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Abstract

Using computer simulations, comparisons are made between a
one-dimensional Fresnel zone aperture and a one dimensional uni-
formly redundant array aperture. In the former case, artifacts
may produce severe distortions in the reconstructed image, and an
iterative technique to remove these artifacts is described. 1In
comparison to the Fresnel zone aperture, images reconstructed from
uniformly redundant array apertures have few artifacts. A gquantum
noise analysis for the uniformly redundant array is presented to
indicate the conditions under which a uniformly redundant array
will produce a signal-to-noise advantage compared to an equivalent
pinhole aperture.
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I. Introduction

Sandia Laboratories is currently developing a coded aperture
imaging system for investigating fuel motion within a nuclear re-
actor core.1 The position ond amount of fuel is determined by
recording the shadowgram produced by fission gamma rays passing
through a coded aperture and then decoding the shadowgram to re-
cover the original source distribution. This paper reports the
results from computer models which simulate the coded aperture
imaging process. The two problems of major concern are (l) in-
vestigation of the severity of artifacts (or distortions) in the
reconstructed images and (2) evaluation of conditions under which
a coded aperture will improve the signal-to-noise ratio compared
to a pinhole aperture with equivalent resolution.

Two one-dimensional apertures are investigated, the Fresnel
zone aperture and a uniformly redundant array (URA) aperture. The
Fresnel zone aperture has the unique property of propagating a
coherent light beam through the shadowgram to reconstruct the
source image; however, this technique suffers from the presence
of artifacts. As will be shown, the distortions in the recon-
structed image are so severe that some source functions are un-
recognizable based on the reconstructed image produced by a one-
dimensional on-axis Fresnel zone aperture. Because these arti-
facts are uniquely determined given a certain source function,
it is in theory possible to remove them in the absence of noise
{(i.e. any stochastic process that degrades the signal). 1In

practice, the elimination of artifacts may be difficult even in



situations where the noise is small. Furthermore, the added com-
putational requirements detract from the original motivation for
using Fresnel zone apertures, i.e. image reconstruction by simple
light propagation.

Image reconstructions from shadowgrams produced by uniformly
redundant array apertures are nearly free from artifacts. This
is possible because the autocorrelation function of a uniformly
redundant array closely approximates a delta function. In the
absence of quantum noise, the reconstructed images are good
representations of the original source function. Thus from the
viewpoint of artifacts, the uniformly redundant array is superior
to a Fresnel zone code and light propagation reconstruction.

Quantum noise studies were carried out using the uniformly
redundant array. The radiation from a rectangular step function
was considered to be the signal. Along with this signal, back-
ground radiation was assumed to be present but originating in two
different ways: (1) modulated by the aperture, to be referred
to as "source background” (this background radiation originates
on the same side of the aperture as the fuel pin being studied);
or (2) not modulated by the aperture, to be referred to as "stray
background". It will be shown that in the former case, as back-
ground intensity becomes comparable to the signal intensity, the
URA aperture will have a net signal~to-noise disadvantage compared
to an equivalent pinhole. On the other hand, if background radi-
ation unmodulated by the aperture becomes dominant, there will

usually be a signal-to-noise advantage by using a URA aperture.



Thus, the final advantage gained by using a URA aperture, as op-
posed to a pinhole, can only be ascertained after a careful asses-

sment of the nature of the background radiation.

II. Computer Models

Computer models to simulate coded aperture imaging were de-
veloped to evaluate the relative merits of various aperture codes
and different reconstruction technigues. Due to the suitability
of one dimensional apertures for the imaging of nuclear fuel pins
(which are long, thin objects), primary effort was devoted to one-
dimensional codes, This is fortuitous because the computer
resources required are substantially less than for two-dimensional
coded apertures, but at the same time, many of the significant
characteristics of coded aperture imaging are illustrated by one~
dimensional mecdels.

The two codes that were investigated are the one-dimensional
Fresnel ' one plate and the uniformly redundant array (URA). The
URA's periodic autocorrelation function has flat "sidelobes."2
That is:
let U0 U1 U2 con UN_1 represent a binary URA with N numbers

(UK is either 1 or 0); define its periodic autocorrelation function

by

o) = g, (-1)%3 T Ui (1)



where all subscripts are reduced modulo N if they are less than
0 or grzater than N-l: The autocorrelation function has the

property

n
[

p (K=0)

% for 1 < K £ N-1 ()

p{K)

The flat sidelobes of the autocorrelation function makes the
reconstruction of the source function from URA shadowgrams
straight-forward; however, the periodicity property restricts the
permissible spatial extent of the sources. A:s viewed in the de-
tector plane, the entire shadowgram produced by all sources within
the field of view must extend no more than twice the size of the
aperture shadow produced by a single point source.

