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Abstract 

Using computer simulations, comparisons are made between a 
one-dimensional Fresnel zone aperture and a one dimensional uni­
formly redundant array aperture. In the former case, artifacts 
may produce severe distortions in the reconstructed image, and an 
iterative technique to remove these artifacts is described. In 
comparison to the Fresnel zone aperture, images reconstructed from 
uniformly redundant array apertures have few artifacts. A quantum 
noise analysis for the uniformly redundant array is presented to 
indicate the conditions under which a uniformly redundant array 
will produce a signal-to-noise advantage compared to an equivalent 
pinhole aperture. 
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I. Introduction 

Sandia Laboratories is currently developing a coded aperture 
imaging system for investigating fuel motion within a nuclear re­
actor core. The position <<nd amount of fuel is determined by 
recording the shadowgram produced by fission gamma rays passing 
through a coded aperture ar>d then decoding the shadowgram to re­
cover the original source distribution. This paper reports the 
results from computer models which simulate the coded aperture 
imaging process. The two problems of major concern are (1) in­
vestigation of the severity of artifacts (or distortions) in the 
reconstructed images and (2) evaluation of conditions under which 
a coded aperture will improve the signal-to-noise ratio compared 
to a pinhole aperture with equivalent resolution. 

Two one-dimensional apertures are investigated/ the Fresnel 
zone aperture and a uniformly redundant array (URA) aperture. The 
Fresnel zone aperture has the unique property of propagating a 
coherent light beam through the shadowgram to reconstruct the 
source image; however, this technique suffers from the presence 
of artifacts. As will be shown, the distortions in the recon­
structed image are so severe that some source functions are un­
recognizable based on the reconstructed image produced by a one-
dimensional on-axis Fresnel zone aperture. Because these arti­
facts are uniquely determined given a certain source function, 
it is in theory possible to remove them in the absence of noise 
(i.e. any stochastic process that degrades the signal). In 
practice, the elimination of artifacts may be difficult even in 
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situations where the noise is small. Furthermore, the added com­
putational requirements detract from the original motivation for 
using Fresnel zone apertures, i.e. image reconstruction by simple 
light propagation. 

Image reconstructions from shadowgrams produced by uniformly 
redundant array apertures are nearly free from artifacts. This 
is possible because the autocorrelation function of a uniformly 
redundant array closely approximates a delta function. In the 
absence of quantum noise, the reconstructed images are good 
representations of the original source function. Thus from the 
viewpoint of artifacts, the uniformly redundant array is superior 
to a Fresnel zone code and light propagation reconstruction. 

Quantum noise studies were carried out using the uniformly 
redundant array. The radiation from a rectangular step function 
was considered to be the signal. Along with this signal, back­
ground radiation was assumed to be present but originating in two 
different ways: (1) modulated by the aperture, to be referred 
to as "source background" (this background radiation originates 
on the same side of the aperture as the fuel pin being studied) ; 

or (2) not modulated by the aperture, to be referred to as "stray 
background". It will be shown that in the former case, as back­
ground intensity becomes comparable to the signal intensity, the 
URA aperture will have a net signal-to-noise disadvantage compared 
to an equivalent pinhole. On the other hand, if background radi­
ation unmodulated by the aperture, becomes dominant, there will 
usually be a signal-to-noise advantage by using a URA aperture. 
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Thus, the final advantage gained by using a URA aperture, as op­
posed to a pinhole, can only be ascertained after a careful asses­
sment of the nature of the background radiation. 

II. Computer Models 

Computer models to simulate coded aperture imaging were de­
veloped to evaluate the relative merits of various aperture codes 
and different reconstruction techniques. Due to the suitability 
of one dimensional apertures for the imaging of nuclear fuel pins 
(which are long, thin objects), primary effort was devoted to one-
dimensional codes. This is fortuitous because the computer 
resources required are substantially less than for two-dimensional 
coded apertures, but at the same time, many of the significant 
characteristics of coded aperture imaging are illustrated by one-
dimensional models. 

The two codes that were investigated are the one-dimensional 
Fresnel • one plate and the uniformly redundant array (URA). The 

2 URA's periodic autocorrelation function has flat "sidelobes." 
That is: 
let U 0 U, U, ... U-, , represent a binary URA with N numbers 
(U„ is either 1 or 0); define its periodic autocorrelation function 
by 

P(KI - i E ( - i ) u J + VK a) 
j=0 
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where all subscripts are reduced modulo N if they are less than 
0 or graater than N-l: The autocorrelation function has the 
property 

p(K=0) = 1 

p(K) = ̂  fOt 1 < K < N-l (2) 

The flat sidelobes of the autocorrelation function makes the 
reconstruction of the source function from URA shadowgrams 
straight-forward; however, the periodicity property restricts the 
permissible spatial extent of the sources. A;j viewed in the de­
tector plane, the entire shadowgram produced by all sources within 
the field of view must extend no more than twice the size of the 
aperture shadow produced by a single point source. 

Because of the aforementioned restriction, the arrays repre­
senting the source functions and the aperture codes were made 
equal in length. The shadowgrams were generated by simply con­
volving the source function with the aperture code, i.e. if T(X) 
is the shadowgram measured in the detector plane, S(x) is the 
source function, and A(X) is the coded aperture, then 

00 

¥(X) =j S(X') A(X-X') dX' (3) 
—00 

As actually implemented in the computer models, the aperture codes 
and the source functions were defined by arrays 512 elements 
(pixels) long, and the above integral must be approximated by 

4 



a discrete summation. Thus, after convolution, the resultant 
shadowgrams are contained in 1024 element arrays. It should be 
carefully noted that each array element represents one pixel or 
•ample of the shadowgram; the pixels would correspond, for ex­
ample, to the spatial sampling rate at which a microdensitometer 
scans photographic film on which the shadowgram is recorded. The 
pixel must not be confused with the resolution of the imaging 
system. One resolution element will span several pixels and is 
equivalent to the size of the smallest structure in the aperture. 

