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A CATALOG OF TWO-DIMENSIONAL VORTEX PATTERNS

by

L. J. Campbell and Robert Ziff

ABSTRACT

We 1ist the two-dimensional patterns that cor-
respond to minima in the free energy of identical
parallel vortices inside a rotating cylinder of 1ig-
ufd such as superfluid 3He. A1l known stable
patterns are listed for N =1, 2,.., 30, 37, 50,
where N is the number of vortices. The two Towest
energy patterns are shown for all "triangular"
numbers, N = 1+6(1+2+3+..), through N = 217. For
each value of N the different patterns are ordered
according to their relative free energy.

I. INTRODUCTION
This report gives a more extensive and systematic 1list of two~dimensional

stable vortex patterns than has been available heretofore. Although the re-
sults are directly applicable to studies of either the energy levels of rotat-
ing superfluid 4He or dislocations in a single crystal under torsion, we use
notation and terminology appropriate only to the former system.

Irreversible frictional effects (viscosity) drive normal fluids within a
rotating container to a state of solid body rotation. However, the quantum
nature of the superfluid component of liquid 4He below 2.172 K absolutely
precludes solid body rotation as a possible state of this component. Instead,
superfluids react to rotating containers by generating a nearly uniform den-
sity of quantized rectilinear vortex lines, parallel to the axis of rotation,



which simulate solid body rotation very closely on a distance scale large com-
pared to the vortex spacing. However, for systems of only a few vortices, the
discrete nature of the possible rotational states becomes manifest and permits
an ordering of states on the basis of vortex number and pattern symmetry.

One hundred years ago interest in the vortex theory of atoms inspired Lord
Kelvin to solve the case of three vortices equally spaced on a circle; five
years later, J. J. Thomson proved that up to six vortices on a circle are sta-
ble. About fifty years later, T. H. Have]ock1 proved that the presence of
either an inté;ﬁor or exterior circular boundary caused absolute instabiiity
in a ring of seven or more vortices. More recently, Hess2 calculated the
free energy of bounded rings consisting of up to seven vortices, both with and
without an additional vortex at the center. For Tlarger numbers of vortices
the free energy formula becomes analytically intractable and direct calcula-
tion is required. Stauffer and Fetter3, the first to report computer cal-
culations of vortex patterns inside a circular boundary, published two pat-
terns for 37 vortices together with their associated free energies for a par-
ticular angular velocity. We extend these results both in the number of pat-
terns calculated and in the method of assigning a unique energy number to each
pattern.

Section II contains the equations used to calculate the patterns and a
description of the calculational procedure. A summary of the patterns is
listed in Sec. III and figures of the patterns are shown in Sec. 1V.

II. EQUATIONS AND PROLCEDURE
In reduced units, the free energy per unit length of N identical recti-
linear vortices in a rotating cylinder is®

N N i-1
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where

f = free energy in units of DK2/4n,

Pj = radial aistance of jth vortex from center of cylindar (and axis of
rotation) in units of R,

eij = ei - ej, the angle between X and IJ’ )

w = reduced angular velocity of cylinder, equal to 2"R“R/K where © is the
physical angular velocity,

a = vortex core radius,

p = density of liquid (for helium, p is the superfluid density),
k = strength of vortex (for helium, k= h/m = §,3907 1073 cm2/s).

The term "free energy" is used because we are interested in the equili-
brium states of the system for given angular velocity w in analogy to the
usual free energy F which is appropriate to systems of given temperature, F
E - TS. That is, f = e -2 , where e and £ are the dimensionless kinetic en-
ergy and the angular momentum of the system in the fixed, laboratory frame.
Apart from a constant, f is also the kinetic energy of ihe liquid in a refer-
ence frame that is rotating with angular velocity w. In these dimensionless
units, solid-body rotation of the liquid has the free energy

Although the temperature is important in determining the time required for a
helium vortex system to reach an equilibrium pattern, it does not affect the
type of pattern nor the relative energy of different patterns and therefore
can be ignored here.

A vortex pattern with coordinates [ri, ei] is, respectively, stable or
"nearly" stable if f(rl,..,rN; 91,..,9N) is a local minimum or a sad-
dle point at these coordinates. In either case the pattern is stationary in
the rotating frame. Beginning with an arbitrary configuration of vortices, an
obvious way to find minima is to move the vortices successively toward lower
energy configurations until a minimum is reached. The pattern may pass
through one or more saddle points befor: it converges to a local minimum in
the free energy. A simple algorithm to accomplish this consists of assigning
to each vortex an effective velocity Y equal to the negative gradient of the
free energy with respect to the coordinates of that vortex, -Ejf. Allowing



the vortices to movg_in steps proportional to this effective velocity, which
changes after each step, results in a convergent pattern. This procedure
works well except for angular velocities less than a critical value w*(N) for
which no free energy minima exist. For N< 20 we find w*(N)=N + 2.

