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Towards Syntactic Characterizations of Approximation
Schemes via Predicate and Graph Decompositions

HARRY B. HUNT 11’ RIKOJACOB2 MADHAV V. MARATHE 2 RICHARD E. STEARNS !

Abstract

We present a simple extensible theoretical framework for devising polynomial time approximation
schemes for problems represented using natural syntactic (algebraic) specifications endowed with nat-
ural graph theoretic restrictions on input instances. Direct application of our technique yields polyno-
mial time approximation schemes for all the problems studied in [LT80, NC88, KM96, Ba83, DTS93,
HM+94a, HM+94] as well as the first known approximation schemes for a number of additional com-
binatorial problems. One notable aspect our work is that it provides insights into the structure of the
syntactic specifications and the corrcsponding algorithms considered in (KM96, HM+94]. The un-
derstanding allows us to exicend the class of syntactic specifications for which generic approximation
schemes can be developed. The results can be shown to be tight in many cases, i.e. natural exten-
sions of the specifications can bc shown to yield non-approximable problems. As specific examples of
applicability of our techniques we get that

1. the problem of maximizing the number of satisfiable tenns in a formula, where each term is
represcnted explicitly by a bounded depth algebraic circuit with commutative and associative
operators over a polynomially bounded domain and range, has PTAS when restricted to pla-
nar instances. Problems that can be naturally represented using this syntactic specification in-
clude maximization versions of constraint satisfaction problems in [Sc78, FV93, JCG97, KM96,
HM+94] and graph problems considered in [Ba83, NC88, LT80, DTS93, HM+%4a].

2. Simplc extensions of our ideas can be applied to devise PTAS for the problem of maximizing (or
minimizing) a linear objcctive function subject to linear packing (or covcring) constraints when
restricted (o planar instances. Problems that can be represented using this specification include
natural NP-hard packing and covering problems including those studied in [Sr95, PSW97].

Our results provide a non-trivial characterization of a class of problems having a PTAS and extend
the earlier work on this topic by [KM96, HM+94].
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1 Introduction and Motivation

In the past, extensive work has been done on the design of efficient approximation algorithms and
schemes? for problems restricted to planar instances (See [Ba83, KM96, HM+94, CK95, NC8g, LT80]).
and the development of a theory of approximability based on the syntactic characterization of opti-
mization problems. (See [KT94, PR93, KM+95, CK95, PY91] and related references) Recent results
in [Ha97, RS97, AS97] show that in general, unless P = NP, a number of these problems are “hard”
to approximate. Given these negative results, it is natural to consider restrictions on the general prob-
lem that are sufficient to ensure tractlability (exact or approximate solvability). In this paper we con-
centrate on obtaining positive results and thus focus on the question raised by Khanna and Motwani
[KM96] in this context: S“Is there a syntactic characterization of NP-hard optimization problems
having PTAS?”

We make further progress in the direction suggested by the above remarks. Building on our ear-
lier results and the resuits in Khanna and Motwani [HM+94, KM96], we present a simple extensible
framework for devising generic approximation schemes for problems represented using natural syn-
tactic specifications in which the input instances have a specified graph theoretic structure. Direct
application of our ideas vicld efficient approximation algorithms and approximaltion schemes for all
the problems studied in [Ba83, KM96, HM+94, DTS93, NC88] and also for a number of additional
important problems for which no previous results were known. These results significantly extend the
a number of related results in [LT80, Ba83, Bo88, NC88, KM9%6, HM+94, HM+94a, DTS93, Ep95]
and affirmatively answer reccnt open questions in [HM+94a, KM96, Ep95]. We describe the results
in detail in Section 3, Our work is motivated in part by the following sct of contrasting results for
bounded versus unbounded arity predicates:

(1) For each fixed set of finite arity Boolean relation S, the problems MAX SAT(S) (sec [HM+94,
Cr95] for definitions) restricted to planar and near planar instances have a PTAS, [HM+94]

(2) the class of problems MPSAT informally defined as: Given a collection C of terms over n variables
such that each terin ¢ € C is a disjunction of O(n®M)Y conjuncts, find a truth assignment T
maximizing the total number of the terms in C that are satisfied have a PTAS [KM96] and

(3) In a striking contrast to (2), a closely related class (obtained by simply interchanging the order of
operators) informally defined as: Given a collection C of term over n variables such that each
term ¢ € C is a conjunction of Q(n®M)Y disjuncts, find a truth assignment 7" maximizing the
total number of the satisfiable FOFs in C is readily seen to be NP-hard to approximate?, evcn
when restricled to planar instances.

Note in particular that while the result stated in (1) considers all bounded arity set of relations, results
m (2) and (3) imply positive results only for certain fypes unbounded arity relations. Thus while in
the case of bounded arity relations, the mere fact that the variable predicate bipartite graph is planar
is sufficient 1o devise PTAS, the unbounded arity predicate case requires certain additional knowledge
about the semantics of the predicates. The resuits and the proofs in this paper provide one possible
explnation of these contrasting results. Specifically, our results are a step towards understanding class
of unbounded arity predicates that are amenable to efficient approximalions.

*Following [CK95, KM96], we define the class PTAS to consist of all NP-optimization problems having polynomial time
approximation schemes.
“cach ¢ can consists of a 3CNF formula
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2 Preliminary Definitions

Given a set S of relations, where each I?; € S is specified by an explicit table, and an S-formula I7, the
problem MAX-RELATION(S) is to delermine an assignment 1o the variables of F' so as to maximize
the number of terms satisfied. In this paper, we restrict our attention to variables V = {z;,..., 25}
with domain D = {0,1,,...,poly(n)}; thus, we allow the domain sizc to grow polynomially with
the nunber of variables in the formula. Although an adequate method of representing tenms when
they have fixed arity, the method of representing relations by tables can yield exponentially large when
rclations are non finite arity. The bipartite graph BG(I") associated with the formula F( P, V') defined
as follows: The terms and variables in the formula F are in one to one correspondence with the vertices
of the graph. There is an edge between a tcrm node and a variable node ifT the variable appears in the
term. The interaction graph /G(F) associated with the formula F(I°, V') defined as follows: The
variables in the formula J¥ are in one to one correspondence with the vertices of the graph. There is an
edge {u,v} € E iff variables v and v appear together in some term of f.

