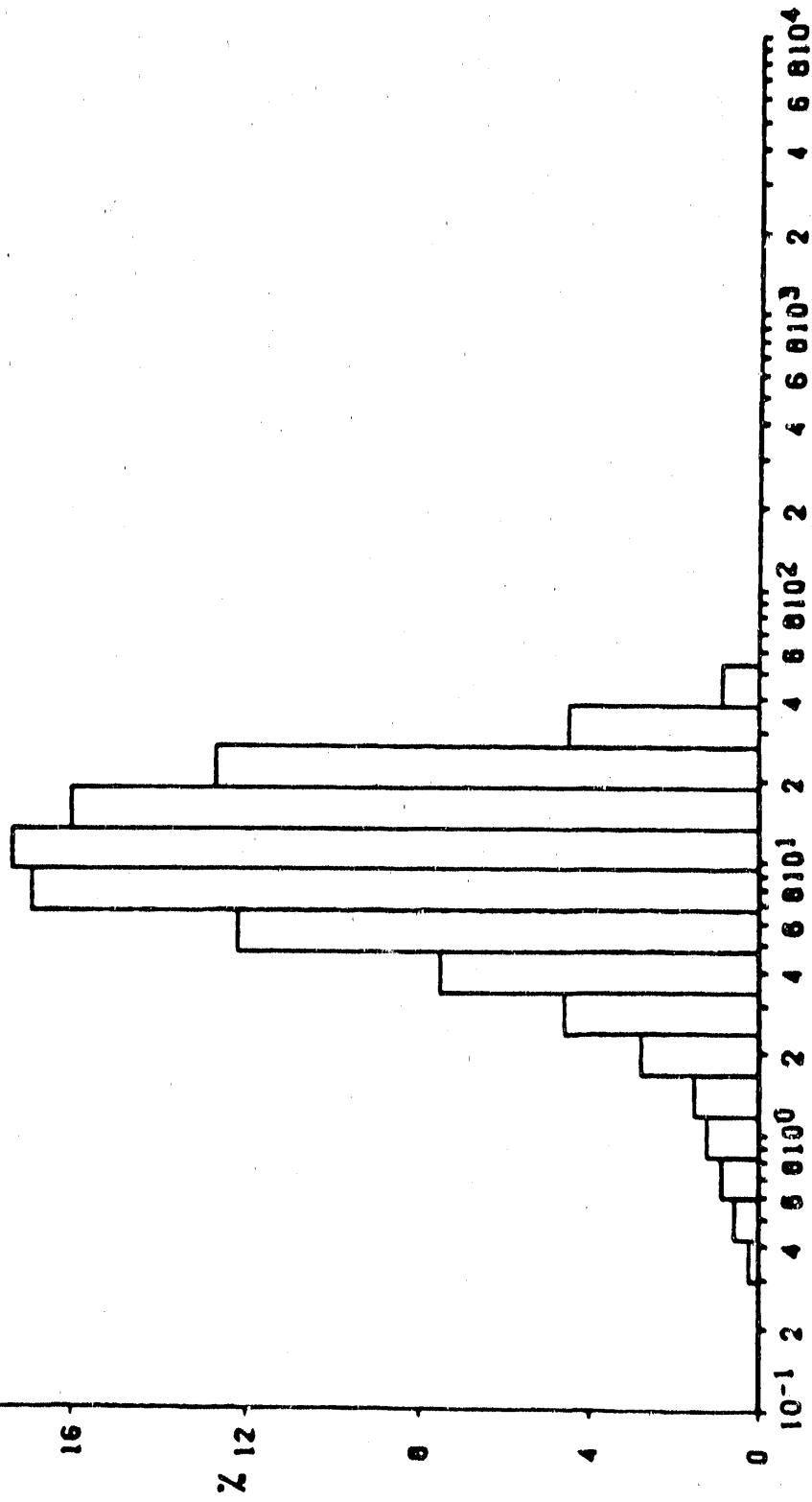


TABLE 2.6

Characterization of Pittsburgh No. 8 Coal-Water Slurry Product

	<u>Slurry</u>	<u>Dry Basis</u>
Gross Heating Value (Btu/lb)	----	12,389
Ash, %	----	12.05
Total Sulfur, % S	----	3.92
Pyritic Sulfur, % S	----	2.44
pH	5.49	
Solids Content, %	35.9	

TABLE 2.7

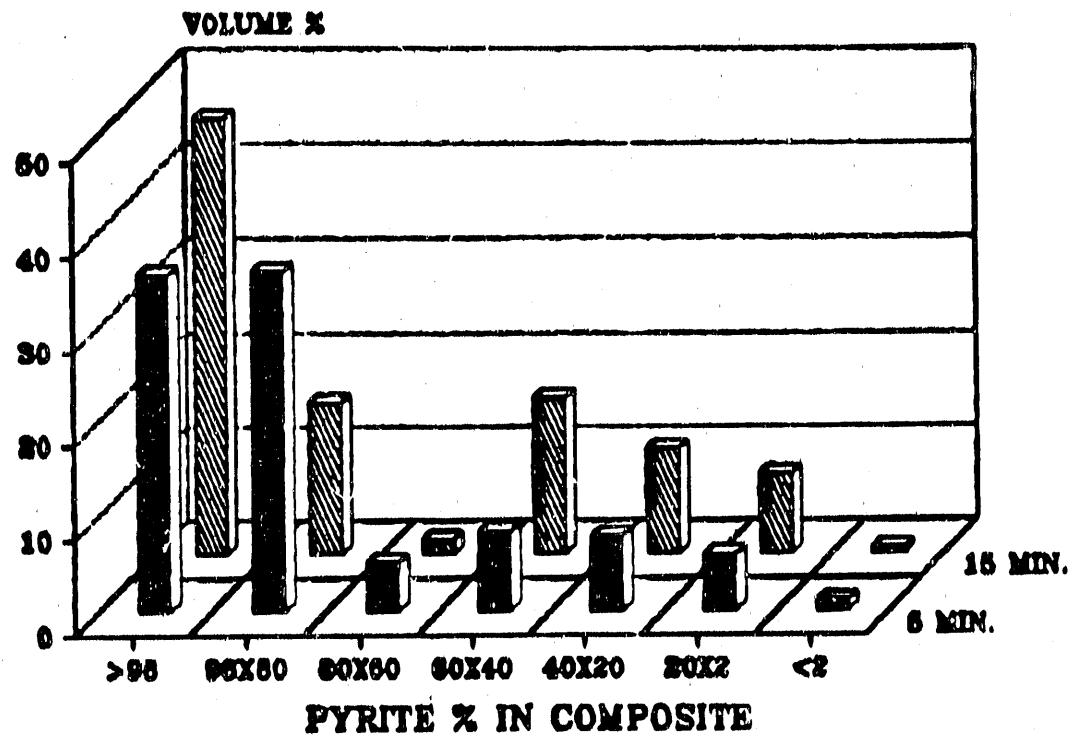
WASHABILITY OF FINE GRIND BY TRADET
(MINUS 325 MESH)

DRY BASIS										CUMULATIVE PRODUCT (FLOAT)						BTU RECOVERY			PYRSUL REJECT.			
SPECIFIC GRAVITY	Sink	Float	% Wt.	% Ash	% Sulf.	BTU per lb.	MAFSTU per lb.	% PYR.	% Sulf.	% Organ. Sulfur	BTU per lb.	MAFSTU per lb.	% PYR.	% Sulfur	% Sulfur	% Organ. Sulfur	BTU per lb.	MAFSTU per lb.	% PYR.	% Sulfur	% Organ. Sulfur	
1.30	37.83	1.71	1.55	14,462	14,714	0.08	0.11	1.37	37.83	1.71	1.55	14,462	14,714	0.08	0.11	1.37	43.84	98.72				
1.35	17.97	2.45	1.64	14,301	14,660	0.11	0.21	1.33	55.86	1.95	1.58	14,410	14,696	0.09	0.14	1.36	64.43	97.87				
1.40	16.44	3.47	1.65	13,832	14,329	0.17	0.30	1.18	72.24	2.29	1.60	14,279	14,614	0.11	0.18	1.32	82.66	96.63				
1.45	1.45	8.00	5.76	1.78	13,434	14,255	0.29	0.44	1.05	80.24	2.64	1.61	14,194	14,579	0.13	0.20	1.29	91.27	95.58			
1.50	3.44	9.70	1.99	12,699	14,063	0.51	0.60	0.88	83.68	2.93	1.63	14,133	14,560	0.14	0.22	1.27	94.77	95.04				
1.55	1.60	2.88	14.40	2.27	11,966	13,979	0.76	0.76	0.75	86.56	3.31	1.65	14,061	14,542	0.16	0.24	1.26	97.53	94.13			
1.60	1.70	0.85	27.06	3.15	9,818	13,460	1.39	1.19	0.57	87.41	3.54	1.66	14,020	14,534	0.17	0.25	1.25	98.20	93.70			
1.70	1.80	0.44	36.92	4.37	8,006	12,692	2.05	1.66	0.66	87.85	3.71	1.68	13,989	14,528	0.18	0.25	1.25	98.48	93.30			
1.80	12.15	75.12	20.20	1,556	6,254	18.12	1.31	0.77	100.00	12.39	3.93	12,479	14,243	2.36	0.38	1.19	100.00	0.00				

WASHABILITY DATA
 SEAM: PITTSBURGH NO. 8
 BELMONT COUNTY, OHIO
 ORIGINAL SAMPLE, CRUSHED TO 200 M TOPSIZE

TABLE 2.8

WASHABILITY OF COARSE GRIND BY PRAXIS
 (MINUS 200 MESH)


SIZE FRACTION: 200 M X 0 - 100.0 %

ELEMENTARY DATA

SPECIFIC GRAVITY SINK	FLOAT	(X)			(X)			(X)			(X)			(X)			(X)		
		WT%	ASH	TOT SUL	PTR SUL	BTU	M BTU	WT%	ASH	TOT SUL	PTR SUL	BTU	M BTU	WT%	ASH	TOT SUL	PTR SUL	BTU	M BTU
1.30	53.9	2.08	1.35	0.09	14513	1.86	53.9	2.08	1.35	0.09	14513	1.86	61.36	1.86	98.26				
1.35	6.7	4.41	1.50	0.33	14112	2.13	60.6	2.34	1.37	0.12	14469	68.78	1.89	97.46					
1.40	8.6	4.87	1.45	0.37	13580	2.14	69.2	2.65	1.38	0.15	14358	77.94	1.92	96.32					
1.45	17.6	10.57	1.89	0.97	12878	2.94	86.8	4.26	1.48	0.31	14058	95.72	2.11	90.17					
1.60	1.6	26.01	4.80	3.92	10450	9.19	88.4	4.65	1.54	0.38	13993	97.03	2.20	87.92					
1.80	11.6	68.34	21.84	21.07	3264	133.82	100.0	12.04	3.90	2.78	12748	100.09	6.11	6.00					

COMPUTED DATA: CUMULATIVE

FIGURE 2.5

The degree of liberation of Pitts #8 coal with 5 and 16 minutes grinding.

2.5 Phase I - Tests 1 Through 3

The purpose of Phase I Tests 1-3 was two fold. The first was to determine if oxidation occurred to the B&W prepared sample. The second was to identify if fine grinding to liberate pyrite resulted in better pyrite rejection than coarse grinding.

Test Number 1 was a controlled size distribution test to establish the mean volume size for future tests and to assure that each participant had the "same" coal. Test Number 2 was included to ascertain if oxidation had occurred to the Test 1 sample. Test Number 3 was conducted to indicate if a coarser grind produced the same efficiency as a finer grind thus improving the overall economics of the project.

Tests 1 through 3 were conducted by each participant. Each participant except Deister and Allmineral was observed by a representative of ICF KE during the actual running of one of the first three tests. Each participant performed analytical tests and calculated separation efficiencies. The participant recorded his results and submitted them on Table 2.10, Report Form for Tests 1-3. ICF KE received representative samples of feed, product and tailings for laboratory verification purposes from VPI, Michigan Tech, and ISGS. All other participants did not comply with this request.

TABLE 2.10
REPORT FORM FOR TESTS 1-3

Date _____ Test I.D. _____ Seam Pittsburgh 8

Description: This test is for B&W prepared and participant prepared samples at fixed conditions.

Geometry:

- Height	_____	in.
- Diameter	_____	in.
- Slurry Feed Point	_____	in.
- Wash Water Addition Point	_____	in. from top
- Froth Height	_____	in. from top
- Pulp Height	_____	in.
- Type of Baffles & Spacing	_____	in.

Operating Conditions:

- Wash Water Flow Rate	_____	GPM.
- Air Flow Rate	_____	CFM
- Feed Slurry Flow Rate	_____	GPM
- Feed Slurry Percent Solids	_____	10% by weight
- Feed Slurry pH	_____	7.0
- Feed Slurry Particle Size	_____	PSD by B&W
- Air Hold-Up	_____	
- Mean Retention Time	_____	5 minutes

Reagents:

- Collector Name	<u>Kerosene</u>	
- Collector Addition Rate	_____	#/Ton
- Frother Name	<u>Dowfroth M150</u>	
- Frother Addition Rate	_____	#/Ton
- Modifier Name	<u>N/A</u>	
- Modifier Addition Rate	_____	#/Ton
- Name & Function	<u>N/A</u>	
- Addition Rate	_____	#/Ton

Results:

Stream	Yield Grams	% Solids By Weight	Pyritic Sulfur	Ash	Total Sulfur
Product	_____	_____	_____	_____	_____
Reject	_____	_____	_____	_____	_____
Feed	_____	_____	_____	_____	_____
BTU Recovery	_____	SO2/MBTU	_____	Pyritic Sulfur Reduction	_____

Note: All conditions not specified are to be determined by the participant and for each test recorded on this log sheet. If condition does not apply to participant it must be marked not applicable (N/A).

The data from all tests 1 through 3 of Phase I were forwarded to ICF KE. This data was compiled and the results sent to the Technical Support Team (TST). The TST reviewed the data comparing tests 1 to 2 and test 3 results to the first 2 tests. After the review the TST made recommendations that each participant proceed with Test 4 at the finer grind.

2.6 Phase II - Test 4

The purpose of Phase II Test 4 was two-fold. The first was to permit the participant to alter the reagents to ensure proper operation of their particular devices. The second was to permit the participant the freedom to maximize Btu recovery and maximize pyritic sulfur rejection by whatever means he deemed appropriate. The only restriction placed upon the participant was the size analysis of the feed, which had to match, as closely as possible, the size analysis of Test 1.

Test 4 was conducted by each participant. Each participant, except Deister and Allmineral, was observed by a representative of ICF KE during the actual performance of Test 4. Each participant performed analytical tests and calculated the separation efficiency. The participant recorded his results and submitted them on Table 2.11, Report Form for Test 4. ICF KE received samples from the participants for checking laboratory verification purposes. Feed samples were received from VPI and Center for Applied Energy Research. Michigan Tech, ISGS, B. Datta Research, Allmineral, and Deister did not supply feed samples. Center for Applied Energy Research, B. Datta Research, ISGS, Michigan Tech and VPI supplied samples of Product and Tailings for the Test Number 4. Allmineral and Deister did not supply product and tailings samples.

All received samples were analyzed at Consolidated Coal Company Research Laboratory. The results of this analysis work and the participants reported values are shown on Table 2.12. All of the participants reported values correlate very closely to Consol verification tests.

The separation efficiency is defined as follows for this report:

$$\text{Separation Efficiency} = \text{BTU Recovery} - (100 - \text{Pyrite Rejection})$$

where

$$\text{Pyrite Rejection} = \frac{(100 - \text{Yield}) \times \% \text{ Pyrite in Refuse}}{100 \times \% \text{ Pyrite in Feed}}$$

and

$$\text{BTU Recovery} = \frac{\text{WT\% Yield} \times \text{Clean Coal BTU}}{100 \times \text{Raw Coal BTU}}$$

This separation efficiency is based on industry accepted methods as published by Electric Power Research Institute.

TABLE 2.11

REPORT FORM FOR TEST 4

Date _____ Test I.D. _____ Seam Pittsburgh 8Description: This test is for ICF KE top size specified and participants prepared coal and participants conditions.

Geometry:

- Height _____ in.
- Diameter _____ in.
- Slurry Feed Point _____ in.
- Wash Water Addition Point _____ in. from top
- Froth Height _____ in. from top
- Pulp Height _____ in.
- Type of Baffles & Spacing _____ in.

Operating Conditions:

- Wash Water Flow Rate _____ GPM.
- Air Flow Rate _____ CFM
- Feed Slurry Flow Rate _____ GPM
- Feed Slurry Percent Solids _____ by weight
- Feed Slurry pH _____
- Feed Slurry Particle Size _____
- Air Hold-Up _____
- Mean Retention Time _____ minutes

Reagents:

- Collector Name _____
- Collector Addition Rate _____ #/Ton
- Frother Name _____
- Frother Addition Rate _____ #/Ton
- Modifier Name _____
- Modifier Addition Rate _____ #/Ton
- Name & Function _____
- Addition Rate _____ #/Ton

Results:

Stream	Yield Grams	% Solids By Weight	Pyritic Sulfur	Ash	Total Sulfur
Product	_____	_____	_____	_____	_____
Reject	_____	_____	_____	_____	_____
Feed	_____	_____	_____	_____	_____

BTU Recovery	SO ₂ /MBTU	Pyritic Sulfur Reduction
--------------	-----------------------	--------------------------

Note: All conditions not specified are to be determined by the participant and for each test recorded on this log sheet. If condition does not apply to participant it must be marked not applicable (N/A).

TABLE 2.12
VERIFICATION TESTS

PERFORMANCE PARAMETER	AL MN	BDR	CAER	DCCI	ISGS	MTU	VPI
	#4	#4	#4	#4	#4	#4	#4
FEED							
ASH % REPORTED	N/A	N/A	11.65	N/A	N/A	N/A	11.67
ASH % CHECKED	N/A	N/A	12.72	N/A	N/A	N/A	11.75
TOTAL SULFUR % REPORTED	N/A	N/A	3.92	N/A	N/A	N/A	3.74
TOTAL SULFUR % CHECKED	N/A	N/A	4.49	N/A	N/A	N/A	3.88
PYRITIC SULFUR % REPORTED	N/A	N/A	2.39	N/A	N/A	N/A	2.92
PYRITIC SULFUR % CHECKED	N/A	N/A	2.79	N/A	N/A	N/A	2.22
BTU REPORTED	N/A	N/A	12506	N/A	N/A	N/A	12506
BTU CHECKED	N/A	N/A	12730	N/A	N/A	N/A	12854
PRODUCT							
ASH % REPORTED	N/A	3.73	3.73	N/A	3.60	2.59	2.91
ASH % CHECKED	N/A	3.02	3.94	N/A	5.03	2.68	2.80
TOTAL SULFUR % REPORTED	N/A	1.83	2.13	N/A	1.99	1.65	1.90
TOTAL SULFUR % CHECKED	N/A	1.76	2.08	N/A	2.02	1.77	1.90
PYRITIC SULFUR % REPORTED	N/A	0.80	0.62	N/A	0.77	0.38	0.40
PYRITIC SULFUR % CHECKED	N/A	0.37	0.34	N/A	0.79	0.43	0.51
BTU REPORTED	N/A	14082	14110	N/A	14322	13824	14333
BTU CHECKED	N/A	13922	13900	N/A	13834	14448	14067
REFUSE							
ASH % REPORTED	N/A	79.09	70.27	N/A	61.67	60.15	34.51
ASH % CHECKED	N/A	74.28	71.09	N/A	70.30	60.57	34.00
TOTAL SULFUR % REPORTED	N/A	16.78	17.20	N/A	15.29	15.04	8.52
TOTAL SULFUR % CHECKED	N/A	16.20	17.52	N/A	11.95	14.85	8.76
PYRITIC SULFUR % REPORTED	N/A	15.93	15.50	N/A	14.83	11.10	4.53
PYRITIC SULFUR % CHECKED	N/A	14.64	15.73	N/A	10.24	12.72	6.96
BTU REPORTED	N/A	2562	2440	N/A	3700	4120	9057
BTU CHECKED	N/A	1670	1987	N/A	2430	4248	8991

AL MN = ALL MINERAL, BDR = B. DATTA RESEARCH, CAER = CENTER for APPLIED ENERGY RESEARCH,
 DCCI = DEISTER CONCENTRATOR COMPANY, INC., ISGS = ILLINOIS STATE GEOLOGICAL SURVEY,
 MTU = MICHIGAN TECHNOLOGICAL UNIVERSITY, VPI = VIRGINIA POLYTECHNIC INSTITUTE
 AND STATE UNIVERSITY

3.0 TEST RESULTS

In the field of coal preparation, it is common to evaluate and compare coal cleaning devices on the basis of their performance relative to the washability data for the same material being processed. Washability analysis is based on gravitational forces and can demonstrate the theoretical "best" possible results.

The results of the Round Robin testing were evaluated against washability data for two sizes. The first size was 200M x 0 and the second size was 325M x 0. It is important to note that the top size analysis must be evaluated even to compare washability data. In addition to the washability data, ICF KE evaluated the results based upon a technique known as a release analysis.

The following discussions compare the results of the round robin participants based upon three criteria; size analysis, washability by size, and the release analysis.

3.1 Size Analysis

The Round Robin testing was conducted at two different size ranges. The two size ranges were 200M x 0 used for Test Numbers 3 of Phase I and 325M x 0 used for Test Numbers 1 and 2 of Phase I and Test Number 4 of Phase II. Test Number 1 of Phase I was compared to Test Number 3 of Phase I to determine if the reduction in top size improved Btu recovery and pyritic sulfur rejection. The size analysis for Test Number 4 Phase II was to match as closely as possible the 325M x 0 grind used in Test Number 1 of Phase I thus eliminating the particle size variable when comparing results of Test Number 4 of Phase II.

Test Number 1 of Phase I was prepared by B&W. The size analysis for each of the seven participants is shown in Table 3.1 and graphically on Figures 3.1 and 3.2. As can be seen from the data the average d_{50} size was 9.38 microns with the smallest at 8.50 microns and the largest at 9.96 microns. To better define the curve the d_{80} and d_{20} values are also reported on Table 3.1. The d_{80} average was 17.58 microns varying from 15.96 microns to 17.87 microns. The d_{20} average was 4.69 microns varying from 4.10 microns to 4.91 microns.

Test number 2 of Phase I was prepared by each participant. The size analysis for each of the participants reporting is shown in Table 3.2 and graphically on Figure 3.3. The data indicates that the average d_{50} was 8.87 microns varying from 6.71 microns to 11.37 microns. This compares very closely to the Test 1 Phase I size analysis. Further, comparing the average d_{80} of 16.15 microns varying from 11.19 microns to 18.74 microns and the average d_{20} of 4.23 microns varying from 3.26 microns to 6.34 microns with Test Number 1 of Phase I indicates that the participants prepared their samples to acceptable and comparable size ranges.

Test Number 3 of Phase I was prepared by each participant. The size analysis for each participant reporting is shown in Table 3.3 and graphically on Figure 3.4. The data indicates that indeed each participant with the exception of Allmineral produced a grind that was minus 200 mesh at the d_{80} point. The d_{50} point average was 33.62 microns varying from 26.92 microns to 41.78 microns. The test was conducted at a coarser size analysis than Test Numbers 1 and 2 of Phase 3. Allmineral produced essentially the same size consist as they did in Test 2.

Test Number 4 of Phase II was prepared by each participant. The size analysis for each of the participants reporting is shown in Table 3.4 and graphically on

TABLE 3.1

TEST #1
SIZE ANALYSIS BY B&W

SIZE MICRONS	AL MN WT. %	BDR WT. %	CAER WT. %	DCCI WT. %	ISGS WT. %	MTU WT. %	VPI WT. %	AVG WT. %
600.00	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
424.26	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99
300.00	99.98	99.98	99.98	99.98	99.98	99.98	99.98	99.98
212.13	99.98	99.98	99.98	99.98	99.98	99.98	99.98	99.98
150.00	99.98	99.98	99.98	99.98	99.98	99.98	99.98	99.98
106.07	99.98	99.98	99.98	99.98	99.98	99.98	99.98	99.98
75.00	99.98	99.98	99.98	99.98	99.98	99.98	99.98	99.98
53.03	99.98	99.98	99.98	99.98	99.98	99.98	99.98	99.98
37.50	99.98	99.98	99.06	98.97	99.16	99.98	99.89	99.57
26.52	96.48	95.42	94.72	96.28	94.63	97.01	96.13	95.81
18.75	86.89	83.33	83.55	82.66	81.91	85.15	86.06	84.22
13.26	75.14	69.02	66.49	66.72	66.89	69.04	68.75	68.86
9.38	56.50	50.51	48.21	48.12	48.47	49.96	49.14	50.13
6.63	37.94	32.47	31.32	31.07	31.51	32.17	32.37	32.69
4.69	24.39	20.01	19.01	18.93	19.32	19.67	20.20	20.22
3.31	15.34	12.61	11.12	11.33	11.76	11.66	12.01	12.26
2.34	9.74	7.73	6.70	6.73	7.14	6.91	7.30	7.46
1.66	6.11	4.63	4.22	4.17	4.33	4.39	4.54	4.63
1.17	4.13	3.06	2.70	2.76	2.80	2.87	2.91	3.03
0.83	2.56	1.83	1.55	1.61	1.60	1.66	1.65	1.78
0.59	1.35	0.92	0.74	0.76	0.77	0.77	0.79	0.87
0.41	0.30	0.21	0.14	0.14	0.21	0.14	0.21	0.19
0.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
D 50	8.50	9.38	9.96	9.81	9.52	9.38	9.52	9.38
D 80	15.96	17.58	17.87	17.72	17.87	17.28	16.99	17.58
D 20	4.10	4.69	4.91	4.84	4.76	4.69	4.69	4.69

FIGURE 3.1

TEST #1

SIZE ANALYSIS BY BROW

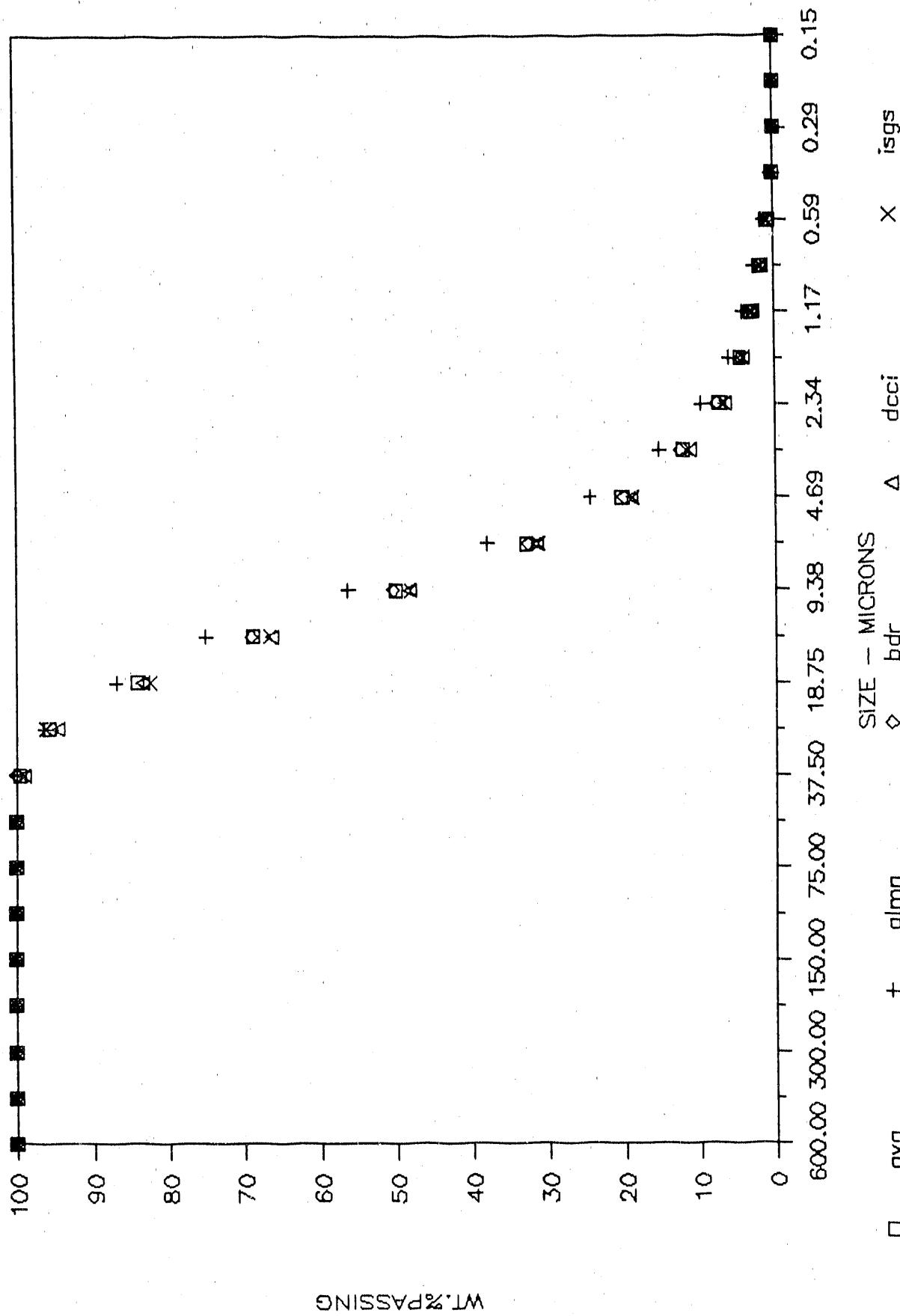


FIGURE 3.2

TEST #1

SIZE ANALYSIS BY B&W

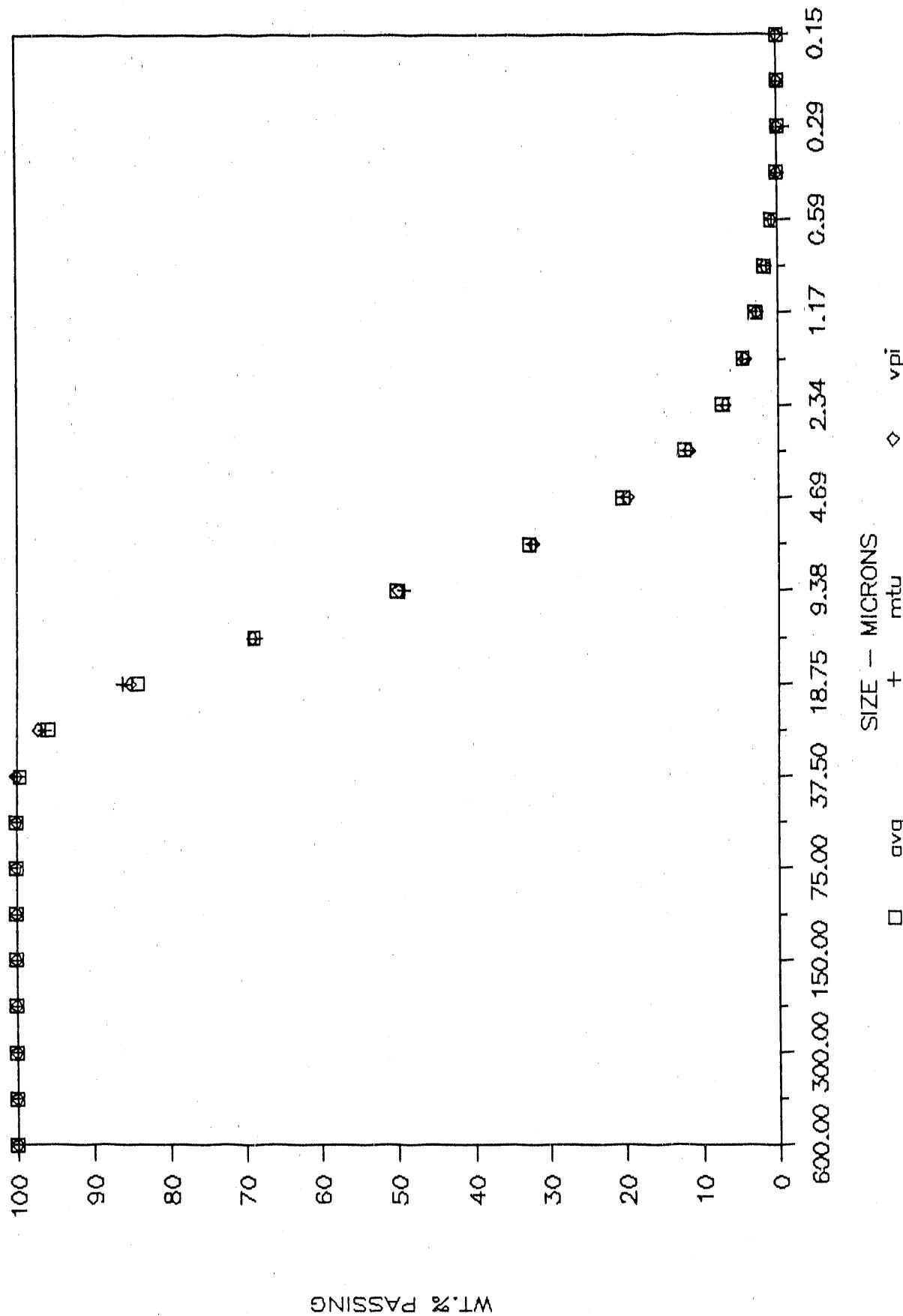


TABLE 3.2

TEST #2					
SIZE ANALYSIS BY PARTICIPANT					
SIZE	AL MN	CABR	ISGS	MTU	VPI
MICRON	WT. %				
88.00	100.0	100.0	100.0	100.0	98.70
62.00	100.0	99.90	100.0	100.0	96.30
44.00	100.0	99.70	99.80	99.30	91.90
31.00	99.70	97.00	91.80	95.40	86.70
22.00	98.10	91.00	86.70	87.20	84.20
16.00	93.10	74.00	79.70	74.40	81.30
11.00	79.30	48.00	59.10	59.00	69.20
7.80	59.90	28.00	45.80	44.60	52.50
5.50	42.19	16.00	36.20	32.10	35.30
3.90	27.80	9.30	21.80	22.10	21.20
2.80	15.60	5.50	14.00	14.00	11.60
1.90	7.20	3.00	6.70	6.50	4.80
1.40	0.00	1.90	3.00	2.80	2.00
0.90	0.00	0.00	0.70	0.60	0.40
D 50	6.71	11.37	9.14	9.23	7.88
D 80	11.19	18.46	16.59	18.74	15.75
D 20	3.26	5.34	3.85	3.76	3.94

TABLE 3.3

TEST #3					
SIZE ANALYSIS BY PARTICIPANT					
SIZE	AL MN	CABR	ISGS	MTU	VPI
MICRON	WT. %				
88.00	100.0	100.0	100.0	100.0	100.0
62.00	100.0	100.0	100.0	100.0	100.0
44.00	100.0	100.0	100.0	100.0	100.0
31.00	99.70	97.00	91.80	95.40	86.70
22.00	98.10	91.00	86.70	87.20	84.20
16.00	93.10	74.00	79.70	74.40	81.30
11.00	79.30	48.00	59.10	59.00	69.20
7.80	59.90	28.00	45.80	44.60	52.50
5.50	42.19	16.00	36.20	32.10	35.30
3.90	27.80	9.30	21.80	22.10	21.20
2.80	15.60	5.50	14.00	14.00	11.60
1.90	7.20	3.00	6.70	6.50	4.80
1.40	0.00	1.90	3.00	2.80	2.00
0.90	0.00	0.00	0.70	0.60	0.40
D 50	6.71	11.37	9.14	9.23	7.88
D 80	11.19	18.46	16.59	18.74	15.75
D 20	3.26	5.34	3.85	3.76	3.94

TABLE 3.4

TEST #4					
SIZE ANALYSIS BY PARTICIPANT					
SIZE	AL MN	CABR	ISGS	MTU	VPI
MICRON	WT. %				
88.00	100.0	100.0	100.0	100.0	100.0
62.00	100.0	99.90	100.0	100.0	96.30
44.00	100.0	99.70	99.80	99.30	91.90
31.00	99.70	97.00	91.80	95.40	86.70
22.00	98.10	91.00	86.70	87.20	84.20
16.00	93.10	74.00	79.70	74.40	81.30
11.00	79.30	48.00	59.10	59.00	69.20
7.80	59.90	28.00	45.80	44.60	52.50
5.50	42.19	16.00	36.20	32.10	35.30
3.90	27.80	9.30	21.80	22.10	21.20
2.80	15.60	5.50	14.00	14.00	11.60
1.90	7.20	3.00	6.70	6.50	4.80
1.40	0.00	1.90	3.00	2.80	2.00
0.90	0.00	0.00	0.70	0.60	0.40
D 50	6.71	11.37	9.14	9.23	7.88
D 80	11.19	18.46	16.59	18.74	15.75
D 20	3.26	5.34	3.85	3.76	3.94

TEST #3					
SIZE ANALYSIS BY PARTICIPANT					
SIZE	AL MN	CABR	ISGS	MTU	VPI
MICRON	WT. %				
D 50	6.71	11.37	9.14	9.23	7.88
D 80	11.19	18.46	16.59	18.74	15.75
D 20	3.26	5.34	3.85	3.76	3.94

TEST #4					
SIZE ANALYSIS BY PARTICIPANT					
SIZE	AL MN	CABR	ISGS	MTU	VPI
MICRON	WT. %				
D 50	6.71	11.37	9.14	9.23	7.88
D 80	11.19	18.46	16.59	18.74	15.75
D 20	3.26	5.34	3.85	3.76	3.94

FIGURE 3.3

TEST #2
SIZE ANALYSIS BY PARTICIPANT

FIGURE 3.4

TEST #3

SIZE ANALYSIS BY PARTICIPANT

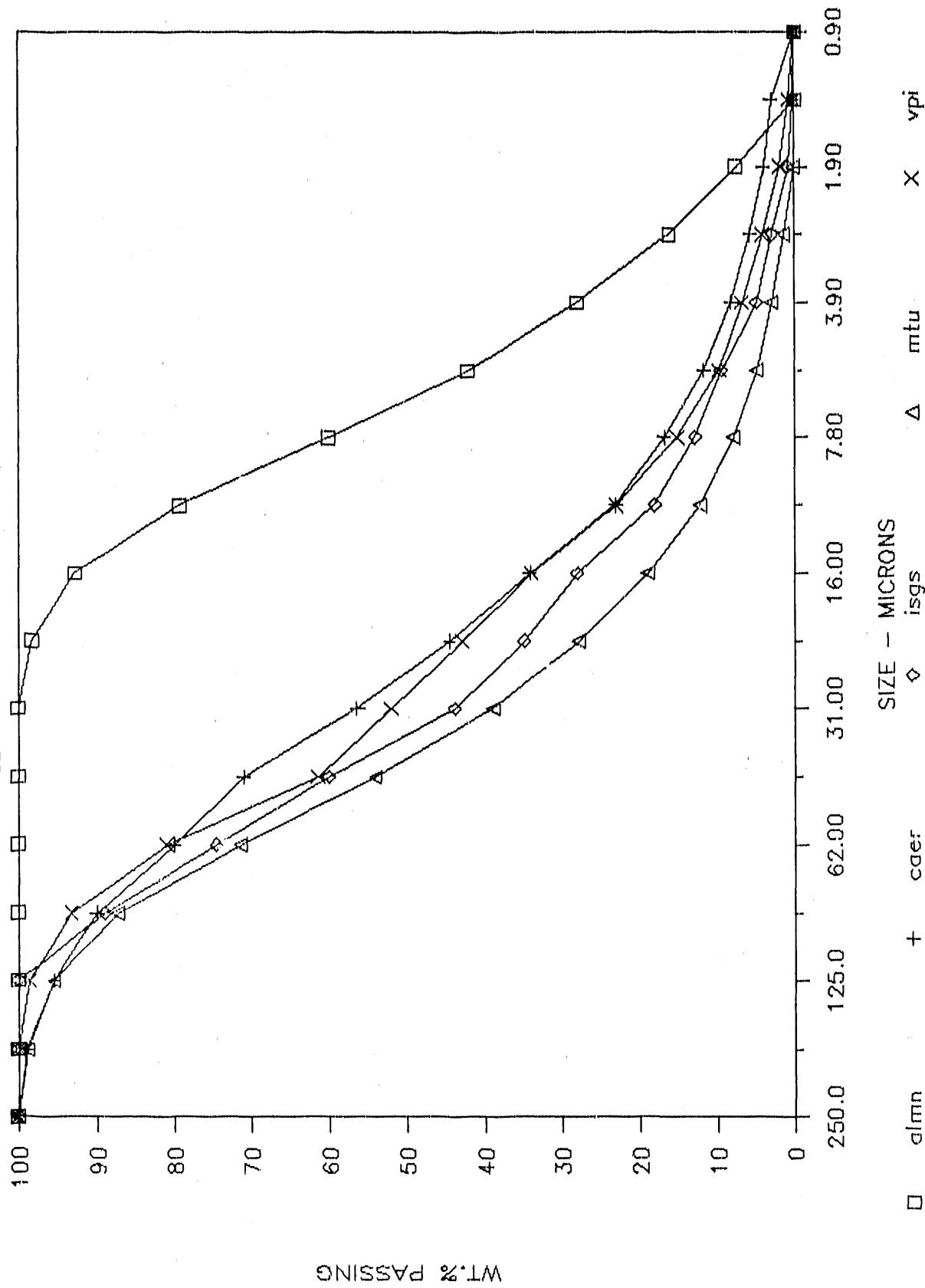


FIGURE 3.5

TEST #4

SIZE ANALYSIS BY PARTICIPANT

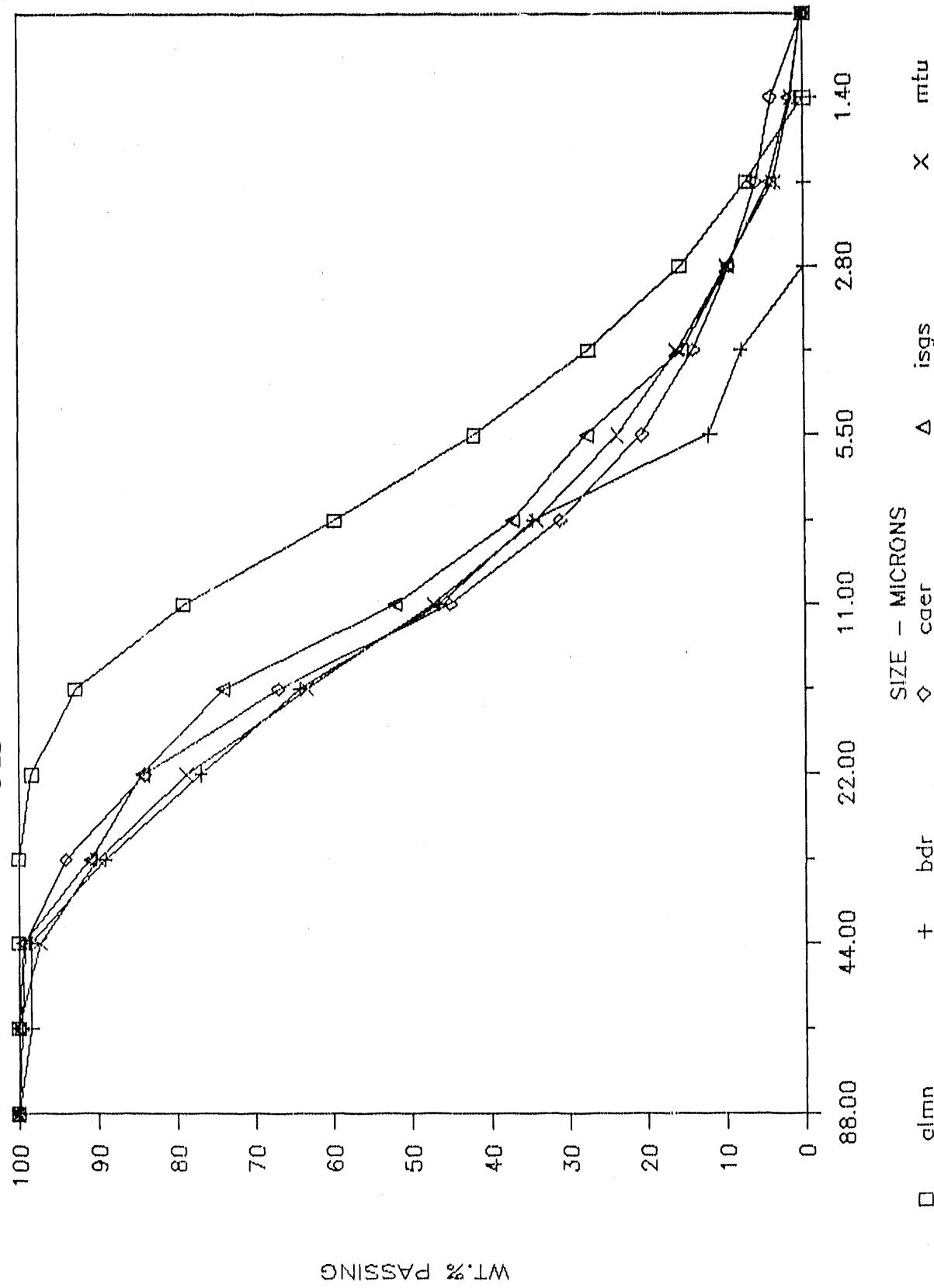


Figure 3.5. The size analysis for this test was specified by the Technical Support Team (TST) based upon comparing the efficiency of Test Numbers 1 and number 3. Allmineral and Center for Applied Energy Research each had better results in Test 3 than Test 1. However, Allmineral's size analysis for Test 3 was finer than Test 1 and Center for Applied Energy Research experienced operating problems with their device attempting to maintain the controlled conditions specified. All of the other participants, except B. Datta Research who had no reported results for Tests 1 thru 3, reported better efficiency of separation at the finer grind. The TST specified that test 4 of Phase II be conducted at the finer size analysis. The average d_{50} reported was 10.72 microns varying from 6.72 microns to 12.22 microns. The average d_{80} was 19.78 microns varying from 11.49 microns to 24.44 microns. The average d_{20} was 4.90 microns varying from 3.28 microns to 6.42 microns. The average values compare quite accurately with Test 1, Phase I size analysis.

