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MALCOM X: combining maximum likelihood continuity mapping
with Gaussian mixture models

John Hogden & James Scovel
Los Alamos National Laboratory
CIC-3, MS B265
Los Alamos, NM 87545

A Gaussian mixture model (GMM) of a digitized speech waveform can be created by 1)
breaking the waveform into successive windows of speech, 2) distilling each window of

speech into a vector of acoustic features, a(z), where ¢ indicates the temporal position of
the window, and 3) finding a set of component Gaussian distributions indexed by c,

P(alc), and a set of a priori probabilities, P(c), that maximize the probability of the speech
data, i.e. that maximize

PAIN) =TT Pe)P[a(t)c] EQ. 1

where A represents the sequence of a(r) values over all t and A comprises the GMM
model parameters (Reynolds & Rose, 1995, gives a detailed description of GMMs).
GMMs are among the best speaker recognition algorithms currently available. However,
the GMM’s estimate of the probability of the speech signal does not change if we randomly -
shuffle the temporal order of the feature vectors, even though the actual probability of
observing the shuffled signal would be dramatically different -- probably near zero. A
potential way to improve the performance of GMMs is to incorporate temporal information
into the estimate of the probability of the data. Doing so could improve speech recognition,
speaker recognition, and potentially aid in detecting lies (abnormalities) in speech data.

As described in other documents (Hogden, 1996), MALCOM is an algorithm that can be
used to estimate the probability of a sequence of categorical data. MALCOM can also be
applied to speech (and other real valued sequences) if windows of the speech are first
categorized using a technique such as vector quantization (Gray, 1984). However, by
quantizing the windows of speech, MALCOM ignores information about the within-
category differences of the speech windows. Thus, MALCOM and GMMs complement
each other: MALCOM is good at using sequence information whereas GMMs capture
within-category differences better than the vector quantization typically used by MALCOM.

An extension of MALCOM (MALCOM X)) that can be used for estimating the probability
of a speech sequence is described below. MALCOM X combines features of a GMM with
features of MALCOM. Asin MALCOM, in MALCOM X it is assumed that an
unobservable object moving smoothly through the abstract space called a continuity map
(CM) periodically produces a categorical data value, where the probability of producing a
particular categorical data value at time ¢ is a function of the position of the unobservable

object at time 7, x(¢), and the model parameters, ¢. However, in MALCOM X, the

categorical data value is thought of as the index of a Gaussian distribution giving P(alc),
where a and ¢ have the same meaning as in the GMM.

Thus, the probability of observing the acoustic vector a(?) is:

Pla(t)x().¢] = 3. Pla(@)le.x () o]Pclx(1).¢]




Making the assumption that

Pla(t)|c,x(t),9] = Pla(t)lc. 9] - EQ.3

and the typical MALCOM assumption of conditional independence, we can write the
probability of the sequence of acoustic vectors as:

P(AIX,9)= I:IZP[a(t){c,(p]P[clx(t),(p] EQ. 4

where X represents a sequence of x(¢) positions, i.e. a path through the CM. Finally, to
get the probability of A we need to integrate over all smooth X:

P(Alg) = [ P(X](p)lj[;P[a(t)|c,(p]P[c|x(t),(p]dX EQ.5

where:

0 if X is not a smooth path

ol EQ. 6
(Xlo) {e if X is a smooth path °

and
[ P(X|o)ax =1 EQ.7

Thus, it is possible to write an equation giving the probability of the sequence of acoustic
vectors given the MALCOM X model. However, calculating the probability would be
impractical because of the difficulty of performing the required integration. The difficulties
of finding the solution call for a sub-optimal approach. For example, the Viterbi algorithm
is often used as a sub-optimal approximation of the probability found using the hidden
Markov model (HMM) forward algorithm (Rabiner & Juang, 1986, prompted the
following discussion). It is worthwhile to look more closely at the Viterbi algorithm to see
the similarity to the current problem. To make the analogy clear, let X’ represent a
sequence of HMM states and let ¢” be the HMM model parameters. The Viterbi algorithm

finds the X’ that maximizes P(A, X'|(p’). However, as Rabiner points out, the Viterbi
algorithm can be used to approximate P(A[(p'). The relationship between P(A,X’l(p') and
P(Al@’) is:

P(Alg’) = ;P(A, X’

o) EQ. 8

As can be seen from EQ. 8, the Viterbi algorithm calculates only one term in the
summation. However, the Viterbi algorithm is a reasonable approximation because it tends
to be the case that the term calculated by the Viterbi algorithm is the only significant term in
the summation. Interestingly, EQ 5, the equation for the probability of the acoustic
sequence given the MALCOM X model, can be rewritten as:




P(Alo) = [ o(A. Xlo}x © EQY

which bears a close similarity to EQ. 8. This similarity suggests finding the X which
maximizes EQ. 9, i.e.