The above representation of input instance (representing the functions in S and the graphical rep-
resentation capturing the term-variable relationship) can be generalized in two independent directions
--term and graphical representation. We choose to represent each term as an algebraic circuit, in which
the variables and the coefficients are allowed to take values from a polynomially bounded domain.
For most part of this paper, we will also assume that the operators are commutative and associative
multi-arity operators. The graphical structure associated with such a formula is a natural extension
of the bipartite graph representation. The circuit graph CG(F') associated with a formula F(V, P)
consists of one node for each variable, an algebraic circuit for each term and edge from a variable node
T 10 an inpul node of a term circuit ¢ labeled = denoting that z appears in {. The problem MAX-
CIRCUIT-SAT is the following: Given as instance a circuit graph CG(I?) representing F(V, P),
find an assignment Lo the variables V' to satisfy maximum number of terms in P, We usc the phrase
MAX-CIRCUIT-SAT restricted to planar instances to refer to the restriction when the graph CG (F)
is planar and the circuit corrcpsonding to each term is of bounded depth. Note that given a formula
F there are a number of ways to construct CG(I"). In our input specification, we will assume that
the gates are labeled with the opcrators and the associated semantics specified. In case of algebraic
circuits, typically the semantics are well understood and therefore omitted. In general our sequence
of transformation start with an instance CG(F) and yicld a new instance CG (') which can then be
solved exactly in polynomial time.

Given A € [0,1]™*", b € [1,00)™ and ¢ € [0, 1)" with max; ¢; = 1, a packing (rcsp. covering)
integer program PIP(resp. CIP) sccks to maximize (resp. minimize) ¢’ - = subject to = € Z% and
a system of linear constraints of the form Az < b (resp. Az > b). Furthermore if A € {0,1}™*",
we assume that each entry of b is integral. Consider the variant of PIP’s (respectively CIP’s) in which
A € {0,1,...poly(n)}"*™, B = poly(n) and z € {0,1,...poly(n)}. We call these Bounded
packing (covering) programs and denote them by B-PIP and B-CIP respectively. We also usc B-
IP to denote bounded integer programs; i.e. programs of the form maximize ¢’ - z subject A €
{0,1,...poly(n)}"*™, B = poly(n) and z € {0,1,...poly(n)} and Az = b. Finally, definc the
variants B-IP(K) (respectively B-PIP(k) and B-CIP(k)) if each inequality contains cxactly &k terms.
Given an instance I of a mathematical program with linear objective function, the graph CG(I) is the
same as the circuit graph associated with (P, V') where I is the set of constraints and V the set of
variables. Thus for linear programs CG(7) is identical to BG(J).

We end with a few observations and remarks. Our definition of circuit graph associated with a
formula is a departure from the definition of bipartite graph considered in [KM96]. Note that if CG(F)
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is planar then BG(F') is planar; the converse is not necessarily true. The graph CG(F') can be seen as
a refinement of the BG(F') depicting the internal graphical structure of each term.

3 Summary of Results

The main contributions of this paper are three folds. First, we (i) identify new and natural syntactic
languages (specifications) to specify problems and (ii) identify new graph theoretic restrictions on the
underlying inputs that imply PTAS for problems so specified. Second, to obtain our results we propose
two new theoretical concepts: (i) predicate decomposability and (ii) approximation (optimum) pre-
serving reductions that also preserve graphical structure of the underlying instances. These concepts
coupled with a new algorithmic tcchnique referred as structure preserving predicate decomposition
yiclds the necessary generic approximation schemes for problems represcnted using any of the syntac-
tic specifications proposed here. Finally, we show that the circuit graph representation proposed above
is in a sensc more robust than the bipartite graph representation proposed in [KM96]. The arguments
are based on the following observations: (i) the problems in [KM96] can be reduced to corresponding
problems for our representation in an approximation preserving way, and thus is not a loss of general-
ity, (i1) the positive results for bipartilc graph representation in [KM96) can not be extended in gencral
(unless P = NP) to more complicated predicatcs (e.g. nested formulas of depth more than 2), (i1i) in
contrast the results here based on the circuit graph lend themselves to immediate generalizalions. The
main theorem of this can be stated as

Theorem 3.1 The problem MAX-CIRCUIT-SAT has a PTAS when restricted to planar instances.

Moreover, we show that a number of important class of combinatorial as well as graph problems when
restricted to planar graphs ( and in general graphs obeying LT-property, see Appendix for formal
definitions) can be reduced to appropriate instances of MAX-CIRCUIT-SAT in a approximalion
preserving as well as graph structure preserving way. Specifically, the reductions devised have two
important properties: (i) they can be carried out in polynomial time and (ii) if II is restricted to planar
instances, then the instance of MAX-CIRCUIT-SAT obtained as a result of the reduction is also pla-
nar. Thus each of these problems have a PTAS, when restricted to instances obeying the LT- property
We all such reductions structure preserving L-reductions.