Figure 1 depicts a one-dimensional Fresnel zone plate con­
taining 16 zones and a 63 element URA code, both of which were 
used in the models. Although Fig. 1 shows a Fresnel code with an 
opaque center, the complementary code with a transparent center 
was also employed. The two codes were selected such that the 
narrowest zones in each code are approximately equal thereby 
making the resolution of both apertures the same. The Fresnel 
zone boundaries are given by {n <_ 16 for a 16 zone Fresnel code) 

X n « V * X l (4) 

where X., equals 64 pixels. The Fresnel code with the opaque 
center has a 41% transparency as compared to a clear aperture. 
The complementary code with a transparent center will consequently 
have a 59% transparency. The narrowest zone is 8.1 pixels wide 
((^16 -^15) 64 = 8.1) . 
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FIGURE 1. CODED APERTURES. This figure shov;s the transmission 
function of the two coded apertures employed in the computer 
simulations. Both apertures are 512 pixels wide, and the 
smallest structure in each aperture, corresponding to one 
resolution element, is approximately 8 pixels wide. The top 
graph shows a Fresnel code with an opaque center zone. The 
bottoir graph shows a 63-element uniformly redundant array. 
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The URA code is represented by the sequence (11100000100000 
11000101001111010001110010010110111011001101010111). This sequence 
could be cyclically shifted to produce any one of S3 equivalent 
URA's; however, this particular sequence was selected to keep the 
outermost transparent regions as wide as possible. A real coded 
aperture must have a finite thickness; assuming the source is near 
the center of the field of view, it is desirable to make the outer 
zones as wide as possible to minimize vignetting affects. The 
URA is 512 pixels wide and the narrowest zones are 512/63 = 8.1 
pixels wide. The transparency for the URA is 51% compared to a 
completely clear aperture. 

The source function which was selected for much of the work 
is shown in Fig, 2. If the source function is convolved with the 
Fresnel zone aperture shown in Fig, 1, the resulting shadowgram 
is as shown in Fig. 2. If no noise is added, only relative ampli­
tudes are important. Otherwise, the value of each pixel in the 
shadowgram is interpreted as the mean number of photons expected 
in that pixel. Noise is added by replacing the value of each 
shadowgram pixel by a new random number having a Poisson distrib­
ution whose mean value is equivalent to the no-noise value. The 
following sections will discuss how shadowgrams such as that shown 
in Fig. 2 may be decoded to recover the original source function. 
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FIGURE 2. FRESNEL ZONE APERTURE SHADOWGRAM. The bottom graph 
illustrates a typical shadowgram produced by convolving the 
source function, shown in the top graph, with a Fresnel zone 
aperture shown in Figure 1. The absolute value of the shadow­
gram is not important unless quantum noise properties are being 
investigated. In such a case, :he absolute value of each pixel 
of the shadowgram is interpreted as the expected number of 
photons received by the pixel. 
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III. Fresnel Zone Plate Propagation Reconstruction 

The properties of Fresnel zone plates and. their application 
in coded aperture imaging have been extensively discussed and will 
not be considered in detail here. In the case of one-dimensional 
codes, the aperture acts as a pinhole camera along one axis and as 
a Fresnel code along the orthogonal direction. An analog propa­
gation reconstruction may be carried out as sketched in Fig. 3. 
Very briefly, the mathematical description is as follows: 

If the Kirchoff formulation for the diffraction of scalar 
waves is used to approximate the diffraction of light, one obtains 
for the one-dimensional case (aftar making several simplifying 
assumptions) 

•xp 
»«) 

H f e + £;-*)] /**«•> - 4 T5; *'a] **["• ̂ ] *" m 

where 1/ is a complex function representing the amplitude 
and phase of the light 

X' lies in the shadowgram plane such that V(X') 
describes the one-dimensional shadowgram 

X lies in the reconstruction plane such that ¥(X) 
describes the reconstructed source function 

A is the wavelength of light 
Z is the distance between the shadowgram plane and 
° the reconstruction plane 

The shadowgram, "MX'), is merely the coded aperture, A(X), con­
volved with the source function, S(X), i.e. 
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monochromatic 
light beam 

wavelength X 

FIGURE 3. FRESNEL 20NE APERTURE - LIGHT PROPAGATION RECONSTRUCTION. 
In order to reconstruct the source function, the shadowgram is placed 
in the X'-Y' plane. A monochromatic light beam will be diffracted 
as described by equation 5. This diffraction pattern will reconstruct 
the original source function in the X-»Y plane where ff = ~ p' . 

2o\ Y 2 1 The reconstruction produced by the term of order P will then be in-focus 
at the X-Y plane. 



'MX-) =y* S(X) A(X'-X) dX . 

The Fresnel code aperture can be represented as an exponential 
series 

„ exp (i-rP ^ \ 
1 V \ X l / 

A(X) = =• + / „ •—= central zone transparent 
—« 
P odd 

(6) 

2 If T7 — 00 

P odd 

exp 
P 

e §) central zone opaque 
where 

X. = radius of first zone. 

For the moment, A(X) is assumed to be unbounded as a function of 
X in order to demonstrate image reconstruction by the use of a 
light wave. Later, the effect of a finite aperture size will be 
discussed. 

