

Economics of Texaco Gasification— Combined Cycle Systems

EPRI

Keywords:

Coal Gasification
Texaco Gasification
Oxygen Blown Gasification

Combined Cycle Power Generation
Air Blown Gasification

EPRI AF-753
Project 239
Final Report
April 1978

RECEIVED BY TIC MAY 26 1978

MASTER

Prepared by
Fluor Engineers and Constructors, Inc.
Irvine, California

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ELECTRIC POWER RESEARCH INSTITUTE

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Economics of Texaco Gasification-Combined Cycle Systems

AF-753
Research Project 239

Final Report, April 1978

Economic Studies of Coal Gasification Combined Cycle Systems for Electric Power Generation

Prepared by

FLUOR ENGINEERS AND CONSTRUCTORS, INC.
3333 Michelson Drive
Irvine, California 92715

3549
950

Principal Investigators

B. McElmurry
S. Smelser

MASTER

Prepared for

Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, California 94304

EPRI Project Manager
Michael J. Gluckman
Fossil Fuel and Advanced Systems Division

LEGAL NOTICE

This report was prepared by Fluor as an account of work sponsored by the Electric Power Research Institute, Inc. (EPRI). Neither EPRI, members of EPRI, Fluor, nor any person acting on behalf of either: (a) makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (b) assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

ABSTRACT

This report presents the results of an economic screening study for air blown Texaco coal gasification coupled with combined cycle power generation. The objective of this study was to identify whether an air blown Texaco gasifier had economic incentives greater than oxygen blown Texaco gasification.

This process arrangement extends the work covered in the Combined Cycle Report (EPRI AF-642), which included the Lurgi dry ash gasifier, the British Gas Corporation Slagger, and three entrained processes offered by Combustion Engineering, Foster Wheeler, and Texaco. All these processes were integrated with combined cycle plants based on advanced gas turbine technology (2,400°F Combustion Outlet) estimated by Westinghouse to be available in the 1981-1985 time period.

The evaluations were based on complete "grass-roots" facilities sized to conform to the present electric utility practice of building units of approximately 1,000 MW capacity.

The conclusion reached in this supplement report is that within the accuracy of the study using the Texaco process, air blown gasification is economically equivalent to oxygen blown gasification.

It is concluded that development emphasis should be placed on power generation, rotating machinery, heat transfer equipment, and further gasification pilot plant experiments to maximize the overall thermal efficiency of air blown Texaco gasification. The air blown case presented here is more speculative than the oxygen case. This is because the Texaco process has not been as well demonstrated for air blown operation as for oxygen blown, and because of some added uncertainty in the design assumptions for some of the high temperature heat transfer equipment. Both processes have the potential for commercialization in the mid to late 1980's.

Blank Page

EPRI PERSPECTIVE

PROJECT DESCRIPTION

This final report, Economic Study of Air Blown Texaco Gasification Combined Cycle System For Electric Power Generation, is one of a series of economic evaluations under Research Project 239-2 comparing the costs of electric power from gasification-combined cycle power systems based on a variety of different coal gasification technologies. The results of previous economic evaluations of gasification-combined cycle power systems, including the Lurgi dry ash gasifier, the British Gas Corporation Slagger, the two stage entrained Foster Wheeler device, Combustion Engineering's atmospheric pressure entrained gasifier and an oxygen blown Texaco unit have been reported in EPRI Report AF-642, Economic Studies of Coal Gasification Combined Cycle Systems For Electric Power Generation. The present study extends the comparative economic results presented in EPRI AF-642 to include capital requirements and operating costs for a "grass-roots" air blown Texaco coal gasification-combined cycle power plant.

PROJECT OBJECTIVES

The purpose of this study was to evaluate the capital requirements and operating costs associated with electricity production from an air blown Texaco coal gasification-combined cycle power plant to determine whether or not air blowing of the gasifier offered any appreciable economic advantages over the comparable oxygen blown system. To be consistent with previous studies, the design was based on a plant capacity of approximately 1,000 MW, Illinois #6 coal, a Chicago Illinois site, a 2,400 °F advanced gas turbine, and mid 1976 dollars with no escalation.

CONCLUSIONS AND RECOMMENDATIONS

Within the accuracy of these screening type estimates it can be concluded that there is no significant economic difference between air blown or oxygen blown Texaco based combined cycle power plants. This result is somewhat surprising due to the extremely high cost of oxygen production. One possible explanation for the higher than expected cost for the air blown system could be the conservative design approach adopted by Texaco based on the fact that very little pilot plant data exist for air blown gasification. This study also highlights the necessity

for further development emphasis on power generation cycles, high temperature rotating machinery and high temperature heat transfer equipment to maximize the overall thermal efficiency of Texaco based coal gasification-combined cycle power systems.

Dr. M. J. Gluckman, Project Manager
Fossil Fuel and Advanced Systems Division

TABLE OF CONTENTS

	<u>Page</u>
SUMMARY	1
INTRODUCTION AND SCOPE	7
CRITERIA	
Technical	9
Economic	15
DISCUSSION OF RESULTS	23
CASE EATC	
Plant Description	31
Process Discussion	73
Economics	85
APPENDIX A - COMBINED CYCLE SYSTEM DETAILS	93
APPENDIX B - AREA AND UNIT NUMBERING	106

Blank Page

FIGURES

	<u>Page No.</u>
EATC-1-1	33
OVERALL BLOCK FLOW DIAGRAM-	
TEXACO PROCESS COAL GASIFICATION-	
AIR BLOWN	
EATC-10-1	37
PROCESS FLOW DIAGRAM-	
COAL PREPARATION	
TEXACO PROCESS-AIR BLOWN	
EATC-20-1	41
PROCESS FLOW DIAGRAM-	
COAL GASIFICATION AND ASH HANDLING	
TEXACO PROCESS-AIR BLOWN	
EATC-11-1	45
PROCESS FLOW DIAGRAM-	
OXIDANT FEED SYSTEM-	
TEXACO PROCESS-AIR BLOWN	
EATC-21-1	49
PROCESS FLOW DIAGRAM-	
GAS COOLING-	
TEXACO PROCESS-AIR BLOWN	
EATC-22-1	53
PROCESS FLOW DIAGRAM-	
ACID GAS REMOVAL SYSTEM-	
TEXACO PROCESS-AIR BLOWN	
EATC-23-1	57
PROCESS FLOW DIAGRAM-	
SULFUR PLANT (TYPICAL)-	
TEXACO PROCESS-AIR BLOWN	
EATC-24-1	59
PROCESS FLOW DIAGRAM-	
BEAVON/STRETFORD UNIT (TYPICAL)-	
TEXACO PROCESS-AIR BLOWN	

<u>Figures (Continued)</u>	<u>Page No.</u>
EATC-30-1	65
PROCESS FLOW DIAGRAM- STEAM, B.F.W. AND CONDENSATE SYSTEM- TEXACO PROCESS-AIR BLOWN	
EATC-50-1	69
PROCESS FLOW DIAGRAM- GAS TURBINE POWER- TEXACO PROCESS-AIR BLOWN	
EATC-51-1	71
PROCESS FLOW DIAGRAM- STEAM POWER GENERATION- TEXACO PROCESS-AIR BLOWN	

TABLES

	<u>Page No.</u>
S-1 SUMMARY OF OPERATING RESULTS	2
S-2 SUMMARY OF ECONOMIC RESULTS	3
C-1 COAL ANALYSIS	11
C-2 SITE CONDITIONS	12
C-3 WATER ANALYSIS	13
C-4 CAPITAL INVESTMENT BASIS FOR GASIFICATION- COMBINED CYCLE PLANTS	16
C-5 COST OF SERVICES BASIS FOR GASIFICATION- COMBINED CYCLE PLANTS	19
C-6 PROCESS CONTINGENCIES	22
D-1 OVERALL PERFORMANCE SUMMARY	25
D-2 SUMMARY OF CAPITAL INVESTMENT ESTIMATES - \$/kW	26
D-3 PERCENTAGE CONTRIBUTION OF PLANT SUBSECTIONS TO INSTALLED PLANT COSTS	30
EATC-1 MAJOR EQUIPMENT SECTIONS - CASES EATC AND EXTC	32
EATC-2 SUMMARY OF SYSTEM PERFORMANCE - CASES EATC AND EXTC	73
EATC-3 MATERIAL BALANCE - CASE EATC	75
EXTC-3 MATERIAL BALANCE - CASE EXTC	76

TABLES (Continued) Page No.

EATC-4	ENERGY BALANCE - CASE EATC	80
EXTC-4	ENERGY BALANCE - CASE EXTC	81
EATC-5	ENERGY BALANCE AS PERCENT COAL HHV - CASES EATC AND EXTC	83
EATC-6	SUMMARY OF ECONOMICS - CASES EATC AND EXTC	85
EATC-7	CAPITAL INVESTMENT AT 70% OPERATING LOAD FACTOR AND \$1.00/MM BTU COAL - CASES EATC AND EXTC	88
EATC-8	CAPITAL INVESTMENT AT 70% OPERATING LOAD FACTOR AND \$2.00/MM BTU COAL - CASES EATC AND EXTC	89
EATC-9	COST OF SERVICES AT 70% OPERATING LOAD FACTOR - CASES EATC AND EXTC	92

APPENDIX A

CS-1	POWER BLOCK PERFORMANCE SUMMARY	94
CS-2	GAS TURBINE PERFORMANCE SUMMARY	97
CS-3	HRSG PERFORMANCE SUMMARY	100
CS-4	STEAM TURBINES PERFORMANCE SUMMARY	103

SUMMARY

This study was performed as an extension of previous work¹ to identify whether significant economic incentives exist for air blown (new Case EATC) versus oxygen blown (EXTC), water slurry fed Texaco coal gasification processes coupled with gas turbine combined cycle power plants to generate electricity. This case study was performed using advanced gas turbine designs based on a 2400°F combustor outlet temperature. The availability of these turbines has been discussed elsewhere.²

The air blown Texaco single stage entrained case is designated EATC. The design is based on feeding the coal in a water slurry. Where comparisons are reported with the previous Case EXTC³ (oxygen blown Texaco coal gasifier/combined cycle plant) the water slurry case is the basis.

The plant size was selected to match current utility practice of building plants in the 1000-1500 megawatt (MW) capacity range. Both plants feed a constant coal rate equivalent to 10,000 tons/day of Illinois No. 6, and produce in the range of 1100 to 1200 megawatts of power (Table S-1).

The evaluation was done by using data from EPRI and process developers to prepare process designs and cost estimates for integrated grass roots plants. Economic calculations for cost of services were then made. This information is summarized in Table S-2.

The major conclusions of this study are as follows:

The Texaco coal gasification combined cycle systems have the potential for being available for commercialization in the mid to late 1980's. Both air and oxygen blown systems appear to be more efficient than the current coal fired boiler technology.⁴

1. "Economic Studies of Coal Gasification Combined Cycle Systems for Electric Power Generation," EPRI AF-642, January, 1978.
2. Ibid.
3. Ibid.
4. Ibid.

TABLE S-1
SUMMARY OF OPERATING RESULTS

	TEXACO EXTC	TEXACO EATC
<u>Gasification and Gas Cleaning System</u>		
Coal Feed Rate, Lb/Hr m.f.	798,333	798,333
Oxygen or Air/Coal Ratio Lb/Lb m.f.(1)	0.858	1.081
Oxidant Temperature, °F	300	1,000
Steam/Coal Ratio Lb/Lb m.f.(4)	0	0.0086
Slurry Water/Coal Ratio Lb/Lb m.f. (5)	0.503	0.522
Gasification Section Average		
Pressure, psig	600	600
Crude Gas Temperature, °F	2,300-2,600	2,300-2,600
Crude Gas HHV (Dry Basis), Btu/SCF (2)	281.1	102.5
Temperature of Fuel Gas to Gas Turbine, °F	781	821
<u>Power System</u>		
Gas Turbine Inlet Temperature, °F	2,400	2,400
Pressure Ratio	17:1	17:1
Gas Turbine Exhaust Temperature, °F	1,140	1,135
Steam Conditions, psig/°F/°F	1450/900/1000	1450/900/1000
Condensing Pressure, Inches Hg abs.	2.5	2.5
Stack Temperature, °F	272	272
Gas Turbine Power, MW (3)	745	548
Steam Turbine Power, MW (3)	448	634
Power Consumed, MW	36	43.5
Net System Power, MW	1,157	1,138
<u>Overall System</u>		
Process and Deaerater Makeup Water, gpm/1000 MW	362	289
Cooling Tower Makeup Water, gpm/1000 MW	7,588	9,163
Cooling Water Circulation Rate, gpm/MW	347	415
Cooling Tower Heat Rejection, % of Coal HHV (6)	38.7	47.2
Air Cooler Heat Rejection, % of Coal HHV	5.2	0.8
Net Heat Rate, Btu/kWh	8,813	8,958
Overall System Efficiency (Coal→Power), % of Coal HHV	38.7	38.1

NOTES: (1) Dry basis, 100% O₂ for oxygen blown case
 (2) Excluding the HHV of H₂S, COS and NH₃
 (3) At generator terminals
 (4) Includes moisture in oxidant air
 (5) Small changes in this ratio do not significantly alter the results presented here.
 (6) See Table CS-1 for details.

TABLE S-2
SUMMARY OF ECONOMIC RESULTS

<u>PRODUCTION AT DESIGN CAPACITY⁽¹⁾</u>	<u>TEXACO EXTC</u>	<u>TEXACO EATC</u>
Net Power, MW	1,157	1,138
Overall Plant Heat Rate, Btu/kWh	8,813	8,958
<u>TOTAL CAPITAL⁽²⁾</u>		
Total Capital @ \$1/MM Btu Coal, \$/kW	816	826
Total Capital @ \$2/MM Btu Coal, \$/kW	831	841
<u>AVERAGE COSTS OF SERVICES⁽²⁾</u>		
Annual Cost @ \$1/MM Btu Coal, \$1000/yr	262,088	264,078
Per Unit @ \$1/MM Btu Coal, mills/kWh	37.21	37.84
Annual Cost @ \$2/MM Btu Coal, \$1000/yr	327,280	329,271
Per Unit @ \$2/MM Btu Coal, mills/kWh	46.47	47.18

NOTES: (1) At 100% operating factor
 (2) Mid-1976 dollars and 70% operating factor

- . There appears no reason to favor oxygen blown over air blown Texaco gasification for combined cycle power production. In fact, as experimental plant data on air blown coal gasification is extended and exchanger equipment developed to superheat process steam to higher conditions with gasifier effluent, the reverse may be true.
- . Plant investment and overall cost of service are essentially identical within the accuracy of the methods used in this study. However, the air blown process has the greater potential for cost reductions resulting from further development work on the gasifiers and associated heat exchangers.
- . The cost of the combined cycle equipment is less than half of the investment for both cases. Money spent to reduce the cost of this equipment will benefit both cases.

The technical criteria used in preparing the plant designs are given in the criteria section of this report. Briefly, these criteria are:

- . Use data provided by process developers.
- . Produce no net products except electricity and sulfur.
- . Meet environmental restrictions for an Illinois plant location (1.2 lb SO₂/MM Btu of coal fired).
- . Provide all facilities required to permit stand-alone operation of a grass roots plant.

The economic criteria used for capital costs and costs of services estimates are also detailed in the Criteria section of this report. They are summarized as follows:

- . Mid-1976 dollars with no escalation.
- . Thirty-six month construction period.
- . Eight percent construction loan interest, compounded over the plant construction schedule.
- . Coal cost of \$1.00/MM Btu and \$2.00/MM Btu.
- . Seventy percent operating load factor.
- . Twenty-five year plant life.
- . Fifty:fifty debt:equity ratio.

- . Eight percent annual bond interest.
- . Twelve percent annual return on equity after taxes.

Total capital requirements for each system were determined by adding capital related charges such as preproduction costs, paid-up royalties, initial chemical and catalyst costs, construction loan interest and working capital to the estimated plant investments.

Plant investments include a contingency which is divided into two parts. First is a 15 percent project contingency which is intended to cover estimating uncertainty, and additional equipment that could result from a detailed design of a definitive project at an actual site. The second is a process contingency which is applied to unproven technology in an effort to quantify the uncertainty in the design, performance and cost of the commercial scale equipment. Historically, as a new technology develops from the conceptual stage to commercial reality, a variety of technical problems which were not considered during the early stages of the development emerge. Solution of these problems generally results in an increase in the cost of the technology due to the need for more expensive materials of construction, more complex equipment specifications and sometimes the need for additional processing equipment. A total plant process contingency is arrived at by applying a separate contingency to individual process units based on their state of development and accumulating the results.

The Texaco gasification process has been commercially used with petroleum residues for many years in synthesis gas applications. The process has been demonstrated on a pilot scale with coal by Texaco Development Corp. A demonstration scale plant using coal and oxygen has been built for synthesis gas production in West Germany for RuhrChemie. This unit is scheduled for a first quarter 1978 startup. Another demonstration scale oxygen blown unit, for ammonia synthesis gas, has recently been announced for TVA. Thus, while the Texaco process has been commercially demonstrated on petroleum, it has not yet been demonstrated on a large scale with coal, nor has it yet been demonstrated in combination with a combined cycle power plant. No air blown demonstration plants have been announced.

High temperature heat exchanges coupled to the gasifier effluent line have been developed by two West German firms, Steinmuller and Siegner. Several of these units have seen extended commercial service. Gasification in general would profit greatly by further developments in this type of equipment. No superheater exchangers have yet been built, so far as Fluor can determine, and the design used in this study is entirely conceptual at this point. Should added development work indicate that the design or operation of such superheating equipment is not practical, it would be likely to adversely impact the overall thermal efficiency of the air blown plant, or the cost of services, or both.

Based on present favorable pilot data, considering the simplicity of the gasifier and its feed system, it is estimated that extension to both the above new areas should be relatively simple.

In recognition of the need to determine the operational behavior of a total integrated system, EPRI is sponsoring a study (RP-913) to develop a dynamic simulation model of a Texaco/combined cycle plant.

INTRODUCTION AND SCOPE

The study reported here represents a continuation and extension of earlier economic studies¹ done for EPRI by Fluor. The object of the new work, Case EATC, was to investigate the economics associated with producing electricity from coal in air blown Texaco gasification-combined cycle power plants versus the previously investigated oxygen blown Texaco gasifier, Case EXTC. These plants are based on the Texaco gasification process integrated with advanced gas turbine (2400°F combustor outlet) combined cycle power plants.

Design for the air blown Texaco gasification units, and for the Selexol® acid gas removal unit, were based on information provided by appropriate licensors. The power systems were calculated by Fluor based on similar data² from Westinghouse. Plant costs were estimated by Fluor. Economic evaluation criteria were supplied by EPRI.

A block flow diagram and flow sheets are provided for individual process units within the plant where necessary to depict what is included that is specific to this case.

1. "Economic Studies of Coal Gasification Combined Cycle Systems for Electric Power Generation," EPRI AF-642, January, 1978.
2. Op.Cit., Appendix A.

Blank Page

CRITERIA
TECHNICAL CRITERIA

Plant designs were based on criteria established by the Electric Power Research Institute (EPRI). These criteria included coal data, site location, gasifier material and heat balances, gasifier equipment requirements and general plant requirements.

For this supplement, data on gasification system operation was provided by Texaco Development Corporation.

Power system performance was estimated by Fluor based on information developed during the preparation of the Combined Cycle Report¹.

The coal analysis is given in Table C-1. Coal was assumed delivered to the site washed and sized.

The site for the plant is the Chicago area; Table C-2 shows pertinent conditions for the site. Raw water makeup in the plant is assumed to be Chicago city water. The Chicago Department of Public Works provided an analysis of finished water from the South District filtration plant, Table C-3. This data was extracted from EPRI report AF-244².

In all cases, net plant products were restricted to electricity, sulfur and ammonia. No hydrocarbon by-products were allowed. Plant sulfur emissions were restricted to 1 lb SO₂/MM Btu (HHV) of coal fired.

Fuel, steam and electric power are assumed to be available to the plant at the necessary conditions for start-up and emergency situations. Because the plant is a grass roots installation, it will be self-supporting. In addition to the process and utilities described in this report, the following facilities are provided and included in the cost estimate for each case:

1. "Economic Studies of Coal Gasification Combined Cycle Systems for Electric Power Generation," EPRI AF-642, January, 1978.
2. "Economics of Current and Advanced Gasification Processes for Fuel Gas Production," EPRI AF-244, July, 1976.

- Cooling tower
- Plant and instrument air
- Potable and utility water
- Fuel Gas and Nitrogen Systems
- Firewater
- Flares
- Effluent water treating
- Electrical substation and distribution
- Buildings
- Maintenance
- Laboratory
- Rail
- Road

Generally, process equipment is commercially available equipment. Advanced equipment designs are incorporated where:

- the equipment is expected to be commercially available in the near future;
- the equipment is viewed as a logical, economic extension of the present state of the art.

This is particularly true of the gas turbines used here which are based on a 2400°F combustor outlet temperature.

Redundant equipment or systems are provided where failure would jeopardize a substantial fraction of plant capacity. Major high cost equipment is not spared where experience indicates minimal probability of failure or where multiple trains are provided which limit the impact of a failure should it occur. In addition, redundancy is not provided where storage permits bypass of equipment for a sufficient period of time to accomplish reasonable maintenance and repair. The sparing provided is noted in the plant description section for each case, and on the flow diagrams. The degree of redundancy is compatible with a 90 percent onstream factor in the early years of plant life. The plant design depicted here is intended to represent what is possible when the technology is fully established, and not to necessarily reflect the approach to be taken on a "first of a kind" plant.