Thus, our results provide a syntactic (algebraic) specifications, whose closurc under appropriate

approximation preserving reductions define a characterization of problems that have PTAS. This rep-
resents a non-trivial characterization (subsuming the earlier characterizations) of class of problcms
having a PTAS. Examples of problems that can be solved using our framework include the following
(for several of these results no previous approximation algorithms were known):
(1) Each of the graph theoretic, logical and combinatorial problems considercd in Baker [Ba83],
Khanna and Motwani [KM96], Hunt et al. [HM+94], Nizhiseki and Chiba [NC88], Lipton and Tarjan
[LT80], and Diaz et al. [DTS93]. Note that general instances of the problems considered here (e.g.
maximum independent set) are often very hard to approximate [Ha97].

(2) Planar versions of covering and packing programs in which both variables and coefficients take
values from {0, poly(n)], wherc n is the number of variables. This includes each of the problcms
considered in Peleg, Schcchtman and Wool [PSW97] and Srinivasan [Sr95] and a number of pack-

ing/covering problems studied in [PST95]. Illustrative examples include: fault tolerant dominating sct
and hitting set.

(3) The optimization versions of thc Boolean generalized CNF satisfiability problems studied in
Schaefer [Sc78] and the optimization versions of a number of constraint satisfaction problems studied
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in Feder and Vardi [FV93] and Jeavons et al. {JCG97), including H-matching for fixed H.

(4) A number of graph theoretic problems restricted to planar hypergraphs with unbounded arity
hyperedges, and of unbounded degree. Examples include simple B—matching, independent set, vertex
cover, etc. In general, these problems are NP-hard and can be approximated to within a factor of
OPT?/n [Sr95, AEL8R). (Here, OPT denotes the optimal value and n represents the number of nodes
in the problem instance.)

(5) Our ideas arc also applicable to a class of graph theoretic problems for which no previous
approximation schemes were known even for planar graphs. Given a problem II, define the problem
D2-II (distance 2-II) as the problem of solving IT in the square’ of the given graph G. Our results
yield PTAS for a number of problems IT when G is restricled to be planar and of bounded dcgree (in
some cases the restriction is not required). Note that if G is d-near planar then the result is immediate
from the previous discussion, As an cxample, consider the problem D2-max independent set: Given a
graph G, find a maximum cardinality subset of vertices, such that the pairwise distancc between them
is at least 2 (in terms of the number of edges). Qur results show that when G is planar and of bounded
degree, there is an PTAS to solve this problem. Other examples include the D2-min dominating set
and D2-vertex cover.

Extensions and Generalizations. First, our results on covering and packing integer programs can
be extended substantially in iwo orthogonal dircctions, namely allowing non-linear constraints, and
o cases where some of the variables take rational values. For example a constraints of the form
c1z%yz + cary®w + - - - + cuzyz® = b, where c; and b are integers taking values from a polynomially
bounded domain can be easily handlcd in our case. The only requirement we place is on the structure of
the circuit graph associated with such a set. We view this extension as significant; this to our knowledge
represents a non-trivial class non-linear programs that have efficient exact or approximate solutions.
As the later sections will demonstrate our results are essentially tight in the sensc that simple extensions
of many of the classes yield problems that are provably non-approximable. In contrast, we can show
that the extension is likely to fail for gencral linear integer programs whose bipartitc graphs are planar.
We do this by showing — (i) the problem of deciding the feasibility of IP instances I restricted to
BG(I) being a tree, or IG(F) being a series parallel graph is NP-hard, and (ii) approximating the
objective function for instances whose bipartite graphs arc planar is NP-hard.

Second, our PTAS can be extended to two orthogonal graph classcs.. The first class is more specific
to Jayouts which arc close to planar (bounded genus and weak level treewidth property). We show that
(i) most of the problems, have a PTAS when restricted to instances satisfying the weak level treewidth
property and (ii) several important and well known classcs of graphs including planar, bounded genus
graphs, (r, ¢)-civilized graphs and a subclass of k-ply neighborhood systems satisfy the LT-property.
In contrast, we show that gencral k-ply neighborhood graphs as well as k-neighborhood graphs defined
by Teng et al. [MT+97] do not obey the LT-property. The second class of instances (§-near genus) we
consider is obtained by extending the graph theoretic structure of planarity. Several of our results can
be extended to instances that are 4-near genus or d-near (r, s)-civilized. Thus, our results show that for
a number of problems both the graph theoretic structure and the information about specific layouts can
be used to devise good approximation algorithmns.

Third, the techniques can be used to design polynomial time algorithms for the path and clustering
problems considered in Eppstein [Ep95] (with running times cssentially identical to those in [Ep95))
when restricted to graphs obcying the LT-property. Finally, our results also provide more efficient ex-

*Given a graph G(V, E), the square graph G?(V, E') is obtained by adding an edpe between two nodes z and y whenever
there is a path of length at most 2 between z aud y in G.
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ponential algorithms for NP-hard problems restricted to problems whose underlying interaction graphs
obey the LT-property. Specifically, our new results on Tables and the concept of predicate decompos-
ability strongly extends the class of problems easily expressible as GSPs, solvable in deterministic
time 29" including counting problems and many problems for graphs with unbounded arity ver-
tices and hypergraphs with both unbounded arity vertices and hyperedges. For example, we get that
problems such as independent set, dominating set, veriex cover, elc for unbounded arity hypergraphs
with bounded treewidth have PTAS. '

The rest of the paper consists of discussion of selected results. A few additional details are also
given in the appendix. We refer thc reader to [G]79, CK9S] for basic definitions in graph theory,
computational complexity and combinatorial problems considered in this paper.

4 Overall Technique and Preliminary Results

The basic idea behind our algorithms is similar to the shifting strategy first used by [Ba83, HM8S,
Ho96] for obtaining polynomial time approximation schemes (PTASs) for problems restricted to planar
and geometric instances. Thec overall schemata consists consists of the following basic steps:

(1) Decompose the given graph (instance) into vertex (edge) disjoint subsets such that an (near)
optimal solution to the subgraph (sub instance) induced by each subset can be obtained in polynomial
time. (This step exploits the fact that the underlying graph is decomposable.)