The reconstructive property of the Fresnel code can be demon­
strated by setting g-̂ y in equation (5) equal to •* and by con-

o X. 
sidering only the P = 1 term in equation (6), i.e., let 
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i" $ exp| 
A ( X ) = j- ±- (7) 

If these substitutions are made in equation (5), one finds 

/i2TTZ \ J i2TTZ. 
exp 

T(X) = ; - S(X) (8) 

7T —7T In this case, T-jr~ = -s- has been arbitrarily selected so that the 
o X^ 

P = 1 term of the Fresnel code reconstructs the image. Any term 
7F P 

of order P could have been selected by setting = T = - - = • . 
V Xj 

The unfortunate aspect of propagation reconstruction is that 
only one term of the expansion series for the Fresnel code con­
tributes to the reconstruction of the source. Any physically 
realizable Fresnel code aperture will contain other non-recon­
structing terms, and these terms may produce serious distortions 
in the reconstructed image. As will be shown, the removal of 
artifacts produced by these non-reconstructing terms is the primary 
problem with using propagation reconstruction. To study this 
problem, several shadowgrams of the source function shown in 
Fig. 2 were made to reconstruct the original source function from 
these shadowgrams. 
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Figure 4 shows the reconstructed source function that occurs 
if a physically realizable Fresnel code aperture with a transparent 
center (the complement of the Presnel code in Fig. 1) is used. The 
results are rather poor. In comparison, if the complex recon­
structing aperture function 

,. r 2' exp (" §) 
(9) 

A(X) = jjj 0 <|Xl < 4 X j 

A(X) = 0.0 |X| > 4 X 

is used to create the shadowgram, the reconstructed source function 
shown in Fig. 5 is obtained. It depicts the original source with 
good fidelity. Truncation of the aperture code after 16 zones is 
mainly responsible for inaccuracies present (i.e. the finite aper­
ture reduces the high spatial frequency response). Unfortunately, 
it is not physically possible to fabricate a complex aperture when 
imaging gamma ray sources, and unless a means is found to remove 
the affects of non-reconstructing terms, propagation reconstruction 
is not an attractive reconstruction technique. 

Figure 6 shows the contributions of the various terms using a 
point source. The DC term and the P = -1 term are the two most 
important contributors toward the generation of undesired arti­
facts. The phases change slowly compared to the resolution of 
the aperture, and thus destructive and constructive interference 
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FIGURE 4. PROPAGATION RECONSTRUCTION - ALL TERMS OF FRESNEL 
CODE PRESENT. The bottom graph shows the reconstructed image 
obtained if the aperture is a simple Fresnel zone function. 
The actual Fresnel zone code used had a transparent central 
zone and is the complement of that shown in Figure 1. 
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FIGURE 5. PROPAGATION RECONSTRUCTION - COMPLEX FRESNEL CODE 
APERTURE. The bottom graph shows the reconstructed image 
obtained if the aperture includes only the reconstructing term 
i.e., the aperture function is given by equation (9). This 
aperture is a complex function and is not physically realiz­
able. 
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FIGURE 6a. PROPAGATION RECONSTRUCTION - POINT SPREAD 
FUNCTIONS - AMPLITUDE. This figure shows the relative 
amplitude of the point spread function for individual 
terms of the Fresnel zone expansion series up through 
the third order. The P » +1 term produces reconstruction, 
but unfortunately other terms are also present in a 
physically realizable aperture and produce distortions 
in the reconstructed image. 
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FIGURE 6b. PROPAGATION RECONSTRUCTION - POINT SPREAD 
FUNCTIONS - PHASE. This figure shows the phase of the 
point spread function for individual terms of the 
Fresnel zone expansion series up through the third 
order. Note Miat the analomous spikes in the phase 
function of the reconstructing term (P = +1) are a 
consequence of the amplitude of this term passing 
through zero at which point the phase is undefined. 
For values of the amplitude sufficiently close to 
zero, the calculated phase is dominated by computational 
roundoff errors. 
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between the various terms can produce substantial sidelobe 
structure. The reconstructing term, P = 1, can be calculated 
theoretically for the case of a finite Fresnel-zone aperture and 
a single point source; let the source function be an ideal point 
source (S(X) = S 6(X)), and use equation (9) to represent a com­
plex Fresnel code aperture. If these conditions are applied to 
equation (5), the resulting point response function is 

Y(X) - -exp e $pp-. 
where a constant phase term has been dropped. To compare with the 
P = 1 term in Figure 6, X, (the radius of first Fresnel zone) must 
be set to 64 pixels in the above equation. In terms of the rel­
ative amplitude and position of the zeroes, the computer results 
agree with the above equation. 

Figure 7a shows the point response for a physically realiz­
able Fresnel code, and as can be seen, it is far from an ideal 
point function. The importance of terms of order 3 and higher 
may be assessed by using an aperture containing only the DC term, 
the P = 1 term and the P = -1 term, i.e., 

A(X) = 0.5 + 0.5 sin (TT ^ \. (10) 
( • $ ) • 
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The propagation reconstruction using this aperture is shown in 
Figs. 7b and 8. This reconstruction is not significantly better 
than that in Fig. 4. It may thus be concluded that the DC term 
and the diverging P - -1 term are the dominant sources of undesir­
able artifacts and that the use of a physically realizable sinu­
soidal Fresnel aperture will not significantly improve the image 
reconstruction by removing the third and higher order terms. 