In deriving the velocity expression it is convenient to use complex num-
bers, z = x + iy, Z = x - iy, which allows the free energy to be written as

i 2 It I 7 |2
gz T pezz )]

= 2n
n I _s ]2
i< 17l ] (2)
- u);(l-lzilz) + N 2n (R/a) .
The gradient transforms to complex notation as ij - 2-5% f which gives the
following expression for the pattern-converging velocity of the jth vortex,
%(ij + iny) = ;... 1._. - Z-:___l——_ = u“zj b4 (3)
Zj_zll. 2 ZJ.-I/ZR‘

where the prime on the first summation indicates that £# j. The first summa-
tion represents the influence of all the image vortices and the second summa-
tion gives the effect of all the other vortices on the jth. This velocity
field is exactly orthogonal to the velocity field v in the rotating frame of a
classical hydrodynamic vortex system which causes the vortices to move physi-
cally on an equipotentiat surface of f(zi): u=x - jv. To see this, recall
that the velocity of a classical vortex is the stream velocity at its posi-

tion. In dimensional units, v is given by the derivative of the stream func-

tion
=. 9
which, for identical vortices inside a circular cylinder, is4
N N 1
W(Z) = 15 | 2 an (2-7)) - 2 an (RE-2Z)) | (5)
2=1 2=1

TJo use a reference frame in which the boundary is at rest requires the addi-
tion to W(Z) of the stream function for solid body rotation in the direction



opposite to the laboratory rotation - inzlz, where @ is the physical value
of the angular velocity. The physical stream velocity at Z is, therefore,

VZ) = - & (2) - iez]?) (6)

which becomes, upon defining z = Z/R and w = ZHRZSyK,

g-TKLRW?)—=‘i|:Zz}z_Z 1—-05} (7)

[} i) L z-l/zR

Taking the conjugate of the abave equation and comparing with Eq. (3) confirms
that u(z}«- iv(z). (When z = Zj’ the j = & term must be omitted in the

first summation in Eq. (7) because a vortex does not contribute directly to
its own velocity.) Any system of vortices whose motion follows only the clas-
sical velocity of Eq. (/) can never converge to a stationary pattern in the
rotating frame for the obvious reason that such motion is constrained to an
equipotential surface of the free energy. However, the physical velocity w of
superfluid vortices has components parallel to both v of Eq. (7) and u of Eq.
(3), the latter component arising from irreversible frictional dissipation
that accompanies all relative motion between superfluid vortices and the nor-
mal component of superfluid helium. That is,

W= (d1 - idz)v s

where the relative magnitude of the positve real coeff1c1ents d1 and d
depends on the temperature and the concentration of He impurities.

(Because of the quantum nature of the superfluid state, the integrity of the
circulation of the vortices is unaffected by the above frictional effects.)
Although there are no physical conditions for which dl/d2 = 0, we have no
reason to expect that any stationary patterns calculated by an algorithm that
assumes dl/dz = 0 are inaccessible to the physical system for that reason.

We find that the N and w dependences of the free energy of stationary pat-
terns as given by Eq. (1) or (2) can be expressed to good accuracy by a rela-
tively simple analytic formula, namely, the free energy fc of a "continuum"
consisting of vortices in a perfect triangular tattice {see Eq. (1) of Ref. 3},



Qm@)=%¥(§-mu)-m+%um4mnw
(8)
-Nb + N &n R/a ,

where b = 4.15041281/7 - a4n /7 = 0.748752485. Using Eq. (8) we are able to
express the free energies of patterns as a small difference Af(Nyuw) =f- fc'
Moreover, Af is an insensitive function of the angular velocity if the latter
is not near the critical value w*; when w increases, Af quickly reaches an
asymptotic value characteristic of the given stationary pattern. Therefore,
we may simply and uniquely specify a Afo for each pattern by defining

AfO(N) = 2imAf(Nyw).
[(Nxatd

This asymptotic value for large w is equivaient to ignoring the effects of
images in the calculation of f at any positive w. (For w somewhat smaller
than w*(N) the radius of the vortex pattern will exceed the radius of the
container, r = 1; this is formally permissible in the absence of images.) A
considerable saving of computation is thereby realized both in the calculation
of the vortex velocities (the image sum in Eq. (3) can be omitted) and in the
calculation of Af. To derive the simplified form of Af, substitute r3 Yw @
for rs in Eq. (1) (because the radii scale as va ry = ﬁﬁ’rB for moder-

ately large ) and take the 1imit as w-+« . This gives, after omitting the
primes on rj for notational convenience,

2
i- Zrirj cos ei.)