Because of the aforementioned restriction, the arrays repre-
senting the source functions and the aperture codes were made
egual in length. The shadowgrams were generated by simply con-
volving the source function with the aperture code, i.e. if ¥(X)
ig the shadowgram measured in the detector plane, S(X) is the
source function, and A(X) is the coded aperture, then

o«
¥ (X) =f S{X*') A{X~X') ax* (3)
-
As actually implemented in the computer models, the aperture codes
and the source functions were defined by arrays 512 elements

{pixels) long, and the above integral must be approximated by



a discrete summation. Thus, after convolution, the resultant
shadowgrams are contained in 1024 element arrays. It should e
carafully noted that each array element represents one pixel or
sample of the shadowgram; the pixels would correspond, for ex-
ample, to the spatial sampling rate at which a microdensitometer
scans photographic f£ilm on which the shadowgram is recorded. The
pixel must not be confused with the resolution of the imaging
system. One resclution element will span several pixels and is
equivalent to the size of the smallest structure in the aperture.
Figure 1 depicts a one-dimensional Fresnel zone plate con-~
taining 16 zones and a 63 element URA code, bhoth of which were
used in the models. Although Fig. 1 shows a Fresnel code with an
opaque center, the compleémentary code with a transparent center
was also employed. The two codes were selected such that the
narrowest zones in each code are approximately equal thereby
making the resolution of hkcth apertures the same. The Fresnel

zone boundaries are given by (n < 16 for a 16 zone Fresnel code)
X, = \]'6 xl (4)

where X. equals 64 pixels. The Fresnel code with the opaque

1
center has a 41% transparency as compared to a clear aperture.
The complementary code with a transparent center will consequently

have a 59% transparency. The narrowest zone is 8.1 pixels wide

({16 -4/15) 64 = 8.1).
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FIGURE 1., CODED APERTURES. This figure shows the transmission
function of the two coded apertures employed in the computer
simulations. Both apertures are 512 pixels wide, and the
smallest structure in each aperture, corresponding to one
resolution element, is approximately 8 pixels wide. The top
graph shows a Fresnel code with an opaque center zone. The
bottomr graph shows a 63-element uniformly redundant array.



The URA code is represented by the sequence (11100000100000
11000101001111010001110010010110111011001101010111). This sequence
could be cyclically shifted to produce any one.of 53 equivalent
URA's; however, this particular seqguence was selected to keep the
outermost transparent regions as wide as possible. A real coded
aperture must have a finite thickness; assuming the source is near
the center of the field of view, it is desirable to make the outer
zones as wide as possible to minimize vignetting affects. The
URA is 512 pixels wide and the narrowest zones are 512/63 = 8.1
pixels wide. The transparency for the URA is 51% compared to a
completely clear aperture,

The source function which was selected for much of the work
is shown in Fig, 2. If the source function is convolved with the
I'resnel zone aperture shown in Fig. 1, the resulting shadowgram
is as shown in Fig. 2. If no noise is added, only relative ampli-
tudes are important. Otherwise, the value of each pixel in the
shadowgram is interpreted as the mean number of photons expected
in that pixel. Noise is added by replacing the value of each
shadowgram pixel by a new random number having a Poisson distrib-
ution whose mean value is eguivalent to the no-noise value. 7he
following sections will discuss how shadowgrams such as that shown

in Fig. 2 may be decoded to recover the original source function.
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FIGURE 2. FRESNEL ZONE APERTURE SHADOWGRAM. The bottom graph
illustrates a typical shadowgram produced by convolving the
source function, shown in the top graph, with a Fresnel zone
aperture shown in Figure 1. The absolute value of the shadow-
gram is not important unless quantum noise properties are being
investigated. In such a case, -he absolute value of each pixel
of the shadowgram is interpreted as the expected number of
photons received by the pixel.



IITI. Fresnel Zone Plate Propagation Reconstruction

The properties of Fresnel zone plates and their application
in coded aperture imaging have been extensively discussed and will
not be considered in detail here.3 In the case of one-dimensional
codes, the aperture acts as a pinhole camera along one axis and as
a Fresnel code along the orthogonal direction. An analog propa-
gation reconstruction may be carried out as sketched in Fig. 3.
Very briefly, the mathematical description is as follows:

If the Kirchoff formulation for the diffraction of scalar

waves is used to approximate the diffraction of light, one obtains

for the one-dimensional case (after making several simplifying

assumptions)

2 @ [
oxp[iw(-;g + "“: - ;)] y(x') -xp[i ﬂ'; x"] ‘xp[-l Eg-,*f-] ax’

¥(X) = ﬂ'o

(5)

where ¥ is a complex function representing the amplitude
and phase of the light

X' 1lies in the shadowgram plane such that Y(X')
describes the one-dimensional shadowgram

X lies in the reconstruction planz such that ¥ (X)
describes the reconstructed source function

A is the wavelength of light

z° is the distance between the shadowgram plane and
the reconstruction plane

The shadowgram, ¥(X'), is merely the coded aperture, A(X), con-

volved with the source function, S(X), i.e.
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FIGURE 3, FRESNEL ZONE APERTURE - LIGHT PROPAGATION RECONSTRUCTION.
In order to reconstruct the source function, the shadowgram is placed
in the X'-Y¥* plane. A monochromatic light beam will be diffracted

as described by equation 5. This diffraction pattern will rgconstruct

the original source function in the X~Y plane where _%T_ =-P |
g p BT e

1
The reconstruction produced by the term of order P will then be in-focus
at the X-Y plane.




w0

¥ (x') =f S(X) A(X'-X) dx .

