

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONF-810602-4

MASTER

SHOCK-INITIATION SENSITIVITY
OF HEXANITROSTILBENE (HNS)*

A. C. Schwarz **
Sandia National Laboratories
Albuquerque, New Mexico 87185

Experiments were conducted to study the influence of powder morphology, sample density, diameter of the impacting flyer and duration of the stimulus on the shock initiation sensitivity of the high explosive, hexanitrostilbene. The shock stimulus was provided by a polyimide flyer accelerated by an electrically-exploded, metallic foil. Impact pressure (P) was controlled between 3.8 and 9.8 GPa and pulse duration (τ) was nominally 0.035 μ s except for the last experiment where pulse duration varied. Powder morphology significantly influenced the shock amplitude required for initiation with the finest-particle HNS requiring the least pressure, 6.3 GPa, and exhibiting the sharpest threshold. Both a reduction in density of HNS, from 1.60 to 1.30 Mg/m³, and an increase in flyer diameter affected a reduction in impact velocity (or pressure) needed to induce detonation. The line which separates detonation from non-detonation is expressed by $P^{2.4}\tau = \text{constant}$ for τ between 0.01 and 0.10 μ s; for longer pulses the initiation criterion becomes one of constant pressure.

INTRODUCTION

The usefulness of hexanitrostilbene in explosive components has been demonstrated (1,2) and many current applications exist. During the past several years, initiation studies have been performed to identify some of the factors which influence shock initiation sensitivity and to quantify those effects. The parameters evaluated were powder morphology, sample density, diameter of the impacting flyer and duration of the shock stimulus. In all experiments, a polyimide flyer provided the shock stimulus.

* This article sponsored by the U. S. Department of Energy under Contract DE-AC04-76-DP00789.

** U. S. Department of Energy Facility.

EXPERIMENTAL TECHNIQUES

Test Device

The impact of a thin flying plate on an explosive provides a reproducible means for applying a pressure whose amplitude (P) and duration (τ) can be independently controlled. A device which provides this stimulus is shown in Fig. 1. The firing set is a capacitor discharge unit which provides a current pulse which explodes the metallic foil and propels the polyimide flyer to the desired impact velocity. The impact velocity is determined precisely from a pre-calibration curve, Fig. 2, which is derived from measured burst current densities and VISAR*-measured flyer velocities. (Burst current density is the burst current divided by the cross-sectional area of the foil.)

* Velocity Interferometer System for Any Reflector (3)

EAB

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

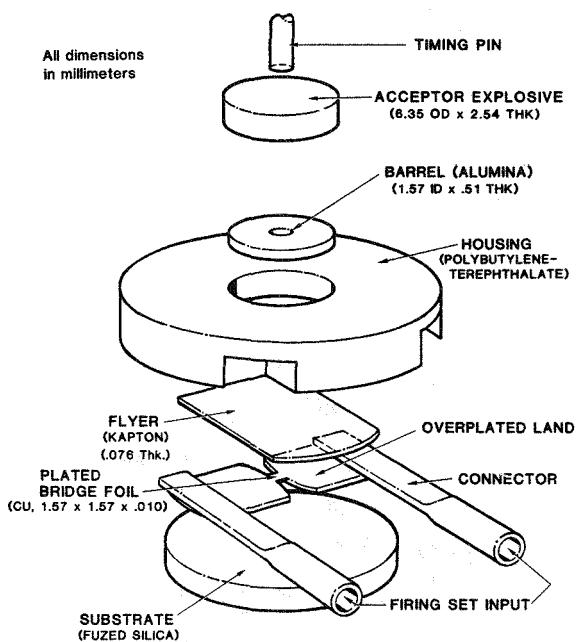


Fig. 1 Exploded view of flying plate test device.

