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Commentaries on Three Papers by Cornelius Lanczos
by

Kang C. Jea" and David M. Young

This report contains commentaries on three papers of Cornelius Lanczos listed below. These
commentaries will be included in a volume of the collected published Lanczos papers which will be
published as part of the Cornelius Lanczos Centenary Celebration at North Carolina State

University. The volume is scheduled for publication in December 1993.

A. Comnelius Lanczos [1952]. "lterative Solution of Systems of Linear Equations by
Minimized Iterations”, Journal of Research of the National Bureau of Standards, 49,
33-53.

B. Cornelius Lanczos [1953]. "Chebyshev Polynomials in the Solution of Large-Scale
Linear Systems", Proceedings of the ACM Conference held in Toronto, California in
1952, Sauls L. Lithograph Co., Washington, DC.

C. Cornelius Lanczos [1958]. "Iterative Solutions of Large-Scale Linear Systems"”, J. Soc.
Indust. Appl. Math., 6, 91-109.

" Now at the Department of Mathematics, Fu Jen University, Taipei, Taiwan, R.O.C.
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Commentary on Lanczos [1952]
"Solution of Systems of Linear Equations by Minimized Iterations”
Lanczos [1952] considered the problem of solving the linear system‘.P

Au=b ‘ ¢}

where A is a given nonsingular NxN complex matrix and b is a given complex Nx1 column

matrix. He considered a method which involves choosing an arbitrary vector b and, for
k=1,2,..., the generation of the coefficients d;a;,---, 3, and é,,4,,....3; to minimize the
Euclidean lengths of pk) and ¢®)* where

p*® =[A* - (a,] +aA+...+a,_ A" )b | 2)
GO = [ — (B,A+ &,A%+...+3,A%))b

Lanczos also defined two other vectors B and §*" are given by2

B =[(A") = (@] + @A +...4a, (A )b

GO =[I—- (@A + &, (A +...+3,(A )b (2a)
Evidently we have

p® =p,(A)b

® = p,(AM6 3

where the polynomials P, (X)are given by

()= x* = (G + G40, ) @

+ Here and elsewhere we have changed the notation slightly.

2 Here A* denotes the conjugate transpose of A. However, p* denotes a column vector
which is, in general, different from p.
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Similarly, the vectors ¢* and §**" are given by

" =q (A)b
g =q; (A (5)
where the polynomials 4; () are given by

g, (X)=1-(gx+ax"+...+d,x") 6)

(k)

Finally, we define the vectors ¢* and ¢ by

1 .
q(k) — _&_q(k) =q, (A)b

k

-~ 1 ~(k)* L Pl
§P =-—q"" =q(a"0
% )

where the polynomials 4:(X) are given by

1 . N -
g (x)=——q,(x)= —-;L[l - (@, x+...+4,x")]
“ . (8)

Using the polynomial operators 9 (A) we can generate a sequence of approximate solutions to
(1). Thus, we let

WD = A (g (END k=12,

q,(0) 9

where E is the null matrix (We note that ¢;(A) — g, (E) contains a factor A). For each k the residual
r* corresponding to u*1) is given by

FED Z p ApD = g 10)

It can be shown that the length of r*~? is minimum. An alternative sequence of approximate
solutions to (1) can be generated by




D =

AT A)—p,(E))b k=12,...
oA =B _ i

The corresponding residuals 7¢*-Dare given by

FED Az - _ 1 p®
(12)

Thus 7*-V has in general a larger length than r*~» except at the end of the process when
FED = p 5D =0, and g* = 4D = 47'p, the exact solution.