-

The Fresnel code aperture can be represented as an exponential

series

A(X) =

] 4=

—— T central zone transparent

x2

w exp [inP =5

*)
+ Z
-0

P odd

(6)

1) central zone opaque

where

X. = radius of first zone.

For the moment, A(X) is assumed to be unbounded as a function of
X in order to demonstrate image reconstruction by the use of a
light wave. Later, the effect of a finite aperture size will be
discussed.

The reconstructive property of the Fresnel code can be demon-
strated by setting 71T in equation (5) equal to - 12 and by con-

o
sidering only the P = 1 term in equation (6), i.e.,llet

11
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exp<éw

i

S
N

A(X) = (7)

If these substitutions are made in equation (5), one finds

i2nz°)
exp \—y—
¥(X) = —;———S(x) (8)

T
X7
P = 1 term of the Fresnel code reconstructs the image. Any term

In this case, T%_ has been arbitrarily selected so that the
o

of order P could have been selected by setting 217 = - E? .
o X
1

The unfortunate aspect of propagation reconstruction is that
only one term of the expansion series for the Fresnel code con-
tributes to the reconstruction of the source. Any physically
realizable Fresnel code aperture will contain other non-recon-
structing terms, and these terms may produce serious distortions
in the reconstructed image. As will be shown, the removal of
artifacts produced by these non-reconstructing terms is the primary
problem with using propagation reconstruction, To study this
problem, several shadowgrams of the source function shown in

Fig. 2 were made to reconstruct the original source function from

these shadowgrams.



Figure 4 shows the reconstructed source function that occurs
if a physically realizable Fresnel code aperture with a transparent
center (the complement of the Fresnel code in Fig. 1) is used. The
results are rather poor. In comparison, if the complex recon-

structing aperture function

2
axp <in ﬁi)

X
—_

in

1
(=4
tAa
El
N
S
>

A(X)

(9)

1]
(=]
-
o
>

\
E-3
>

A(X)

is used to create the shadowgram, the reconstructed source function
shown in Fig. 5 is obtained. It depicts the original source with
good fidelity. Truncation of the aperture code after 16 zones is
mainly responsible for inaccuracies present (i.e. the finite aper-
ture reduces the high spatial frequency response). Unfortunately,
it is not physically possible to fabricate a complex aperture when
imaging gamma ray sources, and unless a means is found to remove
the affects of non-reconstructing terms, propagation reconstruction
is not an attractive reconstruction technique.

Figure 6 shows the contributions of the various terms using a
point source. The DC term and the P = -1 term are the two most
important contributors toward the generation of undesired arti-
facts. The phases change slowly compared to the resolution of

the aperture, and thus destructive and constructive interference

13
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The bottom graph shows the reconstructed image
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The actual Fresnel zone code used had a transparent central
zone and is the complement of that shown in Figure 1.
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obtained if the aperture includes only the reconstructing term
i.e., the aperture function is given by equation (9).
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FIGURE 6a. PROPAGATION RECONSTRUCTION - POINT SPREAD
FUNCTIONS - AMPLITUDE. This figure shows the relative
amplitude of the point spread function for individual
terms of the Fresnel zone expansion series up through

the third order. The P = +1 term produces reconstruction,
but unfortunately other terms are also present in a
physically realizable aperture and produce distortions

in the reconstructed image.
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FIGURE 6b. PROPAGATION RECONSTRUCTION - POINT SPREAD
FUNCTIONS - PHASE. This figure shows the phase of the
point spread function for individual terms of the
Fresnel zone expansion series up through the third
order. Note “hat the analomous spikes in the phase
function of the reconstructing term (P = +1) are a
consequence of the amplitude of this term passing
through zero at which point the phase is undefined.
For values of the amplitude sufficiently close to
zero, the calculated phase is dominated by computational
roundoff errors.
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between the various terms can produce substantial sidelobe
structure. The reconstructing term, P = 1, can be calculated
theoretically for the case of a finite Fresnel. zone aperture and
a single point source; let the source function be an ideal point
source (S(X) = S°6(X)), and use equation (9) to represent a com-
plex Fresnel code aperture. If these conditions are applied to

equation (5), the resulting point response function is

2 sin (xs——‘"x)
¥(X) = -exp [=-im 57 _——?f—l— s°
X

1

where a constant phase term has been dropped. To compare with the
P = 1 term in Figure 6, Xy (the radius of first Fresnel zone) must
be set to 64 pixels in the above equation. In terms of the rel=-
ative amplitude and position of the zeroces, the computer results
agree with the above equation.

Figure 7a shows the point response for a physically realiz-
able Fresnel code, and as can be seen, it is far from an ideal
point function. The importance of terms of order 3 and higher
may be assessed by using an aperture containing only the DC term,

the P = 1 term and the P = -1 term, i.e.,

A(X) = 0.5 + 0.5 sin (7 (10)

JﬁJﬁu



The propagation reconstruction using this aperture is shown in
Figs. 7b and 8, This reconstruction is not significantly better
than that in Fig. 4. It may thus be concluded that the DC term
and the diverging P - =1 term are the dominant sources of undesir-
able artifacts and that the use of a physically realizable sinu-
soidal Fresnel aperture will not significantly improve the image
reconstruction by removing the third and higher order terms.