The DC term may be removed by using the physically unrealiz­
able aperture 

A(X) = sin l* ^r \ (11) 
( • * ) 

and the resulting reconstruction is shown in Figs. 7c and 9. Sub­
stantial improvements are obtained; hovever, major distortions 
still exist. The central broad source is highly distorted, and 
none of the smaller amplitude sources can be distinguished. The 
conclusion is that unless a means can be found to reliably remove 
the effects of the DC term and the diverging term, a straightforward 
propagation reconstruction will not provide a reliable represent­
ation of the source function. 
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FIGURE 7. PROBAGATION RECONSTRUCTION OF A POINT SOURCE. The 
propagation reconstruction of a point source for three different 
apertures is shown. The aperture is physically realizable in 
the top two graphs, but not in the bottom graph. In the top 
graph, all orders of the exponential expansion series for the 
Fresnel code are present. In the middle graph, only the DC 
term, and the positive and negative first order terms are pres­
ent. In the bottom graph, the DC term has been removed and 
only the first order terms are present. 
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FIGURE 8. PROPAGATION RECONSTRUCTION - ONLY DC AND FIRST ORDER 
TERMS. Lower graph shows reconstructed image where the aperture 

2 2 
function is given by ACX) = 0.5 + 0.5 sin (irx /X..) . This aper­
ture eliminates terms of order three and higher; however, the 
reconstructed image is not significantly improved over the case 
where all higher order terms are present (see Figure 4). 
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FIGURE 9. PROPAGATION RECONSTRUCTION - ONLY FIRST ORDER TERMS. 
Lower graph shows reconstructed image where the aperture function 

2 2 is given by A(X) « sin(7rX /Xj) • This aperture function eliminates 
the DC term; however, note that it is not physically realizable. 
The quality of this reconstructed image should be compared to cases 
where other higher order terms and DC terms are present (see 
Figure 4 and Figure 8). 
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IV, Fresnel Zone Plate Correlation Reconstruction 

An alternative to the propagation reconstruction which may be 
applied to any coded aperture is the correlation reconstruction. 
The basic idea is to determine a decoding function such that when 
it is convolved with the coded aperture/ the result approximates 
a delta function. In the case of the Fresnel zone code, various 

2 2 
decoding functions have been tried (e.g. sin (nX /X,)) , but all 
suffer the common problem of producing significant sidelobes. A 
simple correlation reconstruction applied to Fresnel zone plate 
shadowgrams will not yield good reconstructions. The results are 
roughly comparable to propagation reconstruction where the inter­
fering effects of the non-reconstructing terms are not removed 
(compare Figures 4 and 11). 

Figure 10b shows the point source responses using the corre­
lation reconstruction where the decoding function is the Fresnel 
code. The average value of the sidelobes can be made flatter by 
choosing a "balanced" decoding function (i.e., a decoding function 
that is both positive and negative); the differences in the point 
source responses are illustrated in Fig. 10. In both cases, how­
ever, substantial sidelobe structure remains, and the reconstructed 
images are poor. A technique for improving the reconstructions 
is still to be illustrated. Because this technique works better 
using the Fresnel code itself as the decoding function, balanced 
decoding functions will not be considered further. 
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FIGURE 10. CORRELATION RECONSTRUCTION - POINT SPREAD FUNCTION. 
This figure shows the point spread function for a Fresnel zone 
aperture in which two decoding functions are used. In the top 
figure, the decoding function is the Fresnel zone aperture 
modified through a DC level shift such that the decoding function 
is either +1 (where the aperture is transparent) or -1 (where 
the aperture is opaque). In the bottom graph, the decoding 
function is simply the Fresnel aperture, and the decoding 
function is either +1 (where the aperture is transparent) or 
0 twhere the aperture is opaque). 
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A correlation reconstruction is illustrated in Fig. 11, and 
it does not provide a satisfactory reconstruction. Some technique 
is desirable to compensate for the sidelobes. Various iterative 
techniques have been used. The one to be demonstrated here will 
be called a "point source decomposition" technique. Basically an 
attempt is made to find a set of delta functions which, when con­
volved with the point response function (Fig. 10b), will approxi­
mate the correlation reconstruction in Fig. 11. This set of delta 
functions may be considered as a point source approximation to 
the original source function, or in other words, the original 
source function has been decomposed into a series of point sources. 
This is achieved by an iterative technique, as follows: 

1) The correlated reconstruction (Fig. 11) is scanned to 
determine the position with the largest absolute value 

2) Centered at this position, the point response function 
(Fig. 10b) is subtracted from the correlation recon­
struction. The amplitude of the point response function 
to be subtracted is scaled to some fixed percentage of 
the amplitude of the correlated reconstruction at that 
location. The precise percentage is not critical. 
Usually some value from about 20% to about 5% is used. 
The major tradeoff to be made is if the percentage is 
high, the iterative procedure may not converge properly, 
uut if the percentage is ten low, the slow convergence 
wastes computer time without any commensurate improvement 
of the final image. 

/ 
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FIGURE IX. CORRELATION RECONSTRUCTION. The bottom graph shows 
the results of a simple correlation reconstruction where the 
aperture and the decoding function are a Fresnel zone function. 
The reconstructed image should be compared with the propagation 
reconstruction shown in Figure 4. 
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3) The computer stores the position and amplitude of the 
subtracted point response function. These amplitudes 
and positions represent the point sources which define 
the final reconstructed imago. 

4) After the above steps are completed, the original cor­
related reconstruction has been modified through sub­
tracting the point response function. This modified 
correlated reconstruction is now used in place of the 
original, and all four of these steps are applied 
iteratively. 

The process is terminated either after a fixed number of iter­
ations or until the residual correlated reconstruction is in the 
noise level. As the final step, a running spatial average (usually 
a box window) is made over the point sources determined by the 
above technique and this constitutes the final reconstructed 
source. Figure 12 shows the resulting reconstruction when this 
technique is applied. 

For many situations, this technique provides an acceptable 
reconstruction. There is a tendency for this technique to produce 
oscillations in regions where the original source function is 
flat. Note, however, these oscillations are at a wavelength com­
parable to or less than the resolution of the aperture. Small 
artifacts may also be generated, as can be seen from the fsature 
just to the right of the central source (see arrow Fig. 12). 