The generation of the two sets of coefficients for the polynomials Px(X) and ¢.(X) can be
shown to be closely related and to lead to two-term recurrence relations for the corresponding
polynomials P:(X) and ¢:(x). Thus we have

Pis1(X) = P, (x) + xq, (x)

Qi1 (X) = 0,4, (X) + Py (X) (13)
where
__(q.(A)p.(AY"b) _ (q,(A)b,A'D)
C(pABAYD) (4D, AM)
and

o P ABAND) __ (py (AN, A™D)
T (g(A)b (A D) (q,(A™)b, A*'b)

Evidently, the vectors p*, 5*,¢™ and §* can be generated by using (13). Thatis
PV =p, p® + Ag®; PED = p, 5P + TGP
q(k+1) - o.kq(k) + p(k+1); q(ki»l) = qu(k) +ﬁ(k+l) (14)

where
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B, 4¢%) __@®,45®)

P =

( p"", ~<k>) - ( p"", ~(k))
Gk _ (Ap(“l), ~(k)) __ (p(qul), ~(k+1))
(Ag®, ™) (Aq®,5*) | (14")

Moreover, it can be shown that the approximate solution u(+1), given by (9) can be written in the

form
(k+1) i )
ut =) ng”
i=0
=u(k) +nkq(k) ,k=0,1,2,“_. (15)
where
{770 ==1/p,
nk = nk—l /pk ’ k = 1,2,....

Futhermore, it can be shown that the p(") and ﬁm are biorthogonal sets of vectors and that the

g% and §° are bi-conjugate sets of vectors in the sense that
(p©,p”)=0 fori=j, (16)
(qm,A(?(j)) =0 fori#j. ' )

The above process is called the "p-q algorithm" by Lanczos [1952]; it is commonly known as
the "Lanczos method". The procedure can be summarized as follows:

Algorithm 1. Lanczos method (A non-Hermitian)
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Do for k =0,1,2... until p*¥ =0
1L pO=g®=p
2. Choose b arbitrarily and set 5 = G® = b
3. Letu'”=0,m,=-1 thenr® =b-Au® =b
computep(k+1),ﬁ(k+l)’q(k+l), a.nd 6(&4-1) by (14)
M =Mt/ Ps

{k+1)

u =u® + Thqm
PED B N Aq""
end do

We remark that elimination of the 4:(X) in (11) leads to the following three-term recurrence
relation which involves P:(X) alone:

P (@) =(x=0,)p,(x)= B,_ 1P, (%) (18)

where

o, =—(p,+0,,)
ﬁk-&»l = PO,

. . . . k
This in turn leads to a method which involves the generation of two sets of vectors p* and

P satisfying (14).

Similarly, one can eliminate the Px(X) in (13) and get three-term recurrence relations involving
only the 4:(X). Thus we have

G (X) = (x = @,)q, (x) — ﬁk-—lqk—l (x) (19)

where

0, =—(p, + 0})

Biy = PO

The equation (19) leads to a method which involves the generation of two sets of bi-conjugate
which satisfy the relation (17).

k ~(k
VECtors q( ) and q( )




If A is symmetric positive definite (SPD), and if we choose b = b, then p**? = 5**” and

g**" =G**" in (14). Therefore, the work required with Algorithm 1 is reduced in half. Thus we
have

Algorithm 2. Lanczos method (A SPD)

L PO =g®=p
2. Letu®=0,m,=-1 thenr® =b-4u®=b
3. Dofork=0,12... untl p® =0

p(k+1) =p, p(k) + Aq(")

q(k-H) —_ o.kq(k) + p(k-(-l)
where
o= (p(k),Aq(k))
k (p(k),p(k))

_ (Ap(kﬂ)’p(k)) __ (p(k+1),p(k+l))
(4¢%. 0%y (4g™,p®)

T = Nt / P

D = 0 4 g

rE) = e nkAq(k)

end do

u

Thus (16) and (17) become the following
( p(i), p(j)) =0 fori= j, (20)

(¢©,A¢")=0 fori=j. 21)
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It is easy to show that Algorithm 2 is closely related to the conjugate gradient (CG) method
developed by Hestenes and Stiefel [1952] for solving a linear system (1). If one starts with
u® =0 then one can show inductively that the residual vectors %ce generated by the CG method
and the p® lie in the same Krylov space. Moreover, the residual vectors are also pairwise
orthogonal and thus the rée and the p® have the same direction. Similarly, the direction vectors

pga for the CG method are pairwise conjugate and have the same directions as the ¢* in
Algorithm 2.