The DC term may be removed by using the physically unrealiz-

able aperture

A(X) = sin {7 (11}

Ee¥ie ¥

and the resulting reconstruction is shown in Figs, 7¢ and 9. Sub-
stantial improvements are obtained:; hovever, major distortions

still exist. The central broad source is highly distorted, and

none of the smaller amplitude sources can be distinguished. The
conclusion is that unless a means can be found to reliably remove
the effects of the DC term and the diverging term, a straightforward
propagation reconstruction will not provide a reliable represent-

ation of the source function.

19
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IV, Fresnel Zone Plate Correlation Reconstruction

An alternative to the propagation reconstruction which may be
applied to any coded aperture is the correlation reconstruction.
The basic idea is to determine a decoding function such that when
it is convolved with the coded aperture, the result approximates
a delta function. In the case of the Fresnel zone code, various
decoding functions have been tried (e.g. sin (wxz/xi)), but all
suffer the common problem of producing significant sidelobes. A
simple correlation reconstruction applied to Fresnel zone plate
shadowgrams will not yield good reconstructions., The results are
roughly comparable to propagation reconstruction where the inter-
fering effects of the non-reconstructing terms are not removed
(compare Figures 4 and ll).

Figure 10b shows the point source responses using the corre-
lation reconstruction where the decoding function is the Fresnel
code. The average value of the sidelobes can be made flatter by
choosing a "balanced" decoding function (i.e., a decoding function
that is both positive and negative); the differences in the point
source responses are illustrated in Fig. 10. In both cases, how-
ever, substantial sidelobe structure remains, and the reconstructed
images are poor. A technique for improving the reconstructions
is still to be illustrated. Because this technique works better
using the Fresnel code itself as the decoding function, balanced

decoding functions will not be considered further.
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function is simply the Fresnel aperture, and the decoding
function is either +1 (where the aperture is transparent) or

0 (where the aperture is opaque).



A correlation reconstruction is illustrated in Fig. 11, and
it does not provide a satisfactory reconstruction. Some technique
is desirable to compensate for the sidelobes., Various iterative
techniques have been used.4 The onc to be demonstrated here will
be called a "point source decomposition" technigue. Basically an
attempt is made to find a set of delta functions which, when con-~
volved with the point response function (Fig. 10b), will approxi-
mate the correlation reconstruction in Fig. 11. This set of delta
functions may be considered as a point source approximation to
the original source function, or in other words, the original
source function has been decomposed into a series of point sources,
This is achieved by an iterative technique, as follows:

1) The correlated recconstruction (Fig, 1ll) is scanned to

determine the position with the largest absolute value

2) Centered at this position, the point response function

(Fig. 10b) is subtracted from the correlation recon-
struction. The amplitude of the point response function
to be subtracted is scaled to some fixed percentage of
the amplitude of the correlated reconstruction at that
location. The precise percentage is not critical.
Usually some value from about 20% to about 5% is used.
The major tradeoff to be made is if the percentage is
high, the iterative procedure may not converge properly,
wut if the percentage is tuo low, the slow convergence
wastes computer time without any commensurate improvement

of the final image.
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3) The computer stores the position and amplitude of the
subtracted point response function. These amplitudes
and positions represent the point sources which define
the final reconstructed imaga.

4) After the above steps are completed, the original cor-
related reconstruction has been modified through sub-
tracting the point response function. This modified
correlated reconstruction is now used in place of the
original, and all four of these steps are applied
iteratively.

The prucess is terminated either after a fixed number of iter-
ations or until the residual correlated reconstruction is in the
noise level. As the final step, a running spatial average (usually
a box window) is made over the point sources determined by the
above technique and this constitutes the final reconstructed
source. Figure 12 shows the resulting reconstruction when this
technique is applied.

For many situations, this technique provides an acceptable
reconstruction. There is a tendency for this technique to produce
oscillations in regions where the original source function is
flat. Note, however, these oscillations are at a wavelength com~
parable to or less than the resolution of the aperture. Small
artifacts may also be generated, as can be seen from the fzature
just to the right of the central source (see arrow Fig. 12).

In some circumstances the tomographic capability of coded

aperture imaging is important. Tomographic capability is possible
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CORRELATION RECONSTRUCTION WITH POINT-SOURCE-

DECOMPOSITION. Bottom graph shows the reconstructed image
obtained after a point-source-decomposition algorithm as
described in the text is applied. Three hundred iterations
were used to produce the reconstructed image. Note the presence

of an artifact (see arrow).

Top graph represents original

source function and also indicates which source is to be moved
out of focus for investigating the depth of field.



because the Bize 0of the cast shadow will depend on the distance
between the source and aperture. If this tomographic capability
is to be useful in situations where several sources lie in separ-
ate planes, sources should go out of focus smoothly. To investi-
gate this, the rightmost source in Fig. 12 was moved back by
reducing the size of the shadows it casts by 2%, 5%, 10%, and 20%.
These shadowgrams were then reconstructed in a manner identical to
that shown in *ig. 12, The results are shown in Fig. 13.

For this particular reconstruction technigue, the tomographic
capability is poor, Note the source which was moved represents
only 6% of the total number of photons collected at the detector
plane; yet, when it is moved out of focus, it has significant im-
pact on the reconstruction of the sources that remained in focus.
If one were imaging three sources in three different planes, there
might be confusion regarding the shape of each source due to the
cther out-of-focus sources. The conclusion is that for this
Fresnel code and the point-source-~decomposition reconstruction
technique, tomographic capability is poor.