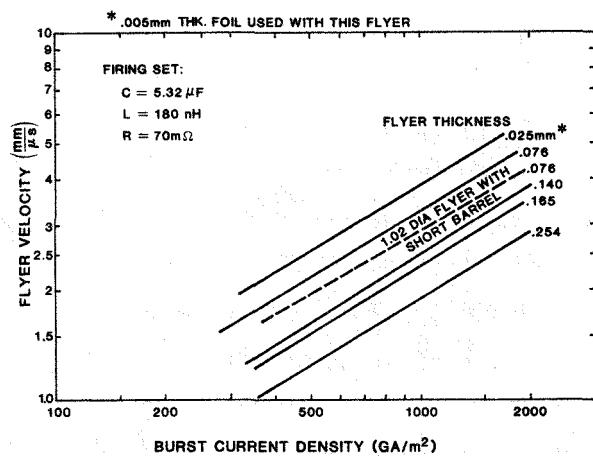


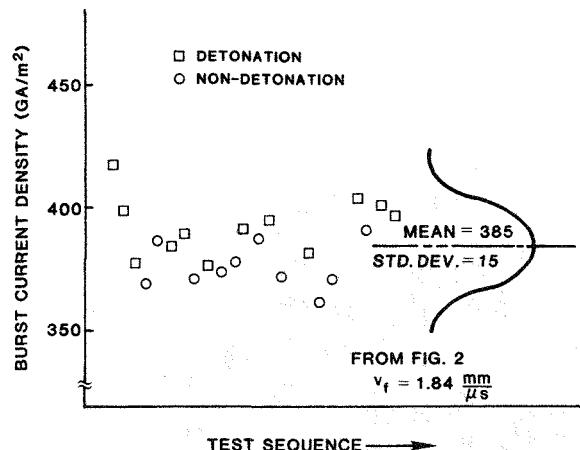
Fig. 2 Flyer velocity versus burst current density for several flyer thicknesses.

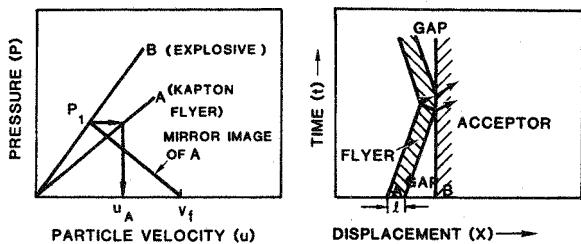
The impact pressure was controlled between 3.8 and 9.8 GPa and the pulse duration, which was determined by a double transit time through the flyer, was controlled between 0.011 and 0.137 μ s. In all experiments (except for HNS density of 1.30 Mg/m^3) the shock impedance of the flyer was less than that of the explosive, assuring a constant-

pressure, fixed-duration pulse in the test specimen.

Test Procedure

Each detonation threshold experiment consisted of 24 individual test firings using an "up-down" method, per Fig. 3, in which the charging voltage on the firing set was adjusted upward after a non-detonation and downward after a detonation. Shock arrival time measurements confirmed detonation. There are documented techniques (4) which allow probability distributions to be computed.




Fig. 3 Burst current density data from "up-down" experimental method.

Threshold is defined as that value of input stimulus for which the probability of detonation is 50 percent. The threshold current density, as determined using the methods of Ref. 4, is used with the appropriate line for the flyer thickness in Fig. 2 to establish the flyer velocity. The Hugoniot relationships, as illustrated in Fig. 4, are then used to determine impact pressure and pulse duration. Hugoniot data on HNS and on polyimide were taken from References 5 and 6 respectively.

TEST RESULTS

Effect of Powder Morphology

Three types of HNS were evaluated in this series of tests--each type of explosive being made by a different process which resulted in materials of divergent particle size (or specific surface area). These materials are identified as HNS-hyperfine (HF), HNS

P_1 = PRESSURE IMPARTED TO ACCEPTOR WHEN KAPTON IMPACTS AT VELOCITY, v_f

$$\tau \cong \frac{2l u_A \rho_A}{P_1}$$

WHERE

τ = PULSE DURATION OF P_1

l = THICKNESS OF FLYER

u_A = PARTICLE VELOCITY IN FLYER

ρ_A = ORIGINAL DENSITY OF FLYER

Fig. 4 Graphical solution to determine P_1 and τ from P - u and x - t diagrams.

superfine (SF), and HNS-1 and have measured specific surface areas of 10.00, 2.56, and 1.59 m^2/g , respectively, as determined by the gas adsorption method. Photomicrographs of the three types of materials are shown in Fig. 5 along with test results which show probability of detonation versus impact pressure. The role of powder morphology is clearly illustrated by the fact that the threshold pressure (taken as the point of 0.5 probability) varied with particle size, being lowest for the finest particle-size material (HNS-HF). In addition, the HNS-HF showed the narrowest band of pressure separating no-fire (0.001 probability and all-fire (0.999 probability).

As a cautionary note, the relationships among these three materials should not be extrapolated to applications where the pulse durations are significantly different from the 0.034 μs of these experiments (7).

Effect of Explosive Density

The effect of density on the shock initiation sensitivity of HNS-SF is illustrated in Fig. 6. The threshold pressure required to initiate the lower density (1.30 Mg/m^3) specimen was 3.8 GPa compared to 5.3 GPa for the higher density (1.60 Mg/m^3) specimen. This agrees with results of modeling explo-

sives as porous materials (8) where less dense materials receive larger shock heating.

