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PREFACE 
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June 30, 1980, was prepared by, t h e  Solar  Energy RBD Department, I .  A. 'Lesk, 

Manager, Motoro la. lnc. ,  Phoenix, Arizona 85008. Th is  r e p o r t  describes t h e  

work performed under SERl  Contract  No. XS-9-8277-1. K. R. Sarma Is t h e  

p r i n i c p a l  i nves t i ga to r .  Others who p a r t i c i p a t e d  i n  t h i s  program are  

R. W. Gu r t l e r ,  M. J. Rlce, R. N. Legge, R. J. E l l i s a n d  W. Saltna. 



ABSTRACT 

During t h i s  t h i  r'd qua r te r  o f  t he  program, t h e  h igh  pressure plasma (hpp) 

dcpos i t ion process has been thorough I  y  eva l uated us i ng S i HC l and S i C I  s  i l  icon 

source gases, by t h e  gas chromatographic ana i ys i s o f  t h e  e f  f l uent gases from 

t h e  reac tor .  Both the  depos i t ion  e f f i c i e n c y  and reac to r  throughput r a t e  were 

found t o  be cons is ten t l y  h igher f o r  hpp mode o f  opera t ion  compared t o  

conventional CVD mode. The f , Igure o f  m e r i t  f o r  vdr ious ch loros i lanes !as a 

s i l i c o n  source gas f o r  hpp depos i t lon  i s  discussed. A new continuous s i l i c o n  

f i l m  depos i t ion  scheme, i s  developed, and system design i s  i n i t i a t e d .  Th is  

new system employs gas i n t e r l o c k s  and o l im ina tes  t h e  need f o r ' g a s  c u r t a i n s  which 

tlijve been found t o  be problemafic.  Solar  c e l l s  (2 cm x 2 cm area) w i t h  AM1 

nf f  i c i cnc i es o f  up t o  12% were fab r i ca ted  on RTR gra i n enhan'ced hpp depos i ted  

f i lms .  The parameters o f  a 12% c e l l  under simulated AM1 i l l u m i n a t i o n  were: 

2 
"oc = 0.582 v o l t s ,  JSC =. 28.3 mA/cm and F. F. = 73.0%. 
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1'.0 INTRODUCTION 

The o b j e c t i v e s  o f  t h i s  research program are: a) i n v e s t i g a t i o n  o f  a  semi- 

cont inuous plasma depos i t ion  system as a  means f o r  e f f i c i e n t ,  h igh  r a t e  depos i t ion  

o f  pol yc rys ta  l l i ne s i  l Icon f i lms, b) deve lopment o f  low-cost reuseab l e  substrates 

f o r  deposi. t ion and shear separat ion o f  t h e  s i l i c o n  fi,lms, c )  op t im iza t i on  and 

subsequent g r a i n  enhancement o f  t h e  f i l m s  through laser  RTR r e c r y s t a l l i z a t i o n ,  

2 
and d l  demonstration o f  a t  l eas t  12% e f f i c i e n t ,  large area (greater  than 10 cm 1 

s o l a r  ce 1.1 s  f ab r i ca ted  on gra i n-enhanced s  i l icon f i l ms. 

Du'rlng t h i s  quarter,  we have character ized t h e  plasma depositon process using 

SiHCI3 and SiCl as t h e  s i l i c o n  source gases gy gas chromatographic ana lys i s  o f  4 

t h e  reac to r  e f f l u e n t  gases. Deposi t ion e f f i c i e n c i e s  were determined as a  func t i on  o f  

ch lo ros i l ane  concentrat ion and substrate temperature. Comparisons were made i n  

t h e  depos i t  ion  reac to r  performance between t h e  CVD and p  l asma depos it ion modes under 

otherwise i d e n t i c a l  cond i t ions. Under p rac f  i c a  l s  i l icon f i l m  depos i t  Ion  

condi t ions,  depos i t ion  e f f i c i e n c i e s  and s i l i c o n  . f i l m  throughput ra tes  were 

found t o  be c o n s i s t e n t l y  h igher w i t h  t h e  plasma depos i t ion  mode o f  opera t ion  

compared t o  t h e  CVD mode. The observed r e s u l t s  a re  discussed and expla ined 

qua l i t a t  i ve l y  from thermodynamic, k i n e t i c  and mass t r a n s p o r t  considerat ion's. 

A new continuous s i l i c o n  f i l m  depos i t ion  scheme has been developed. This 

new scheme employs gas i n t e r l o c k s  and e l im ina tes  t h e  requirement f o r  gas seals 

.used i n  the  present semicontinuo~us system and which are  found t o  be problematic.  

A se r ies  o f  experiments has been performed i n  t h e  g r 6 i n  enhancement and 

s o l a r  c e l l  ' f a b r i c a t i o n  areas aimed a t  determining t h e  f a c t o r s  l l m i t l n g  t h e  

performance o f  s o l a r  cel , ls  f ab r i ca ted  on RTR g r a i n  enhanced plasma deposited 

s i l i c o n  f i lms .  The r e s u l t s  of these experiments suggest t h a t  t h e  det r imenta l  

chemical i m p u r i t i e s  i n  these f i l m s  a re  a t  an inconsequential  level ,  and it i s  t h e  



presence o f  defects (p r imar i ly  dislocat ions)  which are  current ly l im i t ing  

t h e  performance o f ' t h e  solar  c e l l s .  However,.in the la tes t  batch of  

m l a r  c e l  I s  fabricaTed. on RTR gra in  enhanced plasma deposited f i lms,  we have 

2 observed AM1 conversion e f f i c i e n c i e s  o f  u p ' t o  12% on 4 cm area c e l l s .  



7.0 , CHARACTERIZATION OF PLASMA DEPOSITION PROCESS 

We have cont inued charac te r i za t i on  o f  t h e  h igh  pressure plasma (hpp) 

depos i t ion  process w i t h  var ious  experimental parameters i nc lud ing  t h e  t ype .o f  

s i l i c o n .  bear ing gas used, reac tant  concentrat ion, t o t a l .  reac tant  f low ra te ,  

and subst ra te  temperature dur ing  deposi t ion.  Experiments aimed a t  comparing 

t h e  s  i l icon depos l t ion process under HPP and .,conventional CVD modes were 

a l s o  performed. Gas chromatography has been used t o  evauate each s i l i c o n  

depos i t ion  process; d e t a i l s  o f  t h e  gas chromatographic procedures were described 

e a r l i e r  1 , 2 ,  The s i l i c o n  depos i t ion  process i s  character ized by determining 

t h e  e f f i c i e n c y  o f  s i l i c o n  deposit ion; t h e  e r r o r  i n  depos i t ion  e f f i c i e n c y  determined 

by gas chromatographic ana lys i s  i s  est imated t o  be w i t h i n  20.5%. 

I n  the  f o l l o w i n g  we present t h e  experimental r e s u l t s  and exp la in  them on 

a q u a l i t a t i v e  bas is  us ing thermodynamic, k i n e t i c  and mass t r a n s p o r t  considerat ions.  

We a l s o  discuss t h e  s u i t a b i  l i t y  o f  var ious  c h l o r o s i  lanes as s i  l icon source gases i n  

t h e  hpp depos i t ion  process. 