The particular reconstruction technigque described here works
best in situations where there are several compact sources and
little background. In situations where there are broad continuous
sources covering mosf of the field of view, the point source de~-
composition fails. Figure 14 shows the same source function as
before, superimposed on a background. The reconstructed image is
also shown in Fig. 14. This reconstructive technique fails because

too many point sources are reguired to represent the background
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FIGURE 13. DEPTH OF FIELD - FRESNEL CODE. This figure demon-
strates the affect of an out-of-focus source on the reconstructed
image. The rightmost source (see top graph, Fig. 12) was placed
out of focus by reducing the spatial scale of the aperture shadows
it produced by the percentages indicated. The reconstruction pro-
cedure was the same as for Fig. 12.

30



RELATIVE INTINSITY

RELAVIVE INTENSITY

i
i

'r: m,,‘m;‘“umo SOURCE FUNCTION
¢ I | 1
; o !NJ |
N ;
' | |
INETR LI
| [W HEERTE Wf\m\ f
BRI Ui i N{
x”/ L ! o '.‘_:Mh

background component.

CORRELATION RECONSTRUCTION WITH SOURCE BACKGROUND.
Lower graph shows the failure of the point-source-decomposition
technique in situations where the source function has a broad
The image reconstruction procedure was

identical to that used for Fig. 12; only the original source
function was modified.
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and the itecrations fail to converge. Unless the background is
removed prior to reconstruction, this reconstructive technique
will not work under high background conditione.-

V. Uniformly Redundant Array

The preceding two sections discussed some of the problems
associated with image reconstruction using a Fresnel zone aper-
ture code., As an alternate code, the uniformly redundant array
is particularly well suited to correlation reconstruction tech-
niques due to the flat sidelobes of its autocorrelation function.
The URA code to be considered has already been discussed and is
shown in Fig. 1.

The decocding function is basically the same as the URA aper-
ture itself except that it is made nearly symmetric about zero
so that the sidelobes average out to zero; i.e., if U(X) is the

URA code shown in Fig. 1, the decoding function U’ (X), is

Ur{x) = 2.0 U{x) - ¢ (12)

where C is a constant nearly equal to one, adjusted so that all
the sidelobes average to zero. (As used in the computer models,
C = 0.988). In this manner, no zero baseline shifts are produced
as the strength or number of sources are increased or decreased.
If the decoding function is convolved with the coded aper-
ture, the point spread function obtained is as shown in Fig. 15.

The side lobes are not perfectly flat because the 63 element URA
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FIGURE 15. UNIFORMLY REDUNDANT ARRAY - POINT SPREAD FUNCTION.
This figure shows the reconstructed image of a point source
using a uniformly redundant array as the aperture. Note the
flatness of the sidelobes as compared to a Fresnel zone aper-
ture (see Figures 7 and 10).
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code is actually represented by 512 pixels. Thus when the con-
volutirn is calculated, one does not always shift by an integral
number of elements. As will be shown, the non~flat sidelobes may
generate some artifacts, but these artifacts are insignificant as
compared to a Fresnel code (compare point spread function in
Figs. 7 and 10 to Fig. 15}.

rhe source functions with and without backgrounds were re-
constructed using the URA code. Figures 16 and 17 show the recon-
structed image. Even in the presence of background, the recon-
structions are for the most part good. Note however, the smallest
source (see arrow)} is stronger in comparison to the other sources
than it should be. This is a chance artifact of this particular
source function created mainly by the dominant source situated
near the center.

The tomographic gualities of this imaging technique were in-
vestigated in the same manner as the Fresnel code. The rightmost
source was "moved" or "placed out of focus" by reducing the size
of its shadowgrams by 2%, 5%, 10% and 20%. The results are shown
in Fig. 18 and should be compared with Fig., 13. Again, an out-of-
focus source will distort the in-focus sources being imaged; how-
ever, the distortions are significantly less than for Fresnel code
using a cor -elation and point-source-decomposition reconstruction
technique.

Considered in terms of ease of reconstruction, fidelity of
reconstruction, and depth of field response, the URA code appears

to be superior to the Fresnel code. The greatest attraction of
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function.

Top graph shows original source

35



r“ o LT ORIGINAL SOURCE FUNCTION 1
r 1
T
| L]
| ‘ : ! l
N |
e Il || , 1 |
: i L | f
2 b
g o
|
!
i f
i .. - e . S
o0 0 0 "o o
BIXEL NOMBER
- RECONSIRUCIED SOURCE FLAKTION
5
2.0 2.0 260 w0 \’;;.0
B U MR J

FIGURE 17. URA RECONSTRUCTION WITH SOURCE BACKGROUND. Recon-
struction procedure is the same as for Figure 16, except that
source function has been modified to include a background. Con-
trast the good fidelity of this reconstruction with that of the
Fresnel code using the point-source-decomposition procedure