In some circumstances the tomographic capability of coded 
aperture imaging is important. Tomographic capability is possible 
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FIGURE 12. CORRELATION RECONSTRUCTION WITH POINT-SOURCE-
DECOMPOSITION. Bottom graph shows the reconstructed image 
obtained after a point-source-decomposition algorithm as 
described in the text is applied. Three hundred iterations 
were used to produce the reconstructed image. Note the presence 
of an artifact (see arrow). Top graph represents original 
source function and also indicates which source is to be moved 
out of focus for investigating the depth of field. 
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because the size of the cast shadow will depend on the distance 
between the source and aperture. If this tomographic capability 
is to be useful in situations where several sources lie in separ­
ate planes, sources should go out of focus smoothly. To investi­
gate this, the rightmost source in Fig. 12 was moved back by 
reducing the size of the shadows it casts by 2%, 5%, 10%, and 20%. 
These shadowgrams were then reconstructed in a manner identical to 
that shown in 7ig. 12. The results are shown in Fig. 13. 

For this particuiar reconstruction technique, the tomographic 
capability is poor. Note the source which was moved represents 
only 6% of the total number of photons collected at the detector 
plane; yet, when it is moved out of focus, it has significant im­
pact on the reconstruction of the sources that remained in focus. 
If one were imaging three sources in three different planes, there 
might be confusion regarding the shape of each source due to the 
other out-of-focus sources. The conclusion is that for this 
Fresnel code and the point-source-decomposition reconstruction 
technique, tomographic capability is poor. 

The particular reconstruction technique described here works 
best in situations where there are several compact sources and 
little background. In situations where there are broaa continuous 
sources covering most of the field of view, the point source de­
composition fails. Figure 14 shows the same source function as 
before, superimposed on a background. The reconstructed image is 
also shown in Fig. 14. This reconstructive technique fails because 
too many point sources are required to represent the background 
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FIGURE 13. DEPTH OF FIELD - FRESNEL CODE. This figure demon­
strates the affect of an out-of-foous source on the reconstructed 
image. The rightmost source (see top graph. Fig. 12) was placed 
out of focus by reducing the spatial scale of the aperture shadows 
it produced by the percentages indicated. The reconstruction pro­
cedure was the same as for Fig. 12. 
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FIGURE 14. CORRELATION RECONSTRUCTION WITH SOURCE BACKGROUND. 
Lower graph shows the failure of the point-source-decomposition 
technique in situations where the source function has a broad 
background component. The image reconstruction procedure was 
identical to that used for Fig. 12? only the original source 
function was modified. 
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and the iterations fail to converge. Unless the background is 
removed prior to reconstruction, this reconstructive technique 
will not work under high background conditions.-

V. Uniformly Redundant Array 

The preceding two sections discussed some of the problems 
associated with image reconstruction using a Fresnel zone aper­
ture code. As an alternate code, the uniformly redundant array 
is particularly well suited to correlation reconstruction tech­
niques due to the flat sidelobes of its autocorrelation function. 
The URA code to be considered has already been discussed and is 
shown in Fig. 1. 

The decoding function is basically the same as the URA aper­
ture itself except that it is made nearly symmetric about zero 
so that the sidelobes average out to zero; i.e. , if U(X) is the 
URA code shown in Fig. 1, the decoding function U'(X>, is 

U'(X) = 2.0 U{X) - C (12) 

where C is a constant nearly equal to one, adjusted so that all 
the sidelobes average to zero. (As used in the computer models, 
C = 0.988). In this manner, no zero baseline shifts are produced 
as the strength or number of sources are increased or decreased. 

If the decoding function is convolved with the coded aper­
ture, the point spread function obtained is as shown in Fig. 15. 
The side lobes are not perfectly flat because the 63 element URA 
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FIGURE 15. UNIFORMLY REDUNDANT ARRAY - POINT SPREAD FUNCTION. 
This figure shows the reconstructed image of a point source 
using a uniformly redundant array as the aperture. Note the 
flatness of the sidelobes as compared to a Fresnel zone aper­
ture (see Figures 7 and 10). 
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code is actually represented by 512 pixels. Thus when the con­
volution is calculated, one does not always shift by an integral 
number of elements. As will be shown, the non-flat sidelobes may 
generate some artifacts, but these artifacts are insignificant as 
compared to a Fresnel code (compare point spread function in 
Figs. 7 and 10 to Fig. 15). 

The source functions with and without backgrounds were re­
constructed using the URA code. Figures 16 and 17 show the recon­
structed image. Even in the presence of background, the recon­
structions are for the most part good. Note however, the smallest 
source (see arrow) is stronger in comparison to the other sources 
than it should be. This is a chance artifact of this particular 
source function created mainly by the dominant source situated 
near the center. 

The tomographic qualities of this imaging technique were in­
vestigated in the same manner as the Fresnel code. The rightmost 
source was "moved" or "placed out of focus" by reducing the size 
of its shadowgrams by 2%, 5%, 10% and 20%. The results are shown 
in Fig. 18 and should be compared with Fig. 13. Again, an out-of-
focus source will distort the in-focus sources being imaged; how­
ever, the distortions are significantly less than for Fresnel code 
using a cor-elation and point-source-decomposition reconstruction 
technique. 