2.1 EXPERIMENTAL RESULTS 

Table 1 summarizes t h e  resu l ts ,  obta ined using SiHCI3 as t h e  s i l i c o n  source 

gass. F igure  1 shows t h e  e f f e c t  o f  ch lo ros i l ane  concentrat ion on depos i t ion  

e f f i c i e n c y  when t h e  subst ra te  temperature and t o t a l  reac tant  f l ow  r a t e  are  

kep t  constant  a t  1 1 0 0 ~ ~  ahd 30 LWl respectively. From t h e  reac to r  dimensions 

( 5  cm x 5 cm x 60 cm), t h e  f l o w . v e l o c i t y  and residence t ime can be ca l cu la ted  

t o  be 20 cm/sec. and 3 sec. respect ive ly .  Renolds number c a l c u l a t i o n s  f o r  
. . 

a l  l t h e  reac tant  f lows employed ind ica ted t h a t  t h e  f low w i  l l be i n  t h e  t u r b u l e n t  

regime. Also d i f f us ion .  length c a l c u l a t i o n s  f o r  t h e  heaviest  molecule (S iC lq)  i n  

2 
t he  reac tor  system using t h e  d i f f u s i o n  c o e f f i c i e n t  (6.3 cm /set) ( 3 )  and residence 



TABLE 1 

SUMMARY OF RESULTS OBTAINED USING 
SiHCI3 AS SILICON SOURCE GAS. 

1180 CVD 15 47,3  35 .7  32.3 
HPP 15 54.3 38.5 33.5 

. . 
CVD 30 52.2 36. i 31.5 
HPP 30 55.1 37.9 34.0 

1150 CVD 15 51.9 34.2 30.7 
HPP 15 49.3 35.6 32.3 

CVD 3 0 53.9 31.7 27.8 
HPP 3 0 55.7 35.8 31.7 

1200 CVD 15 48.0 34.9 30.5 
HPP 15 49.8 37.3 33.2 

CVD 30 51.6 31.4 29,O 
HPP 30 68.1 39.0 . 
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t ime ( 3  see.) i nd i ca ted  t h a t  it i s  approximately t h e  same as t h e  

r e a c t o r  cross sec t iona l  s ize.  From these considerat ions,  good gas mix ing  can 

be expected i n  t h e  r e a c t o r  system. Along w i t h  t h e  exper imenta l data under CVD 

and HPP cond i t ions ,  data from t h e o r e t i c a l  ca1,culat ions by S i r t l  and Sarma are  

a l s o  shown i n  F igure  1. (The two t h e o r e t i c a l '  curves presented i n  ~ i ~ u r e  

1 w i l l  be discussed. l a t e r  i n ' t h l ' s  sec t ion) .  

As can be seen i n  F igu re  1, observed depos i t ion  e f f i c i e n c y  i s  h igher f o r  t he  
4 

HPP mode fhan f o r  t h e  corresponding CVD mode. Also, i n  t h e  HPP mode, observed 

e f f i c i e n c y  i s  h igher  than pred ic ted by thermodynamic e q u i l i b r i u p  c a l c u l a t i o n s  (4,.5) 

(Sarma) f o r  CI/H < 0.1. For CI/H 0.1 t h e  HPP e f f i c i e n c i e s  are  lowel- -I-l-~an 

c a l c u l a t e d  e q u i l i b r i u m  values. Observed CVD e f f i c i e n c i e s  are  c o n s i s t e n t l y  

lower than ca lcu la ted  e q u i l i b r i u m  values. In  some experiments performed w i t h  

exceedingly small reac tan t  f l ow  r a t e s  (h igh  residence t imes) t o  assure 

equ i l i b r i um,  t h e  CVD e f f i c i e n c i e s  approached t h e  e q u i l i b r i u m  e f f i c i e n c i e s  more 

c l o s e l y ,  bu t  were never found t o  exceed t h e  e q u i l i b r i u m  values pred ic ted from 

o u r  ca l cu la t i ons .  

O f  t h e  two theoretics l curves presented i n  Figure 1, one i s o b h  i ned 

from our  work (4,bj  and one. from S i r t l  e t  a t .  (6-8). As can 

be seen In Flgijre I, wtii.ie t h e , t w o  t h e o r e t i c a l  curves are  i n  qua1 i t a t i v e  

agreement regarding t h e  v a r i a t i o n  o f  depos i t ion  e f f i c i e n c y  w i t h  concentrat ion,  

they  d i f f e r  q u a n t i t a t i v e l y .  S i r t l f s  c a l c u l a t i o n s  p r e d i c t  much higher depos i t ion  

e f f i c i e n c i e s  than ours. S i r t l l s  c a l c u l a t i o n s  (6-8) were a v a i l a b l e  when we 

s t a r t e d  work on t h i s  cont rac t .  Hence, our  c a l c u l a t i o n s  were aimed a t  extending 

S i r t l ' s  c a l c u l a t i o n s  t o  t h e  cond i t i ons  p e r t a i n i n g  t h e  HPP depos i t ion  (plasma 

temperatures. up t o  5000K). ~ h u s ,  we emp I oyed . t h e  'same ca l cu l a t  ion  techn i que as 

S i r t l  e t  a l .  ( f r e e  energy min imiza t ion  technique) f o r  c a l c u l a t i n g  t h e  chemical 

thermodynamic equt l ib r ium.  We have n o t  y e t  c l e a r l y  i d e n t i f i e d  t h e  reasons 

f o r  disagreement between t h e  two c a l c u l a t i o n  resu l t s .  However, it should be 



pointed o u t  t h a t  S i r t l  e t  a l .  used t h e  thermodynamic data a v a i l a b l e  , i n  

t h e  year 1972, and we have used data from JANAF t a b l e s  ( 9 )  i n  t h e  year 1978. 

JANAF tab les  are  r e g u l a r l y  updated w i t h  more acceptable thermodynamic data. 

Hence, it i s  possi bl 'e t h a t  t h e  d i f f e r e n c e  between t h e  two may be associated w i t h  t h e  

thermodynamic data used and t h e  species considered. we p  l,an t o  i n v e s t i g a t e  

t h i s  fu r the r . .  I t  i s  worth p o i n t i n g  o u t  t h a t  we were n o t  ab le  t o  . l oca te  . any 

experimental work i n  t h e  l i t e r a t u r e  i n  which t h e  s i l i c o n  depos i t ion  e f f i c i e n c y  

(us ing  SiHCI3 as t h e  s i l i c o n  source gas) appraoched t h e  e q u i l i b r i u m  value 

pred ic ted by S i r t l  e t  a l .  ca lcu la t ions .  

Table 2  summarizes t h e  r e s u l t s  obtained using SiCI4 as a  source gas. F igure 

2  shows t h e  e f f e c t  o f  ch lo ros i l ane  concent ra t ion  on t h e  depos i t ion  e f f i c i e n c y .  