X(A, ) = argmax P(A,X|o) A EQ. 10
X

and then using the approximation:

P(Alp) = P(A.X(A.0)o)
EQ. 11

to get our estimate of the probability of the sequence of acoustic vectors. Clearly, the
approximation in EQ. 11 underestimates P(A|(p), since it only includes one term from the
integral. However, it is not clear to what extent the inaccuracy will affect speech and/or
speaker recognition. In fact, GMMs also must underestimate P(A|(p) for some signals, as

implied by the fact GMMs tend to overestimate the probability of signals which are very
unlikely -- such as signals made by randomly shuffling the order of the acoustic vectors.

A second difficulty of using EQ. 11 is that EQ. 11 gives the height of a probability density
function (PDF) -- not a probability. This is problematic for various reasons, not the least
of which is that the height of a PDF does not have to lie between 0 and 1 as a probability
would. This is not a particularly serious problem, particularly considering that GMMs also
return the heights of PDFs, not probabilities. In fact, the extent to which the approximation
in EQ. 11 must hold is determined by the problem to be solved. Consider a typical speaker
identification scenario, in which the most probable speaker is chosen using the rule:

A PlAlop. . . .
1= argmax P((pllA) = argmaxw = argmax P(AI(PI)P((pI) EQ 12

P(A) Y PAle;)P(e)

where i identifies the speaker so ¢, is the model for speaker i. The first thing to notice
about EQ. 12 is that '

P(Alo,)P(9))

0= Y. PlAle,)P(o))

EQ. 13

i.e., the value has the same range as a probability. Realizing that P(A) is constant, if we
treat P(@,) as constant then the speaker with the highest value of P(AI(p) is the speaker
that will be chosen. So for this speaker identification task, we only need to believe that

arg max P(Alp,) = argmax P(A,X(A.9,)o,) EQ. 14

The same arguments can be made for word recognition, where the word model most likely
to have produced the data is chosen.




While the shortcomings of MALCOM X do call for further refinements, one should
remember that probability estimates coming from models like GMMs, HMMs and
MALCOM X are only accurate to the extent that the models reflect the underlying data
production process. Since current models of speech data are rather simplistic, it seems
likely that the error due to other model inaccuracies outweigh the error due to the
approximation in EQ. 11.

The approximation in EQ. 11 is only useful if there is a practical way to find X(A,(p). We

can solve for X(A, @) in much the same way as we solve other problems in MALCOM --

by using standard gradient maximization techniques. As in many probability maximization
problems, the logarithm of the probability is maximized to simplify the derivation. The

gradient of the logarithm of P(A,X'I(p’) with respect to X is:

VLogP[A,X|o| = VP(X|9)> Logy Pla(t)c]VP[c[x(2),¢]
t C EQ. 15
> Pla(0)|c[VP[c|x(t).9]
B 2P[a(r)|c]P[clx(t),(p]

for smooth X

Since VP[c[x(t),(p] has been simplified in previous descriptions of MALCOM, we will not
continue the derivation here.

It is also possible to find the maximum likelihood values for the MALCOM X model
parameters. A variant of the EM algorithm can be used for this purpose. Essentially, the
required steps are 1) given a model and speech data, find the X which maximizes the
probability of the data; 2) change the model parameters to increase the probability of the
data given the X values calculated in step 1. The method for performing step 1 was
described above. Step 2 has two subcomponents 1) find the parameters associated with the
distributions over continuity map position and 2) find the parameters associated with the
distributions over acoustic vectors. These steps are essentially the same as the techniques
previously described MALCOM and for GMMs respectively. MALCOM X can also be
trivially extended to data sets containing more than one speech sequence.
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