(see Fig. 14).
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the Fresnel code is the possibility of having a simple and direct
analog reconstruction technique (i.e., light propagation). To
realize an acceptable reconstruction, the DC term and the diverging
term artifacts must be eliminated. Unless this can be realized on
a practical basis, the URA code represents a better reconstruction
method. In principal, both the Fresnel zone and the URA aperture
can be utilized to provide tomographic source reconstruction. In
practice, however, a three-dimensional source distribution actually
increases the difficulty of obtaining images free from artifacts,
because in addition to any problems associated with the two~
dimensional in-focus source function, additional artifacts will be
present due to other out-of-focus sources, For the rather limited
number of sources employed in this study, the URA reconstructions
are distorted less by out-of-focus sources than the Fresnel code

using a point-source~-dzcomposition reconstruction,

VI. Quantum Noise

The primary goal of any imaging system is to provide the best
possible estimate of the source distribution given certain physical
limitations (such as integration time, aperture size, detector
resolution, etec.) In the case of coded aperture imaging of gamma
ray sources, two primary factors influence the fidelity of the re-
constructed image: (1) systematic distortions inherent in the
imaging system and (2) statistical uncertainties in the signal.

In order to facilitate the analysis, these two factors are being

treated separately; however, the ability to correct for systematic



distortions is intimately related to the presence of statistical
uncertainties in the signal, and a complete analysis should properly
treat both problems simultaneously.

In the previous sections, computer simulations demonstrated
that the reccnstructed images contain distortions due to artifacts
produced by non-zero sidelobes. Because these distortions are
systematic, they may theoretically be completely eliminated if
the aperture transmission and the signal (shadowgram) were con-
tinuous functions measured with infinite precision. As a practi-
cal problem, this theoretical idealization cannot be achieved, and
some artifacts will always persist in the reconstructed images.
Thus, depending on the extent to which artifacts can be eliminated,
an upper limit will be placed on the dynamic range of the recon-
structed image (the ratio of the strongest to the weakest source
which may be distinguished in an image). In comparison to the
Fresnel zone code, the URA point response function has nearly
flat sidelobes, and the artifacts in the reconstructed image can
often be ignored. In this sense, the URA aperture is superior to
the Fresnel zone aperture, and for this reason, the URA code will
be selected for further evaluation with respect to its gquantum
noise performance (see Barrett and DeMeester: 1974 for Fresnel
zone aperture noise analysis).

Quantum noise fluctuations are important in any physical
measurement that counts photons, and the statistical fluctuations
will be characterized by the Poisson distribution. A shadowgram

represents the integrated gamma ray photon flux (number of photons
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per unit area) at the detector plane as a function of position,

Due to quantum ncise, the integrated photon flux measured over any
finite time interval and any finite area will randemly fluctuate
about the "true" mean (the value that would be measured assuming

an infinite integration time and a time invariant physical situ~
ation). Conseguently, the reconstructed image will also be subject
to random variations. Thus, as used in this section, noise strictly
refers to statistical fluctuations of the reconstructed image due to
quantum noise. In this sense, a reconstructed image may have an
excellent signal-to-~noise ratio, yet be a poor representation of

the actual source function if there are significant artifacts
present. The standard deviation of the reconstructed image will

be used as the quantitative mcasure of noise.

In order to calculate the noise, the reconstruction process
should first be considered. The one-dimensional shadowgram repre-
sents the number of photons detected per unit distance (or per
pixel). Let the array {Ai} represent the shadowgram where Ai is

th pixel. Let the array {Di} be the

the number of photons in the i
decoding function where D; = + 1 for all i (0 €1 g M-1; where M
is the total number of pixels in the shadowgram. The kth pixel of

the reconstructed image is given by

M-1
R, =Z Dy By (13)
i=0

where the subscript of the decoding array is interpreted as modulo

M. In the presence of quantum noise, each Ai is a random variable



with a Poisson distribution having some mean value, Ki' and a
standard deviation cAi =\’Ai . Since the statistical variations
from pixel to pixel are independent and since LDil ~ 1 for all i,

the standard deviation of Rk is

, M1, Ml
2% 2% K o
k  j=o i j=0

or

s = expected total number of gamma _ v
Rk rays in the entire shadowgram T

Thus, the result is very simple: The standard deviation of the
reconstructed image is the square root of an expected total number
of gamma photons in the entire shadowgram. This noise is position
invariant, and the analysis applies to all gamma photons recorded
in the shadowgram irrespective of whether or not they reach the
shadowgram by passing through the URA aperture.

Next the reconstructed image amplitude should be considered.
A sangle point source will cast a shadow which is a scaled replica
of the URA aperture. This point source is reconstructed when k in
eguation 13 is such that the decoding function matches the aperture
shadow (let k = ko for this fiducial point source). In this case,
Rko will equal the total number of photons from the fiducial point
source which pass through the aperture and reach the shadowgram.

Let this number of photons be P. Now consider the addition of a
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nearby point source having the same amplitude as the fiducial
point source. The number of photons reaching the shadowgram from
this nearby point source is also P; however, because the second
point source is in a slightly different position, the aperture
shadow it casts is di.placed. As a consequence, when Rk is calcu-
lated as in equation 13, this second point source will contribute
some number less than P due to the mismatch between its aperture
shadow and the decoding runction. In fact, as point sources are
positioned further and further from the fiducial point source,
they will contribute less and less to Rko. Once the point sources
are displaced greater than one resolution element from the fiducial
source, they will, on the average, contribute nothing more to Rko.
One resolution element corresponds to the displacement between two
point sources such that their respective aperture shadows are
shifted by one eleﬁent (i.e. the smallest structure in the aperture).
The preceding analysis for point sources may be extended to
calculate the reconstructed image amplitude from continuum sources
with constant intensity. Any continuum source may be approximated
by a series of point sources spaced much closer than ths resolution
of the coded aperture. The key point is that photons emitted from
a region of the order of a resolution element will add coherently
to one another in equation 13. A detailed analysis provides a
simple result which is described as follows: Partition the source
function into segments having the size of one resolution element.