SiCI4 source gas depos i t ion  d i f f e r s  from SiHCI3; i n  p a r t i c u l a r ,  e t ch ing  

reac t ions  become important w i t h  SiCI4 a t  f a i r l y  low reac tant  concentrat ions. As 

can be seen i n  Figure 2, HPP e f f i c i e n c i e s  are  h igher than CVD e f f i c i e n c i e s  . 

over most. o f  t h e  conce'ntrat ion. range. . For CI/H > 0.15,. CVD e f f i c i e n c y  

appears t o  be s l i g h t l y  h igher than t h e  HPP value. While t h e  d i f f e r e n c e  

between t h e  two ( -  1.0% f o r  CI /H = 0.2) appears t o  be comparable t o  t h e  

accuracy o f  t h e  measurement, it i s  found t o '  be r e a l  aS i n f e r r e d  from t h e  r e s u l t  

o f  a  number of repet3 t ions  o f  t h i s  experiment. Fur ther  it can be seen from 

Figure 2  t h a t .  t he  experimenta l  ef.f i c i e n c i e s  are  h igher.  than our  pred ic ted 

e q u i l i b r i u m  values .and lower than those o f  S i r t l  e t  a l .  Also our c a l c u l a t i o n s  

p r e d i c t  e tch ing f o r  CI/H = 0.125 and S i r t l  e t .  a l .  p red i& e tch ing  f o r  

CI/H = 0.3; experimenta l ly,  e tch ing has no t  been observed f o r  CI/H - r a t i o s  o f  

up t o  '0.3. 

F igure 3  shows t h e  e f f e c t  o f  subst ra te  temperature du r ing  depos i t ion  on t h e  

e f f i c iency . '  Th is  f i g u r e  shows data f o r  two d i f f e r e n t  concentrat ions, CI/H = 0.08 

and 0.1, when us]  ng SiHCI as t h e  s i  l icon source gas. The maximum i n  depos i t i on  



TABLE % 

SUMMARY OF'RESULTS OBTAINED USING 
S i C 1 4 A S  S I L I C O N  SOURCE GAS 

-----,- - -- 

DEPOSITION EFFICIENCY 

T (OC) MODE FLOW C I / H  = 0.04 C I / H  = 0.08 
-- - - -- -- 

18.8 
18.1 

13.9 
14.4 

19.2 
19.2 

17.7 
17.2 

20.3 1 
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e f f i c i e n c y  a t  around 1 1 0 0 ~ ~  i s  i n  q u a l i t a t i v e  agreement w i t h  S i r t l  e t  a l .  equ l i b r i um 

ca lcu la t i ons .  (Our ca lcu la t . ions  do not  inc lude low temperatures'and hence 

compi.~risons cou1.d n o t  be made. ~ i ~ u r e  3 i nd i ca tes  t h a t  t h e  HPP e f f i c i e n c i e s  are 

consi s t s n t  l y h i g h e r  than CVD e f f  l c ienc ies .  

F igure 4 shows reac to r  throughput , (g iven i n  terms o f  a constant  t imes t h e  

grams o f  s i l i c o n  deposited per minute) ca l cu la ted  from data i n  Figures 1 and 2. 

Reactor throughput i s  an important parameter s ince it determines t h e  number o f  

reac tors  ( c a p i t a l )  requ i red  f o r  a g iven capac i ty  which i n  t u r n  determines 

product ion f l o o r  space requirements. As seen i n  F igure .4 ,  when using 

SiCI4 as t h e  s i l i c o n  source gas, a maximum i n  throughput occurs a t  a 

concentrat ion, CI/H, o f  about 0.05. Using SiHCI3 as t h e  s i l i c o n  source gas, 

throughput increases cont inuously w i t h  concentrat ion.  However, f o r  h igher 

concentrat ions, s i l i c o n  powder format ion due t o  excessive gas phase nuc lea t ion  

becomes a severe problem. Thus the  onset o f  powder format ion se ts  an upper 

l i m i t  t o  t h e  concent ra t ion  ( C I / H r a t i o )  t h a t  can be employed and t h e  reac to r  . 

throughput achieved. Th is  concentrat ion l i m i t  i s  found t o  be around a CI/H 

r a t i o  o f  0.1. Th is  concentrat ion l i m i t  i s  found t o  be somewhat h igher  f o r  

CVD compared t o  HPP deposi t ion.  Thus from f i g u r e  4 it can be seen t h a t ,  

comparing S i C l  and SiHCI3 as a s i l i c o n  source gas, reac to r  throughput i s  
4 

h igher  i n  t h e  HPP mode than I n  the  CVD mode under p r a c t i c a l  s i l i c o n  depos i t ion  

cond i t ions .  Also, t h e  p r a c t i c a l  reac to r  throughpu+ i s  about a f a c t o r  o f  two 

h igher f o r  SiHCI3 compared t o  a SiCl source. 
4 

2.2 DISCUSSION 

2.2.1 THERMODYNAMIC FACTORS 
.. . 

While, i n  general, p r a c t i c a l  s i l i c o n  depos i t ion  reac tors  do n o t  operate under 
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e q u i l i b r i u m  condi t ions,  cons idera t ion  o f  thermodynamic e q u i l i b r i u m  helps one 

t o  p r e d i c t  t h e  range o f  performance t h a t  can be expected. For example, by 

examining the  r e s u l t s  o f  e q u i l i b r i u m  c a l c u l a t i o n s  (4,5) such as those i n  F igure 5, 

one can e a s i l y  p r e d i c t  t h e  r e l a t i v e  performance o f  var ious ch loros i lanes I n  a  

depos i t ion  reactor .  F igure 5  shows t h e  e q u i l i b r i u m  depos i t lon  e f f l c i enc . i es  f o r  

SIH2CI2, SIHCI3 and SiC14.sources as a  func t i on  o f  concentrat lon f o r  a  

subst ra te  temperature o f  1 1 0 0 ~ ~  and reac to r  pressure o f  1 atm. Experimental 

depos l t lon  e f f l c i e n c l e s  are I n  q u a l l t a t l v e  agreement w l t h  t h e  r e s u l t s  of 

e q u i l i b r i u m  c a l c u l a t i o n :  i.e., depos l t lon  e f f l c l e n c i e s  are  t h e  h ighest  f o r  

SiH CI and lowest f o r  SICI4, and d e p o s l t l o n e f f i c i e n c y  decreases f o r  a l l  these 
2  2 .  

ch lo ros i l anes  w i t h  increasing concentrat lon. 

S i m i l a r l y  e f f e c t  o f  substrate temperature can be examined from t h e  

S i 
e q u i l i b r i u m  digaram shown i n  Figure 6. I n  t h i s  f i gu re ,  r a t l o  i n  t h e  gas 

phase I n  equ.i l ib r ium i s  ploTted as a  func t l on  o f  concentrat ion (CI/H r a t l o )  

o f  t h e  reac to r  input  gas stream f o r  var ious  temperatures. Uslng Figure 6, t h e  

depos i t ion  e f f i c i e n c y ,  n, can be ca lcu la ted using t h e  equation 

b I i nput  

where Si/Cl)input I s  determlned by t h e  ch lo ros l l ane  source used. For example 

f o r  SiH2CI2, Si/ClI input = 0.5 and f o r  SIClq, SI/Cl)input = 0.25. 

Thus from t h e  above expresslon we can see t h a t  f o r  a  given source, 

e f f i c i e n c y  w l l l  be h igher when Si/CI)eqbm. i s  lower. I n  F igure 6 we have used 

S i r t l  e t  a l .  data (6-8) f o r  low temperatures (T<1700K) - and our  ca l cu la ted  data (4,5) 

fo r  h igh temperatures (T>1700K). Since we use t h i s  f i g u r e  on ly  t o  exp la in  t rends i n  

s i l i c o n  deposi t ion,  q u a n t i t a t i v e  disagreement between t h e  two se ts  o f  data i s  

no t  o f  concern. From Figure 6, it can be seen t h a t  S i / C l I e q b m .  increases w i t h  



T = 1 1 0 0 ~ ~  
P = 1 atm. 
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FIGIJRE 6 : .  S i - C I - H  EQUILIBRIUM DIAGRAM GE?!ERATED .FROM THE 
DATA I N  REFERENCES ( 4  - 8 ) .  



i r ~c r r?as ing  temperature, l e v e l s  o f f  a t  around 1400 - 1700K and then increases 

again. Thus, e f f i c i e n c y  increases w i t h  increas ing  temperature, then l e v e l s  

o f f  between 1400 - 1700K and then increases f u r t h e r  w i t h  temperature. 

