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ON ANALOG IMPLEMENTATION OF DISCRETE NEURAL NETWORKS
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Abstract—The paper will show that in order to obtain minimum size neural networks (i.e.,
size-optimal) for implementing any Boolean function, the nonlinear activation function of the
neurons has to be the identity function. We shall shortly present many results dealing with
the approximation capabiliiies of neural networks, and detail several bounds on the size of
threshold gate circuits. Based on a constructive solution for Kolmogorov’'s superpositions we
will show that implementing Boolean functions can be done using neurons having an identity
nonlinear function. It follows that size-optimal solutions can be obtained only using analog
circuitry. Conclusions, and several comments on the required precision are ending the paper.
Keywords—neural networks, Kolmogorov’s superimpositions, threshold gate circuits, analog
circuits, size, precision.

1 Introduction

In this paper a network is an acyclic graph having several input nodes, and some
(at least one) output nodes. If a synaptic weight is associated with each edge, and
each node computes the weighted sum of its inputs to which a nonlinear activation
function is then applied (artificial neuron): f(xX) =f(x;, ..., X)) =6 (X 2 w;x,+9),
the network is a neural network (NN), with the synaptic weights w,e IR, 8 IR
known as the threshold, A being the fan-in, and ¢ a non-linear activation function.
Because the underlying graph is acyclic, the network does not have feedback con-
nections, and can be layered. That is why such a network is also known as a mul-
tilayer feedforward .neural network, and is commonly characterised by two cost
functions: its depth (i.e., number of layers), and its size (i.e., number of neurons).
The paper starts by presenting known results dealing with the approximation
capabilities of NNs, and details several bounds on the size of threshold gate circuits
(TGCs). Based on a constructive solution for Kolmogorov’s superpositions we will
show that in order to obtain minimum size NNs (i.e., size-optimal) for implement-
ing any Boolean function (BF), the nonlinear activation function of the neurons has
to be the identity function. Hence, size-optimal hardware implementations of dis-
crete NNs (i.e., implementing BFs) can be obtained only in analog circuitry. Con-
clusions, and several comments on the required precision are ending the paper.
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2 Previous Results

NNs have been experimentally shown to be quite effective in many applications
(see Applications of Neural Networksl, together with Part F: Applications of Neu-
“ral Camputaﬁon2 and Part G: Neural Networks in Practice: Case Studiesz). This
success has led researchers to undertake a rigorous analysis of the mathematical
properties that enable them to perform so well, and has generated two directions
of research: (i) to find existence/constructive proofs for what is now known as the
“universal approximation problem;” (ii) to find tight bounds on the size needed
by the approximation problem (or some particular cases). The paper will focus on
both aspects, for the particular case when the functions to be implemented are BFs.

2.1 Neural Networks as Universal Approximators (f: IR"— IR)

The first line of research on the approximation capabilities of NNs*>™ was started
in 1987 by Hecht-Nielsen’ and Lippmann8 who, together with Le:Cun,9 were prob-
ably the first to recognise that the specific format of the form!'%!!

e nm) = @[ ,0 w5+ g0} M
of Kolmogorov’s superpositions12

Fx) = 220 ©,0) @

can be interpreted as a NN with one hidden layer. This gave an existence proof
of the approximation properties of NNs. The first nonconstructive proof has been
given the next year by Cybenko 14 using a contmuous activation function and
was independently presented by Irie and Mlyake 5 Thus, the fact that NNs are
computationally universal—with more or less restrictive conditions—when modifi-
able connections are allowed, was established. Different enhancements have been
later presented i in the literature :6-17(Ch- 1), :

e Funahashi'® proved the same result in a more constructive way and also
refined the use of Kolmogorov’s theorem,’ giving an approximation result
for two-hidden-layer NNis;

e Hornik ef al.!® showed that the continuity requirement for the output func-
tion can be partly removed;

® Hornik et al.?® also proved that a NN can approximate simultaneously a
function and its derlvatwe

® Park and Sandberg 1,22 ysed radial basis functions in the hidden layer, and
gave an, ‘almost’ constructive proof;

e Homik® showed that the continuity requirement can be completely re-
moved, the activation function having to be ‘bounded and nonconstant’;

e Geva and Sitte?* proved that four-layered NNs with sigmoid activation func-

tion are universal approximators;