Each resolution element will emit a certain number of photons per

unit time, out of which some fraction will actually pass through



the aperture and reach the shadowgram, It is this fractional
number of photons that equation 13 calculates.

To quantify this result, let Yura represent the number of
photons collected in the shadowgram which were emitted by one
resolution element of a uniform source with unit intensity Io.
For any other uniform source of intensity I, the reconstructed

image amplitude is

Rura™ Yural

where I is normalized to I, Note that Ryra is a number repre-
senting a count of photons. Yura is a constant number which is
characteristic of the coded aperture imaging system under con-
sideration. If the geometry of the imaging system and the trans-
mission function of the aperture are known, the absolute value of
may be calculated; however, for this analysis, its absolute

Yura
value is irrelevant.

The signal-to-noise ratio of the reconstruction will now be
defined as the ratio between the reconstructed image amplitude

divided by the RMS fluctuation, or, using equations 14 and 15:

S - Yuma ! (16
7 »
URA ‘YT

Note that this result is independent of the spatial sample rate at

which the shadowgram is measured.

(15)

)
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The primary motivation for using a coded aperture as opposed
to an equivalent pinhole aperture is to improve the quantum-limited
signal-to-noise ratio. Therefore, an important problem is the
assessment of conditions under which a URA aperture will have a
signal~-to-noise advantage over an equivalent pinhole aperture. A
pinhole aperture and a URA aperture are considered equivalent if
they provide the same resolution. Basically, this implies that the
pinhole aperture is the same size as the smallest structures in the
URA aperture.

In contrast to a coded aperture, a pinhole aperture forms an
image directly on the detector plane, and the individual resolution
elements of this projected image may be considered as being inde-
pendent. In other words, the image amplitude corresponding to any
one resolution element of the source function contains no noise
originating from oﬁher portions of the source function separated by
more than a resolution element. Thus a pinhole aperture might be
perferred under a situation where a relatively weak source is to be
imaged in the presence of a very strong source located at least a
few resclution elements away.

Mathematically, the results may be expressed as follows. Sim-
ilar to the analysis for the URA aperture, let Ypy represent the
number of photons reaching the detector plane from a resolution
element of the gamma ray source. Ypy is tc be referenced to the
same source intensity unit, Io, as for the URA aperture. For a
continuous source of intensity I, the pinhole image will have an

amplitude
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R 1 (17)

PH = YpH
where I is normalized to Io. RPH represents the photon count per
resolution element of the projected image from a source with inten-
sity I. Thus, defining the signal-to-noise ratio of the pinhole

aperture as the image amplitude divided by the RMS fluctuation, we
have

Yool total number signal photons
<%) = _PH” _ per resolution_element (18)
PH

N ' Yr total number of photons
per resolution element

In order to compare the pinhole aperture with the URA aper-~
ture, the quantities Yura' Ypu' 'm and YT must be related to one
and another. Because this work is in support of imaging nuclear
fuel pins, a specific source function as shown in Fig. 19 will be
considered. The rectangular object of intensity A (representing
the fuel pin) is superimposed on a uniform background of intensity
B1 spanning the entire field of view, The rectangular object
spans W resolution elements (assume W > 1), and the entire field
of view spans F resolution elements. A and B; are normalized to
IO so that equations 15 and 17 are applicable. Besides the source
background radiation Bl which must pass through the aperture, let
the detector be subject to a uniform flux By, where B, is the
number of photons per resolution element at the detector plane and

represents stray background radiation which is not modulated by the
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FIGURE 19. SOURCE FUNCTION FOR SIGNAL-TO-NOISE RATIO ANALYSIS.
This figure shows the type of source function assumed for the
signal-to-noise analysis. The signal consists of the cross-
hatched step function with intensity A. It corresponds to the
nuclear fuel pin being studied. It was assumed that a uniform
source background with intensity B1 and spanning the entire field
of view would also be present.



aperture. Having made these definitions, the signal-to-noise ratio
of the URA and the pinhole aperture may be compared.