3.2 Washability Analysis

The sample of Pittsburgh No. 8 coal was crushed to two different top sizes of 200 mesh and 325 mesh. Both of these samples were subjected to specific gravity washability analysis. The 200 mesh sample was prepared by Praxis Engineering and is shown in Table 3.5. The 325 mesh sample was prepared by Tradet Laboratories and is shown in Table 3.6. The Btu recovery versus Pyritic Sulfur Rejection is plotted for both sizes on Figure 3.6. This graph shows that the finer size grind improves the pyritic sulfur rejection at a given Btu recovery.

The flotation results for Test Number 3 Phase I are plotted along with the 200 mesh washability Btu recovery versus pyritic sulfur rejection on Figure 3.7. Three participants indicated from their results that they recovered more than 100% of Btu and this is indicated as points above the washability curve. These results are clearly erroneous and are most likely the result of poor performance of analytical test work. The three other participants are well below the results predicted by the washability curve.

The flotation results of Test Numbers 1 and 2 of Phase I and Test 4 of Phase II are plotted along with the 325 mesh washability Btu recovery versus pyritic sulfur rejection in Figure 3.8. All of the participants have lower results than the washability plot except for one participant who appears to fall on the washability plot.

All of the Test 4 results, which should be the best possible, fall below the washability curve. This indicates good results, but that the performance could be improved.

3.3 Release Analysis

The previous discussion has compared washability data to the performance of froth flotation. Washability analysis is based on gravitational separation processes. Unfortunately, for a process such as froth flotation, which is based on the differences in the surface properties of the material being treated, washability analysis does not always provide an appropriate basis for comparison. As a result, the release analysis technique was developed by C.C. Dell in the early 1950's as the counterpart in froth flotation to float/sink analysis in gravity separation.

TABLE 3.5
WASHABILITY DATA FOR PITTSBURGH NO. 8 CRUSHED TO MINUS 200M

WASHABILITY DATA
SEAM: PITTSBURGH NO. 8
BELMONT COUNTY, OHIO

ORIGINAL SAMPLE, CRUSHED TO 200 M TOPSIZE

SIZE FRACTION: 200 M X 0 - 100.0 Z

ELEMENTARY DATA

SPECIFIC GRAVITY SINK FLOAT	(Z) WT%	(Z) ASH	(Z) TOT SUL	(Z) PYR SUL	(Z) BTU	# SD2/ M BTU	(Z) ASH	(Z) TOT SUL	(Z) PYR SUL	BTU	BTU REC	(Z) # SD2/ M BTU REJECTED	COMPUTED DATA: CUMULATIVE	
													(Z)	(Z)
1.30	53.9	2.08	1.35	0.09	14513	1.86	53.9	2.08	1.35	0.09	14513	61.36	1.86	92.26
1.35	6.7	4.41	1.50	0.33	14112	2.13	60.6	2.34	1.37	0.12	14469	68.76	1.89	97.46
1.40	8.6	4.87	1.45	0.37	13580	2.14	69.2	2.65	1.38	0.15	14358	77.94	1.92	96.32
1.45	17.6	10.57	1.89	0.97	12878	2.94	86.8	4.26	1.48	0.31	14056	95.72	2.11	90.17
1.60	1.6	26.01	4.80	3.92	10650	9.19	88.4	4.65	1.54	0.38	13993	97.03	2.20	87.92
1.85	11.5	68.34	21.84	21.07	3264	133.82	100.0	12.04	3.90	2.78	12748	100.00	6.11	0.00

TABLE 3-6

WASHABILITY DATA FOR PITTSBURGH NO. 8 CRUSHED TO MINUS 325M

SPECIFIC GRAVITY	DRY BASIS						CUMULATIVE PRODUCT (FLOAT)						BTU PER Lb.						
	Sink	Float	% Wt.	% Ash	% Sulf.	BTU per lb.	MAFSTU per lb.	% Pyr.	% Sulf.	% Organ. Sulfur	BTU per lb.	MAFSTU per lb.	% Pyr.	% Sulf.	% Organ. Sulfur	BTU per lb.	RECOVERY	PERCENT REJECT.	
1.30	37.83	1.71	1.55	14,462	14,714	0.08	0.11	1.37	37.83	1.71	1.55	14,462	14,714	0.08	0.11	1.37	43.84	56.72	
1.35	17.97	2.45	1.64	14,361	14,660	0.11	0.21	1.33	55.80	1.95	1.58	14,410	14,696	0.09	0.14	1.36	64.43	37.87	
1.40	16.44	3.47	1.65	13,832	14,329	0.17	0.30	1.18	72.24	2.29	1.60	14,279	14,614	0.11	0.18	1.32	82.66	96.63	
1.45	1.45	8.00	5.76	1.78	13,434	14,255	0.29	0.44	1.05	80.24	2.64	1.61	14,194	14,579	0.13	0.20	1.29	91.27	95.58
1.50	3.44	9.70	1.99	12,699	14,063	0.51	0.60	0.88	83.68	2.93	1.62	14,133	14,560	0.14	0.22	1.27	96.71	95.04	
1.55	1.60	2.88	14.49	2.27	11,966	13,979	0.76	0.76	0.75	86.56	3.31	1.65	14,061	14,542	0.16	0.24	1.26	97.53	94.13
1.60	1.70	0.85	27.06	3.15	9,818	13,460	1.39	1.19	0.57	87.41	3.54	1.66	14,020	14,534	0.17	0.25	1.25	98.20	93.70
1.70	1.80	0.44	36.92	4.37	8,006	12,692	2.05	1.66	0.66	87.85	3.71	1.68	13,989	14,528	0.18	0.25	1.25	98.48	93.30
1.80	12.15	75.12	20.20	1.556	6,254	18.12	1.31	0.77	100.00	12.39	3.93	12,479	14,243	2.36	0.38	1.19	100.00	0.00	

FIGURE 3.6

WASHABILITY - BTU RECOVERY VERSUS PYRITIC SULFUR REJECTION
FOR MINUS 200M AND MINUS 325H

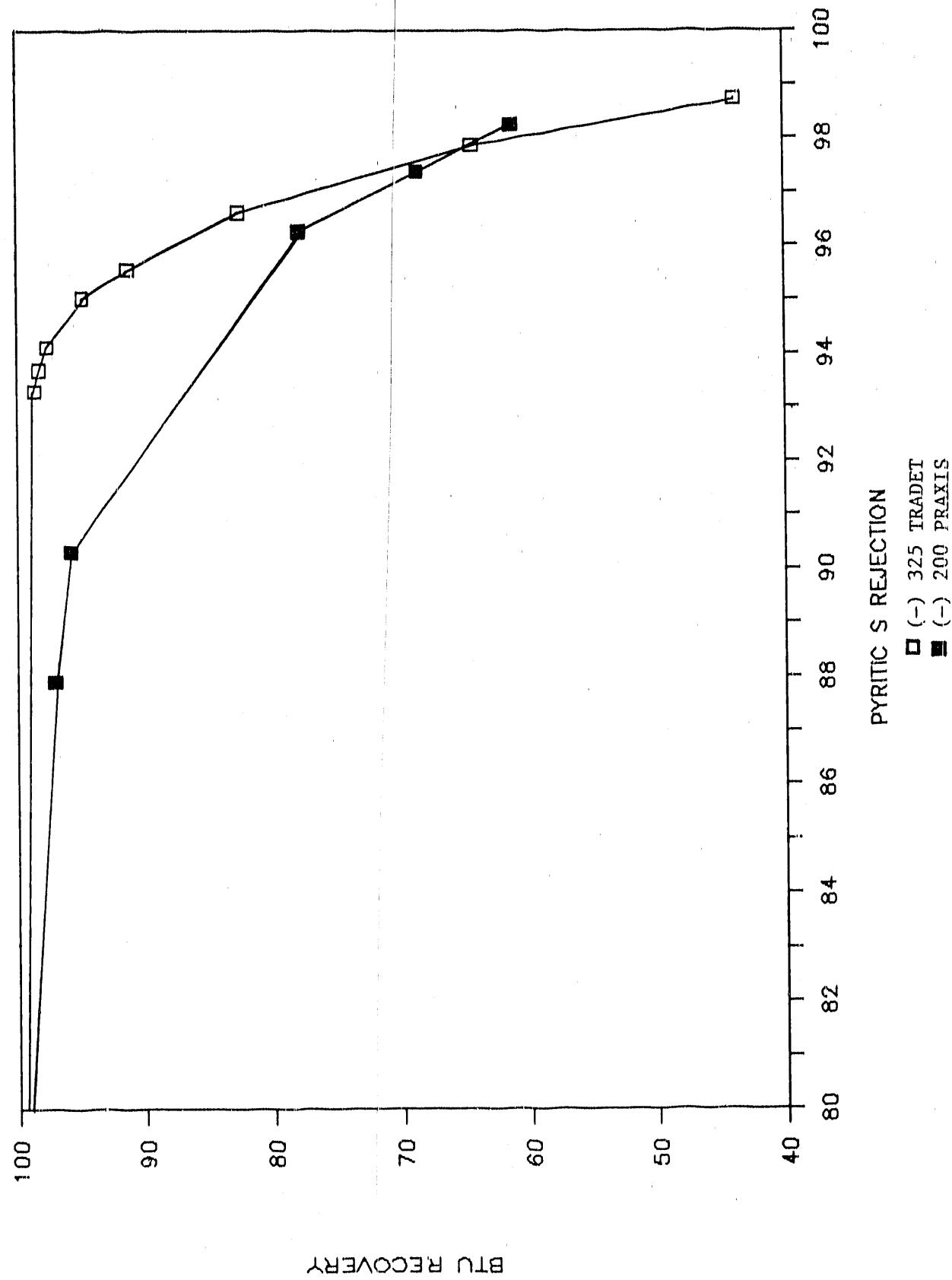


FIGURE 3.7

PARTICIPANTS RESULTS VERSUS WASHABILITY PLOT
OF BTU RECOVERY VERSUS PYRITIC SII, FIR REJECTION
FOR TEST #3

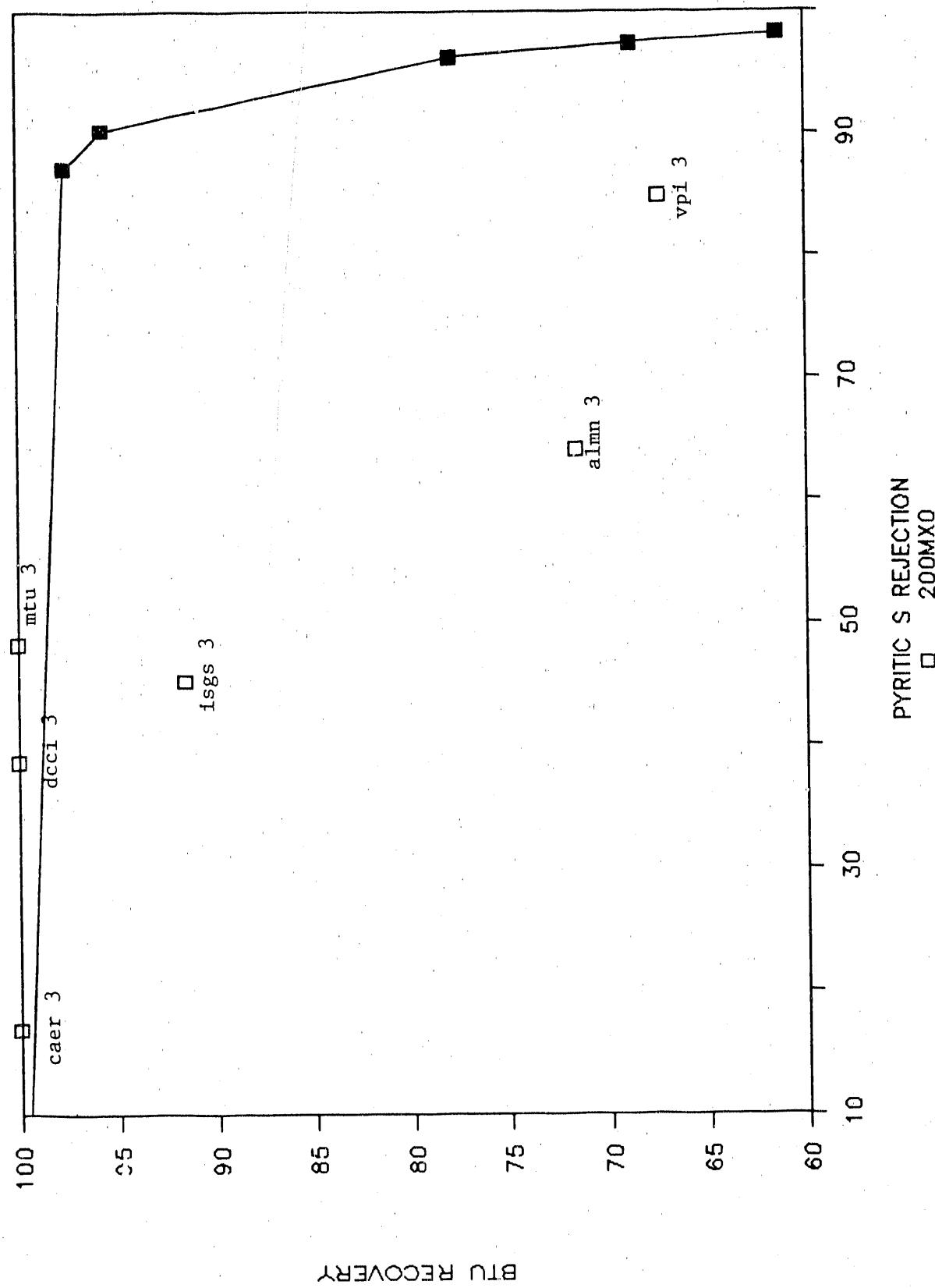
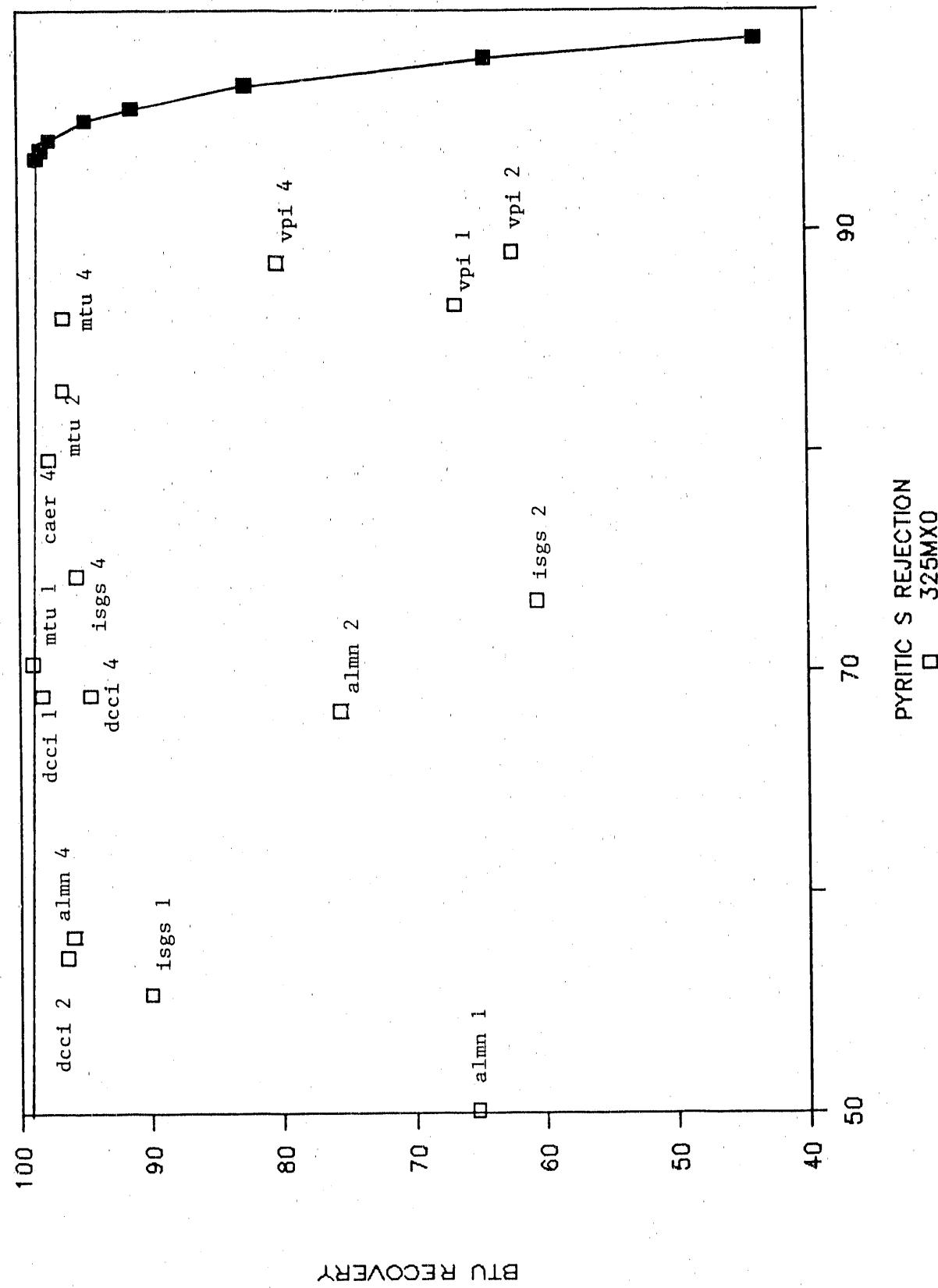



FIGURE 3.8

PARTICIPANTS RESULTS VERSUS WASHABILITY PLOT
OF BTU RECOVERY VERSUS PYRITIC SULFUR REJECTION
FOR TEST #1, #2, AND #4

Several forms of release analysis have been developed over the years including the original technique often referred to as timed release analysis. In 1964, however, Dell [1] showed that a simplified technique which he called "an improved release analysis procedure for determining coal washability" could be used to provide the same results as the more time consuming and complicated original procedure. In this procedure, a sample of coal is floated in a conventional batch flotation cell using every means possible (i.e., high pulp level, high aeration rate, extra frother, etc.) to produce a high recovery. The concentrate from the cell is cleaned an additional three or four times under the same conditions to remove entrained clays and fine mineral matter. This procedure results in a separation of the truly non-floatable material from the floatable material. The floatable material is placed back into the cell and a final separation is made between the highly floatable material and the progressively less floatable material. For this final separation, the air is initially turned off and the impeller speed is reduced to the point where froth formation and flotation ceases. Both are then increased very slowly until flotation is just discernible. This froth is scraped for as long as it keeps appearing. The collection basin is then changed and the aeration rate and impeller speed are increased slightly to collect slightly less floatable material. This procedure is continued until all floatable material has been recovered. Any remaining tailings are combined with the original non-floatable material as part of the overall tailings sample. Each fraction of material is weighed and analyzed to determine cumulative yield, Btu recovery, ash, sulfur, etc. The data are plotted as cumulative Btu recovery versus sulfur rejection. The use of the rejection term normalizes the effect of changes in feed sulfur from one sample to the next so that all samples can be compared on the same basis.

The resulting plot of Btu recovery versus sulfur rejection represents the best result that can possibly be obtained by any flotation process for that particular sample and size distribution. It primarily reflects cleaning down to the liberation limit of the sample. Extensive test work using various frothers and frother dosages shows no effect on release curve. In addition, the dosage of kerosene or fuel oil seems to have little effect on the release curve. The only parameters which are found to change the shape of the release curve are liberation as reflected by the feed size distribution, and reagents which change the relative flotation rates of the various components in the sample. For example, a pyrite depressant which reduces the rate of floatation for pyritic particles more than it does for coal particles will result in an improved release curve.

With the above procedure in mind, release analysis tests were conducted on the sample of Pittsburgh No. 8 coal. The sample had been ground to minus 325 mesh per the instructions provided to all participants. Since some participants had used MIBC and some had used Dowfroth M150 as the frother in their test work, separation release analyses were performed for each frother type. The results verified previous test work that the type of frother and collector do not influence the release curve. Each of the participants are shown on the plots of Btu recovery versus sulfur rejection on Figures 3.9 thru 3.12.

Figure 3.9 shows the results of Round Robin Test Number 1 for all participants. In terms of the Round Robin results, Deister, MTU and CAER appear to fit exactly on the release curve. It should be mentioned, however, that since all recovery versus rejection curves tend to come together at very high and very low recoveries, it is difficult to say whether Deister, MTU and CAER are actually on the release curve. In any case, the most important point is that nobody did

TEST NO. 1

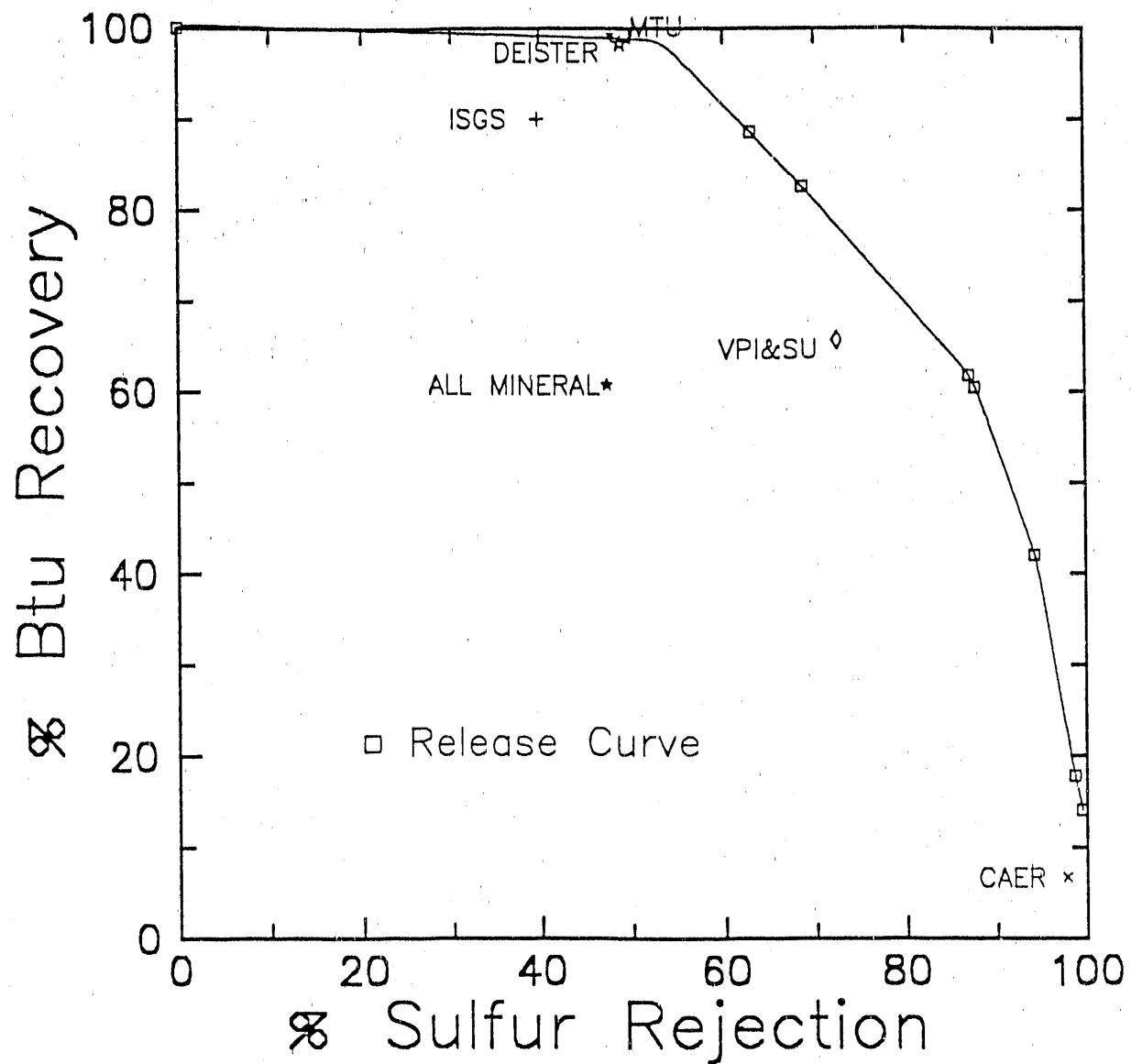


FIGURE 3.9 COMPARISON OF ROUND ROBIN TEST 1 RESULTS WITH THE RELEASE ANALYSIS CURVE FOR SULFUR REJECTION.

TEST NO. 2

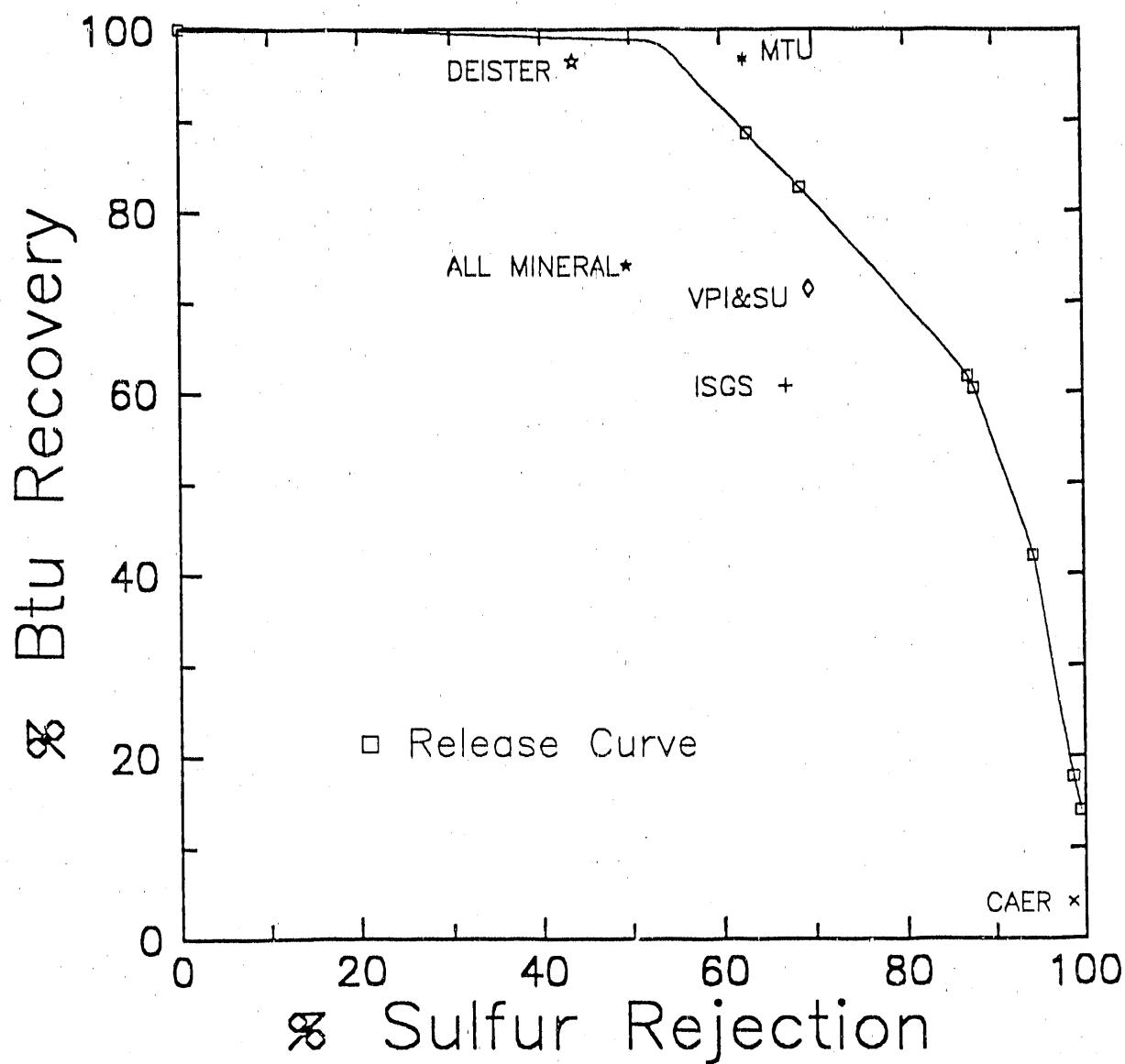


FIGURE 3.10 COMPARISON OF ROUND ROBIN TEST 2 RESULTS WITH THE RELEASE ANALYSIS CURVE FOR SULFUR REJECTION.

TEST NO. 3

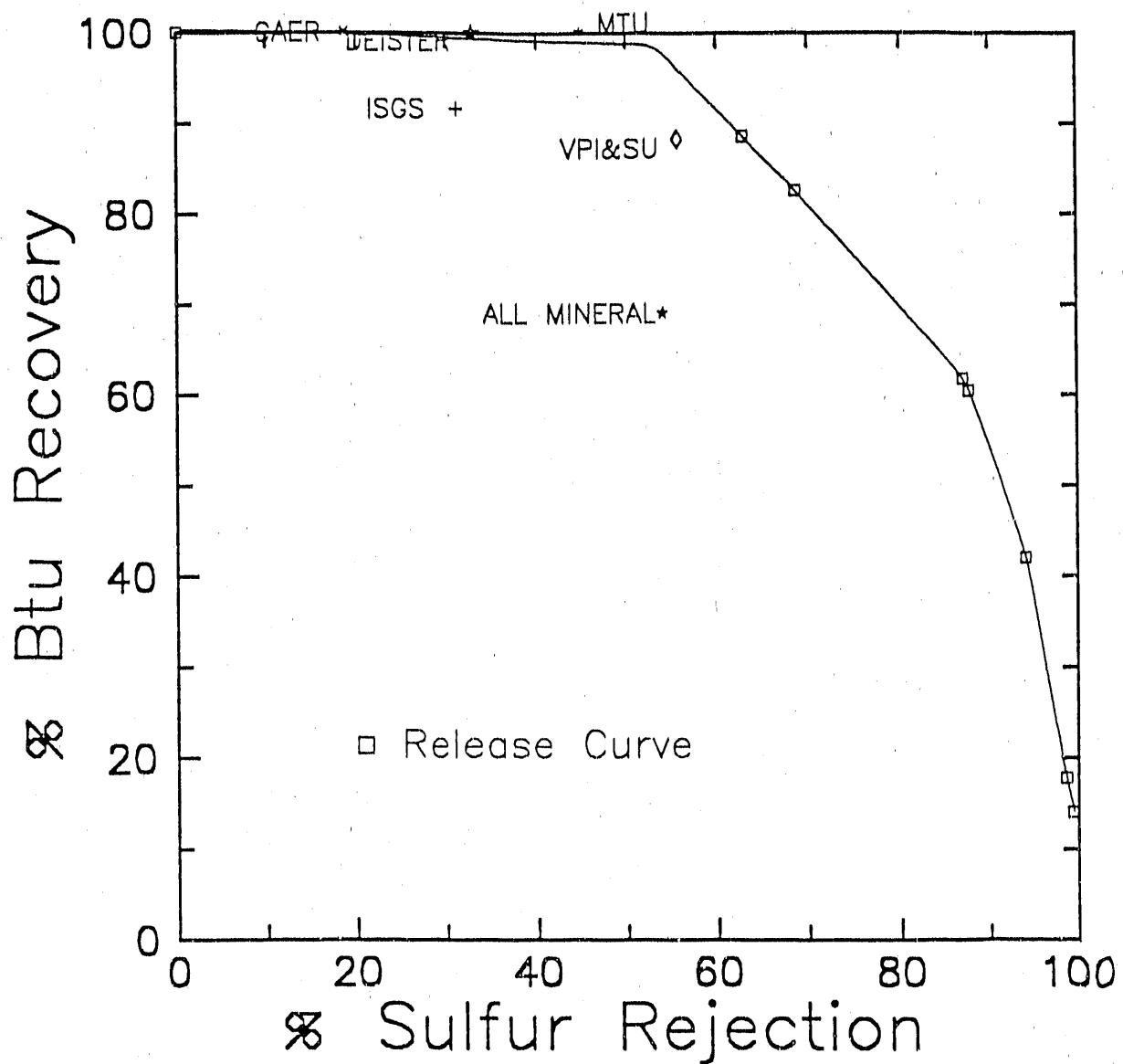


FIGURE 3.11 COMPARISON OF ROUND ROBIN TEST 3 RESULTS WITH THE RELEASE ANALYSIS CURVE FOR SULFUR REJECTION.

TEST NO. 4

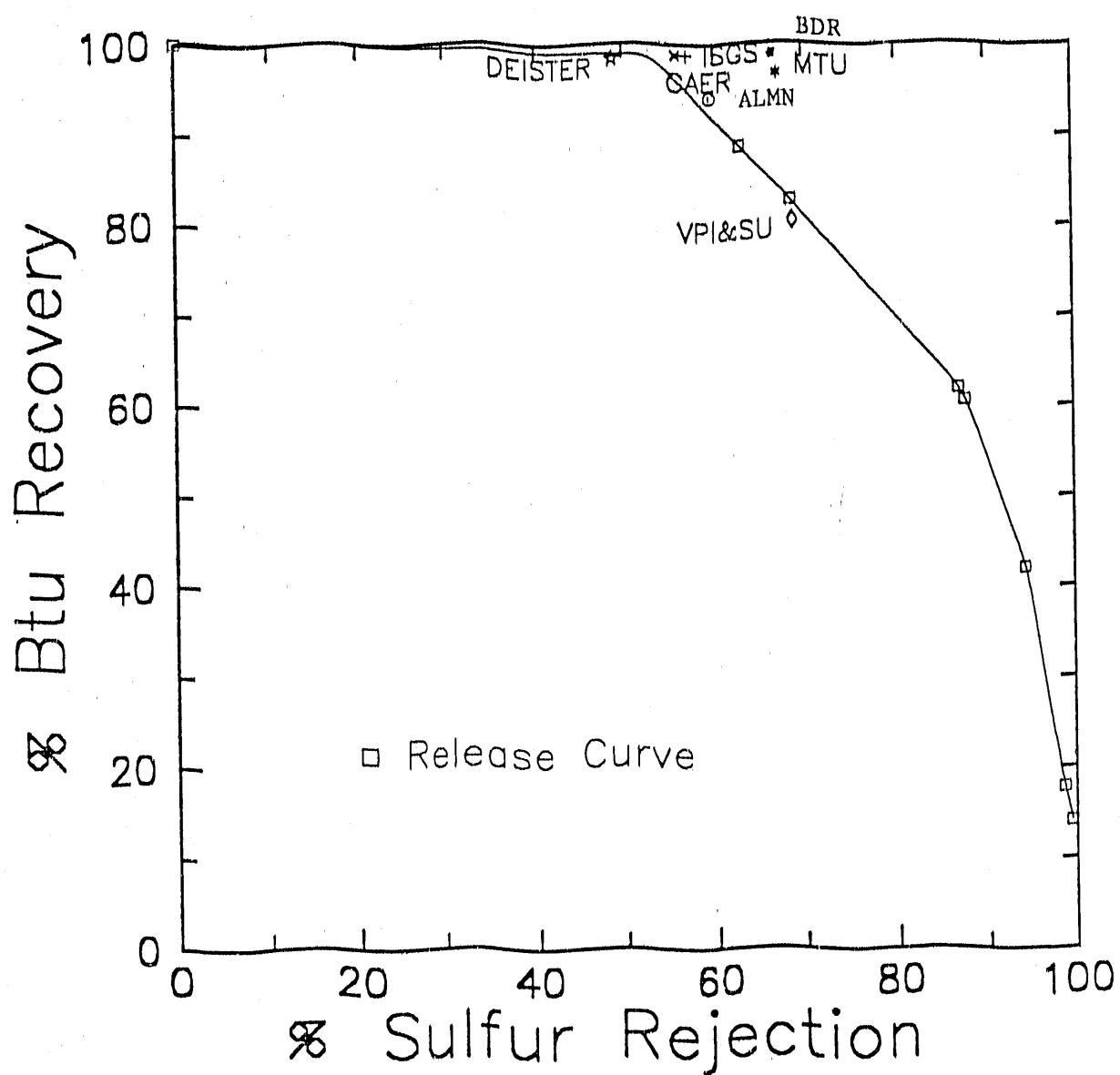


FIGURE 3.12 COMPARISON OF ROUND ROBIN TEST 4 RESULTS WITH THE RELEASE ANALYSIS CURVE FOR SULFUR REJECTION.

better than the release curve. ISGS is below the release curve as one would expect for conventional flotation since mineral matter is entrained in the water which is recovered with the froth. A similar conclusion can be drawn for the result of Allmineral. VPI is below the release curve because of lack of proper retention time.