(2) Reduce (using D-reductions) each sub-instance to easily solvable sub-instance (uses predicate
decomposability),

(3) Solve cach transforined sub-instance optimally using kncwn methods (such as Theorem 4.1)
developed in [SH95, HM+94] (This step uscs the theory of efficient solvability of algebraic problems
restricted to instances of bounded treewidth developed in [HM+94, SH95].)

(4) Use the problem specification 1o combine the solutions to each of the sub parts to obtain a solution
for the entire instance.

The schemta outlined abovc is similar in spirit to that used in [Ba83, HM85, HM+94, KM96];
although needs a number of new lechnical idcas at each step. The main technical contribution of the
paper is to devise methods to accomplish Steps (2) and (3) above. It should be noted that the ordering
of steps is crucial to the performance of the algorithm. It might be tempting to try and carry out thc
reduction on the planar inslance directly rather than carrying out the reduction for each individual
picces. Such an attempt fails to work due to the special nature of reduction used which do not preserve
approximation schemes but arc sufficient to derive optimal solutions for the original problem. The
proof of the following theorem appcars in the Appendix.

Theorem 4.1 Let S be a finite set of finite arity functions. an let k > 0 be fixed. Then the follow-
ing statements hold: (i)  For each fixed k > 0, the problem WT-MAX-FUNCTION(S) has an
exact NC-algorithm when restrictedd to instances f such that tw(BG(f)) < k. (i) WT-MAX-
FUNCTION(S) has an NC-approximation scheme. when restricied to instances f such that IG(f)
is planar. (i) The problem B-IP(k), restricted to instances I such that BG(I) is of bounded
treewidth has a polynomial time algorithm. (iv)  The problems B-PIP(k) (B-CIP(K)) restricted to
instances I such that BG(I) is planar have a PTAS,

Definition 4.2 Let II and IV be two optimization (maximization or minimization) problems. We say
that I1 D-reduces to 11 (denoted by IT <p Il') if there are two polynomial time computable functions
f and g and constants «, 8 > 0, such that for each instance 1 of T1 f produces an instance I' = f(1)
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of T’ with the optimas OPT (1) and OPT(I') respectively and given any solution of 1’ with cost ¢, ¢
produces a solution of I with cost ¢ such that |c — OPT(I)| = |’ — OPT(I')|.

Notice crucially that the reductions are not approximation preserving. But the reductions allow us
to compute the optimal value for I from an-optimal value for I’. We will need this property in our
proofs and thus we summarize it below:

Proposition 4.3 Let P, Q, R be three optimization problems. Then the following holds: (i) D-reductions
compose; ie, lf P <p Qand Q <p Rthen P <p R. (ii) If P <p Q and Q has a polynomial time
algorithm then P has a polynomial time algorithm. (iii) If P <1, Q with 3 =1 then P <p Q.

5 PTAS for MAX-CIRCUIT-SAT for planar instances

In view of the discussion in the previous section, we only need show how o find optimal solution for
MAX-CIRCUIT-SAT when restricted to instances of bounded treewidth. We achieve this by opti-
mally transforming an instance 7 of MAX-CIRCUIT-SAT to aninstance I’ of MAX-FUNCTION(S)
in such a way that TW(CG(I) = O(TW (IG(I')). For clarity of exposition, we prove our result in a
series of steps.

Consider a term of the form ¢ = (z; ©® z7 -+ @ z,), where © is a multi-arity operator that is
commutative and associative. Consider a formula F = A;c;, where each ¢; is in the form above. In
our proofs transforming F, we will work with a very special kind of tree decomposition which we call
Special Tree Decomposition. Consider the tree decomposition 7 of BG(F'), and consider single clause
¢;i. Te; © T denote the part of the tree that corresponds (o ¢;. By the definition of tree-decomposition it
is easy to see thal 7, forms a connected component and is therefore a tree. For cach set X, associated
with F, let 5 C X, which contains elements from the set {¢;, z1,. .., zp}. Without loss of gencrality
we can assume that c;-tree 7., has the following properties: (i) 7, is rooted and edges directed towards
the root (inward arborecense), (i) the sets Sy, at each leaf node are of the form {¢;, ;}, (iii) for all sets
of the form {¢;, z;} there is leaf node v such that S, = {¢;, z;}, and (iv) T, is Binary. With these
assumptions, the notion of lowest common ancestor (LCA) of two nodes in 7, is well defined. Then
the PROCEDURE TRANSFORM-TERM consisting of performing the following iterative procedure: (1)

Choose a set of leaf nodes that cover all the pairs {c;, z,} where z; € ¢;.
(2) Mark all these leaf nodes as “‘unprocessed”.
(3) Repeat the following procedure:

(3a) Choose an LCA pg of maximum depth and of two nodes ¢ and p containing distinct variables
x4 and x, and marked “unprocessed”.

(3b) Set S, = S, — {ci} U {ypg, zq}. Similarly set Sy = S, — {c¢;i} U {ypq. zp}. For all nodes £ on
the path from g to p, set Sy = S, — {¢;} U {ypg, Tp, 74} Finally, set Spg = Spy — {e;} U {ypg}. Here
Ypg 18 a new distinct temporary variable. Also add the clause yp, = z, © z4.

(3¢c) Mark leaf nodes g and p as processed and proceed.

(4) Mark the node pgq as “unprocessed”.

Finally add a clause y; where y; is the last temporary variable introduced in the above procedure.
The procedure can be seen to replace the original clause ¢; by a set of clauses ¢;. We do this for
each clauses introducing new set of variables for each clause. Denote the new fonnula obtained by

conjunction of the the clausc groups by F;. The following lemma summarizes the properties of the
transformation PROCEDURE TRANSFORM-TERM.
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Lemma 5.1 Given a c-tree T;; PROCEDURE TRANSFORM-TERM outputs a tree decomposition T
(with more elements at each node) of 1G (c}) such that the for each set Xg(7T) < 4+ X(Te,). S' are
isomorphic. Moreover PROCEDURE TRANSFORM-TERM is a D-reduction.