It should be noted that the Lanczos method minimizes the Euclidean length lr®li= (r®,r*))%
of the residual vector which is A-norm of the error vector. Moreover, ll7®Il is the same as the A-
norm lle®Il, =l Ae®lI= (Ae®, Ae®)% of the error vector €% =u® — 77, where T = A™'b. We

remark that the usual form of the CG method minimizes the A% — norm, ”8(")”# = (e®, A%,

of g(k)

A real linear system (1) is said to be symmetrizable if there exists an SPD matrix Z such that Z
and ZA are SPD. Otherwise, the system is nonsymmetrizable. Young and Jea [1980] considered
a method called the "idealized generalized conjugate gradient method", IGCG method), designed
to handle the nonsymmetrizable case. The method involves the choice of an auxiliary matrix Z,
and the determination of u(™ by the conditions

u(u) - u(O)&.K'n (r(O)) (22)

(Zr'™,v)=0, forall veK,(r'®,4) (23)

Here, K,(r®, A) is the Krylov space spanned by the vectors r®, Ar®...A+®_ Young and Jea
[1981] showed that if Z and ZA are positive real in the sense that Z+ZT and ZA+ZA)T are SPD
then u® is uniquely determined by (22) and (23). Three equivalent forms of the IGCG method
were given, namely, ORTHODIR, ORTHOMIN, and ORTHORES. These procedures reduce to
simplified forms called ORTHODIR*, ORTHOMIN*, and ORTHORES#*, respectively, if A is
symmetrizable. We remark that ORTHOMIN* is the usual two-term form of the CG method
defined by Hestenes and Stiefel [1952], while ORTHORES* is a three-term form of the CG
method given by Engeli, et.al. [1959] and by Concus, Golub, and O'Leary [1976]. The method
ORTHODIR* is defined in Young and Jea {1980].
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As one method for handling the nonsymmetrizable case involving real systems, Jea and
Young [1983] considered an expanded system of the form

Ai=bh (24)
where

i= A 0

T o A7

= (2]

u= -

i

and

The expanded system includes the original system (1) and a fictitious system A”#i = b, where b is
arbitrarily chosen.

Evidently, if

- [O 1]
7=

then ZA is symmetric and ZA = ATZ. Because of this, as shown by Jea and Young [1983] the
IGCG method for solving (26) with Z as given in (27) is greatly simplified. The three simplified
versions converted back to N-vectors are called LanczosfORTHODIR, Lanczos/ORTHOMIN, and
Lanczos/ORTHORES. The name "Lanczos" is added to each of these three procedures because it
can be shown that Lanczos/ORTHODIR is equivalent to the three-term form of the Lanczos method
where ¢ and §¥ correspond (19). We remark that Lanczos/fORTHOMIN is essentially the
biconjugate gradient (BCG) method considered by Fletcher [1976].

We also remark that, as noted by Jea and Young [1983], there is no guarantee that the three

methods, Lanczos/ORTHODIR, Lanczos/ORTHOMIN, and Lanczos/ORTHORES, will not break
down. However, there exists an integer ¢ < N such that if any one of the three methods does not
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break down within #+1 iterations then y“*? =57. Also, the LanczosfORTHOMIN method
converges if and only if the Lanczos/ORTHORES method converges, and if both converge, then
the Lanczos/ORTHODIR method converges and in that case and all three methods are equivalent.
From this it would appear that the Lanczos/ORTHODIR method is the most robust. However,
Lanczos/ORTHODIR appears to be subject to roundoff error.