Considered in terms of ease of reconstruction, fidelity of 
reconstruction, and depth of field response, the URA code appears 
to be superior to the Fresnel code. The greatest attraction of 
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FIG0RE 16. URA RECONSTRUCTION- NO SOURCE BACKGROUND. The 
bottom graph shows the reconstructed image obtained by using 
the 63 element URA code. Note the presence of some distortion, 
as indicated by one source which is too strong relative to the 
other source (see arrow). Top graph shows original source 
function. 
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FIGURE 17. URA RECONSTRUCTION WITH SOURCE BACKGROUND. Recon­
struction procedure is the same as for Figure 16, except that 
source function has been modified to include a background. Con­
trast the good fidelity of this reconstruction with that of the 
Fresnel code using the point-source-decomposition procedure 
(see Fig. 14). 
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FIGURE 18. DEPTH OF FIELD - ORA CODE. This figure demonstrates 
the affect of an out-of-foous source on the reconstructed image. 
Following the same procedure as in Fig. 13, the rightmost source 
was placed out of focus by reducing the spatial scale of the 
aperture shadows it produced by the percentages indicated above. 
A comparison with Fig. 13 should be made. 
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the Fresnel code is the possibility of having a simple and direct 
analog reconstruction technique (i.e., light propagation). To 
realize an acceptable reconstruction, the DC te.rm and the diverging 
term artifacts must be eliminated. Unless this can be realized on 
a practical basis, the URA code represents a better reconstruction 
method. In principal, both the Fresnel zone and the URA aperture 
can be utilized to provide tomographic source reconstruction. In 
practice, however, a three-dimensional source distribution actually 
increases the difficulty of obtaining images free from artifacts, 
because in addition to any problems associated with the two-
dimensional in-focus source function, additional artifacts will be 
present due to other out-of-focus sources. For the rather limited 
number of sources employed in this study, the URA reconstructions 
are distorted less by out-of-focus sources than the Fresnel code 
using a point-source-decomposition reconstruction, 

VI. Quantum Noise 

The primary goal of any imaging system is to provide the best 
possible estimate of the source distribution given certain physical 
limitations (such as integration time, aperture size, detector 
resolution, etc.) In the case of coded aperture imaging of gamma 
ray sources, two primary factors influence the fidelity of the re­
constructed image: (1) systematic distortions inherent in the 
imaging system and (2) statistical uncertainties in the signal. 
In order to facilitate the analysis, these two factors are being 
treated separately; however, the ability to correct for systematic 
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distortions is intimately related to the presence of statistical 
uncertainties in the signal, and a complete analysis should properly 
treat both problems simultaneously. 

In the previous sections, computer simulations demonstrated 
that the reconstructed images contain distortions due to artifacts 
produced by non-zero sidelobes. Because these distortions are 
systematic, they may theoretically be completely eliminated if 
the aperture transmission and the signal (shadowgram) were con­
tinuous functions measured with infinite precision. As a practi­
cal problem, this theoretical idealization cannot be achieved, and 
some artifacts will always persist in the reconstructed images. 
Thus, depending on the extent to which artifacts can be eliminated, 
an upper limit will be placed on the dynamic range of the recon­
structed image (the ratio of the strongest to the weakest source 
which may be distinguished in an image). In comparison to the 
Fresnel zone code, the URA point response function has nearly 
flat sidelobes, and the artifacts in the reconstructed image can 
often be ignored. In this sense, the URA aperture is superior to 
the Fresnel zone aperture, and for this reason, the ORA code will 
be selected for further evaluation with respect to its quantum 
noise performance (see Barrett and DeMeester: 1974 for Fresnel 
zone aperture noise analysis!. 

Quantum noise fluctuations are important in any physical 
measurement that counts photons, and the statistical fluctuations 
will be characterized by the Poisson distribution. A shadowgram 
represents the integrated gamma ray photon flux (number of photons 
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per unit area) at the detector plane as a function of position. 
Duo to quantum noise, the integrated photon flux measured over any 
finite time interval and any finite area will randomly fluctuate 
about the "true" mean (the value that would be measured assuming 
an infinite integration time and a time invariant physical situ­
ation) . Consequently, the reconstructed image will also be subject 
to random variations. Thus, as used in this section, noise strictly 
refers to statistical fluctuations of the reconstructed image due to 
quantum noise. In this sense, a reconstructed image may have an 
excellent signal-to-noise ratio, yet be a poor representation of 
the actual source function if there are significant artifacts 
present. The standard deviation of the reconstructed image will 
be used as the quantitative measure of noise. 

In order to calculate the noise, the reconstruction process 
should first be considered. The one-dimensional shadowgram repre­
sents the number of photons detected per unit distance (or per 
pixel). Let the array \k;t represent the shadowgram where A. is 
the number of photons in the i pixel. Let the array \oA be th 
decoding function where D- a + 1 for all i (0 < i < M-l! where M 
is the total number of pixels in the shadowgram. The k pixel of 
the reconstructed image is given by 

M-l 
RK - £ D

i + k A I < i 3> 
i=0 

where the subscript of the decoding array is interpreted as modulo 
M. In the presence of quantum noise, each A. is a random variable 

the 
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with a Poisson distribution having some mean value, A., and a 
standard deviation o. =ffil • Since the statistical variations 
from pixel to pixel are independent and since I.D.I = 1 for all i, 
the standard deviation of R. is 

M-l M-l 

< = E 4. = £ \ ( 1 4 ) 

k i=0 x i=0 

Rk 
_ (expected total number of gamma _ j ~ ~ 
wrays in the entire shadowgram 1 T 

Thusi the result is very simple: The standard deviation of the 
reconstructed image is the square root of an expected total number 
of gamma photons in the entire shadowgram. This noise is position 
invariant, and the analysis applies to all gamma photons recorded 
in the shadowgram irrespective of whether or not they reach the 
shadowgram by passing through the ORA aperture. 

Next the reconstructed image amplitude should be considered. 
A single point source will cast a shadow which is a scaled replica 
of the URA aperture. This point source is reconstructed when k in 
equation 13 is such that the decoding function matches the aperture 
shadow (let k = k for this fiducial point source). In this case, 
R,, will equal the total number of photons from the fiducial point 

Ko 
source which pass through the aperture and reach the shadowgram. 
Let this number of photons be P. Now consider the addition of a 
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nearby point source having the same amplitude as the fiducial 
point source. The number of photons reaching the shadowgram from 
this nearby point source is also P; however, because the second 
point source is in a slightly different position, the aperture 
shadow it casts is displaced. As a consequence, when R. is calcu-

Ko 
lated as in equation 13, this second point source will contribute 
some number less than P due to the mismatch between its aperture 
shadow and the decoding function. In fact, as point sources are 
positioned further and further from the fiducial point source, 
they will contribute less and less to R. . Once the point sources 

Ko 
are displaced greater than one resolution element from the fiducial 
source, they will, on the average, contribute nothing more to R. . 