I n  a convent ional  CVD process, reac tan t  gas temperature r i s e s  from room 

temperature t o  t h e  subs t ra te  temperature, and never exceeds t h e  subs t ra te  

temperature. Thus t h e  approach t o  e q u l l l b r i u m  i s  from r i g h t  t o  l e f t  i n  

F igu re  6 ( l ow  temperature t o  h lgh  temperature).  Unless s u f f i c i e n t  residence 

t ime  i s  al lowed, e q u l l l b r i u m  (thermal and chemical)  w i l l  n o t  be reached. I n  

t h e  case o f  h igh  pressure plasma deposition, t h e  reac tan t  gases experience 

v u r y  h igh  temperatures (4 )  (-4000K) i n  t h e  plasma beam and then are  quenched 

.to t h e  subs t ra te  temperature. Cornposi~ional equ l i b r i um can be ass~~merf i n , t h l s  

h i g h  temperature, h igh  pressure plasma. ( A t  t h i s  tlme, it should be pointed o u t  

\7 
t h a t  above t h e  b o i l i n g  p o l n t  o f  s i i l c o n , ' a l  l components o f  t h e  system w i l l  be i n  

vapor phase, and t h e  Si/ClIeqbm i n  F igure  6 i s  obta ined by cons lder ing  the  

s i l i c o n  species con ta in ing  CI and/or H I .  As t h e  plasma I s  quenched t o  the  

subs t ra te  temperature, eq'ui 1 i br ium i s  approached from t h e  l e f t  o f  F igure 6 t o  

r i g h t .  .By r a p i d l y  quenching t h e  h lgh  temperature equl lbrlum, it should be 

possi  b i e  t o  ob ta in  h igher  depos i t i on  e f f i c i e n c i e s  w l  t h  HPP compared t o  CVD. 

1 tl i s has been the  r a t  iona 1,e f o r  i n v e s t i g a t i n g  HPP as a means f o r  economica l l y 

d e p o s i t i n g  m ic roc rys ta l l . i ne  s l l i c o n  f i lms .  From t h e  experimental  resu l t s ,  it can 

be seen t h a t  w h i l e  t h e  improvements i n  e f f i c i e n c i e s  are  n o t  as milch as we t h o ~ . ~ g h t  . 

poss ib le ,  use fu l  improvement"in e f f i c i e n c y  was indeed obtalned. I n  t he  nex t  sec t ions  

we w i l 1 examine t h e  o the r  cons idera t  ions t h a t  'determine t h e  e f f i c i e n c y  

improvements ob ta inab le  w i t h  HPP s i l i c o n  deposi t ion.  



2.2.2 SILICON DEPOSITION MECHANISMS 

I n t h e  case o f  convent ion  co ld  wa 1 I CVD reactors;  t h e  depos i t  ion mechan i sm 

genera l ly  involves, t ranspor t  o f  reac tants  t o  t h e  subst ra te  surface, chemical 

r e a c t  ion on t h e  sur face producing s i  l lcon atoms, and incorpora t ion  o f  these 

atoms i n t o  t h e  growing s i l i c o n  f i l m ,  as shown i n  Figure 7. However, a second 

depos i t ion  mode involves occurrence o f  'chemical react ions,  i n  t h e  gas phase 

producing f r e e  s i l i c o n  atoms, condensation o f  .these atoms i n t o  nuc le i  i n  t h e  , 

gas phase, t r a n s p o r t  o f  these nuc le i  t o  t h e  subst ra te  sur face and t h e i r  

incorpora t ion  i n t o  t h e  growing s i l i c o n  f i l m .  Th is  l a t t e r  mode o f  depos i t ion  

becomes important i n  CVD reac to rs  w i t h  t h e  use o f  SiH2CI2 and SiH4 source gases, 

h igher subst ra te  temperatures, and hot  wa l I depos I t ion systems ( 10-12). 

With HPP deposi t ion,  .however, t h e  gas phase nuc leat ion  and depos i t ion  

mode i s  found t o ' b e  important 'under a l l  cond i t i ons  regardless o f  t h e  t ype  o f  

ch loros i lane,  i t s  concentrat ion, and t h e  reac to r  (subst ra te)  temperature employed. 

one o f  t h e  consequen.ces o f  gas phase nuc leat ion  can be powder growth, i .e. s  i I lcon 

nuc le i ,  I ns tead .o f  reaching t h e  subst ra te  sur face and c o n t r i b u t i n g  t o  f i l m  growth, 

grow i n  t h e  vapor phase t 0 . a  la rger  s i z e  and then depos i t  I n  t h e  form o f  a 

powder. Th is  powder format ion c0ns t i t u t .e~  a loss process, and' fur thermore creates 

problems i n  the  exhaust gas ( ch lo ros l  lane 'and hydrogen) recovery system. While 

it has no t  been, so fa r ,  poss ib le  t o  est imate t h e  r e l a t i v e  c o n t r i b u t i o n s  o f  these 

two d i f f e r e n t  depos i t ion  mechanisms i n  t h e  HPP depos i t ion  process, t o  f i l m  depos i t ion  

ra tes ,  powder forma-tion i s  found t o  be a t  an lnconsequentlal  leve l  i n  t h e  

hor  i zonta 1 operat  ion o f  t h e  'system under p r a c t  i c a  l f 1 l m  growth condi t ions.  

The reasons f o r  t h i s  w i  I I  be discussed under Sect lon 2.4.4 ( t r a n s p o r t  e f f e c t s )  . 
Figllrt? A schemat ical ly  i l l u s t r a t e s  t h e  depos i t ion  model i n  t h e  HPP reactor .  
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2 . 2 . 3  KINETICEFFECTS : 

As d.iscussed previousl.y,  k i n e t i c  f a c t o r s  determine the  depos i t ion  e f f i c i e n c y  

achievable i n  the  HPP process. F igure 9 shows equ l i b r i um concentrat ions (4,5) o f  

t h e  species present  i n  t h e  HPP depos i t i on  reac to r .  Assuming t h a t  chemical 

e q u i l i b r i u m  i s  a t t a i n e d  i n  t h e  hi.gh temperature (-4300K) plasma beam, t h e  

predominant species w i l l  be H, CI, S i  (g ) ,  H2.and HCI. As t h e  tempera ture . is  

lowered through the  b o i l i n g  p o i n t  o f  s i l icon ' . ( -29501,  there  w i I 1 . b e . a  d r i v i n g  

fo rce  f o r  condensation o f  s i l i c o n  vapor, and upon f u r t h e r  coo l i ng  through the  

m e l t i n g  temperature (-1683K) t h e r e  w i l l  be a d r i v i n g  fo rce  f o r  s o l i d i f i c a t i o n  o f  

s i l icon. A t  t h e  same t ime  as t h e  temperature i s  lowered, the re  I s  a tendency 

f o r  fo rmat ion  o f  SiC12 and, SiCI species. However;, s i  l i m n  condensad-ion could 3 

occur be'fore t h e  equ i I i b r  i um Sic1 species. concen t ra t i on  i ncreases. When t h  i s 

happens, t h e  r e a c t i o n  between t h e  condensed phase and c h l o r i n e  w i l l  be t h e  

r a t e  l i m i t i n g  step i n  t h e  at ta inment  e q u i l i b r i u m  as t h e  gas mixture i s  quenched. 