TABLE C-1
COAL ANALYSIS

Type Illinois No. 6

PROXIMATE ANALYSIS (Wt %)

Moisture	4.2
Ash	9.6
Fixed Carbon	52.0
Volatile Matter	<u>34.2</u>
	100.0

ULTIMATE ANALYSIS - DAF COAL (Wt %)

Carbon	77.26
Hydrogen	5.92
Oxygen	11.14
Nitrogen	1.39
Sulfur	4.29
Other	<u>-</u>
	100.00

HEATING VALUE - AS RECEIVED

Higher Heating Value (HHV) (Btu/lb)	12,235
Net Heating Value (LHV) (Btu/lb)	11,709

TABLE C-2
SITE CONDITIONS

LOCATION	Chicago, Illinois
ELEVATION	600 ft
DESIGN AMBIENT PRESSURE	14.4 psia
DESIGN AMBIENT TEMPERATURES	
Summer Dry Bulb	88°F
Summer Wet Bulb	75°F
Winter Dry Bulb	0°F

TABLE C-3
WATER ANALYSIS

Silica (SiO ₂)	1.8 ppm
Iron (Fe)	0.09
Manganese (Mn)	0
Calcium (Ca)	39
Magnesium (Mg)	10
Sodium (Na)	3.3
Potassium (K)	0.7
Carbonate (CO ₃)	0
Bicarbonate (HCO ₃)	132
Sulfate (SO ₄)	23
Chloride (Cl)	7.2
Fluoride (F)	0.1
Nitrate (NO ₃)	--
Dissolved Solids	168
Hardness as CaCO ₃	
Total	138
Noncarbonate	30
Color	1 unit
pH	7.9
Turbidity	0
Specific Conductance @ 25°C	275 micromhos

Blank Page

ECONOMIC CRITERIA

A consistent set of criteria for estimating capital requirements and cost of services was supplied by EPRI. Criteria for gasification-combined cycle power plants are summarized in Tables C-4 and C-5. These criteria are the same as those used in the main report.¹

Operating labor requirements were determined after the plant design was completed and the associated costs computed in accordance with rates shown in Table C-5. Similarly, initial and annual catalyst and chemical requirements and utilities were estimated after designs were completed and costed at expected unit costs.

Plant investment estimates contain a contingency. The contingency has been divided into two parts. First is a project contingency which is intended to cover additional equipment that would result from a more detailed design of a definitive project at an actual site. The second is a process contingency which is applied to unproven technology in an effort to quantify the uncertainty in the design, performance and cost of the commercial scale equipment. Historically, as a new technology develops from the conceptual stage to commercial reality, a variety of technical problems which were not considered during the early stages of the development emerge. Solution of these problems generally results in an increase in the cost of the technology due to the need for more expensive materials of construction, more complex equipment specifications and sometimes the need for additional processing equipment. A total plant process contingency is arrived at by applying a separate contingency to individual process units based on their state of development and accumulating the results. The process contingency allowances, shown as a percentage of the installed plant costs before any project or other process contingencies have been added, are listed in Table C-6.

1. "Economic Studies of Coal Gasification Combined Cycle Systems for Electric Power Generation," EPRI AF-642, January 1978.

TABLE C-4

CAPITAL INVESTMENT BASIS FOR GASIFICATION -
COMBINED CYCLE PLANTS

<u>ITEM</u>	<u>BASIS</u>
Total Plant Investment	<ul style="list-style-type: none">- Mid-1976 dollars with no escalation.- Chicago, Illinois location.- Clear and level site.
Total Plant Investment Definition	<ul style="list-style-type: none">- The total plant investment is defined as the sum of:<ul style="list-style-type: none">(a) Process (or onsite) plant investment costs.(b) General facilities (or offsites) investment costs.(c) Contingencies. <p>These items are discussed below:</p>
Process Plant Investment	<ul style="list-style-type: none">- Total constructed cost of all onsite processing units including all direct and indirect construction costs. All sales taxes (5% of total materials) are included.
General Facilities	<ul style="list-style-type: none">- The capital cost of the offsite facilities is to be explicitly accounted for. Offsite facilities include roads, buildings, railroad loading and unloading systems, electrical distribution and substations, cooling water systems, inerting systems, effluent water treatment facilities, etc. All sales taxes (5% of total materials) are included.
Project Contingency	<ul style="list-style-type: none">- This contingency factor is intended to cover additional equipment that would

<u>ITEM</u>	<u>BASIS</u>
	<p>result from a more detailed design of a definitive project at an actual site. An allowance of 15% of the sum of the Process Plant Investment and the General Facilities cost is used.</p>
Process Contingency	<ul style="list-style-type: none"> - This contingency factor is to be applied to unproven technology in an effort to quantify the uncertainty in the design, performance and cost of the commercial scale equipment. Process contingency allowances are shown in Table C-8.
Total Capital Requirement	<ul style="list-style-type: none"> - The total capital requirement includes all capital necessary to complete the entire project. These items include: <ul style="list-style-type: none"> (a) Total plant investment. (b) Royalties. (c) Preproduction costs. (d) Construction loan interest. (e) Initial chemical and catalyst charge. (f) Working capital.
Paid-up Royalties	<ul style="list-style-type: none"> - 0.5% of total plant investment.
Preproduction Costs	<ul style="list-style-type: none"> - One month variable operating costs excluding coal. Variable costs are catalysts and chemicals, utilities, and maintenance materials. - Two month's fixed costs excluding income taxes. Fixed costs are operating and maintenance labor, administrative and support labor, general and administrative expense, and property taxes and insurance.

<u>ITEM</u>	<u>BASIS</u>										
	<ul style="list-style-type: none"> - 5% of total plant investment (this charge allows for possible changes in process equipment, and charges associated with depreciation, bond interest, and return on equity during the pre-production period). - 25% of one month's coal at full load. 										
Construction Loan Interest	<ul style="list-style-type: none"> - 0.1249x Total Plant Investment (based on compounded 8%/year interest over the plant construction expenditure schedule). 										
Construction Expenditures	<table> <thead> <tr> <th></th><th style="text-align: right;">Percent of <u>Total Plant Investment</u></th></tr> <tr> <th><u>Year</u></th><th></th></tr> </thead> <tbody> <tr> <td>1</td><td style="text-align: right;">25</td></tr> <tr> <td>2</td><td style="text-align: right;">50</td></tr> <tr> <td>3</td><td style="text-align: right;">25</td></tr> </tbody> </table> <p>Expenditures in a given year are assumed uniform over that year.</p>		Percent of <u>Total Plant Investment</u>	<u>Year</u>		1	25	2	50	3	25
	Percent of <u>Total Plant Investment</u>										
<u>Year</u>											
1	25										
2	50										
3	25										
Working Capital	<ul style="list-style-type: none"> - 1.5 months of total operating costs plus 3.5% of total plant investment (this charge allows for accounts receivable). - One month's supply of chemicals and catalysts at full plant capacity. - One month's supply of coal at full plant capacity. 										
Land	<ul style="list-style-type: none"> - Since land costs are site-specific and variable, they have not been included for this study. 										

TABLE C-5

COST OF SERVICES BASIS FOR GASIFICATION -
COMBINED CYCLE PLANTS

<u>ITEM</u>	<u>BASIS</u>
Operating Load Factor	- 70%
Cost of Coal Delivered	- \$1.00/MMBtu and \$2.00/MMBtu
Chicago City Water	- 40 cents/l,000 gallons
Ash Disposal	- \$1.00/ton
By-Product Ammonia Credit	- \$100/ton
By-Product Sulfur Credit	- None
Maintenance	- Annual maintenance costs are normally estimated as a percentage of the total installed plant cost of the facilities. The percentage varies widely depending on the nature of the processing conditions and the type of design. Maintenance costs shown below were used.

<u>Process Unit</u>	<u>Maintenance % of Total Plant</u>	<u>Investment/Yr</u>
Coal Handling		3.0
Oxidant Feed		2.0
Gasification & Ash		
Handling		4.5
Gas Cooling		3.0
Acid Gas Removal &		
Sulfur Recovery		2.0
Fuel Gas Compression		3.0
Process Condensate		
Treating		3.0
Steam, Condensate &		
BFW		1.5

<u>ITEM</u>	<u>BASIS</u>	<u>Maintenance</u> <u>% of Total Plant</u> <u>Process Unit</u> <u>Investment/Yr</u>
		Support Facilities 1.5
		Combined Cycle 1.5
Maintenance Labor/Materials Ratio	- 40/60	
Operating Labor	- \$11 per manhour (this labor rate corresponds to a direct labor charge of \$8/hour plus a 35% payroll burden).	
Administrative & Support Labor	- 30% of operating and maintenance labor.	
General & Administrative Expense	- 60% of operating and maintenance labor.	
Property Taxes & Insurance	- 2.5%/yr. of plant investment.	
Cost of Capital	- The capital charges (income taxes, interest on debt, return on equity, and depreciation) are computed on a levelized basis with a 10% discount rate. The discount rate is based on the average cost of money. Using this basis, the capital charges will be 15.6% per year of the <u>Total Capital Requirement</u> . The investment factors that form the basis for the 15.6%/yr. capital charge are shown below:	
	Depreciation Straight Line	
	Tax Life 25 years	
	Plant Life 25 years	
	Debt/Equity Ratio 50/50	
	Bond Interest 8% annually	
	Bond Life 25 years	

<u>ITEM</u>	<u>BASIS</u>
Return on Equity	
after Taxes	12% annually
Income Tax Rate	52%
Escalation Rate	Not included
Investment Tax	
Credit	Not included
	The capital charge is based on the Total Capital Requirement with working capital treated the same as depreciable capital.

TABLE C-6

PROCESS CONTINGENCIES

<u>CASE</u>	<u>EXTC</u>	<u>PERCENT</u>
		<u>EATC</u>
Coal Handling	0	0
Oxidant Feed	0	0
Gasification	15	15
Ash Handling	5	5
Gas Cooling	0-15(1)	0-15(1)
Acid Gas Removal	0	0
Sulfur Recovery (Claus)	0	0
Tail Gas Treating	15	15
Process Condensate		
Treatment, Steam,		
Condensate and BFW	0	0
Support Facilities	0	0
Combined Cycle	5	5

(1) 15% applied to the high temperature waste heat boilers with or without superheater, 0% to remaining low temperature gas cooling equipment.

DISCUSSION OF RESULTS

The evaluation presented here should be considered a screening type evaluation. Fluor did not attempt a comprehensive analysis of the Texaco technology, but instead based our designs on the gasifier performance information supplied. Within the budget for this study, it was not feasible to fully optimize the design for each of the units. Outside the gasification and combined cycle system, the design was based on currently available equipment, sometimes with some extensions to large sizes. Occasionally this approach points out the need for the development of a new kind of equipment. With this in mind, the reader should guard against assuming that the comparisons given here are complete or final. Under other circumstances, and at other times, it is possible that the conclusions could change.

In performing such evaluations, especially for relatively new or unfamiliar technology, a tendency exists for plant cost estimates to be somewhat optimistic. This is always a hazard where there is not a full and complete mechanical definition of each item in the plant. In an attempt to offset this tendency, we have applied a "process contingency" as well a project contingency to the plant cost estimates. This is discussed in greater detail in the Economic Criteria. The process contingency is unrelated to estimating accuracy, but instead is intended to reflect the degree to which any specific technology is developed. The accuracy of the plant investment estimates is judged to be ±25%.

In choosing between air blown or oxygen blown gasification for electricity generation, the utility plant owner must consider several factors in addition to economics. Based strictly on the results this work and that reported in EPRI AF-642 (January 1978), the oxygen blown case is slightly more economical than the air blown case. In reality, within the accuracy of these studies, the two types of plants must be considered equivalent on an efficiency or economic basis. If they are in fact equivalent, then an air blown plant could well turn out to be preferable on the basis of eliminating the added operational complexities involved with the oxygen plant and its compression system. From a design standpoint, the air blown gasification system has untapped potential for improvement. As machinery and process development proceeds, such improvement seems inevitable.

The cases presented here are summarized in Tables S-1, S-2 (Summary section), and in Tables D-1, D-2 and D-3 (this section).

For engineering studies of this type, much importance is placed on the thermal efficiency of major processing units such as the coal gasifier. In a highly integrated gasification-combined cycle power plant, however, the only quantity of importance is the overall system efficiency in converting coal to electricity. This efficiency depends not only on the individual component efficiencies, but also how these components are linked together. The following table depicts the overall system efficiency (coal to electricity) for the two Texaco cases:

	Oxygen Blown Texaco System EXTC	Air Blown Texaco System EATC
Overall System Efficiency (Coal to Power)	38.7%	38.1%

The air blown Texaco process requires added development before it is ready for commercialization. The Texaco (oxygen blown) process has been commercially used in the United States for gasification of petroleum residue, and extensive pilot work has been done on coal. A 150 ton/day oxygen blown Texaco coal gasification plant has been built in West Germany and is now in preparation for start-up.

The entrained flow Texaco processes, air or oxygen blown, are not radically different economically from the Lurgi or the slagger.¹ They do, however, have the advantage of simplicity. Because of higher operating temperatures, the Texaco gasification process does not generate hydrocarbon by-products. This simplifies plant design and operations, and may make these plants more adaptable to future environmental regulations. This would be particularly true if stricter criteria were enforced regarding exposure to aromatics, phenolics and/or hydrocarbons. These compounds are destroyed in high temperature, single stage entrained processes.

A brief discussion of salient points related to air blown and oxygen blown Texaco cases follows.

1. "Economic Studies of Coal Gasification Combined Cycle System for Electric Power Generation," EPRI AF-642, January 1978, Cases MACW and MXSC.

TABLE D-1
OVERALL PERFORMANCE SUMMARY

<u>CASE</u>	<u>TEXACO EXTC</u>	<u>TEXACO EATC</u>
<u>OPERATING PARAMETERS</u>		
Coal Type		Illinois #6
Oxidant	Oxygen	Air
Overall Efficiency, %	38.7	38.1
Total Capital Requirements, \$/kW ¹	816	825
Cost of Services Mills/kWh ¹	37.2	37.8
% of Total Power from Gas	62.4	46.4
Turbine		
Lbs Oxygen/Lb m.f. Coal	0.86	1.081
Lbs Air/Lb m.f. Coal ²	-	4.64
Total Lbs Steam/Lb m.f. Coal ³	0.46	0.48
% Coal Carbon Converted to CH ₄	0.16	0.38
<u>HEAT LOSS FLOWS, MM BTU/HR</u>		
Total Stack Gas	1817	1395
Power Surface Condenser	2687	4171
Compressor Surface Condenser	1067	-
Compressor Intercoolers	568	70
Gasifier Effluent Cooling	26	112
Ash Heat (Sensible and HHV)	81	50
Process Condensate Treating	-	-
Acid Gas Removal	78	244

1. Based on \$1.00/MM Btu Coal.
2. Dry Basis
3. Excludes moisture in coal and oxidant streams, but includes moisture in char and coal slurries.

TABLE D-2

SUMMARY OF CAPITAL INVESTMENT ESTIMATES - \$/KW

<u>PLANT INVESTMENT</u>	<u>TEXACO EXTC</u>	<u>TEXACO EATC</u>
Coal Handling	19.07	19.77
Oxidant Feed	101.48	20.84
Gasification and Ash Handling	20.97	52.85
Gas Cooling	57.91	104.69
Acid Gas Removal and Sulfur Recovery	24.71	37.76
Process Condensate Treating	--	--
Fuel Gas Compression	--	--
Steam, Condensate and BFW	0.71	0.77
Support Facilities	47.72	50.34
Combined Cycle	262.94	244.40
Contingency	<u>102.14</u>	<u>112.21</u>
TOTAL PLANT INVESTMENT	637.65	643.63
<u>ILLINOIS SALES TAX</u>	14.40	14.30
<u>CAPITAL CHARGES</u>		
Preproduction Costs	40.06	40.82
Paid-up Royalty	3.19	3.22
Initial Catalyst and Chemical Charges	0.44	1.33
Construction Loan Interest	<u>79.64</u>	<u>80.39</u>
TOTAL CAPITAL CHARGES	123.33	125.56
<u>WORKING CAPITAL</u>	<u>41.15</u>	<u>41.99</u>
TOTAL CAPITAL REQUIREMENTS	816.53	825.48

NOTES: Mid-1976 dollars
Coal Cost - \$1.00/MM Btu

EXTC

This case was intermediate in overall cost of services when compared to the other cases in the main report.¹ A thermal efficiency of approximately 38.7 percent was achieved. This gasification process, despite the presence of some water in the gasifier as slurry water, uses mainly oxygen to achieve gasification. The process is analogous to partial oxidation and as such, it seems a relatively minor extension of Texaco's commercial experience in the partial oxidation of petroleum residue, so that this entrained bed process would be expected to be commercially available at an early date.

The gasifier operates in the 600 psig range. This pressure was selected to reduce to five the number of gasifiers required. This case had the highest requirement for oxygen of any of the oxygen blown cases.²

Although this case produced a gasifier effluent that was partially combusted, the effluent was also much hotter (over 2200°F) than in any of the other cases.³ This sensible heat was almost as useful in the overall plant heat balance as heating value in the product. Thus, with the effective use of both sensible and latent heat, this case had a good overall efficiency. This case had a somewhat higher overall cost of services than the other plants with similar high thermal efficiencies largely because of the capital costs of the large oxidant feed systems and the high temperature heat exchangers in the gasifier effluent cooling system.

EATC

This case was slightly higher in overall cost of service than EXTC, and therefore intermediate in overall cost of service to the other cases in the main report.⁴

1. "Economic Studies of Coal Gasification Combined Cycle System for Electric Power Generation," EPRI AF-642, January, 1978, Table S-2.
2. "Economic Studies of Coal Gasification Combined Cycle System for Electric Power Generation," EPRI AF-642, January, 1978, Table S-1.
3. Ibid.
4. "Economic Studies of Coal Gasification Combined Cycle System for Electric Power Generation," EPRI AF-642, January, 1978, Table S-2.

A thermal efficiency of approximately 38.1 percent was achieved. The air blown case produces a larger fraction of total power from the steam turbine than the oxygen blown case due to the hot nitrogen in the gasifier effluent. All the cycles studied were calculated at high pressure steam conditions of 1450 psig/900°F/1000°F. Since the air blown case generates the most steam, this case could potentially benefit more from higher steam conditions, e.g., 2400 psig/1000°F/1000°F, which would increase the steam cycle efficiency. If the high temperature process steam generators with superheating to 1000°F can be developed, air blown gasification could have a higher efficiency than reported here.

Air blown gasification requires more oxygen per pound of coal than oxygen blown. In fact, for this case, essentially all the oxygen required was supplied by air since almost no feedwater decomposed. As a result of higher oxygen consumption, the air blown gasifier effluent has less heating value, more sensible heat and a higher concentration of carbon dioxide than EXTC gasifier effluent. The lower chemical heat reduced the gas turbine count from seven in EXTC to six for this case, whereas the extra sensible heat increased the steam generated in the process units, thereby increasing the steam generated power. The higher carbon dioxide content reduced the concentration of hydrogen sulfide in the sulfur removal unit effluent, but did not reduce it enough to alter the conceptual design of the sulfur recovery units.

The gasifier conditions were similar for both cases, operating in the 600 psig range with the effluents in the 2300 to 2600°F range. As stated in the process discussion, the required number of air blown gasifiers for this case is not stated in this report, not only because Texaco considers the information proprietary but also because the design is subject to refinements. Further pilot plant air blowing studies are expected to reduce gasifier costs and the estimated gasification heat losses for Case EATC.

The plant investments were similar in both cases, slightly less for oxygen blowing. The capital saved by not having to install an air separation plant was consumed in additional expenditures in gasification, gas cooling and sulfur removal due to the higher flow rates of nitrogen bearing gas. The cost of the gas cooling system for Case EATC is up because of two factors: the gasifier count has increased, and a new high temperature gas to gas heat exchanger has been introduced. This piece of equipment produces superheated steam by heat exchange with gasifier effluent. The design for this equipment is conceptual at

this point. It was judged, for purposes of this study, to be a reasonable extension of heat transfer technology for the mid to late 1980's. It allows efficient use to be made of the large amounts of gasifier effluent heat. The reader is cautioned, however, that Fluor knows of no such actual device in service at this time, and that substantial engineering problems can be foreseen in developing such equipment.

Finally, it is of interest to examine the percentage contribution of each subsection of each plant to the installed plant cost. Such information is shown in Table D-3. These data indicate that the costs of gasification and ash handling contribute between 4 percent and 10 percent to the total installed plant cost. This suggests that the economic incentive for developing new gasifiers is not great (i.e., reducing the cost of the gasification section of these types of systems is not terribly significant). Developing a gasifier, however, that will reduce the need for downstream processing equipment could have major economic significance.

The other important information to be gleaned from Table D-3 is the fact that the combined cycle portion of each plant contributed approximately 50 percent to the total installed plant cost. This suggests very strongly that development work aimed at simplifying the power generating part of the system in order to reduce its cost could have significant impact on the overall system cost. Care must be exercised in any attempts to reduce costs by simplifying the power system as this could lead to a degradation of the thermal efficiency of the system which would probably result in increasing the cost of the system. EPRI is currently funding a number of screening studies -- RP986-2, United Technologies; RP986-3, General Electric; and RP990-3, Westinghouse) -- to investigate techniques for simplifying the power equipment without degrading the overall power output from the plant.