Ko 
One resolution element corresponds to the displacement between two 
point sources such that their respective aperture shadows are 
shifted by one element (i.e. the smallest structure in the aperture). 

The preceding analysis for point sources may be extended to 
calculate the reconstructed image amplitude from continuum sources 
with constant intensity. Any continuum source may be approximated 
by a series of point sources spaced much closer than th-3 resolution 
of the coded aperture. The key point is that photons emitted from 
a region of the order of a resolution element will add coherently 
to one another in equation 13. A detailed analysis provides a 
simple result which is described as follows: Partition the source 
function into segments having the size of one resolution element. 
Each resolution element will emit a certain number of photons per 
unit time, out of which some fraction will actually pass through 
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the aperture and reach the shadowgram. It is this fractional 
number of photons that equation 13 calculates. 

To quantify this result, let 'Y U R A represen.t the number of 
photons collected in the shadowgram which were emitted by one 
resolution element of a uniform source with unit intensity I . 

o 
For any other uniform source of intensity I, the reconstructed 
image amplitude is 

RURA= YURA J ( 1 5 ) 

where I is normalized to I . Note that Ryn. is a number repre­
senting a count of photons. Y U R A is a constant number which is 
characteristic of the coded aperture imaging system under con­
sideration. If the geometry of the imaging system and the trans­
mission function of the aperture are known, the absolute value of 
Y,,RA may be calculated; however, for this analysis, its absolute 
value is irrelevant. 

The signal-to-noise ratio of the reconstruction will now be 
defined as the ratio between the reconstructed image amplitude 
divided by the RMS fluctuation, or, using equations 14 and 15: 

(*) = I™I (16) 

Note that this result is independent of the spatial sample rate at 
which the shadowgram is measured. 
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The primary motivation for using a coded aperture as opposed 
to an equivalent pinhole aperture is to improve the quantum-limited 
signal-to-noise ratio. Therefore, an important problem is the 
assessment of conditions under which a URA aperture will have a 
signal-to-noise advantage over an equivalent pinhole aperture. A 
pinhole aperture and a URA aperture are considered equivalent if 
they provide the same resolution. Basically, this implies that the 
pinhole aperture is the same size as the smallest structures in the 
URA aperture. 

In contrast to a coded aperture, a pinhole aperture forms an 
image directly on the detector plane, and the individual resolution 
elements of this projected image may be considered as being inde­
pendent. In other words, the image amplitude corresponding to any 
one resolution element of the source function contains no noise 
originating from other portions of the source function separated by 
more than a resolution element. Thus a pinhole aperture might be 
perferred under a situation where a relatively weak source is to be 
imaged in the presence of a very strong source located at least a 
few resolution elements away. 

Mathematically, the results may be expressed as follows. Sim­
ilar to the analysis for the URA aperture, let Y P H represent the 
number of photons reaching the detector plane from a resolution 
element of the gamma ray source. Y P H is tc be referenced to the 
same source intensity unit, I , as for the URA aperture. For a 
continuous source of intensity I, the pinhole image will have an 
amplitude 
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RPH - W < 1 7 ) 

where I is normalized to I . Rp H represents the photon count per 
resolution element of the projected image from a source with inten­
sity I. Thus, defining the signal-to-noise ratio of the pinhole 
aperture as the image amplitude divided by the RMS fluctuation, we 
have 

2 total number signal photons 
£) = P H

 B per resolution element ,,„> 
K/PH ^f~Y^ J total number of photons V per resolution element 

In order to compare the pinhole aperture with the URA aper­
ture, the quantities Y„ R A» Y p H , Y R and Y T must be related to one 
and another. Because this work is in support of imaging nuclear 
fuel pins, a specific source function as shown in Fig. 19 will be 
considered. The rectangular object of intensity A (representing 
the fuel pin) is superimposed on a uniform background of intensity 
B. spanning the entire field of view. The rectangular object 
spans W resolution elements (assume W > 1), and the entire field 
of view spans F resolution elements. A and B, are normalized to 
I so that equations 15 and 17 are applicable. Besides the source 
background radiation B. which must pass through the aperture, let 
the detector be subject to a uniform flux B,, where B 2 is the 
number of photons per resolution element at the detector plane and 
represents stray background radiation which is not modulated by the 
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FIGURE 19. SOURCE FUNCTION FOR SIGNAL-TO-NOISE RATIO ANALYSIS. 
This figure shows the type of source function assumed for the 
signal-to-noise analysis. The signal consists of the cross-
hatched step function with intensity A. It corresponds to the 
nuclear fuel pin being studied. It was assumed that a uniform 
source background with intensity B, and spanning the entire field 
of view would also be present. 
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aperture. Having made these definitions, the signal-to-noise ratio 
of the URA and the pinhole aperture nay be compared. 