Proof: The first part of Lemma follows since we replace an element in the set Sy by at most 4 new
elements. To prove part (2) first note that ¢ is cquivalent to ¢;. This is true crucially since © is a
conunutative and associative operator by assumption and thus we can combine the variables z,, ...z,
in any order — in particular in the order of their proximity in 7.,. The proof can now be completed by
noting that

(a) Any truth-assignment V to the variables of ¢; can be extended uniquely to a truth-assignment
‘W to the variables of ¢} such that all clauses of ¢, except possibly the single variable clause y* are
satisfied by W, and W[y;‘,az] = 1iff V[e;] = 1. Conversely, any such truth-assignment W can be
restricted 10 a truth-assignment 'V to the variables of ¢; such that W{y*] = 1iff Vig;} =1. =

We call such terms ¢ as structure preserving decomposable predicates since intuitively we can
decompose a large multi-arity formula as a conjunction of bounded arity formulas in a way that (i)
preserves the original trec decomposition and (ii) is a D-reduction. We omit a formal definition here
due to lack of space. Now consider the formula F itself. Note crucially that it was the commutativity
and associativity of ® thar allowed us to prove the second part of Lemma 5.1. We can apply the above
proccdure of converting a single ¢ to cach of the terms in a sequential order. Let F™ = A; ¢} denote
the ncw formula obtained as result of this complete transformation. Also let 7, 772,... 7™ denote
the sequence of tree decompostions that we get when we process the terms ¢;, ¢, . . . ¢, in that order.
Similarly Vi,1 < i < m, let Fi (F! = F) denote the sequence of modified formulas obtained. We
make the following important observation: Transforming the tree 7., to 7.+ does not affect the other
trees 7, 1.e. only the clement ¢; gets deleted while working with the tree Te;- This allows us to
inductively maintain that for each set X 3 (the set associated with node j intrce 7., X f <44 X,-j .

Note importantly that a node X7 can be a part of at most 7W (7"} decompositions. Combining thesc
observations with Lemma 5.1 we can prove the following theorcm (proof omitted).

Theorem 5.2 For all i, 2 < i < n, the following statements hold: (1) The transformation from Fi 1o
F™*Y iy o Doreduction,  (2) Iff TW(CG(F') < ATW(IG(F™), (3) Fit! js satisfiable iff F? is
satisfiable, (4) F'™ and T™ can be obtained in time O(size(F)).

Completing the reduction. Wc are now ready to complcte the description and the proof of correctness
for the general case, namely when each tenn is a general nested formula with polynomial domain
and polynomially bounded intermediate values. Consider an instance F'(I°, V) of a formula such that
CG(F) is of bounded treewidth. As in the previous case we transform each ¢ € P in an approximation
as well as tree decomposition preserving way. Each gate of the circuit defincs a subterm; we begin
processing a subterm defined by a gate that is farthest from the output gate. This subtenm is replaced
by a new term using transformation as given above. We then successively move to terms defined by
gates that are closcr to the output gate. The only crucial observation that we need to make is the
following: Consider a gatc g (and hence a subtenn). Then the set of nodes in the tree decomposition
of CG(F') containing g form a connccted subtree.

Additional Remarks. First, note that as a direct corollary of the above discussion and Theorem 4.1,
we get a polynomial time algorithm for exactly solving B-IP when restricted to bounded treewidth in-
stances. In fact, it shows that cven for non-linear constraints whose circuit graph is bounded treewidth
can be cfficiently solved. Second, the fact that the operators are commutative and associative was a
sufficient condition for exact solvabilily. Any formula that can be transformed in a structure preserving
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way can be solved in this manner. Section 6 discusses one such formula. Third, the result points out
the robustness of our syntaclic specifications — the only internal structure used to guarantee efficient
solvability was the graphical structure. This should be contrasted with the discussion in the introduc-
tion. Fourth, the reductions outlined here are in fact more general — they can be simultaneosly used to
show the hardness (easiness) of decision, counting, uniqueness, parity and other related questions for
the problems under study. Finally, noting that this transformation can also be carried out for instances
having non-constant treewidth, we get 20(vn) algorithms for several combinatorial problems restricted
to planar and bounded genus graphs.

6 PTAS for MPSAT

Next, we consider the problems MPSATand outline anapproximation preserving reduction to an appro-
priate MAX-CIRCUIT-SAT problem. This result provides insights into the question and the discus-
sion at the end of Section I (introduction). The overall idea behind the reduction is the following: Each
clause ¢ is first replaced by a formula so that the resulting formula has bounded arity predicates. Next,
we replacc each such formula by a circuit so that the resulting reduction is a D-reduction. This allows
us to the instances 7 in which BG(I) is treewidth bounded. We begin by describing the PROCEDURE
TRANSFORM-MPSAT. First, we create a new formula I} = (Vj, P;) as follows: V; = X UY, X is
in one-to-one correspondence with the variables in V. The variables in Y are in one to one correpson-
dence with the FOF’sin P = {p;,...pm}. Letp; = i} V...V t;n"'. recall that each term is of the
form wy A wy A ... w,, where each wy; is a literal. Now for each FOF p;, do the following: For each
13 € p;, we creale a set of q; predicates, h{i'j). Add thc 3CNF clauses héi,j)(v,,,., z) where, 1 <1 < qu-
and = € VAR(t]). h‘(i' 51(Up;y m) is true iff vy, is not @ or z has the value which which makes the literal
forx € tz truc. Let C; denote the conjunction of clauses obtained by tranforming p;. Finally let the
clauses in F} = AL, C;.