Kirkovd>> has demonstrated the existence of approximate superposition rep-
resentations, Le. ¥ and @, can be approximated with functions of the form
Ya,o(b,x+c,), where G is an arbitrary activation sigmoidal function;

e Mhaskar and Micchelli?®?’ approach was based on the Fourier series of the
function, by truncating the infinite sum to a finite set, and rewriting ¢ in
terms of the activation function (which has to be periodic); '

e Koiran®® presented a new proof on the line of Funahashi’s,'® but more gen-
eral in that it allows the use of units with ‘piecewise continuous’ activation
functions; these include the important case of threshold gates (TGs);

® Leshno ef al.®® relaxed the condition for the activation function to ‘locally
bounded piecewise continuous’ (i.e., if and only if the activation function
is not a polynomial), thus embedding as special cases almost all the activa-
tion funcuons that have been previously reported in the literature;

e Homik> added to these results by proving that: (i) if the activation function
is locally Riemann integrable and nonpolynomial, the weights and the
thresholds can be constrained to arbitrarily small sets; and (i) if the acti-
vation function is locally analytic, a single universal threshold will do;

e Funahashi and Nakamura® showed that the universal approximation theorem
also holds for trajectories of patterns;

. Sprecher31 has demonstrated that there are universal hidden layers that are
independent of the number of input variables n;

e Barron>? descnbed spaces of functions that can be approximated by Jones’
algorlthm using functions computed by single-hidden-layer network of

TGs;
All these results—with the partial exception of 122832 were obtained ¢ ‘pro-

vided that sufficiently many hidden units are available” (i.e., no claims on the size
minimality were made). More constructive solutions have been obtained in very
small depth later,34— 36 but their size grows fast with respect to the number of di-
mensions n and/or examples m, or with the required precision. Recently, an explicit
numerical algorithm for superpositions has been detailed.” ™

2.2 Bounds on the Size of Threshold Gate Circuits

The other line of research was to find the smallest size NN which can realise
an arbitrary function given a set of m vectors (i.e., examples) from IR”. Most of
the results have been obtained for TGs™ . Probably the first lower bound on the
stze4(l)f a threshold gate circuit (TGC) for almost all n-ary BFs (i.e., f: IB"— IB)
was :

size 2 22Yn) 1?2, 3)

while later a very tight upper bound has been proven42 in depth=4:




size <22V 2x (1+Q[2Yn) 7). @

A similar existence lower bound for arbitrary BFs¥ is Q 2 "/3), while Roychowd-
hury et al.** details lower bounds for particular BFs.

For classification problems (f: IR"— IBk), one of the first results was that a
NN of depth=3 and size=m—1 could compute an arbitrary dichotomy (i.e.,
k =1). The main improvements have been:

e Baum® presented a TGC with one hidden layer having [m /r1 neurons ca-
pable of realising an arbitrary dichotomy on a set of m points in general
position in IR"; if the points are on the corners of the n-dimensional hyper-
cube (ie., f: IB"—= IB), m — 1 nodes are still needed;

® a slightly tighter bound of only [1 + (m — 2) /n] neurons in the hidden layer
for realising an arbitrary dichotomy on a set of m points which satisfy a
more relaxed topological assumption was proven later;46 also, the m—1
nodes condition was shown to be the least upper bound needed;

o Arai*’ showed that m ~ 1 hidden neurons are necessary for arbitrary separa-
bility (any mapping between input and output for the case of binary-valued
units), but improved the bound for the dichotomy problem to m /3 (without
any condition on the inputs);

e Beiu and De Pauw™® detailed tight existence lower and upper bounds for
arbitrary BFs: (m/n) (122 + 21logn) < size < 0.72 (m/n) (1/2 + 21ogn) logn;
they have been obtained by estimating the entropy of the data-set.

Several other existence lower bounds for arbitrary dichotomy are as follows*>°:
® a depth-2 TGC requires at least m / {n log(m / r%} TGs;

® a depth-3 TGC requires at least 2 (m/ logm)1 TGs in each of the two
hidden layer (if m>n 2);

® an arbitrarily interconnected TGC without feedback needs (2m/logm)
TGs (if m>n 2).
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One study51 has tried to unify these two lines of research (i.e., to find proofs
for the universal approximation problem, while also bounding the size) by first
presenting analytical solutions for the general NN problem in one dimension (hav-
ing infinite size!), and then giving practical solutions for the one-dimensional cases
(i.e., including an upper bound on the size). Extensions to the n-dimensional case
using three- and four-layers solutions were derived under piecewise constant ap-
proximations (having constant or variable width partitions), and under piecewise
linear approximations (using ramps instead of sigmoids).