The results shown in Figures 3.10 for Round Robin Test Number 2 indicate similar conclusions to those seen for Test 1. In this case, Deister, VPI and CAER are slightly below the release curve, Allmineral and ISGS are well below the release curve due to entrainment, and MTU appears to be better than the release curve. Since the result by MTU is clearly impossible, it may be that this data was not collected at steady-state, or sample analysis error exists.

Figure 3.11 shows the results for Test Number 3. It should be pointed out that this test was conducted using a minus 200 mesh sample. Thus, the true release curve for this sample should actually be to the left of the minus 325 mesh release curve since the liberation of pyrite and other mineral matter is not as good. In this case, CAER, Deister and MTU operated at the release curve. VPI may very well be on or near the release curve for the minus 200 mesh sample, while the points for ISGS and Allmineral once again reflect entrainment.

The best results reported by all participants were for Test Number 4. These data are shown in Figure 3.12. As can be seen, Deister, ISGS, CAER and VPI appear to fall on the release curve within normal experimental error. This is as expected since the wash water in any properly operated flotation column should eliminate entrainment and produce essentially the same results as release analysis. Likewise, the multi-stage cleaning process used by ISGS, and Allmineral is essentially a duplication of the release analysis procedure and should also result in a point on the release curve. Deviation from the release curve was exhibited by MTU and B. Datta Research which again may reflect data which was not collected at steady-state or sample analysis error.

In summary, it appears that all columns tested and the multi-stage cleaning technique produce results which are on the same grade versus sulfur rejection curve. Furthermore, these processes produce results which are at the best metallurgical performance that can be obtained as dictated by release analysis.

3.4 Material Balance Analysis

3.4.1 Overview of the Material Balance Problem

In any continuous process, steady-state is defined as the point when the overall mass and the mass of each component (i.e., ash, sulfur, etc.) entering the process is equal to the overall mass and the mass of each component leaving the process. Assuming there is no generation or destruction of mass in the process (i.e., precipitation or leaching), the mass balance can be written in terms of the feed and product streams around a process. For example, the mass balance for a flotation process is given by:

$$F - P - R = 0 \quad (1)$$

where F is the mass flow rate of solids in the feed stream, P is the mass flow rate of solids in the product stream and R is the mass flow rate of

solids in the refuse stream. Similarly, the component balance for a flotation process is given by:

$$fF - pP - rR = 0 \quad (2)$$

where f is the fractional assay of a given component (ash, for example) in the feed stream, p is the fractional assay of a given component in the product steam and r is the fractional assay of a given component in the refuse stream.

In an ideal situation, Equations 1 and 2 equal zero and one has what is termed "perfect closure" of the material balance. Unfortunately, the real world is not ideal. It is not always possible to get a perfectly representative sample of every stream. Furthermore, no analysis technique is 100% accurate. Therefore, errors are introduced in sampling and analysis which make it impossible to have "perfect closure" of the material balance. As a result, each set of analysis used in the calculations (i.e., flows, assays, etc.) will give entirely different values for yield, recovery, sulfur rejection, etc.

In the late 1960's and early 1970's, several researchers looked at the material balance problem and developed techniques which used all the data available, but adjusted them so that they would be consistent and meet the material balance criteria established by Equations 1 and 2. The general technique used is known as constrained minimization. The basic idea for this procedure is as follows. It is known that Equations 1 and 2 must be satisfied in order to have a true material balance. Furthermore, Equation 2 must be satisfied for every component (i.e., every assay) in the stream. It is also known that every assay and flow measurement has a certain amount of error associated with it. Thus, adjustments to the values of the assay and flow measurements are required to remove the error and satisfy Equations 1 and 2. However, the amount of adjustments made to each of the flow measurements and assays must be minimized. Therefore, the measured values are adjusted according to how much trust can be placed in each of these values until the mass balance equations are satisfied. In other words, Equations 1 and 2 represent the constraint which must be satisfied, while the difference between the measured value and the adjusted value for each flow and assay must be minimized.

A number of computer programs have been written over the past 20 years which are capable of carrying out the material balance calculations. One such program which has been found to be quite versatile is BILMAT which has been developed and refined by CANMET over the past 20 years [2]. The BILMAT program allows the user to input a description of the process in terms of number of streams and number of nodes, measured values such as pulp, solids and water flow rates, percent solids, size distributions, washability data, and assays in each stream or in each size or gravity fraction, and the relative error associated with each measured value. The program then adjusts the measured values to produce a consistent set of flows and assays. The amount of adjustment for each value is based on the relative error. If the user assigns a large relative error to a value, the program assumes that it is free to adjust this value as it is necessary to provide a mass balance. If the user assigns a small relative error to a value, the program assumes that this value must stay relatively constant and other values must be adjusted to close the balance.

Therefore, the insight of the user in determining the relative error values, known as the error model, is critical to the outcome of the material balance.

3.4.2 Error Model

In order to compare the data from all participants on a fair and equal basis, a consistent error model was developed which was used in all mass balance calculations. The error model was based on the following assumptions.

3.4.2.1 Feed Assays (ash, sulfur, pyritic sulfur and Btu)

It has been determined that feed samples taken during an experimental run can vary greatly depending on the sample location and the feed sump design. For example, pyrite tends to settle out at the bottom or corners of the feed sump. Thus, there is great room for bias in the feed sample collected during an experiment. Therefore, in order to be fair to each participant, it was decided to use the assays reported by B&W as the feed assays for the mass balance calculations. It was assumed that the values were accurate and a small relative error (5%) was entered in the BILMAT program for each of these assays.

3.4.2.2 Ash Assays

At least one assay in each stream had to be trusted in order to complete the mass balance. Since ash is a very routine analysis procedure in most coal labs, it was felt that this value could be trusted with a small relative error (5%). Thus, the relative flow rates of solids reported for each stream were primarily based on the material balance on ash.

3.4.2.3 Total Sulfur Assays

Total sulfur is a very quick and routine analysis which is usually repeated enough times to provide an accurate assay. Unfortunately, the total sulfur values in the refuse stream for nearly all participants were in a range that is usually at the limit of most sulfur analyzers. Thus, it was felt that only the product total sulfur value reported by each participant could be trusted with relative error of 5%. The total sulfur assay for the refuse stream was used in the mass balance calculation, but it was given a relative error of 999.999%. This number is used in BILMAT to indicate an assay which is not very reliable. Thus, BILMAT had total freedom to adjust this value to close the material balance on total sulfur.

3.4.2.4 Pyritic Sulfur Assays

Except for the feed analysis already discussed, none of the pyritic sulfur assays were assumed to be accurate. This results from several problems including the sedimentation of

pyrite in sumps and flotation cells, as well as poor analytical procedures. When comparing pyrite results from all the participants, there appears to be considerable variation. In most cases this is the result of analytical procedures. Pyrite determination is a wet chemistry problem that is very operator dependent to produce correct answers. This variation in the pyritic sulfur assay is particularly unfortunate since pyritic sulfur rejection is being used in the Round Robin test program to evaluate the performance of each of the participants' processes. As a result of this finding, a relative error of 999.999% was assumed for the measured pyritic sulfur assays in the product and refuse streams.

3.4.2.5 All Reported Flows (usually feed and wash water) and the Percent Solids in the Feed.

As mentioned previously, the material balance on the components determines the relative solids flow rates in each stream (i.e., yield). The balance on the total pulp and water flows determines the water split, which determines the total pulp flow rate in each stream, which determines the residence time.

The reported feed pulp flow rate, the reported feed percent solids, and an assumed s.g. of 1.4 of the solids was used to calculate the grams per minute of solids in the feed and the ml/min of water in the feed.

In using the BILMAT program to conduct the flow balance, it was assumed that the reported feed pulp flow rate and percent solids were accurate to 5% relative error. It was also assumed that the same accuracy for the reported wash water flowrate could be used. These were the only flows provided by all of the participants. The remaining flows were calculated by the BILMAT program using the percent solids values in the tailings and concentrate streams. Both of these values were given the maximum relative error so that the BILMAT program could adjust them as necessary. The solids flow split was determined from the yield which was determined from the assay balance (based primarily on ash, but partially on total sulfur). Thus, the BILMAT program used the assays to determine the yield. Knowing the yield and the mass flow of feed, the mass flow in all other streams was determined. Knowing the mass flow of feed and percent solids, the water in the feed stream was determined. Knowing the water in the feed stream and the wash water addition rate, the adjustments to the percent solids in the product and refuse streams were minimized in order to complete the balance on water and the balance on pulp.

3.4.2.6 Btu Assays

Btu cannot be balanced by the BILMAT program, because Btu is a function of the ash and moisture ash free (MAF) Btu of a given product. For this reason the results of participants

assay were utilized as the assayed Btu for Test Numbers 1 thru 3 of Phase I. The results are subject to calibration errors etc. for each individual participant. This fact is obvious when examining the data which indicates different Btu values for a given ash value. In some cases a higher Btu value is reported for a higher ash value.

Test Number 4 of Phase II is the test used to determine the efficiency of the process and the economics of the test work. For this reason all of the Btu values for the feed and clean coal product were adjusted. The adjustment was determined by the ash content and the moisture ash free Btu value on a linear basis. This made the relationship between Btu and ash hold constant for all participants.

3.5 Results

The results for Test Numbers 1 thru 3 of Phase I are shown in Tables 3.7 and 3.8. Table 3.7 tabulates the technical performance results. The Table includes the values generated by the BILMAT program and directly under these are the results reported by the participant. Table 3.8 contains the process variables used by each participant. In the case of these three tests, feed percent solids, particle size, retention time, pH of feed slurry, and amounts of collector and frother were held constant.

B. Datta Research and Center for Applied Energy Research experienced operating problems with the parameters set as described above. B. Datta Research, during observation of test work by ICF KE, produced no froth under these conditions. In fact for some unexplained reason the coal, which was from the same batch as the other participants, would not respond to flotation under the set conditions even in a lab cell. The Center for Applied Energy Research experienced poor results due to the fact that bubbles were being flushed out tailing stream. The reason they experienced this problem appears to be due to their column geometry. At 1 lb/ton of Dowfroth M150, the actual concentration in their cell was very high. This resulted in the production of very fine bubbles which could not rise against the downward flow of slurry in the column.

There were two purposes for the Phase I Tests. The first purpose was to determine if oxidation occurred during grinding and shipping of the B&W prepared sample. This sample was used for Test 1 of Phase I. The participant prepared the sample for Test 2 of Phase I from 1/4 inch by zero coal ground to the required size distribution by the participant. The second purpose was to determine if grind size influenced the efficiency of separating pyrite from the coal. The participant prepared the sample for Test 3 of Phase I to a particle size of minus 200 mesh.

An indication of oxidation occurring in a sample is the reduction of weight recovery at the same operating conditions. Allmineral showed an increase of recovery from 63.60% to 72.20% with the efficiency index increasing from 15.43 to 43.91. Deister showed virtually no change of recovery (85.6% to 85.50%) with the efficiency index decreasing from 67.17 to 53.56. Illinois State Geological Survey showed a decrease in recovery from 80.70% to 54.10% with accompanying decrease in the efficiency index from 45.5 to 33.80. Michigan Tech showed an increased in recovery from 83.30% to 88.60 with the efficiency index increasing from 69.41 to 79.42. Virginia Polytechnic Institute showed a slight decrease in

TABLE 3.7
FLOTATION PERFORMANCE RESULTS PHASE I

AL MN		HR		CAER		DCCI		ISSS		MTU		VPI	
#1	#2	#3	#1	#2	#3	#1	#2	#3	#1	#2	#3	#1	#2
FEED													
WEIGHT %	BILMAT	100.0	100.0	100.0	N/A	N/A	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	REPORTED	100.0	100.0	100.0	N/A	N/A	100.0	100.0	100.0	100.0	100.0	100.0	100.0
ASH %	BILMAT	11.75	11.75	N/A	N/A	N/A	11.95	11.95	12.14	12.14	12.05	11.99	11.99
	REPORTED	12.10	12.05	12.10	N/A	N/A	11.88	11.85	11.94	11.94	11.70	11.96	11.91
PRATIC SULFR %	BILMAT	2.36	2.36	N/A	N/A	N/A	2.79	2.79	2.42	2.42	2.44	2.36	2.36
	REPORTED	2.08	2.08	2.08	N/A	N/A	2.20	2.20	2.81	2.81	2.72	2.81	2.72
TOTAL SULFR %	BILMAT	3.98	3.98	N/A	N/A	N/A	4.20	4.20	3.33	3.33	3.93	3.92	3.92
	REPORTED	3.70	4.00	4.10	N/A	N/A	4.12	4.12	4.11	4.11	3.80	3.88	4.07
BTU	BTU	12350	12350	N/A	N/A	N/A	12506	12506	12335	12335	12389	12389	12306
CLEAN COAL													
WEIGHT %	BILMAT	63.80	72.20	65.90	N/A	N/A	5.90	3.50	93.90	85.60	85.50	90.70	54.10
	REPORTED	58.19	69.75	62.93	N/A	N/A	8.80	9.10	94.60	86.06	85.98	91.17	82.06
ASH %	BILMAT	9.20	8.30	7.80	N/A	N/A	2.47	2.10	8.46	4.72	5.70	6.73	6.60
	REPORTED	9.20	8.30	7.80	N/A	N/A	2.47	2.10	8.48	4.72	5.70	6.73	6.40
PRATIC SULFR %	BILMAT	1.65	1.04	1.29	N/A	N/A	0.56	0.39	2.47	0.88	1.21	1.64	1.34
	REPORTED	1.69	0.91	1.13	N/A	N/A	0.50	0.39	2.00	0.95	1.39	1.88	1.53
TOTAL SULFR %	BILMAT	3.70	2.90	3.00	N/A	N/A	1.68	1.87	3.64	2.35	2.60	2.91	2.98
	REPORTED	3.70	2.90	3.00	N/A	N/A	1.68	1.87	3.64	2.35	2.60	2.91	2.98
BTU	BTU	12680	12949	13223	N/A	N/A	N/A	14117	13870	13345	14160	13916	13651
REFUSE													
WEIGHT %	BILMAT	36.40	27.80	34.10	N/A	N/A	94.10	96.50	6.10	14.50	9.36	19.30	45.90
	REPORTED	41.81	30.25	37.07	N/A	N/A	91.20	90.90	5.40	13.94	14.02	8.83	17.94
ASH %	BILMAT	16.20	20.70	19.40	N/A	N/A	12.54	12.31	66.66	56.42	50.17	64.99	18.70
	REPORTED	16.20	20.70	19.40	N/A	N/A	12.54	12.31	66.74	56.48	50.20	64.97	18.70
PRATIC SULFR %	BILMAT	3.25	5.79	4.44	N/A	N/A	2.93	2.88	7.76	11.58	9.53	10.07	7.01
	REPORTED	2.97	4.35	3.61	N/A	N/A	1.90	2.80	7.35	14.25	11.63	10.90	8.33
TOTAL SULFR %	BILMAT	4.47	6.78	5.88	N/A	N/A	4.36	4.29	12.86	13.33	11.77	13.92	8.05
	REPORTED	4.66	6.54	5.98	N/A	N/A	3.77	4.17	9.13	11.19	12.51	11.54	9.30
BTU	BTU	11058	10231	10829	N/A	N/A	11325	12572	3432	5149	6471	3916	8855
BTU RECOVERY													
PRATIC SULFR REJECTION		50.13	68.20	66.15	N/A	N/A	98.82	99.61	16.97	68.91	57.10	73.18	45.24
EFFICIENCY		15.43	43.91	35.78	N/A	N/A	5.46	3.49	17.17	67.17	53.56	39.08	45.50
AL MN	AL MN	100.0	100.0	100.0	N/A	N/A	100.0	100.0	100.0	100.0	100.0	100.0	100.0
SR	SR	11.75	11.75	12.10	N/A	N/A	11.95	11.95	12.14	12.14	12.05	11.99	11.99
ASH %	ASH %	9.20	8.30	7.80	N/A	N/A	9.20	8.30	7.80	7.80	7.80	7.80	7.80
PRATIC SULFR %	PRATIC SULFR %	1.65	1.04	1.29	N/A	N/A	1.65	1.04	1.29	1.29	1.29	1.29	1.29
TOTAL SULFR %	TOTAL SULFR %	3.70	2.90	3.00	N/A	N/A	3.70	2.90	3.00	3.00	3.00	3.00	3.00
BTU	BTU	12680	12949	13223	N/A	N/A	14117	13870	13345	14160	13916	13651	13885
WEIGHT %	WEIGHT %	36.40	27.80	34.10	N/A	N/A	94.10	96.50	6.10	14.50	9.36	19.30	45.90
ASH %	ASH %	16.20	20.70	19.40	N/A	N/A	12.54	12.31	66.66	56.42	50.17	64.99	18.70
PRATIC SULFR %	PRATIC SULFR %	3.25	5.79	4.44	N/A	N/A	2.93	2.88	7.76	11.58	9.53	10.07	7.01
TOTAL SULFR %	TOTAL SULFR %	4.47	6.78	5.88	N/A	N/A	4.36	4.29	12.86	13.33	11.77	13.92	8.05
BTU	BTU	11058	10231	10829	N/A	N/A	11325	12572	3432	5149	6471	3916	8855
BTU RECOVERY	BTU RECOVERY	65.30	75.70	71.63	N/A	N/A	6.66	3.88	100.2	98.26	95.46	100.4	90.05
PRATIC SULFR REJECTION	PRATIC SULFR REJECTION	50.13	68.20	66.15	N/A	N/A	98.82	99.61	16.97	68.91	57.10	73.18	45.24
EFFICIENCY	EFFICIENCY	15.43	43.91	35.78	N/A	N/A	5.46	3.49	17.17	67.17	53.56	39.08	45.50
WEIGHT %	WEIGHT %	36.40	27.80	34.10	N/A	N/A	94.10	96.50	6.10	14.50	9.36	19.30	45.90
ASH %	ASH %	16.20	20.70	19.40	N/A	N/A	12.54	12.31	66.66	56.42	50.17	64.99	18.70
PRATIC SULFR %	PRATIC SULFR %	3.25	5.79	4.44	N/A	N/A	2.93	2.88	7.76	11.58	9.53	10.07	7.01
TOTAL SULFR %	TOTAL SULFR %	4.47	6.78	5.88	N/A	N/A	4.36	4.29	12.86	13.33	11.77	13.92	8.05
BTU	BTU	11058	10231	10829	N/A	N/A	11325	12572	3432	5149	6471	3916	8855
BTU RECOVERY	BTU RECOVERY	65.30	75.70	71.63	N/A	N/A	6.66	3.88	100.2	98.26	95.46	100.4	90.05
PRATIC SULFR REJECTION	PRATIC SULFR REJECTION	50.13	68.20	66.15	N/A	N/A	98.82	99.61	16.97	68.91	57.10	73.18	45.24
EFFICIENCY	EFFICIENCY	15.43	43.91	35.78	N/A	N/A	5.46	3.49	17.17	67.17	53.56	39.08	45.50
WEIGHT %	WEIGHT %	36.40	27.80	34.10	N/A	N/A	94.10	96.50	6.10	14.50	9.36	19.30	45.90
ASH %	ASH %	16.20	20.70	19.40	N/A	N/A	12.54	12.31	66.66	56.42	50.17	64.99	18.70
PRATIC SULFR %	PRATIC SULFR %	3.25	5.79	4.44	N/A	N/A	2.93	2.88	7.76	11.58	9.53	10.07	7.01
TOTAL SULFR %	TOTAL SULFR %	4.47	6.78	5.88	N/A	N/A	4.36	4.29	12.86	13.33	11.77	13.92	8.05
BTU	BTU	11058	10231	10829	N/A	N/A	11325	12572	3432	5149	6471	3916	8855
BTU RECOVERY	BTU RECOVERY	65.30	75.70	71.63	N/A	N/A	6.66	3.88	100.2	98.26	95.46	100.4	90.05
PRATIC SULFR REJECTION	PRATIC SULFR REJECTION	50.13	68.20	66.15	N/A	N/A	98.82	99.61	16.97	68.91	57.10	73.18	45.24
EFFICIENCY	EFFICIENCY	15.43	43.91	35.78	N/A	N/A	5.46	3.49	17.17	67.17	53.56	39.08	45.50
WEIGHT %	WEIGHT %	36.40	27.80	34.10	N/A	N/A	94.10	96.50	6.10	14.50	9.36	19.30	45.90
ASH %	ASH %	16.20	20.70	19.40	N/A	N/A	12.54	12.31	66.66	56.42	50.17	64.99	18.70
PRATIC SULFR %	PRATIC SULFR %	3.25	5.79	4.44	N/A	N/A	2.93	2.88	7.76	11.58	9.53	10.07	7.01
TOTAL SULFR %	TOTAL SULFR %	4.47	6.78	5.88	N/A	N/A	4.36	4.29	12.86	13.33	11.77	13.92	8.05
BTU	BTU	11058	10231	10829	N/A	N/A	11325	12572	3432	5149	6471	3916	8855
BTU RECOVERY	BTU RECOVERY	65.30	75.70	71.63	N/A	N/A	6.66	3.88	100.2	98.26	95.46	100.4	90.05
PRATIC SULFR REJECTION	PRATIC SULFR REJECTION	50.13	68.20	66.15	N/A	N/A	98.82	99.61	16.97	68.91	57.10	73.18	45.24
EFFICIENCY	EFFICIENCY	15.43	43.91	35.78	N/A	N/A	5.46	3.49	17.17	67.17	53.56	39.08	45.50
WEIGHT %	WEIGHT %	36.40	27.80	34.10	N/A	N/A	94.10	96.50	6.10	14.50	9.36	19.30	45.90
ASH %	ASH %	16.20	20.70	19.40	N/A	N/A	12.54	12.31	66.66	56.42	50.17	64.99	18.70
PRATIC SULFR %	PRATIC SULFR %	3.25	5.79	4.44	N/A	N/A	2.93	2.88	7.76	11.58	9.53	10.07	7.01
TOTAL SULFR %	TOTAL SULFR %	4.47	6.78	5.88	N/A	N/A	4.36	4.29	12.86	13.33	11.77	13.92	8.05
BTU	BTU	11058	10231	10829	N/A	N/A	11325	12572	3432	5149	6471	3916	8855
BTU RECOVERY	BTU RECOVERY	65.30	75.70	71.63	N/A	N/A	6.66	3.88	100.2	98.26	95.46	100.4	90.05
PRATIC SULFR REJECTION	PRATIC SULFR REJECTION	50.13	68.20	66.15	N/A	N/A	98.82	99.61	16.97	68.91	57.10	73.18	45.24
EFFICIENCY	EFFICIENCY	15.43	43.91	35.78	N/A	N/A	5.46	3.49	17.17	67.17	53.56	39.08	45.50
WEIGHT %	WEIGHT %	36.40	27.80	34.10	N/A	N/A	94.10	96.50	6.10	14.50	9.36	19.30	45.90
ASH %	ASH %	16.20	20.70	19.40	N/A	N/A	12.54	12.31	66.66	56.42</			

TABLE 3.8
FROTH FLOTATION PROCESS VARIETIES PHASE 1

PERFORMANCE PARAMETER		#1	#2	#3	#1	#2	#3	#1	#2	#3	#1	#2	#3	#1	#2	#3	WPI
GEOMETRY	IN																
HEIGHT	IN	12 3/8	12 3/8	12 3/8	N/A	N/A	236.0	236.0	236.0	122.0	122.0	122.0	7 7/8	7 7/8	7 7/8	96.00	60.00
DIAMETER	IN	3.00	3.00	3.00	N/A	N/A	2.0	2.0	2.0	3.0	3.0	3.0	1.80	1.80	1.80	2.00	2.00
SURRY FEED POINT	IN	0.00	0.00	0.00	N/A	N/A	156.0	156.0	156.0	32.0	32.0	32.0	48.00	48.00	48.00	18.50	18.50
WASH WATER ADDITION PT IN	IN	N/A	N/A	N/A	N/A	N/A	12.0	12.0	12.0	1.0	1.0	1.0	2.00	2.00	2.00	3.50	3.50
FROTH HEIGHT	IN	1.00	1.00	1.00	N/A	N/A	48.0	48.0	48.0	18.0	18.0	18.0	0.75	0.75	0.75	N/A	N/A
PULP HEIGHT	IN	11 3/8	11 3/8	11 3/8	N/A	N/A	188.0	188.0	188.0	104.0	104.0	104.0	7 1/8	7 1/8	7 1/8	N/A	N/A
Baffles Spacing	IN	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CONDITIONS																	
WASH WATER RATE	GPM	N/A	N/A	N/A	N/A	N/A	0.100	0.100	0.100	0.330	0.330	0.330	N/A	N/A	N/A	0.0475	0.0356
AIR FLOW RATE	GPM	0.071	0.071	0.071	N/A	N/A	0.100	0.100	0.100	0.100	0.100	0.100	0.250	0.250	0.250	0.250	0.132
FED SLURRY RATE	GPM	0.450	0.450	0.450	N/A	N/A	0.340	0.340	0.340	0.320	0.320	0.320	N/A	N/A	N/A	0.0167	0.0167
FED % SOLIDS	WT	10.00	10.00	10.00	N/A	N/A	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
FED SLURRY pH		7.00	7.00	7.00	N/A	N/A	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
FED PARTICLE SIZE	GSI	8.50	6.71	6.70	N/A	N/A	9.96	11.37	26.92	9.81	N/A	N/A	9.32	9.14	36.39	9.38	41.78
AIR HOLD-UP	MIN	0.33	0.33	0.33	N/A	N/A	9.50	9.50	N/A	N/A	N/A	N/A	30.00	30.00	31.00	8.80	N/A
RETENTION TIME							6.00	5.90	11.40	4.90	4.90	4.90	5.00	5.00	5.00	6.80	4.40
REAGENTS																	
COLLECTOR NAME		NOTE 2	NOTE 2	NOTE 2	N/A	N/A	N/A	N/A	NOTE 2								
COLLECTOR RATE	ST/T	3.00	3.00	3.00	N/A	N/A	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
FROTH NAME	M150	M150	M150	M150	N/A	N/A	M150	M150	M150	M150	M150	M150	M150	M150	M150	M150	M150
FROTH RATE	ST/T	1.00	1.00	1.00	N/A	N/A	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

NOTE 1 STACKED ORIENTED PLATES ARRANGED IN BLOCK POSITION RIGHT ANGLES TO EACH OTHER

NOTE 2 KEROSENE

AL MN = ALL MINERAL, HR = B. DATA RESEARCH, CAR = CENTER for APIED ENERGY RESEARCH, DCCI = DELISTER CONCENTRATOR COMPANY, INC., ISSS = ILLINOIS STATE GEOLOGICAL SURVEY
MTU = MICHIGAN TECHNOLOGICAL UNIVERSITY, VPI = VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

recovery from 58.40% to 55.10% with the efficiency index decreasing from 53.47 to 51.49.

Based on the above results it is concluded that there may have been oxidation of the B&W prepared sample. This oxidation may have occurred on the pyrite particle which shows up in the efficiency index. In all cases, except for ISGS, there is increased weight recovery of the freshly ground coal. Therefore, it is concluded that advanced flotation should occur immediately after grinding to minimize oxidation problems. It should be noted that as long as two weeks could have elapsed between the time B&W prepared the sample for Test 1 and the time the participant actually performed the test.

The information for Test Numbers 1 thru 3 of Phase I were forwarded to the Technical Support Team (TST) composed of representative of Consolidation Coal, Virginia Polytechnic Institute, Babcock and Wilcox and ICF Kaiser Engineers. The TST was to compare the results of Test 2 with Test 3. Test 2 involved grinding the coal to minus 325 mesh and Test 3 involved grinding the coal to minus 200 mesh. The TST concluded that Test Number 2 had improved the pyritic sulfur rejection and therefore the fine grind should be utilized in Test Number 4 of Phase II.

The results of Tests 1 thru 3 shown on Table 3.7 for all of the participants shows that the pyritic sulfur of the product for Test 2 is always lower than in Test 3. This is a result of a finer grind liberating free pyritic sulfur that is then rejected in the advanced flotation device being tested.

The performance results for Test 4 of Phase II are shown on Table 3.9. The process variables for this test are shown in Table 3.10. As previously stated this test was open for the participant to utilize any means at his discretion to maximize Btu recovery and maximize pyritic sulfur rejection. By examining the data on Table 3.9 all of the participants except VPI opted to maximize Btu recovery and accept the pyritic sulfur rejection that occurred at that Btu recovery. VPI decided to maximize pyritic sulfur rejection resulting in the lowest Btu recovery.

The major difference that can be concluded by examining the data found in Table 3.10 is the difference in retention time when compared to the first three tests. The participants who improved their performance in Test 4 did so by mostly increasing the retention time required to float the coal. This increased retention time allowed for additional recovery which moved the participants higher up the grade-recovery curve. ISGS and Allmineral improved their results by cleaning and recleaning the rougher flotation product. The reagents used for Test 4 were similar to the first three tests. The only sulfur depressants used were by Allmineral who used a German chemical named Vanis pers and VPI who raised the pH of the feed slurry to 9.20.

Test 4 of Phase II is the base condition for the performance evaluation utilized in the economic evaluation. All of the participants fall short of the washability analysis as shown in Figure 3.8. As previously stated a better method to evaluate flotation performance is the release analysis. As can be seen in Figure 3.12, Deister, ISGS, CAER, and VPI appear to fall on the release curve within normal experimental error. This is to be expected with column flotation devices utilizing wash water. Likewise ISGS and Allmineral by using multi-stage cleaning process should result in a point on the release curve. Two participants Michigan Tech and B. Datta Research plot to the upper right of the release curve.

This is not possible. The conclusions is that the samples were not collected at steady state conditions or sample analysis error. This would result in an error of results.

4.0 ECONOMICS

The economic study of the results from Phase II involved contacting each participant and requesting, based on Test 4 parameters, their best estimate of the capital cost of a nominal 20 tph advanced froth flotation circuit using the circuit configuration of that test. This estimate was to assume that the feed material would be prepared to 10% solids by weight and be ground to minus 325 mesh top size. No downstream dewatering was to be included in the circuit. The participant was to supply all of the utilities and the rates required for their flotation device.

The economic evaluation is to be based upon annual \$/ton of SO_2 removed and \$/ton of clean coal. In order for this comparison to be fair to all participants a series of calculations were made so that each participant produced the same annual Btu to match the demands of a 25 MW electrical power generation station.

The electrical power generation station was assumed to have a net heat rate of 9493 Btu/KWhr. Net heat rate is plant boundary fuel input to busbar electricity. It was further assumed that the plant availability factor would be 75%. The availability factor is the fraction of the year the power generation station is "available" to produce power at some useful output level excluding planned or unplanned shutdowns. Based upon these assumptions the power plant requires 1.5592×10^{12} Btu per year.

The advanced froth flotation coal preparation plant must produce the equivalent amount of Btu as required by the power generation station. The coal preparation plant operates for 16 hours per day, 230 days per year and has a 90% availability factor or operates 3312 hours per year. The coal preparation plant must produce 1.5592×10^{12} Btu in 3312 hours or 4.7078×10^8 Btu per hour.

Based upon each of the participants calculated Btu values from Test #4 and the weight recovery from Test #4, each participant's hourly clean coal and raw coal feed was calculated. ICF KE acknowledges that the "as received" Btu will be lower than the "moisture free" Btu, however, if all participants are assumed to have the same final moisture then the relative differences will be in the same ratio as the "moisture free" Btu. Therefore "moisture free" Btu was used to calculate the clean coal and raw coal tons per hour.

The calculated values of clean coal and raw coal tons per hour for each participant to produce 4.7078×10^8 Btu per hour are shown on Table 4.1.

Table 4.1

Required Clean Coal and Raw Coal for Economical Evaluation

<u>Participant</u>	<u>Test #4 Btu/#</u>	<u>Test #4 Yield</u>	<u>Clean Coal TPH</u>	<u>Raw Coal TPH</u>
ALMN	13268	89.5	17.74	19.82
CAER	13788	87.5	17.07	19.51
DCCI	13614	85.6	17.29	20.20
ISGS	13809	85.4	17.05	19.96
MTU	14236	83.7	16.53	19.75
VPI	14088	70.0	16.71	23.87

ICF KE, in the interest of fairness to all of the participants, contacted known suppliers of froth flotation reagents, and known suppliers for equipment utilized in common by all of the participants, such as reagent feeders, air compressors, and feed pumps. The above information was utilized in all of the participants' calculated capital cost. See Table 4.2 Common Equipment and Reagent Costs.

The participant's capital cost for the flotation device was incorporated with the cost of the other equipment and multiplied by 3 to determine the total installed cost of the flotation plant.[3]

The operating and maintenance cost estimates were based upon the participant's flowsheet, the equipment list, the capital cost estimate and calculated values based upon known and/or estimated costs for expendables, power, and manpower. The assumed criteria was that the plant operates at 90% availability. Based upon two shifts per day, eight hours per shift and 230 operating days per year, the total annual operating hours, total annual raw coal and clean coal tonnages were calculated.

Values from literature, estimates, or material suppliers were established as costs per unit for all operating expendables. The hourly and supervisory manpower for operation was established on an annual basis. The expendables for power, flotation reagents, water, and manpower costs were then estimated. Reagent dosages were based on participant's Test #4 results.

The maintenance material costs were estimated as 10% of the equipment costs. The maintenance manpower was established on an annual basis. From the above values, maintenance materials and manpower costs were estimated.

The total operating and maintenance costs are expressed as total annual cost, dollars per ton of raw coal and dollars per ton of clean coal.

The total capital cost and the operating costs per ton of raw coal were used as input to an economic model. This model takes into consideration the plant life, three months of working capital, 100% debt financing, 11% annual debt interest rate, debt loan period, an income tax rate and tax depreciation period.

Coal cleaning results in some loss of BTU that were retained in the raw coal. For this reason ICF KE penalized each participant for the extra raw coal needed to provide the BTU required to fire the 25 MW power plant. This was accomplished by first calculating the raw coal tons required to fire the boiler based upon Test #4 feed BTU. Second the raw coal that was required to fire the boiler based upon Test #4 clean coal weight yield and clean coal BTU values was calculated. The difference of these two numbers was multiplied by \$20.00 per ton and added as an additional cost of cleaning the coal.

Table 4.2
Common Equipment and Reagent Costs

Reagent Costs

<u>Reagent Name</u>	<u>\$/Pound*</u>	<u>Source</u>
MIBC	0.61	PB&S Chemical
Pine Oil	0.63	Hercules Chemical
M150	0.85	Betz Chemical
No. 2 Fuel Oil	0.088	Orris Fuel Company
Kerosene	0.106	Orris Fuel Company

* Based on 3,000 gallon bulk shipments.

Equipment

<u>Name</u>	<u>Cost - \$/HP</u>	<u>Source</u>
Feed Pump	13,200/40	Gould (Goyne)+
Air Compressor	-	Airtech, Inc.++
150-300 cfm @ 40 psi	48,530/40	
500 cfm @ 50 psi	69,890/50	
1,000 cfm @ 50 psi	89,730/150	
Reagent Pumps	-	Pulsa Feeder+++
Collector	2,476/0.17	
Frother	2,462/0.17	

- + Hi chrome construction all wetted parts, variable speed drive, motor, guards and OH mount.
- ++ Joy reciprocating, oil free with motor, drive and regenerative drying.
- +++ 316 SS construction with 4-20 ma controls, back pressure valves, motor and drive.

The output of this model is a first year estimate of dollars per clean coal ton, dollars per million BTU, annual dollars per year and annual dollars per ton of sulfur dioxide removed.

The economic analysis maintains all of the common equipment prices and manpower prices constant for each participant, therefore any variation in capital and operating and maintenance is based upon the participant's capital estimate and utilities for the scaled up version of their laboratory device.

The test work for Test #4 was performed on coal ground to pass 44 micron. Furthermore, all participants are operating column type flotation devices, except ISGS who used conventional flotation. Several papers have been recently published that state the scale up and performance of a column flotation device is limited by the rate of concentrate removal. There is a maximum rate at which solids can be removed related to individual bubble loading and the bubble surface area rate. Another name for this is "carrying capacity" and is expressed as mass of solids to overflow per unit time per unit of column cross sectional area [4]. This value calculates to be 0.092 tph/ft² for Test #4 conditions.

The carrying capacity is the product of the D80 particle size in microns and the specific gravity of the particle. A graph shown in Figure 4.1 indicates the tons per hour per square foot carrying capacity required to size the column flotation. In order for all participants to meet the carrying capacity criteria it is necessary for Allmineral, Center for Applied Energy Research, Deister and VPI to provide four of their respective column flotation cells. Michigan Tech requires two of their column flotation cells. ISGS, because it is conventional flotation exceeds the carrying capacity criteria as proposed.

The Technical Support Team examined the reagent dosages used by the participants in Test #4. The TST determined that the collector could be scaled up based upon pounds per ton of solids in the feed. However, the frother should be scaled up based upon concentration in the cell. In order to scale up the frother addition, the concentration of the frother was calculated for each participant's Test #4 results. The same concentration was used to calculate the pounds per ton of frother at the required feed rate corrected for the required number of columns to meet the carrying capacity criteria discussed previously. The results of the frother concentration calculations are shown in Table 4.3. The calculated frother concentration was used to back-calculate the required pounds per ton of frother used in the economic model. The concentration was not calculated for Allmineral due to insufficient Test #4 data and ISGS due to the system being conventional flotation. The frother rate used for both of these participants was same as reported by each for the required tph scale up.

B. Datta Research was not included in the economic evaluation because the machine has not yet been patented and any disclosure of the equipment may have an adverse impact on the patent application. Because of this, the participant did not provide economic information for his device thus preventing developing the economic model.

The detailed operating and maintenance costs and economic model are contained in Appendix "I". Table 4.4 Economic Parameters shows the major numbers generated in the economic evaluation, with and without additional raw coal added to the final costs. The results are based upon Test #4 results with the proper material balances by the BILMAT program. The costs per ton of clean coal on a first year basis for the required tph circuit range from \$16.71 to \$21.29 without additional raw coal added. This dollar figure is a result of all costs divided by the annual clean coal produced.

The annual dollars per ton of sulfur dioxide removed range from \$237.00 to \$677.00 without additional raw coal added.

The costs per ton of clean coal on a first year basis for the required tph circuit including additional raw coal required range from \$17.23 to \$25.50. Likewise, the annual dollars per ton of sulfur dioxide removed including additional raw coal required range from \$305.00 to \$707.00.