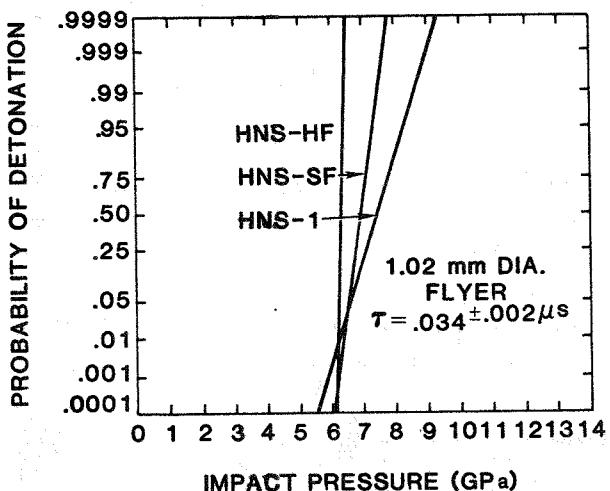
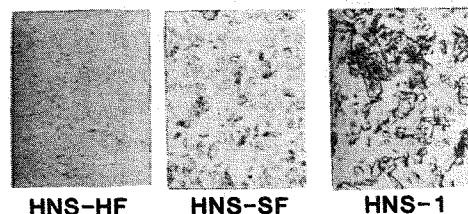



Fig. 5 Effect of morphology on sensitivity.

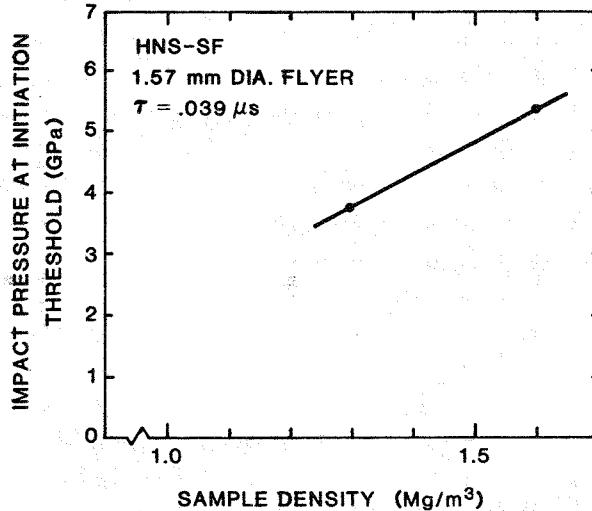


Fig. 6 Effect of sample density on sensitivity.

Effect of Flyer Diameter

Experiments were also performed using two different flyer diameters, 1.02 mm and 1.57 mm, for impacting HNS-SF at a density of 1.60 Mg/m³. The results given in Fig. 7 show flyer velocity at initiation threshold versus the reciprocal of flyer diameter. A single datum from the Lawrence Livermore National Laboratory (9) confirms the observed trend of larger flyers requiring a smaller impact pressure. There should be some flattening of the curve for large diameter flyers (10) since, at very large diameters, edge effects can't perturb threshold.

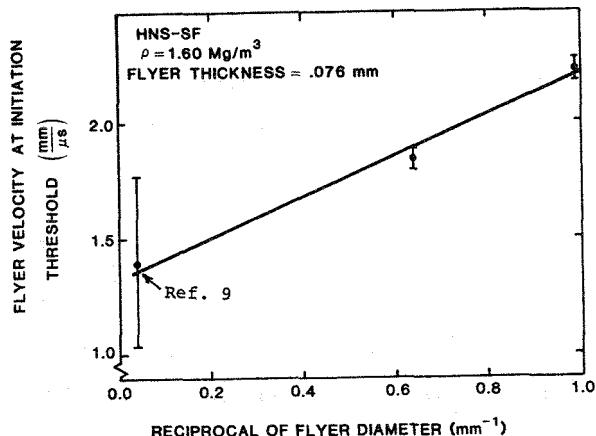


Fig. 7 Reciprocal of flyer diameter versus flyer velocity at initiation threshold.

Effect of Pulse Duration

Finally, experiments were performed to determine the effect of pulse duration on the shock initiation sensitivity of HNS-SF at 1.60 Mg/m³ using a 1.57 mm diameter flyer. Pulse duration was controlled by the flyer thickness which varied between 0.025 and 0.254 mm, providing pulses that varied from 0.011 to 0.137 μs. The test results are shown in Fig. 8. The line of demarcation which separates detonation from non-detonation is not a straight line. However, for a pulse duration between 0.01 and 0.10 μs the relationship $P^{2.4}\tau = \text{constant}$ applies. As τ increases to about 0.15 μs, the initiation criterion is more nearly one of constant pressure (≥ 3.6 GPa).