Another k i  n e t  i c f a c t o r  o f  importance i s i .ncorporat Ion o f  gas phase nuc l  eated 

s i l i c o n  i n t o  t h e  growing s i l i c o n  f i l m .  Th is  f a c t o r  has no t  been found t o  be 

very important,  probably because o f  t h e  extremely small p a r t i c l e  s i z e  (<<lpm), 

a t  leas t ,  i n  t h e  h o r i z o n t a l  ope ra t i on  o f  t h e  HPP system (13) .  This sequence 

01 events q u a l i t a t i v e l y  exp la ins  the  improvements i n  Bepos l t lon  e f f l c l e n c l e s  

observed i n t h e  HPP depos i t  l on process. 

7 .7 .4  TRANSPORT E FFEC.T.S- 
. . 

A comp l e t e  d i.scuss ion  o f  t h e  'HPP depos it ion process has t o  i nc l ude t h e  

. -- 
va r i ous  mass t r a n s p o r t  processes t a k i n g  p lace i n  t h e . d e p o s i t i o n  chamber. l o  

develop an accurate mass t r a n s p o r t  model, chemical reac t ions  occur i  ng i n  t h e  system' 





have t o  be considered simultaneously. S i l i c o n  depos i t ion  reac tors  i n v o l v i n g  

gas phase nuc lea t ion  a re  cu.rrenI-1 be.1 ng model led by kerochem Research 

~ a b o r a t o r  i ek, I nc. w i thou t  t d k l n g  i n t o '  account t h e  s lmu l taneous chemica l reac t  ions 

(see f o r  example re ference 1 4 ) .  

The t r a n s p o r t  o f  species i n  t h e  HPP r e a c t o r  takes place due t o  

convect ive  and d i f f u s i v e  processes d r i v e n  by both compositional 

g rad ien ts  ( F i c k )  and thermal g rad ien ts  (Soref). While the  F ick  d i f f u s i o n  

c o e f f i c i e n t  f o r  a l l  species i s  p o s i t i v e  ( i .e.  d i f f u s i o n  down the 'concent ra t ion  

g rad ien t ) ,  t h e  Soret  d i f f u s i o n  c o e f f i c i e n t  w i l l  be negative f o r  some species 

( i .e . ,  i n  a temperature g rad ien t  l i g h t e r  species tend t o  move towards h igh  

temperatures and heav ier  species towards low temperatures).  Steep r a d i a l  

temperature grad ients  e x i s t  i n  t h e  beginning p a r t  of t h e  HPP reac tor  where t h e  

plasma core  gases a r e  h o t  and subst ra te  sur faces are  r e l a t i v e l y  cold. I n  t h i s  

region, thermal d i f f u s i o n  i s  expected t o  be important. .   his s i t u a t i o n  i s  f o r t u i t u o u s  

s ince  t h e  s i  l icon p a r t i c l e s  nucleated i n  t h e  gas phase, because o f  t h e i r  h igher 

d e n s i t y  compared t o  t h e  reac to r  ambient gases, w i l l  move t o  the  substrate 

sur faces due t o  the  thermophoret ic force, become incorporated, and c o n t r i b u t e  
. . 

t o  s i  l icon f i l m  growth. Sr ivastava e t  BI .  ( 1 4 ) .  have g iven a good desc r ip t i on  

o f  t h e  p a r t i c l e  t r a n s p d r t  p roper t i es  and models i n  s i l i c o n  depos i t ion  systems. 

 part ' f rom t h e  t r a n s p o r t  o f  p a r t i c l e s ,  t r a n s p o r t  o f  o the r  species t o  and 

away from. t h e  subst ra te  sur face i s  another i m p r t a n t  fac tor .  t h a t  determines 

e f  f i c i ency  o f  t h e  overa l  l depos i t ion  system. ' For, examp l e  i n  t h e  .simp l e  

reac t i on*  

SiCI4+ h2 + S i  ( S )  + HCI 

. . *The ac tua l  reac t i on  producing f ree  s l l i c o n  i s  known t o  invo lve  an intermediate 

Sic1 species. 2 



producing f r e e  s i l i c o n  on t h e  substrate surface, SiCI4 has t o  be t ranspor ted 

from t h e  b u l k  gas stream t o  the  subst ra te  and HCI has t o  be t ranspor ted from 

t h e  subst ra te  t o  t h e  bu lk  gas stream. I n  t h e  systems ( o r  regions o f  systems) 

where t h e  subst ra te  i s  h o t t e r  than t h e  b u l k  gas stream, d i f f u s i o n  o f  SiCI4 w i l l  be 

retarded wh i l e  t h a t  o f  HCI w i l l  be accelerated. As a r e s u l t ,  t h e  subst ra te  

sees a lower ch lo ros l l ane  concentrat ion than t h e  i npu t  value. Hence, t h e  

observed depos i t ion  e f f i c i e n c i e s  w i l l  be h igher  than  pred ic ted by e q u i l i b r i u m  

ca lcu la t i ons ,  even with CVD. 

I n  t h i s  d iscussion we have only attempted t o  present  var ious  ' fac tors  t h a t  

a re  important  i n  HPP deposit ion. The qua l i t a f  i v e  and simp l ik t . i , c  d e s c r i p t i o n  

o f  t h e  HPP process discussed above appears to e x p l a i n  some o f  t h e  experimenta l 

r e s u l t s .  However f u r t h e r  ana lys is  i s  necessary t o  develop .a q u a n t i t a t i v e  HPP 

depos i t ion  model. 

2.2.5 CHOICE: OF SILICON SOURCE GAS 
. . 

Table 3 compares var ious ch,lorosilanes. as sour.ce.gases f o r  s i l i c o n  depos i t ion  

by HPP. ' S i l icon t e t r a c h  l o r i  de i s  the  cheapest and S i  H4 i s  t h e  most expensive 

o f  t h e  gases being considered. Howevsr, t h e r e  i s  a p o t e n t i a l  f o r  f u t u r e  

reduct ions i n  p r i c e  f o r  SiHCIJ, SiH2Cl2, and SiH4 through Implementation o f  

advanced technologies c u r r e n t l y  bei ng deve l,oped. Due t o  an unfavorab l e 

market supp1.y and demnnd s i t u a t i o n  f o r  ~emlconduc to r  grade SiC14, it i s  

c u r r e n t l y  under p r i ced  and it i s  expected $0 con t inue  t o  be so, a t  l eas t  

f o r  t h e  next  5 - 10 years. (Semiconductor grade SiCl  i s  a b ip roduct  o f  present 

p o l y s i l i c o n  manufacturing p lan ts . )  

As.seen i n  previous sections, t he  HPP mode o f  depos i t i on  improves t h e  

performance of SiC14 and SiHC13 as s i l i c o n  source gases. However due t o  



TABLE 3 

COMPARISONS BETWEEN VARIOUS CHLOROSILANES 



t h e  low a c t i v a t i o n  energy required f o r  depos i t i on  us ing  SiH2CI2 and SiH4 

sources, b e n e f i t s  from HPP are  not  expected t o  'be s i g n i f i c a n t ,  p a r t i c u l a r l y  when 

compared t o  t h e  add i t i ona l  comp l e x i t y  o f  t h e  HPP process. ~u r the rmore ,  deposi t  ion  

using SiH4 as a  source gas i s  expected (known) t o  be extremely d i f f i c u l t  

due t o  severe gas phase nucleat ion problems. Based on these considerat ions 

S iC lq  and SiHCI3 are  bel ieved t o  be more s u i t a b l e  source gases f o r  s i l i c o n  

deposi t ion.  The reac to r  throughput r a t e  w i l l  be about a  f a c t o r  o f  two o r  more 

when using S ~ H C I  than when using SiCI4. Th is  makes u s e o f  SiHCl3 more des i rab le .  
3  . . 