Lemma 6.1 Let F' be a MPSATformula and Fy be the 3CNF formula obtained by tranforming R
using PROCEDURE TRANSFORM-MPSAT. The the following holds.

(1) Fy is satisfiable iff I' is satisfiable.

(2) PROCEDURE TRANSFORM-MPSAT runs in time O{size(F)).

(3) The reduction is planarity preserving, thus Fy is planar if F' is planar.

(4) If BG(I") has treewidth T, then the treewidth of IG(F1) has treewidth O(T).

(5) If BG(F) has treewidth k, then F can be decided in time O(n*).

Proof: Consider an assignment which satisfies F. For each variable in X, the assignment to the
variable is the samc as the corresponding variable in V' of F'. Far each variable vy, corresponding to a
clause p; € P, we set v, = j, where j corresponds to one of the term t;? € p, that is true. Conversly,
a solution for F; becomes a solution for F' by setting the variables in V the same as their valuc in X.
This proves part (1) of the theorem.

The proof of part (2) follows by obscrving that the reduction consists of replacing each MINTERM
of size O(n) in a FOF by a CNF fonmula of size O(n); thus the transformation takes time O(size(F)).

To prove part (3) and (4), observe that for each of our predicates héi’j)(u,,i, z), there is an edgc
(p, z) in the bipartite graph BG(J7), so that BG(¥') and IG(J?) arc isomorphic.

To prove the last part of the theorem, note that all the variables excepting v, arc binary variables;
vp, has its domain {0, ..., n}. We can simulate cach v,, using O(log n) Binary variables; thus incrcas-

8
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ing the treewidth to O(k log n). Now it is clear that solving a SAT(S) problem when S is a set of finite
arity Boolean relations takes time O(2"n) time for instances with interaction graphs of treewidth r. In
our case this translates into a 20198 %)n, time which is really nO%) algorithm. m

Next, we describe PROCEDURE SOLVE-TW-MPSAT: for solving MPSAT on instances of bounded
treewidth. First, obtain a new fonnula F,(V]. P;) from F(V, P) using PROCEDURE TRANSFORM-
MPSAT. By Lemma 6.1 the treewidth of BG(I) is no more than ck for some constant k. Second,
convert Fy(Vy, ;) into a new formula F5(V5, P») by replacing each term by an equivalent circuit.
Theorem 6.2 show that this transformation is a D-reduction. Moreover the treewidth of IG(F3) is no
more than c; k, for some constant ¢;. Third, we solve F,(V5, P;) optimally using Theorem 4.1. Finally,
map the assignment to the variables obtained in Step 6 to an optimal assignment to the variables in F.

Theorem 6.2 Let F, Fy and F, be obtained as above in PROCEDURE SOLVE-TW-MPSAT. Let
tw(F) = k. Then the following holds.
(1) tw(Fy) = cytw(F), for some constant ¢y, whenever tw(Iy) > 4.

(2) The wansformation fiom F to Fy constitutes a D-reduction.
(3) PROCEDURE PTAS-MINSAT runs in time n®%). Thus the problems MPSAT can be solved
optimally in time n%¥) for graphs of treewidth O(k).

Proof: Consider thc tree decomposition 7 of BG(F'), and consider single FOF (term) C;j = (mn; V
m3 . ..my), where crucially the mls are the minterms. Let 7 C 7T denote the part of the tree that
corresponds to C. By the definition of tree-decomposition it is clear that 7 forms a connccted com-
ponent and is therefore a trec. Note that by Lemina 6.1, the trec decomposition of BG(I7) is almost
the same, excepting that some of the sets associated with each node in the tree arc slightly larger. We
will work with the fragement associated with the term C in BG(J7) from now on. By following the
same sequence of steps as outlined in Section 5 for MAX-CIRCUIT-SAT , we can replace the term
Cj by the new description C; = A; ; x ;i k(vj, Zi), where hj are the new relations added and v; is
the auxillary variable corresponding to the term C;. Note that since AND is a commutative and as-
sociative operator, we can form a new circuit that combines them in any order — in particular in the
order of their occurrence in the decomposition tree. The Step of converting Fy to F; is very similar
to the PROCEDURE TRANSFORM-SAT in Scction § and consists of replacing the sct of clauses in C;
by a new clauses by interpreting C; as a circuit. Example 8.1 depicts the construction. The details are
straight forward. We only makc one crucial observation. The circuit can combine two clauscs one of
the form hj,(v5, 25,,) and h;4(v;, z,.); the only constraint placed on combining is their proximity in
the C; tree. This can be done since C; is essentially flattened out and all the clauses are connected by
AND. Such a rearrangemcnt is valid because AND is a commutative and associative operator. It is
now casy to sce that the treewidth of IG(F5) is no more than a constant factor times the treewidth of
IG(Fy) and thus JG(F). This compleles the proof of Part (1). To verify Part (2) of the lemma, note
that the new auxillary variables arc functionally depcendent on the old ones. The proof now follows
along the same lines as the proof of Part (4) of Theorem 5.2. Wc now consider the running time of the
algorithm. Note that v; is a variable taking n; distinct values, where 1n; is the number of minterms
in F. Thus the domain of each v; is bounded by O(r:"), for some fixed « > 0. As a result v; can
be represented by a O(Jog n) binary variables. This implies that the trecwidth of Fy as measured with
respect to this new representation is £O(logn). The running time is thus n?%), This completes the
proof of the theorem. m

Notes: (1) Intuitively speaking the clause C = (m; V my...m,), has been flattened to 3v:m,
which can now be used to write the clausc as one big AND, allowing to mix the new atoms of the
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clause as needed. (2) Note that we reduced the problem for disjunction of minterms to the case of a

SAT(S) problem where the relation set S is not fixed but grows with the instance. This is okay so long
as it is easy (in our case constant time) to check if a given assignment to the variables is satisfiable.
(3) The results demonstrate that the concept of circuit graph is sound and roboust in designing exact

as well as approximation algorithms. (4) The results extend the results of Bodlaender [Bo88) and

those of Stearns and Hunt [SH95] on certain types of predicates for which the resulting problems can
be solved exactly. In particular it says that if the bipartite graph corresponding to a hypergraph without
a bound on arity of edges and degree of nodes has bounded treewidth then several classical problems
such as independent sct ctc has PTAS.

