
LA-7384-MS
Informal Report

• -y

A Catalog of Two-Dimensional Vortex Patterns

03
C

O

O

(0
(D

IStfl LOS ALAMOS SCIENTIFIC LABORATORY
Post Office Box 1663 Los Alantps. New Mexico 87545



LA-7384-MS
Informal Report

Special Distribution
Issued: October 1978

A Catalog of Two-Dimensional Vortex Patterns

L. J. Campbell
Robert Ziff



A CATALOG OF TWO-DIMENSIONAL VORTEX PATTERNS

by

L. J. Campbell and Robert Ziff

ABSTRACT

We list the two-dimensional patterns that cor-
respond to minima in the free energy of identical
parallel vortices inside a rotating cylinder of liq-
uid such as superfluid 4He. All known stable
patterns are listed for N = 1, 2,.., 30, 37, 50,
where N is the number of vortices. The two lowest
energy patterns are shown for all "triangular"
numbers, N = 1+6(1+2+3+..), through N = 217. For
each value of N the different patterns are ordered
according to their relative free energy.

I. INTRODUCTION

This report gives a more extensive and systematic list of two-dimensional

stable vortex patterns than has been available heretofore. Although the re-

sults are directly applicable to studies of either the energy levels of rotat-
A

ing superfluid He or dislocations in a single crystal under torsion, we use

notation and terminology appropriate only to the former system.

Irreversible frictional effects (viscosity) drive normal fluids within a

rotating container to a state of solid body rotation. However, the quantum

nature of the superfluid component of liquid He below 2.172 K absolutely

precludes solid body rotation as a possible state of this component. Instead,

superfluids react to rotating containers by generating a nearly uniform den-

sity of quantized rectilinear vortex lines, parallel to the axis of rotation,



which simulate solid body rotation very closely on a distance scale large com-

pared to the vortex spacing. However, for systems of only a few vortices, the

discrete nature of the possible rotational states becomes manifest and permits

an ordering of states on the basis of vortex number and pattern symmetry.

One hundred years ago interest in the vortex theory of atoms inspired Lord

Kelvin to solve the case of three vortices equally spaced on a circle; five

years later, J. J. Thomson proved that up to six vortices on a circle are sta-

ble. About fifty years later, T. H. Havelock proved that the presence of
*»*• •

either an interior or exterior circular boundary caused absolute instability
2

in a ring of seven or more vortices. More recently, Hess calculated the

free energy of bounded rings consisting of up to seven vortices, both with and

without an additional vortex at the center. For larger numbers of vortices

the free energy formula becomes analytically intractable and direct calcjla-

tion is required. Stauffer and Fetter , the first to report computer cal-

culations of vortex patterns inside a circular boundary, published two pat-

terns for 37 vortices together with their associated free energies for a par-

ticular angular velocity. We extend these results both in the number of pat-

terns calculated and in the method of assigning a unique energy number to each

pattern.

Section II contains the equations used to calculate the patterns and a

description of the calculational procedure. A summary of the patterns is

listed in Sec. Ill and figures of the patterns are shown in Sec. IV.

II. EQUATIONS AND PROCEDURE

In reduced units, the free energy per unit length of N identical recti-

linear vortices in a rotating cylinder is

N „ N i-1

f = An

n (1-r?) n n (1 + r2.rZ. - 2 r.r. cos e<.)
1=1 1 1*1 j=l 1 3 1 J 1J

N i-1 P 9

n n (r< + r. - 2
!=1 4=1 ' J

cos

(1)



yyhere

f = free energy in Mnits of pic /4TT,

r. = radial distance of j vortex from canter of cylinder (and axis of

rotation) in units of R,

8.. = 6 - 9., the angle between r. and r.,

w = reduced angular velocity of cylinder, equal to 2 ^ &/< where fi is the

physical angular velocity,

a = vortex core radius,

P = density of liquid (for helium, P is the superfluid density),

K = strength of vortex (for helium, K= h/m = 0.99b7 10 cm^/s).

The term "free energy" is used because we are interested in the equili-

brium states of the system for given angular velocity <o in analogy to the

usual free energy F which is appropriate to systems of given temperature, F

E - TS. That is, f = e -coil , where e and % are the dimensionless kinetic en-

ergy and the angular momentum of the system in the fixed, laboratory frame.