TABLE D-3

PERCENTAGE CONTRIBUTION OF PLANT SUBSECTIONS
TO INSTALLED PLANT COSTS

<u>PLANT INVESTMENT</u>	<u>PERCENT</u>	<u>TEXACO EXTC</u>	<u>TEXACO EATC</u>
Coal Handling	3.56	3.72	
Oxidant Feed	18.95	3.92	
Gasification and Ash Handling	3.92	9.94	
Gas Cooling	10.81	19.71	
Acid Gas Removal and Sulfur Recovery	4.61	7.10	
Waste Water Treating	--	--	
Steam, Condensate and BFW	0.14	0.15	
Support Facilities	8.91	9.47	
Combined Cycle	<u>49.10</u>	<u>45.99</u>	
<u>INSTALLED PLANT COST</u>	100.00	100.00	

NOTE: Installed Plant Costs do not include contingencies
Mid-1976 Dollars

PLANT DESCRIPTION - CASE EATC

GENERAL

A grass roots plant for electric power generation based on single stage, entrained bed, air blown gasifiers of the Texaco type, integrated with combined cycle generating equipment, is shown schematically on the block flow diagram EATC-1-1. This plant consumes 10,000 ST/day of Illinois No. 6 coal. Coal is fed to the gasifiers as a water slurry containing approximately 65.7 wt. % dry coal. This case is identified as Case EATC.

The main plant consists of oxidant feed, gasification, gas cooling, acid gas removal units and combined cycle power systems. The oxidant feed unit is in three parallel operating trains. The gas cooling and acid gas removal units are in four operating parallel trains. There are six parallel gas turbine, heat recovery steam generator sets and three steam turbines (includes two small turbines which generate one percent of total power).

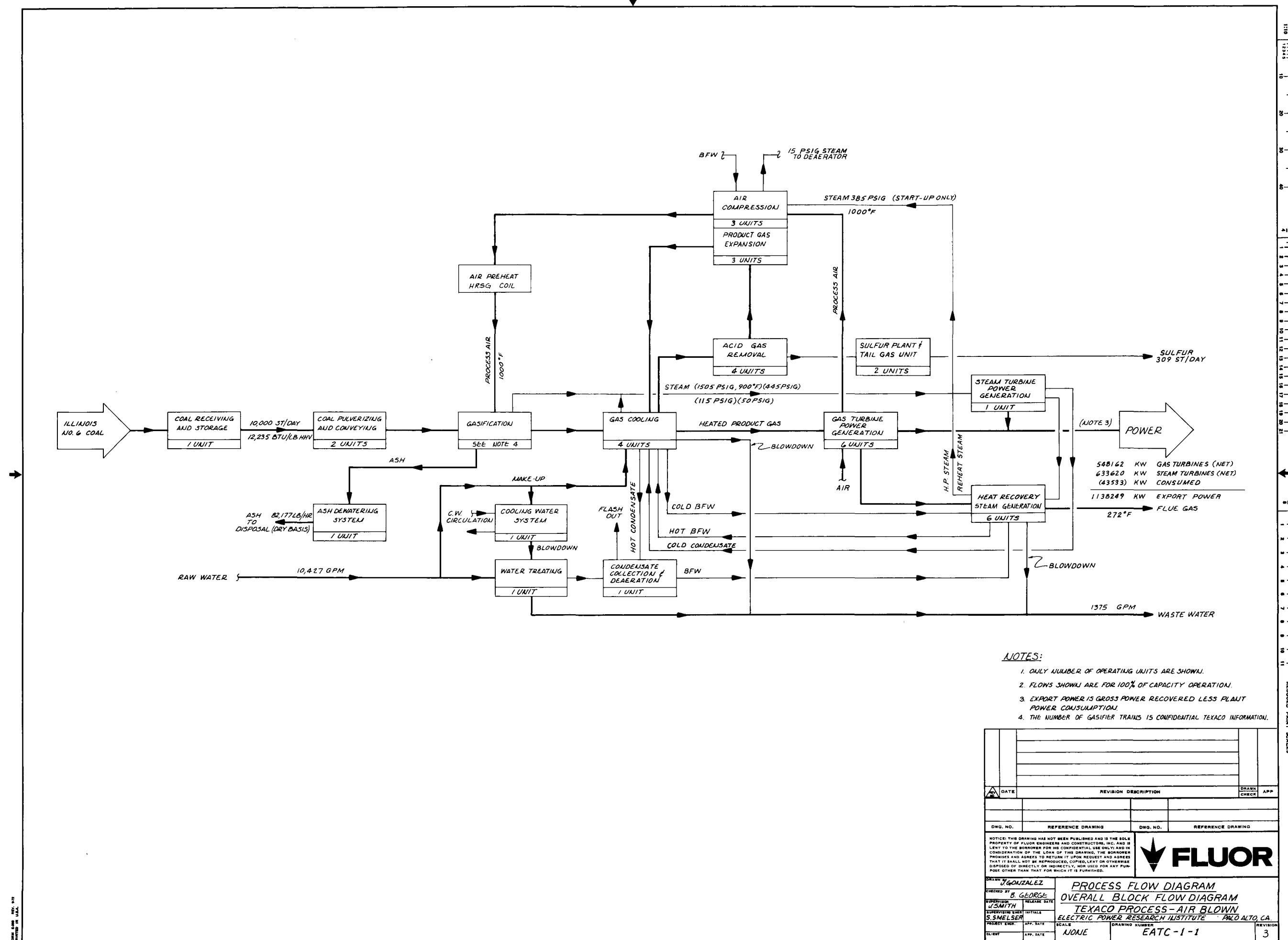

In addition to the main processing trains, the plant includes necessary offsite, utility and environmental facilities. Coal receiving, storage and conveying is done in a single train to minimize space and operating labor requirements. Hydrogen sulfide removed from gasified coal is processed through sulfur recovery facilities which produce elemental sulfur. Other operating facilities in the plant are raw water treating, steam generation, cooling water, and effluent water treating. Process condensate generated in Case EATC is recycled back to the gasification unit as in Case EXTC. Support facilities to sustain an independent plant operation are provided as well. Table EATC-1 summarizes major equipment sections in the plant. This table shows the number of operating and spare sections.

TABLE EATC-1
MAJOR EQUIPMENT SECTIONS: CASES EATC AND EXTC

No.	Unit Name	Case EXTC		Case EATC	
		Operating	Spare	Operating	Spare
10	Coal Handling	1	0	1	0
11	Oxidant Feed	5	0	3	0
20	Coal Grinding	2	0	2	0
20	Slurry Preparation	1	0	1	0
20	Gasification	5	1	*	0
20	Ash Handling	1	0	1	0
20	Particulate Scrubbing	5	1	*	0
21	Gas Cooling	3	0	4	0
22	Acid Gas Removal	3	0	4	0
23	Sulfur Recovery	2	1	2	1
24	Tail Gas Treating	2	1	2	1
30	Steam, BFW and Condensate System				
	. Condensate Collection and Degaeration	1	0	1	0
	. Water Treating	1	0	1	0
32	Cooling Water System	1	0	1	0
40	Effluent Water Treating	1	0	1	0
50	Gas Turbine/Generator	7	0	6	0
51	Heat Recovery Steam Generator	7	0	6	0
51	Steam Turbine Generator	1	0	3**	0

*The number of gasifiers required is confidential Texaco information and subject to refinement.

**Includes two separate low pressure steam turbine-generators, which contribute 1% of total power.

Blank Page

COAL PREPARATION

Process Flow Diagram EATC-10-1 depicts the process arrangement of coal preparation equipment in this section for Case EATC. There is one train of coal unloading, stacking, reclaiming and conveying equipment. The equipment in the grinding circuit is arranged in two parallel trains, each capable of processing 300 TPH. The coal slurry preparation is on a one 100%-train basis.

Washed, 1-1/2" x 0 coal is received at the plant site by unit train. The coal is unloaded from 100-ton bottom dump cars into an unloading hopper, withdrawn from the hopper by two vibrating feeders and transported by belt conveyors to a tripper. The tripper distributes coal to a traveling belt stacking system. The stacker travels on tracks and forms storage piles on either side. The unloading and stacking system is designed to handle a three day supply in eight hours.

Coal is reclaimed from storage piles by a bridge type bucket wheel reclaimer rated at 500 tons per hour. This machine is a rail mounted bridge which supports a rotating bucket wheel and belt conveyor. The wheel moves across the face of the pile, making a vertical cut across the many layers of coal. At the end of each cut, the reclaimer moves ahead a predetermined distance and the wheel makes another cut in the opposite direction. The excavated coal is carried by a series of conveyors to the crushed coal storage silos.

Coal is withdrawn from the coal storage silo by two vibrating feeders and transported by a belt conveyor to coal grinding and slurry preparation unit. The coal grinding and slurry preparation area is proprietary to the Texaco process.

Equipment Notes

All the equipment is commercially available.

Blank Page

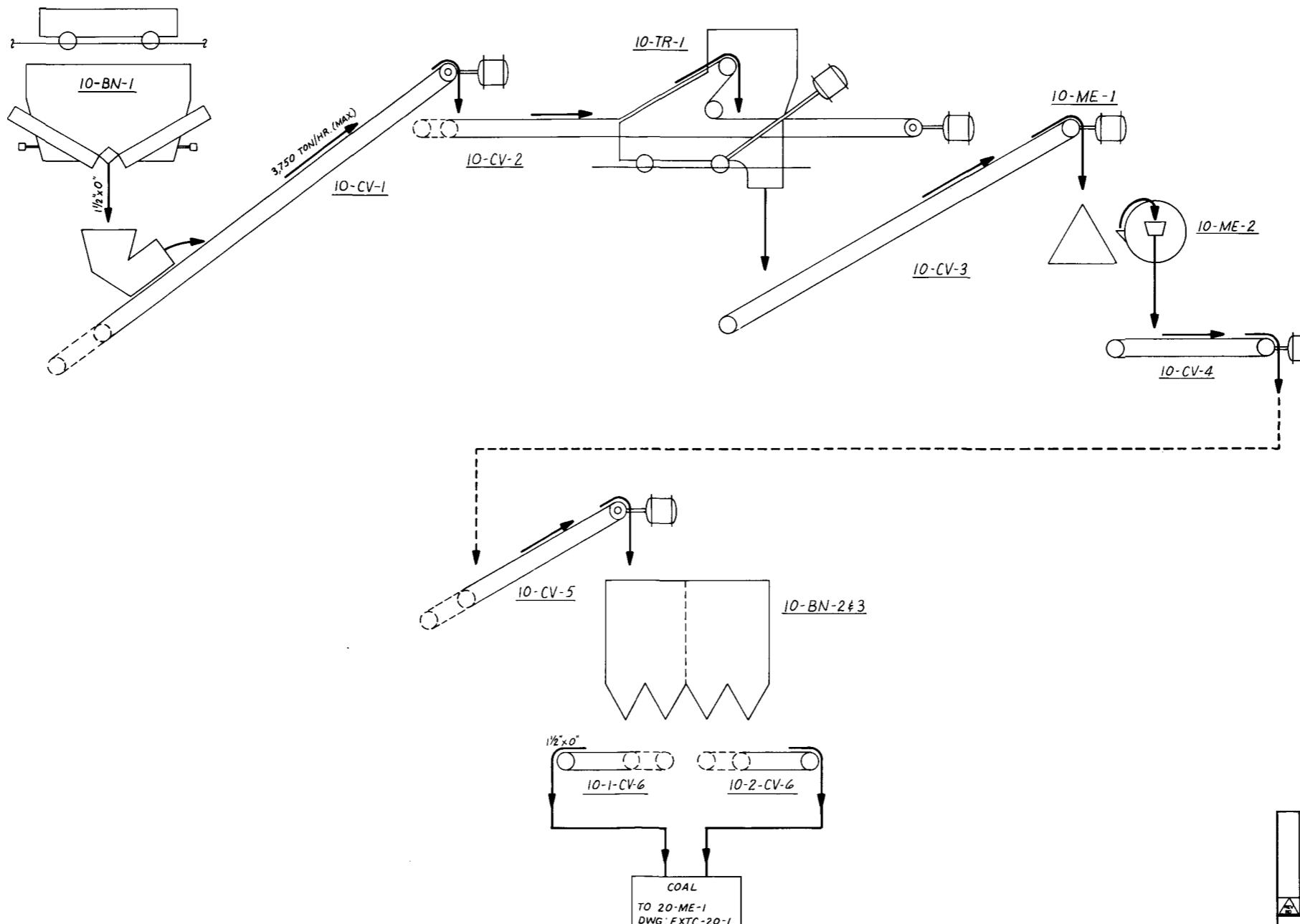
10-BN-1
UNLOADING HOPPER
CAP: 300 TON

10-CV-5
BELT CONVEYOR

10-CV-1
BELT CONVEYOR
10-CV-6
BELT CONVEYORS

10-CV-2
BELT CONVEYOR

10-TR-1
TRIPPER


10-CV-3
BELT CONVEYOR

10-ME-1
DOUBLE BOOM
STACKER

10-ME-2
BUCKET WHEEL
RECLAIMER

10-BN-2 & 3
CRUSHED COAL STORAGE SILOS
CAP: 400 TON

10-CV-4
BELT CONVEYOR

NOTE

ALL FLOW RATES, TEMPERATURES, PRESSURES
AND EQUIPMENT RATES ARE EXPECTED VALUES
ON A ONE 100% TRAIN BASIS.

DRAWN BY	DATE	REFERENCE DRAWING		DRAWN CHECK	APP
		DWG. NO.	REFERENCE DRAWING		
NOTICE: THIS DRAWING HAS NOT BEEN PUBLISHED AND IS THE SOLE PROPERTY OF FLUOR ENGINEERS AND CONTRACTORS, INC. IT IS LENT TO THE BORROWER FOR HIS CONFIDENTIAL USE ONLY; AND IN CONSIDERATION OF THE LOAN OF THIS DRAWING, THE BORROWER AGREES THAT HE WILL NOT REPRODUCE, COPIED, LENT OR OTHERWISE DISPOSED OF DIRECTLY OR INDIRECTLY, NOR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT IS FURNISHED.					
DRAWN BY: G. KASSASEYA CHECKED BY: R. SIEBERT SUPERVISOR: J. SMITH EQUIPMENT ENGINEER: S. SMELSER PROJECT ENGINEER: EPRI CLIENT: TEXACO PROCESS-AIR BLOWN RELEASE DATE: 10-1-75 INITIALS: EPRI DRAWING NUMBER: EATC-10-1 REVISION: 2 Palo Alto, California					

Blank Page

GASIFICATION AND ASH HANDLING

Process Flow Diagram EATC-20-1 shows the gasification step for Case EATC. The required number of gasifiers for this case is not stated in this report because Texaco considers the information proprietary and subject to refinement (see Process Discussion). The ash handling system consists of one 100% capacity train. The boxes on EATC-20-1 represent proprietary sections of the Texaco Coal Gasification Process. Each of these sections contains many units of equipment.

The Texaco gasifier is a vertical cylindrical vessel with a carbon steel shell. The reaction section of the gasifier, the effluent gas line and the slag separator are refractory lined.

Coal slurry and air combine at the gasifier burners. Each burner is oriented downward from the top head of the gasifier. The burners have circulating, tempered water cooling coils.

The gasification section, 20-1-R-1, operates at an average pressure of 600 psig and temperatures in the range of 2300°F to 2600°F. Part of the coal burns with air to produce a hot flue gas. This reaction provides heat for the endothermic steam/carbon and carbon/CO₂ reactions. The coal's hydrogen and carbon react to form CO, CO₂, H₂ and a small amount of CH₄. Most of the sulfur is converted to H₂S and COS. Nitrogen in the coal transforms to free nitrogen and a small quantity of ammonia. The ash melts to form slag. The gasification temperature must be sufficiently above the ash flow point to ensure free flowing molten slag. At the high temperatures prevailing in the gasifier, some of the ammonia in the recycled water is destroyed.

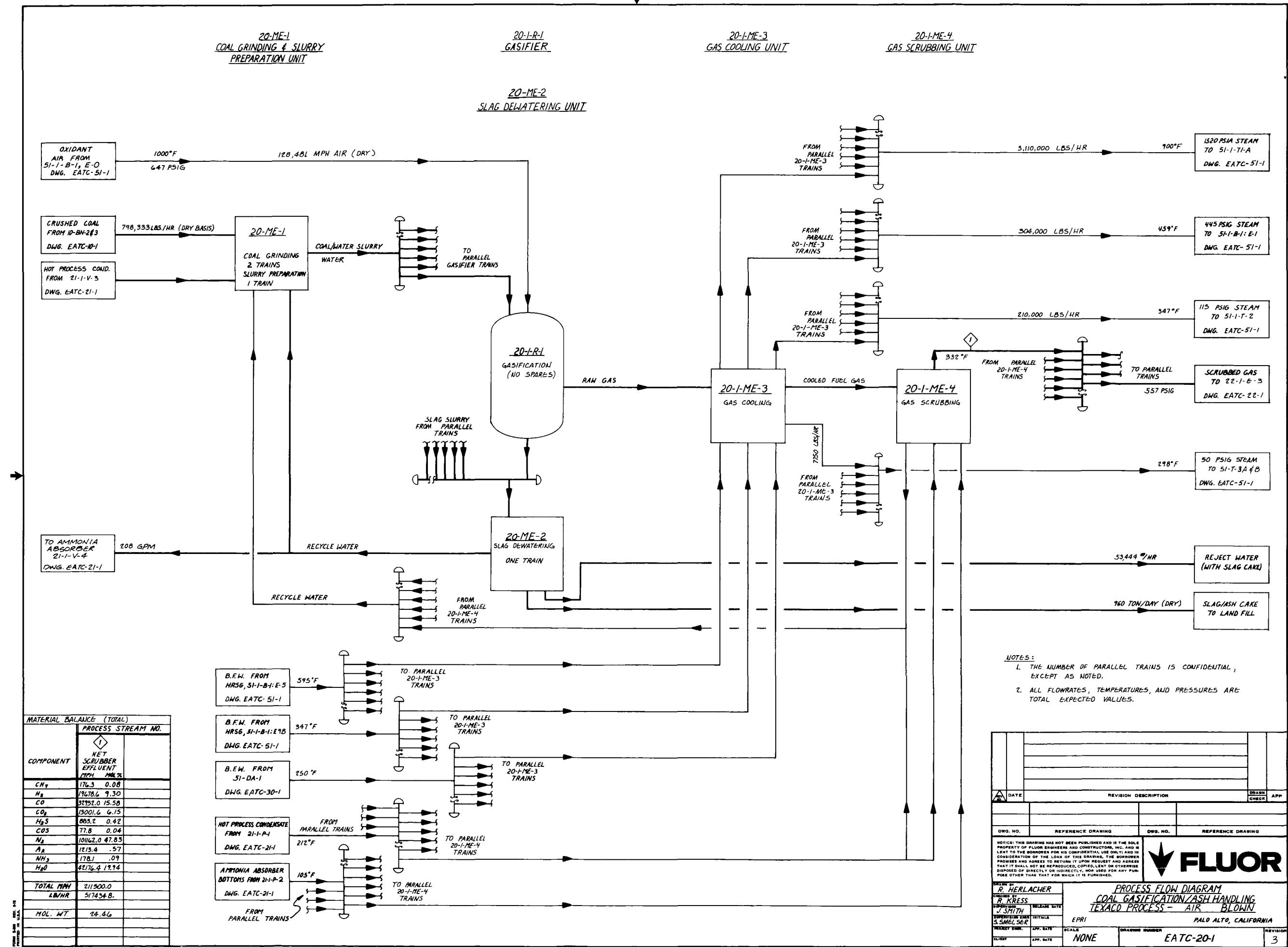
Most of the ash in the form of slag falls into a water quench at the bottom of the gasifier. The resultant ash slurry leaves the gasifier and enters the slag dewatering unit. A slag/ash cake from dewatering unit 20-ME-2 is disposed to landfill. Overflow from the slag dewatering unit is recycled to the coal grinding system.

Raw hot gas from the gasifier is cooled in a gas cooling unit, 20-1-ME-3, to a temperature well below the ash softening point. This gas cooling system is of proprietary design and allows for the removal of ash entrained in the crude gas for the protection of downstream heat exchange equipment. High pressure (HP)

steam at 1520 psia, saturated intermediate pressure (IP) steam at 445 psig, saturated medium pressure (MP) steam at 115 and low pressure (LP) 50 psig, are produced in Unit 20-1-ME-3. Hot boiler feedwater near HP steam saturation temperature (598°F) and feedwater at 347°F are supplied from steam generation (HRSG) units located in Unit 51. Boiler feedwater is also supplied from deaerator 51-DA-1 located in Unit 51 for LP steam production.

The raw gas leaves 20-1-ME-3 and flows to the gas scrubbing unit, 20-1-ME-4. Ammonia absorber bottoms from the gas cooling area (Flow Diagram: EATC-21-1) and hot process condensate are used for gas scrubbing. Water from 20-1-ME-4 is recycled to 20-ME-1. The clean gases from 20-1-ME-4 flow to the gas cooling section. In subsequent sections of this report dealing with economics, the reader's attention is called to the fact that the cost of equipment included in 20-1-ME-3 and 4 is included in the gas cooling system costs.

Equipment Notes


The Texaco gasifier is commercially proven for the gasification of liquid hydrocarbons. Coal gasification is still in the pilot plant stage.

The Texaco coal gasification research facility at Montebello, California, is presently testing coals and chars in a 350 psia 15 ton/day gasifier. A 150 ton/day oxygen blown Texaco coal gasifier is scheduled to start up in Germany early in 1978. It is important to note, however, that the bulk of the pilot plant data refer to operation with oxygen blowing. Very little air blown gasification data exists for the Texaco unit.

The slag dewatering unit is commercially proven.

The gas scrubbing unit equipment is commercially available.