Figure 4.1
CARRYING CAPACITY CURVE

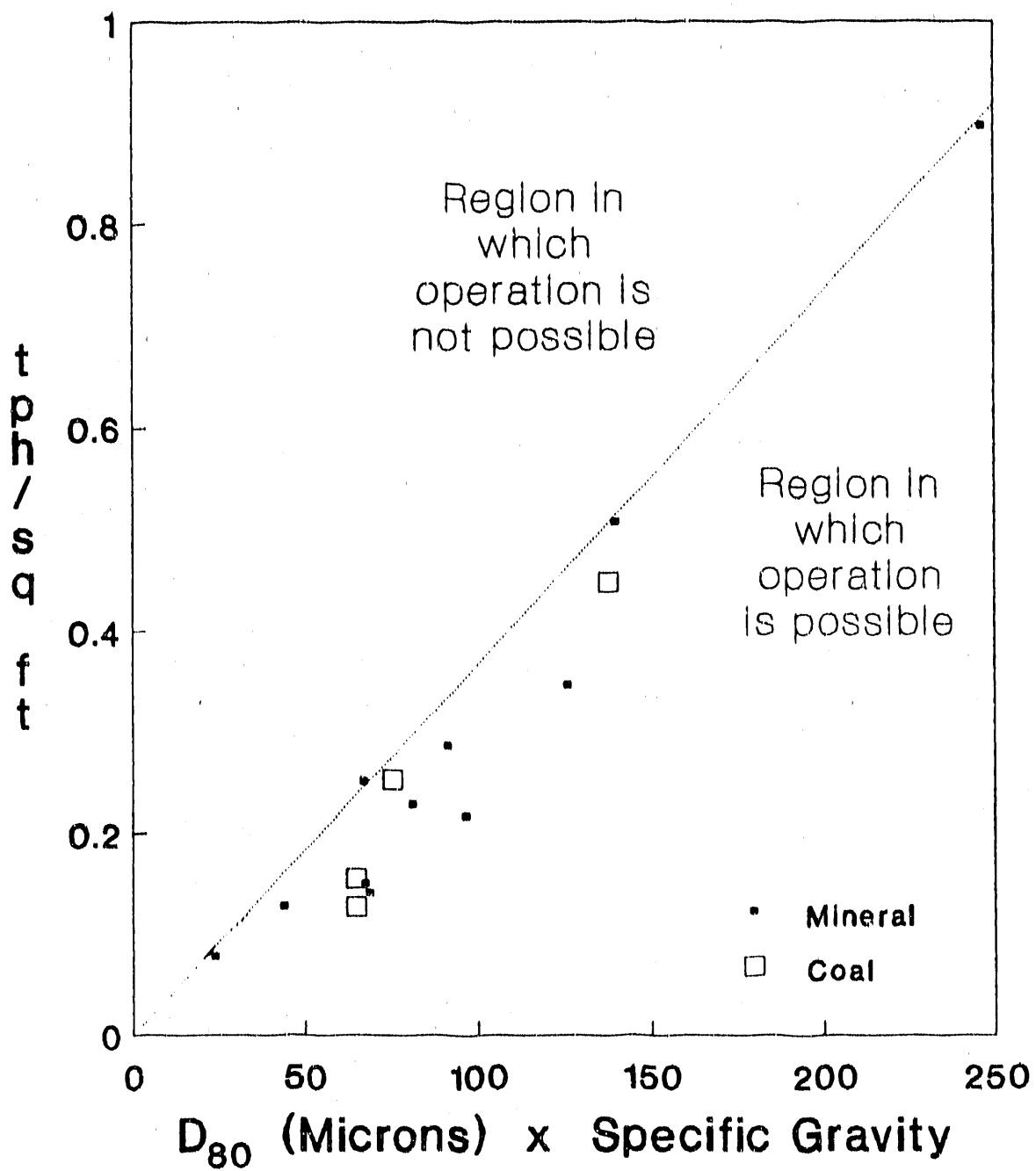


TABLE 4.3
FLUORIDE CONCENTRATION

FACTOR	TEST 4	WPI	20 TH	TEST 4	NTU	20 TH	TEST 4		TEST 4		CAR		20 TH	
							TEST 4	TEST 4	TEST 4	TEST 4	TEST 4	TEST 4	TEST 4	TEST 4
SOLID SPECIFIC GRAVITY	-	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	
LIQUID SPECIFIC GRAVITY	-	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
COLUMN DIAMETER	CM	5.080	243.840	4.570	344.030	7.620	243.840	5.980	243.840	5.980	243.840	5.980	243.840	
COLUMN LENGTH	CM	152.400	670.560	243.840	1219.200	308.880	731.520	588.440	701.040	588.440	701.040	588.440	701.040	
NUMBER OF COLUMNS	-	1	4	1	2	1	4	1	4	1	4	1	4	
FEED PER CENT SOLIDS	PER CENT	8.900	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	
FEED FLUORATE	ML/MIN	69	880.683	68	1457.688	1211	745.956	432	719.882	432	719.882	432	719.882	
WASH WATER FLUORATE	ML/MIN	500	934.986	135	5961.38	1249	1285.050	379	806.900	379	806.900	379	806.900	
RUBBLE GENERATION WATER	ML/MIN	0	0	0	0	946	1892.50	0	0	0	0	0	0	
TAILINGS FLUORATE	ML/MIN	475	1640.027	141	1780.208	2464	1241.972	717	1239.582	717	1239.582	717	1239.582	
BIAS FACTOR	-	0.812	0.812	0.541	0.541	0.246	0.246	0.246	0.246	0.246	0.246	0.246	0.246	
FEED SOLIDS MASS RATE	GR/AIN	6.301	903.690	111	7.000	1500.67	157	222.065	767.38	0.02	24.989	7411.6	840	
FLUORIDE DOSAGE	LB/TON	3.900	0.907	1.430	0.821	1.000	1.253	1.000	1.253	1.000	1.253	1.000	1.253	
LIQUID FLUORATE	ML/AIN	470	1575.256	136	1673.225	2305	397.909	689	1206.641	689	1206.641	689	1206.641	
FLUORIDE CONCENTRATION	PPM	26.116	26.116	36.801	36.801	48.162	48.162	48.162	48.162	48.162	48.162	48.162	48.162	
FLUORIDE MASS RATE	GM/MIN	0.012	41.139	0.006	61.368	0.111	48.061	0.012	21.537	0.012	21.537	0.012	21.537	
RETENTION TIME	MIN	6.50	19.08	28.35	63.62	5.73	32.43	5.73	32.43	5.73	32.43	5.73	32.43	

NOTES

1. RUBBLE VALUES USED FOR WASH AND MASS FLOW RATES RR TEST 44
2. 20 TH TAILINGS FLUORATE SCALLED-UP BASED ON CONSTANT BIAS FACTOR FROM TEST 44
3. FLUORIDE CONCENTRATION CONSTANT FROM TEST 44 TO 20 TH SCALE-UP
4. FEED FLUORATE BASED ON FEED RATE REQUIRED FOR CONSTANT NTU PRODUCTION
5. BIAS FACTOR EQUALS (TAILINGS FLUORATE - FEED FLUORATE) / FEED FLUORATE

TABLE 4.4

ECONOMIC PARAMETERS

DESCRIPTION OF PARAMETER	UNIT	AL MN	HR	CAFR	DOCI	ISGS	MU	VPI
PLANT FEED RATE	TPH	19.82	N/A	19.51	20.20	19.98	19.75	23.87
PLANT RECOVERY RATE	PER CENT	89.50%	N/A	87.50%	85.60%	84.50%	83.70%	70.00%
CLEAN COAL	TUNS/YEAR	58751	N/A	56540	57268	55861	54750	55340
OPERATING HOURS	PER YEAR	3312	N/A	3312	3312	3312	3312	3312
FLUIDATION REAGENT COSTS	\$/YEAR	\$248,341	N/A	\$34,274	\$85,529	\$204,886	\$86,398	\$89,329
OPERATING COSTS PER YEAR	PER CC TUN	13.585	N/A	9.963	11.050	13.585	11.216	11.959
Maintenance COSTS PER YEAR	PER CC TUN	3.763	N/A	3.745	3.736	3.647	4.434	4.008
TOTAL O&M COSTS PER YEAR	PER CC TUN	17.228	N/A	13.701	14.785	17.242	15.650	15.948
PLANT ESTIMATE CAPITAL COST	DOLLARS	\$1,153,612	N/A	\$385,362	\$1,045,362	\$738,333	\$1,909,308	\$1,228,882
ADDITIONAL RAW COAL REQUIRED	TUNS	2850	N/A	1470	3006	2385	2236	15556
COSTS PER YEAR W/PENALTY	PER CC TUN	\$20.69	N/A	\$16.71	\$17.95	\$19.75	\$21.29	\$19.88
\$/TUN OF \$12 RECOVERD W/PENALTY	DOLLARS	\$677	N/A	\$313	\$401	\$373	\$331	\$237
COSTS PER YEAR W/PENALTY	PER CC TUN	\$21.30	N/A	\$17.23	\$19.21	\$20.78	\$22.10	\$25.50
\$/TUN OF \$12 RECOVERD W/PENALTY	DOLLARS	\$707	N/A	\$223	\$429	\$582	\$364	\$206

ALMN - ALLAMERAI, ER - B. DATA RESEARCH, CAFR - CENTER FOR APPLIED ENERGY RESEARCH, DOCI - DEISER CONCENTRATING COMPANY INC.,
 ISGS - ILLINOIS GEOLOGICAL SURVEY, MU - MICHIGAN TECHNOLOGY UNIVERSITY, VPI - VIRGINIA POLYTECHNIC INSTITUTE

5.0 CONCLUSIONS

The overall objective of the round robin was to select the most efficient, as determined by the efficiency index, cost effective, as determined by the annual cost per ton of SO_2 removed, advanced flotation device available. This machine was to process ultra fine coal, maximize Btu recovery and maximize pyritic sulfur rejection.

The device will first be installed as a one hundred pound per hour capacity unit and, subject to the outcome of Task 6 of the Engineering Development Contract, increased to a 3 ton per hour capacity unit for installation into a proof-of-concept preparation plant.

It is very difficult to select one winner from all the participants. Any advanced technology being tested can and will at a given time produce values better and worse than have been reported in this text. Therefore, a means was determined to select a device based upon the results of this round robin report.

All of the technical and economic results were submitted to the TST for consideration. The TST members evaluated the data and determined to rank each of the participants 50% on technical merit and 50% on economic merit. The technical merit was to be the efficiency index. The economical merit was to be the annual dollars per ton of clean coal corrected for carrying capacity and frother concentration and the results of Test #4. This factor does not penalize a particular technology for not meeting a 90% pyritic sulfur rejection and therefore leaves something to be desired as the only economic basis for decision.

For the above reason ICF KE determined a second economic evaluation criteria was required that considered the \$/ton of sulfur dioxide removed. This value was calculated and also presented.

The technical and economic factors were calculated and added together for the final evaluation ranking. The technical factor was calculated by multiplying the efficiency index for each participant by 0.5. The two economic factors were calculated by dividing 1,000 by the \$/ton of clean coal and multiplying by 0.5 and by dividing 10,000 by the \$/ton of sulfur dioxide removed and multiply by 0.5. The 1,000 and 10,000 are numbers selected such that when divided by their economic factors, respective numbers resulted in a two digit number. The results of these calculations are shown in Table 5.1

ICF KE recommends that both economic factors be utilized to select an advanced flotation device to be tested at the 100#/hr feed rate. Therefore, ICF KE recommends testing Michigan Tech and Center for Applied Energy Research.

The reasons for testing both of these units are based on the Round Robin Test Results. Michigan Tech reported values that were better than the release analysis curve. The opinion is that results better than the release curve are not possible. Therefore larger scale testing is recommended to verify this technology. Additionally, a problem was discovered with the Center for Applied Energy Research scale-up results involving the amount of air volume required. In order to determine whether or not this is incorrect, larger scale testing is recommended.

ICF KE gave an opportunity for each of the participants to review a draft copy of this topical report. Included in the draft copy was a ranking system that was not acceptable to the replying participants. Therefore, the TST reevaluated the ranking system and replaced the draft system with the ranking system included in this report.

TABLE 5.1

FINAL EVALUATION RANKING

PARTICIPANT	TECHNICAL INDEX	TECHNICAL FACTOR	ECONOMIC PARAMETER				FINAL RANKING	
			\$/TON OF SO ₂ REMOVED	ECONOMIC FACTOR 1	\$/TON OF CLEAN OIL	ECONOMIC FACTOR 2	COMBINED RANKING 1	COMBINED RANKING 2
ALUMINUM	53.85	28.975	707.00	7.072	21.60	23.148	34.067	50.123
CENTER FOR APPLIED ENERGY RES.	77.37	38.685	323.00	15.480	17.23	29.019	54.165	67.704
DEISTER CONCENTRATING CO. INC	63.52	31.760	429.00	11.665	19.21	26.028	43.415	57.785
ILLINOIS ST. GEOLOGICAL SURVEY	69.95	34.975	382.00	12.755	20.78	24.062	47.730	59.037
MICHIGAN TECH UNIVERSITY	82.62	41.310	344.00	14.535	22.10	22.624	55.845	63.934
VIRGINIA POLYTECH INSTITUTE	68.89	34.445	305.00	16.383	25.50	19.608	50.838	54.053

A copy of the letter mailed to each of the participants requesting their comments and the comments of the three participants who replied are included in Appendix II. These comments were taken into consideration for this report. Those comments acceptable to the TST were included - such as the ranking system. These comments not acceptable to the TST were not included - such as comments concerning carrying capacity.

6.0 DISCLAIMER

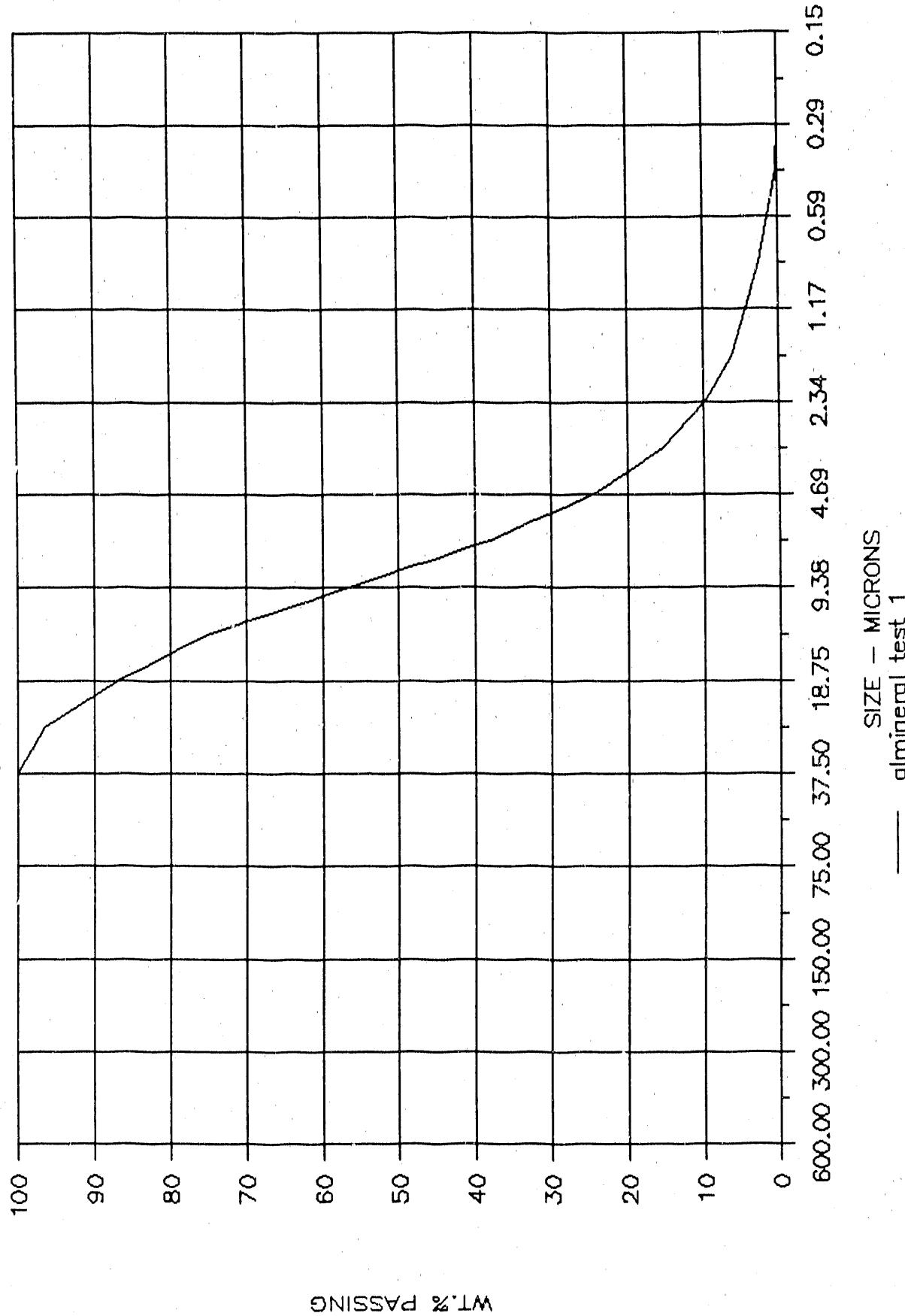
Reference in this paper to any specific commercial product, process, or service is to facilitate understanding and does not necessarily imply its endorsement or favoring by the United States Department of Energy, ICF Kaiser Engineers, Inc., Consolidation Coal Company, Babcock and Wilcox, and Virginia Polytechnic Institute and State University.

7.0 ACKNOWLEDGEMENTS

We wish to acknowledge the excellent cooperation of each of the process developers, whose data truly constitute this paper. Through the courtesy of each process developer, time and equipment were utilized in obtaining the performance data for the evaluation of the state-of-the-art in advanced froth flotation devices.

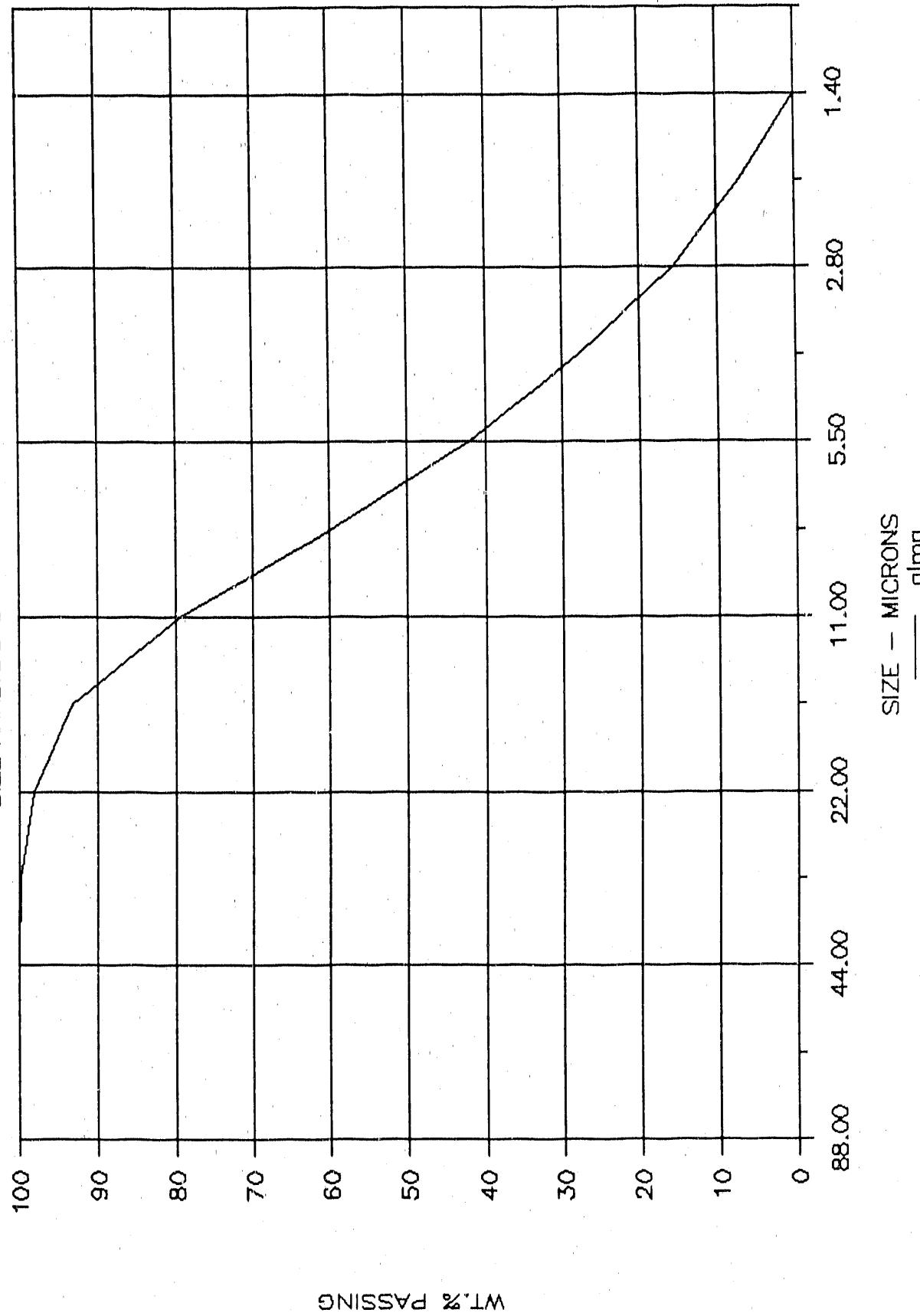
REFERENCES

1. C.C. Dell, "An Improved Release Analysis Procedure for Determinating Coal Washability", Journal of the Institute of Fuel, Vol. 37, pp. 149-150, 1964.
2. K. J. Reid, K. A. Smith, V.R. Voller and M. Cross, "A Survey of Material Balance Computer Packages in the Mineral Processing Industry", 17th APCOM Symposium, T.B. Johnson, R.J. Barnes, editors, AIME, pp. 41-62.
3. Hoffman-Muontner Corporation, 1978, EPA Report No. EPA-600/7-78-124, "An Engineering/Economic Analysis of Coal Preparation Plant Operation and Cost".
4. Espinosa-Gomez, R., Finch, J.A., Yianatos, J.G. and Dobby, G.S., "Technical Note: Flotation Column Carrying Capacity: Particle Size and Density Effects", Minerals Engineering, Vol. 1, No. 1, pp 77-79, 1988.

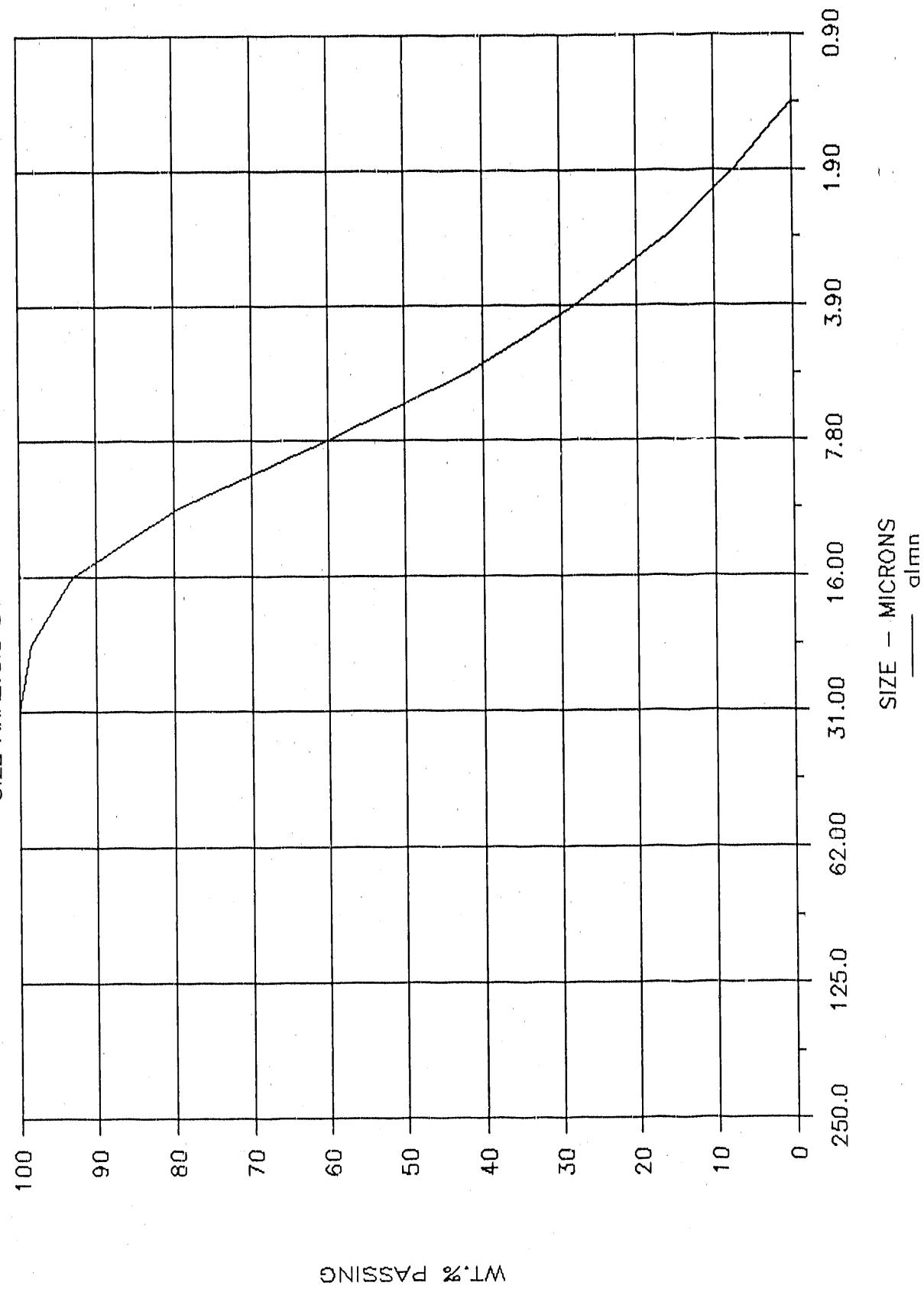

APPENDIX I

ALL MINERAL

799/43JJ/051/9044

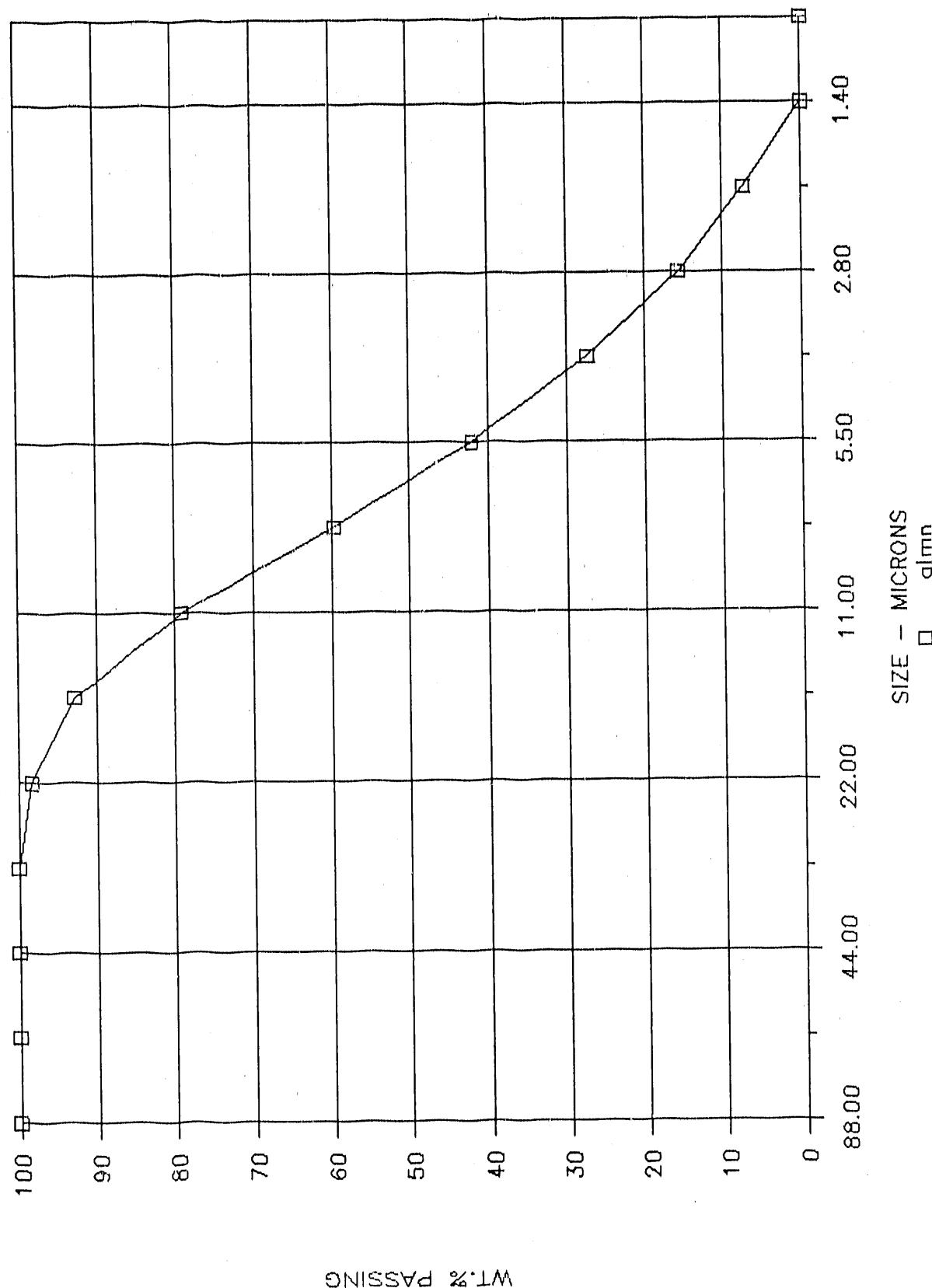

TEST #1

SIZE ANALYSIS BY B&W



TEST #2

SIZE ANALYSIS BY PARTICIPANT



TEST #3
SIZE ANALYSIS BY PARTICIPANT

TEST #4

SIZE ANALYSIS BY PARTICIPANT

ALL MINERAL ADVANCED FLUTATION PREPARATION PLANT
QAL CLEANING ECONOMICS MODEL

CLEANING PLANT	
Raw Coal Total Sulfur	3.98%
Clean Coal Total Sulfur	2.92%
Raw Coal Feed Rate	19.82 (tons/hour)
Scheduled Operating Days	250 (days/year)
Operating Shifts/day	2 (shifts/day)
Shift Length	8.00 (hours)
Annual Scheduled Operation	3,312 (hours/year)
Mean Plant Availability	90.00% (\$)
Yield	89.50% (% of raw coal)
Raw Coal Heating Value	12,378 (dry Btu/lb)
Clean Coal Heating Value	13,268 (dry Btu/lb)
Energy Recovery	95.94% (\$)
Annual Raw Coal Feed	63,644 (tons/year)
Annual Clean Coal Product	58,751 (tons/year)
ECONOMIC PARAMETERS	
Design Capital Cost	(Input)
Plant Capital Cost	POST
Plant Life	PL (Input)
Working Capital Allowance	(Input)
Working Capital	WORKCAP
Proportion Debt	D (Input)
Borrowed Capital	DOOST
Investor's Capital CAPITAL	(50)
Debt Interest Rate DC	(Input)
Debt Loan Period DPER	(Input)
Discounted Return	(Input)
Income Tax Rate (all)	(Input)
Tax Dep. Period TL	(Input)
	100.0% (decimal)
	\$1,406,999
	11.00% (decimal)
	20 (years)
	15.0% (decimal)
	38.0% (decimal)
	20 (years)

	Raw Coal Based	Clean Coal Based (Salable Coal)	Annual (\$/yr)
	(\$/t)	(\$/t)	(\$/MBtu)
Pre-Plant Raw Coal TPy Required	63644	-	-
Raw Coal TPy Required	62304	-	-
Additional Raw Coal TPy Required	2660	\$20.00	\$33.197
Coal Cost		\$0.00	\$0.00
Plant O&M Cost	\$15.43	\$17.24	\$0.650
Refuse Disposal O&M Cost	\$0.30	\$0.00	\$0.000
O&M Subtotal	\$15.43	\$17.24	\$0.650
Coal and O&M Cost	\$15.43	\$17.24	\$0.650
Cost of Capital	\$3.90	\$4.36	\$0.164
Producer's Revenue Req.	\$19.33	\$21.60	\$0.814
Transportation	\$0.00	\$0.000	\$0
Delivered Cost	\$21.60	\$0.814	\$1.268.738
\$107 ANNUAL \$/TON OF SULFUR DIOXIDE REMOVED			

EQUIPMENT NO.	DESCRIPTION	QUANTITY	OPERATING PRICE	HP	WATER SUPPLIED	COMMENTS
100 101.1	CONDITIONING/FEED SUMP CONDITIONING/FEED SUMP MIXER	1	1	16550	30.00	YES
105	ROUGHER FEED PUMP	1	1	13200	40.00	YES
110	COLLECTOR/ROOTHER REAGENT PUMP	1	1	2476	0.20	YES
115	ROUGHER DEPRESSANT REAGENT PUMP	1	1	2462	0.20	YES
120	ROUGHER FLOTATION MACHINES	2	2	118000	15.00	YES
125	CONDITIONING/FEED SUMP	1	1	6875	15.00	YES
125.1	CONDITIONING/FEED SUMP MIXER	1	1	13200	40.00	YES
130	CLEANER FEED PUMP	1	1	59000	15.00	YES
135	CLEANER FLOTATION MACHINES	1	1	2476	0.20	YES
140	COLLECTOR/ROOTHER REAGENT PUMP	1	1	2462	0.20	YES
145	CLEANER DEPRESSANT REAGENT PUMP	1	1	2462	0.20	YES
150	CONDITIONING/FEED SUMP	1	1	6875	15.00	YES
150.1	CONDITIONING/FEED SUMP MIXER	1	1	13200	40.00	YES
155	RECLEANER FEED PUMP	1	1	59000	15.00	YES
160	RECLEANER FLOTATION MACHINES	1	1	2476	0.20	YES
165	COLLECTOR/ROOTHER REAGENT PUMP	1	1	2462	0.20	YES
170	RECLEANER DEPRESSANT REAGENT PUMP	1	1	6880	50.00	YES
	AIR COMPRESSOR					
	TOTAL		384604	261.20		

TOTAL ESTIMATED CAPITAL COST IS BASED ON HOFFMAN+MINTNER

REPORT NO. EPA-600/7-78-124, "AN ENGINEERING/ECONOMIC ANALYSIS
OF COAL PREPARATION PLANT OPERATION AND COST"

THIS REPORT STATES THAT THE CAPITAL COST OF A PREPARATION PLANT CAN BE
ESTIMATED BY MULTIPLYING THE EQUIPMENT COST BY 3.

TOTAL EQUIPMENT COST

384604

1153812

OPERATING AND MAINTENANCE COSTS

OPERATING CRITERIA	
CONNECTED HORSEPOWER	261 HP
WATER REQUIREMENTS	0.00 GPM
PLANT FEED RATE	19.82 TPH
PLANT RECOVERY	89.50%
PRODUCTION RATE	17.74 TPH
PLANT AVAILABILITY	90.00%

UNIT SUPPLY COSTS	
ELECTRIC POWER	0.060 \$/KWH
FROTHER - MIBC	0.610 \$/#
FROTHER - M150	0.850 \$/#
FROTHER - PINE OIL	0.630 \$/#
FROTHER/COLLECTOR - MONTANOL 551 F2	3.530 \$/#
COLLECTOR - FUEL OIL	0.088 \$/#
COLLECTOR - KEROSENE	0.106 \$/#
DEFRESSANT - Vanis Peps	8.820 \$/#
MAKE UP WATER	0.02 \$/1000 GAL
LUBRICANTS	0.02 PER TON RAW COAL

SUPERINTENDENT	BENEFITS	50000 PER YEAR	0.45 TIMES SALARY
FOREMAN	BENEFITS	22500 PER YEAR	0.45 TIMES SALARY
LABOR	CLASS A	15.00 PER HOUR	0.55 TIMES RATE
	BENEFITS	8.25	0.55 TIMES RATE
	CLASS B	12.00	
	BENEFITS	6.60	

YEARLY OPERATING HOURS			
HOURS/SHIFT	8		
SHIFTS/DAY		2	
DAYS/YEAR			230
HOURS/YEAR			3312
RAW COAL/YEAR			65644
CLEAN COAL/YEAR			58751

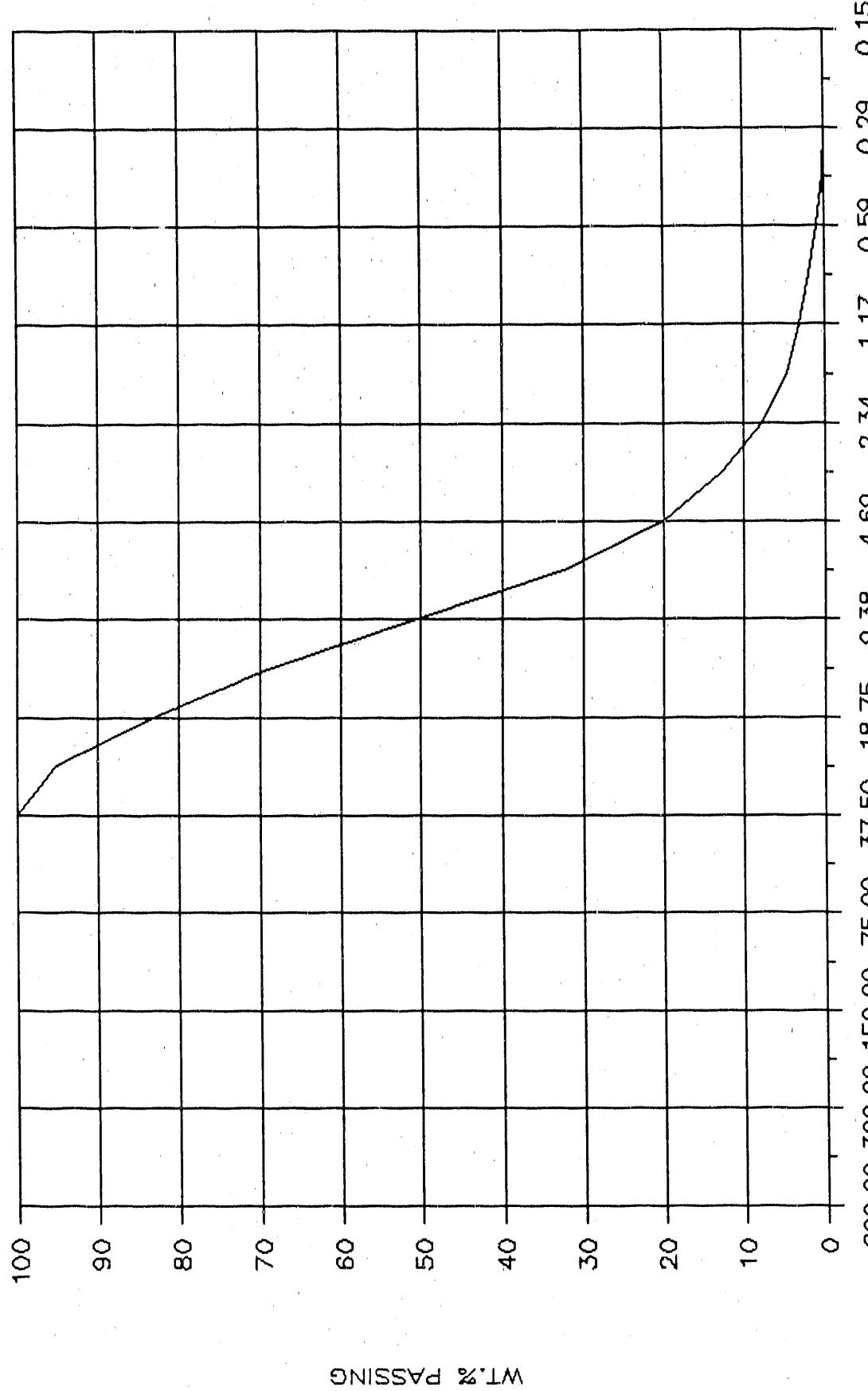
FLOTATION REAGENT COSTS PER YEAR

ROUGHER	FEED RATE	19.820	TPH
FROTHER/COLLECTOR RATE		0.660	\$/TON
DEPRESSANT RATE		0.044	\$/TON
 SCAVENGER NO. 1			
	FEED RATE	9.080	TPH
	FROTHER/COLLECTOR RATE	0.165	\$/TON
	DEPRESSANT RATE	0.066	\$/TON
 SCAVENGER NO. 2			
	FEED RATE	5.430	TPH
	FROTHER/COLLECTOR RATE	0.275	\$/TON
	DEPRESSANT RATE	0.110	\$/TON
	TOTAL FROTHER	187911	\$/YEAR
	TOTAL DEPRESSANT	60429	\$/YEAR
	TOTAL FLOTATION COST	248341	\$/YEAR