Apart from a constant, f is also the kinetic energy of the liquid in a refer-

ence frame that is rotating with angular velocity u. In these dimensionless

units, solid-body rotation of the liquid has the free energy

f„ - - TO)I 2
4

Although the temperature is important in determining the time required for a

helium vortex system to reach an equilibrium pattern, it does not affect the

type of pattern nor the relative energy of different patterns and therefore

can be ignored here.

A vortex pattern with coordinates [r., 6.] is, respectively, stable or

"nearly" stable if f(r,,..,r^; 6i,..,9u) is a local minimum or a sad-

dle point at these coordinates. In either case the pattern is stationary in

the rotating frame. Beginning with an arbitrary configuration of vortices, an

obvious way to find minima is to move the vortices successively toward lower

energy configurations until a minimum is reached. The pattern may pass

through one or more saddle points before it converges to a local minimum in

the free energy. A simple algorithm to accomplish this consists of assigning

to each vortex an effective velocity u, equal to the negative gradient of the

free energy with respect to the coordinates of that vortex, -]?.jf. Allowing



the vortices to move in steps proportional to this effective velocity, which
changes after each step, results in a convergent pattern. This procedure
works well except for angular velocities less than a critical value u*(N) for
which no free energy minima exist. For N < 20 we find u*(N)*N + 2.

In deriving the velocity expression it is convenient to use complex num-
bers, z = x + iy, ~z = x - iy, which allows the free energy to be written as

n n

i < j

(R/a)

The gradient transforms to complex notation as V.f •*• 2 -^ f which gives the
thfollowing expression for the pattern-converging velocity of the j vortex,

(2)

(3)

where the prime on the first summation indicates that <•}* j. The first summa-
tion represents the influence of all the image vortices and the second summa-
tion gives the effect of all the other vortices on the j . This velocity
field is exactly orthogonal to the velocity field v in the rotating frame of a
classical hydrodynamic vortex system which causes the vortices to move physi-
cally on an equipotential surface of f(z-): u « - iv. To see this, recall
that the velocity of a classical vortex is the stream velocity at its posi-
tion. In dimensional units, v is given by the derivative of the stream func-
tion

VJzT • - h m) '
which, for identical vortices inside a circular cylinder, is

N N
W(Z) = i £ <Z"V " < R 2 - Z V

(4)

(5)

To use a reference frame in which the boundary is .at rest requires the addi-
tion to W(Z) of the stream function for solid body rotation in the direction



opposite to the laboratory rotation - i£2|z| , where ̂  is the physical value

of the angular velocity. The physical stream velocity at 1 is, therefore,

tW(Z) - i f i lZ l 2 ] , (6)

which becomes, upon defining z = Z/R and w = 2fR fyic,

(7)

Taking the conjugate of the above equation and comparing with Eq. (3) confirms

that u(z)<*- iv(z). (When z = z., the j = I term must be omitted in the

first summation in Eq. (7) because a vortex does not contribute directly to

its own velocity.) Any system of vortices whose motion follows only the clas-

sical velocity of Eq. (') can never converge to a stationary pattern in the

rotating frame for the obvious reason that such motion is constrained to an

equipotentiai surface of the free energy. However, the physical velocity w of

superfluid vortices has components parallel to both v of Eq. (7) and u of Eq.

(3), the latter component arising from irreversible frictional dissipation

that accompanies all relative motion between superfluid vortices and the nor-

mal component of superfluid helium. That is,

w = (d, - idp)v .

where the relative magnitude of the positve real coefficients d, and d9
depends on the temperature and the concentration of He impurities.

(Because of the quantum nature of the superfluid state, the integrity of the

circulation of the vortices is unaffected by the above frictional effects.)

Although there are no physical conditions for which d^/do = 0, we have no

reason to expect that any stationary patterns calculated by an algorithm that

assumes d-L/d2 = 0 are inaccessible to the physical system for that reason.