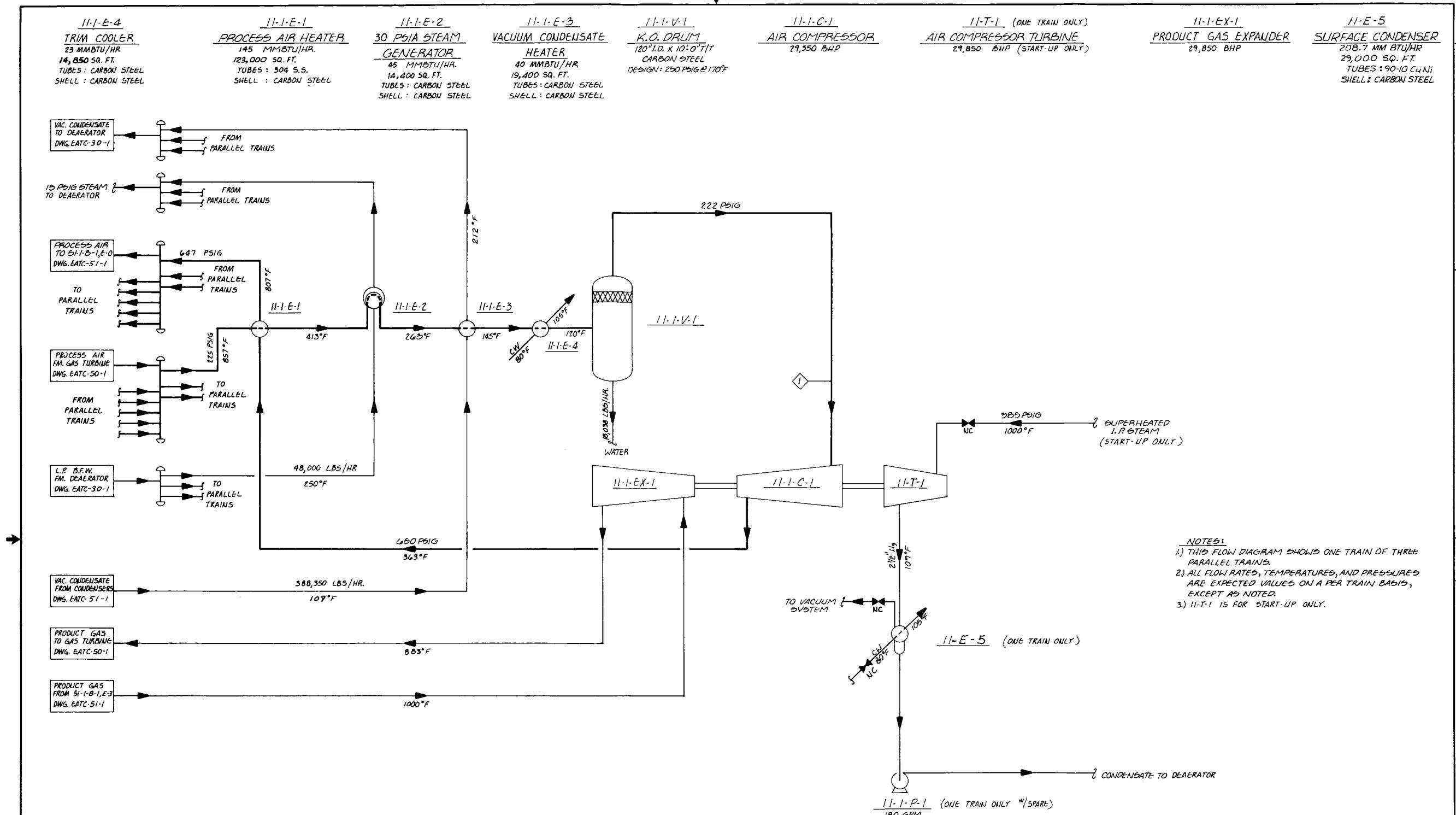
Two key features of this design are a pair of high temperature heat exchangers coupled to each gasifier effluent line. The first is a waste heat boiler for generating 1500 psi saturated steam. This is not an off-the-shelf item; however, successful designs for such units have been developed by Steinmuller and by Siegener, both firms of West Germany. Some of these units have seen extended service. The second exchanger is a superheater for the 1500 psi steam. This unit, so far as Fluor can determine, is entirely conceptual at this point. While we believe the design used for cost estimating is realistic, no examples of such a unit currently exist.

Blank Page

OXIDANT FEED

Process Flow Diagram EATC-11-1 shows the oxidant feed system for Case EATC. There are three parallel operating trains. Each train has one booster air compressor and associated heat exchangers. No spare train is provided in this section.

Process air in Case EATC is extracted from the gas turbines at 857° and 225 psig. The air is cooled to 120° and compressed to 650 psig in the booster compressor, 11-1-C-1. Heat in the extracted air is recovered by heating air leaving the booster compressor exchanger (11-1-E-1). The remaining cooling generates LP steam (11-1-E-2), and heats condensate (11-1-E-3). Some extraction air heat is rejected to cooling water (11-1-E-4).


Finally, the process air leaving exchanger 11-1-E-1 is heated to 1000°F in the HRSG.

The 29,550 hp required by each air booster compressor is supplied by a fuel gas expander, 11-1-EX-1. One train is provided with a steam turbine driver (11-T-1) for start-up. The steam turbine driver is a condensing type machine operating at inlet conditions of 385 psig, 1000°F, with exhaust pressure at 2-1/2" Hg abs. This steam turbine provides added capacity for operation during turndown or upset conditions. Each of the three operating fuel gas expanders are driven by fuel gas which has been preheated to 1000°F in the heat recovery steam generators (HRSGs) located in Unit 51. The fuel gas is expanded from 497 psig, 1000°F to approximately 280 psig, 822°F and flows to the gas turbines.

Equipment Notes

The compressors are commercially available. The turbines with 1000°F inlet temperatures represent an extension of the present state of the art for turbines. However, no problem is expected in obtaining these turbines in the next few years.

Blank Page

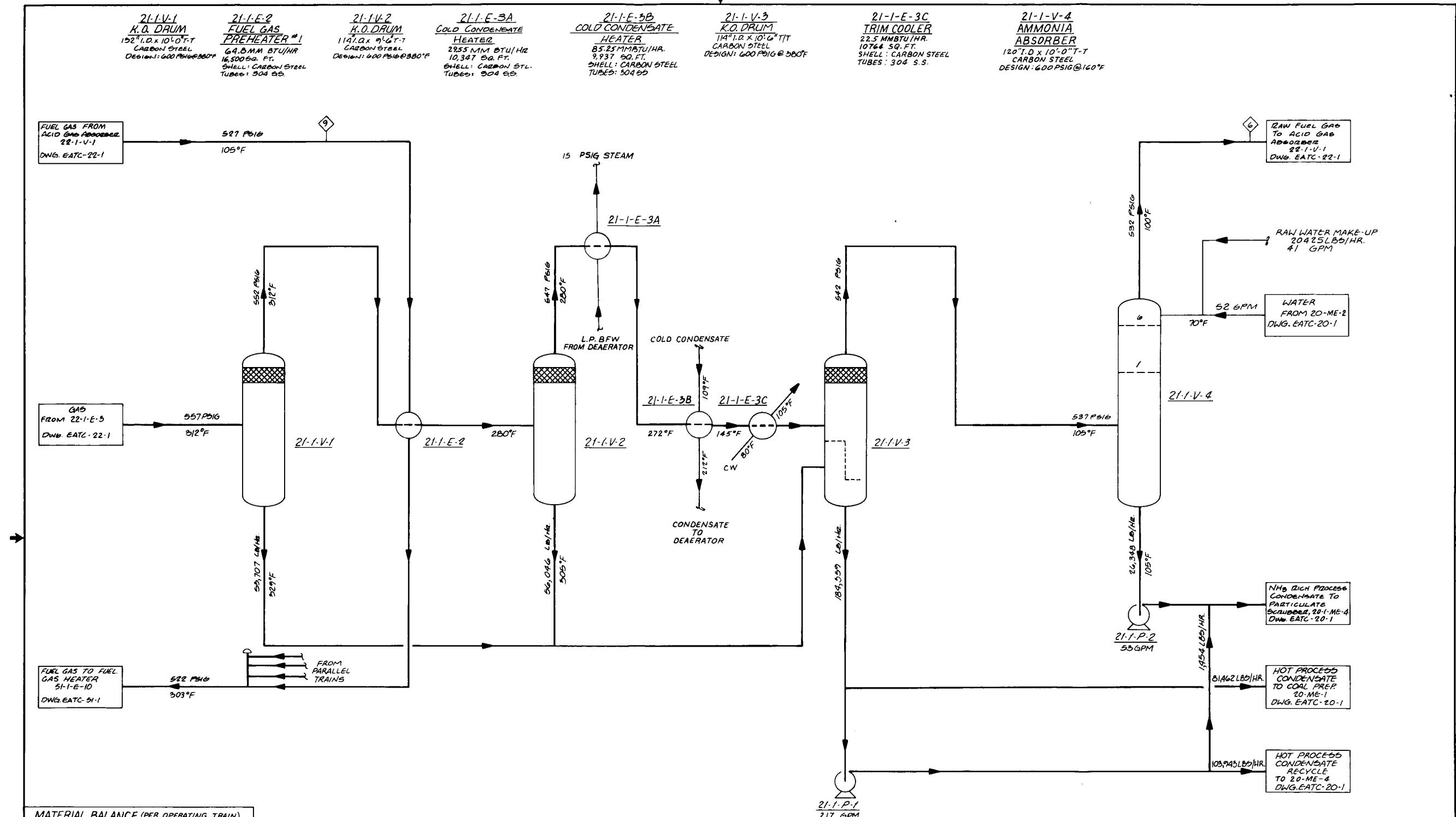
<input checked="" type="checkbox"/>	DATE	REVISION DESCRIPTION		DRAWN CHECK	
DWG. NO.		REFERENCE DRAWING	DWG. NO.	REFERENCE DRAWING	
<p>NOTICE: THIS DRAWING HAS NOT BEEN PUBLISHED AND IS THE SOLE PROPERTY OF FLUOR ENGINEERS AND CONSTRUCTORS, INC. AND IS LENT TO THE BORROWER FOR HIS CONFIDENTIAL USE ONLY; AND IN CONSIDERATION OF THE LOAN OF THIS DRAWING, THE BORROWER AGREES TO RETURN THE DRAWING TO FLUOR ENGINEERS AND CONSTRUCTORS, INC. AT THE END OF THE TERM OF THIS LOAN; THAT IT SHALL NOT BE REPRODUCED, COPIED, LENT OR OTHERWISE DISPOSED OF DIRECTLY OR INDIRECTLY, NOR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT IS FURNISHED.</p>					
DRAWN BY <u>B. GEORGE</u>		PROCESS FLOW DIAGRAM			
CHECKED BY <u>A. KRESS</u>		OXIDANT FEED SYSTEM			
SUPERVISOR <u>J. SMITH</u>	RELEASE DATE <u>SMELSER</u>	TEXACO PROCESS AIR BLOWN			
SUPERVISORY ENGR <u>SMELSER</u>	INITIALS <u>SMELSER</u>	PALO ALTO, CALIF.			
PROJECT ENGR <u>EPRI</u>	APP. DATE <u>10/10/85</u>	DRAWING NUMBER <u>NONE</u>		REVISION <u>1</u>	
CLIENT <u>EATC</u>	APP. DATE <u>10/10/85</u>	EATC-11-1			

Blank Page

GAS COOLING

Case EATC

Process Flow Diagram EATC-21-1 shows one of the four parallel trains in the gas cooling section. No spare train is provided.


Clean gasifier effluent from the particulate scrubbing section, after passing through the Selexol reboiler, is cooled to approximately 105°F in a series of exchangers, 21-1-E-2 and 21-1-E-3 A, B and C. The effluent from the Selexol reboiler, after separation of condensate in the knockout drum 21-1-V-1, is then cooled by exchanging heat against fuel gas from the acid gas removal section. The condensate produced in cooling is separated in 21-1-V-2. Further gas cooling is obtained in exchanger 21-1-E-3 by making 30 psia steam and heating vacuum condensate; then the gas is trim cooled with water. The resultant condensate is separated in knockout drum 21-1-V-3. Condensate from knockout drums, 21-1-V-1 and 21-1-V-2 flows to 21-1-V-3. Hot condensate from 21-1-V-3 is then pumped to the gasification unit (Flow Diagram: EATC-20-1).

The overhead gases from knockout drum 21-1-V-3 flow to an ammonia absorber, 21-1-V-4. Ammonia is removed by contacting the gas countercurrently with the water on the trays. The ammonia-free overhead gases from the absorber then flow to the acid gas removal unit for H₂S removal. The ammonia-rich process condensate from the bottom of the absorber is pumped to the particulate scrubber unit, 20-1-ME-4.

Equipment Notes

All equipment is commercially available.

Blank Page

COMPONENT	PROCESS STREAM NUMBER		
	5	6	9
PARTICULATE SCRUBBER OUT MPH	AMMONIA MPH	FUEL GAS MPH	
CO ₂ MOL%	CO ₂ MOL%	CO ₂ MOL%	
CH ₄	44.1 0.08	44.1 0.10	43.4 0.08
H ₂	4919.7 9.30	4919.7 11.61	4904.2 11.8
CO	8238.0 15.58	8238.0 19.45	8181.7 19.7
CO ₂	3250.4 6.15	3250.4 7.61	2684.0 6.6
H ₂ S	220.8 0.42	220.8 0.52	8.2 0.0
COS	19.5 0.04	19.5 0.05	11.9 0.0
N ₂	25290.5 47.83	25290.5 59.71	25176.5 56.0
AR	303.4 0.57	303.4 0.72	302.0 0.7
LN ₂	44.5 0.08	0.4 0	0.1 0
H ₂ O VAPOR	10566.1 19.94	71.2 0.17	41.5 0.1
TOTAL VAPOR MPH	52,875.0	42,358.0	41,535.5
H ₂ O LIQ	0		
TOTAL LB/HR	1,293,587.0	1,115,017.0	1,076,987
MOL WT VAPOR	24.46	26.32	26.04

NOTES:

NOTE:
1. THIS FLOW DIAGRAM SHOWS ONE TRAIN OF A TOTAL OF FOUR PARALLEL TRAINS.
2. ALL FLOW RATES, TEMPERATURES, PRESSURES ARE EXPECTED VALUES ON A PER TRAIN BASIS AT FULL CAPACITY OPERATION, EXCEPT AS NOTED.

DWG. NO.	REFERENCE DRAWING	DWG. NO.	REFERENCE DRAWING
<p>NOTICE: THIS DRAWING HAS NOT BEEN PUBLISHED AND IS THE SOLE PROPERTY OF FLUOR ENGINEERS AND CONTRACTORS, INC. AND IS LENT TO THE BORROWER FOR HIS CONFIDENTIAL USE ONLY; AND IN CONSIDERATION OF THE LOAN OF THIS DRAWING, THE BORROWER AGREES THAT HE WILL NOT REPRODUCE, COPIED, LEASE OR OTHERWISE DISPOSED OF DIRECTLY OR INDIRECTLY, NOR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT WAS FURNISHED.</p>			
DRAWN BY <u>B. GEORGE</u>	RELEASE DATE <u>10/20/00</u>	FLUOR PROCESS FLOW DIAGRAMS GAS COOLING <u>TEXACO PROCESS-AIR BLOWN</u> <u>PALO ALTO, CALIFORNIA</u>	
CHECKED BY <u>B. KRESS</u>	INITIALS <u>J. SMITH</u>	EPRI	
SUPERVISOR <u>J. SMITH</u>	INITIALS <u>SCHLSEER</u>	PACIFIC EARTH APP. DATE <u>NONE</u>	
SUPERVISOR SIGN <u>SCHLSEER</u>		SCALE <u>1:100</u>	DRAWING NUMBER <u>EATC-21-1</u>
CLIENT <u>TEXACO</u>	APP. DATE <u>10/20/00</u>	REVISI <u>3</u>	

PROCESS FLOW DIAGRAMS

PROCESS FLOW DIAGRAM

WATER COOLING

GAS COOLING
TEXACO PROCESS-AIR BLOWN
PALO ALTO, CALIF.

DRAWING NUMBER **FA16-21-1**

Blank Page

ACID GAS REMOVAL

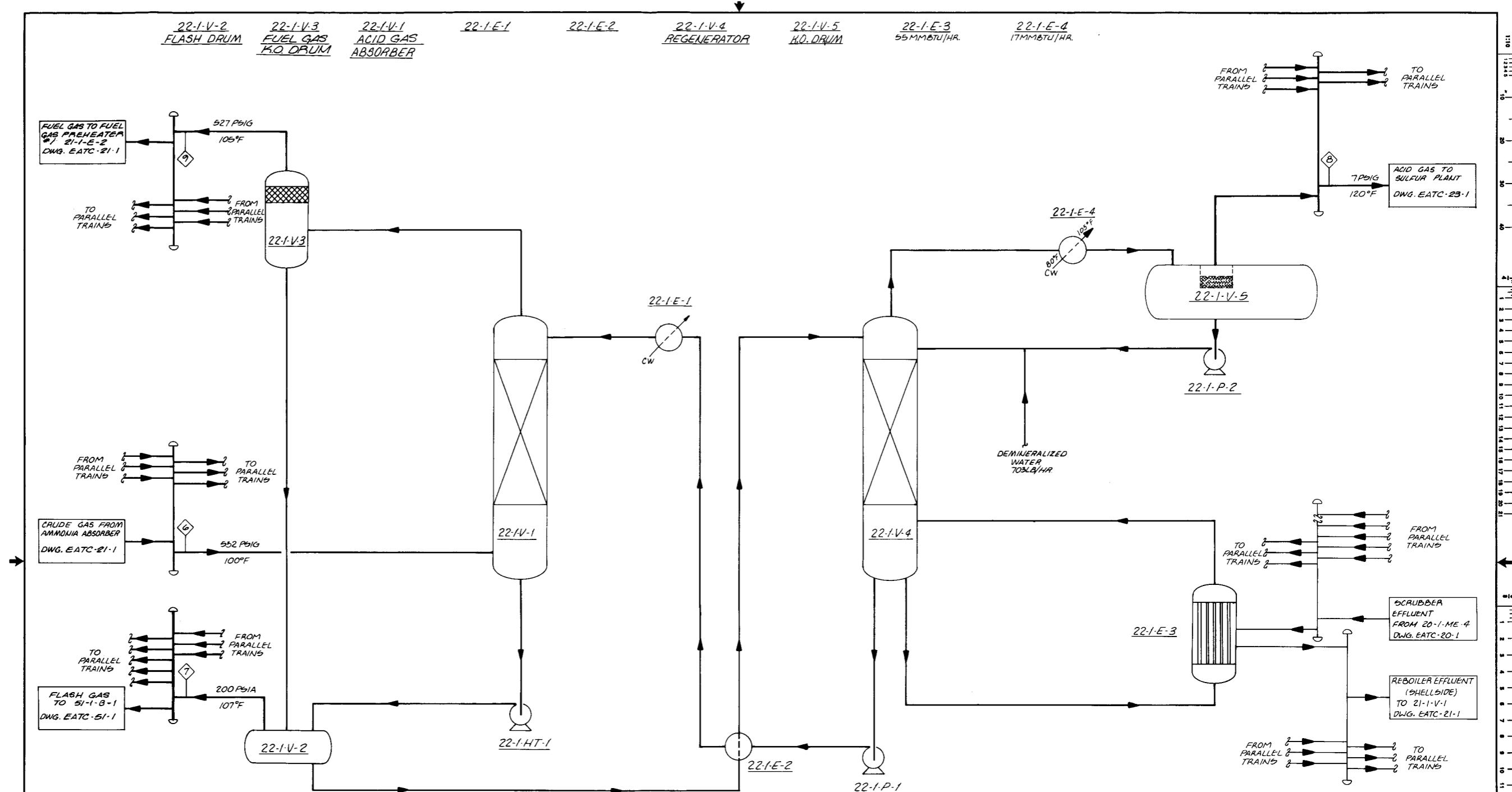
Case EATC

Process Flow Diagram EATC-22-1 depicts one of the four parallel acid gas removal trains. No spare train is provided.

The acid gas removal system employs Allied Chemical Corporation's Selexol® process for selective removal of hydrogen sulfide (H₂S). Hydrogen sulfide in the crude gas is absorbed in Selexol® solvent in order to reduce sulfur in the treated gas to 1.0 pound sulfur dioxide (SO₂) equivalent per million Btu (HHV) coal charged to the plant.

The cooled ammonia-free gas flows through an acid gas absorber, 22-1-V-1, where it contacts Selexol® solvent countercurrently in a packed tower. The treated gas from the top of the absorber flows through a knockout drum, 22-1-V-3, and, after heat exchange with gasifier effluent in the upstream unit, to heat recovery steam generators (HRSG) located in Unit 51 for further heating.

The rich solvent from the bottom of the absorber is let down through a hydraulic turbine, 22-1-HT-1, which supplies a portion of the power required by the lean solution pump, 22-1-P-1. It then flows to flash drum 22-1-V-2 where most of the dissolved hydrocarbon gases in the solvent flash off. Approximately 96% of the dissolved H₂S and most of the dissolved COS are retained in the solvent because of their selective absorption in the Selexol® solvent.


The rich solvent solution from the flash drum exchanges heat with hot regenerated solution in 22-1-E-2 and flows to the top of the regenerator, 22-1-V-4. In the regenerator the absorbed H₂S and CO₂ are stripped from the solution. Reboil heat is supplied by process gas from the particulate scrubbing section in a vertical thermosyphon reboiler, 22-1-E-3. Hot regenerated solvent is pumped back to Absorber 22-1-V-1 through exchangers 22-1-E-2 and 22-1-E-1. Heat is first exchanged with rich solution in 22-1-E-2 in order to reduce reboiler duty. The lean solution is cooled down to operating temperature with cooling water in exchanger 22-1-E-1.