I. ESTIMATED OPERATING COSTS

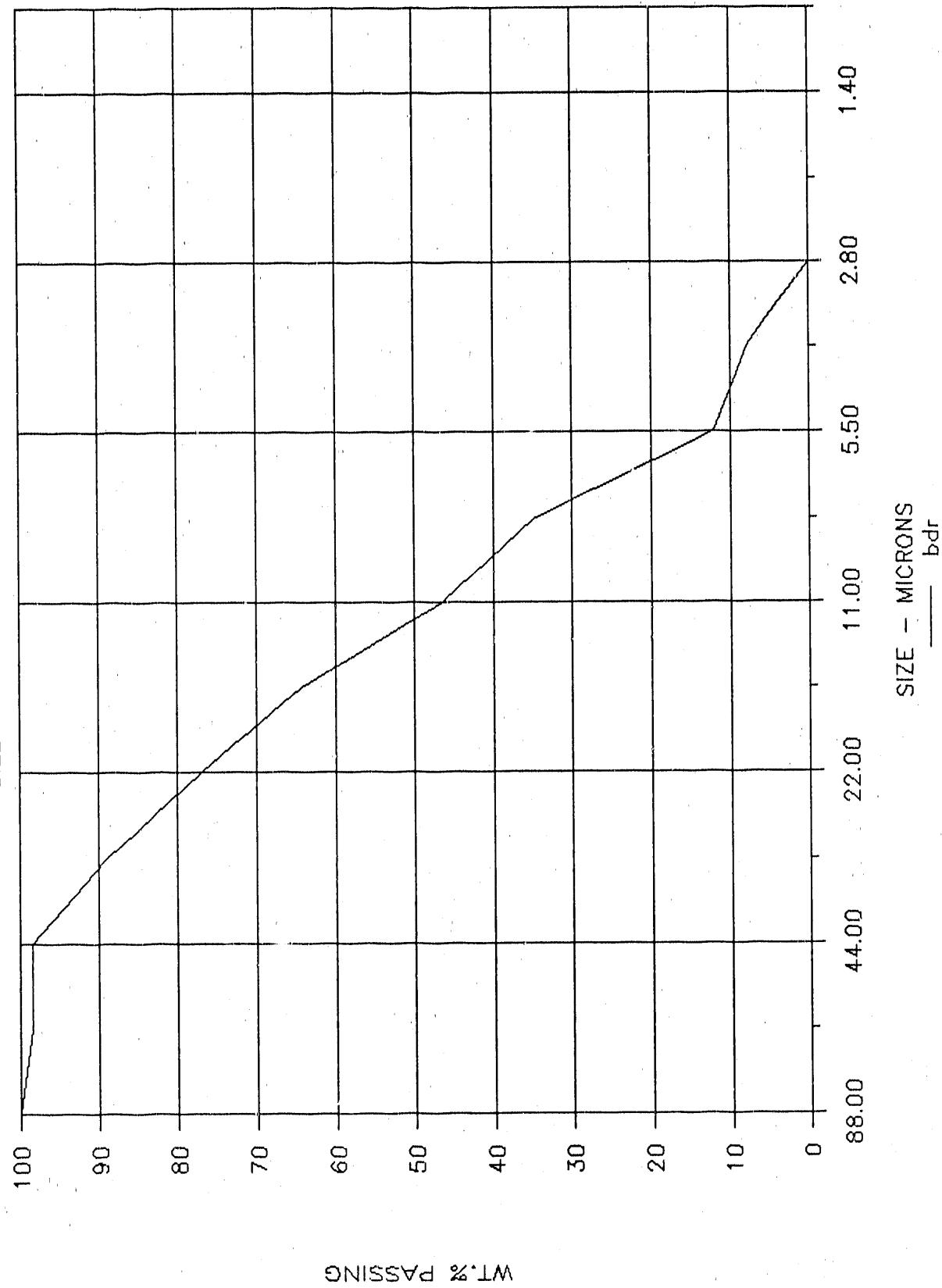
A. OPERATING SUPPLIES			
1. POWER	DIVERSITY CONNECTED HP HEAT AND LIGHT POWER COST ASSUME 1HP=1KW	0.80 261.20 350.00 971.66	FACTOR KWH KWH \$/YEAR
2. FLOTATION REAGENT COST	248341	\$/YEAR	
3. WATER COST	0	\$/YEAR	
4. LUBRICANTS	1313	\$/YEAR	
	346520	\$/YEAR	
			TOTAL OPERATING SUPPLIES

B. OPERATING MANPOWER			
1. SUPERVISION			
SUPERINTENDENT	1	PER YEAR	
SALARY	50000	\$/YEAR	
BENEFITS	22500	\$/YEAR	
FOREMAN	1	PER YEAR	
SALARY	35000	\$/YEAR	
BENEFITS	15750	\$/YEAR	
			PER SHIFT
2. LABOR			
CLASS A			
PLANT OPERATOR	1	PER SHIFT	
EQUIPMENT OPERATOR	1	PER SHIFT	
MECHANIC-ELECTRICIAN	1	PER SHIFT	
TOTAL CLASS A	165620	\$/YEAR	
BENEFITS	91080	\$/YEAR	
CLASS B			
UTILITY	1	PER SHIFT	
TOTAL CLASS B	44160	\$/YEAR	
BENEFITS	24288	\$/YEAR	
			TOTAL OPERATING MANPOWER
	4483778	\$/YEAR	
	755198	\$/YEAR	TOTAL OPERATING COST


ESTIMATED OPERATING AND MAINTENANCE COSTS

		PER YEAR	PER RAW TON	PER CLEAN TON
I. OPERATING SUPPLIES				
POWER	97166	1,480	1.654	
FLotation REAGENTS	248341	3,783	4.227	
WATER	0	0.000	0.000	
LUBRICANTS	1313	0.020	0.022	
TOTAL OPERATING SUPPLIES	346820	5,283	5.903	
II. OPERATING SUPERVISION AND LABOR				
SUPERVISION	85000	1,295	1.447	
BENEFITS	38250	0.583	0.651	
LABOR	209760	3,195	3.570	
BENEFITS	115368	1.757	1.964	
TOTAL OPERATING MANPOWER	448378	6,850	7.632	
TOTAL OPERATING COSTS	795198	12,114	13.535	
III. MAINTENANCE SUPPLIES				
EQUIPMENT	38460	0.586	0.655	
TOTAL MAINTENANCE SUPPLIES	38460	0.586	0.655	
IV. MAINTENANCE SUPERVISION AND LABOR				
SUPERVISION	35000	0.533	0.596	
BENEFITS	15750	0.240	0.288	
LABOR	82800	1,261	1.413	
BENEFITS	45540	0.694	0.775	
TOTAL MAINTENANCE MANPOWER	179090	2,728	3.048	
TOTAL MAINTENANCE COST	217550	3,314	3.703	
TOTAL OPERATING & MAINTENANCE COST	1012748	15,428	17.238	

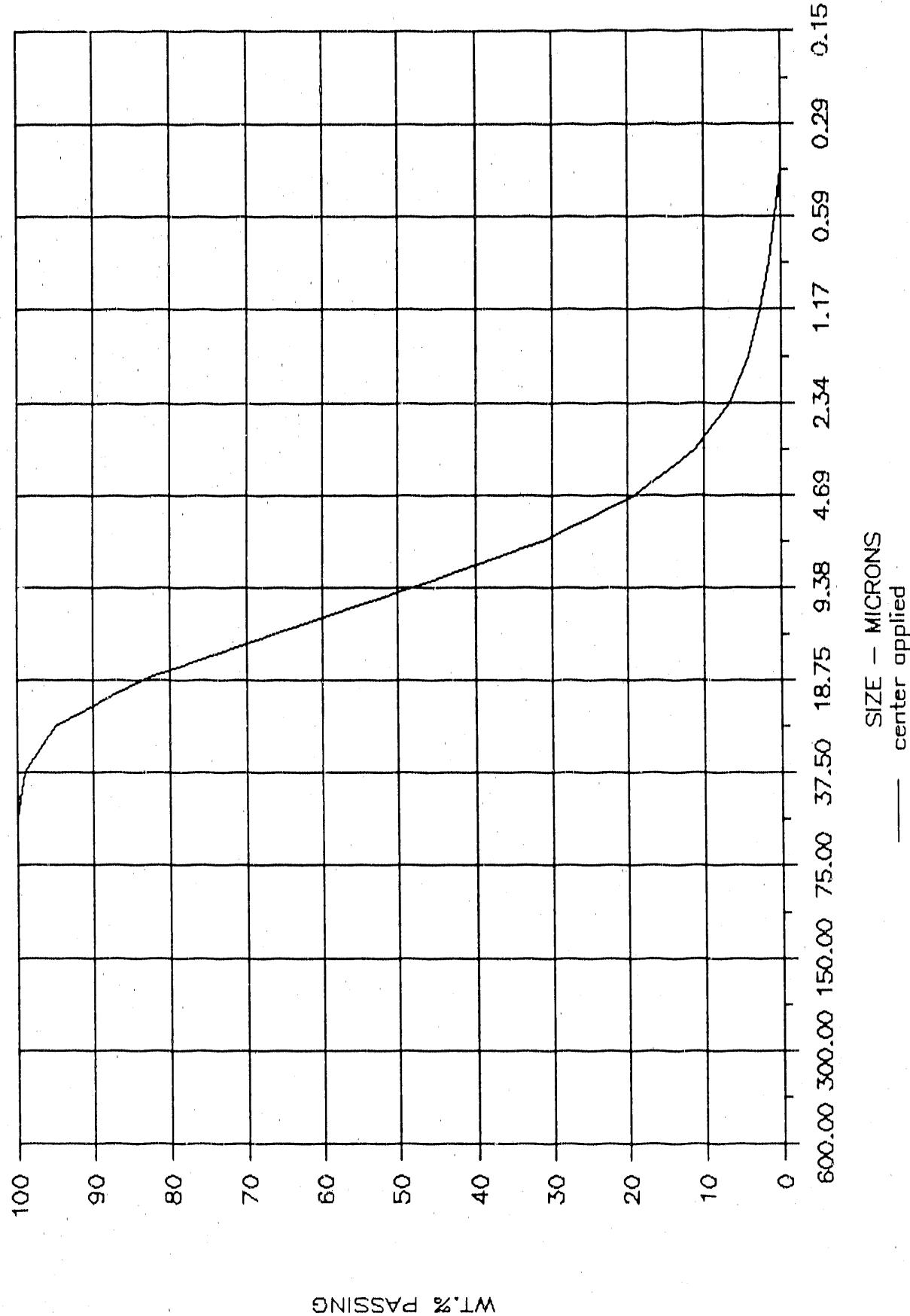
B. DATTA RESEARCH


TEST #1

SIZE ANALYSIS BY B&W

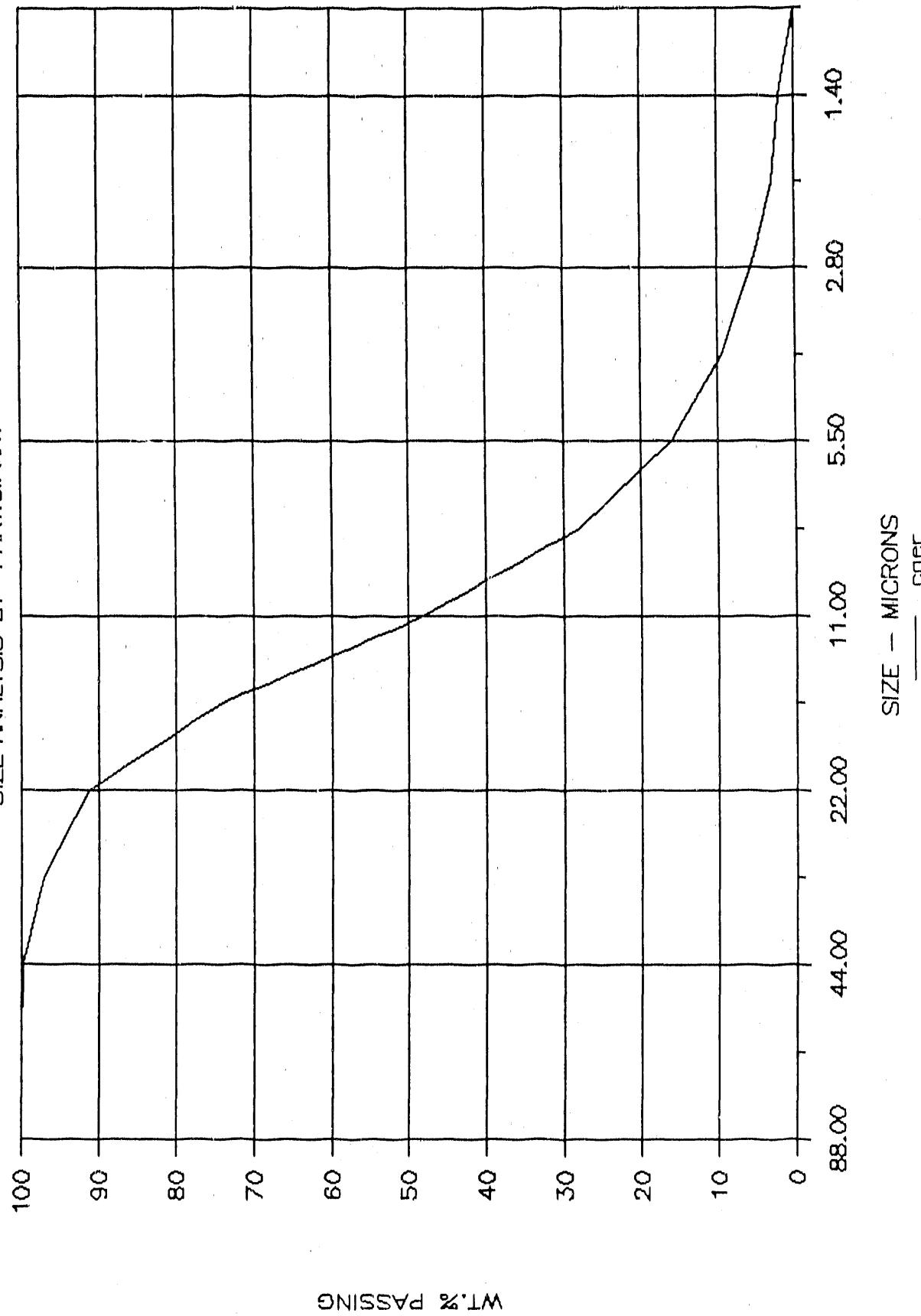
TEST #4

SIZE ANALYSIS BY PARTICIPANT

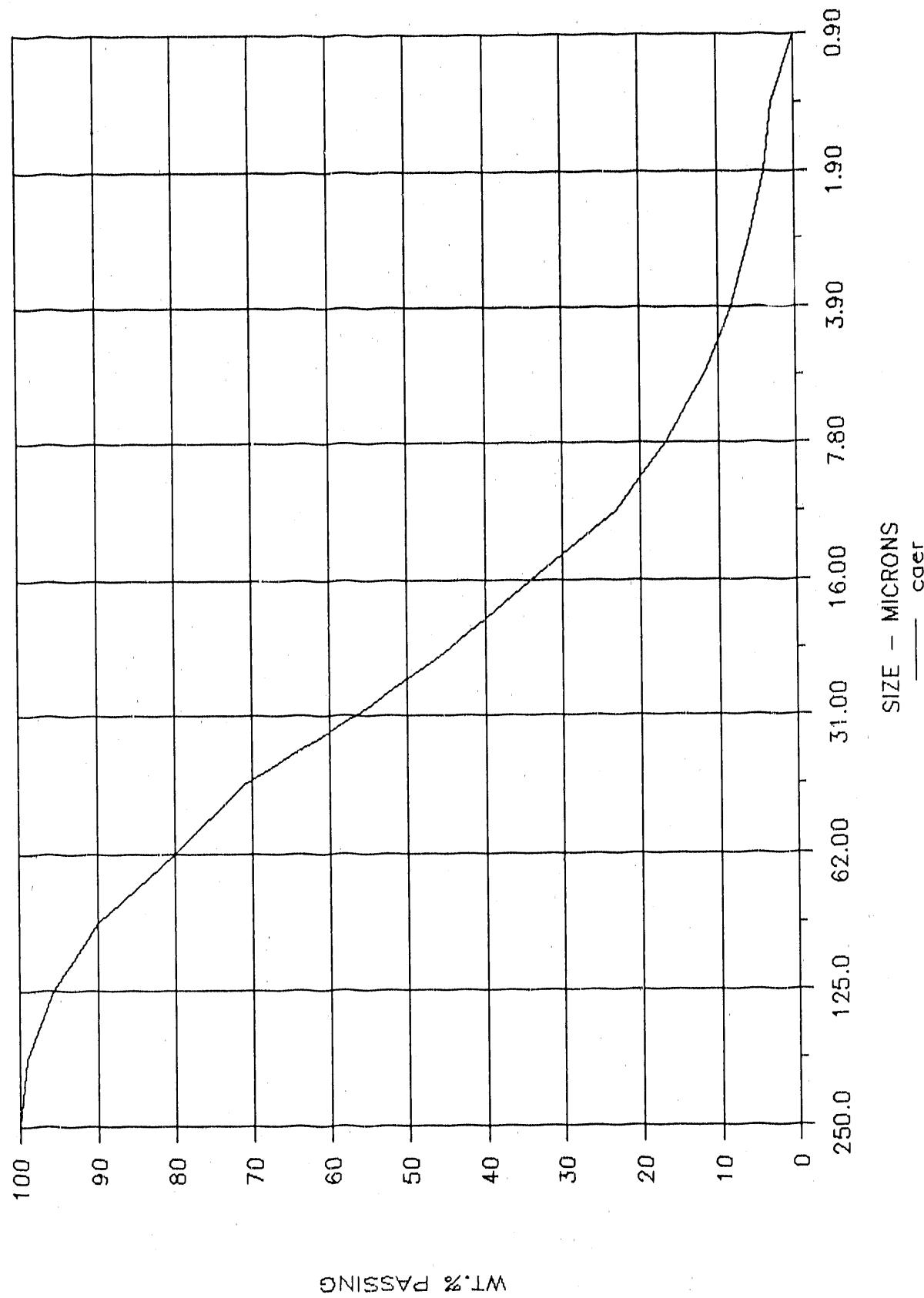


CENTER FOR APPLIED ENERGY RESEARCH

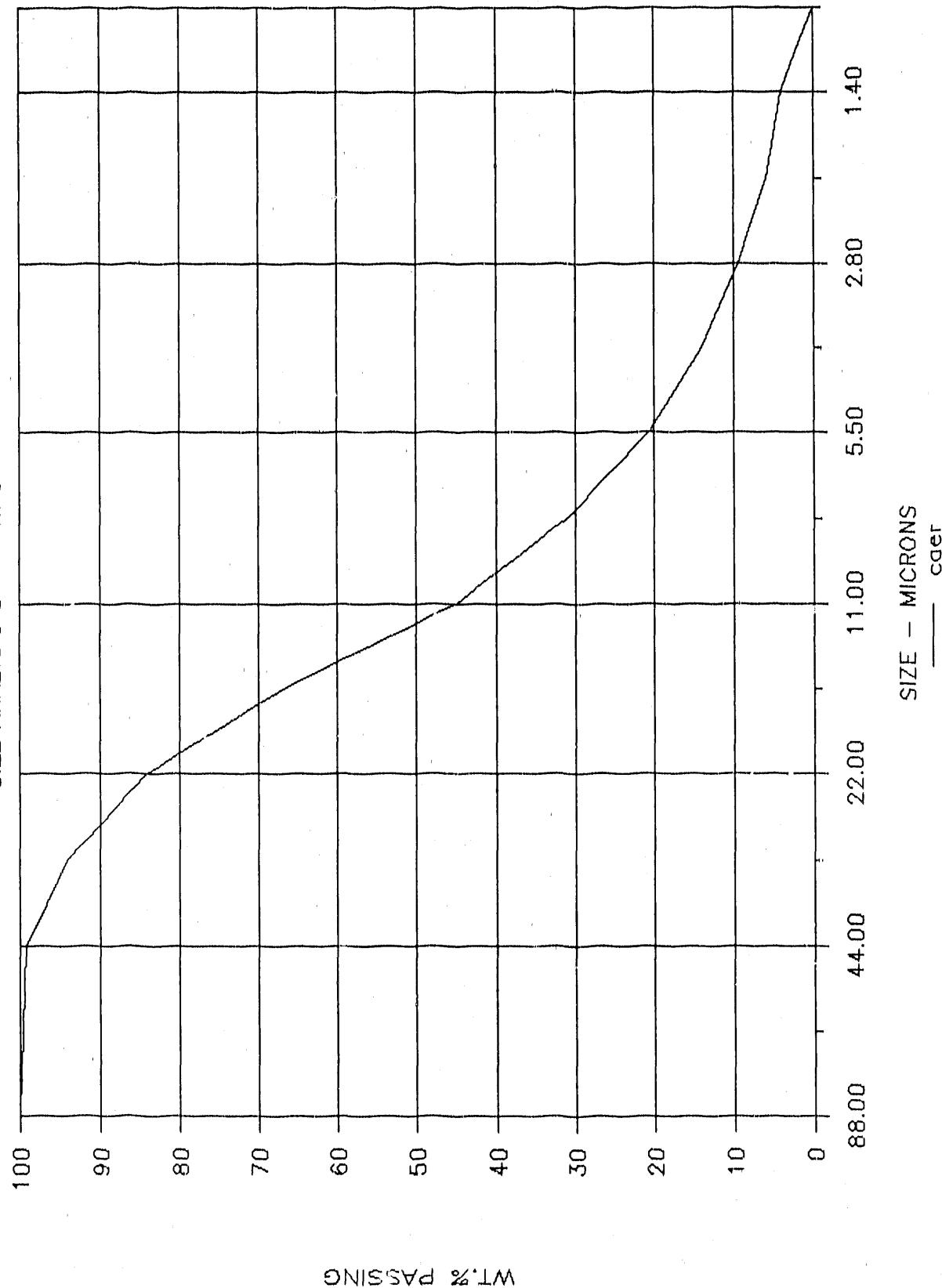
799/43JJ/051/9046


TEST #1

SIZE ANALYSIS BY B&W


TEST #2

SIZE ANALYSIS BY PARTICIPANT



TEST #3

SIZE ANALYSIS BY PARTICIPANT

TEST #4
SIZE ANALYSIS BY PARTICIPANT

CAER ADVANCED FLOTATION PREPARATION PLANT
COAL CLEANING ECONOMICS MODEL

CLEANING PLANT	
Raw Coal Total Sulfur	4.20%
Clean Coal Total Sulfur	2.13%
Raw Coal Feed Rate	19.51 (tons/hour)
Scheduled Operating Days	230 (days/year)
Operating Shifts/day	2 (shifts/day)
Shift Length	8.00 (hours)
Annual Scheduled Operation	3,312 (hours/year)
Mean Plant Availability	90.00% (\$)
Yield	87.50% (of raw coal)
Raw Coal Heating Value	12,347 (dry Btu/lb)
Clean Coal Heating Value	13,788 (dry Btu/lb)
Energy Recovery	97.71% (\$)
Annual Raw Coal Feed	64,617 (tons/year)
Annual Clean Coal Product	56,540 (tons/year)
 ECONOMIC PARAMETERS	
Design Capital Cost	(Input)
Plant Capital Cost	FOOST
Plant Life	PL (Input)
Working Capital Allotment	(Input)
Working Capital	WRCAP
Proportion Debt	D (Input)
Borrowed Capital	DOOST
Investor's Capital CAPITAL	(\$0)
Debt Interest Rate	DC (Input)
Debt Loan Period	DEPER (Input)
Discounted Return	(Input)
Income Tax Rate (all)	(Input)
Tax Dep. Period	TL (Input)
	100.0% (decimal)
	\$1,179,029
	11.00% (decimal)
	20 (years)
	15.0% (decimal)
	38.0% (decimal)
	20 (years)

	Raw Coal Based	Clean Coal Based (Salable Coal)	Annual (\$/yr)
	(\$/t)	(\$/t (\$/MBtu)	
Prep Plant Raw Coal TPy Required	64617	-	-
Raw Coal TPy Required	63147	-	-
Additional Raw Coal TPy Required	1470	\$20.00	\$29,400
Coal Cost		\$0.00	\$0.00
Plant O&M Cost	\$11.99	\$13.70	\$13.70
Refuse Disposal O&M Cost	\$0.00	\$0.00	\$0.00
O&M Subtotal	\$11.99	\$13.70	\$13.70
Coal and O&M Cost	\$11.99	\$13.70	\$13.70
Cost of Capital	\$3.09	\$3.53	\$0.128
Producer's Revenue Req.	\$15.98	\$17.23	\$0.625
Transportation		\$0.00	\$0.00
Delivered Cost	\$17.23	\$0.625	\$17.23
			\$23 ANNUAL \$/TON OF SULFUR DIOXIDE REMOVED

EQUIPMENT NO.	DESCRIPTION	QUANTITY	OPERATING PRICE	HP	Motor Supplied	Comments
100	CONDITIONING FEED SUMP	1	-	-	-	2500 GALLON CAPACITY
101.1	CONDITIONING FEED SUMP MIXER	1	1055.0	30.00	YES	PHILADELPHIA MODEL 3805-S-PTO
105	FEED PUMP	1	1320.0	40.00	YES	GARDNER MODEL 5000. 30' TH / 300 GPM
110	ROUCHER COLLECTOR REAGENT PUMP	4	742.8	0.20	YES	PULSAFEEDER MODEL 680C-S-AE
115	ROUCHER BROTHER REAGENT PUMP	4	738.6	0.20	YES	PULSAFEEDER MODEL 680C-S-AE
120	ROUGHER FLotation MACHINES	4	22000.0	0.00	YES	KEN-FLOTE' COLUMN FLUTATION CELL 8' DIA X 23' HIGH
120.1	ROUGHER FLotation BLOWER	1	638.0	50.00	YES	AIRTEC - 300 CFM @ 50 PSIG
TOTAL			32845.4	121.60		

TOTAL ESTIMATED CAPITAL COST IS BASED ON HOPPMAN-MANTER
REPORT NO. EPA-600/7-78-124, "AN ENGINEERING/ECONOMIC ANALYSIS
OF COAL PREPARATION PLANT OPERATION AND COST"

THIS REPORT STATES THAT THE CAPITAL COST OF A PREPARATION PLANT CAN BE
ESTIMATED BY MULTIPLYING THE EQUIPMENT COST BY 3.

TOTAL EQUIPMENT COST

32845.4

TOTAL PROJECT ESTIMATE

985362

OPERATING AND MAINTENANCE COSTS

OPERATING CRITERIA	
CONNECTED HORSEPOWER	122 HP
WATER REQUIREMENTS	960.00 GPM
PLANT FEED RATE	19.51 TPH
PLANT RECOVERY	87.50%
PRODUCTION RATE	17.07 TPH
PLANT AVAILABILITY	90.00%

UNIT SUPPLY COSTS

UNIT SUPPLY COSTS	
	0.06 \$/MM HR
ELECTRIC POWER	0.06 \$/MM HR
FOAMER - MILK	0.61 \$/oz
FOAMER - M150	0.85 \$/oz
FOAMER - PINE OIL	0.63 \$/oz
COLLECTOR - FUEL OIL	0.09 \$/oz
COLLECTOR - KEROSENE	0.11 \$/oz
DEPRESSANT	0.00 \$/oz
MAKE UP WATER	0.02 \$/1000 GAL
LUBRICANTS	0.02 PER TON RAW COAL

SUPERINTENDENT BENEFITS

SUPERINTENDENT	BENEFITS	50000 PER YEAR
FOREMAN	BENEFITS	22500 0.45 TIMES SALARY
		35000 PER YEAR
		15750 0.45 TIMES SALARY

LABOR

LABOR	CLASS A	15.00 PER HOUR
	BENEFITS	8.25 0.55 TIMES RATE
	CLASS B	12.00 0.55 TIMES RATE
	BENEFITS	6.60 0.55 TIMES RATE

YEARLY OPERATING HOURS

YEARLY OPERATING HOURS	HOURS/SHIFT	SHIFTS/DAY	DAYS/YEAR	HOURS/YEAR
	8	2	240	3312
RAW COAL/YEAR	64617			
CLEAN COAL/YEAR	54540			

FLOTATION REAGENT COSTS PER YEAR

ROUGHER	FEED RATE	19.510	TPH	
	FROTHER RATE	0.581	\$/TON	MIBC
	COLLECTOR RATE	2.000	\$/TON	NO. 2 FUEL OIL
	DEPRESSANT RATE	0.000	\$/TON	
CLEANER	FEED RATE	N/A	TPH	
	FROTHER RATE	N/A	\$/TON	
	COLLECTOR RATE	N/A	\$/TON	
	DEPRESSANT RATE	N/A	\$/TON	
RECLEANER	FEED RATE	N/A	TPH	
	FROTHER RATE	N/A	\$/TON	
	COLLECTOR RATE	N/A	\$/TON	
	DEPRESSANT RATE	N/A	\$/TON	
TOTAL FROTHER		22901	\$/YEAR	
TOTAL COLLECTOR		11373	\$/YEAR	
TOTAL DEPRESSANT		0	\$/YEAR	
TOTAL FLOTATION COST		34274	\$/YEAR	

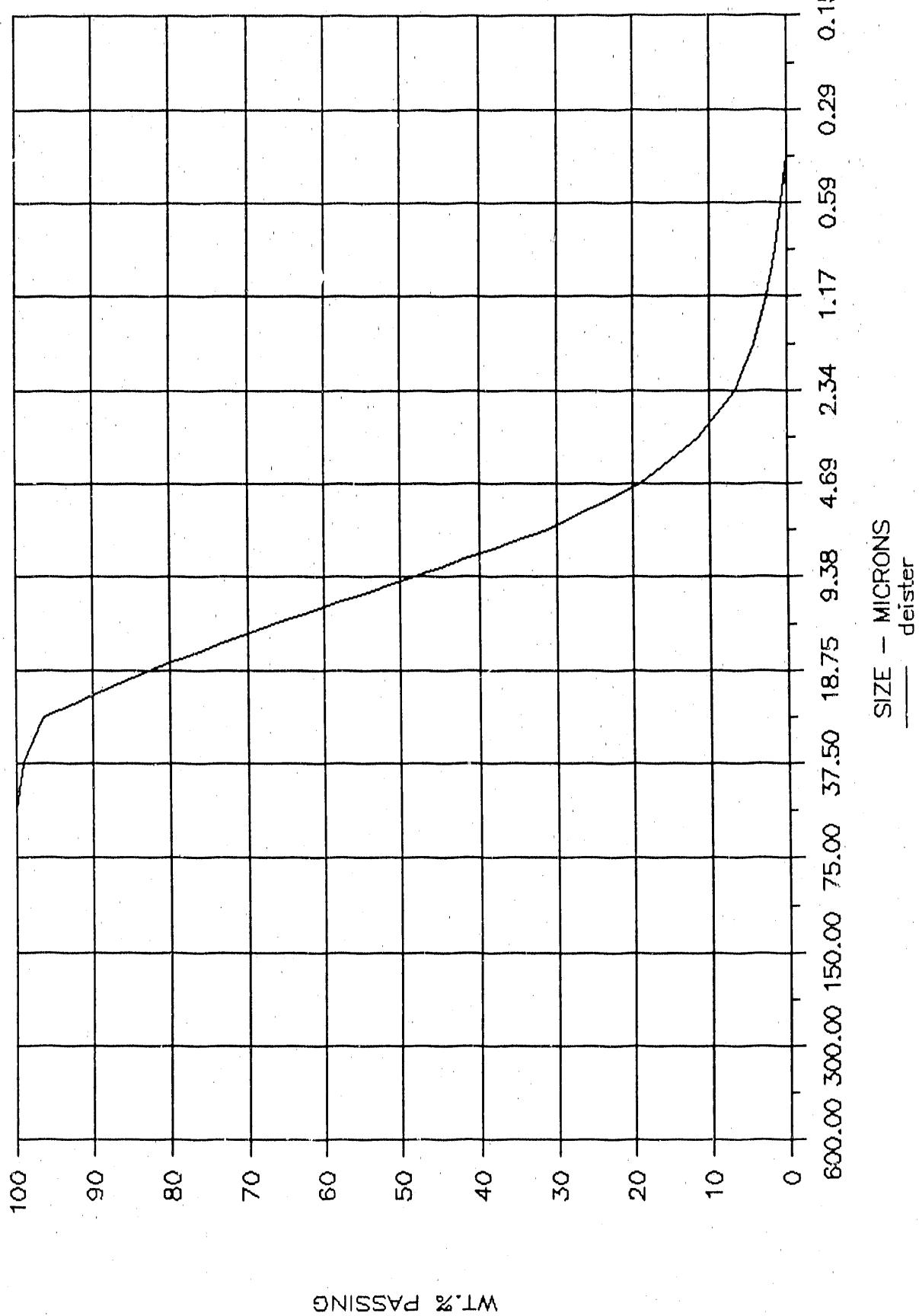
1. ESTIMATED OPERATING COSTS

A. OPERATING SUPPLIES					
1. POWER	DIVERSITY CONNECTED HP HEAT AND LIGHT POWER COST ASSUME 1HP-1KVA=1KWH	0.80 121.60 350.00 74973 \$/YEAR	FACTOR KWH KWH \$/YEAR		
2. FLOTATION REAGENT COST					
3. WATER COST					
4. LUBRICANTS					
	TOTAL OPERATING SUPPLIES	114354 \$/YEAR			
B. OPERATING MANPOWER					
1. SUPERVISION		1 50000 \$/YEAR	1 PER YEAR		
SUPERINTENDENT	SALARY BENEFITS	22500 \$/YEAR			
2. LABOR		1 35000 \$/YEAR	1 PER YEAR		
FORMAN	SALARY BENEFITS	15750 \$/YEAR			
			PER SHIFT		
CLASS A			1 PER SHIFT		
PLANT OPERATOR			1 PER SHIFT		
EQUIPMENT OPERATOR			1 PER SHIFT		
MECHANIC-ELECTRICAL			1 PER SHIFT		
TOTAL CLASS A	BENEFITS	165600 91080 \$/YEAR			
CLASS B			1 PER SHIFT		
UTILITY		44160 \$/YEAR			
TOTAL CLASS B	BENEFITS	24288 \$/YEAR			
			TOTAL OPERATING MANPOWER		
			448378 \$/YEAR		
			TOTAL OPERATING COST		
			562732 \$/YEAR		

11. ESTIMATED MAINTENANCE COST

A. MAINTENANCE SUPPLIES	
EQUIPMENT	328454
PER CENT MULTIPLIER	10.00%
TOTAL EQUIPMENT	32845
TOTAL MAINTENANCE SUPPLIES	32845 \$/YEAR
	\$/YEAR
B. MAINTENANCE SUPERVISION AND LABOR	
1. SUPERVISION	
FOREMAN	1 PER YEAR
SALARY	35000 \$/YEAR
BENEFITS	15750 \$/YEAR
2. LABOR	
CLASS A	1 SHIFT
MECHANICS	1 PER SHIFT
WELDERS	1 PER SHIFT
ELECTRICIAN	1 PER SHIFT
TOTAL CLASS A	82800 \$/YEAR
BENEFITS	45540 \$/YEAR
TOTAL MAINTENANCE MANPOWER	179090 \$/YEAR
TOTAL MAINTENANCE COST	211935 \$/YEAR

ESTIMATED OPERATING AND MAINTENANCE COSTS


		PER DAY	PER TON	PER TON
I.	OPERATING SUPPLIES			
POWER		74973	1.160	1.326
FLOTATION REAGENTS		34274	0.530	0.606
WATER		3815	0.059	0.067
LUBRICANTS		1292	0.920	0.023
TOTAL OPERATING SUPPLIES		114354	1.770	2.023
II.	OPERATING SUPERVISION AND LABOR			
SUPERVISION		85000	1.315	1.503
BENEFITS		38250	0.592	0.677
LABOR		209760	3.246	3.710
BENEFITS		115368	1.785	2.040
TOTAL OPERATING MANPOWER		448378	6.939	7.930
TOTAL OPERATING COSTS		562732	8.709	9.953
III.	MAINTENANCE SUPPLIES			
EQUIPMENT		32845	0.568	0.581
TOTAL MAINTENANCE SUPPLIES		32845	0.508	0.581
IV.	MAINTENANCE SUPERVISION AND LABOR			
SUPERVISION		35000	0.542	0.619
BENEFITS		15750	0.244	0.279
LABOR		82880	1.281	1.464
BENEFITS		45540	0.795	0.805
TOTAL MAINTENANCE MANPOWER		179090	2.772	3.167
TOTAL MAINTENANCE COST		211935	3.280	3.748
TOTAL OPERATING & MAINTENANCE COST		774668	11.989	13.701

DEISTER CONCENTRATOR COMPANY, INC.

799/43JJ/051/9041

TEST #1

SIZE ANALYSIS BY B&W

**DOCI ADVANCED FLOTATION PREPARATION PLANT
COAL CLEANING ECONOMICS MODEL**

CLEANING PLANT	
Raw Coal Total Sulfur	3.93%
Clean Coal Total Sulfur	2.35%
Raw Coal Feed Rate	20,20 (tons/hour)
Scheduled Operating Days	230 (days/year)
Operating Shifts/Day	2 (shifts/day)
Shift Length	8.00 (hours)
Annual Scheduled Operation	3,312 (hours/year)
Mean Plant Availability	90.00% (\$)
Yield	85.65% (of raw coal)
Raw Coal Heating Value	12,317 (dry Btu/lb)
Clean Coal Heating Value	13,614 (dry Btu/lb)
Energy Recovery	94.61% (\$)
Annual Raw Coal Feed	66,902 (tons/year)
Annual Clean Coal Product	57,268 (tons/year)

ECONOMIC PARAMETERS	
Design Capital Cost	(Input)
Plant Capital Cost	POOST
Plant Life	PL (Input)
Working Capital Allotment	(Input)
Working Capital	WORKCAP
Proportion Debt	D (Input)
Borrowed Capital	DOOST
Investor's Capital CAPITAL	\$0
Debt Interest Rate	DC (Input)
Debt Loan Period	DPER (Input)
Discounted Return	(Input)
Income Tax Rate (all)	(Input)
Tax Dep. Period	TL (Input)

	Raw Coal Based	Clean Coal Based (Salable Coal)	Annual (\$/yr)
	(\$/t)	(\$/t (\$/MWhu))	
Prep Plant Raw Coal TPy Required	64302	-	-
Raw Coal TPy Required	62236	-	-
Additional Raw Coal TPy Required	3606	\$20.00	\$72,128
Coal Cost		\$0.00	\$0.00
Plant OEM Cost	\$12.66	\$14.79	\$0.543
Refuse Disposal OEM Cost	\$0.00	\$0.00	\$0
OEM Subtotal	<u>\$12.66</u>	<u>\$14.79</u>	<u>\$0.543</u>
Coal and OEM Cost	\$12.66	\$14.79	\$0.543
Cost of Capital	\$3.79	\$4.43	\$0.163
Producer's Revenue Req.	\$16.45	\$19.21	\$0.706
Transportation	\$0.00	\$0.000	\$0
Delivered Cost	<u>\$19.21</u>	<u>\$0.706</u>	<u>\$1,100,255</u>
			\$429 ANNUAL \$/TIN OF SULFUR DIOXIDE REMOVED

EQUIPMENT NO.	DESCRIPTION	QUANTITY	OPERATING QUANTITY	PRICE	HP	WORK SUPPLIED	COMMENTS
100	CONDITIONING/FEED SUMP	1	1	10550	30.00	YES	2500 GALLON CAPACITY
101.1	CONDITIONING/FEED SUMP MIXER FEED PUMP	1	1	13200	40.00	YES	PHILADELPHIA MODEL 3805-S-PT0 GOMF. WATEL 5000' 30' THH / 400 GPM
105	ROUCHER COLLECTOR REAGENT PUMP	4	4	7428	0.20	YES	PULSAFEEDER MODEL 680C-S-AE
110	ROUCHER FROTHER REAGENT PUMP	4	4	7386	0.20	YES	PULSAFEEDER MODEL 680C-S-AE
115	ROUCHER FLotation MACHINES	4	4	240000	15.00	YES	FLOTAIRE MODEL FL8024 8' DIA X 24' HIGH
120	ROUCHER FLotation BLOWER	1	1	69830	50.00	YES	AIRBEC - 500 CFM @ 50 PSIG
120.1							
	TOTAL			348454	181.60		

TOTAL ESTIMATED CAPITAL COST IS BASED ON HOFFMAN-MINTNER
REPORT NO. EPA-600/7-78-124, "AN ENGINEERING/ECONOMIC ANALYSIS
OF COAL PREPARATION PLANT OPERATION AND COST"

THIS REPORT STATES THAT THE CAPITAL COST OF A PREPARATION PLANT CAN BE
ESTIMATED BY MULTIPLYING THE EQUIPMENT COST BY 3.