7 Packing and Covering Programs

Next, we discuss the extensions to finding PTAS for packing and covering programs when the corre-
sponding restricted to planar instances. We first discuss the polynomial time solvability of the corre-
sponding programs for instances of bounded treewidth. First note that by direct application of result
in Section S, the B-IP problem, restricted to bipartite graphs of bounded treewidth have a polyno-
mial time algorithm. Thus the problems B-PIP and B-CIP restricted to bipartite graphs of bounded
trecwidth has a polynomial time algorithms. Next consider B-PIP (B-CIP) for planar instances. These
problems have a PTAS and is proved by a direct application of arguments similar to the proof of Part
(4) of Theorem 4.1. In contrast to the positive results in the earlier scctions, we show that certain
desriable extensions of these results fail.

Theorem 7.1 (1)  The O/1-IP-feasibility problem is NP-hard even when restricted 1o instances I

such that BG(I) is a tree. The NP-hardness holds even for instances I with (1G(I) with bounded
treewidth; and variables ranging over Z+. (2)  Unless P = NP, the problem 0/1-1P does not have

polynomial time e-approximable for any € > 1, even when restrcited to instances I whose BG(I) is
planar

Proof: Proof of part (1) is by a reduction is from the Partition problem. Let S = {a;,...a,} be an
instance of the partition problem. Then checking if there is a subset S; C S'suchthat 3°, 5 a; = B/2
is equivalent to checking if the equation 3 e;z; = I3 /2 subject 1o the condition that z; € {0,1}. Itis
casy to see that the bipartite graph is simply a star. To extend the result to hold for interaction graph
having a boundcd trcewidth we introduce new variables y; and then add then construct the following
instance [: equations: V1 < 7 < n— 2, aiz; + Giq1Tiv1 = ¥; 804 04Ty + yp—1 = B/2. It is easy
to see that that the treewidth of IG(I) is bounded. The proof of part (2) follows from a reduction from
Ex-1-3SAT. =

The hardness and the casiness results discussed above should be carefully compared. The hardness
of 0/1-IP feasibility stems from the fact that we work with algebraic structures that are cxponentially
large (and in general infinite). Also, note that o obtain PTAS, we only needed the packing and covering
constraints to satisfy the following requirement: The variables in the layers that are thrown away can
be given values without destroying the fcasibility of the constraints. This is similar to thc monoronicity
constraint considered by Feder and Vardi [FV93). Packing and Covering programs by their nature
provide sufficient conditions to achicve this.
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Appendix

8 Additional Definitions and Proofs

For a set D and a natural number m, the set of m-tuples of elements of D are denoled by D™. A
subset R of D™ is called a m-ary relation over D; m denotcs the arity of R (a function is defined
similarly). We will also use the map f : D™ — D in our discussion. A term is a string of the form
“R{zi,...,zx)” where z; are variables or constants and R is a k-ary relation (or function) over D.
(The tuples of R; indicate the allowed values that the variables {z1,..., %4} can take.) A formula
is a pair (V, P) where V is a set of variables and P is a set of terms such that V 2 VAR(P). The
problem WT-MAX-FUNCTION(S) is 1o assign values to each z;, 1 < 7 < n, so as to maximize
> wi, fi, (Xi,)-

Proof of Theorem 4.1: Parts (1) and (2): The proof follows by a direct extension of ideas in [HM+94].
Part (3): The proofis obtained in two stages. First, by extending the ideas in [SH95], it follows that the
problem B-1P(k), restricted to instances I such that /G(I) is of bounded treewidth has a polynomial
time algorithm. The only point to note is that the variables can take values from {0, 1,... poly(n)}
and can be represented by ©(logn) binary variables encoding the binary representation. Thus if
IG(I) has treewidth k, then the new treewidth is O(log n)k, resulting in an overall running time of
20logn)k — ,O(k) To completc the proof note that if BG(I) has bounded treewidth [, and the number
of variables in each inequality is bounded by a fixed constant k, then, therc is a constant p > () such
that tw(IG(I) < pkl < pktw(BG(I).

Part (4): To prove this part, we follow the idea given in [KM96]. Specifically, we break the graph into
collection of layers obtained as a result of BFS. Consider a set it is S; = ULy such that Ly are layers
whose indices &k are congruent to 27 modulo 2(p+ 1). Here the levels Ly . .. L, are divided into groups
Sp, : . - Sp. The proof now follows by observing the following:

1. By a simple averaging argumcnt, it is clear that there exists a sct 5; for which }_, cs. cozy is

smaller than O—f-%' . Thus, we can afford to assign a2 valuc O to the variables in these layers and

still get a near optimal solution.

2. Setting the variables in laycrs that were thrown out to 0, we do not alter the feasibility of the
inequalitics; thus the incqualities are still satisfied.

3. The problem in each of the smaller pieces (subgraphs) consists of finding an optimal solution to
B-1P when restricted to instances that are treewidth bounded. This can bc done using the exact
rcsult for treewidth bounded instances..