Acid gas from the regenerator overhead is cooled to 120°F in cooler 22-1-E-4. The condensate produced in cooling is separated in the knockout drum, 22-1-V-5,

and then pumped back to the regenerator through 22-1-P-2. A small stream of demineralized water is added to the condensate at the discharge of 22-1-P-2 to maintain the water balance in the absorption system. The cooled acid gas from 22-1-V-5 contains about 23.8% H₂S on a volume basis and flows to the sulfur recovery unit for further processing.

Equipment Notes

The majority of equipment in this section is all carbon steel. The equipment has been used in very similar service for a number of years.

		MATERIAL BALANCE					
		PROCESS STREAM NUMBER					
COMPONENT		6	7	8	9		
		CRUDE GAS	FLASH GAS	ACID GAS	FUEL GAS	MPH	MOLE %
CH ₄		44.1	0.10	0.5	.17	4.0	0.05
H ₂		4,919.7	11.61	11.9	7.47	3.0	0.41
CO		8,288.0	19.45	54.1	21.45	22.2	2.51
CO ₂		5,290.4	7.67	79.4	18.45	55.0	60.75
H ₂ S		220.8	0.52	1.9	1.20	210.7	23.85
COS		19.5	0.05	.5	0.13	7.5	.82
H ₂ O		26,290.5	59.71	80.0	5024	34.0	3.84
Ar		505.4	0.72	1.0	0.60	0.4	0.05
NH ₃		0.4	0.00	0.0	0.00	.5	0.05
H ₂ O		71.2	0.17	.5	0.31	68.2	7.71
TOTAL MPH		42,558.0	159.5	.884.1	41,553.5		
TOTAL MOLE %		1,115,017	4,650	34,095	1,076,987		
MOLE WT		26.52	29.16	38.56	26.04		

VOTEES

NOTES:
1. THIS FLOW DIAGRAM SHOWS ONE TRAIN OF A TOTAL OF FOUR PARALLEL TRAINS.

2. ALL FLOW RATES, TEMPERATURES, PRESSURES, AND EQUIPMENT RATES ARE EXPECTED VALUES ON A PER TRAIN BASIS AT FULL CAPACITY, OPERATIONAL, EXCEPT NOTATED.

3 DESIGN INCLUDES: SOLVENT STORAGE TANK 22-TK-1 7800 BBL
SUMP PUMP 22-P-3A #B 35 GPM
SOLVENT TRANSFER PUMP 22-P-4 135 GPM

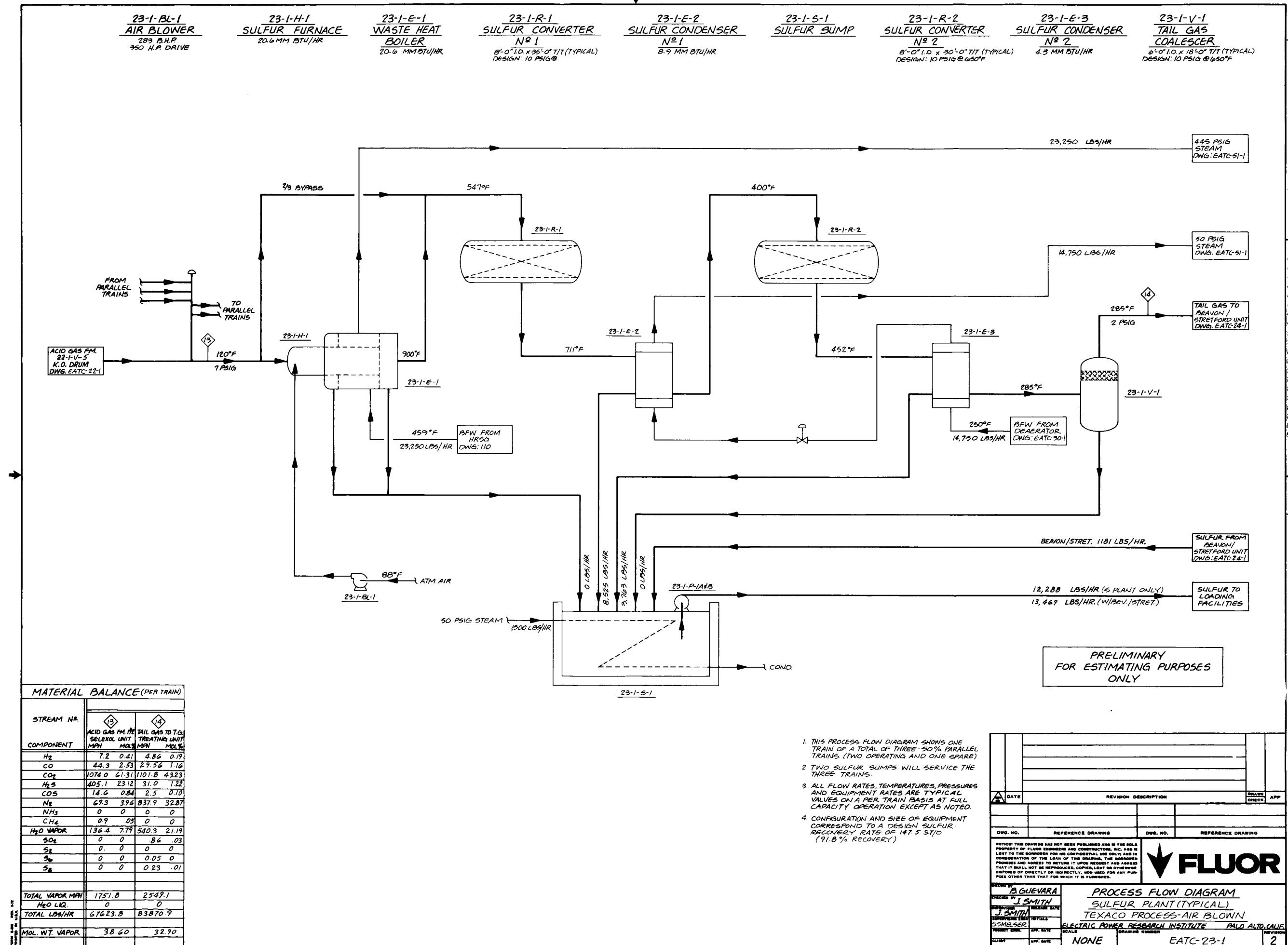
△	10/14/77	ADD NOTE 3		8/25 ECS	
△	10/14/77	MASS BALANCE AND DUTIES		8/25 ECS	
△	10/14/77	REBOILER CHANGED		8/25 ECS	
DATE		REVISION DESCRIPTION	DRAWN	APP	
			CHECK		
Dwg. No.		REFERENCE DRAWING	Dwg. No.		REFERENCE DRAWING
<p>NOTICE: THIS DRAWING HAS NOT BEEN PUBLISHED AND IS THE SOLE PROPERTY OF FLUOR ENGINEERS AND CONTRACTORS, INC. AND IS LENT TO THE BORROWER FOR THE BORROWER'S OWN USE. IN CONSIDERATION OF THE LOAN OF THIS DRAWING, THE BORROWER PROMISES AND AGREES TO RETURN IT UPON REQUEST AND AGREES THAT IT WILL NOT BE COPIED, REPRODUCED, OR OTHERWISE DISPOSED OF DIRECTLY OR INDIRECTLY, NOR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT IS FURNISHED.</p>					FLUOR 1-555-343-8148
DRAWN BY B. GEORGE		PROCESS FLOW DIAGRAM			REVISION 3
CHECKED BY A. SIEBERT		ACID GAS REMOVAL SYSTEM			
SUPERVISOR SIGN J. SMITH		TEXACO PROCESS AIR BLOWN			
SUPERVISOR SIGN SUELSEL		PALO ALTO, CALIFORNIA			
PROJECT CODE	APP. DATE	SCALE	DRAWING NUMBER		
CLIENT	APP. DATE	NONE	EATC-22-1	3	

Blank Page

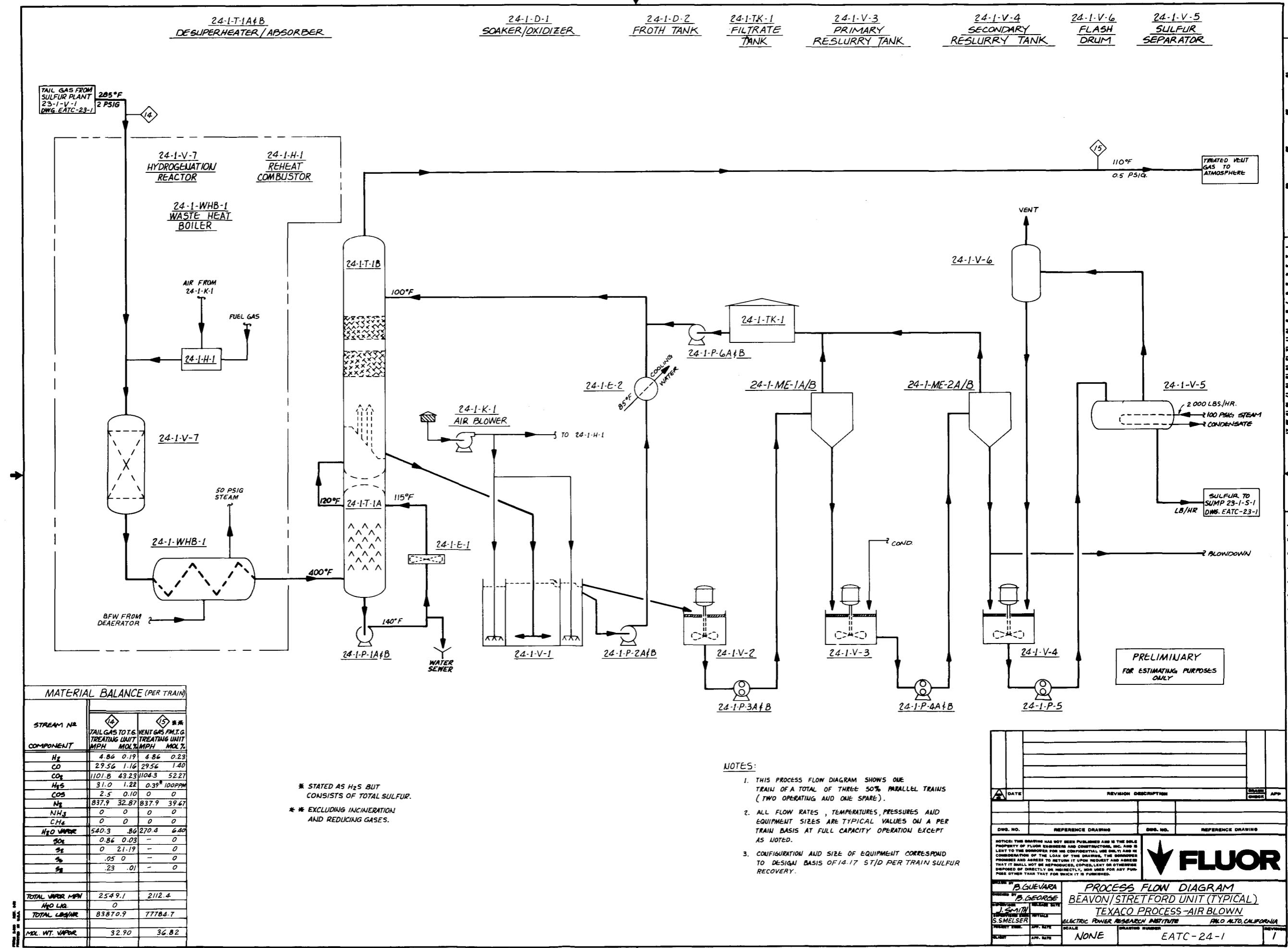
SULFUR RECOVERY AND TAIL GAS TREATING

The processes used in these units for Case EATC (Slurry Feed) are similar to those in Case EXTC. Typical Process Flow Diagrams EATC-23-1 and EATC-24-1 are included for reference. Descriptions of these units have been published previously.¹

There are two 50% parallel operating sulfur recovery trains each followed by a tail gas treating unit. Sulfur recovery per train is 154.5 short tons per day. There is a third (spare) train because of the important environmental requirements these units fulfill.


Equipment Notes

The Claus sulfur process is an established commercial process and consequently the equipment requirements are well known. Tail gas treating units are a more recent development; however, the equipment has been operated in many commercial plants successfully.



1. "Economic Studies of Coal Gasification Combined Cycle System for Electric Power Generation," EPRI AF-642, Jan. 1978, Page 74.

Blank Page

Blank Page

NOTE

1. THIS PROCESS FLOW DIAGRAM SHOWS ONE TRAIN OF A TOTAL OF THREE 50% PARALLEL TRAINS (TWO OPERATING AND ONE SPARE).
2. ALL FLOW RATES, TEMPERATURES, PRESSURES AND EQUIPMENT SIZES ARE TYPICAL VALUES ON A PER TRAIN BASIS AT FULL CAPACITY OPERATION EXCEPT AS NOTED.
3. CONFIGURATION AND SIZE OF EQUIPMENT CORRESPOND TO DESIGN BASIS OF 14.17 ST/D PER TRAIN SULFUR RECOVERY.

	DATE	REVISION DESCRIPTION		DRAWING CHECK	APP.
Dwg. No.		REFERENCE DRAWING		Dwg. No.	REFERENCE DRAWING
<p>NOTICE: THIS DRAWING HAS NOT BEEN PUBLISHED AND IS THE EXCLUSIVE PROPERTY OF FLUOR ENGINEERS AND CONTRACTORS, INC. AND IS LENT TO THE BORROWER FOR HIS CONFIDENTIAL USE ONLY. IT IS CONVEYED ON THE UNDERSTANDING THAT HE AGREES NOT TO COPIES OF THE DRAWING, THAT HE WILL NOT LEND THE DRAWING TO ANYONE ELSE, AND AGREES TO RETURN IT UPON REQUEST AND AGREES THAT IT WILL NOT BE REPRODUCED, COPIED, LENT OR OTHERWISE DISCLOSED OUTSIDE OF HIS ORGANIZATION EXCEPT FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT IS FURNISHED.</p>					
<p>PROCESS FLOW DIAGRAM BEAVON/STRET FORD UNIT (TYPICAL) TEXACO PROCESS - AIR BLOWN</p>					
<p>ELECTRIC POWER RESEARCH INSTITUTE PALO ALTO, CALIFORNIA</p>					
DRAWN BY P. GUEVARA		CHECKED BY B. GEORGE		APPROVED J. SMITH RELEASE DATE 12/01/01	
SUPERVISOR S. SMELSER RELEASE DATE 12/01/01		REV'D BY W. H. SMITH RELEASE DATE 12/01/01		DRAWN BY J. SMITH APPROVED J. SMITH RELEASE DATE 12/01/01	
APP. RATE NONE		SCALE 1		DRAWING NUMBER EATC-24-1	
APP. RATE 1					

Blank Page

PROCESS CONDENSATE TREATING

Case EATC

Most of the sour process condensate generated in this case is used for the preparation of the coal slurry feed to the gasifiers. Some of the ammonia present as salts in the water decomposes to nitrogen and hydrogen at the temperature existing in the combustor zone of the gasifiers.

A small stream of ammonia (as ammonium salts) contaminated effluent leaving the process units is obtained in the gasification area (Flow Diagram: EATC-20-1). This effluent is treated in the effluent water treating unit (Unit 40). A unit for the recovery of by-product ammonia is therefore not provided in Case EATC.

Equipment Notes

All equipment is commercially available.

STEAM, BOILER FEEDWATER AND CONDENSATE

Case EATC

Process Flow Diagram EATC-30-1 schematically represents steam, boiler feedwater and condensate systems for this case.

The process plant steam generation is integrated with the combined cycle system. The steam system operates at five levels:

High Pressure	HP - 1450 psig, 900°F
Intermediate Pressure	IP - 445 psig
Medium Pressure	MP - 115 psig
Low Pressure	LP - 50 psig
Low Pressure	LP - 15 psig

High pressure steam generation and superheating is carried out in the gas cooling units, 20-1-ME-3. Additional HP steam generation is obtained in heat recovery steam generators (HRSG) 51-1-B-1 of gas turbines 50-1-GT-1. There are six gas turbines and each gas turbine has its own HRSG. The HRSG is described in detail in Appendix A. The superheated HP steam from the process units combines with 900°F H.P. superheated steam from the HRSG superheaters (51-1-B-1:E-1). All the superheated HP steam is used to drive the single back pressure type turbine, 51-T-1. The HP end of Turbine 51-T-1 takes steam at 1450 psig, 900°F and exhausts at 445 psig.

Saturated intermediate pressure (IP) steam generation at 445 psig is obtained in the IP steam generators located in the sulfur plant, the gasification unit and the gas turbine coolers, 50-1-E-1. The saturated IP steam together with the exhaust steam from 51-T-1 is superheated to 1000°F in the HRSGs' reheaters (51-1-B-1:E-2). The superheated IP steam at 385 psig, 1000°F is then used in the IP end of 51-T-1 and the start-up condensing turbine, 11-T-1. The low pressure end of 51-T-1 exhausts steam to the 115 psig steam header.

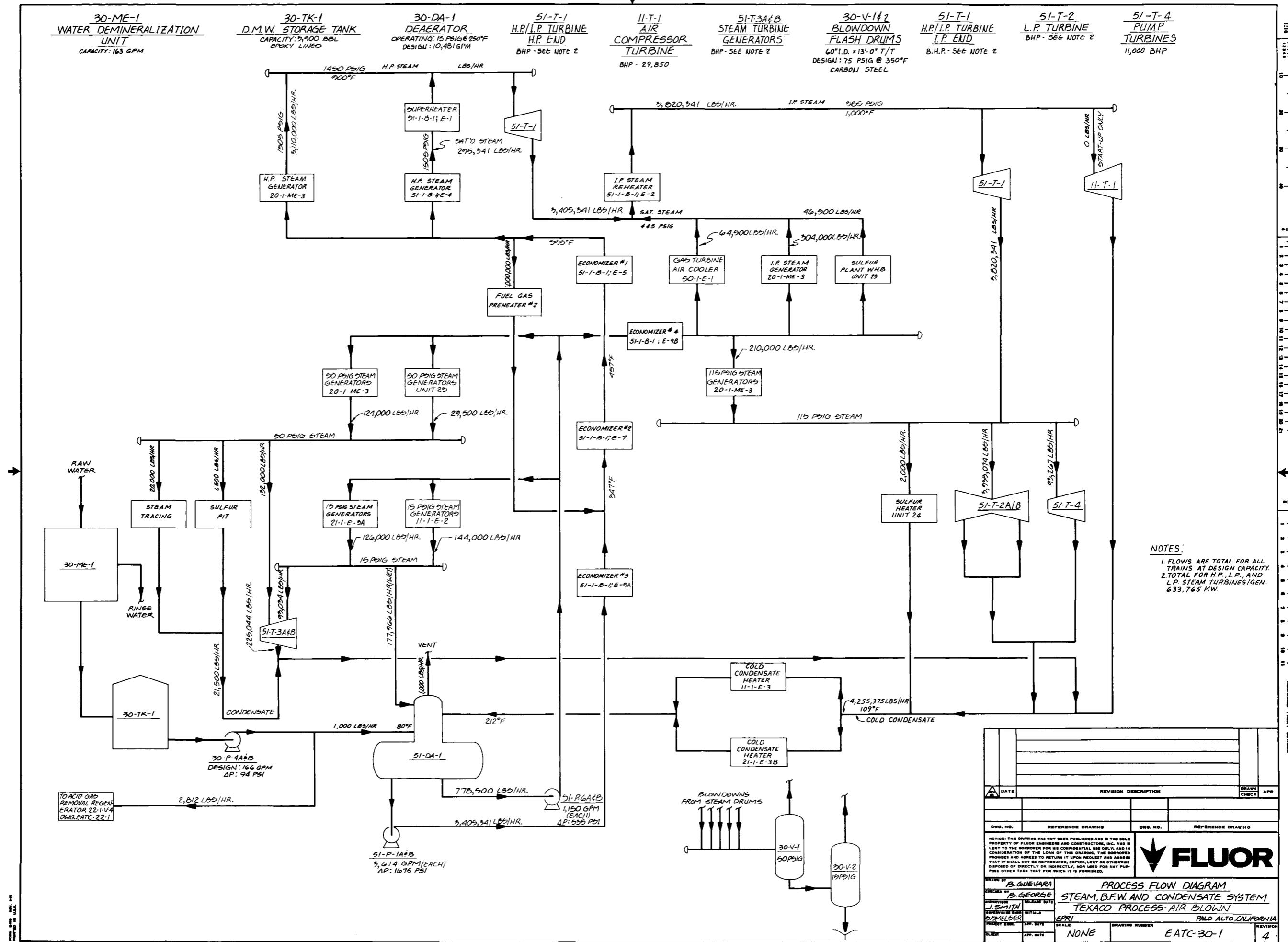
A small quantity of the 115 psig steam is supplied to the sulfur plant (Unit 23). The balance of the 115 psig exhaust steam is used in the LP turbine, 51-T-2 and for BFW pump turbines. LP Turbine 51-T-2 and pump drivers are condensing turbines exhausting at 2-1/2" Hg abs.

The 50 psig steam header is supplied by generators in the gas cooling unit, 20-1-ME-3, and the steam generators in the sulfur plant. The 50 psig steam is mainly used in condensing turbine-generators 51-T-3 A and B, making additional electric power. A small amount of 50 psig steam is also used for steam tracing and in the sulfur pit.