The signal will be defined as the amplitude of just the rec-
tangular object whose intensity is A (see Fig. 19). For the pinhole

aperture

number of photons reaching the detector from
(é) = one resolution element of rectangular object
PH

N total number of photons per resolution
element at detector plane

(19)
Tpy?
=
¥ puP * YpyBy * By
For the URA aperture
number ‘'of photons reaching the detector from
(§ = one resolution element of rectangular object
N URA Vtotal number of photons in entire shadowgram
(20}
- Yura®
V"YURAA + FYURABI + 2F32
Further define
Yura — transmitting area of URA aperture (21)

o= transmitting area of pinhole aperture

Ypu

47



Equations 19, 20 and 21 may be combined to yield

=
O
-
+
[
+
=
b
=] w
(=S Y]
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\-/‘x‘

(S/8) yn Fy o)
S/ oy F By B, \'
1+ wE + 2F
T~

In order to better understand the implications of the above
equation, consider first the case where all background radiation

is modulated by the aperture, i.e., let 82 = 0. For a 63 element

URA code,
F =63
o = 32
For a 127 element URA cade,
F =127
a = 64
(S/N) RA B

Fig. 20 plots T versus Kl

S/N P

for a case where the signal spans one resolution element (W=1)
and the signal spans 10 resolution elements W=10). It can be
seen that the signal-to-noise advantage of the URA aperture de-
creases rapidly as the background builds up, and once the back-

ground intensity is greater than the signal intensity, there is
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FIGURE 20. SIGNAL~-TO-NOISE RATIO VERSUS SOURCE BACKGROUND IN-
TENSITY. This figure plots the signal-to-noise ratioc advantage
of a URA as compared to an equivalent pinhole as a function of
the source-background-intensity to signal~-intensity ratio. Note
that once the source background intensity is comarable to or
greater than the signal intensity, there is a net disadvantage
in using the URA aperture. The stray background intensity is
assumed to be zero.

49



50

a slight net disadvantage to using a URA aperture versus an

equivalent pinhole.

(/M) ypa
Next consider the case whare B1 = 0. Plots of T§7ﬁT;;_
B
versus 2 aire shown in Fig. 21. Note that
URA

number background photons
2 - Per resolution element
AYURA number of signal photons
per resclution element
using URA aperture.

B

In this case, even in the limit of B, + =, the URA will have a
signal~to~noise advantage as long as the signal spans no more than
8 resolution elements for a €3 element URA, or 16 resolution ele-
ments for a 127 element URA. Thus, the signal~-to-noise advantage
(or disadvantage) of a URA versus a pinhole aperture depends on the
relative portion of background radiation passing through the aper-

ture versus stray background radiation.

VII. Summary and Conclusions

Using computer simulations, comparisons between a one-Fresnel
zone aperture and a one-dimensional uniformly redundant array aper-
ture have been made. The primary purpose was to assess the relative
quality of the reconstructed images obtained from these two coded
apertures. A theoretical analysis of the quantum noise limit for
the URA aperture was also made. In this case, the major emphasis

was to evaluate the conditions under which a URA aperture would
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FIGURE 21. SIGNAL-TO-NOISE RATIO VERSUS STRAY BACKGROUND IN-
TENSITY. This figure plots the signal-to-noise ratio advantage
of a URA as compared to an equivalent pinhole as a function of
the stray-background-intensity to signal-intensity ratio. Note
that in contrast with the source background situation, there

will usually be a signal-to-noise advantage using the URA as long
as the signal itself is not too wide.
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improve the signal-to-noise ratio as compared to an eguivalent pin-
hole aperture.

The foremost difficulty that should be initially resolved with
any Fresnel zone imaging system is the removal of unwanted artifacts
generated by the non-image-reconstructing terms in the exponential
expansion series representing the Fresnel code. The DC term and
the first order diverging term are the predominant causes of dis-
tortions in the reconstructed images. For a relatively complex
source function of the type used in this study, the distortions
are sufficiently severe that the original source function is nearly
unrecognizable based on the reconstructed image. Fortunately these
cistortions are systematic, and corrections may be made to elimi-
nate the artifacts. One possible iterative technique which is
effective in removing artifacts for some source functions (referred
to as a point-sourée-decompositiou technique) was described. Using
this method, fairly accurate reconstructed images are obtained as
long as the original source function contains no substantial broad
background component.

In comparison with the Fresnel code, the uniformly redundant
array aperture produces images nearly free from artifacts. This
is a natural consequence of the flat sidelobe structure in the
URA autocorrelation function. Evaluated in terms of the seriousness
of undesired artifacts, the URA aperture is superior to the Fresnel
code.

Both the Fresnel code and the URA were used to assess the

affects of a 3-dimensional source distribution. All shadow-cast



imaging techniques have depth of field capability because the
spatial scale of the shadow will depend on the source-~to-aperture
distance. On the one hand, this may be regarded as a desirable
attribute giving the coded aperture imaging technique tomographic
capability. However, on a more practical basis, out-of-focus
sources can only complicate the problem of removing artifacts from
the image of the in-focus sources. In this respect, a correlation
reconstruction using the point-source-decomposition procedure is
significantly more prone than the URA aperture to produce distorted
in-focus images due to the presence of an out-of-focus source.
Quantum ncise investigations were performed for the URA aper-
ture. The comparative signal-to-noise advantage of the URA aperture
versus an equivalent pinhole aperture was evaluated as a function
of background radiation intensity. 1In this respect, it is important
to distinguish soufce background radiation, which is modulated by
the aperture, from stray background radiation, which is not affected
by the aperture. Assuming the source background uniformly spans
the field of view, the URA quickly loses its signal-to-noise advan-
tage once the source background intensity exceeds or is comparable
to the signal intensity. 1In contrast, a URA aperture will usually
retain a signal-to-noise advantage over a pinhole regardless of
how intense the stray background radiation becomes. Thus, in order
to evaluate the signal-to-noise advantage of the URA aperture, not
only the amount but the origin of all background radiation must be

determined.
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