A number of other methods have been proposed which are related to the Lanczos method.
These include oblique projection method considered by Saad [1982], the conjugate gradient-
squared (CGS) method of Sonneveld [1989] and the CGSTAB method of Van der Vorst and
Sonneveld [1990], to mention only a few.
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Commentary Lanczos [1953] .
"Chebyshev Polynomials in the Solution of Large-Scale Linear Systems"

In this paper, Lanczos considered iterative methods for solving the linear system
Ay=b 63
where A is a given square nonsingular matrix of order N which is symmetric and positive definite
(SPD), all of whose eigenvalues lie in the interval (0,1]. For the more general case where A is an
arbitrary nonsingular complex matrix, one can consider the normal equations

Cy=c (2)

where C = AHA, ¢ = AHb, and Al is the conjugate transpose of A. The system (2) can be scaled
by dividing both sides by the factor |1 where

N .
u= malec‘.jl 3)

/=1

Thus one obtains the scaled system
C0y=60 (4)

where Cy = 1-1C, ¢y = p-lc and the eigenvalues of Cy are positive and do not exceed one.

The true solution of the linear system (4) is given by ¥ = Co™Co. The main object of the paper
is to seek polynomials G(x),G,(x)...., such that for each m a good approximation to ¥ is given by

Yn = G,(Cy)c, (5)

The residual vector, 7, corresponding to y,, is given by
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rm = CO - COynl
= -C,G,(Cy))e,
= F,,1(Co)cq (6)

where

Fm+l (X) = 1 - XGm (x) (7)

is the "residual” polynomial of degree m+1. The polynomials Fm+1(x) are chosen so that
Fm+1(0)=1 and so that Fp,,;(x) is small everywhere else in the interval [0,1]. Lanczos used two

approaches to construct these polynomials:

(1) Eejer kemnel approach
Corresponding to the Fejer kernel for Fourier series, Lanczos considered the polynomials

1-T,,,(1-2x)
(m+2)*2x 8)

Fm+1(x) =

where T (x)=cos(k cos™1x) is the kth Chebyshev polynomial of the first kind. Then by (7)

T, .,(1=2x)+2(m+2)*x—1
2(m+2)*x* ©)

G, (x)=

Moreover, y,, and r,, given by (5) and (6), respectively, can be evaluated effectively by using the

new vectors g, where

m+2
2

PG, (Cy)cy (10)

8 =(

and by the use of a three-term recursion relation satisfied by Chebyshev polynomials. Moreover,
by analyzing the residual polynomials F,,, ;(x), Lanczos showed that if all eigenvalues A of C

statisfy

2. |
A22,=( isz)z (11)

m
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then the component of the residual vector corresponding to the eigenvector associated with A
cannot be more than G,(T, ~.05), times the corresponding component of the right hand side b.
For example, if m=6 and if the matrix Cy), regardless of its size, contains no eigenvalue smaller
than Ay, then the approximate solution y, will be accurate to within 5%. Since A(=0.1016, the
permissible spread of the eigenvalues of Cyis about 1:10. (Also one can say that the "condition’
of Cg and the "skewness" of Cy is about 10.)

t

(2) Dirichlet kemel approach

Corresponding to the Dirichlet kernel for Fourier series, Lanczos considered the

polynomials
1

F . ()=
et () m+1

(1-x)5,(1-2x) (12)

where §,,,(x) denotes the Chebyshev polynomial of the second kind defined by

sm(x)z_LT;+,(x)=w
m+1 sin @ (13)

where x=cosf. Then the associated polynomials G, () are given by

= _1=-F  (x)_ 1 _
G,.(x)= 1 = m+1gm(x) (14)

and where the £, (X) satisfy the recurrence relaton

Bpr (1) = 2(1= 2208, (X) + (m+1) (15)

It can be shown from (12) that the maximum relative error is now v G0 instead of 0.
However, if we repeat the entire cycle with the residual obtained after one cycle as the new right
hand side, then the previously obtained bound Oy is reached. Moreover, if the eigenvalues A of C
satisfy '

(16)




then the component of the residual vector after 2 cycles corresponding to the eigenvector associated
with A cannot be more than 5% of the corresponding component of the right hand side b. Hence,

if we take m=7, then i‘o can be as small as 0.025. Thus, with a spread of 1:40 for the eigenvalues
of Cp, an accuracy of 5% can be obtained by use of two cycles. Greater allowable spreads and
greater accuracy can be obtained using larger values of m and/or more cycles. However, the
allowable eigenvalue spread increases relatively slowly with m and with the number of cycles.