However, when using SiCI4, t h e  reac tor  e f f l u e n t  gas stream conta ins a  

s i g n i f i c a n t  percentage o f  SiHCl ' and when t h i s  i s  recovered and recycled, use o f  3 ' 
SiCl as make up appears t o  be a  more economical approach when t h e  low p r i c e  

4  

o f  S i C 1 4  i s  considered. 



3.0 - CONTINUOUS SILICON FILM DEPOSITION SYSTEM ,, 

Problems associated w i t h  opera t ion  o f  t he  present semicontinuous plasma 

depos i t i on  system (employing gas curtains) were discussed i n  t h e  previous 

q u a r t e r  l y  repo r t .  Apart  f rorn these opera t iona l  p iob l ems dur ing  f i l m  deposi f  ion, 

another problem w i t h  t h i s  approach has been found t o  be associated w i t h  t h e  use o f  

gas cu r ta ins .  N i t rogen i s  used i n  these gas cu r ta ins  because o f  i t s  low-cost 

and c o m p a t i b i l i t y  w i t h  t h e s i l i c o n  depos i t ion  process. , However N2 i n  t h e  depos i t ion  

r e a c t o r  e f f l u e n t  w i l l  d e t e r i o u s l y  a f f e c t  t h e  performance o f  t h e  recovery process. 

While argon i s  sui-table ( i n  view o f  i t s  c o m p a t i b i l i t y  w i t h  s i l i c o n  depos i t ion  and 

e f f l u e n t  recovery), it i s  p r o b i b i t i v e l y  expensive. 

To oyercome a l l  t h e  above d i f f i c u l t i e s ,  we have i d e n t i f l e d  a  new continuous 

s i l i c o n  f i l m  depos i t ion  scheme t h a t  does no t  u t i l i z e  gas cur ta ins .  The new 

scheme, a  conceptual drawing o f  which i s  shown i n  Figure 10, uses gas in te r locks .  

I n  t h i s  system, a  casset te  con ta in ing  a f i n i t e  number o f  TESS substrates w i l l  be 

fed  i n t o  t h e  gas i n t e r l o c k  a t  t h e  entrance s lde o f  t h e  reactor ,  t h e  interlock, 

purged, t h e  casset te  moved i n t o  t h e  main chamber, t h e  substrates from t h e  casset te  

t r a n s l a t e d  throuqh t h e  deposi t ion.system, and t h e  empty casset te withdrawn trom 

another i n t e r l o c k .  By a  s i m i l a r  scheme t h e  substrates and separated s i l i c o n  

f i l m s  a re  withdrawn from The deposition system. By proper sequencing o f  these 

operat ions,  t h i s  process w i l l  be t r u l y  continuous. Nitrogen and hydrogen w i l l  

be used i n  proper sequence t o  purge t h e  gas i n t e r l o c k s  so t h a t  N2 i s  no t  

introduced i n t o  t h e  d e p o s i t i o n  system when t h e  I n t e r l o c k  I s  act ivated.  Apart 

from d i f f e rences  i n  the-methods o f  i n to rduc ing  and withdrawing substrates 

and separated f i lms ,  t h e  new prucess i s  identical f o  t h e  present ly  used one. 

A d e t a i l e d  design o f  t h i s  new continuous. s i l i c o n  f i l m  depos i t ion  system 

has been i n i t i a t e d ,  and it should be completed before  t h e  end o f  t h e  next  

quar ter .  . A 1  i fou r  wal I s  o f  t h e  reac t i on  chamber w i  l l be a c t i v e  t o  produce 



CONTINUAL POLYRIBBON FORMATION SYSTEP; 
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FIGURE 10: SCHEMATIC CONCEPTlJAL DRAWING OF THF NEW CONTINUAL F1ICROCRYSTALLINE 
S I L I C O N  DEPOSIT ION SYSTEM EMPLOYING GAS INTERLOCKS. 



four s'ilicon films simultaneously. Silicon film (substrate) size has been 

selected to be about 7.5 xm x 34 cm for the system design. While this system 

i s  being designed and built, we will continue to use the present semicontinuous 

system for producing microcrystalline silicon films. 



4.0 GRAIN SIZE ENHANCEMENT 

Al.though not  o p a r t  of t h e  cur rent  program, some Ribbon-to-Ribbon (RTR) 

li.~!;c:r recrysl-al l iza-bion developments, f o r  the  sake o f  c o n t i n u i t y  o f  t h i s  

r e p o r t  w i l l  be b e i e f l y  described. Progress has been made I n  two important 

areas: 1 )  development o f  imporved pre- and post-heaters and 2 )  development 

o f  a new feed mechanism. ' T h e  new pre- and post-heaters were constructed from 

S i  C elements ( rep lac ing  t h e  previous p lat inum helements). Performance o f  these 

new heaters i s  found t o  be much superl 'or t o  t h e  o l d  ones' 1 n , terms o f  improved 

thermal p r o f i l e s  i n  t h e  r ibbon and lower heater down times. The new feed 

mechanism i s  more v e r s a t i l e  and a l lows g ra in  enhancement from one end o f  t h e  

r ibbon t o  t h e  o ther .  

Several s i l i c o n  mater ia l  q u a l i t y  r e l a t e d  experiments were performed, by us ing 

a var  i e t y  o f  feedstock mater I a l s f o r  . . l aser  rec rys ta  l l I z a t  Ion. , The resu l t s  o f  

these experiments are  discussed I n  the'  nex t  sect ion.  



5.0 SOLAR CELL FABR ICAT I ON AND EVALUATION 

I n  t h e  present  quarter-, t h ree  'separate b u t  i n t e r r e l a t e d  so la r  c e l l  

f a b r i c a t i o n  experiments were compleYed. They a r e  descri'bed' i n  d e t a i l  i n  t h e  

f o l  lowing t h r e e  subsect ions. The f i r s t  exper lment cons is ts  o f  "standard 

RTR grow,thff and a base l ine  s o l a r  c e l l  process sequence appl ied t o  r ibbons 

grown from h igh p u r i t y ,  oxygen-free, s i n g l e  c r y s t a l  f l o a t  zone s i l i c o n .  Th is  

experiment i s  designed t o  assess t h e ' s o l a r  c e l l  p o t e n t i a l  o f  RTR s i l . i con  

independent o f  poss ib le  feedstock contaminat ion.  

The second experiment c o n s i s t s . o f  solar c e l l  f a b r i c a t i o n  on r ibhnnq 

grown trom CVU microcrys ta !  ! i n e  feedstock, Two resistivities of t h e  p- type 

feedstock were used, and t h e  e f f e c t  o f  r e s i s t i v i t y  on e f f i c i e n c y  i s  discussed. 