TOTAL EQUIPMENT COST 348454

TOTAL PROJECT ESTIMATE 1045362

OPERATING AND MAINTENANCE COSTS

OPERATING CRITERIA	CONNECTED HORSEPOWER	182	HP
WATER REQUIREMENTS	1520.00	GPM	GPM
PLANT FEED RATE	20.20	TPH	TPH
PLANT RECOVERY	85.60%		
PRODUCTION RATE	17.29	TPH	TPH
PLANT AVAILABILITY	90.00%		

INTRODUCTION

ELECTRIC POWER	0.06	\$/KWH
FROTHER - MIBC	0.61	\$/*
FROTHER - MI50	0.85	\$/*
FROTHER - PINE OIL	0.63	\$/*
COLLECTOR - FUEL OIL	0.09	\$/*
COLLECTOR - KEROSENE	0.11	\$/*
DEPRESSANT	0.00	\$/*
MAKE UP WATER	0.02	\$/1000 GAL
ULTRAFACANTS	0.02	PER TON RAW COAL

EXCERPT

LABOR	BENEFITS	22500	0.45 TIMES SALARY
FOREMAN	BENEFITS	35000	PER YEAR
	BENEFITS	15750	0.45 TIMES SALARY
	CLASS A	15.00	PER HOUR
	BENEFITS	8.25	0.55 TIMES RATE
	CLASS B	12.00	
	BENEFITS	6.60	0.55 TIMES RATE

YEARLY STATEMENT AND

FLOTATION REAGENT COSTS PER YEAR

ROUHER	FEED RATE	20.20	TPH	M150 KERSHNE
	FROTHER RATE	1.253	\$/TON	
	COLLECTOR RATE	3.00	\$/TON	
	DEPRESSANT RATE	0.00	\$/TON	
CLEANER	FEED RATE	N/A	TPH	
	FROTHER RATE	N/A	\$/TON	
	COLLECTOR RATE	N/A	\$/TON	
	DEPRESSANT RATE	N/A	\$/TON	
DECLEANER	FEED RATE	N/A	TPH	
	FROTHER RATE	N/A	\$/TON	
	COLLECTOR RATE	N/A	\$/TON	
	DEPRESSANT RATE	N/A	\$/TON	
TOTAL FROTHER		71254	\$/YEAR	
TOTAL COLLECTOR		21275	\$/YEAR	
TOTAL DEPRESSANT		0	\$/YEAR	
TOTAL FLOTATION COST		92529	\$/YEAR	

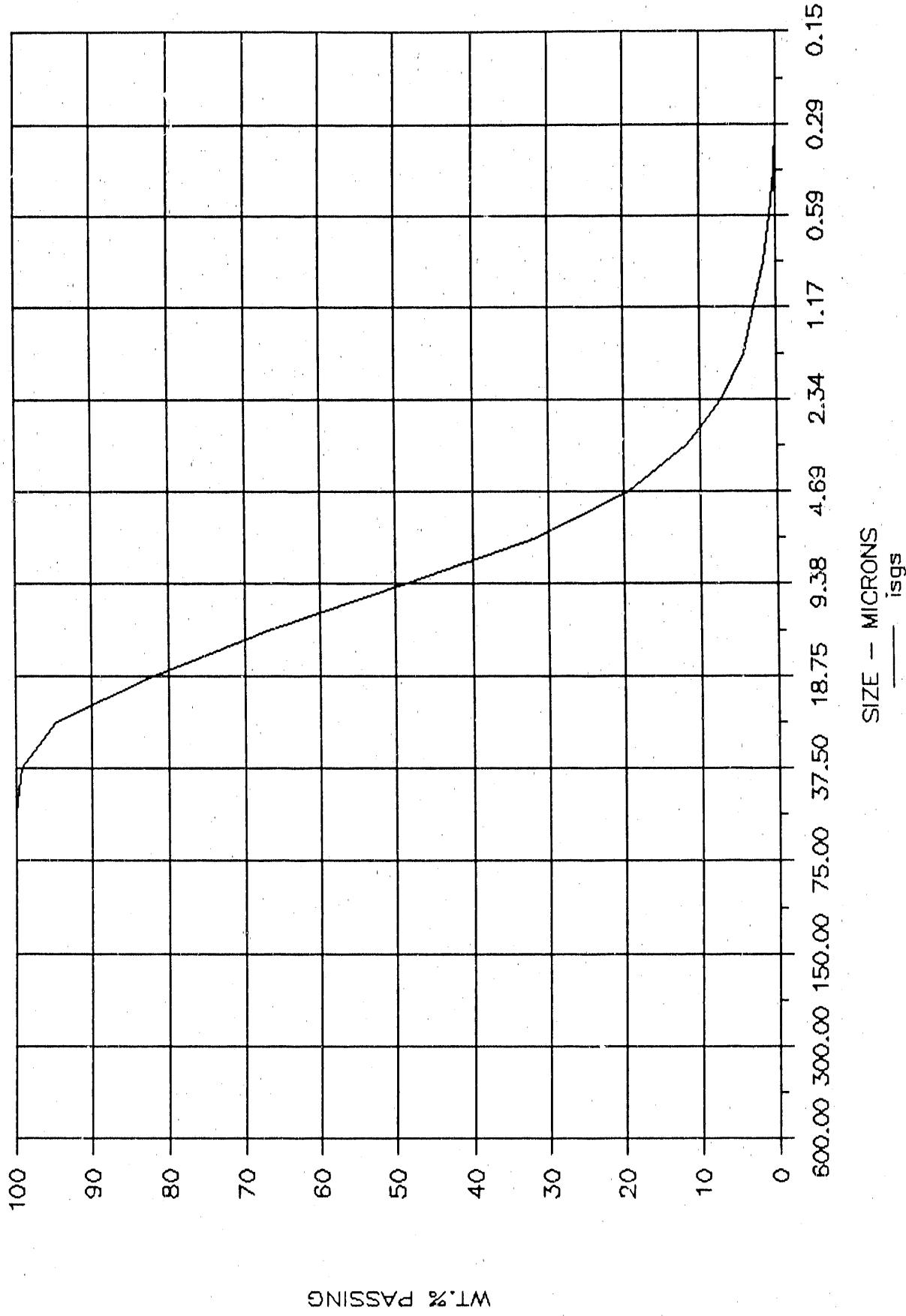
I. ESTIMATED OPERATING COSTS

A. OPERATING SUPPLIES					
1. POWER	DIVERSITY	0.80	FACTOR		
	CONNECTED HP	181.60	KWH		
	HEAT AND LIGHT	350.00	KWH		
	POWER COST	84512	\$/YEAR		
ASSUME 1HP=1KVA=1KWH					
2. FLUATION REAGENT COST		92529	\$/YEAR		
3. WATER COST		6041	\$/YEAR		
4. LUBRICANTS		1338	\$/YEAR		
TOTAL OPERATING SUPPLIES		184420	\$/YEAR		
B. OPERATING MANPOWER					
1. SUPERVISION		1	PER YEAR		
SUPERINTENDENT	SALARY	50000	\$/YEAR		
	BENEFITS	22500	\$/YEAR		
FOREMAN	SALARY	35000	\$/YEAR		
	BENEFITS	15750	\$/YEAR		
2. LABOR			PER SHIFT		
CLASS A					
PLANT OPERATOR		1	PER SHIFT		
EQUIPMENT OPERATOR		1	PER SHIFT		
MECHANIC-ELECTRICIAN		1	PER SHIFT		
TOTAL CLASS A		105600	\$/YEAR		
BENEFITS		91080	\$/YEAR		
CLASS B					
UTILITY		1	PER SHIFT		
TOTAL CLASS B		44160	\$/YEAR		
BENEFITS		24288	\$/YEAR		
TOTAL OPERATING MANPOWER		448378	\$/YEAR		
TOTAL OPERATING COST		632798	\$/YEAR		

II. ESTIMATED MAINTENANCE COST

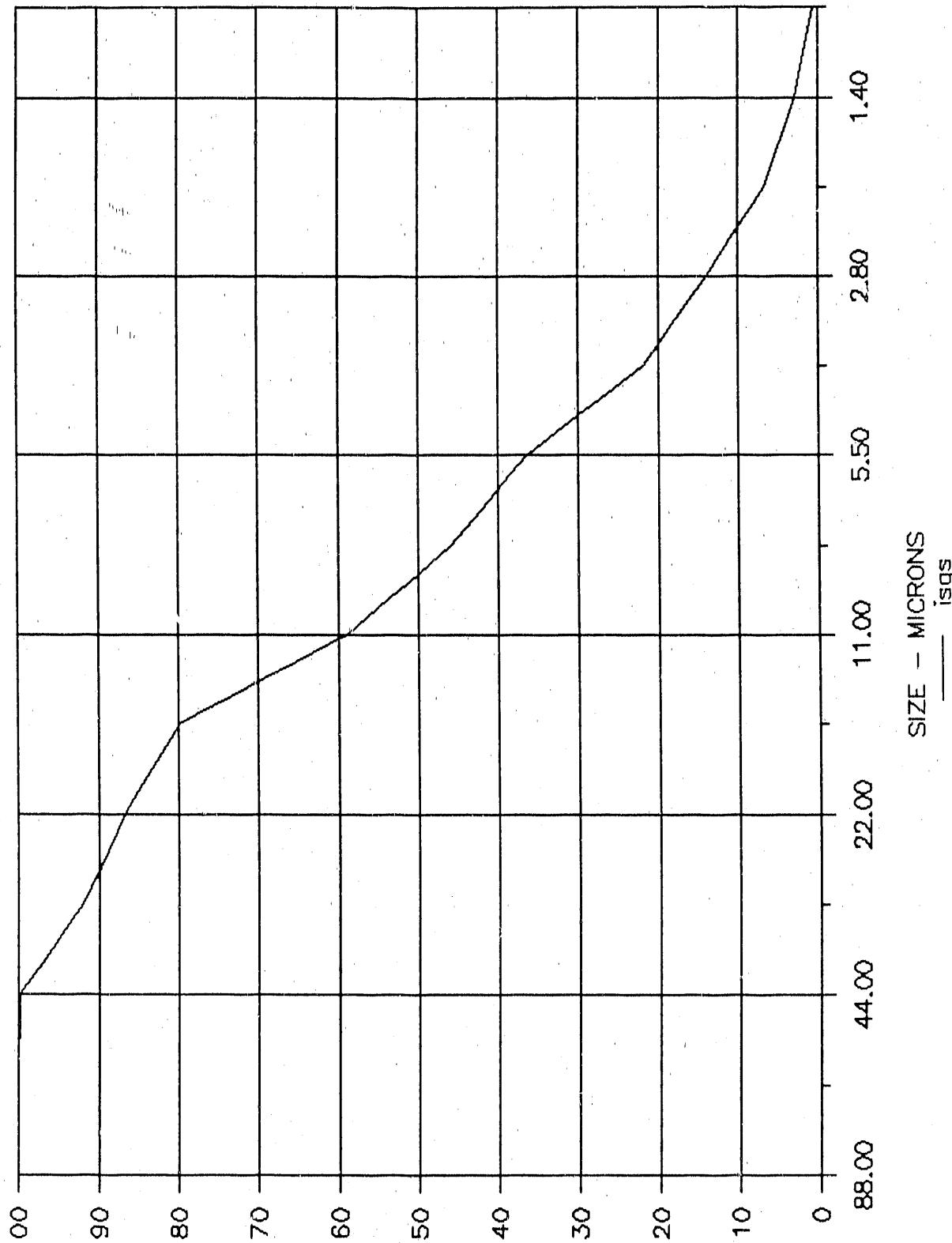
A. MAINTENANCE SUPPLIES	
EQUIPMENT	348454
PER CENT MULTIPLIER	10.00%
TOTAL EQUIPMENT	34845
TOTAL MAINTENANCE SUPPLIES	34845
	\$/YEAR
	\$/YEAR
B. MAINTENANCE SUPERVISION AND LABOR	
1. SUPERVISION	
FOREMAN	1 PER YEAR
SALARY	35000 \$/YEAR
BENEFITS	15750 \$/YEAR
2. LABOR	1 SHIFT
CLASS A	1 PER SHIFT
MECHANICS	1 PER SHIFT
WELDERS	1 PER SHIFT
ELECTRICIAN	1 PER SHIFT
TOTAL CLASS A	82800 \$/YEAR
BENEFITS	45540 \$/YEAR
TOTAL MAINTENANCE MANPOWER	179090 \$/YEAR
TOTAL MAINTENANCE COST	213935 \$/YEAR

ESTIMATED OPERATING AND MAINTENANCE COSTS


		PER YEAR	PER TUN	PER TUN	PER RAW	PER CLEAN
I.	OPERATING SUPPLIES					
POWER		84512	1,263	1,476		
FLOTATION REAGENTS		92529	1,383	1,616		
WATER		6041	0.091	0.105		
LUBRICANTS		1338	0.020	0.023		
TOTAL OPERATING SUPPLIES		184420	2,757	3,220		
II.	OPERATING SUPERVISION AND LABOR					
SUPERVISION		85000	1,271	1,441		
BENEFITS		38250	0,572	0,668		
LABOR		209740	3,135	3,643		
BENEFITS		115368	1,724	2,015		
TOTAL OPERATING MANPOWER		448378	6,702	7,829		
TOTAL OPERATING COSTS		632798	9,459	11,050		
III.	MAINTENANCE SUPPLIES					
EQUIPMENT		34845	0.521	0.608		
TOTAL MAINTENANCE SUPPLIES		34845	0.521	0.608		
IV.	MAINTENANCE SUPERVISION AND LABOR					
SUPERVISION		35000	0,523	0,611		
BENEFITS		15750	0,235	0,275		
LABOR		82800	1,238	1,446		
BENEFITS		45540	0,681	0,795		
TOTAL MAINTENANCE MANPOWER		179090	2,677	3,127		
TOTAL MAINTENANCE COST		213835	3,198	3,736		
TOTAL OPERATING & MAINTENANCE COST		846734	12,656	14,785		

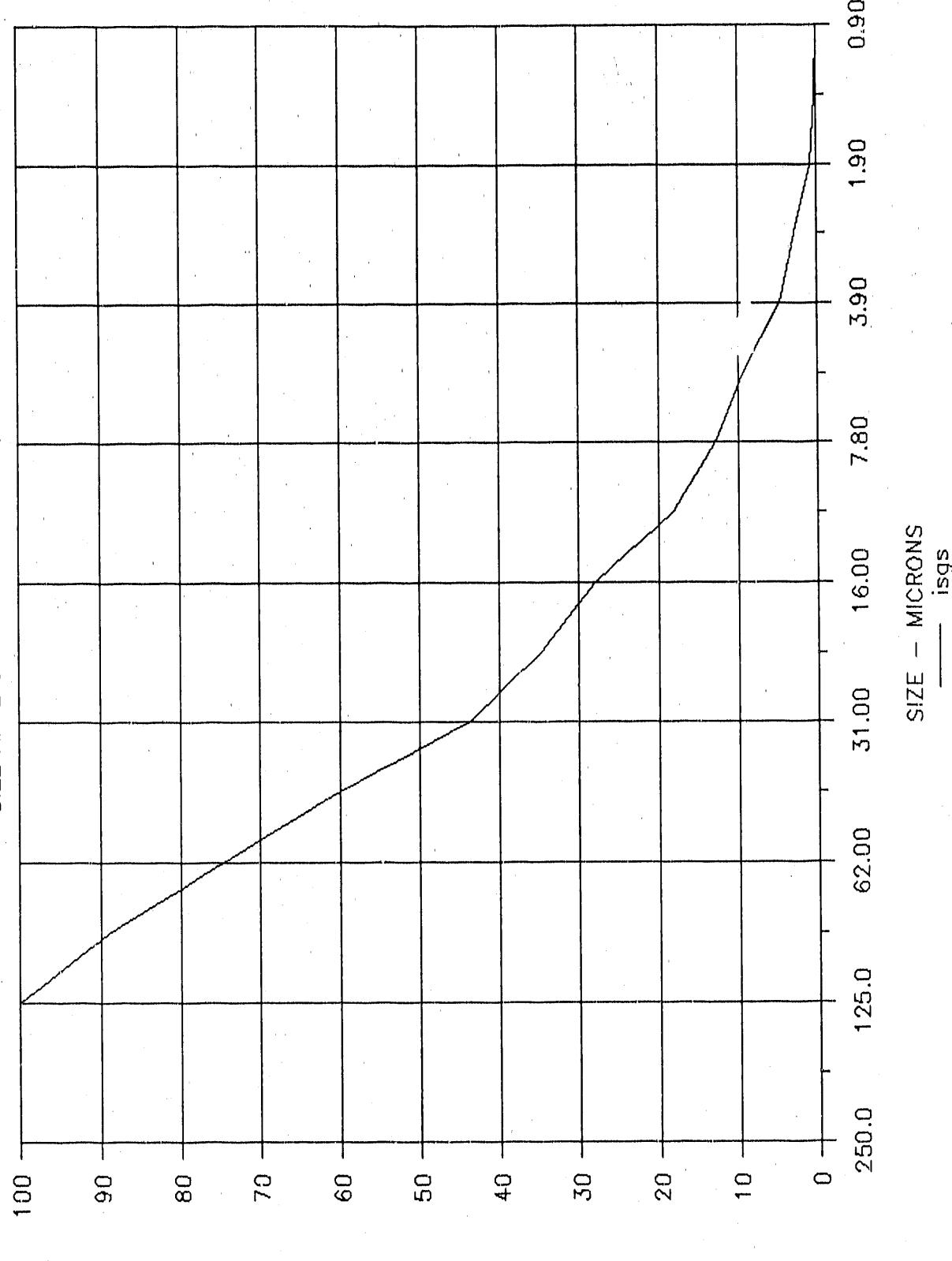
ILLINOIS STATE GEOLOGICAL SURVEY

799/43JJ/051/9045

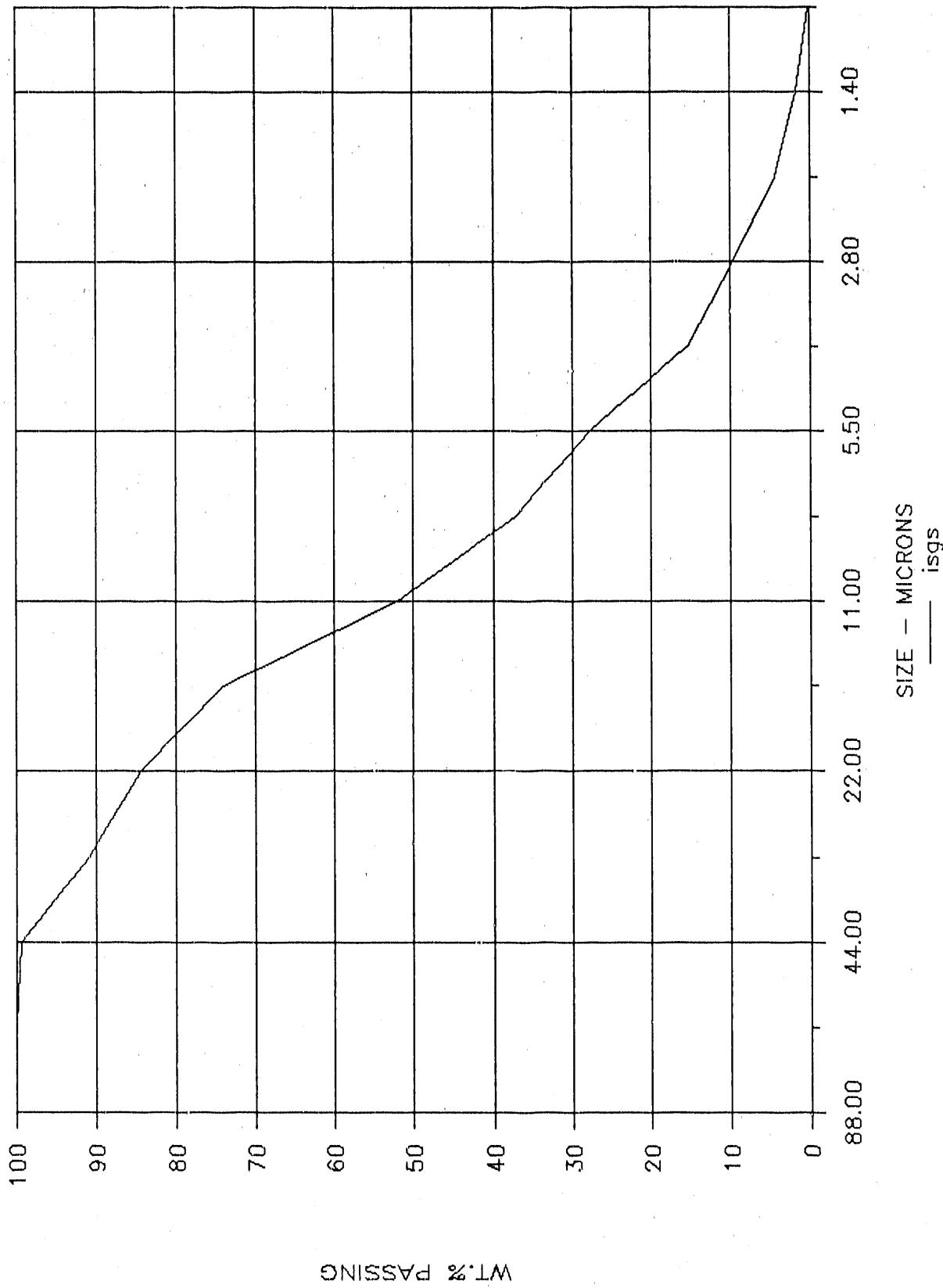

TEST #1

SIZE ANALYSIS BY B&W

TEST #2


SIZE ANALYSIS BY PARTICIPANT

WT.% PASSING


TEST #3

SIZE ANALYSIS BY PARTICIPANT

TEST #4

SIZE ANALYSIS BY PARTICIPANT

ISGS ADVANCED FLUTATION PREPARATION PLANT
COAL CLEANING ECONOMICS MODEL

CLEANING PLANT	
Raw Coal Total Sulfur	3.92%
Clean Coal Total Sulfur	1.99%
Raw Coal Feed Rate	19.96 (tons/hour)
Scheduled Operating Days	230 (days/year)
Operating Shifts/Day	2 (shifts/day)
Shift Length	8.00 (hours)
Annual Scheduled Operation	3,312 (hours/year)
Mean Plant Availability	90.00% (%)
Yield	84.50% (of raw coal)
Raw Coal Heating Value	12,331 (dry Btu/lb)
Clean Coal Heating Value	13,309 (dry Btu/lb)
Energy Recovery	94.63% (%)
Annual Raw Coal Feed	66,108 (tons/year)
Annual Clean Coal Product	55,861 (tons/year)
ECONOMIC PARAMETERS	
Design Capital Cost	(Input)
Plant Capital Cost	PO000
Plant Life	PL (Input)
Working Capital Allotment	(Input)
Working Capital	WORKCAP
Proportion Debt	D (Input)
Borrowed Capital	DC000
Investor's Capital CAPITAL	(\\$0)
Debt Interest Rate	DC (Input)
Debt Loan Period	DEP (Input)
Discounted Return	(Input)
Income Tax Rate (all)	(Input)
Tax Dep. Period	TL (Input)
	100.0% (decimal)
	\$379,120
	11.00% (decimal)
	20 (years)
	15.0% (decimal)
	38.0% (decimal)
	20 (years)

	Raw Coal Based	Clean Coal Based (Salable Coal)	
	(\$/t)	(\$/t (\$/MBtu))	Annual (\$/yr)
Prop. Plant Raw Coal TPy Required	66108	—	—
Raw Coal TPy Required	63223	—	—
Additional Raw coal TPy Required	2885	\$20.00	\$57,690
		\$0.00	\$0.00
Coal Cost		\$0.00	\$0.00
		\$14.57	\$17.24
Plant OEM Cost	\$0.00	\$0.00	\$0.00
Refuse Disposal OEM Cost	\$0.00	\$0.00	\$0.00
OEM Subtotal		\$14.57	\$17.24
		\$14.57	\$17.24
Coal and OEM Cost		\$17.24	\$0.624
Cast of Capital	\$2.99	\$2.54	\$0.128
		\$17.56	\$20.78
Producer's Revenue Req.		\$0.753	\$1,161,012
Transportation		\$0.00	\$0
Delivered Cost		\$20.78	\$0.753
			\$1,161,012
			\$592 ANNUAL \$/TON OF SULFR DIOXIDE REMOVED

EQUIPMENT NO.	DESCRIPTION	QUANTITY	OPERATING PRICE	HP	MOTOR SUPPLIED	COMMENTS
100	CONDITIONING/FEED SUMP	1				
101.1	CONDITIONING/FEED SUMP MIXER	1	10550	30.00	YES	
105	CONDITIONING/FEED SUMP PUMP	1	13200	40.00	YES	
110	ROUCHER COLLECTOR REAGENT PUMP	1	2476	0.20	YES	PHILADELPHIA MODEL 3805-S-PTO GONE MODEL 3000, 30' TH / 300 GPM
115	ROUCHER FROTH REAGENT PUMP	1	2462	0.20	YES	PULSAFEELER MODEL 680C-S-AE
120	ROUCHER FLotation MACHINES	1	70833	15.00	YES	PULSAFEELER MODEL 680C-S-AE DENVER 180 CU. FT. - 4 CELLS BANK
120.1	ROUCHER FLotation BLOWER	1	1			INCLUDED WITH FLUTH CELLS
125	CLEANER FLotation MACHINES	1	70833	15.00	YES	DENVER 180 CU. FT. - 4 CELLS BANK
125.1	CLEANER FLotation BLOWER	1	1			INCLUDED WITH FLUTH CELLS
130	CLEANER FROTH REAGENT PUMP	1	2462	0.20	YES	PULSAFEELER MODEL 680C-S-AE
135	RECLEANER FLotation MACHINES	1	70833	15.00	YES	DENVER 180 CU. FT. - 4 CELLS BANK
135.1	RECLEANER FLotation BLOWER	1	1			INCLUDED WITH FLUTH CELLS
140	RECLEANER FROTH REAGENT PUMP	1	2462	0.20	YES	PULSAFEELER MODEL 680C-S-AE
	TOTAL		246111	310.80		

TOTAL ESTIMATED CAPITAL COST IS BASED ON HOFFMAN-MINTNER
REPORT NO. EPA-600/7-78-124. "AN ENGINEERING/ECONOMIC ANALYSIS
OF COAL PREPARATION PLANT OPERATION AND COST"

THIS REPORT STATES THAT THE CAPITAL COST OF A PREPARATION PLANT CAN BE
ESTIMATED BY MULTIPLYING THE EQUIPMENT COST BY 3.

TOTAL EQUIPMENT COST

246111

TOTAL PROJECT ESTIMATE

738333

OPERATING AND MAINTENANCE COSTS

OPERATING CRITERIA	
CONNECTED HORSEPOWER	311
WATER REQUIREMENTS	0.00 (1.94
PLANT FEED RATE	19.96 TH
PLANT RECOVERY	84.50%
PRODUCTION RATE	16.87 TH
PLANT AVAILABILITY	90.00%

UNIT SUPPLY COSTS

ELECTRIC POWER	0.06 \$/KWH
FROTHER - MIBC	0.61 \$/4
FROTHER - M150	0.85 \$/4
FROTHER - PINE OIL	0.63 \$/4
COLLECTOR - FUEL OIL	0.69 \$/4
COLLECTOR - KEROSENE	0.11 \$/4
DEPRESSANT	0.00 \$/4
MAKE UP WATER	0.02 \$/1000 GAL
LUBRICANTS	0.02 PER TON RAW COAL

SUPERINTENDENT BENEFITS 50000 PER YEAR

FORMAN	BENEFITS	22500 PER YEAR
LABOR	BENEFITS	35000 PER YEAR

LABOR	BENEFITS	15750 PER YEAR
		0.45 TIMES SALARY

CLASS A	15.00 PER HOUR
BENEFITS	8.25 0.55 TIMES RATE
CLASS B	12.00
BENEFITS	6.60 0.55 TIMES RATE

YEARLY OPERATING HOURS

HOURS/SHIFT	8
SHIFTS/DAY	2
DAY'S/YEAR	230
HOURS/YEAR	3312
RAW COAL/YEAR	60708
CLEAN COAL/YEAR	55384

FLOTATION REAGENT COSTS PER YEAR

ROUGHER	FEED RATE	19.96	TPH	
	FROTHER RATE	1.49	\$/TON	M150
	COLLECTOR RATE	6.40	\$/TON	KERSENE
	DEPRESSANT RATE	0.00	\$/TON	
CLEANER	FEED RATE	18.349	TPH	
	FROTHER RATE	0.86	\$/TON	M150
	COLLECTOR RATE	0.00	\$/TON	
	DEPRESSANT RATE	0.00	\$/TON	
RECLEANER	FEED RATE	17.593	TPH	
	FROTHER RATE	0.64	\$/TON	M150
	COLLECTOR RATE	0.00	\$/TON	
	DEPRESSANT RATE	0.00	\$/TON	
TOTAL FROTHER		159847	\$/YEAR	
TOTAL COLLECTOR		44847	\$/YEAR	
TOTAL DEPRESSANT		0	\$/YEAR	
TOTAL FLOTATION COST		204695	\$/YEAR	

I. ESTIMATED OPERATING COSTS

A. OPERATING SUPPLIES

1. POWER	DIVERSITY CONNECTED HP HEAT AND LIGHT	0.80 310.80 350.00	FACTOR KwH KwH
	POWER COST	103051	\$/YEAR
	ASSUME 1HP=1kVA=1kW		
2. FLOTATION REAGENT COST		204695	\$/YEAR
3. WATER COST		0	\$/YEAR
4. LUBRICANTS		1322	\$/YEAR
	TOTAL OPERATING SUPPLIES	311068	\$/YEAR

B. OPERATING MANPOWER

1. SUPERVISION	1 PER YEAR
SUPERINTENDENT	1 PER YEAR
	50000 \$/YEAR
BENEFITS	22500 \$/YEAR
FIREMAN	1 PER YEAR
	35000 \$/YEAR
BENEFITS	15750 \$/YEAR
2. LABOR	PER SHIFT
CLASS A	
PLANT OPERATOR	1 PER SHIFT
EQUIPMENT OPERATOR	1 PER SHIFT
MECHANIC-ELECTRICIAN	1 PER SHIFT
TOTAL CLASS A	165600 \$/YEAR
BENEFITS	91080 \$/YEAR
CLASS B	
UTILITY	1 PER SHIFT
TOTAL CLASS B	44160 \$/YEAR
BENEFITS	24288 \$/YEAR
	445378 \$/YEAR
TOTAL OPERATING MANPOWER	
	753446 \$/YEAR
TOTAL OPERATING COST	

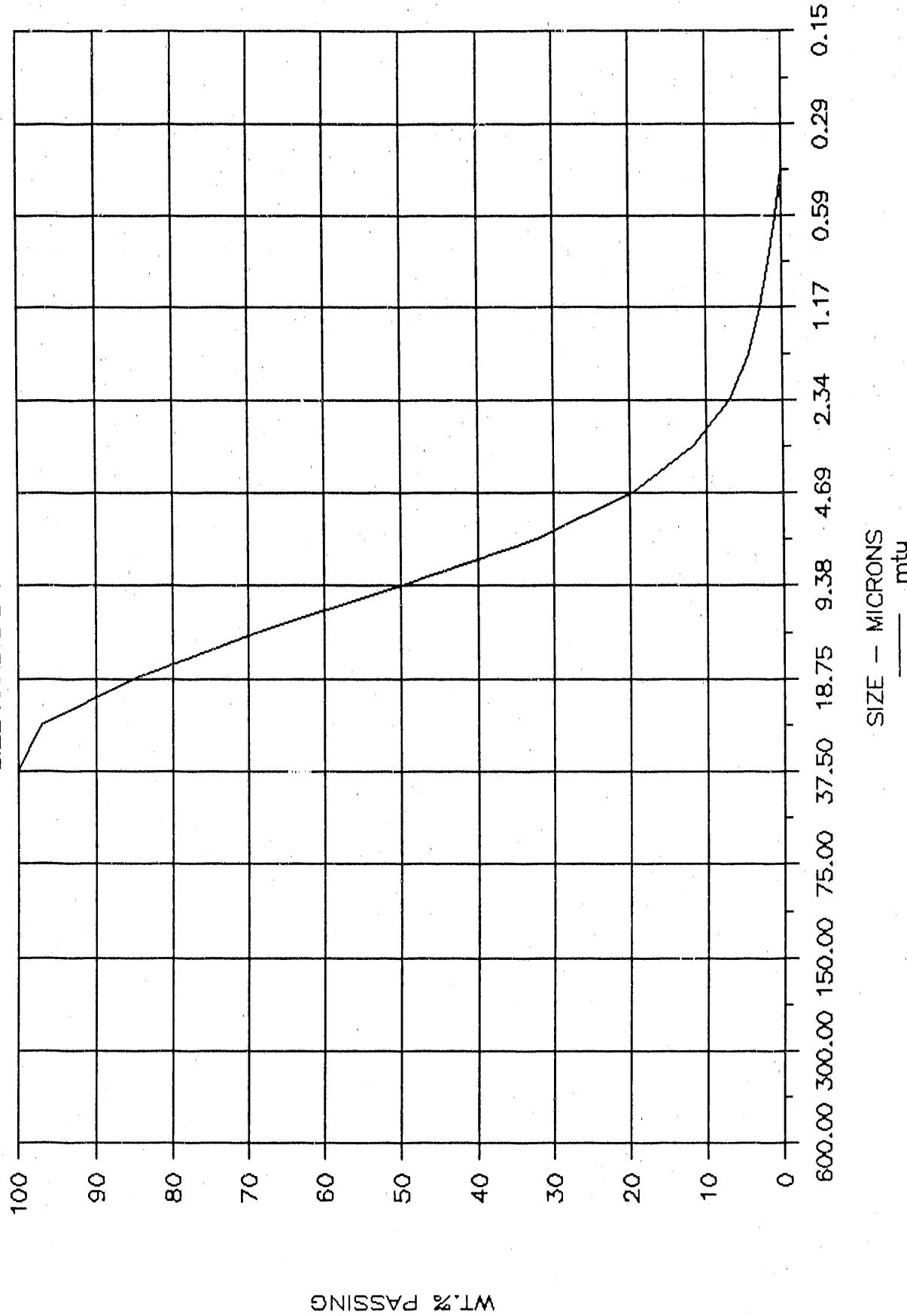
II. ESTIMATED MAINTENANCE COST

A. MAINTENANCE SUPPLIES	246111	
EQUIPMENT	10.00%	
PER CENT MULTIPLIER		
TOTAL EQUIPMENT	24611	TOTAL DOLLAR
TOTAL MAINTENANCE SUPPLIES	24611	\$/YEAR
		\$/YEAR

B. MAINTENANCE SUPERVISION AND LABOR

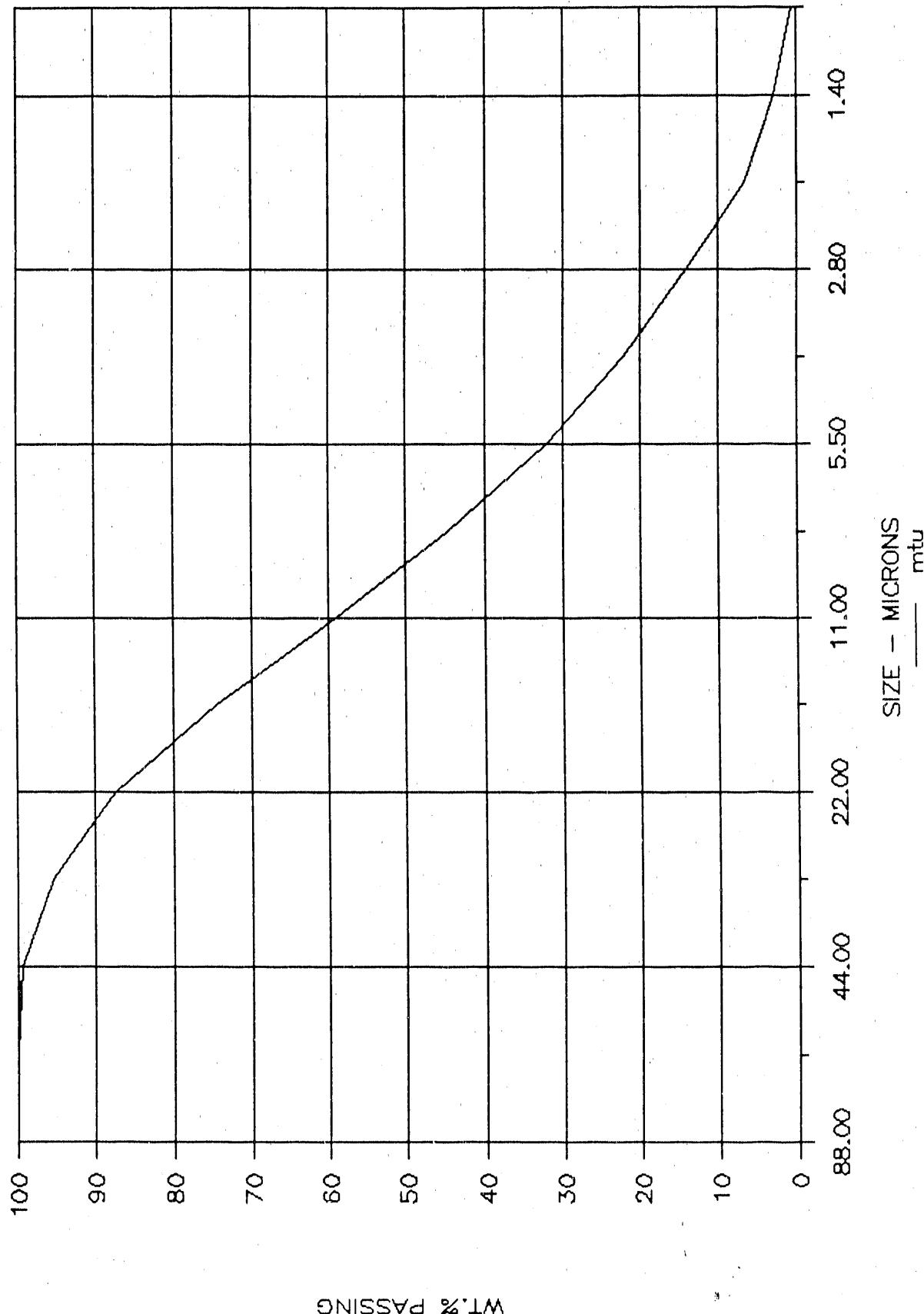
1. SUPERVISION	1	PER YEAR
FOREMAN	35000	\$/YEAR
SALARY		
BENEFITS	15750	\$/YEAR
2. LABOR	1	SHIFT
CLASS A		
MECHANICS	1	PER SHIFT
WELDERS	1	PER SHIFT
ELECTRICIAN	1	PER SHIFT
TOTAL CLASS A	82800	\$/YEAR
BENEFITS	45540	\$/YEAR
TOTAL MAINTENANCE MANPOWER	179340	\$/YEAR
TOTAL MAINTENANCE COST	203701	\$/YEAR