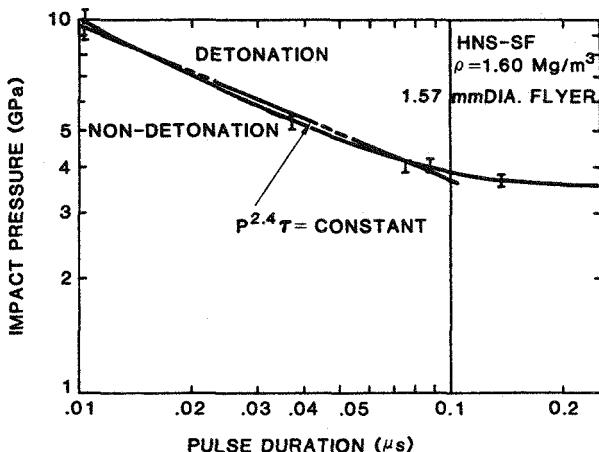


Fig. 8 Effect of pulse duration on initiation sensitivity.

SUMMARY AND CONCLUSIONS

Based on the test results presented herein, it is concluded that:

1. Powder morphology plays a significant role in the shock initiation sensitivity of HNS. For 0.035 μs pulses, the pressure required to cause initiation at threshold varied from a low of 6.3 to a high of 7.6 GPa, being lower for the smaller particle-sized HNS-HF. Not only was the HNS-HF more sensitive, but it also was less variable in that it displayed the narrowest band of pressure separating no-fire (0.001 probability) from all-fire (0.999 probability).

These data suggest that HNS-HF would be an excellent acceptor explosive for thin fragment initiation in detonation transfer systems.

2. Lower density specimens and specimens impacted by larger diameter flyers required lower impact velocities (or pressures) than their counterparts to induce initiation. These facts are useful design aids.
3. For pulse durations between 0.01 and 0.10 μs, the line which separates detonation from non-detonation can be approximated by $P^{2.4}\tau = \text{constant}$. This is the type of equation that has been used in explosive component design optimization studies (11, 12). It is also significant that, as the pulse duration approached 0.15 μs, the pressure

for initiation became essentially constant (3.6 GPa).

The assistance of M. R. Kopczewski, who prepared the test specimens, and of G. J. Janser, who performed the experiments, is gratefully acknowledged.

REFERENCES

1. E. E. Kilmer, "Heat-Resistant Explosives for Space Applications," *Journal of Spacecraft*, Vol. 5, No. 10, October, 1968.
2. A. C. Schwarz, "Application of Hexanitrostilbene (HNS) in Explosive Components," SC-RR-71 0673, Sandia National Laboratories, May, 1972.
3. L. M. Barker and R. E. Hellenbach, *J. Appl. Phys.* 43, p. 4669, 1974.
4. H. E. Anderson, "STAT/LIB," SAND74-0225, Sandia National Laboratories, October, 1974.
5. D. E. Mitchell, S. A. Sheffield, D. B. Hayes, "The Equation of State of Unreacted Hexanitrostilbene (HNS) Explosive," SAND76-0109, Sandia National Laboratories, May, 1976.
6. J. P. Marsh, LASL Shock Hugoniot Data, University of California Press, Los Angeles, 1980.
7. A. C. Schwarz, "A Study of Factors Which Influence the Shock Initiation Sensitivity of Hexanitrostilbene (HNS)," SAND80-2372, Sandia National Laboratories, February, 1981.
8. D. B. Hayes and D. E. Mitchell, "Shock Sensitivity of Porous HNS Explosive," SAND77-1363, Sandia National Laboratories, December, 1977.
9. R. Jackson, Formerly at Lawrence Livermore National Laboratory, Private Communication.
10. W. H. Anderson, "Critical Energy Relation for Projectile Impact Ignition," *Combustion Science and Technology*, 1979, Vol. 19, pp. 259-261.
11. J. E. Kennedy and A. C. Schwarz, "Detonation Transfer by Flyer Plate Impact," *Proceedings of the 8th Symposium on Explosives and Pyrotechnics*, Franklin Research Institute, February, 1974.
12. D. B. Hayes, "Optimizing the Initiation of Detonation by Flying Plates," SAND77-0268, Sandia National Laboratories, May, 1977.