The t h i r d  group o f  s o l a r  c e l l s  f a b r i c a t e d  a r e  on r ibbons grown from 

h igh  pressure plasma deposited m i c r o c r y s t a l l i n e  feedstock deposited i n  t h e  

semicontinuous (gas c u r t a i n )  apparatus. . . 

The base I  i ne s o l a r  ce l l process, sequence used. f o r  .a.l .I th ree groups consisted 

o f :  

P H j  d i f f u s i o n  - 18 min, 9nnoc 

Mesa Pa t te rn  ~ e f  i n i t i o n  and Etch - Photol i thography and CF4 (97$) - 

O2 (8%) plqsma etching.  

S i 3 N 4  AR Coat ing - LPCVD, 8508, index o f  r e f r a c t i o n  = 2.0 

Me ta l  l i z a t  ion p a t t e r n  def i n i t  ion  and e tch  - Photol i+hography, CF4 (50%) - 

O2 ,( 50% p I  asma' e t c h i  ng. 

P la ted metal - Pd-Ni-Cu 

Th is  sequence uses a m e t a l l i z a t i o n  p a t t e r n  which has no t  been f u l l y  opt imized 

t o  m i  n i m i  ze both . s e r i e s  res i s tance  and t h e  o f  shadowi ng. As a resu I t ,  

t he  f i l l f a c t o r  i s  reduced by a f a c t o r  o f  f rom 2 t o  5% f o r  t h e  samples w i t h  

2 
sho r t  c i r c u i t  cu r ren t  d e n s i t i e s  2 26 mA/cm . Also, w i t h  t h e  except ion o f  

several samples o f  HPp o r i g n  as noted l a t e r ,  no t e x t u r e  e tch ing  o f  t h e  

i l I  umi nated sur face was done. 



5.1 SOLAR CELLS ON RTR SILICON GROWN F.ROM FLOAT ZONE SILICON FEEDSTOCK 

Feedstock f o r  RTR s i 1 icon r ibbon .growth 'was obta  i ned by sawing a f l o a t  

zone s i l i c o n  ingo t  i n t o  sheets w i t h  an area o f  1.1511,x 7.5" and w i t h  a 

thickness of  10 + 1 mils;and etching to. remove t h e  saw damaged surfaces. 

Th is  s i n g l e  c r y s t a l  mater ia l  was r e c r y s t a l l i z e d  i n  the. RTR apparatus, and 

t h e  processed i n t o  so la r  c e l l s  using t h e  b a s e l i n e  process sequence along 

w i t h  unmelted con t ro l  samples.. The r e c r y s t a l  l i z e d  r ibbons d i f f e r e d  from gra in-  

enhanced HPP r'i bbons i n  two ways; 1 ) because o f  t h e  qua1 i t y  o f  t h e  s t a r t i n g  

mater la l ,  any poss lb le  contamlnatlon from.molybdenum, o r  from f a s t . d i f f u s i n g  

impur i t i es  i n  t h e  molybdenum, o r  from t h e  d e p p s i t i o n  furnace, a r e .  

e l  ihi nated from consd i e r a t  ion, and 2 )  because t h e  s t a r t  i ng ha te r  i a  1 was s i  ng l e  

c r y s t a  I ,  t he  regrown r i bbons r e t a  Fned t h e  s i ng 1 e c r y s t a  l 1 i n i t y  i n some cases. 

The r ibbons t h a t  d i d  no t  r e t a i n  t h e  s i n g l e  c r y s t a l l i n i t y  were cha'racter ized by 

t h e  presence o f  m u l t i p l e  t w i n  planes very s i m i l a r  t o  t h e  ones i n  g r a i n  enhanced 

HPP ribbons.. Table 4 summarizes the  r e s u l t s  obta ined.  

I t  can be seen from Table 4 t h a t  when s i n g l e  c r y s t a l l i n i t y  i s  maintained 

a f t e r  RTR growth, s o l a r  c e l l  performance i s  sca rce ly  d i f f e r e n t  from t h e  

c o n t r o l  ce l  l  on f l o a t  zone feedstock.. Thus,., chemica 1 contami n a t i o n  du r ing  RTR : 

growth ( f rom t h e  growth chamber, pre-heater and post-heater)  appears t o  be 

i nconsequent i a  I  . The RTR s i n g l e  c rys ta  1 ,ce 1 1, however was 'found t o  con ta in  

4 2 
hlgher d l s l o c a t l o n  densify (7 x 10 /cm ) compared t o  t h e  f l o a t  zone s i n g l e  

c r y s t a l  con t ro l -  c e l l .  

5.2 SO LA^ CELLS ON RTR SILICON GROWN .... ~ . -  ~ FROM CVD FEEDSTOCK 
- - - -. . . -- 

Ribbons grown from.CVD microcrysta l  l i n e  feedstock were d i v ided  i n t o  two 

groups; a low r e s i s t i v i t y  (-0.30 O-cm l o t )  and a moderate r e s i s t i v i t y  l o t  

( -  2.4 R-cm). The r e s u l t s  on so la r  c e l l s  f a b r i c a t e d  by t h e  base l ine  process 



TABLE 4 

SUMMARY OF RESULTS OBTAINED USING FLOAT 
ZONE S l L l CON FEEDSTOCK. 

f 

SOLAR CELL DESCRIPTION 

F l o a t  Zone S ing le  C rys ta l  
Contra l 

RTR S ing le  C rys ta l  
( F ! n a t  7 n n ~  Feedslnck) 

RTR Heav i l y  Twinned 
( F l o a t  Zone Feedstock 1 

Best RTR Cell-Oxygen Free, 
CVD Feedstock 

AM1 EFFICIENCY ( $ 1  

14.8 

14.5 

13.0 

---------------------------------,.------------------------------------------------ 

12.8 

2 JsC (mA/cm 

32.3 

31.4 

30.7 

27.5 

VOC ( v o l t s )  
I 

.606 

.601 

.586 

.608 

.& 



!;oquencc are presented i n  t a b l e  5. The loss i n  JSC due t o  doping e f f e c t s  on 

diffusion length, as r e s i s t i v i t y  i s  lowered, i s  more than made up f o r  by t h e  

ir icrcase i n  V 
OC 

The d i f ference i n  f 1 l I  f a c t o r  between t h e  two l o t s  i s  sma I I ,  

and i s  p a r t i a l l y  an a r t i f a c t  of t he  non-optlmum g r i d '  design used. The m e t a l l i z a t i o n  

p a t t e r n  used provides the  optimal t radeo f f  between shadowing o f  t h e  j u n c t i o n  and 

2 
r e s i s t i v e  losses f o r  c e l l s  having sho r t  c l r c u l t  c u r r e n t s  o f  up t o  26 mA/cm . 
Since these c e l  I s  ave'rage.better than t h i s ,  t h e  f l  l l f a c t o r  I s  reduced from 

what a  b e t t e r  pa t te rn  could provide, and t h e  e f f e c t  ( i .e .  amount o f  reduc t ion )  

w i l l  be s l i g h t l y  greater  f o r  t he  2.4 0-cm l o t .  An es t imate  o f  t he  q u a n t i t a t i v e  

e f f e c t  o f  t h i s  g r i d  design on f i l l  f a c t o r  was obta ined f o r  one c e l l  (1185~-48, 

2  
w i t h  VOC = .608, JSC = 27.5 mA/cm , and F.F. = 77.0%) by numerically f i t t i n g  t h e  . . 

i - v  c h a r a c t e r i s t l c s  and subt rac t ing  t h e  e f f e c t  o f  a  constant,  .lumped s e r i e s  

res is tance.  Th is  allowed f o r  t he  c a l c u l a t i o n . o f  a  llsemiempiricaI1l f i l l  f a c t o r ,  

which i n  t h i s  case worked o u t  t o  be 80.1%. T h i s  represents an upper l i m i t  
I j 3  j 

d  i c t a t e d  e n t i  r e l y  by t h e  shor t  c l  rcu  it c u r r e n t  and t h e  j u n c t i o n  I -v proper t ies .  
r J  

An opt imal g r i d  design can be expected t o  increase t h e  ac tua l  f i l l  f a c t o r  1 - 2 

percentage points.  