The signal will be defined as the amplitude of just the rec­
tangular object whose intensity is A (see Fig. 19). For the pinhole 
aperture 

number of photons reaching the detector from 
S\ _ one resolution element of rectangular object 

( 1 9 ) 

'PH -Ttotal number of photons per reso lut ion 
Kelement at detector plane 

Y P H A 

1 Y P H A + Wl + B 2 

For the URA aperture 

number of photons reaching the detector from 
S\ _ one resolution element of rectangular object 
URA «/total number of photons in entire shadowgram 

YURA A 

^ W Y u R A A + F Y ( J R A B I + 2FB 2 

Further define 

(20) 

YURA _ transmitting area of URA aperture --,, 
Y_„ - transmitting area of pinhole aperture 

Jrci 
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Equations 19, 20 and 21 may be combined to yield 

/ B l B2 V 
II + -=± + a J; 1 ) 

( 1 +«^ + 2 F^) 

In order to better understand the implications of the above 
equation, consider first the case where all background radiation 
is modulated by the aperture, i.e., let B- = 0. For a 63 element 
URA code, 

F = 63 

a = 32 
For a 127 element URA code, 

F = 127 

a = 64 

(S/N) B 
Fig. 20 plots TsTif^f versus j± 

for a case where the signal spans one resolution element (W=l) 
and the signal spans 10 resolution elements W=10). it can be 
seen that the signal-to-noise advantage of the URA aperture de­
creases rapidly as the background builds up, and once the back­
ground intensity is greater than the signal intensity, there is 

48 



CS/NI 5 
URA 

, 5"W 4 

HOLE 

an13*2,00* \ 
^ _ I "*""-'»». 

7 63 ELEMENT "cODf ^ i ^ s -
- SIGNAL SOURCE SPANS 

10 RESOLUTION ELEMENTS 

10.0 100 

FIGURE 20. SIGNAa-TO-NOISE RATIO VERSUS SOURCE BACKGROUND IN­
TENSITY. This figure plots the signal-to-noise ratio advantage 
of a URA as compared to an equivalent pinhole as a function of 
the source-background-intensity to signal-intensity ratio. Note 
that once the source background intensity is comarable to or 
greater than the signal intensity, there is a net disadvantage 
in using the URA aperture. The stray background intensity is 
assumed to be zero. 
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a slight net disadvantage to using a URA aperture versus an 
equivalent pinhole. 

( S / N )URA Next consider the case where B, - 0. Plots of (S/N\ 

versus r—-— are shown in Fig. 21. Note that 
A'URA 

B number background photons 
2 m per resolution element A Y U R A number of signal photons 

per resolution element 
using URA aperture. 

In this case, even in the limit of B 2 •* », the URA will have a 
signal-to-noise advantage as long as the signal spans no more than 
8 resolution elements for a 63 element URA/ or 16 resolution ele­
ments for a 127 element URA. Thus, the signal-to-noise advantage 
(or disadvantage) of a URA versus a pinhole aperture depends on the 
relative portion of background radiation passing through the aper­
ture versus stray background radiation. 

VII. Summary and Conclusions 

Using computer simulations, comparisons between a one-Fresnel 
zone aperture and a one-dimensional uniformly redundant array aper­
ture have been made. The primary purpose was to assess the relative 
quality of the reconstructed images obtained from these two coded 
apertures. A theoretical analysis of the quantum noise limit for 
the URA aperture was also made. In this case, the major emphasis 
was to evaluate the conditions under which a URA aperture would 
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FIGURE 21. SIGNAL-TO-NOISE RATIO VERSUS STRAY BACKGROUND IN­
TENSITY. This figure plots the signal-to-noise ratio advantage 
of a URA as compared to an equivalent pinhole as a function of 
the stray-background-intensity to signal-intensity ratio. Note 
that in contrast with the source background situation, there 
will usually be a signal-to-noise advantage using the URA as long 
as the signal itself is not too wide. 
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improve the signal-to-noise ratio as compared to an equivalent pin­
hole aperture. 

The foremost difficulty that should be initially resolved with 
any Fresnel zone imaging system is the removal of unwanted artifacts 
generated by the non-image-reconstructing terms in the exponential 
expansion series representing the Fresnel code. The DC term and 
the first order diverging term are the predominant causes of dis­
tortions in the reconstructed images. For a relatively complex 
source function of the type used in this study, the distortions 
are sufficiently severe that the original source function is nearly 
unrecognizable based on the reconstructed image. Fortunately these 
distortions are systematic, and corrections may be made to elimi­
nate the artifacts. One possible iterative technique which is 
effective in removing artifacts for some source functions (referred 
to as a point-source-decomposition technique) was described. Using 
this method, fairly accurate reconstructed images are obtained as 
long as the original source function contains no substantial broad 
background component. 

In comparison with the Fresnel code, the uniformly redundant 
array aperture produces images nearly free from artifacts. This 
is a natural consequence of the flat sidelobe structure in the 
URA autocorrelation function. Evaluated in terms of the seriousness 
of undesired artifacts, the URA aperture is superior to the Fresnel 
code. 

Both the Fresnel code and the URA were used to assess the 
affects of a 3-dimensional source distribution. All shadow-cast 
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imaging techniques have depth of field capability because the 
spatial scale of the shadow will depend on the source-to-aperture 
distance. On the one hand, this may be regarded as a desirable 
attribute giving the coded aperture imaging technique tomographic 
capability. However, on a more practical basis, out-of-focus 
sources can only complicate the problem of removing artifacts from 
the image of the in-focus sources. In this respect, a correlation 
reconstruction using the point-source-decomposition procedure is 
significantly more prone than the URA aperture to produce distorted 
in-focus images due to the presence of an out-of-focus source. 

Quantum noise investigations were performed for the URA aper­
ture. The comparative signal-to-noise advantage of the URA aperture 
versus an equivalent pinhole aperture was evaluated as a function 
of background radiation intensity. In this respect, it is important 
to distinguish source background radiation, which is modulated by 
the aperture, from stray background radiation, which is not affected 
by the aperture. Assuming the source background uniformly spans 
the field of view, the URA quickly loses its signal-to-noise advan­
tage once the source background intensity exceeds or is comparable 
to the signal intensity. In contrast, a URA aperture will usually 
retain a signal-to-noise advantage over a pinhole regardless of 
how intense the stray background radiation becomes. Thus, in order 
to evaluate the signal-to-noise advantage of the URA aperture, not 
only the amount but the origin of all background radiation must be 
determined. 
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