Lanczos considered the use of polynomial preconditioning to handle cases where the
eigenvalue spread is very large. Given m and an SPD matrix Cy whose eigenvalues lie in the
interval [B,1] where B>0 and f<<1, he constructed a polynomial R,,(x) so that the eigenvalues of
Qm(Co)=Ry(Co)Cp lie in the interval [8,1] where & is considerably larger than B; 6 might be as
large as 0.1. Thus the eigenvalue spread of the preconditioned system is much smaller. This
preconditioning procedure can be combined with either of the two iteration procedures described
above to get a high degree of error reduction even when Cy has a very large eigenvalue spread.

The polynomial @,,(x) is chosen to have the form

T, (1+&)-T,(1+&-2x)

Q0= T (1+e)+1 (17)

The maximum absolute value of this polynomial is 1 while the minimum absolute value is

T, (1+e)—1
T (1+&)+1 (18)

By proper choice of € one can prevent 1Q,,(x)! from dropping below 8 (provided m is large

enough). The author suggests that for many problems involving larger eigenvalue spreads it may
not be possible to attain good accuracy, especially in cases where the input data is obtained from
physical measurements. However, he indicates that even in such cases useful information can
often be obtained from applying the methods.

The paper concludes with some examples of problems where the availability of a program
based on the given methods would be useful. One class of problems involves solving systems of
"moderate skewness"; another class of problems involves the determination of a few eigenvalues
of a matrix.
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The paper contains a number of interesting ideas which are particularly innovative,
considering that they were developed in the early 1950's. It does seem however, that, especially
for some pioblems involving partial differential equations where accurate or exact data is assumed,
one can indeed obtain high accuracy even when the matrix is very ill conditioned. This can be
done for many problems using Chebyshev acceleration (a.k.a. "semi-iterative methods;" see e.g.
Varga [1957,1962] and Golub and Varga [1961].) Here instead of the Fejer or the Dirichlet
polynomials one can use Chebyshev polynomials for the Fp,,1(x). The Fp,,(x) are one at x=1
and are chosen to minimize their maximum absolute values in [e,lj where 0 is the smallest
eigenvalue of Cy. The iterants yp, satisfy a three-term recurrence relation and are easily computed.
Moreover, the smallest eigenvalue 6 can be determined adaptively as described by Hageman and
Young [1981].
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Commentary on Lanczos [1958]
"Iterative Solution of Large-Scale Linear Systems"

As the title implies, this paper is concerned with the iterative solution of large-scale
linear systems. The first part of the paper is primarily devoted to a discussion of the
limitations in the attainable accuracy which may result when some of the input data, such as
the elements of the matrix or the elements of the right hand side, are not exact but are
instead determined from physical measurements and thus are of limited accuracy. Another
source of error often arises when the matrix is "ill-conditioned", i.e. if the condition
number of the matrix is large. (The condition number is also referred to as "skewness" or
"eigenvalue spread”).

The primary emphasis of the paper is on the case where the coefficient matrix A of the
system is symmetric and positive definite (SPD). The first step is to determine an upper
bound for the largest eigenvalue of A. This is done by a Bernoulli type method involving
several steps of a modified power method. The linear system

Ay=b ' (D
is then divided by the estimated largest eigenvalue to give the scaled system

Ay =b, Q)
where Aq 1s SPD and where the largest eigenvalue of A is not greater than one.