Another c e l l  ( w i t h  q = 11.9%) from t h e  low r e s i s t i v i t y  l o t  was g iven a  . . 
. 

6 min. Wright e t ch  t o  de l ineate  dislocations. The r e s u l t s  f o r  a  f r o n t  

sur face e tch  a re  shown i n  Figure 1.1 and f o r  a  c ross  s e c t i o n  i n  F igure 12. These 

r e s u l t s  a re  t y p i c a l  o f  present day H'IH s i  1 icon (grown from m i c r o c r y s t a l l i n e  

feedstock),  and appear t o  be improvable by f u r t h e r  work on t h e  post-he'ater thermal 

p ro f  i le. I t  i s  somewhat su rp r l s lng  (and encouraging) t h a t  s o l a r  c e l  I s  w i t h  

e f  f i c  i &nc i es of  12 - 13% can be made on mater i a  1 having reg ions w i t h  

6 2 
h igh  ( 2  1 x 10 /cm d i s l o c a t i o n  density.  



TABLE 5 

RTR SOLAR C E L L  PERFORMANCE FROM CVD FEEDSTOCK 

*Maximurn values n o t  ob ta ined simultaneously. 



5 2 
D I S I O C ~ ~ I & ~  D ~ A s I ~ ~  =. 5 x 10 /UII 

6 2 
Dlslocatlon Density = a 1  x 10 /cm 

FIGURE 11: DISLOCATION ETCH PITS ON THE SURFACE OF A CELL AS 
REVEALED BY 6 M I NUTES WR l CHT ETCt I I NG . 
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SECTION A SECTION B 

5 2 DlSLQCATlON DENSITY = 4 x 10 /cm 6 2 DISLOCATION DENSITY = 1.4 x 10 Icrn 

FIGURE 12: DISLOCATION DENSITY I N  THE BULK OF THE CELL SHOWN 
I N  FIGURE 11,  AS REVEALED BY WRIGHT ETCHING THE 
CROSS SECTIONAL SAMPLES. 



5.3 SOLAR CELLS FROM GRA l N ENHANCED HPP S l L ICON F I LMS 

Results on t yp i ca l  so lar  c e l l s  fabr icated on gra ln  enhanced HPP f i lms  are 

summaritad i n  Table 6. Unl ike the c e l l s  fabr icated on RTR rpocessed f l o a t  

zone o r  CVD feedstock reported i n  the previous sections, some o f  the HPP 

c e l l s  were larger i n  s ize ( 2  cm x 2 cm). Also some o f  these c e l l s  were 

fabr icated on textured surfaces ( t o  minimize f r o n t  surface r e f l e c t i o n )  as 

indicated i n  Table 6. Another dif ference between the f l o a t  zone feedstock and HPP 

feedstock i s  the  s i l i c o n  thickness; thickness o f  HPP feedstock was around 175 vm, 

whereas t h a t  o f  f l o a t  zone was around 250,ym. 

The highest e f f  iciency observed i n  t h i s  l o t  was about 12%, and was on 

2 cm x 2 cm area textured c e l l  shown I n  Figure 13. The o ther  parameters o f  

t h i s  c e l l  are: VOC = 0.582 vol ts,  JSC = 28.3 rn~/crn' and F.F. = 73.0%. The 

defect  s t ructure o f  these gra ln  enhanced HPP f l l m s  I s  s i m i l a r  t o  the ones 

reported i n  the prevlous quar ter ly  repor t  (121, since the  same r e c r y s t a l l i z a t i o n  

parameters were employed. 

Comparing the resu l t s  obtained w i th  the f l o a t  zone, CVD and, HPP s i l i c o n  

ribbons, it appears t h a t  the major fac to r  l i m i t i n g  the  performance o f  the  HPP 

o r  CVD f i lms  i s  the  defect  density of the gra ln  enhanced f i lms,  and not the 
I 

chemical p u r i t y  o f  the  feedstock mater ia l .  Thus, when the  defect  densi ty 

(d is locat ions,  incoherent tw in  boundaries and g ra ln  boundaries) i s  reduced 

by opt imizat ion o f  RTR gra in  enhancement growth parameters, f u r t he r  improvements 

i n  so la r  c e l l  conversion e f f i c i ency  can be expected. 



TABLE 6 

SUMMARY OF TYPICAL SOLAR CELLS FROM GRAIN 
ENHANCED HPP DEPOSITED FILMS 

b 

COMMENTS 

I 

Non-textu red 
11 

11 

Textured 
t1 

II 

Non-textured 
II 

Textured 
11 

11 

11 

TI (AM11 

($1 

8.9 

Y .Y 

10.2 

11.2 

11.3 

10.7 

11.1 

10.0 

12.0 

11.3 

10.5 

9.9 

J SC2 
( m A / c m )  

23.0 

25.0 

25.0 

25.6 

26.0 

26.3 

25.8 

24.5 

28.3 

26.7 

26.5 

25.5 

VOC 
( v o l t s )  

0.541 

0.559 

0.561 

0.579 

0.582 

0.580 

0.577 

0.575 

0.582 

0.573 

0.570 

0.558 

F.F. 

($1  

71.5 

70.8 

72.7 

75.6 

74.5 

70.4 

74.6 

71.0 

73.0 

73.9 

69.5 

69.6 

C E L L S I Z E  

( c m x c m )  

1 X 2 

1 x 2  

1 x 2  

2 x 2  

2 x 2  

2 x 2  

1 X 2 

1 x 2  

2 X 2 

2 X 2 

2 x 2  

1 x 2  

. 
CELL1.D. 

HPP 

13-9 

17-4 

18-4 

18-6 

21-6 

i 

RTR 

1201C-1 

-2 

-3 

12016-1 

-2 

-3 

12018-1 

-2 

1201E-1 

1219A-1 

-2 

-3 



FIGURE 13: PHOTOGRAPH OF A 12% AM1 EFF lC l ENCY 
( 2  cm x 2 cm AREA) CELL FABRICATED ON 
A GRAIN ENHANCED HPP DEPOSITED SILICObJ 
FILM. V = 0.58ZV, JSC = 28.3  mA/cm 
and FF = 9 3 . 0 $ .  



6.0 PLANS FOR NEXT QUARTER 

During the next quarter we plan to: 

. Continue periodic TESS substrate resurfacing experiments. 

. Complete design of the contfnuous sl licon film deposition system 

employing gas interlocks. 

. Continue operation of the existing semicontinuous plasma deposition 

system, and 

2 . Demonstrate > 12% AM1 conversion ef f l ciency on > 10 cm area solar 

cells fabricated on grain enhanced plasma deposited silicon films. 
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