ESTIMATED OPERATING AND MAINTENANCE COSTS

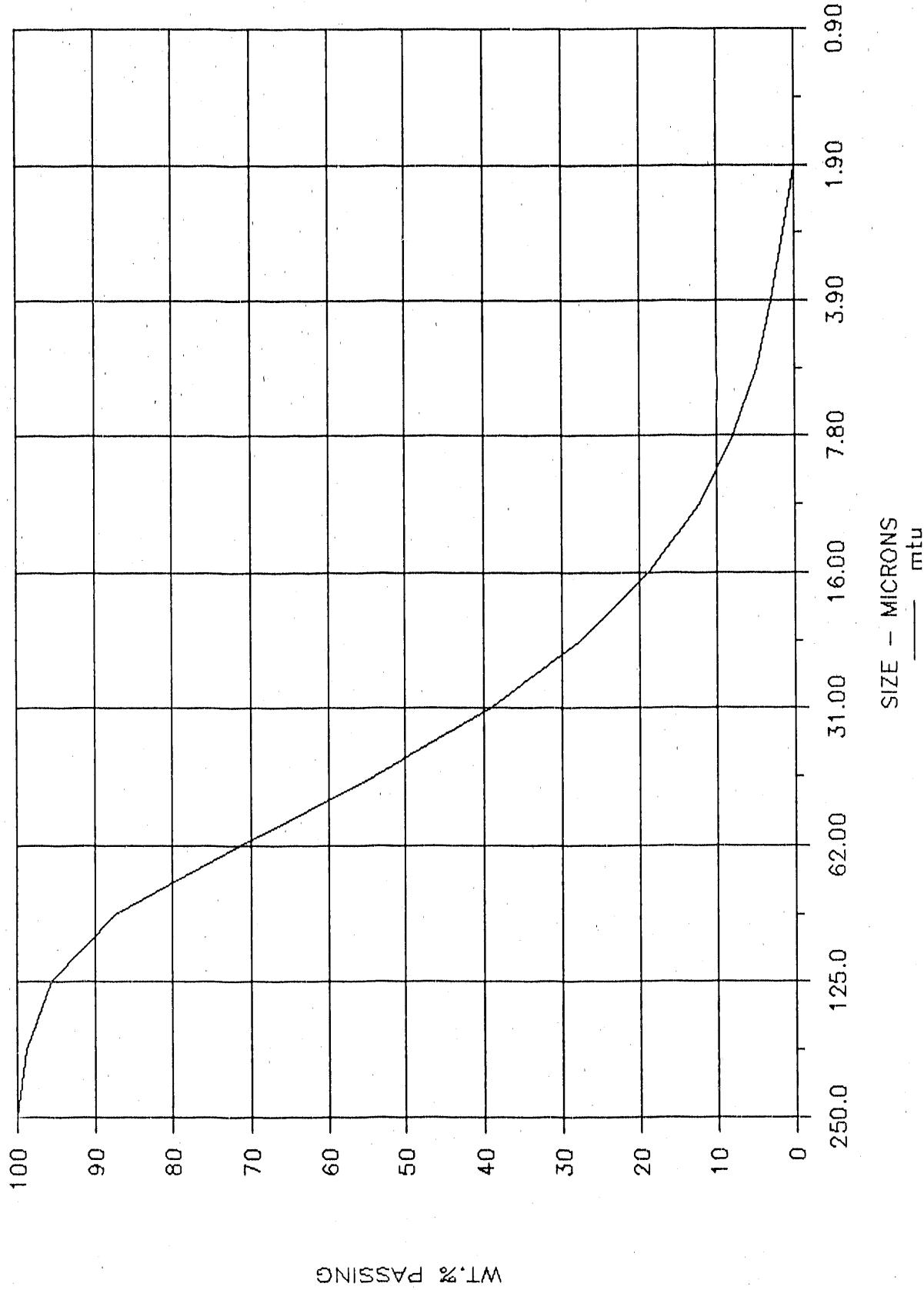

		PER YEAR	TON	TON	PER RAW	PER CLEAN
I.	OPERATING SUPPLIES					
POWER		105051	1,589	1,881		
FLOTATION REAGENTS		204695	3,096	3,604		
WATER		0	0,000	0,000		
LUBRICANTS		1322	0,020	0,024		
TOTAL OPERATING SUPPLIES		311068	4,705	5,503		
II.	OPERATING SUPERVISION AND LABOR					
SUPERVISION		85000	1,286	1,522		
BENEFITS		38250	0,579	0,685		
LABOR		209760	3,173	3,755		
BENEFITS		115368	1,745	2,065		
TOTAL OPERATING MANPOWER		448378	6,783	8,027		
TOTAL OPERATING COSTS		759446	11,488	13,585		
III.	MAINTENANCE SUPPLIES					
EQUIPMENT		24611	0,372	0,441		
TOTAL MAINTENANCE SUPPLIES		24611	0,372	0,441		
IV.	MAINTENANCE SUPERVISION AND LABOR					
SUPERVISION		35000	0,529	0,627		
BENEFITS		15750	0,238	0,282		
LABOR		82800	1,253	1,482		
BENEFITS		45540	0,689	0,815		
TOTAL MAINTENANCE MANPOWER		179090	2,709	3,206		
TOTAL MAINTENANCE COST		203701	3,061	3,647		
TOTAL OPERATING & MAINTENANCE COST		963147	14,569	17,242		

MICHIGAN TECHNOLOGICAL UNIVERSITY

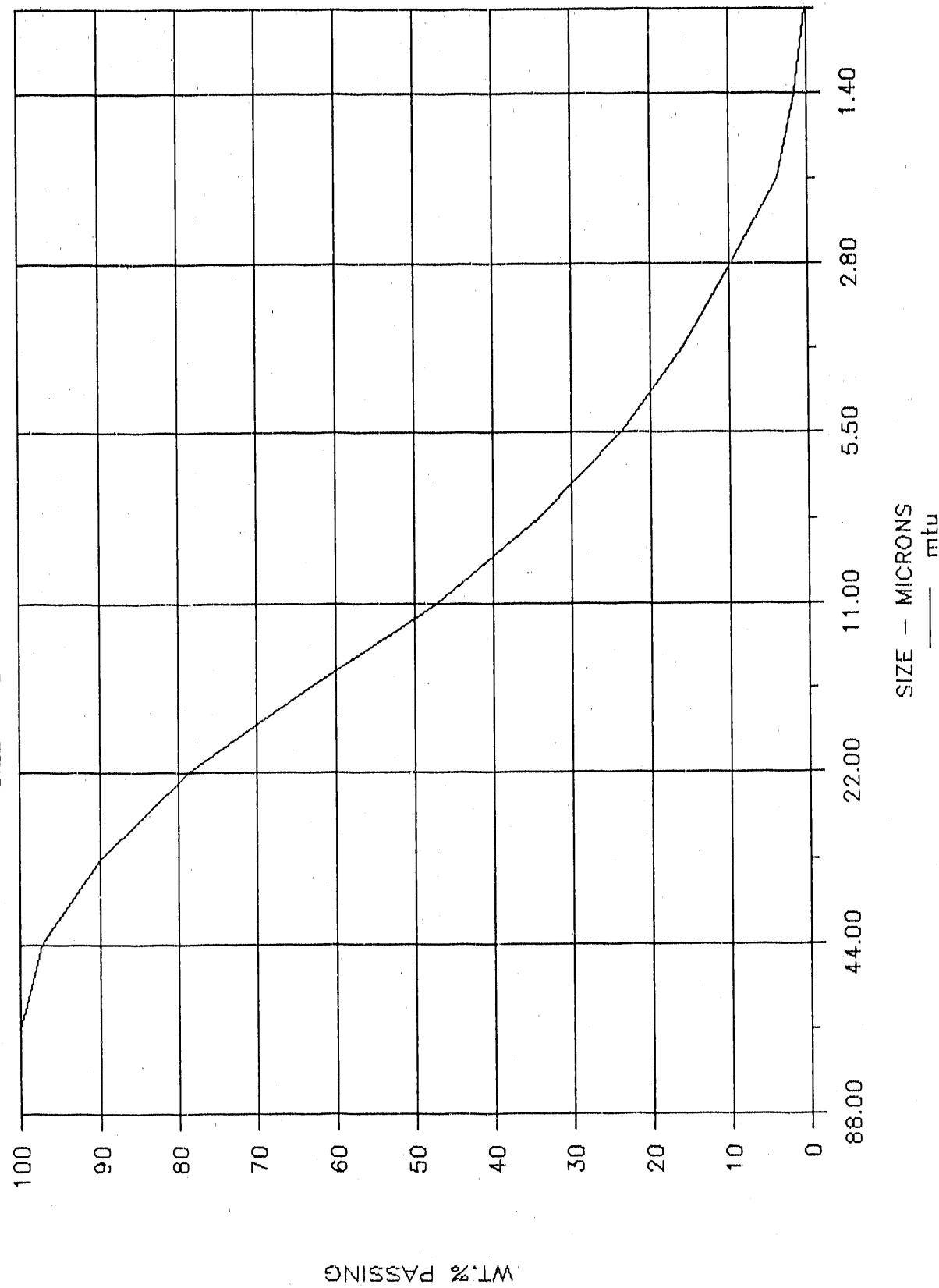
799/43JJ/051/9043


TEST #1

SIZE ANALYSIS BY B&W


TEST #2

SIZE ANALYSIS BY PARTICIPANT


TEST #3

SIZE ANALYSIS BY PARTICIPANT

TEST #4

SIZE ANALYSIS BY PARTICIPANT

MTU ADVANCED FLOTATION PREPARATION PLANT
DUAL CLEANING ECONOMICS MODEL

CLEANING: PLANT	
Raw Coal Total Sulfur	4.07%
Clean Coal Total Sulfur	1.65%
Raw Coal Feed Rate	19.75 (tons/hour)
Scheduled Operating Days	230 (days/year)
Operating Shifts/Day	2 (shifts/day)
Shift Length	8.00 (hours)
Annual Scheduled Operation	3,312 (hours/year)
Mean Plant Availability	90.00% (%)
Yield	83.70% (% of raw coal)
Raw Coal Heating Value	12,340 (dry Btu/lb)
Clean Coal Heating Value	14,236 (dry Btu/lb)
Energy Recovery	96.56% (%)
Annual Raw Coal Feed	65,412 (tons/year)
Annual Clean Coal Product	54,750 (tons/year)
ECONOMIC PARAMETERS	
Design Capital Cost	(input)
Plant Capital Cost	PO07
Plant Life	PL (input)
Working Capital Allotment	(input)
Working Capital	WORKCAP
Proportion Debt	D (Input)
Borrowed Capital	DO07
Investor's Capital CAPITAL	\$0
Debt Interest Rate	DC (Input)
Debt Loan Period	DEPER (Input)
Discounted Return	(Input)
Income Tax Rate (all)	(Input)
Tax Dep. Period	TL (Input)
	100.00% (decimal)
	\$2,123,516
	11.00% (decimal)
	20 (years)
	15.0% (decimal)
	38.0% (decimal)
	20 (years)

	Raw Coal Based	Clean Coal Based (Salable Coal)	Annual (\$/yr)
	(\$/t)	(\$/t) (\$/MBtu)	
Prep Plant Raw Coal TPy Required	65412	-	-
Raw Coal tpy Required	63176	-	-
Additional Raw Coal TPy Required	2236	\$20.00	\$44,720
Coal Cost		\$0.00	\$0.00
Plant OEM Cost		\$13.10	\$15.65
Refuse Disposal OEM Cost	\$0.00	\$0.00	\$0.00
OEM Subtotal	\$13.10	\$15.65	\$0.550
Coal and OEM Cost	\$13.10	\$15.65	\$0.550
Cost of Capital	\$5.40	\$6.45	\$0.227
Producer's Revenue Req.	\$18.50	\$22.10	\$0.776
Transportation		\$0.00	\$0.000
Delivered Cost		\$22.10	\$0.776
			\$1,210,080
			\$1,210,080
			\$344 ANNUAL \$/TON OF SULFUR DIOXIDE

EQUIPMENT NO.	DESCRIPTION	QUANTITY	OPERATING QUANTITY	PRICE	HP	SHIPS SUPPLIED	COMMENTS
100	CONDITIONING FEED SUMP	1	1	10550	30.00	YES	2500 GALLON CAPACITY
101.1	CONDITIONING FEED SUMP MIXER	1	1	135700	40.00	YES	PHILADELPHIA MODEL 3805-S-PTO
105	FEED PUMP	1	1	45752	0.20	YES	GORM MODEL 5000, 80' TH / 300 GPM
105	ROUGHER COLLECTOR REAGENT PUMP	2	2	4024	0.20	YES	PULSAFEEDER MODEL 684C-S-AE
110	ROUGHER FRATHER REAGENT PUMP	2	2	422650	0.00	YES	PULSAFEEDER MODEL 684L-S-AE
115	ROUGHER FLotation MACHINES	2	2	173460	150.00	YES	MICH TECH PACKED COLUMN 10' ID X 40' HIGH
120	ROUGHER FLotation BLOMER	2	2				AIRTEX - 1000 CFM @ 50 PSIG
120.1							
	TOTAL			636436	370.80		

TOTAL ESTIMATED CAPITAL COST IS BASED ON HOFFMAN MINTNER
REPORT NO. EA-600/7-78-124, "AN ENGINEERING/ECONOMIC ANALYSIS
OF COAL PREPARATION PLANT OPERATION AND COST"

THIS REPORT STATES THAT THE CAPITAL COST OF A PREPARATION PLANT CAN BE
ESTIMATED BY MULTIPLYING THE EQUIPMENT COST BY 3.

TOTAL EQUIPMENT COST

636436

TOTAL PROJECT ESTIMATE

1909308

OPERATING AND MAINTENANCE COSTS

OPERATING CAPACITIES	
CONNECTED HORSEPOWER	371 HP
WATER REQUIREMENTS	315.90 GPM
PLANT FEED RATE	19.75 TPH
PLANT RECOVERY	83.70%
PRODUCTION RATE	16.53 TPH
PLANT AVAILABILITY	90.00%

UNIT SUPPLY COSTS

ELECTRIC POWER	0.060 \$/KWH
FROTHER - MIBC	0.610 \$/2
FROTHER - M150	0.850 \$/2
FROTHER - PINE OIL	0.630 \$/2
COLLECTOR - FUEL OIL	0.088 \$/2
COLLECTOR - KERSUSENE	0.106 \$/2
DEPRESSANT	0.000 \$/2
MAKE UP WATER	0.020 \$/1000 GAL
LUBRICANTS	0.020 PER TON RAW COAL

SUPERINTENDENT

BENEFITS	50000 PER YEAR
BENEFITS	22500 0.45 TIMES SALARY
BENEFITS	35000 PER YEAR
BENEFITS	15750 0.45 TIMES SALARY
LABOR	
CLASS A	15.00 PER HOUR
BENEFITS	8.25 0.55 TIMES RATE
CLASS B	12.00
BENEFITS	6.60 0.55 TIMES RATE

YEARLY OPERATING HOURS

HOURS/SHIFT	8
SHIFTS/DAY	2
DAYS/YEAR	230
HOURS/YEAR	3312
RAW COAL/YEAR	65412
CLEAN COAL/YEAR	54750

FLOTATION REAGENT COSTS PER YEAR

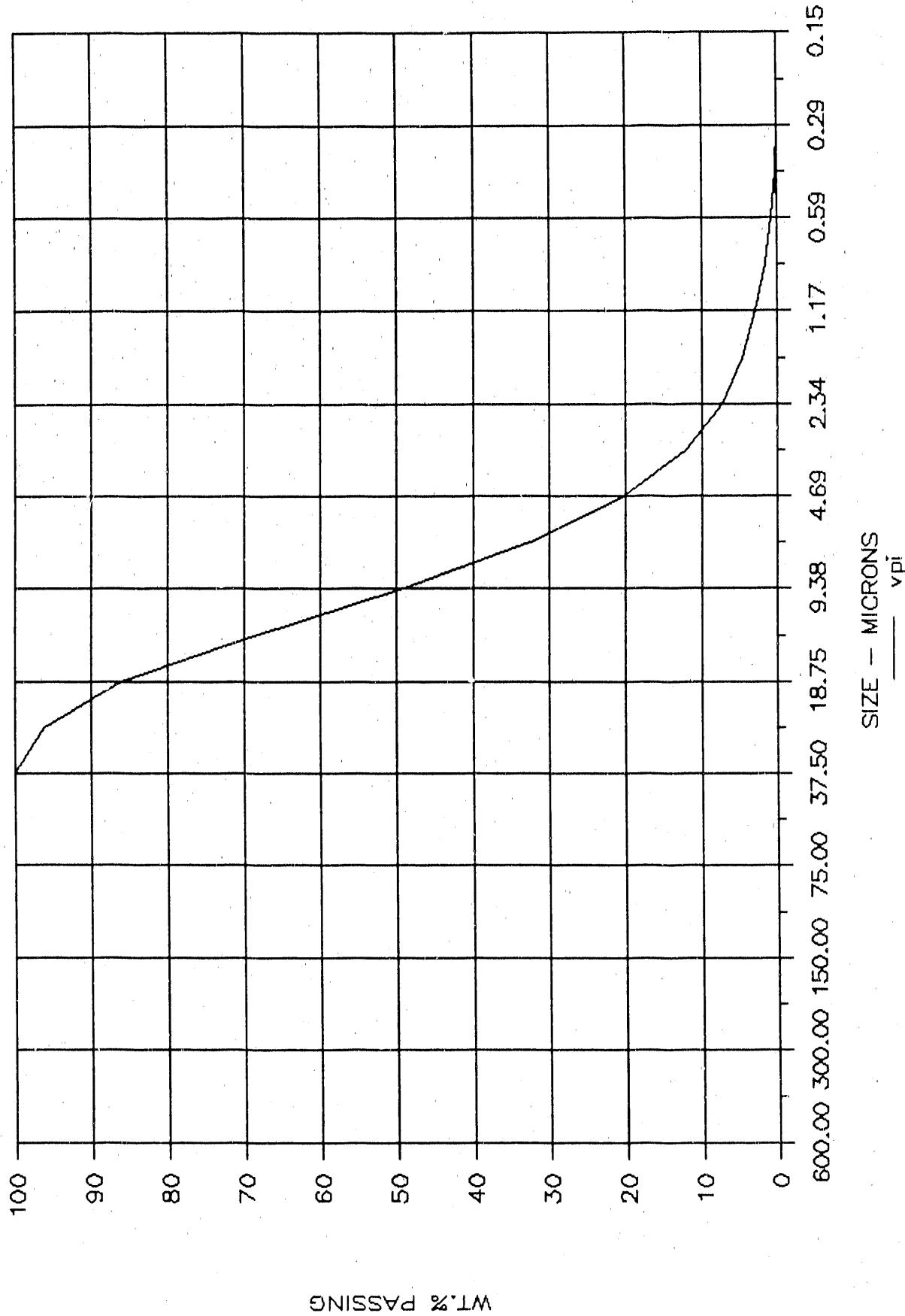
MULCHER	FEED RATE	19.750	TPH	
	FROTHER RATE	0.821	\$/TON	PINE OIL
	COLLECTOR RATE	2.560	\$/TON	FUEL OIL
	DEPRESSANT RATE	0.000	\$/TON	
 CLEANER	 FEED RATE	 N/A	 TPH	
	FROTHER RATE	N/A	\$/TON	
	COLLECTOR RATE	N/A	\$/TON	
	DEPRESSANT RATE	N/A	\$/TON	
 RECLEANER	 FEED RATE	 N/A	 TPH	
	FROTHER RATE	N/A	\$/TON	
	COLLECTOR RATE	N/A	\$/TON	
	DEPRESSANT RATE	N/A	\$/TON	
 TOTAL FROTHER		33833	\$/YEAR	
TOTAL COLLECTOR		14736	\$/YEAR	
TOTAL DEPRESSANT		0	\$/YEAR	
TOTAL FLOTATION COST		48569	\$/YEAR	

1. ESTIMATED OPERATING COSTS

A. OPERATING SUPPLIES			
1. POWER	DIVERSITY CONNECTED HP HEAT AND LIGHT POWER COST ASSUME 1HP=1KVA-KWH	0.80 370.80 350.00 114590 \$/YEAR	FACTOR KWH KWH \$/YEAR
2. FLOTATION REAGENT COST		48669 \$/YEAR	
3. WATER COST		1252 \$/YEAR	
4. LUBRICANTS		1308 \$/YEAR	
TOTAL OPERATING SUPPLIES		165719 \$/YEAR	
B. OPERATING MANPOWER			
1. SUPERVISION		1 50000 \$/YEAR	1 PER YEAR
SUPERINTENDENT BENEFITS		22500 \$/YEAR	
2. LABOR		1 35000 \$/YEAR	1 PER SHIFT
CLASS A PLANT OPERATOR EQUIPMENT OPERATOR MECHANIC-ELECTRIAN TOTAL CLASS A BENEFITS		165600 \$/YEAR 91080 \$/YEAR	
CLASS B UTILITY TOTAL CLASS B BENEFITS		44160 \$/YEAR 24288 \$/YEAR	1 PER SHIFT
TOTAL OPERATING MANPOWER		445578 \$/YEAR	
TOTAL OPERATING COST		614097 \$/YEAR	

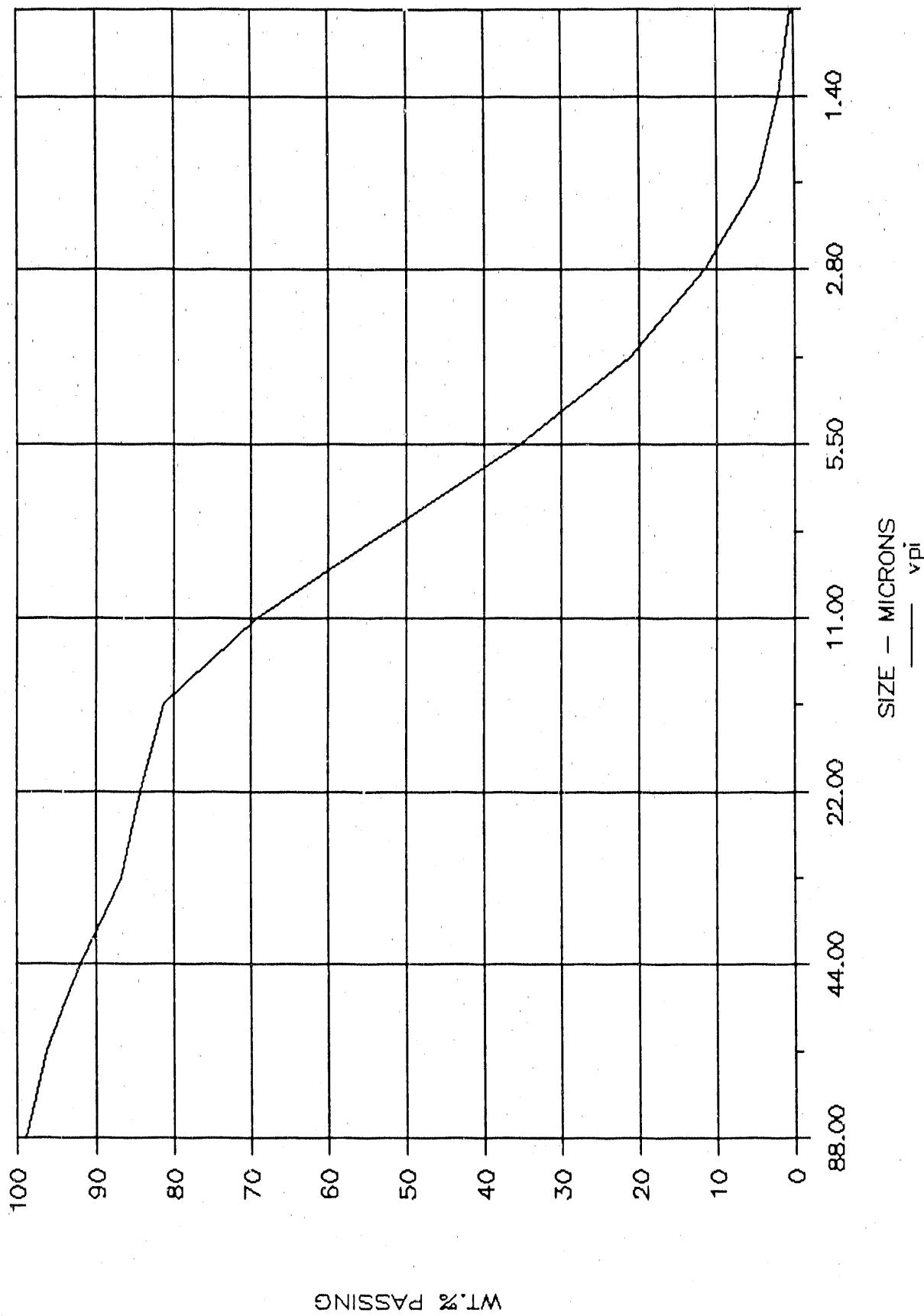
II. ESTIMATED MAINTENANCE COST

A. MAINTENANCE SUPPLIES	
EQUIPMENT	636136
PER CENT MULTIPLIER	10.00%
TOTAL EQUIPMENT	63644
TOTAL MAINTENANCE SUPPLIES	63644
	\$/YEAR
	\$/YEAR
B. MAINTENANCE SUPERVISION AND LABOR	
1. SUPERVISION	
FOREMAN	1 PER YEAR
SALARY	35000 \$/YEAR
BENEFITS	15750 \$/YEAR
2. LABOR	1 SHIFT
CLASS A	
MECHANICS	1 PER SHIFT
WELDERS	1 PER SHIFT
ELECTRICIAN	1 PER SHIFT
TOTAL CLASS A	82800 \$/YEAR
BENEFITS	45540 \$/YEAR
TOTAL MAINTENANCE MANPOWER	179390 \$/YEAR
TOTAL MAINTENANCE COST	242734 \$/YEAR

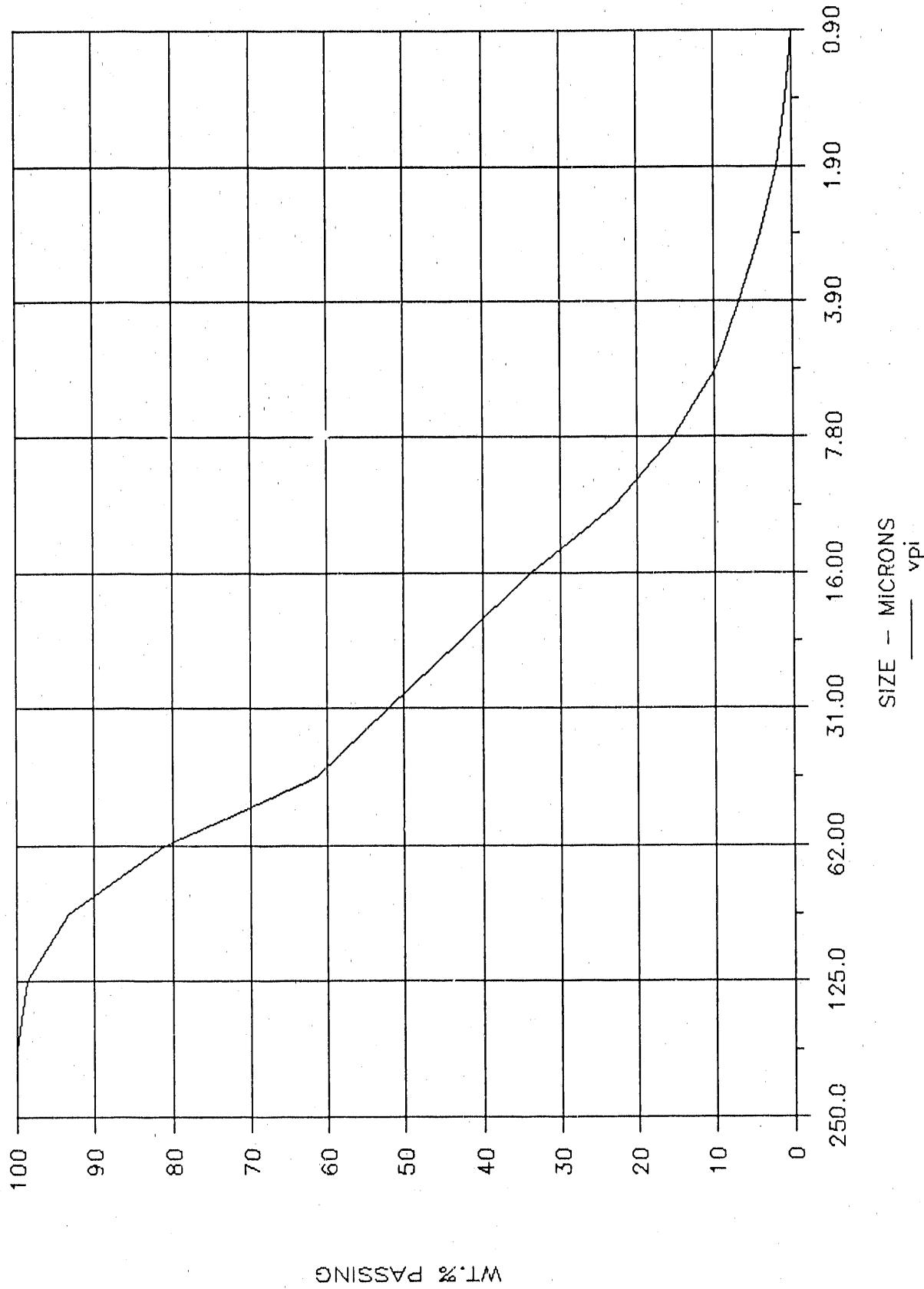

ESTIMATED OPERATING AND MAINTENANCE COSTS

		PER YEAR	PER KAW	PER CLEAN
		TON	TON	TON
I. OPERATING SUPPLIES				
POWER		114590	1.752	2.093
FLOTATION REAGENTS		46869	0.743	0.887
WATER		1252	0.019	0.023
LUBRICANTS		1308	0.020	0.024
TOTAL OPERATING SUPPLIES		165719	2.553	3.1027
II. OPERATING SUPERVISION AND LABOR				
SUPERVISION		85000	1.299	1.553
BENEFITS		38250	0.585	0.699
LABOR		209760	3.207	3.831
BENEFITS		115368	1.764	2.107
TOTAL OPERATING MANPOWER		448378	6.855	8.190
TOTAL OPERATING COSTS		614097	9.388	11.216
III. MAINTENANCE SUPPLIES				
EQUIPMENT		63644	0.973	1.162
TOTAL MAINTENANCE SUPPLIES		63644	0.973	1.162
IV. MAINTENANCE SUPERVISION AND LABOR				
SUPERVISION		35000	0.515	0.639
BENEFITS		15750	0.241	0.288
LABOR		82800	1.206	1.512
BENEFITS		45540	0.636	0.822
TOTAL MAINTENANCE MANPOWER		179090	2.738	3.271
TOTAL MAINTENANCE COST		242734	3.711	4.434
TOTAL OPERATING & MAINTENANCE COST		8566831	13.049	15.650

VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY


799/43JJ/051/9047

TEST #1
SIZE ANALYSIS BY B&W



TEST #2

SIZE ANALYSIS BY PARTICIPANT

TEST #3
SIZE ANALYSIS BY PARTICIPANT

0068
 VPI ADVANCED FLOTATION PREPARATION PLANT
 COAL CLEANING ECONOMICS MODEL

CLEANING PLANT	
Raw Coal Total Sulfur	4.25%
Clean Coal Total Sulfur	1.90%
Raw Coal Feed Rate	23.87 (tons/hour)
Scheduled Operating Days	230 (days/year)
Operating Shifts/Day	2 (shifts/day)
Shift Length	8.00 (hours)
Annual Scheduled Operation	3,312 (hours/year)
Mean Plant Availability	90.00%(\$)
Yield	
Raw Coal Heating Value	70.00%(% of raw coal)
Clean Coal Heating Value	12,277 (dry Btu/lb)
Energy Recovery	14,088 (dry Btu/lb)
Annual Raw Coal Feed	80.33%(\$)
Annual Clean Coal Product	
	79,057 (tons/year)
	55,340 (tons/year)
ECONOMIC PARAMETERS	
Design Capital Cost	(Input)
Plant Capital Cost	POST
Plant Life	PL (Input)
Working Capital Allotment	(Input)
Working Capital	WORKCAP
Proportion Debt	D (Input)
Borrowed Capital	DCOST
Investor's Capital	CAPITAL
Debt Interest Rate	DC (Input)
Debt Loan Period	DPER (Input)
Discounted Return	(Input)
Income Tax Rate (all)	(Input)
Tax Dep. Period	TL (Input)
	100.00(decimal)
	\$1,504,539
	\$0
	11.00% (decimal)
	20 (years)
	15.00% (decimal)
	38.00% (decimal)
	20 (years)

	Raw Coal Based	Clean Coal Based (Salable Coal)	Annual (\$/yr)
	(\$/t)	(\$/t (\$/MMBtu))	
Prep Plant Raw Coal TPy Required	79057		
Raw Coal TPy Required	63501		\$311,129
Additional Raw Coal TPy Required	15556	\$20.00	
Total Cost		\$0.00	\$0.00
Plant O&M Cost	\$11.16	\$15.95	\$82,588
Refuse Disposal O&M Cost	\$0.00	\$0.00	\$0
O&M Subtotal	\$11.16	\$15.95	\$82,588
Coal and O&M Cost	\$11.16	\$15.95	\$82,588
Cost of Capital	\$6.69	\$9.55	\$0.339
Producer's Revenue Req.	\$17.85	\$25.50	\$0.905
Transportation	\$0.00	\$0.000	\$0
Delivered Cost	\$25.50	\$0.905	\$1,411.304
\$305 ANNUAL \$/TON OF SULFUR DIOXIDE REMOVED			

五

INITIAL ESTIMATED CAPITAL COST IS BASED ON HOFFMAN-MINTNER REPORT NO. EPA-600/7-78-124, "AN ENGINEERING/ECONOMIC ANALYSIS OF OIL PREPARATION PLANT OPERATION AND COST".

THIS REPORT STATES THAT THE CAPITAL COST OF A PREPARATION PLANT CAN BE ESTIMATED BY MULTIPLYING THE EQUIPMENT COST BY 3.

TOTAL EQUIPMENT COST

OPERATING AND MAINTENANCE COSTS

OPERATING CRITERIA	
CONNECTED LOAD/POWER	521 kW
WATER REQUIREMENTS	741.00 GPM
PLANT FEED RATE	23.87 TPH
PLANT RECOVERY	70.00%
PRODUCTION RATE	16.71 TPH
PLANT AVAILABILITY	90.00%

UNIT SUPPLY COSTS	
ELECTRIC POWER	0.06 \$/KWH
FROTHER - MILC	0.51 \$/oz
FROTHER - MILC	0.85 \$/oz
FROTHER - PINE OIL	0.63 \$/oz
COLLECTOR - FUEL OIL	0.09 \$/oz
COLLECTOR - KERSOSENE	0.11 \$/oz
DEPRESSANT	0.00 \$/oz
MAKE UP WATER	0.02 \$/1000 GAL
LUBRICANTS	0.02 PER TUN RAW COAL

SUPERINTENDENT	
BENEFITS	50000 PER YEAR
FIREMAN	22500 0.45 TIMES SALARY
BENEFITS	35000 PER YEAR
LARR	15750 0.45 TIMES SALARY
BENEFITS	15.00 PER HOUR
CLASS A	15.00 PER HOUR
BENEFITS	8.25 0.55 TIMES RATE
CLASS B	12.00 0.55 TIMES RATE
BENEFITS	6.60 0.55 TIMES RATE

YEARLY OPERATING HOURS	
HOURS/SHIFT	8
SHIFTS/DAY	2
DAYS/YEAR	240
HOURS/YEAR	15360
RAW COAL/YEAR	79357
CLEAN COAL/YEAR	55340

FLOTATION REAGENT COSTS PER YEAR

ROUGHER	FEED RATE	23.87	TH	
	FRUTHER RATE	0.907	\$/TON	M150
	COLLECTOR RATE	1.00	\$/TON	KEROSENE
	DEPRESSANT RATE	0.00	\$/TON	
CLEANER	FEED RATE	0.00	TH	
	FRUTHER RATE	0.00	\$/TON	
	COLLECTOR RATE	0.00	\$/TON	
	DEPRESSANT RATE	0.00	\$/TON	
RECLEANER	FEED RATE	0.00	TH	
	FRUTHER RATE	0.00	\$/TON	
	COLLECTOR RATE	0.00	\$/TON	
	DEPRESSANT RATE	0.00	\$/TON	
TOTAL FRUTHER		60949	\$/YEAR	
TOTAL COLLECTOR		8380	\$/YEAR	
TOTAL DEPRESSANT		0	\$/YEAR	
TOTAL FLOTATION COST		69329	\$/YEAR	

1. ESTIMATED OPERATING COSTS

A. OPERATING SUPPLIES

1. POWER	DIVERSITY CONNECTED HP HEAT AND LIGHT	0.80 521.00 350.00 138468	FACTOR KWH KWH \$/YEAR
ASSUME 1HP=1KVA=100KWH			
2. FLOTATION REAGENT COST	POWER COST	63529	\$/YEAR
3. WATER COST		2945	\$/YEAR
4. LUBRICANTS		1581	\$/YEAR
	TOTAL OPERATING SUPPLIES	212224	\$/YEAR

B. OPERATING MANPOWER

1. SUPERVISION	1 PER YEAR
SUPERINTENDENT	1 PER YEAR
SALARY	50000 \$/YEAR
BENEFITS	22500 \$/YEAR
FOREMAN	1 PER YEAR
SALARY	35000 \$/YEAR
BENEFITS	15750 \$/YEAR
	PER SHIFT
2. 1AHR	
CLASS A	
PLANT OPERATOR	1 PER SHIFT
EQUIPMENT OPERATOR	1 PER SHIFT
MECHANIC-ELECTRICIAN	1 PER SHIFT
TOTAL CLASS A	165600 \$/YEAR
BENEFITS	91080 \$/YEAR
CLASS B	
UTILITY	1 PER SHIFT
TOTAL CLASS B	44160 \$/YEAR
BENEFITS	23288 \$/YEAR
TOTAL OPERATING MANPOWER	448378 \$/YEAR
	660702 \$/YEAR
TOTAL OPERATING COST	

11. ESTIMATED MAINTENANCE COST

A. MAINTENANCE SUPPLIES

EQUIPMENT	427964
PER CENT MULTIPLIER	10.00%
TOTAL EQUIPMENT	42796
TOTAL DOLLAR	
TOTAL MAINTENANCE SUPPLIES	42796
	\$/YEAR
	\$/YEAR

B. MAINTENANCE SUPERVISION AND LABOR

1. SUPERVISION	1 PER YEAR
FOREMAN	35000 \$/YEAR
SALARY	
BENEFITS	15750 \$/YEAR
2. LABOR	1 SHIFT
CLASS A	
MECHANICS	1 PER SHIFT
WELDERS	1 PER SHIFT
ELECTRICIAN	1 PER SHIFT
TOTAL CLASS A	82800 \$/YEAR
BENEFITS	45540 \$/YEAR
TOTAL MAINTENANCE MANPOWER	179060 \$/YEAR
TOTAL MAINTENANCE COST	221886 \$/YEAR

ESTIMATED OPERATING AND MAINTENANCE COSTS

		PER YEAR	PER TAN	PER CLEAN TAN
I. OPERATING SUPPLIES				
FUEL	138468	1.751	2.502	
FLotation REAGENTS	68329	0.877	1.253	
WATER	2945	0.037	0.053	
LUBRICANTS	1581	0.020	0.029	
TOTAL OPERATING SUPPLIES	212224	2.686	3.357	
II. OPERATING SUPERVISION AND LABOR				
SUPERVISION	85006	1.075	1.506	
BENEFITS	36250	0.484	0.631	
LABOR	208760	2.653	3.790	
BENEFITS	115368	1.459	2.005	
TOTAL OPERATING MANPOWER	448878	5.672	8.102	
TOTAL OPERATING COSTS	680702	8.357	11.909	
III. MAINTENANCE SUPPLIES				
EQUIPMENT	42796	0.541	0.773	
TOTAL MAINTENANCE SUPPLIES	42796	0.541	0.773	
IV. MAINTENANCE SUPERVISION AND LABOR				
SUPERVISION	35000	0.443	0.632	
BENEFITS	15750	0.199	0.265	
LABOR	82900	1.047	1.496	
BENEFITS	45540	0.576	0.823	
TOTAL MAINTENANCE MANPOWER	179900	2.265	3.236	
TOTAL MAINTENANCE COST	221886	2.807	4.009	
TOTAL OPERATING & MAINTENANCE COST	882568	11.164	15.948	

APPENDIX II

799/43II/044/9031

ICF KAISER ENGINEERS

**ICF KAISER ENGINEERS, INC.
FOUR GATEWAY CENTER, 12TH FLOOR
PITTSBURGH, PENNSYLVANIA 15222
412/281-8121**

January 17, 1990

**Reference: ICF Kaiser Engineers' Number 88107-150
Round Robin Test #4
Capital and Operating Cost Evaluation**

Dear Sir:

The Technical Advisory Committee (TAC) has requested ICF Kaiser Engineers (ICF KE) to prepare capital costs and operating costs for each participants flotation scheme.

In order to prepare an accurate estimate of capital costs and address some concerns of the participants, ICF KE requests that each participant prepare a flowsheet for their particular Test #4 scheme. The flowsheet is to be based on processing 20 tons per hour of precleaned coal. The precleaned coal will be ground to minus 325 mesh and diluted to 10 percent solids by weight.

Your flowsheet is to be based on the above and your parameters for your Test #4. The flowsheet should indicate mass and water balance for the flotation process only, i.e. no dewatering equipment is to be included. The flowsheet is to further indicate all outside utilities required for your process i.e. compressed air cfm, wash water gpm, reagent dosages etc.

Your capital cost for flowsheet is to include all major equipment i.e. flotation machine(s), air compressor, slurry pumps, etc.