I
J

2
-+
< i (r1 r

2im f = -4n q
oo J
(9)

+ 3 N(N-1)2nw/w” - No + w” I r§ + N %n R/a .



Therefore, using Eq. (8),

2 e 2

AF. = 2im F=Ff_ =-an Tl TN {r; +r$ - 2r.r. cos 8,.) + 0L rs

o] c j<i i 1 iJ ij J
(10)

- N2 (g - an N) - % N(N-1) 2n w” + Nb ,

where the positions gj are calculated for the positive, but otherwise arbi-
trary, angular velocity w.

The behavior of Af(N,w) and the scaling of Yor as functions of w are il-
Tustrated in Table I for N = 18. Here r18(181) is the radius of the out-
ermost vortex in the first (i.e., lowest energy) pattern of 18 vortices. The
pattern 181 became unstable for w =19.9, somewhat lower than for the pat-
tern 187 . Already at w= 25, Af is within 3% of its value at w=,

This relative insensitivity of Af on w is emphasized in the fourth column. As
might be expected, the free energy difference between patterns is even less
sensitive to w; this is illustrated in the fifth column for patterns 181 and
187.

The patterns were calculated by letting an initial vortex configuration
develop in "time" steps At according to Eq. {3) until Afo reached a constant
value within 10'5. The positions of all vortices were changed simultaneous-
1y at each At step where At = 0.2/(w- N) was used.

We began each pattern calculation with an initial configuration of rings
of vortices, centered about the origin, at radii roughly consistent with the
value of w used. (We found that patterns of higher frce eneryy were not pro-
duced efficiently when random arrays were used as the initial configuration.)
The resulting convergent pattern was then compared with patterns previcusly
obtained for the same N and w and, if different, was saved.



TABLE I
VARIATION OF PATTERN FREE ENERGY AND SIZE
WITH ANGULAR VELOCITY

w Af(18,) Yo r5(18,) Af -AF(18,) Af(18,)-af(18,)
w 0.252412 3.515846 0 0.22487
90 0.25241 3.515859 -0.00000 0.22487
80 0.25240 3.515368 -0.00001 0.22486
70 0.25240 3.515890 -0.00001 0.22486
60 0.25238 3.515943 -0.00003 0.22485
50 0.25232 " 3.516094 -0.00009 0.22482
40 0.25211 3.516637 -0.00030 0.22474
30 0.25068 3.519597 -0.00173 0.22447
25 0.24539 3.527177 -0.05301 0.22463
20° 0.18940 3.612616 -0.06301 ..b
°£,(18;).

b

Pattern 187 diverged for w = 20.
Cm*(181) ~ 19.9.

III. PATTERN SUMMARY

In Table II are listed the free energies Afb and ring numbers of the
patterns. The ring numbers are the number of vortices with radii that differ
by less than 0.02 (except for N > 50 where the criterion is 0.05). For exam-
ple, 14 vortices form a pattern that is roughly (within 0.02) a ring of 4 in-
side a ring of 10, making the ring number of this pattern (4, 10).

In principle, Table II can be used to “ind the net free energy of a spe-
cific pattern. Given the experimental conditions of cylinder radius R and
angular velocity Q, one merely adds Afo of Table II to fC as calculated



according to Eq. (8). (As shown in Table I, some accuracy will be lost if w
is near w*.) For example, if R = 0.5 cm and Q= 2r/60 s’1 (that is, 1 rpm)
then w= 164.4934 and, except for temperatures near the superfluid transition,
R/a = 3.6 107. From Eq. (8), a continuum pattern of 5 vortices would have
(dimensionless) free energy fc = -689.5549, so the net energies of the dis-
crete patterns are f(51) ~ fC +zsf0(51) = -689.4218 and f(52) ~
-689.1512. Hawever, to calculate fC to an accuracy of only 0.1, comparable
to the larger differences between Afo of the various patterns for a given N,
one must know R/a and @ to unrealistically high accuracy. In this example,
the necessary accuracy is 0.02% for R/a and 0.01% for @. <Consequertiy, the
Afo of Table II, like other fine structure energies, are more relevant to
experiments of high relative precision than those of absolute accuracy.