The method for solving (2) is similar to that described in Lanczos [1953], and is
based on the use of the polynomials Qn(x), Q1(x),..., where

sin®>(m@/2)

Qm-l(x)= sinZ(elz) (3)

and where sin*(8/2)=x. As in Lanczos [1953] it can be shown that if all eigenvalues A
of A lie in the range |
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m+2

2
xo=(2'56) <a<i

C)

then a solution is obtained with a relative error of about 5%. Thus for example, if the
condition number of A is 100 one can obtain a relative error of 5% with 24 iterations. If
the condition number of A is 1000 such accuracy could be obtained in 80 iterations. The
author claims that for physical systems, larger condition numbers would "hardly be
permissible”.

As an improvement on the method just described for solving SPD systems, the author
developed an "additional algorithm". We illustrate by an example. Suppose one desires to
obtain a relative error of 5%. If one estimates the condition number to be 100, one can
carry out 24 iterations and see if the length of the residual r; does not exceed 5% of the
length of by. If the residual is as small as expected and if one is satisfied with 5% accuracy
the solution thus obtained is considered to be satisfactory. If one desires higher accuracy
or if the length of r; indicates that the condition number is greater than 100 the cycle is
repeated. Actually Lanczos repeats the cycle twice obtaining the approximations y,y», and
y3. He then chooses o, 0y, and a3 so that

al+a2+d3=1, 5)
and such that (r,r) is minimized where r=b-Ay is the residual corresponding to

Y=oy, + 0Ly, + QLY. 6)
An algorithm is given for finding o, 0, and o3

The above procedure can be used to obtain an improved estimate of the condition
number. This information can in turn be used to modify the iteration process to obtain
improved convergence.

The last part of the paper is concerened with the case where A is real but
nonsymmetric. In this case the system Ay=b is replaced by the double system

L?T ﬂm{ﬂ ™
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or
Ay = 5 ®)

where

o ‘
h T

and

=[0} =g
vl 0 (10)

It should be noted that if A is SPD then the eigenvalues p of the double matrix A lie on two
disjoint intervals -8 S < -0 <0 and 0 < & < u < 8 where o and P are the smallest and
largest eigenvalues of A, respectively. This suggests that the convergence depends on the
ratio (B / &)? instead of 8/ &, the condition number of A, and hence that the convergence
properties are more like those obtained for the normal equations rather than for the original
system (1).

In any case the polynomials considered here are defined by

1=(=D)"T,, (x) _sin’m¢
D R e T T ——
QZm-—Z( ) 2x2 Sin2 ¢ (11)
Here, x=cos8=sin@-where ¢ = (7 /2)— 6. Although the polynomials of odd order
Orm-1(x) are not be used for the solution, they are of interest since they are involved in the
three-term recurrence relation, by which the polynomials of even order are generated. They
are defined by

=D)"T,,(x) - QCm+1Dx

O (%) = 25 (12)
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The subsequent analysis is similar to that used for the SPD case. However, it is found that

the number of iterations required is approximately linear in the condition number rather than
approximately proportional to the square root of the condition number as in the SPD case.
The author indicates that the method will remain economical only if the machine used is of
high speed, if the system has many zero elements, or if the condition number of the matrix
is "very moderate”. '

The paper contains a number of interesting and innovative ideas. One important idea is
that of estimating the condition number of a matrix and applying an iterative procedure
involving the matrix which is based on the estimate. If the convergence is slower than
expected, an improved estimate of the condition number is obtained and the iterative
procedure is continued based on the new estimate. The process is continued until
convergence is obtained. This idea was used by Hageman and Young [1981] for the
development of adaptive procedures for the acceleration of iterative methods based on
Chebyshev polynomials.

C.4




References

Hageman, L.A. and Young, D.M. [1981], Applied Iterative Methods, Academic Press,
New York.

Lanczos, C. [1953], "Chebyshev Polynomials in the Solution of Large-Scale Linear
Systems", Proceedings of the Association for Computing Machinery, Toronto, 1952,
124-133, Sauls Lithograph Co., Washington, DC.

Lanczos, C. [1958], "Tterative Solution of Large-Scale Linear Systems”, J. Soc. Indust.
Appl. Math., 6, No. 1, 91-109.

C.5