The 15 psig steam header is supplied by steam generation in process exchangers, 21-1-E-3A, and in air cooler, 11-1-E-2. Primarily, this low pressure steam is used in the deaerators, 51-1-DA-1, with the balance entering the steam turbine-generators, 51-T-3 A and B, as admittance steam making electric power. The deaerator is a tray type unit operating at 15 psig. The deaerator provides for 10 minute storage.

Raw water is treated in a semiautomatic, resin bed demineralization unit, 30-ME-1, to produce demineralized water suitable for a 1505 psig boiler. Demineralized water is stored in Tank 30-TK-1. Demineralized water from the storage tank is transported to the deaerator through Pumps 30-P-4A&B. A small quantity of the makeup water is withdrawn from the discharge of these pumps and transported to Unit 22. The balance of the demineralized water flows to the deaerator, 51-DA-1. The condensate from the 115 psig and 50 psig steam users also flows to the deaerator.

The vacuum condensate from turbines 11-1-T-1, 51-T-2 and 51-T-3 A and B, is combined and flows to the deaerator after heat recovery from the crude gasifier effluents in 21-1-E-3B and also in the air cooler, 11-1-E-3.


HP boiler feedwater (BFW) from the deaerator is pumped through high pressure boiler feedwater pumps (51-P-1A&B) to the HRSGs and process HP steam generators in 20-1-ME-1.

HP BFW to the HRSGs is first heated near the HP steam saturation temperature (598°F) in economizers 51-1-B-1:E-9A, E-7 and E-5. Part of the BFW is withdrawn downstream of 51-1-B-1:E-5 and supplied to the process HP steam generators in the gasification unit, and a portion of the hot high pressure BFW is used to preheat fuel gas in 51-1-E-10. The balance of the high pressure BFW flows to the HP steam generators in the HRSGs where saturated high pressure steam is generated.

LP BFW is heated to 347°F in an HRSG economizer, 51-1-B-1; E-9B, after the 15 psig process users in Units 11 and 20 have been supplied. The hot LP BFW feeds steam generators in the sulfur plant, at the gas turbine and in process steam generators in Units 20 and 21.

Equipment Notes

The combined cycle equipment is discussed in the next section and Appendix A.

Blank Page

COMBINED CYCLE SYSTEM

Case EATC

Process Flow Diagrams EATC-50-1 and EATC-51-1 depict the combined cycle system for Case EATC. These diagrams show the total power block flows.

It is important to point out here that the combined cycle for Case EATC was designed by Fluor and not by Westinghouse as in Case EXTC. However, the Fluor calculations were based on six sets of cycle data provided by Westinghouse for the main report.¹

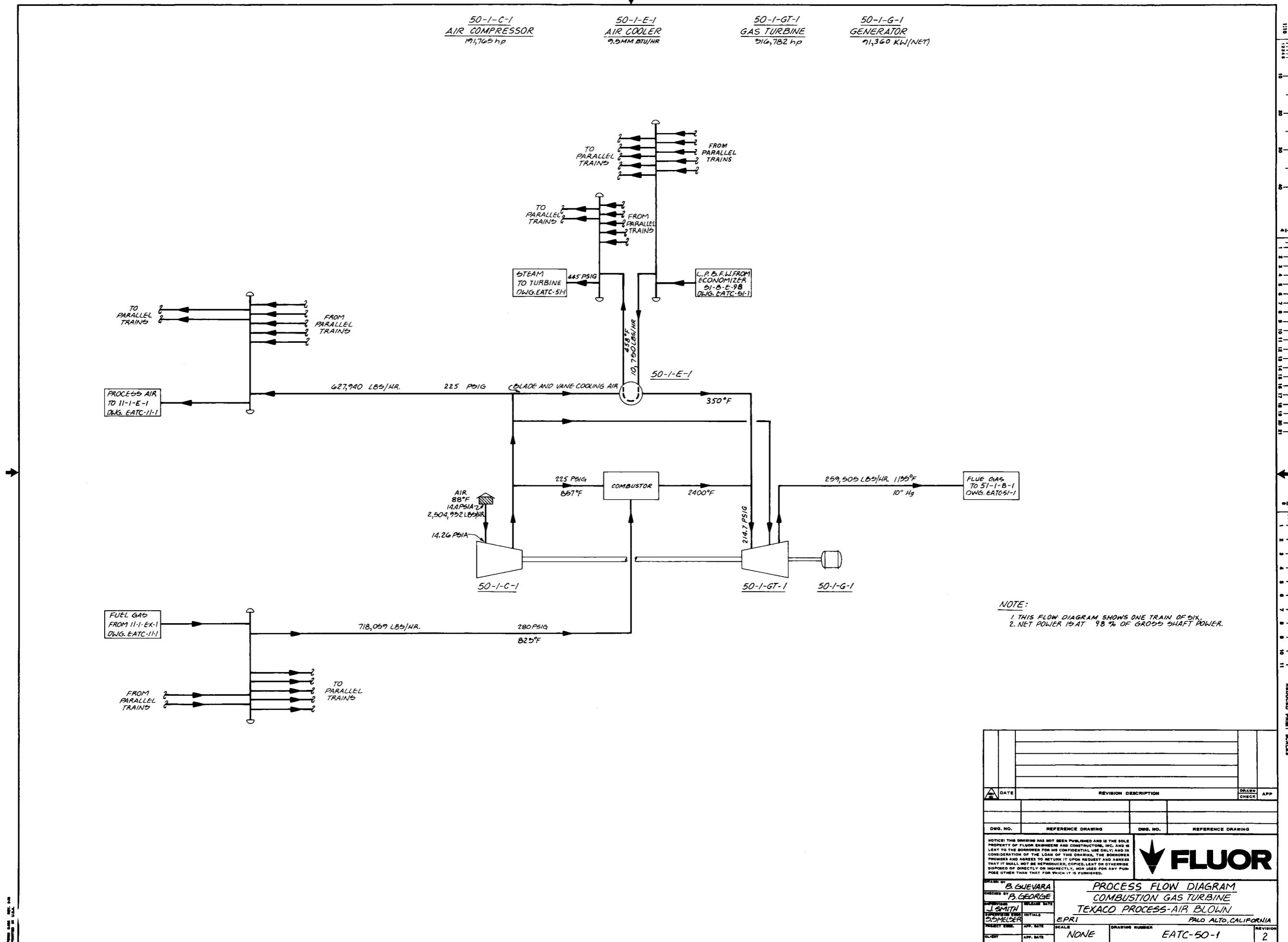
There are six parallel trains of gas turbines 50-1-GT-1, generators 50-1-G-1 and heat recovery steam generators (HRSG) 51-1-B-1, and one 100 percent steam turbine (51-T1&2) and generator unit (51-G-1). Refer to Appendix A for a detailed description of the combined cycle system. Detailed performance information of the power block components, i.e., gas turbines, HRSG's and the steam turbine is provided in Appendix A.

The combined cycle system for Case EATC has the following distinct features:

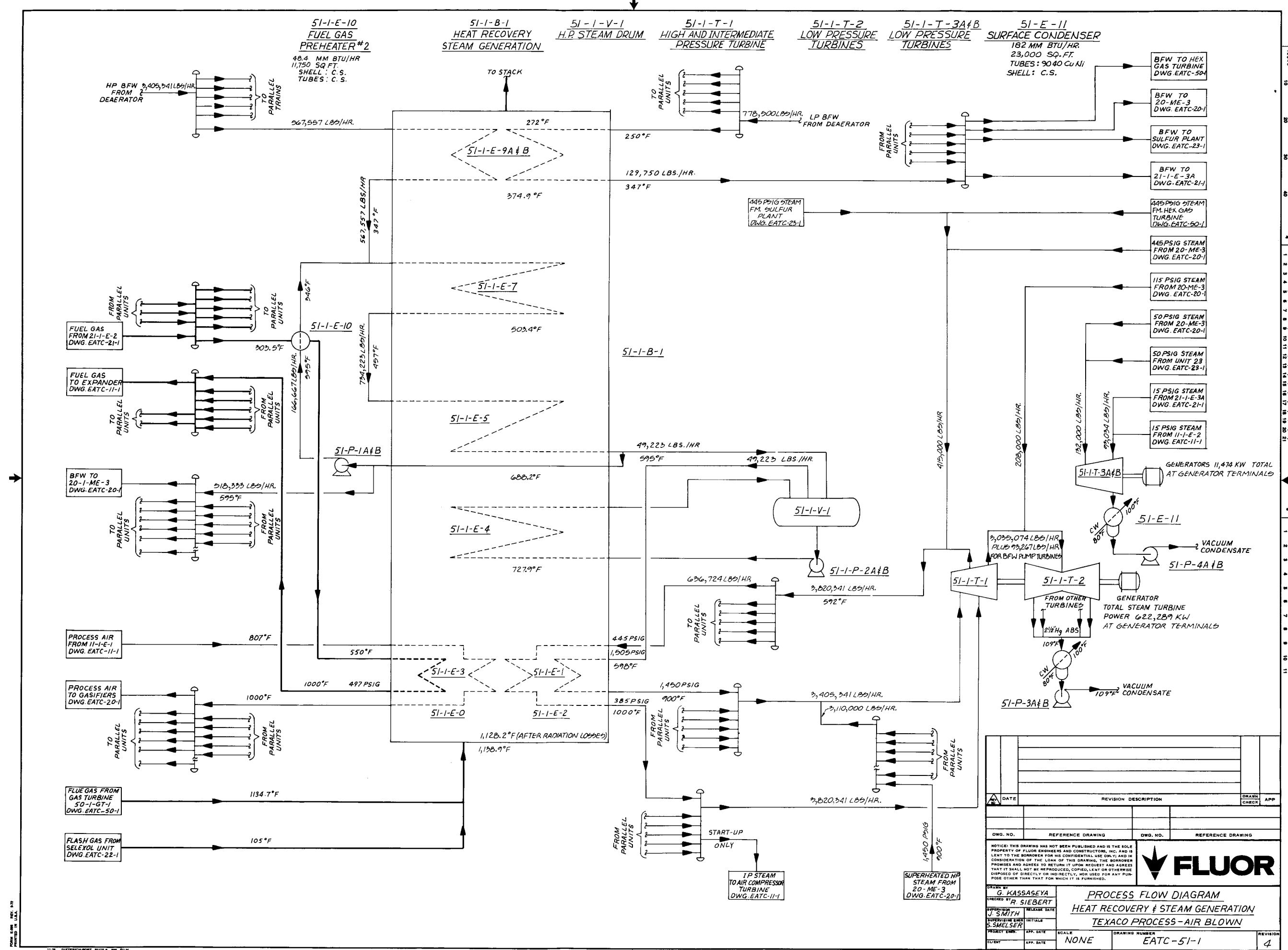
- Equipment for fuel gas preheating is provided in Case EATC. Fuel gas produced in the process plant at 522 psig and 303°F is first heated to 550°F by heat exchange against hot feed water at 598°F pumped from the outlet of economizer one 51-1-B-1:E-5 in fuel gas heater, 51-1-E-10. The cooled feed water flows back to economizer two, 51-1-E-7. The fuel gas is further heated to 1000°F in a coil 51-1-B-1:E-3 provided in the reheater section of the HRSG. The hot fuel gas from the HRSG is subsequently expanded from 495 psig to 280 psig in expanders 11-1-EX-1 to supply the air booster compressors' power. Air compressor power for start-up is provided by one condensing steam turbine which takes steam from the hot reheat line.
- The boiler feed water pump drives use 115 psig steam.

1. "Economic Studies of Coal Gasification Combined Cycle System for Electric Power Generation," EPRI AF-642, January 1978, Appendix A.

The process cooling loads, where possible, are integrated into the condensate and makeup systems. Approximately 441 MM Btu/hr of low level process heat is recovered by heating cold condensate.


Equipment Notes

The proposed scheme of heating fuel gas in the HRSG (51-1-B-1:E-3) is a standard practice in ammonia plants and refinery units such as hydrocrackers, hydrotreaters and crude units. Gaseous or liquid hydrocarbon streams are commonly heated in coils placed in fired heaters which have heat recovery sections similar to HRSGs.


As the HRSGs recover heat from gas turbines' exhaust gases, the coils in HRSGs are not exposed to a direct radiant source, which happens in the fired heaters mentioned above. The HRSG's coils are therefore exposed to less severe conditions because of limited chances of localized hot spots occurring in the coils.

In case of fuel gas heater coil rupture in an HRSG, there will be fire in the HRSG's box. However, appropriate controls will be provided for the emergency shutdown of the affected HRSG and associated equipment and for the injection of the snuffing steam to the box to extinguish the fire. Since multiple HRSG trains are provided, it will still be possible to operate the plant at reduced load. This scheme is therefore safe and commercially proven.

Refer to Appendix A for other comments on the equipment state of art.

Blank Page

Blank Page

PROCESS DISCUSSION

The table below summarizes pertinent heat and material balance results.

TABLE EATC-2
SUMMARY OF SYSTEM PERFORMANCE - CASE EXTC AND EATC

	<u>Case EXTC</u>	<u>Case EATC</u>
GASIFICATION AND GAS CLEANING SYSTEM		
Coal Feed Rate, lbs/hr (m.f.)	798,333	798,333
Oxygen or Air (1)/Coal Ratio, lbs/lb m.f.	0.858	1.081
Oxidant Temperature, °F	300	1,000
Steam/Coal Ratio, lbs/lb m.f. (4)	0	0.0086
Slurry Water/Coal Ratio, lbs/lb m.f. (5)	0.503	0.522
Gasification Section Average Pressure, psig	600	600
Crude Gas Temperature, °F	2300-2600	2300-2600
Crude Gas HHV (dry basis), Btu/SCF (2)	281.1	102.5
Temperature of Fuel Gas to Gas Turbine, °F	781	821
POWER SYSTEM		
Gas Turbine Inlet Temperature, °F	2,400	2,400
Pressure Ratio	17:1	17:1
Turbine Exhaust Temperature, °F	1,140	1,135
Steam Conditions, psig/°F/°F	1,450/900/1,000	1,450/900/1,000
Condenser Pressure, Inches Hg abs	2.5	2.5
Stack Temperature, °F	272	272
Gas Turbine Power (3), MW	745	548
Steam Turbine Power (3), MW	448	634
Power Consumed, MW	36	43.5
Net System Power, MW	1,157	1,138
OVERALL SYSTEM		
Process and Deaerator Makeup Water, gpm/1000 MW	362	289
Cooling Tower Makeup Water, gpm/1000 MW	7,588	9,163
Cooling Water Circulation Rate, gpm/MW	347	415
Cooling Tower Heat Rejection, % of Coal HHV (6)	38.7	47.2
Air Cooler Heat Rejection, % of Coal HHV	5.2	0.8
Net Heat Rate, Btu/kWh	8,813	8,958
Overall System Efficiency (Coal → Power), % of Coal HHV	38.7	38.1

(1) Dry Basis, 100% O₂

(2) Excluding the HHV of H₂S, COS and NH₃

(3) At Generator Terminals

(4) Includes moisture in oxidant air

(5) Small changes in this ratio do not significantly alter the results presented here.

(6) See Table CS-1 for details.

Gasification

The required number of gasifiers for this case is not stated in this report because Texaco considers the information proprietary and subject to refinement. Texaco's experience to date has been primarily in oxygen blown coal gasification, so the required number and size of gasifiers for Case EXTC had been established with a high level of confidence. For air blown gasification, the minimum residence time requirement for coal slurry and air in their pilot plant reactor is still under investigation. In addition, Texaco is studying the optimum reactor size, and indicates that this might increase. Therefore, the actual number of gasifiers required for Case EATC could not be established with a high degree of confidence. For purposes of this economic screening evaluation it was, however, necessary to select some basis. Therefore, Fluor used the oxygen blown gasifier information from Case EXTC as a standard cost and size basis for one gasifier train. In order to set a conservative basis for this study Fluor added a penalty to the oxygen blown gasification residence time used in Case EXTC, and established the number of standard gasifiers which would be required for this study proportional to the total gas flow. Texaco has confirmed from pilot plant data that the penalty factor used for residence time represents a conservative engineering basis. Texaco states that further pilot plant studies of air blown gasification are expected to reduce the gasifier costs for Case EATC. The conservative number of gasifiers used in this study means that the gasification heat losses at one percent of coal HHV are larger than would result from an optimum design, and larger than actually did result in Case EXTC.

Gasifier material balances for full capacity operation are given in Tables EATC-3 and EXTC-3 for the air and oxygen blown Texaco gasifier cases.

Most of the data presented in the above two tables were received from Texaco Development Corporation. For the particular coal used for this study, Texaco indicated that slurry concentrations in the range of 60% solids to possibly 70% solids could be achieved. For Case EATC the slurry concentration was 65.7% solids. It is important to keep in mind, however, the fact that slurrying characteristics of coals vary greatly and that it is not valid to extrapolate performance estimates presented in this report to other coals that will process different slurrying characteristics. It is important too, to note that slurry concentrations this high are somewhat beyond the range of current practice. Should it prove necessary, in operation, to run with a more dilute slurry, there could be some adverse impact on overall plant efficiency.

TABLE EATC-3

MATERIAL BALANCE - CASE EATC

	FEEDS			EFFLUENTS			mol % (wet)	
	T (°F)	lb/hr	lb mol/hr		T (°F)	lb/hr	lb mol/hr	
Coal	163			Gasifier Effluent	2,300-2,600			
Moisture		35,000	1,942.8	CH ₄		2,828	176.3	0.09
Ash		80,000		H ₂		39,672	19,678.6	10.21
MAF Coal				CO		923,019	32,952.0	17.09
Carbon		554,985	46,205.9	CO ₂		572,211	13,001.6	6.74
Hydrogen		42,525	21,094.6	H ₂ S		30,101	883.2	0.46
Oxygen		80,022	2,500.8	COS		4,674	77.8	0.04
Nitrogen		9,985	356.4	N ₂		2,834,153	101,162.0	52.48
Sulfur		30,816	961.1	Ar		48,469	1,213.4	0.63
TOTAL COAL		833,333		H ₂ O		422,646	23,459.5	12.17
				NH ₃		3,034	178.1	0.09
Oxidant (dry)	1000			TOTAL GASIFIER EFFLUENT	2,300-2,600	4,880,794	192,781.9	100.00
Oxygen		863,337	26,979.3	Ash				
Argon		48,469	1,213.4	Carbon			Nil	
Nitrogen		2,826,661	100,894.6	Ash			80,000	
TOTAL OXIDANT		3,738,467	129,087.3	TOTAL ASH			80,000	
Water (including air moisture)	163	388,994	23,534.3					
TOTAL FEEDS		4,960,794		TOTAL EFFLUENTS		4,960,794		

TABLE EXTC-3

MATERIAL BALANCE - CASE EXTC

FEEDS				EFFLUENTS			
	T (°F)	lb/hr	lb mol/hr		T (°F)	lb/hr	lb mol/hr
							mol % (wet)
Coal	140			Gasifier Effluent	2,300-2,600		
Moisture		35,000	1,942.8	CH ₄		1,158	72.2
Ash		80,000		H ₂		52,364	25,974.2
MAF Coal				CO	1,071,001	38,236.4	28.84
Carbon		554,985	46,205.9	CO ₂		345,232	7,844.4
Hydrogen		42,525	21,094.6	H ₂ S		30,907	906.9
Oxygen		80,022	2,500.8	COS		3,256	54.2
Nitrogen		9,985	356.4	N ₂		16,725	597.1
Sulfur		30,816	961.1	Ar		4,326	108.3
TOTAL COAL		833,333		H ₂ O		290,137	16,106.4
				NH ₃		3,034	178.1
Oxidant	300			TOTAL GASIFIER EFFLUENT	2,300-2,600	1,818,140	90,078.2
Oxygen		684,687	21,397.3				100.00
Argon		4,326	108.3	Ash			
Nitrogen		9,241	329.9	Carbon		Nil	
TOTAL OXIDANT		698,254	21,835.5	Ash		80,000	
Water	140	366,553	20,364.1	TOTAL ASH		80,000	
TOTAL FEEDS		1,898,140					
				TOTAL EFFLUENTS		1,898,140	

Little information is available on the production rate of trace compounds in this type of gasifier. It is known, for example, that in pilot runs, some of the nitrogen in the feed coal is converted to ammonia. In this design, ammonia has been assumed to be rapidly complexed as ammonium carbonate in the various process condensates. These ammonia bearing waters are eventually recycled to the gasifier via the coal slurry. At gasification temperatures, the equilibrium for ammonia formation is very unfavorable and the gasifier is thus assumed capable of destroying excess ammonia. The presence of ammonia in the process condensates is thought to have a beneficial effect by acting as a corrosion inhibitor. Small amounts of this water are removed from the plant and treated in water treatment facilities to destroy ammonia. The figures given in the tables and flow sheets for ammonia should be regarded as tentative estimates only.

Gasifier temperatures are believed to be high enough to destroy all hydrocarbons except methane.

Although the gasifiers were operated at essentially the same temperature, air blowing required 26% more oxygen than oxygen blowing. This oxygen converts 28% of the coal carbon to carbon dioxide versus 17% for oxygen blowing. As a result the air blown case produces only 82% as much chemical heat as measured by moles per hour of CO and H₂, a total of 52,630.6 versus 64,210.6 moles per hour in the oxygen case. In addition, we note that essentially no feedwater decomposes in the air blown reactors, 0.32%, compared to almost 28% in the oxygen blown case. Therefore, the hydrogen production in the air blown case is less than the hydrogen in the coal; whereas for oxygen blowing, the hydrogen produced is more than 20% greater than the coal hydrogen.

The number of gasifiers used in this study is based on pilot plant air flows. Since the pilot plant compressor was not large enough to provide the high air flow needed to study low residence times, the assumed number of gasifiers is conservatively high.