If, for given experimental conditions, it is a question of which of all
patterns has the lowest free energy, one must first find N by minimizing
fC(N,w) with respect to N. This results in a transcendental equation,

0 =NgnN-N1+enw)+w+1/22mw +b-2n R/a (11)

which can be formally solved for N by iteration if  lies between the two

Timits, W <w<ty, where

U)l + 1/2 lnwl = n R/a - b (12.1)
and
6, = (g)2 e2b ' (12.2)

The first limit requires a minimum angular velocity for any vorticity and the
second 1imit prevents vortex densities so large that the vortex cores over-
lap. For the example used above, wy = 15.3, wy = 2.85 1014, and the

minimum in fc occurs for N = 103. The free energy fc for this optimum

number of vortices differs appreciably from that (fs) for solid-body rota-
tion, (fs - fc)/fs = 0,25, which shows that quantum effects are still
important in patterns of 100 vortices. (For w 10 times Targer, the optimum
vortex number is 16 times greater and the above ratio is reduced to 0.03.)



TABLE 11
FREE ENERGIES AND RING NUMBERS OF KNOWN
STABLE VORTEX PATTERNS

N

10

11

12

13

14

15

10

Order Af, Ring Numbers
1 -.08125 1
1 .19065 2
1 .14418 3
1 .10748 4
1 .13387 5
2 .40365 1, 4
1 .21781 1, 5.
2 .24927 6
1 .18749 1, 6
1 .09454 l, 7
1 .19405 1, 8
2 .26694 2, 4, 3
3 .26716 2, 3, 4
4X .54366 3, 6,
1 .22433 2, 4, 4
2 .2257%8 2, 2, 4, 2
3 .41785 1, 9o
1 .24918 3, 8
2 .28859 2, 9
1 .19344 3, 3, 6
2X .19837 3, 6, 3
3 .35022 4, 8
1 .22432 4, 9
2 .24636 3, 19
1 17790 4, 19
2 .36713 5, 9
1 .23413 4, 11
2 .24711 5, 10
3 .24773 5, 10



16

17

18

19

29

21

22

23

24

3X

U

ST WA D W N =

Ul b W0 N

=W N

U W N+

.21959
.36491
.38647
.39842
.40541

.28394
29412
.34894
.39682
.47407

.25241
.28316
.35110
.35215
.35241
.35626
.47728

.18626
.19317
.33323
.38632
.45481

.21955
.21968
.43685
.46897

.19096
.34793
.37628
.3959%

.25122
.26311
.30426
.33339

.31390
.33784
.33801

.42158

.36837
.39788
.41961
.44624
.44889

11
19

11
12
12

2,
3,

2,

4,

12

13
14

14

15
13

11



12

25

26

27

28

29

30

37

50

W= SO s W= AN WN - B W N = VO W N

G W=

SNV EW N B N

.3298¢0
.35268
.35301
-37785
42524
.61199

.31762
.33269
.38172
.48666

.27672
.38716
.40983
.412p4
.43887

- .47419

.32873
.32482
.34232
.34311
.408699
-43942

1.34475

.31163
.323490
.34598
.45988

27672
.39429
.40588

. 40738
43513

«tou

.28424
.28884
.39854
.41983

.44156
.45244
.46482
.48020
.49186
.54319
.62067

14
6,
16
15
14

16
17

15
13

15

le

18
18

22
22
20
6, 23
17, 29



61 1 .39758 1, 6, 12, 18, 24
2 .42173 1, 6, 12, 18, 24

g1 1 .536880 1, 6, 12, 18, 24, 39
2 .58631 1, 6, 12, 18, 24, 30

127 1 .70345 1, &, 12, 18, 24, 30, 36
2 .73294 1, 6, 12, 18, 24, 30, 36

169 1 .89838 1, 6, 12, 18, 24, 30, 36, 42
2 1.081167 1, 6, 12, 18, 24, 30, 36, 42

217 1 1.12214 1, 6, 12, 18, 24, 38, 36, 42, 48
2 1.27248 1, 6, 12, 18, 24, 38, 36, 42, 48

2y denotes patterns that are nearly stable.