We find that the N and ui dependences of the free energy of stationary pat-

terns as given by Eq. (1) or (2) can be expressed to good accuracy by a rela-

tively simple analytic formula, name1y> the free energy f of a "continuum"

consisting of vortices in a perfect triangular lattice (see Eq. (1) of Ref. 3 ) ,



fc(N,w) = h N
2 (| - fcn N) - OJN + h N(N-l)J>n u

(8)
-Nb + N In R/a ,

where b = 4.15041281/ir - t n / r = 0.748752485. Using Eq. (8) we are able to

express the free energies of patterns as a small difference Af(N,w)=f- f .

Moreover, Af is an insensitive function of the angular velocity if the latter

is not near the critical value cu*; when co increases, Af quickly reaches an

asymptotic value characteristic of the given stationary pattern. Therefore,

we may simply and uniquely specify a Af for each pattern by defining

AfQ(N) = £im

This asymptotic value for large a> is equivalent to ignoring the effects of

images in the calculation of f at any_ positive u. (Forw somewhat smaller

than OJ*(N) the radius of the vortex pattern will exceed the radius of the

container, r = 1; this is formally permissible in the absence of images.) A

considerable saving of computation is thereby realized both in the calculation

of the vortex velocities (the image sum in Eq. (3) can be omitted) and in the

calculation of Af. To derive the simplified form of Af, substitute r". /w'/w

for r. in Eq. (1) (because the radii scale as Ai r- = JuSr*. for moder-

ately large co) and take the limit as <j}->c° . This gives, after omitting the

primes on r. for notational convenience,
J

£im f = -An \ ? (r? + r2. - 2r.r. cos e..)

(9)
+ h N(N-l)£nw/u)' - Nw + o>' Z r\ + N Jin R/a .



Therefore, using Eq. (8),

Af = Aim f-f = - An JI II irt + r^ - 2r.r. cos 6..) + co"Z r^

(10)

-h N2 (f - An N) - h N(N-l) An a/ + Nb ,

where the positions r. are calculated for the positive, but otherwise arbi-

trary, angular velocity u'

The behavior of Af(N,w) and the scaling of /»>r as functions of OJ are il-

lustrated in Table I for N = 18. Here r,g(18,) is the radius of the out-

ermost vortex in the first (i.e., lowest energy) pattern of 18 vortices. The

pattern 18, became unstable for OJ « 19.9, somewhat lower than for the pat-

tern 18? . Already at w = 25, Af is within 3% of its value at w=«>.

This relative insensitivity of Af on w is emphasized in the fourth column. As

might be expected, the free energy difference between patterns is even less

sensitive to OJ; this is illustrated in the fifth column for patterns 18, and

The patterns were calculated by letting an initial vortex configuration

develop in "time" steps At according to Eq. (3) until Af reached a constant
r 0

value within 10" . The positions of all vortices were changed simultaneous-

ly at each At step where At * 0.2/(io- N) was used.

We began each pattern calculation with an initial configuration of rings

of vortices, centered about the origin, at radii roughly consistent with the

value of co used. (We found that patterns of higher f-̂ ce eneryy were not pro-

duced efficiently when random arrays were used as the initial configuration.)

The resulting convergent pattern was then compared with patterns previously

obtained for the same N and w and, if different, was saved.



TABLE I
VARIATION OF PATTERN FREE ENERGY AND SIZE

WITH ANGULAR VELOCITY

(1)

00

90

80

70

60

50

40

30

25

20C

S f Mn \

bPattern U

VU8J *

Af(18,)
JL

0.25241a

0.25241

0.25240

0.25240

0.25238

0.25232

0.25211

0.25068

0.24539

0.18940

$7 diverged for UJ =

19.9.

Jji r l f,(18.)

3.515846

3.515859

3.515868

3.515890

3.515943

3.516094

3.516637

3.519597

3.527177

3.612616

20.

Af_-Af(18,)

0

-0.00000

-0.00001

-0.00001

-0.00003

-0.00009

-0.00030

-0.00173

-0.05301

-0.06301

Af{18,)-Af(18,)

0.22487

0.22487

0.22486

0.22486

0.22485

0.22482

0.22474

0.22447

0.22463

b

III. PATTERN SUMMARY
In Table II are listed the free energies AfQ and ring numbers of the

patterns. The ring numbers are the number of vortices with radii that differ
by less than 0.02 (except for N > 50 where the criterion is 0.05). For exam-
ple, 14 vortices form a pattern that is roughly (within 0.02) a ring of 4 in-
side a ring of 10, making the ring number of this pattern (4, 1Q).