Acid Gas Removal

One of the important design considerations in coal gasification is acid gas removal. Acid gas removal processes tend to absorb both hydrogen sulfide (H₂S) and carbon dioxide (CO₂). While in many applications removal of both is desired, for gas turbine power generation there are substantial disadvantages to removing

CO_2 . Absorption of CO_2 increases solvent circulation rates, equipment sizes and process heat loads, and takes away "working fluid" from the gas turbine generator. Further, the design and sizes of the downstream sulfur recovery units are affected in directions that increase cost. The Selexol® process removes H_2S in preference to CO_2 and, therefore, accomplishes an important objective. The process is used in this case because it accomplishes this objective and it compares favorably with other similar processes economically.

The Selexol® process results in an H_2S concentration over 23 percent in the acid gas feed to the sulfur recovery unit. At H_2S concentrations in this range, a sulfur plant design commonly referred to as "split flow" may be employed that avoids use of fuel gas in the sulfur furnace. Fuel gas must be burned in the furnace to sustain a flame if H_2S concentration is under 15 percent. In the split flow design the flame can be sustained by burning acid gas only.

Acid gas removal for air blown gasification required one more train than the three trains used for oxygen blowing, and larger diameter towers because of the presence of the nitrogen diluent. Energy consumption for regeneration of selexol solvent was greater in the air blown case due to lower partial pressures of acid gas components in the process gas and the associated higher solvent circulation rate.

Gas Cooling

Sensible heat in the gasifier effluent at 2300 to 2600°F, is removed to heat boiler feed water and make steam. Since the air blown case molar flow rate of effluent is more than twice the oxygen blown case, a significant increase in gas cooling duty results. To effectively integrate process heat into the HRSG/Steam-turbine cycle, the air blown case includes process steam superheating in the gas cooling unit whereas, in the oxygen blown case, process steam superheating is accomplished in the HRSG's. Process heat recovery for case EATC is 1.6 times the heat recovered in the HRSG's. To accommodate this heat load, heat exchangers in the gas cooling unit generate steam at several pressure levels.

HRSG and Steam Turbine

The reduced gas turbine flue gas flow rate for EATC along with the greater boiler feed water requirements of the process steam generators mean that less sensible

heat is available in the HRSG units to generate steam. Accordingly the three steam pressure level design for EXTC has been rearranged to provide only high pressure steam generation. The other main difference in HRSG configuration between cases is the addition of a heat recovery coil used to heat process air to 1000°F.

Total high pressure superheated steam flow to the steam turbines is essentially the same for both cases, although most of the superheating of this steam is accomplished in the process units for the air blown case, and in the HRSGs for the oxygen blown case. Superheated intermediate pressure steam flow and low pressure steam flow to the turbine are approximately fifty percent larger in the air blown case due to additional process sensible heat carried by nitrogen in the gasifier effluent. To accommodate the additional sensible heat at lower process temperatures in the air blown case, low pressure process steam generators were added which feed low pressure steam to two small 50% steam turbine generators. These generators provide one percent of the total electric power produced.

Process Energy Balances

Tables EATC-4 and EXTC-4 present overall process energy balances for air and oxygen blown cases at 100 percent capacity operation. The boundary for each balance encompasses the entire plant. Energy content of streams crossing the boundary is expressed as the sum of the stream's higher heating value, sensible heat above 60°F and latent heat of water at 60°F. Electric power is converted to equivalent theoretical heat energy at 3413 Btu/kWh. These energy balances close to less than one-half percent. The discrepancies result from approximations used for some process units and for calculating some heat loads.

Data from Tables EATC-4 and EXTC-4 are shown in MM Btu/hr and as percent of coal higher heating value in Table EATC-5.

The tables show that the air blown case results in slightly less of the coal energy charged to the plant converted to power than does the oxygen blown case. Coal charged at 10,000 ton/day is equivalent to 10,196 MM Btu/hr HHV. The air blown case produces 3,885 MM Btu/hr as electrical energy or 38.1 percent of the coal HHV. The oxygen blown case produces 3,948 MM Btu/hr power equivalent or 38.7 percent of the coal HHV.

TABLE EATC-4

ENERGY BALANCE - CASE EATC

Basis: 60°F, water as liquid, 3,413 Btu/kWh.

	HHV	SENSIBLE	LATENT	RADIATION	MM Btu/hr	POWER	TOTAL
<u>HEAT IN</u>							
Coal	10,196	5					10,201
Gas Turbine Suction Air	--	102	258				360
Demineralized and Raw Water		2					2
Auxiliary Power Inputs						149	149
TOTAL	10,196	109	258	0		149	10,712
<u>HEAT OUT</u>							
Ash Slurry		50					50
Gasifier Heat Losses				112			112
Gas Cooling		91					91
Sulfur Product	105	1					106
Air Coolers		82					82
Oxidant Compressor Interstage Cooling		70					70
Gas Turbines					1,871		1,871
Sulfur Plant Effluent Gas	2	18					20
Steam Turbines					2,163		2,163
Power Block Losses				47	193		240
Turbo-Generator Condensers		4,171					4,171
HRSG Stack Gas	816	579					1,395
Steam Heat and Power Losses	22	24					46
Selexol Overhead Condenser		68					68
Selexol Solvent Cooler		176					176
Waste Water Effluent		28					28
TOTAL	105	1,124	4,860	159	4,375		10,689

Input - Output = 0.22%
 Input

TABLE EXTC-4

ENERGY BALANCE CASE EXTC

Basis: 60°F, water as liquid, 3,413 Btu/kWh.

	HHV	SENSIBLE	LATENT	RADIATION	MM Btu/hr	POWER	TOTAL
<u>HEAT IN</u>							
Coal	10,196	5					10,201
Air Compressor Suction Air		22	53				75
Gas Turbine Combustion Air		117	282				399
Demineralized and Raw Water		9					9
Auxiliary Power Inputs						123	123
TOTAL	10,196	153	335	0		123	10,807
<u>HEAT OUT</u>							
Ash Slurry		81					81
Gasifier Heat Losses				26			26
Gas Cooling		19	6				25
Sulfur Product	105	1					106
Oxidant Compressor Interstage Cooling		535	33				568
Oxidant Compressor Surface Condensers			1,067				1,067
Gas Turbines						2,541	2,541
Sulfur Plant Effluent Gas		2	19				21
Steam Turbines						1,530	1,530
Power Block Losses (1)				43		172	215
Steam Turbine Condenser			2,687				2,687
HRSG Stack Gas		1,027	790				1,817
Steam Heat Losses			22				22
Selexol Overhead Condenser			24				24
Selexol Solvent Cooler		54					54
Air Separation Plant Waste Gas		18					18
Waste Water Effluent		19					19
TOTAL	105	1,756	4,648	69		4,243	10,821

$$\frac{\text{Output} - \text{Input}}{\text{Input}} = 0.13\%$$

(1) Includes mechanical and electrical losses.

If all power consumed by the process units is included, the net system efficiency is 38.7 percent for the oxygen blown case compared to 38.1 percent for the air blown case. The heat rate based on net power produced is 8,813 Btu/kWh for the oxygen blown case and 8,958 Btu/kWh for the air blown case.

These net heat rates indicate oxygen blowing to be as efficient as air blowing, within the accuracy of the calculations done for these cases. This result was surprising, because past work¹ based on different gasification technologies had indicated air blown gasification might be more efficient.

Comparisons drawn from the tables illustrate some of the differences between the air and oxygen blown cases. Oxygen consumption is more for the air blown case, because it is necessary to supply combustion heat to heat air nitrogen and reactor heat losses are higher due to the larger number of reactors required. Power generated in the gas turbine is lower for the air blown case, and steam turbine power recovery is higher.

Energy leaving the plant as stack gas is higher for the oxygen blown case: 1,817 MM Btu/hr versus 1,395 MM Btu/hr for the air blown case. This represents 17.8 percent of the coal feed HHV for the oxygen case and 13.7 percent for the air blown case, and reflects the higher fuel flow rate (particularly hydrogen flow rate) existing in the oxygen blown case. The combined total heat losses in HRSG units and surface condenser units are essentially constant between the two cases (5571 MM Btu/hr for the oxygen blown case versus 5566 MM Btu/hr for air). Thus the energy recovery between the two cases is essentially the same. Although gas turbine power is lower for the air blown case, more steam turbine power is generated partially due to higher process steam generation and partially due to significantly less process steam demand for compressor drivers, the net result being that both cases generate essentially the same amount of electricity.

1. Economic studies of Coal Gasification Combined Cycle Systems for Electric Power Generation, EPRI AF-642, January, 1978.

TABLE EATC-5

ENERGY BALANCE AS PERCENT COAL HHV - CASES EATC AND EXTC

	<u>Case EXTC</u>		<u>Case EATC</u>	
	<u>MM Btu/hr</u>	<u>Percent</u>	<u>MM Btu/hr</u>	<u>Percent</u>
<u>IN</u>				
Coal HHV	10,196	100.0	10,196	100.0
<u>OUT</u>				
Net Power	3,948	38.72	3,885	38.10
Sulfur Product, HHV	105	1.03	105	1.03
Ammonia Product, HHV	0	0	0	0
Selexol Sensible and Latent	171	.77	244	2.39
Oxidant Interstage Cooling	568	5.57	70	.69
Ash Slurry Sensible	81	0.79	50	.49
HRSG Stack Gases	1817	17.82	1,395	13.68
Rejected at Condensers	3754	36.82	4,171	40.91
Other Sensible Losses	(94)	(.92)	117	1.15
Other Latent Losses	(288)	(2.28)	(216)	(2.12)
Gasifier Heat Losses	26	0.26	112	1.10
Power Block Losses	215	2.11	240	2.36
	<u>10,303</u>	<u>100.15</u>	<u>10,173</u>	<u>99.78</u>

Blank Page

ECONOMICS

Important economic results are summarized below.

TABLE EATC-6

SUMMARY OF ECONOMICS - CASES EATC AND EXTC

	<u>Case EXTC</u>	<u>Case EATC</u>
<u>PRODUCTION AT DESIGN CAPACITY</u>		
Net Power, MW (1)	1,156.8	1,138.2
Overall Plant Heat Rate, Btu/kWh	8,813	8,958
<u>TOTAL CAPITAL (2)</u>		
Total Capital @ \$1/MM Btu	944,563	940,628
Coal, \$1,000		
Total Capital @ \$1/MM Btu, \$/kW	816	826
Total Capital @ \$2/MM Btu	961,681	947,747
Coal, \$1,000		
Total Capital @ \$2/MM Btu, \$/kW	831	841
<u>AVERAGE COSTS OF SERVICES (2)</u>		
Annual Cost @ \$1/MM Btu	262,088	264,078
Coal, \$1000/yr		
Per Unit @ \$1/MM Btu	37.21	37.84
Coal, mills/kWh		
Annual Cost @ \$2/MM Btu	327,280	329,271
Coal, \$1000/yr		
Per Unit @ \$2/MM Btu	46.47	47.18
Coal, mills/kWh		

NOTES

- (1) At 100% operating factor
- (2) Mid-1976 dollars and 70% operating factor

CAPITAL COST COMPARISONS

Having discussed each Texaco technology individually, it is of interest to compare capital cost breakdowns for all sections of each system to point out major differences as well as to identify those areas within each system which would benefit most from development of new and/or advanced technologies. Such a comparison is shown in Table D-2 (see Discussion of Results).

It can be seen from this table that coal handling costs for case EATC are slightly higher than EXTC due to the multiplicity of gasifier trains,. The oxidant feed system cost for the oxygen blown Texaco case (EXTc) is almost five times that for the air blown system. This is mainly due to the fact that the oxygen blown gasifiers require air compressors, an air separation plant, and oxygen compressors, whereas the air blown gasifiers require only booster air compressors. Both cases have fuel gas expanders included in the capital cost of the combined cycle. However, in Case EATC the booster compressor drivers are these fuel gas expanders, which artificially lowers the cost of its oxidant feed unit.

Costs for the gasification and ash handling sections of each plant indicate that air blown gasification would benefit greatly from reduced gasifier residence time or from development of larger sized gasifiers. Gas cooling section costs, however, indicate that the air blown system pays part of the price of low oxidant feed cost by requiring extra surface area in the costly gas cooling equipment to remove the sensible heat carried by nitrogen.

Process condensate treating costs for ammonia recovery for both of the Texaco systems are not included since ammonia recovery is not anticipated. The higher cost of acid gas removal in the air blown case reflects primarily the additional train required to handle the extra gas volume.

The cost of the steam, condensate and BFW system and support facilities for the air blown case are slightly higher due to higher water flows for this case.

Combined cycle costs are lower for the air blown case partially due to one less gas turbine and HRSG being required and partially due to a larger fraction of the total power being produced in the steam turbine. The two small steam turbine generators included in Case EATC represent 8.3 percent of the combined cycle plant investment.

The total capital requirements are about one percent higher and average annual cost of services nearly 0.6 percent higher in the air blown case.

Tables EATC-7 and EATC-8 give detailed breakdowns of plant investment, capital charges and working capital for both cases at 70 percent operating factor and \$1.00/MM Btu and \$2.00/MM Btu coal HHV cost. The accuracy of the plant investment estimates is judged to be ±25%. Since other capital charges and working capital are keyed to elements of plant investment, this accuracy is reflected in other capital figures as well. This should be kept in mind when comparing cases. The comparison between Texaco gasifier types should be somewhat more accurate since the same estimating methods were used in both cases.

For all units, the air blown plant investment is higher or equal to the oxygen blown case except for the oxidant feed and combined cycle units. The latter units are less expensive in this case because there are no oxygen plants or compressors, and because the number of gas turbine/HRSG units is reduced compared to Case EXTC. The coal handling unit, waste water treating and steam, condensate and boiler feed water units are slightly higher in the air blown case. The coal handling units are essentially the same. In both cases process condensate can be returned to the gasifier, reducing waste water treating requirements. The size of the steam, condensate and boiler feed water system in the air blown case is larger because of the greater amount of sensible heat removed in the process units. This is reflected in the higher investment requirements for these units in the air blown case.

The contingency shown under plant investment is divided into two parts. First is a 15 percent project contingency which is intended to cover additional equipment that would result from a more detailed design of a definitive project at an actual site. The second is a process contingency which is applied to unproven technology in an effort to quantify the uncertainty in the design, performance and cost of the commercial scale equipment. Historically, as a new technology develops from the conceptual stage to commercial reality, a variety of technical

TABLE EATC-7

CAPITAL INVESTMENT AT 70% OPERATING LOAD FACTOR AND \$1.00/MM BTU COAL - CASES EXTC AND EATC

	Case EXTC			Case EATC		
	\$1,000 ⁽¹⁾	\$/kW ⁽²⁾	Percent	\$1,000 ⁽¹⁾	\$/kW ⁽²⁾	Percent
<u>PLANT INVESTMENT</u>						
Coal Handling	22,061	19.07	3.56	22,500	19.77	3.72
Oxidant Feed	117,389	101.48	18.95	23,716	20.84	3.92
Gasification and Ash Handling	24,261	20.97	3.92	60,138	52.85	9.94
Gas Cooling	66,986	57.91	10.81	119,139	104.69	19.71
Acid Gas Removal and Sulfur Recovery	28,585	24.71	4.61	42,966	37.76	7.10
Waste Water Treating	-	-	-	-	-	-
Steam, Condensate and BFW	827	0.71	0.14	879	.77	.15
Support Facilities	55,205	47.72	8.91	57,284	50.34	9.47
Combined Cycle	304,156	262.94	49.10	278,130	244.40	45.99
Subtotal	619,470	535.51	100.00	604,752	531.42	100.00
Contingency	118,160	102.14		127,696	112.21	
Total Plant Investment	737,630	637.65		732,448	643.63	
<u>ILLINOIS SALES TAX</u>	16,656	14.40		16,272	14.30	
<u>CAPITAL CHARGES</u>						
Preproduction Costs	46,342	40.06		46,458	40.82	
Paid-up Royalties	3,688	3.19		3,662	3.22	
Initial Catalyst and Chemical Charge	515	0.44		1,285	1.13	
Construction Loan Interest	92,130	79.64		91,483	80.39	
Total Capital Charges	142,675	123.33		142,888	125.56	
<u>DEPRECIABLE CAPITAL</u>	896,961	775.39		891,608	783.49	
<u>WORKING CAPITAL</u>	47,602	41.15		47,782	41.99	
<u>TOTAL CAPITAL</u>	944,563	816.54		939,390	825.48	

NOTE

(1) Mid-1976 Dollars

(2) Based on 100% Operating Load Factor

TABLE EATC-8

CAPITAL INVESTMENT AT 70% OPERATING LOAD FACTOR AND \$2.00/MM BTU COAL - CASES EATC AND EXTC

	Case EXTC			Case EATC		
	\$1,000 ⁽¹⁾	\$/kW ⁽²⁾	Percent	\$1,000 ⁽¹⁾	\$/kW ⁽²⁾	Percent
PLANT INVESTMENT						
Coal Handling	22,061	19.07	3.56	22,500	19.77	3.72
Oxidant Feed	117,389	101.48	18.95	23,716	20.84	3.92
Gasification and Ash Handling	24,261	20.97	3.92	60,138	52.85	9.94
Gas Cooling	66,986	57.91	10.81	119,139	104.69	19.71
Acid Gas Removal and Sulfur Recovery	28,585	24.71	4.61	42,966	37.76	7.10
Waste Water Treating	-			-	-	-
Steam, Condensate & BFW	827	0.71	0.14	879	.77	.15
Support Facilities	55,205	47.72	8.91	57,284	50.34	9.47
Combined Cycle	304,156	262.94	49.10	278,130	244.40	45.99
Subtotal	619,470	535.51	100.00	604,752	531.42	100.00
Contingency	118,160	102.14		127,696	112.21	
Total Plant Investment	737,630	637.65		732,448	643.63	
ILLINOIS SALES TAX						
	16,656	14.40		16,272	14.30	
CAPITAL CHARGES						
Preproduction Cost	48,202	41.67		48,319	42.46	
Paid-up Royalties	3,688	3.19		3,662	3.22	
Initial Catalyst and Chemical Charge	515	0.45		1,285	1.13	
Construction Loan Interest	92,130	79.64		91,483	80.39	
Total Capital Charges	144,535	124.95		144,749	127.20	
DEPRECIABLE CAPITAL						
	898,821	777.00		893,469	785.12	
WORKING CAPITAL						
	62,860	54.34		63,041	55.40	
TOTAL CAPITAL						
	961,681	831.34		956,510	840.52	

NOTE

(1) Mid-1967 Dollars

(2) Based on 100% Operating Load Factor

problems which were not considered during the early stages of the development emerge. Solution to these problems generally results in an increase in the cost of the technology due to the need for more expensive materials of construction, more complex equipment specifications and sometimes the need for additional processing equipment. A total plant process contingency is arrived at by applying a separate contingency to individual process units based on their state of development and accumulating the results.

Table EATC-9 summarizes cost of services for both cases based upon coal charged at \$1.00/MM Btu and \$2.00/MM Btu HHV. Costs are compiled in accordance with criteria furnished by EPRI (Criteria Section). They are presented as averages for the life of the plants.

Operating labor requirements are a function of the number of units and trains. Requirements are shown below on a shift basis.

	<u>Case EXTC</u>	<u>Case EATC</u>
"A" Operators	5	5
"B" Operators	17	20
Foremen	2	2
Lab and Instrument Technicians	<u>4</u>	<u>4</u>
Operating manpower	28	31

Catalyst and chemical costs are primarily for chemicals consumed in the demineralizer, cooling tower, and boiler feed water treating. There are some minor costs associated with making up solution losses in the acid gas removal, and tail gas treating units and replacement of catalyst in the sulfur recovery unit. Chemical consumption costs are included for process condensate treating in the dry feed case.

The operating charges are slightly higher for the air blown case and occur mainly in utilities and investment ratioed operating costs.

Operating charges constitute about 44 percent of cost of services with coal at \$1.00/MM Btu and nearly 55 percent at a coal cost of \$2.00/MM Btu. For both cases, coal is the largest single operating charge.

The relationship as percentage is summarized below:

	<u>Case EXTC</u>	<u>Case EATC</u>	
Cost of Coal, \$/MM Btu, HHV	<u>1.00</u>	<u>2.00</u>	<u>1.00</u>
Coal as % of Operating Charges	54.5	70.5	53.2
Coal as % of Total Cost of Services	23.9	38.2	23.7
Operating Charges as % of Total	43.8	54.1	44.5
Cost of Services			
Capital Charges as % of Total	56.2	45.9	55.5
Cost of Services			

TABLE EATC-9

COST OF SERVICES AT 70% OPERATING LOAD FACTOR - CASES EATC AND EXTC

	<u>Case EXTC</u>		<u>Case EATC</u>	
<u>COAL COST, HHV</u>	<u>\$1/MM Btu</u>	<u>\$2/MM Btu</u>	<u>\$1/MM Btu</u>	<u>\$2/MM Btu</u>
<u>NET PRODUCTION (1)</u>				
Net Power, MW	1,156.8	1,156.8	1,138.2	1,138.2
By-product Ammonia ST/SD	0	0	0	0
By-product Sulfur ST/SD	301	301	309	309
<u>OPERATING CHARGES, \$1000/YEAR</u>				
Coal	62,522	125,044	62,522	125,044
Operating Labor	2,692	2,692	2,987	2,987
Catalyst and Chemicals	262	262	358	358
Utilities	1,354	1,354	1,589	1,589
Maintenance, Labor	7,882	7,882	8,480	8,480
Maintenance, Materials	11,822	11,822	12,721	12,721
Administrative and Support Labor	3,172	3,172	3,440	3,440
General and Administrative Expenses	6,344	6,334	6,880	6,880
Ash Disposal	245	245	245	245
Property Tax/Insurance	18,441	18,441	18,311	18,311
By-product, Ammonia	(0)	(0)	(0)	(0)
By-product, Sulfur	(0)	(0)	(0)	(0)
Total Operating Charges, \$1000/Year	114,736	177,258	117,553	180,055
<u>CAPITAL CHARGES, \$1,000/YEAR</u>				
Total Capital Charges	147,352	150,022	146,545	149,216
<u>COST OF SERVICES</u>				
Total, \$1,000/Year	262,088	327,280	264,078	329,271
Per Unit Production, mills/kWh	37.21	46.47	37.84	47.18

NOTES

(1) At 100% Operating Load Factor.