As N increases, the pattern with lowest energy changes from 1 vortex in
the center to 2, 3, 4, 5, and then back to 1 (N = 6), 2 (N = 10), 3, 4, 5, and
again, 1 (N = 17). Having 1 vortex in the center of the lowest energy pattern
is a property of vortex numbers close to "triangular” ring numbers N =1 + 6
(1 +2+3+...), that is, N =1, 7, 19, 37, 61, 91, 127, 169, 217, etc.

IV. PATTERN FIGURES

The patterns are illustrated in the Catalog below in order of increasing
vortex number N and, for each N, in order of increasing Afo, which is the
asymptotic free energy difference with respect to the continuum model as wre .
We show all the stable patterns we have found for N <30 and N = 37, 50.
(Patterns 37, and 37, were shown by Stauffer and Fetter.3) In addition
we include a few of the many nearly stable patterns, which are identified by
an "X" in the upper right-hand corner. For N = 61, 91, 127, 169, 217 only the
two lowest energy patterns are shown.

13



In addition to Afo, the ring numbers (defined in Sec. 1II) are also
listed below each pattern. A result of the fine discrimination applied to
patterns with N < 50 is ring numbers that are, in several cases, expanded be-
yond what one sees .y cursory inspection. For instance, pattern 92 has ring
numbers (2, 4, 3) although on a coarser scale they would obviously be (2, 7).
The 2% criterion permits unique ring numbers to most patterns that are simi-
lar, such as 92 and 93, but still not all, such as 152 and 153.

As explained in Sec. II, the absence of image effects makes Afo inde-
pendent of the value of angular velocity w used to calculate the pattern. The
pattern size, however, does depend on w and an accurate estimate of the radii
of the various rings constituting a pattern can be derived from the exact
second-moment relation that every stationary (stable or nearly stable) pattern
in an unbounded fluid must satisfysz

N
w }E: r5 = % N(N-1) . (13)

j=1
Assuming the pattern consists of M rings of radii TireesThs each contain-
ing Nl""NM vortices, respectively, the ring radii satisfy

Lo IV

2 _ .
wry = 5 (Nj-l) +NpHN, L Nj-l’ ISj<N. (14)

This formula is most useful for rings that do not deviate appreciably from
circles. In Table III are listed the valugs»of w used here.

TABLE III -
ANGULAR VELOCITY USED IN PATTERN CALCULATIONS
N [
1 through 15 N+ 10
16 through 30 N+8
37 50
50 65
61 80
91 125
127 185
169 250
217 330

14



The patterns for N = 61, 91, 127, 169, 217 are included to illustrate the
tendencirs of those patterns which most closely approximate triangular sym-
metry which is known to be the preferred pattern for an infinite number of
vortices. However, tor each of these N, the pattern N1 of lowest free en-
ergy has less triangular symmetry than NZ' In addition, the triangular
lattices of both Nl and N2 suffer circular distortion that penetrates
deeply into the patterns. (This is most easily seen by looking obliquely at
the figures.) Because these patteorns are calculated in the absence of images
they show thet a finite pattern of vortices, even in an infinite container,
displays triangular symmetry in less than half of its total area. This cir-
cular distortion results in a free energy that is greater than the (continuum
model) value for an equal number of vortices in an infinite and perfect tri-
angular lattice. This additional energy per vortex ajpears to be approaching
a limiting value as N increases: AfO(N)/N = 0.00590, 0.00554, 0.00532,
D0.00517 for N = 91, 127, 169, and 7?17, respectively. For comparison, the
extra energy per vortex in @ perfect sguare lattice is 0.01058. Although the
deviation Afo of the free energy with respect to the continuum model in-
creases with larger N, the ratio of this deviation to the total free energy
decreases rapidly.

The nearly stable patterns are shown here to serve as a cautionary sam-
ple of patterns that may initially show excellent convergence, both spatially
and in their second moment, Eq. {13}, but are not subsequently stable. This
is especially true of many patterns derived from initial vortex configura-
tions of high symmetry such as those having ring numbers (m, 2m) or (m, 3m)
or (1, m, 2m), etc. The free energy of these patterns is at a saddle-point
and continued numerical iteration of the pattern around the apparent stable
configuration will lead to the injection, through computer round-off error,
of finite amplitude into the unstable modes of the pattern which then grow,
leading to a new stable (or perhaps nearly stable) pattern. The acquisition
of nearly stable patterns can be largely avoided by siightly randomizing the
initial configuration.

15
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