In principle, Table II can be used to ":nd the net free energy of a spe-
cific pattern. Given the experimental conditions of cylinder radius R and
angular velocity fl, one merely adds Af of Table II to f as calculated

8



according to Eq. (8). (As shown in Table I, some accuracy will be lost if w

is near w*.) For example, if R = 0.5 cm and Q= 2TT/60 s (that is, 1 rpm)

then cu~ 164.4934 and, except for temperatures near the superfluid transition,

R/a = 3.6 10 . From Eq. (8), a continuum pattern of 5 vortices would have

(dimensionless) free energy f = -689.5549, so the net energies of the dis-

crete patterns are f(5j) *» fc + £ ^ ( 5 ^ = -689.4218 and f(5o) *

-689.1512. However, to calculate f to an accuracy of only 0.1, comparable

to the larger differences between Af of the various patterns for a given N,

one must know R/a and R to unrealistically high accuracy. In this example,

the necessary accuracy is 0.02% for R/a and 0.012! for fi. Consequertly, the

iif of Table II, like other fine structure energies, are more relevant to

experiments of high relative precision than those of absolute accuracy.

If, for given experimental conditions, it is a question of which of all

patterns has the lowest free energy, one must first find N by minimizing

f (N,w) with respect to N. This results in a transcendental equation,

0 = N Jtn N - N(l + Jin w) + u> + 1/2 £nw + b -Hn R/a (11)

which can be formally solved for N by iteration if w lies between the two

limits, (i)-|<w<(Do, where

uj + 1/2 ATUDJ = in R/a - b (12.1)

and

W2 = (f ) 2 e"2b • (12'2)

The first limit requires a minimum angular velocity for any vorticity and the

second limit prevents vortex densities so large that the vortex cores over-

lap. For the example used above, OJ, = 15.3, w~ = 2.85 10 , and the

minimum in f occurs for N = 103. The free energy f for this optimum

number of vortices differs appreciably from that (f ) for solid-body rota-

tion, (f - fc)/fs = 0.25, which shows that quantum effects are still

important in patterns of 100 vortices. (For io 10 times larger, the optimum

vortex number is 16 times greater and the above ratio is reduced to 0.03.)



TABLE II

FREE ENERGIES AND RING NUMBERS OF KNOWN

STABLE VORTEX PATTERNS

Ring NumbersN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Order

1

1

1

tH

1
2

1
2

1

1

1

\*
4X

1
2
3

1
2

1
2X
3

1
J.

2

1
2

1
2
3

Mo

-.00125

.19065

.14418

.10740

.13307

.40365

.21781

.24927

.10749

.09454

.19405

.26694

.26716

.54366

.22433

.22578

.41705

.24918

.28859

.19344

.19837

.35022

.22432

.24636

.17790

.36713

.23413

.24711

.24773

1

2

3

4

5
1,

1,
6

1,

1,

1,
2,
2,
3,

2,
2,
1,

3,
2,

3,
3,
4,

4,
3,

4,
5,

4,
5,
5,

4

5.