2.3 Boolean Functions (f: 1B"— IB)

The particular case of BFs has been intensively studied.!”>? Some results have
been obtained for particular BFS,43’44 but a size-optimal result for BFs that have




exactly m groups of ones in their truth table (equivalently, which are defined on
the m groups) was detailed by Red’kin.>?

Theorem™ The complexity realisation (i.e., number of threshold elements) of IF, ,
is at most 2 (2m) 17243,

All the previous mentioned results are valid for unlimited fan-in TGs. Depart-
ing from these lines, Horne and Hush®* detail a solution for limited Jfan-in TGCs.

Theorem>* Arbitrary Boolean functions of the form f: {0, 1} —= {0, 1} can be im-
plemented in a neural network of perceptrons restricted to fan-in A =2 with a node
complexity of © {m 2" / (n +logm)} and requiring O (n) layers.

3 Analog Implementation of Boolean Functions

It is known that implementing any BFs using classical Boolean gates (i.e., AND
and OR gates) requires exponential size circuits. As has been seen from all previous
results, the known bounds for size are also exponential if TGCs are used for solving
arbitrary BEs™. It is true that these bounds reveal exponential gaps (thus encour-
aging research efforts to reduce them), and also suggest that TGCs with more layers
(depth # small constant56’57) might have a smaller size.

A completely different approach is to use Kolmogorov’s superpositions theo-
rem, which shows that there are NNs having only 2n+ 1 neurons which can ap-
proximate any function. Such a solution would clearly be size-optimal. We start
from™ "7, where a constructive solution for the general case was detailed.

Theorem’> Define the function y : §— 9 such that for each integer ke N.
2oy (6)

vEZhiv)=2 AR Ty
where
=i = (y-2)i) @
and
m, = Gy (L+ X 7 T % X [y )

forr=12,..,k
Here y22n+2 is a base, 6=[0, 1], 2 is the set of terminating rational num-
bers 4, =Y * i,y™" defined on ke N digits (0, <y-1). Also, (i;)=0 and
[i,J=0, while for r=2: (i)=0 when i,=0,1,...,Y-2, and ({)=1 when
i,.=y-1, [,]=0 when i,=0,1,...,y-3, and [{]=1 when i =y-2,7- 1.
For BFs, one digit is enough (k= 1), which gives y (0.i) = 0.i, {or ¥ (x) =x),
and shows that the nonlinearity is the identity function.




Such a solution builds analog neurons having fan-in A <2n + 1, for which the
known weight bounds >890 (holding for any fan-in A=4) are:

2D o peight < (A+1) @72 /948 ©®
Thus, one would expect to have a precision of between A and Alog}A bits per
weight. Unfortunately, the solution for Kolmogorov's superposmon requires

(in general) a double exponential precision for \y (Eq. 6), and for the weights:
| (10)

o, —zy

For BFs this precision is reduced to (2n +2)~", ie. 2nlogn bits per weight. Analog
implementations are limited to just several bits of Erecmon, U this being one of
the reasons for investigations on required precmon 65 and on algorithms relying
on limited integer weights.1 667

An ‘optimal’ solution for implementing BFs should decompose the given func-
tion in simpler BFs which can be efficiently implemented based on Kolmogorov’s
superpositions (i.e., we have to reduce n to small values). The partial results from
this first layer of analog building blocks can be combined using again Kolmo-
gorov’s superpositions. The final implementation is analog, but requires more layers
(for accommodating the limited precision of present day technologies).

4 Conclusions

Arbitrary BFs can be implemented using:

® classical Boolean gates, but require exponential size;

® TGs, but (again) in exponential size (still, there are exponential gaps be-

tween classical Boolean solutions and TG ones);

® analog building blocks in linear size (having linear fan-in and polynomial

precision weights and thresholds); the nonlinear activation function is the
identity function.

The main conclusion is that size-optimal hardware implementations of BFs can
be obtained only in analog circuitry. The high precision required by the solution
based on Kolmogorov’s superpositions can be tackled by decomposing a BFs into
simpler BFs.
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