ICF KE requires that you supply the capital cost of your flotation device and an itemized list and cost of all additional equipment required to operate your flotation circuit. If you require instrumentation to properly operate your flotation device, include a listing of this instrumentation and the costs. (Do not include control panels, computers, PLC, etc.)

The operating costs for your flowscheme will be prepared based on, but not limited to, power consumption, reagent costs and water costs.

Page 2

The participant is further requested to supply the overall dimensions of the 20TPH flotation device on a drawing of the device suitable for including into the final report of the round robin results.

If you have any questions and/or comments, please contact the writer at your convenience. ICF KE requests that you return this information no later than January 31, 1990. Thank you for your cooperation in this matter.

Very truly yours,

ICF KAISER ENGINEERS, INC.

Dave D. Ferris

Dave D. Ferris
Project Technical Director

DDF/bam

**ICF KAISER
ENGINEERS**

ICF KAISER ENGINEERS, INC.
FOUR GATEWAY CENTER, 12TH FLOOR
PITTSBURGH, PENNSYLVANIA 15222
412/281-8121

88107-150

April 6, 1990

Reference: Topical Report #2 - Round Robin Test Results for
DOE Contract Number DE-AC22-88PC88881
ICF Kaiser Engineers Number 88107-150

Dear

Please find enclosed a draft copy of the Round Robin Test Results for Advanced Flotation for your information. This report will be presented and discussed at a meeting of the Technical Advisory Committee on April 17, 1990.

After the meeting, the conclusions will be incorporated into the final report to be submitted to the Department of Energy. This will fulfill a subtask for the above referenced contract.

Please review the enclosed report and comment on the report no later than April 16, 1990. Your comments are to be limited to your device only. Any comments related to other participants will be edited out of your comments. You may comment on methods of evaluation and state any improvements to your particular advanced flotation device. Your comments, less any edited material, will be incorporated as an appendix to the report submitted to DOE.

Very truly yours,

Dave D. Ferris
Project Technical Director

DDF/mah

Enclosure

Michigan Technological University

Houghton, Michigan 49931

Institute of Materials Processing

906/487-2600

FAX: 906/487-2921

April 16, 1990

Dave D. Ferris
Project Technical Director
ICF Kaiser Engineers, Inc.
Four Gateway Center, 12th Floor
Pittsburgh, PA 15222

Reference: Topical Report #2 - Round Robin Test Results for
DOE Contract Number DE-AC22-88PC88881
ICF Kaiser Engineers Number 88107-150

Dear Dave:

Thank you for the draft copy of the Round Robin Test Results for Advanced Flotation. We have carefully reviewed the report and have a few comments on methods of evaluation. Please find our comments in the attachment.

If you have any questions, please do not hesitate to call me or David Yang. We are very glad to have the opportunity to work with your company.

Sincerely,

A handwritten signature in black ink, appearing to read "J. Y. Hwang".

J. Y. Hwang
Program Manager, Minerals
and Solid Waste Processing Group

JYH/tea

Enclosure

MAY 03 1990

MTU COMMENTS
(04/16/90)

Reference: Topical Report #2 - Round Robin Test Results for
DOE Contract Number DE-AC22-88PC88881
ICF Kaiser Engineers Number 88107-150

1. Technical Evaluations

- a. The objective of this study is to determine the most efficient, cost effective flotation cell for obtaining maximum amount of BTU recovery and maximum amount of pyritic sulfur rejection for a given coal at a given particle size distribution. The separation efficiency (= BTU recovery - (100 - Pyrite Rejection)) is the parameter designed to evaluate the technical efficiency. We believe that this parameter should be utilized as the sole basis for the technical evaluation.
- b. BTU recovery and pyrite rejection have been counted in the separation efficiency. They should not be evaluated as independent parameter. If for any reason they need to be considered, the weight ratio of these parameters should not be equal to the separation efficiency.
- c. The weight % recovery of coal becomes a parameter to penalize good coal cleaning processes in the technical evaluation. The same is true for the BTU recovery parameter if it stands alone. A process without cleaning the coal will obtain the best score because it gets 100% weight recovery and 100% BTU recovery.
- d. If the technical evaluation needs to include any parameter other than the separation efficiency, we suggest to select from the parameters such as the ash separation efficiency, pyrite content, ash content, and BTU value of the clean coal.
- e. We suggest that all tests should be considered in the evaluation to obtain balanced comparison. A good flotation device should be able to function consistently well under various conditions as the coal industry requires. The use of Test #4, but excluding Test #1 thru #3, as the basis for comparison may not provide a complete evaluation. We believe that the results of Tests #1 thru #3 (or #4) may be combined to provide an independent technical evaluation parameter.

2. Economic Evaluations

- a. All of the four economic evaluation parameters are calculated or utilized to punish good coal cleaning processes. Without any coal cleaning treatment, one can obtain the best score for each parameter because the cost is zero. We certainly believe that this is not the intention of this evaluation and suggest to design a more appropriate economic evaluation system.

- b. Cleaned coal will observe the benefits on transportation, power plant ash collection and disposal, and flue gas desulfurization treatment, etc. These benefits are the most important economic driving force for coal cleaning. However, they are not recognized in any of the economic evaluation parameters. According to the calculations shown in the Appendix I, these benefits are all assumed to be of no economic value.
- c. We suggest to use the balance between the total costs and total benefits to evaluate the economics of various processes.
- d. The flotation plant installation cost is assumed to be about 3 times of the capital cost of the flotation device (see p. 53, 3rd paragraph). High capital cost device usually has considered all the variables already and requires much less efforts in installation, testing, and operation. We suggest to use a more reasonable factor for high capital cost device. In addition, we suggest to exclude the capital cost factor from the operation and maintenance cost parameter and the other parameters if the capital cost stands by itself as a parameter. We believe that high capital device should not be punished in every economic evaluation parameter.

3. Overall Considerations

As we discussed earlier, the separation efficiency should be the sole basis for technical evaluation. The MTU process should be ranked first with this approach. When the benefits of cleaning are considered in the economic evaluations, the MTU process shall also become the first ranked. Thus, the MTU process should be ranked first overall.

COLLEGE OF ENGINEERING

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

VIRGINIA CENTER FOR COAL AND MINERALS PROCESSING (703) 231-4508 TELEX: (910) 333-1861 fax: (703) 231-4070

Blacksburg, Virginia 24061-0239

April 16, 1990

Mr. David Ferris
ICF Kaiser Engineers, Inc.
4 Gateway Center
12th Floor
Pittsburgh, Pennsylvania 15222

Dear Mr. Ferris:

Per your letter dated April 6, 1990, please find below our comments to be included in the appendix of the final report on the round-robin test program. The comments are broken up into two areas; changes in the technical and economic information pertaining to the VPI&SU column flotation process, and comments on the evaluation procedure used in ranking the various advanced flotation technologies. Per your instructions, we have avoided comments on advanced flotation technologies other than our own. We have also included copies of the final release analysis curves which have been revised to reflect the linearized Btu values which were included in your final report. In this way, all of the reported Btu recoveries and the release curves are based on a consistent set of data. These release curves also include the error bar for the pyritic sulfur and total sulfur measurements.

Technical and Economic Changes

After analyzing the technical and economic data which you provided, we would like to point out a few discrepancies in the information related to VPI&SU which we would like to correct. Based on an area scale-up of aeration rate from the test number 4 data reported by VPI&SU, it appears that we suggested an oversized compressor. If we scale-up exactly from our laboratory data, we require 304 CFM which means our economics should be based on one 300 CFM compressor rather than a 500 CFM compressor.

In terms of the equipment costs, it appears that our column cost can be reduced based on our most recent information. As you know, at the time that we provided our equipment specifications, we were still conducting our first major in-plant test on a large-scale column. Based on the data we have now collected, it seems that we were overly conservative on our estimate of the pump size. After conducting considerable test work with 3-4 inch in-line bubble generators, it now appears that a 30 HP pump will be more than sufficient for an eight-foot diameter column. Thus, the overall cost for three VPI&SU columns, including pumps and instrumentation, should be reduced to \$180,000.

Finally, in evaluating the operating costs for each process, we noticed how far out of line the high frother consumption was for the VPI&SU column. Realizing that the round-robin test program is now complete, we decided to run an additional set of tests for our own benefit using the same sample and the same grind as in Test No. 4 to see if we could operate at a lower frother dosage and a higher kerosene dosage. It appears that we may have been using excess frother as an expensive collector in our previous test. The data from these tests are included for your information. We realize that you may not be able to include these results in the economic evaluation; however, it does show that we can obtain an 86% Btu recovery with an 81% pyritic sulfur rejection using 1.6 lb/ton of Dowfroth M150 and 3 lb/ton of kerosene.

Evaluation Procedure

We were a bit dismayed to see our names on the draft version of the final report on the round-robin test program which was sent to all participants. This was particularly unsettling since we did not have a chance to see or comment on the final version of the evaluation procedure selected. Furthermore, the appearance of our names on the cover sheet of this report would tend to indicate that we agree with all the conclusions and statements made in this report, which is definitely not true.

First of all, the evaluation procedure is seriously flawed. Out of the eight criteria used to evaluate each process, four are weighted toward yield. These four are weight recovery, Btu recovery, efficiency index, and \$/CC ton. Furthermore, three out of the four criteria for the technical evaluation are based on yield. Only two out of eight criteria are weighted toward sulfur rejection. These are pyritic sulfur rejection and \$/Ton SO₂ removed. As a result of the heavy weighting toward yield, any process which produces a high yield, regardless of the amount of sulfur rejection, does very well. For example, if a pipe was connected to the feed stream so that the entire stream was placed into the final product without separation, it would finish second as shown below.

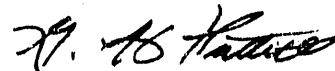
Evaluation Including Pipe

PARTICIPANT	BTU REC	SUL REJ	EI	YIELD	SUB	O&M	CAPITAL	\$/T CC	\$/T SO ₂	SUB	TOT	RANK
ALLMINERAL	4	6	6	2	2.25	5	4	4	6	2.37	4.62	6
CAER	2	4	2	3	1.38	2	3	2	1	1.00	2.38	1
DCCI	6	5	5	4	2.50	3	5	3	5	2.00	4.50	5
ISGS	5	3	3	5	2.00	6	2	5	4	2.12	4.12	4
MTU	3	2	1	6	1.50	4	7	6	3	2.50	4.00	3
VPI&SU	7	1	4	7	2.37	7	6	7	2	2.75	5.12	7
PIPE	1	7	7	1	2.00	1	1	1	7	1.25	3.25	2

If we included a process which can meet the DOE objective of 90 % Btu recovery and 90 % pyritic sulfur rejection, it would have finished only third in terms of technical performance.

Evaluation Including 90-90

PARTICIPANT	BTU REC	SUL REJ	EI	YIELD	SUB	O&M	CAPITAL	\$/T CC	\$/T SO ₂	SUB	TOT	RANK
ALLMINERAL	3	7	7	1	2.25							5
CAER	1	5	3	2	1.38							1
DCCI	5	6	6	3	2.50							6
ISGS	4	4	4	4	2.00							4
MTU	2	3	1	5	1.38							1
VPI&SU	7	2	5	7	2.62							7
90-90	6	1	2	6	1.88							3


In order to evaluate all processes fairly, one should begin by looking at technical performance. Assuming that all test data are collected at steady-state, then all of the processes fall on the same grade-recovery curve (i.e., the release analysis curve) as discussed in our reports dated 2-8-90, 2-19-90, 3-5-90 and 3-26-90, and it is immaterial to carry out a technical evaluation based on grade and recovery. In other words, all of the processes are capable of achieving the same result. Therefore, the economic evaluation should be based on the same yield for all participants. In conducting this economic evaluation, however, it is important to consider several other factors. For instance, are the economic numbers based on steady-state data, how accurately have the parties involved been able to predict scale-up from laboratory data, how will each system operate over the long-term (i.e., can control be maintained, will the bubble generation system be susceptible to plugging, etc.). These are all very important factors since economic values based on non-steady-state data or improperly scaled equipment are meaningless.

I hope you find this information and analysis useful. Please feel free to contact us if you have any questions concerning our comments or the data enclosed.

Sincerely,

Roe-Hoan Yoon

Greg T. Adel

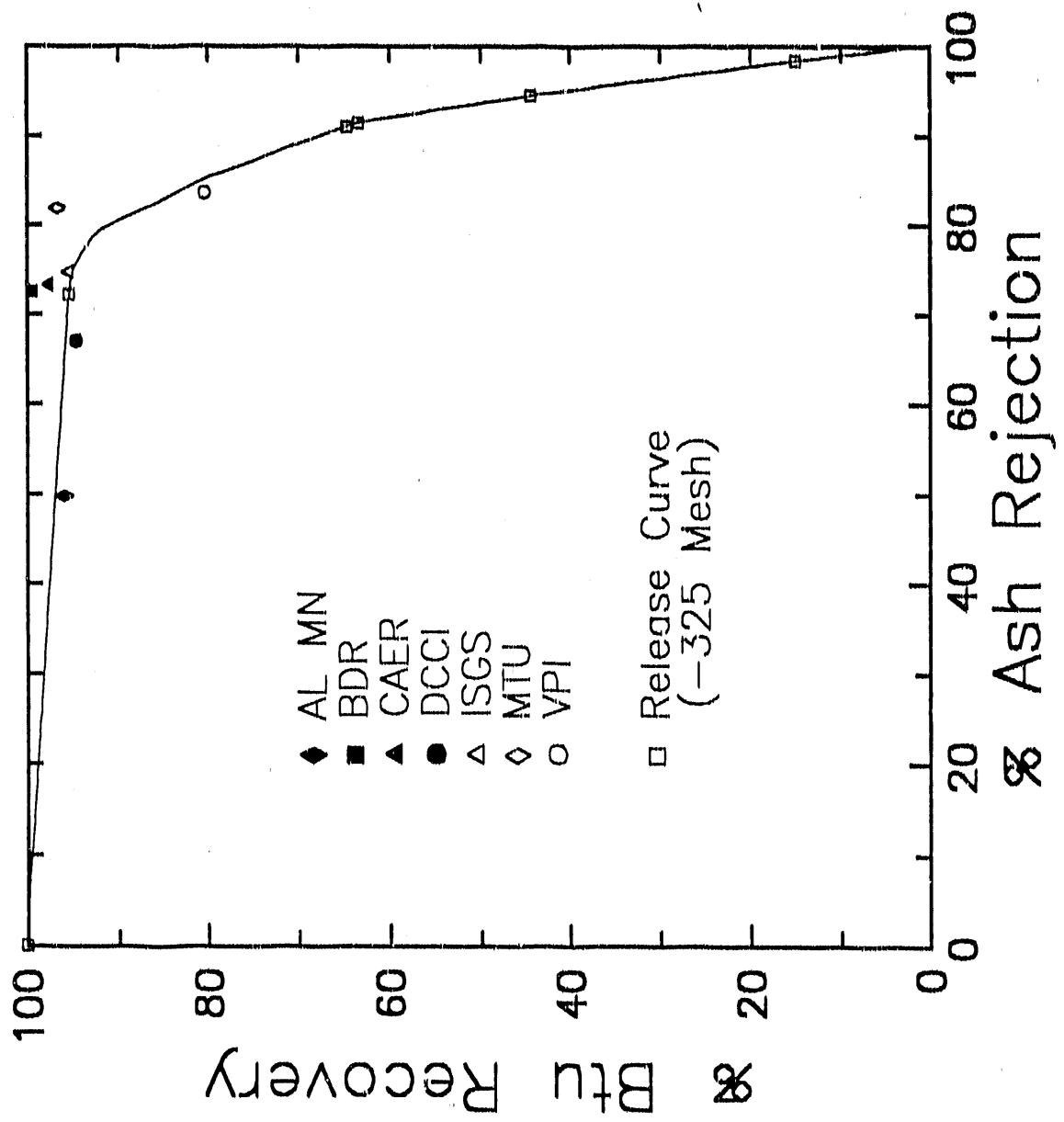
Gerald H. Luttrell

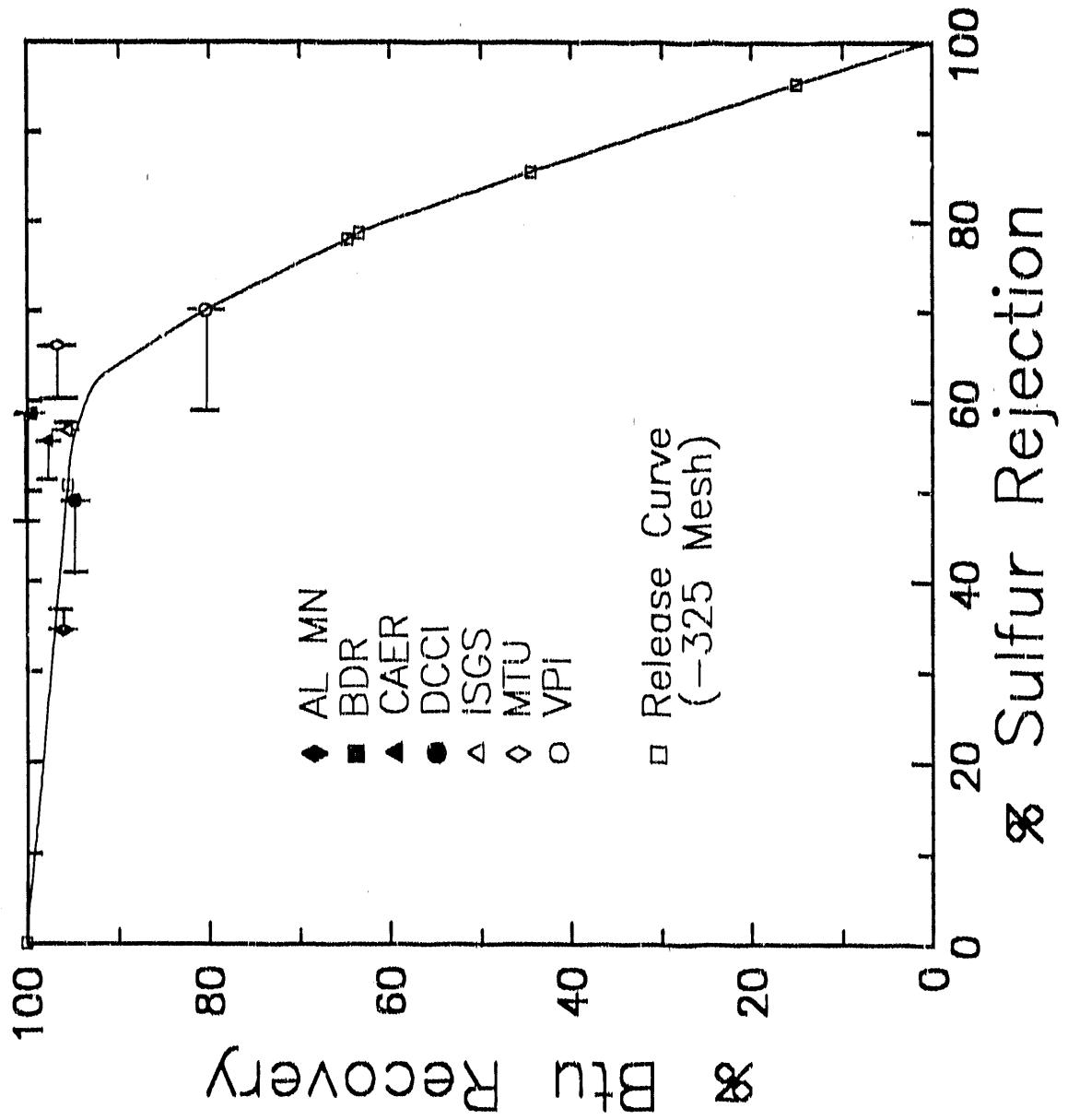
	VPI&SU			
	Test 5.1	Test 5.2	Test 5.3	Test 5.4
FEED				
Ash (%)	12.40 (12.53)	12.40 (12.53)	12.40 (12.53)	12.40 (12.53)
Total Sulfur (%)	4.26 (4.15)	4.26 (4.15)	4.26 (4.15)	4.26 (4.15)
Pyritic Sulfur (%)	2.92 (*****)	2.92 (*****)	2.92 (*****)	2.92 (*****)
PRODUCT				
Ash (%)	3.50 (3.50)	3.79 (3.79)	4.05 (4.05)	3.58 (3.58)
Total Sulfur (%)	2.10 (2.10)	2.19 (2.19)	2.20 (2.20)	2.07 (2.07)
Pyritic Sulfur (%)	0.61 (*****)	0.71 (*****)	0.73 (*****)	0.58 (*****)
REFUSE				
Ash (%)	32.02 (32.02)	32.94 (32.94)	40.04 (40.04)	41.88 (41.88)
Total Sulfur (%)	9.02 (7.69)	9.20 (7.82)	11.08 (9.28)	11.58 (9.72)
Pyritic Sulfur (%)	8.01 (*****)	8.20 (*****)	10.17 (*****)	10.74 (*****)
OVERALL				
Retention Time (min)	5.8 (6.1)	5.7 (5.1)	5.4 (3.9)	5.8 (7.1)
Yield (%)	68.8 (68.8)	70.5 (70.5)	76.8 (76.8)	77.0 (77.0)
Btu Recovery (%)	77.6 (77.6)	79.1 (79.1)	85.9 (85.9)	86.7 (86.7)
Ash Rejection (%)	80.6 (80.6)	78.5 (78.5)	74.9 (74.9)	77.8 (77.8)
Sulfur Rejection (%)	66.1 (56.3)	63.8 (54.2)	60.3 (50.5)	62.6 (52.5)
Pyritic S. Rejection (%)	85.6 (*****)	82.8 (*****)	80.8 (*****)	84.6 (*****)
Separation Efficiency (%)	63.2 (*****)	61.9 (*****)	66.7 (*****)	71.3 (*****)

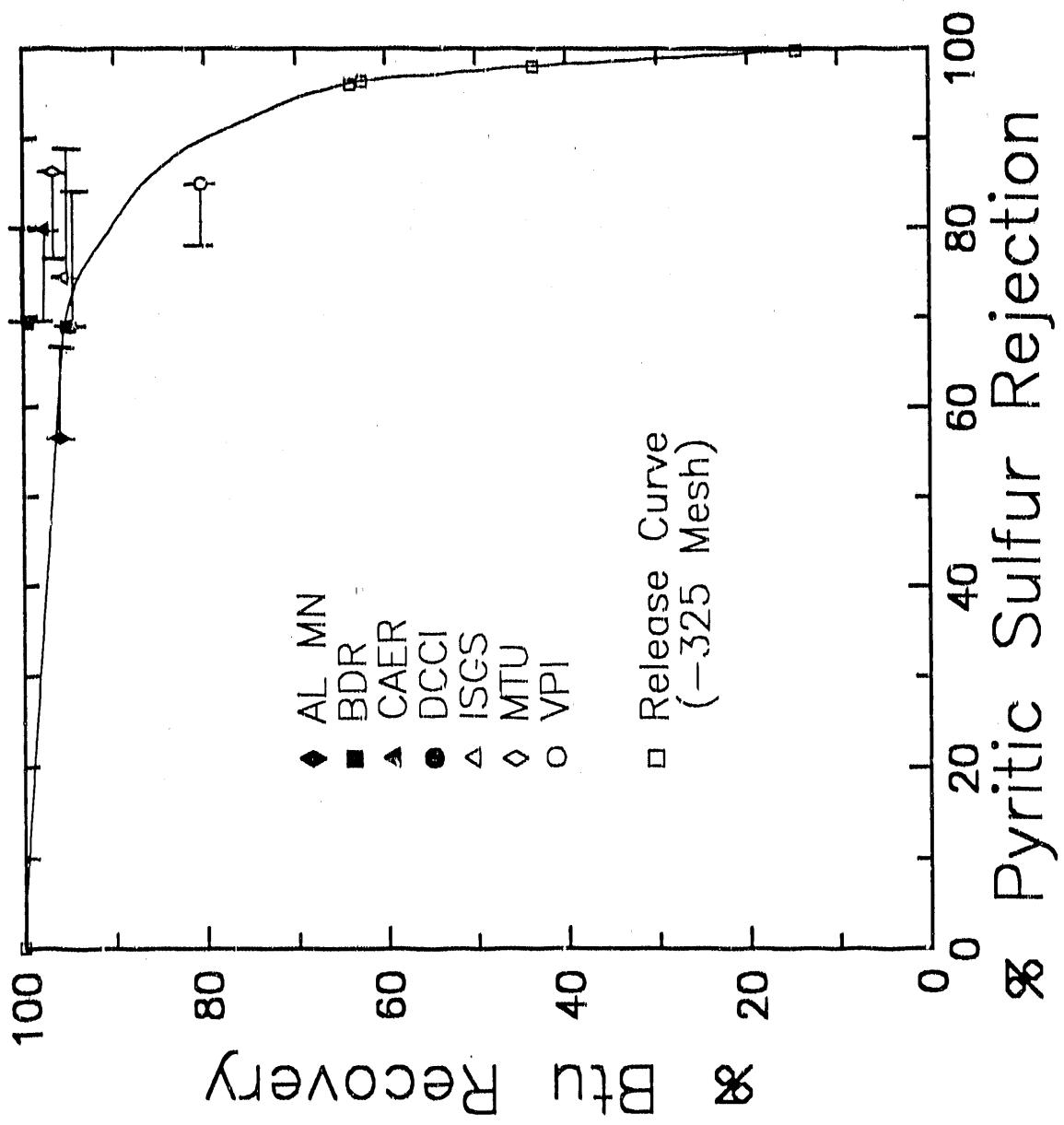
VPI&SU

	Test 1	Test 2	Test 3	Test 4
FEED				
Pulp Flow (ml/min)	74 (***)	77 (***)	102 (***)	64 (**)
Water Flow (ml/min)	66 (***)	69 (***)	92 (***)	57 (**)
Solids Flow (g/min)	7.3 (*****)	7.6 (*****)	10.1 (*****)	6.3 (*****)
% Solids	9.9 (9.9)	9.9 (9.9)	9.9 (9.9)	9.9 (9.9)
PRODUCT				
Pulp Flow (ml/min)	62 (66)	89 (91)	48 (50)	45 (48)
Water Flow (ml/min)	56 (60)	83 (86)	40 (42)	41 (42)
Solids Flow (g/min)	5.0 (6.0)	5.3 (5.5)	7.7 (8.4)	4.8 (5.9)
% Solids	8.2 (9.1)	6.0 (6.0)	16.1 (16.7)	10.6 (12.1)
REFUSE				
Pulp Flow (ml/min)	512 (486)	488 (542)	554 (757)	518 (419)
Water Flow (ml/min)	510 (484)	486 (540)	552 (755)	517 (418)
Solids Flow (g/min)	2.3 (1.9)	2.2 (2.2)	2.3 (2.3)	1.4 (1.1)
% Solids	0.4 (0.4)	0.5 (0.4)	0.4 (0.3)	0.3 (0.3)
WASH WATER				
Water Flow (ml/min)	500 (500)	500 (500)	500 (500)	500 (500)
OVERALL				
Pulp Volume (ml)	2984	2779	2984	2984
Retention Time (min)	5.8 (6.1)	5.7 (5.1)	5.4 (3.9)	5.8 (7.1)

Test Number	5.1	5.2	5.3	5.4
GEOMETRY				
Height (in)	78	78	78	78
Diameter (in)	2	2	2	2
Slurry Feed Point (in)	?	?	?	?
Wash Water Addition Point (in)	?	?	?	?
Froth Height (in)	20	24	20	20
Pulp Height (in)	58	54	58	58
Baffles Spacing (in)	N/A	N/A	N/A	N/A

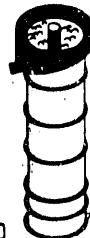

CONDITIONS


Wash Water Rate (GPM)	0.132	0.132	0.132	0.132
Air Flow Rate (CFM)	0.036	0.036	0.049	0.036
Feed Slurry Rate (GPM)	0.020	0.020	0.027	0.017
Feed % Solids (Wt)	9.9	9.9	9.9	9.9
Feed Slurry pH	7.8	7.8	7.8	7.8
Feed Particle Size (d50)	Same as in Round-Robin Test No. 4			
Air Hold-Up	?	?	?	?
Retention Time (min)	5.8	5.7	5.4	5.8


REAGENTS

Collector Name	Kerosene	Kerosene	Kerosene	Kerosene
Collector Rate (lb/ton)	3	3	3	3
Frother Name	M150	M150*	M150	M150
Frother Rate (lb/ton)	2.2	2.1	1.6	3.2
Modifier Name	N/A	N/A	N/A	N/A
Modifier Rate	N/A	N/A	N/A	N/A

* Frother added in with feed rather than in bubble generation circuit.



The Deister Concentrator Company, Inc.

P.O. Box 1 · 901 Glasgow Avenue · Fort Wayne, Indiana 46801
(219) 424-5128 · Telex 23-2428 · Facsimile No. (219) 420-3252 · Cable RETSIED

April 27, 1990

Mr. Dave D. Ferris
ICF KAISER ENGINEERS, INC.
Four Gateway Center, 12th Floor
Pittsburgh, Pennsylvania 15222

Reference: Comments For: Topical Report #2-Round Robin Test Results
DOE Contract Number DE-AC22-88PC88881
ICF Kaiser Engineers Number 88107-150

Dear Mr. Ferris:

Please let Deister know if we must submit these comments separately to DOE at this late date. I did not receive the preliminary draft till after the deadline date.

Comments For DOE

Capital equipment costs for The Deister Concentrator Co., Inc. column plant were increased by 3 times by the evaluation committee. When multiplying equipment costs by 3 times to obtain preparation plant capital costs, a 9 times factor is imposed on the Deister installation. The number of Deister columns required to process 20 TPH raw coal was increased by the evaluation committee from 1 to 3 claiming that froth loading of 0.344 TPH/ft² must be reduced to 0.115 TPH/ft². Two(2) patented features of Deister Columns, center froth crowders and radial revolving froth removal blades, allows Deister columns to operate efficiently at froth loadings of up to 0.5 TPH/ft². Indeed, this increased froth loading over other advanced flotation process technology is an essential part of the Deister column improved ash and sulfur removal as well as increased froth % Solids to minimize downstream dewatering costs. Deister has commercial columns operating successfully at 0.425 TPH/ft². Correction of this erroneous equipment addition changes Deister's rating for economic parameters from 4th place to 1st place.

Technical parameter performance, The Deister Concentrator Co., Inc. used result for standard grind and standard chemical conditions from Test #1 to be the same for Test #4 without changing grind and chemical conditions. Yet, Table 3.7, pg.48 lists Deister BTU recovery at 98.6% for Test 1 while a typographic error relists Deister BTU Recovery at 94.61% for Test 4, Table 3.9, pg.51. Correction of this typographic error changes Deister's rating for BTU recovery from 5th place to 1st place.

Total Performance - Correction of the capital cost error and correction of the typographic performance error gives Deister a 1.750 technical performance index and a 0.500 economical performance index for an overall performance index of 2.250- the best of all.

Second place contender would have an overall index of 2.375.

Very truly yours,
THE DEISTER CONCENTRATOR CO., INC.

Donald E. Zipperian, Chief
Mineral Processing Engineer.

TABLE 3.7
FLOTATION PERFORMANCE RESULTS PHASE 1

AL MN		HR		CAER		DOC1		1998		MTU		VPI	
#1	#2	#3	#1	#2	#3	#1	#2	#3	#1	#2	#3	#1	#2
FEED													
WEIGHT %	BILMAT	100.0	100.0	100.0	N/A	N/A	N/A	100.0	100.0	100.0	100.0	100.0	100.0
ASH %	REPORTED	100.0	100.0	100.0	N/A	N/A	N/A	100.0	100.0	100.0	100.0	100.0	100.0
ASH %	BILMAT	11.75	11.75	12.10	N/A	N/A	N/A	11.95	12.14	12.14	12.05	11.98	12.40
ASH %	REPORTED	12.10	12.05	12.10	N/A	N/A	N/A	11.65	11.85	11.87	11.70	11.91	11.78
PRYTIC SULFUR %	BILMAT	2.36	2.36	2.36	N/A	N/A	N/A	2.79	2.79	2.42	2.42	2.44	2.36
PRYTIC SULFUR %	REPORTED	2.08	2.08	2.08	N/A	N/A	N/A	2.20	2.20	2.81	2.81	2.75	2.24
TOTAL SULFUR %	BILMAT	3.98	3.96	3.98	N/A	N/A	N/A	4.20	4.20	3.93	3.95	3.92	2.36
TOTAL SULFUR %	REPORTED	3.70	4.00	4.10	N/A	N/A	N/A	4.12	4.12	4.11	3.80	4.07	4.26
BTU	REPORTED	12250	12350	12350	N/A	N/A	N/A	12506	12506	12335	12335	12389	12506
CLEAN COAL													
WEIGHT %	BILMAT	63.60	72.20	65.90	N/A	N/A	N/A	5.90	3.50	93.90	85.60	90.70	58.40
WEIGHT %	REPORTED	58.19	69.75	62.93	N/A	N/A	N/A	8.80	9.10	94.60	86.06	82.06	58.02
ASH %	BILMAT	8.30	7.80	7.80	N/A	N/A	N/A	2.47	2.10	8.46	4.72	5.70	6.35
ASH %	REPORTED	9.20	8.30	8.30	N/A	N/A	N/A	2.47	2.10	8.46	4.72	5.70	6.35
PRYTIC SULFUR %	BILMAT	1.85	1.04	1.29	N/A	N/A	N/A	0.50	0.39	2.47	0.88	1.21	1.36
PRYTIC SULFUR %	REPORTED	1.68	0.91	1.13	N/A	N/A	N/A	0.50	0.39	2.00	0.95	1.38	1.06
TOTAL SULFUR %	BILMAT	3.70	2.90	3.00	N/A	N/A	N/A	1.68	1.87	3.64	2.35	2.60	2.40
TOTAL SULFUR %	REPORTED	3.70	2.90	3.00	N/A	N/A	N/A	1.68	1.87	3.64	2.35	2.60	2.40
BTU	REPORTED	12880	12949	13423	N/A	N/A	N/A	14117	13870	13345	14160	13916	13883
REFUSE													
WEIGHT %	BILMAT	36.40	27.80	34.10	N/A	N/A	N/A	94.10	96.50	6.10	14.40	9.30	13.00
WEIGHT %	REPORTED	41.81	30.25	37.07	N/A	N/A	N/A	91.20	90.90	5.40	13.94	14.02	41.60
ASH %	BILMAT	16.20	20.70	19.40	N/A	N/A	N/A	12.54	12.31	66.66	56.42	50.17	33.30
ASH %	REPORTED	16.20	20.70	19.40	N/A	N/A	N/A	12.54	12.31	66.74	56.48	50.20	33.30
PRYTIC SULFUR %	BILMAT	3.25	5.79	4.44	N/A	N/A	N/A	2.93	2.88	7.76	11.58	9.33	14.57
PRYTIC SULFUR %	REPORTED	2.97	4.55	3.61	N/A	N/A	N/A	1.90	1.90	14.25	11.63	10.90	8.33
TOTAL SULFUR %	BILMAT	4.47	6.78	5.88	N/A	N/A	N/A	4.36	4.29	12.86	13.33	11.77	5.71
TOTAL SULFUR %	REPORTED	4.68	6.54	5.98	N/A	N/A	N/A	3.77	4.17	9.13	11.19	12.51	11.54
BTU	REPORTED	11058	10231	10829	N/A	N/A	N/A	11325	12572	3432	5149	6471	11810
BTU RECOVERY		65.30	75.70	71.63	N/A	N/A	N/A	6.66	3.88	100.2	98.26	98.46	100.4
PRYTIC SULFUR REJECTION		50.13	68.20	64.15	N/A	N/A	N/A	98.82	99.61	16.97	68.91	57.10	38.70
EFFICIENCY		15.43	43.91	35.78	N/A	N/A	N/A	5.48	3.49	17.17	53.56	30.08	45.50

AL MN = ALL MINERAL, HR = B. DATTA RESEARCH, CAER = CENTER FOR APPLIED ENERGY RESEARCH, DOC1 = DEISTER CONCENTRATOR COMPANY, INC., 1998 = ILLINOIS STATE GEOLOGICAL SURVEY
MTU = MICHIGAN TECHNOLOGICAL UNIVERSITY, VPI = VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

TABLE 3.9
FLOTATION PERFORMANCE RESULTS PHASE 2

PERFORMANCE PARAMETER	AL MN	HR	CAR	DOCI	150S	MTU	VPI	24	24	24	24	24
FEED												
WEIGHT %	BULMAT	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	REPORTED	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
ASH %	BULMAT	11.75	12.00	11.96	12.14	12.05	11.99	12.40	11.95	11.45	11.67	11.67
	REPORTED	11.80	12.77	11.65	11.94	11.94	11.45	11.67	11.67	11.45	11.67	11.67
PRITIC SULFUR %	BULMAT	2.36	2.19	2.19	2.42	2.44	2.36	2.92	2.67	2.38	3.58	1.54
	REPORTED	2.08	2.62	2.62	2.38	2.38	2.67	1.99	2.67	2.38	3.58	1.54
TOTAL SULFUR %	BULMAT	3.98	3.33	4.20	3.93	3.92	3.79	3.66	4.07	4.26	3.74	3.74
	REPORTED	4.11	3.62	3.92	2.80	3.79	3.79	3.66	3.74	3.66	3.74	3.74
BTU	CALCULATED	12378	12339	12347	12317	12331	12340	12277	12306	12335	12389	12506
	REPORTED	12350	12412	12506	12412	12412	12412	12335	12420	12420	12389	12506
CLEAN COAL												
WEIGHT %	BULMAT	89.50	89.00	87.50	85.80	85.40	83.70	83.70	80.00	83.70	70.00	72.28
	REPORTED	89.49	88.00	88.10	86.08	86.48	84.97	84.97	86.08	86.08	88.48	84.97
ASH %	BULMAT	6.64	3.73	3.72	4.72	3.60	2.59	2.91	2.59	2.59	2.91	2.91
	REPORTED	6.65	3.73	3.73	4.72	3.60	2.59	2.91	2.59	2.59	2.91	2.91
PRITIC SULFUR %	BULMAT	0.92	0.76	0.65	0.88	0.73	0.39	0.47	0.77	0.38	0.40	0.40
	REPORTED	0.84	0.80	0.80	0.62	0.55	0.35	0.40	0.40	0.38	0.40	0.40
TOTAL SULFUR %	BULMAT	2.92	1.83	2.13	2.35	1.99	1.65	1.90	2.13	2.35	1.99	1.65
	REPORTED	2.92	1.83	2.13	2.35	1.99	1.65	1.90	2.13	2.35	1.99	1.65
BTU	CALCULATED	13288	13786	13788	13614	13809	14226	14088	14160	14110	14322	14333
	REPORTED	13424	14082	14110	14110	14110	14110	14110	14110	14110	14110	14110
REFUSE												
WEIGHT %	BULMAT	10.50	11.00	12.50	14.40	14.80	16.30	30.00	13.90	13.52	15.93	27.72
	REPORTED	10.51	12.00	11.90	13.94	13.52	15.93	27.72	13.90	13.52	15.93	27.72
ASH %	BULMAT	55.64	78.99	69.97	56.42	61.58	60.15	34.51	61.67	60.15	34.51	34.51
	REPORTED	55.70	79.09	70.27	56.48	61.67	60.15	34.51	61.67	60.15	34.51	34.51
PRITIC SULFUR %	BULMAT	13.04	13.77	17.73	11.58	12.42	12.46	8.62	15.50	14.25	14.83	11.10
	REPORTED	12.67	15.83	15.50	14.25	14.83	14.83	11.10	14.83	14.25	14.83	11.10
TOTAL SULFUR %	BULMAT	14.70	20.89	19.66	13.33	15.19	16.47	9.76	17.20	11.19	15.29	15.04
	REPORTED	14.20	16.78	16.78	17.20	17.20	17.20	15.52	17.20	17.20	17.20	15.52
BTU	REPORTED	68865	2362	2440	519	3700	4120	9057				
FTU RECOVERY												
		95.94	99.44	97.71	94.61	95.64	95.56	80.33				
PRITIC SULFUR REJECTION		58.02	69.16	79.66	68.97	74.32	86.06	88.56				
EFFICIENCY		53.56	68.60	77.37	63.32	69.95	82.02	68.89				

NOTE 1 STACKED COATED PLATES ARRANGED IN BLOCK POSITION AT 45° ANGLES TO EACH OTHER
 NOTE 2 MANTAIN 351°F THIS IS FROTHER AND COLLECTOR COMBINATION
 NOTE 3 VANS PER S
 NOTE 4 KEROSENE
 NOTE 5 NO. 2 FUEL OIL
 NOTE 6 PINE OIL

END

DATE FILMED

11/08/90