6

7

8
4,
3,
6,

4,
2,
9

8
9

3,
6,
8

9
10

10
9

11
10
10

R1

3
4

4
4,

6
3

10



16

17

18

19

20

21

22

23

24

1
2
3X
4
5

1
2
3
4
5

1
2
3
4
5
6
7

1
2
3
4
5

1
2
3X
4X

1
2
3
4

1
2X
3
4

.21959

.36491

.38647

.39842

.40541

.28394

.29412

.34894

.39682

.47407

.25241

.28316

.35110

.35215

.35241

.35626

.47728

.18626

.19317

.33323

.38032

.45481

.21955

.21960

.43685

.46897

.19096

.34793

.37628

.39590

.25122

.26311

.30426

.33339

5,
1,rH

4,
4,

1,
5,
3,
1,
1,

1,
1,
3,
6,
3,
6,
5,

M

1,
1,
1,
3,

1,
1,
2,
2,

1/
1,
1,
2,

1,
1,
If
2,

11
5,
c
~> r

4,
8,

5,
12
3,
6,
4,

6,
5,
3,

12
3,

12
13

6,
6,
7,
5,
3,

6,
7,
2,
4,

7,
6,
4,
2,

7,
7,
8,
7,

10
5,
8
4

11

11
10
4,

11
12
12

12

6,
12
11
13
13

13
12
4,
2,

13
6,
4,
2,

7,
14
13
13

5

8

6

12
6, 4

8
12
3, 12

1

1 .31390
2 .33704
3 .33801
4 .42158

1 .30037
2 .39788
3 .41961
4 .44624
5 .44889

1, 8, 14
2, 2, 4, 2, 13
2, 2, 2, 3, 14
1, 7, 15

2, 2, 4, 2, 14
3,
1,

8, 13
8, 15

If 1, 2, 2,
2, 2, 2, 4,

3, 15
1, 13

11



25 1 .32980
2 .35268
3 .35301
4 .37705
5 .42524
6 .61199

26 1 .31762
2 .33269
3 .38172
4 .48666

27 1 .27672
2 .38716
3 .40983
4 .41204
5X .43807
6 .47419

28 1 .32073
2 .32482
3 .34232
4 .34311
5 .40699
6 .43942
7X 1.34475

29 1 .31163
2 .32340
3 .34598
4 .45988

30 1 .27672
2 .39429
3 .40588
4 .40738
5 .43343

37 1 .28424
2 .28884
3 .39854
4 .41983

50 1 .44156
2 .45244
3 .46482
4 .48020
5 .49186
6 .54319
7 .62067

3, 8, 14
2, 2, 4, 2, 15
2# 2, 4, 2, 15
2, 2, 7, 14
2, 1, 3, 6r 13
1, 8, 8, 8

3, 3, 6, 14
3, 8, 15
2, 1, %, 6, 15
2, 2, 4, 2, 8, 8

3, 3, 6, 15
4, 9, 14
3, 8, 16
3, 4, 6, 14
3, 8, 16
2, 1, 2, 6, 16

4, 9, 15
3, 3, 6, 16
3, 5, 5, 15
3, 10, 15
4, 4, 6, 14
4, 8, 8, 8
1, 9, 18

4, 10, 15
4, 9, 16
3, 3, 7, 16
3, 3, 6, 17

4, 4, 6, 16
4, 11, 15
5, 5, 5, 15
4, 9, 17
3, 3, 7, 17

1, 6, 6, 6, 18
1, 6, 6, 6, 18
1, 7, 12, 17
1, 6, 11, 19

4, 10, 15, 21
4, 9, 16, 21
3, 3, 6, 16, 22
3, 3, 7, 15, 22
4, 4, 6, 16, 20
3, 3, 6, 9, 6, 23
3, 2, 2, 6, 17, 20

12



61

91

127

169

217

1
2

1
2

1
2

1
2

1
2

1

1
1

.39758

.42173

.53680

.58631

.70345

.73294

.89830

.01167

.12214

.27248

1, 6, 12, 18, 24
1, 6, 12, 18, 24

1, 6, 12, 18, 24, 30
1, 6, 12, 18, 24, 30

1, 6, 12, 18, 24, 30, 36
1, 6, 12, 18, 24, 30, 36

1, 6, 12, 18, 24, 30, 36, 42
1, 6, 12, 18, 24, 30, 36, 42

1, 6, 12, 18, 24, 30, 36, 42, 48
1, 6, 12, 18, 24, 30, 36, 42, 48

denotes patterns that are nearly stable.

As N increases, the pattern with lowest energy changes from 1 vortex in
the center to 2, 3, 4, 5, and then back to 1 (N = 6), 2 (N = 10), 3, 4, 5, and
again, 1 (N = 17). Having 1 vortex in the center of the lowest energy pattern
is a property of vortex numbers close to "triangular" ring numbers N = 1 + 6
(1 + 2 + 3 + . . . ) , that is, N = 1, 7, 19, 37, 61, 91, 127, 169, 217, etc.