APPENDIX A

COMBINED CYCLE SYSTEM DETAILS

GENERAL

For each of the coal gasification processes studied, a similar combined cycle system was selected. For cases reported previously¹, the combined cycle system was designed by Westinghouse Electric Corporation, Lester, Pennsylvania based on interface conditions between the fuel processing and power section supplied by Fluor. For EATC, Fluor performed similar calculations based on previous Westinghouse data. Equipment design limitations imposed here were the same as those imposed by Westinghouse in the earlier work.

Each of the combined cycle systems, including the one reported here for EATC, consists of a set of gas turbines, heat recovery steam generators (HRSG), steam turbine and auxiliary power equipment to support the respective coal gasification processes. Approach temperatures, pressure losses and blade loadings used in the calculations all reflect current utility application criteria for lowest cost of power. Equipment performance criteria and overall combined cycle parameters are projected to represent the expected state of the art with 1985 delivery.

Case EATC also includes two low pressure steam turbine generators for recovery of low temperature process heat. These turbines contribute 1% of the electric power generated.

A summary of the calculated power output for the power block equipment and heat loads rejected to the station cooling tower for both the oxygen blown (EXTC) and the air blown (EATC) Texaco based systems is presented in Table CS-1. The power output is calculated at the generator terminals without margins for design or manufacturing tolerances. The calculated power outputs include approximately 2.0 percent deduction for mechanical and electrical losses which include lube and seal oil pumps, plus radiation losses of 3 Btu/lb/sec of flue gas.

1. "Economic Studies of Coal Gasification Combined Cycle Systems for Electric Power Generation," EPRI AF-642, January 1978.

TABLE CS-1
POWER BLOCK PERFORMANCE SUMMARY

<u>GENERATION</u>	<u>EXTC</u>	<u>EATC</u>
Gas Turbine, kW	744,470	548,162
Steam Turbines, kW	448,390	633,620
Total, Power Block, kW	1,192,860	1,181,782
<u>HEAT REJECTION</u>		
Process Cooling, M ² Btu/Hr	379.8	868.3
Process Cooling Absorbed in C.C., M ² Btu/hr	338.1	441.3
Process Cooling Rejection to Tower, M ² Btu/hr	41.7	427.0
Power Block Heat Rejection, ¹ M ² Btu/hr	3,806.2	4,385.0
Total Heat Rejection to Tower, M ² Btu/hr	3,847.9	4,812.8

Note:

1. Includes mechanical and electrical losses.

Gas Turbine

The fuel gas from the gasification process is delivered to the gas turbine trip valve at a pressure of 280 psig. In Case EATC, high pressure air is required by the coal gasification process and the source of this air is the gas turbine compressor discharge. The compression ratio of the gas turbine was selected to result in a pressure at the air extraction port of 225 psig, with ambient site conditions of 14.4 psia and 88°F dry bulb. The gas turbine employs a ceramic thermal barrier coating on the turbine vanes and blades for operation at 2400°F nominal inlet temperature.

Steam Conditions

Steam conditions used for the combined cycle system are:

Turbine Throttle	1450 psig
	900°F superheat
	1000°F reheat
Condenser	2.5" Hg. abs.

Heat Recovery Steam Generator (HRSG) Conditions

Steam production of the HRSG was calculated using a flue gas stack temperature of approximately 272°F. On the basis of demineralized boiler feedwater, the steady state boiler blowdown was assumed to be zero. The low pressure flash gas, available from the gasification process, has been burned as supplementary fuel in the HRSG.

Process Interface

The pertinent data regarding pressure, temperature and compositions of the fluids and their flow rates to the power block are based on the design of the process units for this case. Heat integration between the process units and the power block is considered whenever possible for the maximum utilization of energy.

Auxiliary Equipment

Auxiliary loads in excess of 5000 HP in both the gasification system and power block are steam-driven, including the boiler feed pumps.

POWER BLOCK

Gas Turbine-Generator Unit

Gas Turbine (50-1-GT-1)

The thermodynamic design of the gas turbine for each gasification cycle is different, taking into consideration the two major interface variations - available fuel gas and process air bleed requirements. The remaining operational constraints such as 2400°F turbine inlet temperature, site conditions of 88°F and 14.4 psia and a combustor shell pressure of 225 psig were also applied to Case EATC.

Overall engine performance was estimated by Fluor based on previous Westinghouse information. The performance included both inlet air and exhaust duct losses to account for pressure drops through air silencers, ducting, afterburner and HRSG heat recovery sections.

An air-to-water heat exchanger was used to cool the compressor discharge air for cooling the turbine rotating hot parts. The heat rejected to this heat exchanger was recovered and integrated with the intermediate pressure section of the HRSG.

Generator (50-1-G-1)

Each gas turbine drives a suitably rated, 0.9 power factor (pf), 0.58 short circuit ratio (SCR), three-phase, 60 hertz, 13.8 kV, 3600 rpm outdoor type, hydrogen cooled (30 psig) generator. These use water coolers for 95°F or lower water and direct connected, suitably rated enclosed air-cooled brushless excitors with a permanent magnet generator.

A summary tabulation of gas turbine performance and generator output is given in Table CS-2 as provided by Westinghouse for EXTC and as used or calculated by Fluor for EATC.

TABLE CS-2
GAS TURBINE PERFORMANCE SUMMARY

<u>DESCRIPTION</u>	<u>EXTC WESTINGHOUSE</u>	<u>EATC FLUOR</u>
Compressor Inlet Air Duct Loss, Inches H ₂ O	4.0	4.0
Compressor Disch. Pressure, psia	239.1	239.1
Compressor Disch. Temp., °F	857	857
Turbine Inlet Pressure, psia	229	229
Rotor Cooling Air, % of Inlet Flow	2.9	2.9
Rotor Coolant Temperature °F	350	350
Turbine Exhaust System, Inches H ₂ O	20.5	20.5
Compressor Air Flow, lb/sec	4,818.86	4,174.89
Air to Process, lb/sec	0.0	1,046.56
Fuel Flow, lb/sec	399.14	1,196.77
Turbine Exhaust Temp., °F	1,140	1,135
Rotor Cooling Air Cooler Duty, MM Btu/hr	64.9	57.1
Power Output, ¹ kW	744,470	548,162
Flash Gas Fuel Flow, lb/sec	5.08	5.16
Total Exhaust Gas Flow, lb/sec	5,223.10	4,330.25
Exhaust Gas Temp., Into HRSG, °F	1,147	1,139

Note:

1. At generator terminals

Steam Cycle Selection

HRSG

An HRSG, 51-1-B-1, is coupled with each gas turbine, 50-1-GT-1, to recover heat from the turbine exhaust gases. Flash gas from the process plant is also burned in the gas turbine exhaust before entry to the HRSG.

For Case EATC the HRSG generates saturated steam at one pressure level, high pressure (HP) at 1520 psia. An approach temperature greater than 30°F (temperature of gas leaving - saturation temperature of steam) was used in calculating the steam generated in the evaporator section. A 30°F approach temperature is in line with current HRSG design practice.

A typical arrangement of the heat recovery sections for an HRSG has been shown previously.¹ In the direction of exhaust gas flow the HRSG heat recovery sections for this case are as follows:

. Air heater	51-1-B-1:E-0
. Superheater	51-1-B-1:E-1
. Reheater	51-1-B-1:E-2
. Fuel Gas Heater Two	51-1-B-1:E-3
. HP Evaporator	51-1-B-1:E-4
. Economizer One	51-1-B-1:E-5
. Economizer Two	51-1-B-1:E-7
. Economizer Three	51-1-B-1:E-9A
. Economizer Four	51-1-B-1:E-9B

The high pressure saturated steam generated in the HP evaporator is heated to 900°F in the superheater. HP steam available from the process is combined with the HP steam from 51-1-B-1:E-1 after the superheater.

Saturated intermediate pressure (IP) steam produced in various process units is combined with cold reheat steam from the high pressure steam turbine, 51-T-1, and superheated to 1000°F by passing through the reheater, 51-1-B-1:E-2.

1. "Economic Studies of Coal Gasification Combined Cycle Systems for Electric Power Generation," EPRI AF-642, January, 1978.

Low pressure (LP) steam generators located in process units supply deaerating steam to a tray type deaerator, 51-DA-1, and steam for two parallel 5.5 MW steam turbine generators. The deaerator operates at approximately 30 psia.

The boiler feedwater (BFW) from the deaerator at two pressure levels, HP and MP, is first preheated to the MP steam saturation temperature (357°F) in Economizers Three and Four. The LP BFW leaves the HRSG and flows to various process steam generators. The HP BFW is heated to the HP steam saturation temperature (595°F) in Economizers One and Two. A portion of this water is withdrawn, pumped through Fuel Gas Heater One, raising the fuel gas temperature to 550°F, and returns to the inlet of Economizer Two at about 347°F. Almost three quarters of the HP BFW is withdrawn and flows to the gasification unit for generation of 1520 psia, 900°F superheated steam. The balance of the BFW is evaporated in the HP steam recovery section at 598°F and flows to the HP superheater, where its temperature is raised to 900°F.

Each HRSG is provided with its own HP steam drum and corresponding BFW circulation pump.

The HRSG exhaust gas (stack) temperature of approximately 272°F allows the gas side surface of the economizers to operate safely above the sulfur dew point of the exhaust gas. The performance of the HRSG calculated by Fluor for case EATC is summarized in Table CS-3, next to data from Westinghouse for Case EXTC.

Steam Turbine - Generator Units

Steam Turbine (51-T-1 and 2)

A single steam turbine system consisting of HP and IP ends (51-T-1) and LP end (51-T-2) has been used for Case EATC. The turbine selected for the power block is a conventional tandem compound, reheat machine.

The HP end of 51-T-1 receives superheated HP steam at 1450 psig, 900°F from the HRSGs and the process and exhausts to the IP steam header operating at approximately 445 psig. The IP steam available from the process is combined with

TABLE CS-3
HRSG PERFORMANCE SUMMARY

	<u>EXTC</u>	<u>EATC</u>
Exhaust Gas Flow, lb/sec	5,223.10	4,330.25
<u>HP EVAP., SH & RH SECTIONS</u>		
Exhaust Gas Temperature In, °F (1)	1,147.0	1,139.0(2)
SH Temperature Out, °F	900.0	900.0
SH Pressure Out, psig	1,450.0	1,450.0
SH Enthalpy Out, Btu/lb	1,431.0	1,430.0
Sat. Steam Evap. lb/sec	362.3	82.0
Sat. Steam from Process, lb/sec	588.3	0.0
SH Outlet Flow, lb/sec	950.6	82.0
SH Duty, MM Btu/hr	896.60	77.5
HP Drum Temperature, °F	598.0	598.0
HP Drum Pressure, psia	1,520.0	1,520.0
HP Drum Water Enthalpy In, Btu/lb	614.0	610.0
HP Evap. Duty, MM Btu/hr	724.0	164.7
RH Enthalpy In, Btu/lb	1,303.9	1,296.8
RH Temperature Out, °F	1,000.0	1,000.0
RH Pressure Out, psig	385.0	385.0
RH Enthalpy Out, Btu/lb	1,523.0	1,523.0
RH Flow, lb/sec	1,016.6	1,061.2
RH Flow to Process, lb/sec	301.6	0.0
RH Duty, MM Btu/hr	801.9	866.4
Fuel Gas Heater Flow, lb/sec	399.14	1,196.77
Fuel Gas Heater Duty, MM Btu/hr	204.2	570.3
Air Heater Flow, lb/sec	-	1,046.6
Air Heater Duty, MM Btu/hr	-	194.4
Exhaust Gas Temperature Out, °F	630.0	688.2
<u>ECONOMIZER NO. 1 SECTION</u>		
Water Enthalpy In, Btu/lb	440.0	438.0
Water Flow, lb/sec	1,077.6	1,223.7
Water Flow to Process, lb/sec	588.3	863.9
Water Flow to Fuel Gas Heater, lb/sec	127.0	277.8
Duty, MM Btu/hr	675.0	756.0
<u>IP EVAPORATOR SECTION</u>		
IP Drum Temperature, °F	459.0	-
IP Drum Pressure, psia	460.0	-
IP Steam Enthalpy Out, Btu/lb	1,205.0	-
IP Steam Evap., lb/sec	5.2	-
IP Evap. Duty, MM Btu/hr	14.4	-
IP Steam from Air Cooler, lb/sec	17.2	-
IP Steam to (from) Process, lb/sec	(62.6)	-
IP Steam to Cold RH, lb/sec	85.0	-
Water Enthalpy In, Btu/lb	440.0	-
Exhaust Gas Temperature Out, °F	490.0	503.0

(1) Includes flash gas combustion heat

(2) Total radiation losses from HRSG would reduce this to 1128°F.

TABLE CS-3 (Continued)

<u>ECONOMIZER NO. 2 SECTION</u>	<u>EXTC</u>	<u>EATC</u>
Water Enthalpy In, Btu/lb	222	321.0
Water Flow, lb/sec	1,145.0	1,223.7
Outlet Flow to Process, lb/sec	62.6	0.0
Duty, MM Btu/hr	898.6	514.6
Exhaust Gas Temperature Out, °F	300.0	374.9
<u>LP EVAPORATOR & DA SECTION</u>		
LP Drum Temperature °F	246.0	-
LP Drum Pressure, psia	28.0	-
Cond. Flow In, lb/sec	1,061.4	-
Cond. Enthalpy In, Btu/lb	165.5	-
Process Flows In, lb/sec	160.3	-
FW Flow to Process, lb/sec	54.1	-
Duty, MM Btu/hr	133.5	-
Exhaust Gas Temperature Out, °F	272.0	-
<u>ECONOMIZERS NO. 3 & 4 SECTIONS</u>		
HP Water Enthalpy In, Btu/lb	-	225.0
HP Water Flow, lb/sec	-	945.9
LP Water Enthalpy In, Btu/lb	-	221.0
LP Water Flow, lb/sec	-	216.3
LP Water Flow to Process, lb/sec	-	216.3
HP Duty, MM Btu/hr	-	328.7
LP Duty, MM Btu/hr	-	76.4
Exhaust Gas Temperature Out, °F	-	272.0
<u>DEAERATOR</u>		
LP Steam Enthalpy in, Btu/lb	-	1,155.7
LP Steam Flow, lb/sec	-	49.2
Cond. Enthalpy in, Btu/lb	-	180.4
Cond. Flow in, lb/sec	-	1,188.3
Vent Steam Enthalpy out, Btu/lb	-	1,164.3
Vent Steam Flow, lb/sec	-	0.3
LP Water Enthalpy, Btu/lb	-	219.0
LP Water Flow, lb/sec	-	1,237.2

HP turbine exhaust and reheated to 1000°F in the HRSG reheaters (51-1-B-1:E-2), and then flows to the IP end of 51-T-1. The inlet and exhaust conditions for the IP end of 51-T-1 are 385 psig, 1000°F and 110 psig respectively.

The LP end (51-T-2) is a condensing type unit receiving steam at 110 psig and exhausting at 2-1/2" Hg abs. The surface condenser, 51-E-8, associated with 51-T-2 is designed for cooling water (CW) flow in two tube side passes with 80°F CW inlet temperature and 20°F CW temperature rise.

Generator - Exciter (51-1-G-1)

The steam turbine (51-T-1 and 2) drives a suitably rated, 0.9 pf, 0.58 SCR, 3-phase, 60 hertz, 24.0 kV, 3600 rpm outdoor type, hydrogen inner-cooled generator with water coolers for 95°F or lower water and direct connected suitably rated enclosed air-cooled brushless exciter with permanent magnet generator.

Steam Turbines (51-T-3A and B) and Generators

Two steam turbines consisting of 50 psig inlets and 15 psig admittance steam have been provided to recover additional low temperature process heat. The exhaust conditions are 2-1/2" Hg absolute.

A summary tabulation of steam turbine performance and generator output is given in Table CS-4.

TABLE CS-4
STEAM TURBINES
PERFORMANCE SUMMARY

HP ELEMENT (T1)

	<u>EXTC</u>	<u>EATC</u>
Throttle Conditions:	1,450 psig/900°F TT	
Steam Enthalpy In, Btu/lb	1,431.0	1,430.0
Throttle Flow from HRSG, lb/sec	950.6	82.0
Throttle Flow from Process, lb/sec	0.0	863.9
Total Throttle Flow, lb/sec	950.6	945.9
Exhaust Flow to Process, lb/sec	0.0	0.0
Exhaust Enthalpy, Btu/lb	1,313.0	1,308.0

IP ELEMENT (T1)

Inlet Conditions:	385 psig/1,000°F TT	
Inlet Enthalpy, Btu/lb	1,523.0	1,523.0
Inlet Flow, lb/sec	715.0	1,061.2
Exhaust Enthalpy, Btu/lb	1,383.0	1,387.0
Exhaust Flow to Process, lb/sec	18.7	0.6
Exhaust Flow to Pump Turbines, lb/sec	0.0	25.9

LP ELEMENT (T2)

Turbine Exh. Flow, lb/sec	715.3	1,093.1
Exhaust Enthalpy, Btu/lb	1,060.0	1,060.0
Total Flow to Condenser, lb/sec	759.0	1,190.0
Power Output, kW at Gen. Terminals	448,390.0	622,146.0

AUXILIARY TURBINES (T3A & B)

Inlet Conditions	-	50 psig/sat'd.
Inlet Enthalpy, Btu/lb	-	1,180.0
Inlet Flow, lb/sec	-	36.7
Admittance Conditions	-	15 psig
Admittance Enthalpy, Btu/lb	-	1,156.0
Admittance Flow, lb/sec	-	25.8
Total Flow to Condenser, lb/sec	-	62.5
Power Output, kW at Gen. Terminals	-	11,474.0

EQUIPMENT STATE OF THE ART

Information given here is repeated from previous work¹ and was originally supplied by Westinghouse.

Gas Turbine

The major equipment assembled and described as part of the power block combined cycle for this study, contain some operating parameters uncommon to current industry practice. These uncommon areas are:

- gas turbine compressor pressure ratio
- high temperature turbine operation

Although not in current commercial production, these areas are not beyond the state of the art for 1985 base load operation.

Gas Turbine Compressor Pressure Ratio

At 2400°F turbine inlet temperature, the specified high compressor pressure ratio of approximately 17 to 1 on an 88°F ambient day approaches an equivalent of 19 to 1 at ISO conditions (59°F, 14.7 psia). This is much higher than current design practice (12 and 14 to 1) by Westinghouse on large single spool axial flow compressors incorporated into single shaft, gas turbines. Single spool engines rated at 20 MW and 17 to 1 are commercially available today. However, these units employ several (6-7) stages of variable geometry compressor stators at the inlet end of the compressor.

Performance studies on combined cycles operating with gas turbine inlet temperatures in the 2400°F range have shown the optimum pressure ratio to be near 14 to 1. Because of this no one has yet undertaken development of large single spool gas turbines having fixed (maximum of two variable stage) compressor geometry for these higher compression ratios.

1. "Economic Studies of Coal Gasification Combined Cycle Systems for Electric Power Generation," EPRI AF-642, January 1978.

High Temperature Turbine Operation

Gas turbines for operation at base load with an inlet temperature of 2400°F and fitted with hot parts having thermal barrier coatings are not commercially available at the present time.

To date, test aircraft type engines fitted with plasma-sprayed ceramic coated turbine blades have been operated successfully by NASA. On this basis, 2400°F operation with thermal barrier coatings could be considered as being commercially available in the 1981 to 1985 period with appropriate development plans.

HRSG

The equipment in this section of the power block is commercially available.

Steam Turbines

Although the selected throttle steam conditions of 1450 psig/900°F/1000°F reheat for the large steam turbine present no problem to the state of art, current industry practice with machines in the size range of this study would have throttle pressures of 1800 and 2400 psig. The two small low pressure steam turbines are commercially available.

APPENDIX B

AREA AND UNIT NUMBERING

Each plant consists of a number of facilities or systems, called units. The units are grouped into areas having similar general purposes. The areas and units are numbered according to a consistent convention for identification. The table below shows the area and unit numbering system.

AREA/UNIT NUMBERING SYSTEM

<u>AREA</u>	<u>AREA DESCRIPTION</u>	<u>UNIT</u>	<u>UNIT DESCRIPTION</u>
10	Feed Systems	10	Coal Preparation
		11	Oxidant Feed
20	Onsite Units	20	Gasification and Ash Handling
		21	Gas Cooling, Char Recovery and Particulate Removal
		22	Acid Gas Removal
		23	Sulfur Recovery and Tail Gas Unit
		24	Process Condensate Treating
30	Utility Systems	30	Steam, Condensate and Boiler Feedwater System
		32	Cooling Water System
		33	Plant and Instrument Air System
		34	Potable and Utility Water
		35	Fuel Gas System
		36	Nitrogen System
40	Offsite Facilities	40	Effluent Water Treating
		41	Flare System
		42	Firewater System
		43	Buildings
		44	Railroad Loading and Unloading
50	Combined Cycle System	45	Electrical Distribution
		50	Gas Turbine and Power Generation
		51	Heat Recovery and Power Generation