The proof now follows. =

Example 8.1 Let p; be the FOIF given by (z§ + zy + wZ). We will create three predicates hy, hy
and hy. We also have three new variable v;, for the predicate p;. Now we have the clauses C} =
hi(vi,z) A hy(vi,y) & C% = ho(viy2) A ha(vi,y) & CF = ha(vi,w) A hs(v;, z)

The FOF p; is replaced by C! A C? A C3. The intended meaning of the predicates hi,1 < i < 3 is
as given above. We note that the interaction graph corresponding to this fragment p; is identical to the
bipartite graph corresponding to p;. Let the C; tree be as shown in Figure ]. Now consider dblaining
the formula F5 from Fy. The formula is given by:

(t, = hi’1 (vi, z)) /\(tz = h,-'g(vi,:c)) /\(t3 =t Aly) /\

13
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Figure 1: Figure shwing the C;-tree corresponding to the bipartitc graph for C; in the formula Fi.

(ta = hiy (i, ) Ats = hip(vi, 1)) Alts = ta Ats) A
(t7 = hia(vi, 2)) \(fs = hia(vi, w)) A

(to =t3 Alg) /\(tm = {g A ty) /\(t” = tg A l10) /\t”

The tree decomposition for the bipartite graph associated with C; as represented above can be easily
constructed from the above formula and Figure I.

9 Extension to Graphs obeying the LT-property

Next, we discuss the notion of level-treewidth property for a graph class G. We first dcfine the notion
of level numbering — which is just an abstraction of the level numbers associated with a breadth first
ordering of vertices.

Decfinition 9.1 A4 level numbering of'a graph G(V, I7) is a numbering of the vertices of the graph with
the following properties:

1. Each vertex is assigned a unique number:

2. Letting Ly, ..., L, denote the set of vertices assigned levels 1,...,p, UiLy =V, Ly N Lj = ¢;
|Ls| 2> 1 — thus implying that the level numbering partitions the set of vertices of G.

3. Forall1 < i < p, ifavertex v assigned level i, then N (v) — the neighbors of v are assigned
levels {i — 1,1, (i + 1)}. Vertices at level 1 are have all their neighbours at levels 1 and 2 and
similarly vertices at level p have all the neighbors at levels (p — 1) and p.

The sct L; are sometimes referred to as levels; and we say that that level L; is adjacent to level
L; 4y and L;—;, when these quantities are well defined. A subgraph induced by & consecutive levels L,
to L, is the subgraph U;.Z“Lij.

Definition 9.2 4 graph class G obeys the level-treewidth property (LT-property) if there is a polyno-
mial time algorithm A that, for every G € G, assigns a level numbering to the vertices of G such that
Sorall k > 1 the treewidth of the subgraph induced by k consecutive levels is O(f(k)).

14
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As in Eppstein [Ep95], a graph class G has a diameter-treewidth property (DT-property) if the treewidth .
of any graph in this family with diameter D is f(D), for some function f.

In [Ep95], Eppstein characterizes those minor closed families that obey the DT-property. Extend-
ing his results, we obtain the second main theorem of this paper. The result implies the existence of
PTAS for problems in the classes MPSAT, TMAX and TMIN when restricted to several well known
classes of graphs. To prove this we only need to show that these graph classes obey the LT-property.
Following [Ep95] define an apex graph G to be a graph such that for some vertex v (the apex) G/{v}
is planar. By using a key theorem proved by Eppstein [Ep95], we can show that:

Proposition 9.3 Given an n-node graph G that is minor closed and and does not contain all apex
graphs. Then G obeys the LT-property.

Theorem 9.4 Let G be a n-node (r, s)-civilized graph. The subgraph of G induced by the vertices
in any k consecutive levels has treewidth O(k). Thus the set of (r, s)-civilized graphs satisfy the DT-

property.

Proof: The algorithm A consists of dividing the plane into horizontal strips of width r and assigning
level ¢ to all the vertices that lie in strip 7. Note that the vertices in k consecutive levels of a (r, s)
civilized graph lie in a rectangular slice of side height O(rk) and width O(n). Since G is an (7, 3)
civilized graph, the maximum number of vertices in a rectangular region of dimensions O(rk) x O(s)
is at most krs. Furthermore, removal of the vertices in this square breaks the graph into disjoint pieces.
By recursively applying the above idea on each smaller piece, we can construct a tree decomposition
of the graph G with trecwidth krs = O(k) since  and s are fixed. = :

A neighborhood system N = { B}, By, ... B, } is a finite colicction of neighborhoods. For integers
k,d > 0, we say that A is a k-ply-neighborhood system in d-dimensions if no point of R? is strictly
interior to more than k of the balls. The intersection graph of a k-ply-neighborhood system is a
graph in which each vertex corresponds to a neighborhood and there is an edge between two vertices
iff the corresponding neighborhoods have a non-empty intersection. Intersection graphs of k-ply-
neighborhood systems are a slrict generalization of (r, s)-civilized graphs as well as planar graphs.
The proof of the following theorem is omitted.

Theorem 9.5 There exists family of k-neighborhood graphs and k-ply neighborhood graphs do not
obey the level treewidth property.

Define a side-uniform k-ply ncighberhood system for Rectangular neighborhoods; each such
neighborhood is a closed rectangle with fixed width but varying length. centered at p as follows: A
neighborhood system AN = {B;,B,,... B,} is a finilc collection of neighborhoods. For integers
k,d > 0, we say that NV is a k-ply-ncighborhood system in d-dimensions if no point of R9 is strictly
mterior to more than k of the balls. The defintion of intersection graph of a side-uniform k-ply-
neighborhood system is straightforward Notice that these graphs are a restriction of the earlier more
general case. The advantage of these graphs though is the fact that they have nice decomposability
properties as shown below.

Theorem 9.6 The intersection graph of a side-uniform k-ply-neighborhood system obey the LT-property.

In contrast there exists family of k-neighborhood graphs and k-ply neighborhood graphs do not obey
the level treewidth property.
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