IV. PATTERN FIGURES

The patterns are illustrated in the Catalog below in order of increasing
vortex number M and, for each N, in order of increasing AfQ, which is the
asymptotic free energy difference with respect to the continuum model as w*» .
We show all the stable patterns we have found for N ** 30 and N = 37, 50.
(Patterns 372 and 37^ were shown by Stauffer and Fetter. ) In addition
we include a few of the many nearly stable patterns, which are identified by
an "X" in the upper right-hand corner. For N = 61, 91, 127, 169, 217 only the
two lowest energy patterns are shown.

13



In addition to Af , the ring numbers (defined in Sec. Ill) are also

listed below each pattern. A result of the fine discrimination applied to

patterns with N < 50 is ring numbers that are, in several cases, expanded be-

yond what one sees oy cursory inspection. For instance, pattern 9o has ring

numbers (2, 4, 3) although on a coarser scale they would obviously be (2, 7).

The 2% criterion permits unique ring numbers to most patterns that are simi-

lar, such as 92 and 93, but still not all, such as 152 and 153.

As explained in Sec. II, the absence of image effects makes Af inde-

pendent of the value of angular velocity w used to calculate the pattern. The

pattern size, however, does depend on w and an accurate estimate of the radii

of the various rings constituting a pattern can be derived from the exact

second-moment relation that every stationary (stable or nearly stable) pattern

in an unbounded fluid must satisfy :

N ,
< = h N(N-l) . (13)

Assuming the pattern consists of M rings of radii r,,..,rM, each contain-

ing N-.,..,NM vortices, respectively, the ring radii satisfy

w r2. = h (N.-l) + N, + N? + .. + N. ,, K j < N . (14)

This formula is most useful for rings that do not deviate appreciably from

circles. In Table III are listed the values of w used here.

TABLE III

ANGULAR VELOCITY USED IN PATTERN CALCULATIONS

N w

1 through 15 N + 10

16 through 30 N + 8

37 50

50 65

61 80

91 125

127 185

169 250

217 330

14



The patterns for N = 61, 91, 127, 169, 217 are included to illustrate the

tendencies of those patterns which most closely approximate triangular sym-

metry which is known to be the preferred pattern for an infinite number of

vortices. However, tor each of these N, the pattern N, of lowest free en-

ergy has less triangular symmetry than N~. In addition, the triangular

lattices of both N, and N? suffer circular distortion that penetrates

deeply into the patterns. (This is most easily seen by looking obliquely at

the figures.) Because these patterns are calculated in the absence of images

they show that a finite pattern of vortices, even in an infinite container,

displays triangular symmetry in less than half of its total area. This cir-

cular distortion results in a free energy that is greater than the (continuum

model) value for an equal number of vortices in an infinite and perfect tri-

angular lattice. This additional energy per vortex aopears to be approaching

a limiting value as N increases: AfQ(N)/N = 0.00590, 0.00554, 0.00532,

0.00517 for N = 91, 127, 169, and ?17, respectively. For comparison, the

extra energy per vortex in a perfect square lattice is 0.01058. Although the

deviation Af of the free energy with respect to the continuum model in-

creases with larger N, the ratio of this deviation to the total free energy

decreases rapidly.

The nearly stable patterns are shown here to serve as a cautionary sam-

ple of patterns that may initially show excellent convergence, both spatially

and in their second moment, Eq. (13), but are not subsequently stable. This

is especially true of many patterns derived from initial vortex configura-

tions of high symmetry such as those having ring numbers (m, 2m) or (m, 3m)

or (1, m, 2m), etc. The free energy of these patterns is at a saddle-point

and continued numerical iteration of the pattern around the apparent stable

configuration will lead to the injection, through computer round-off error,

of finite amplitude into the unstable modes of the pattern which then grow,

leading to a new stable (or perhaps nearly stable) pattern. The acquisition

of nearly stable patterns can be largely avoided by slightly randomizing the

initial configuration.

.15
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18



19



20



.2464
3 10

21



22 I



23



.4741
1 4 4 8

24



25



26



.4690

2 4 2 6 4 2

.3959
2 2 2 3 12

27



.3370
2 2 4 2 13

28



.3380
2 2 2 3 14

.3004
2 2 4 2 14

.4462

1 1 2 2 3 15

29



.4489
2 2 2 4 1 13

.3530

2 2 4 2 15

.3527

2 2 4 2 15

30



.4252
2 1 3 6 13

.3817
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