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Maintaining Tetrahedral Mesh Quality in Response to
Time-dependent Topological and Geometrical Deformation *

Andrew Kuprat
Denise George
Los Alamos National Laboratory, Theoretical Division, T-1
Los Alamos, NM 87545
email: kuprat@lanl.gov, dgeorge@lanl.gov

Abstract

When modeling deformation of geometrically complex regions, unstruc-
tured tetrahedral meshes provide the flexibility necessary to track inter-
faces as they change geometrically and topologically. In the class of time-
dependent simulations considered in this paper, multimaterial interfaces are
represented by sets of triangular facets, and motion of the interfaces is con-
trolled by physical considerations. The motion of “interior” points in the
conforming tetrahedral mesh (i.e., points not on interfaces) is arbitrary and
may be chosen to produce good element shapes.

In the context of specified boundary motion driven by physical consid-
erations, we have found that a rather large “glossary” of mesh changes is
required to allow our simulation to survive all the transitions of interface
geometry and topology that occur during time evolution. This paper will
describe mesh changes required to maintain good element quality as the
geometry evolves, as well as mesh changes required to capture changes in
topology that occur when material regions collapse or “pinch off”.

In the first category of mesh changes required to maintain good element
quality under a physically induced flow, we have found that we require a
combination of node merging, edge refinement, and face swapping to keep
the simulation from prematurely terminating. Interestingly, we have also
found that it is impossible to completely decouple the physical motion of
the interface triangles from the conforming tetrahedral mesh that contains
them, because of the inevitable presence of “all-surface” tetrahedra (i.e.
tetrahedra all of whose vertices lie on the same multimaterial interface).
These tetrahedra are very flat and have near zero volume and hence are
prone to invert as the interface deforms. To prevent element inversion, we
have found it is necessary to add artificial forces to the physically justified
forces on the interfaces. These artificial forces keep the simulation “alive”
until periodically the worst offending “all-surface” tetrahedra are removed
by merging of their vertices. In addition to maintaining the ‘“all-surface”
tetrahedra, refinement and face swapping tools are employed to ensure good
mesh quality.

The second category of mesh changes are those required to capture
changes in interface topology. We have found that it is necessary to keep

* Work supported by the U.S. Department of Energy.




track of the various connected topological components and determine whe-
ther they are on the verge of disappearing or changing as the simulation
evolves. For example, for all pairs of material regions that touch each other,
we monitor the topological component consisting of connected interface tri-
angles between the two materials. If the total surface area of one such com-
ponent is about to go to zero, this marks an imminent physical topological
change, which must be simulated by performing topological changes to the
computational tetrahedral mesh. Similar strategies are required to detect
other forms of topological change.

This paper will present a detailed description of mesh changes neces-
sary for capturing the aforementioned geometrical and topological changes,
as implemented in our code GRAINSD, and will provide examples from a
metallic grain growth simulation in which the normal velocity of the grain
boundary is proportional to mean curvature.

“Gradient Weighted Moving Finite Elements”
Applied to Metallic Grain Growth

Our application which defines a physically driven interface motion is
metallic grain growth approximated by Gradient Weighted Moving Finite
Elements. This application and approximation is explained in this sec-
tion; in the following sections, we present developments needed for efficient
movement of tetrabhedra attached to the physically driven interfaces.

We use Gradient Weighted Moving Finite Elements [1,2,3] to move a
multiply-connected network of triangles for the modeling of deformation of
3-D grains. In one model of metallic grain growth [4,5], interface surfaces
obey the simple equation

v, =K, (1)

where v, is the normal velocity of the interface, and K is the local mean
curvature. We represent interfaces as parametrized surfaces:

u(sy, s2) = Z a;(s1, 82)u. 2)

nodes j
Here, (81, s2) is the surface parametrization, the sum is over interface nodes
J, @j(s1, 82) is the piecewise linear basis function (“hat function”) which is
unity at node j and zero at all other interface nodes, and u; is the vector

position of node j.
We have that

(s1,80) = ) @1, 82), (3)
i




Un = U(81,52)-fi (i is local surface normal). 4)

So

Vp = Z(ﬁaj) - ;. (5)

In effect, we have that the basis functions j for v, are m;a;, where fi =
(n1, n2,n3). These basis functions are discontinuous piecewise linear, since
the n; are piecewise constant.

Gradient Weighted Moving Finite Elements minimizes

f (vn — K)? dS (6)

over all possible values for the derivatives ;. (The integral is over the

surface area of the interfaces.) We thus obtain

19 2 ;
0_55@/(0"—1{) ds, i€{1,2,3)
(7

= /(vn - K)n;a; dS.
This leads to a system of 3N ODE’s:

(nicj, meen)if = (K, n;aj), (8)

or

C(u)i = g(u), (9)

where u = (u},u?,ud,u},...,u3)T is the 3N-vector containing the z, y,
and z coordinates of all N interface nodes, C(u) is the matrix of inner
products of basis functions, and g{u) is the right-hand side of inner products
involving surface curvature.

Although g(u) = (K,n;o;) appears ill-defined for piecewise linear
manifolds, being the inner product of a distribution (K) with discontin-
uous functions (n;a;), we can replace it by a well-defined sum of surface

tensions over the triangular facets of the interfaces using an integral identity
for manifolds [1].




Artificial Grid Movement Equations
System (9) is integrated using a second-order implicit variable time
step ODE solver [2]. However, it gives velocities of the interface nodes

only (1'1 = (%f )ii:ss:,), and so the system must be enlarged to include

velocities for M interior nodes that are not part of the interface. That is,

we extend u to
u= (uinterfacz ) s (10)

uinteriar

_ (. k\1Skss [k ) ASKSS . :
where Winsersace = (47 ) Zicn 804 Winperior = (2 ) Niiercnen- With this

extension, we enlarge system (9) to be order N + M.

Since interface physics only tells us how to evolve the N interface nodes,
we must “artificially” construct the extra elements in the enlarged C(u),
g(u) to allow for orderly (tetrahedra orientation preserving) evolution of
the mesh. That is, given a physically meaningful method of evolving the
triangular interfaces, we are free to develop auxiliary equations for moving
the attached tetrahedra with the only requirement being that these equa-
tions lead to efficient solution of the system (9), and that they maintain
positive orientation of tetrahedra.

We have found that viable extra equations are formed by adding to
the left-hand side of (9) the term

e:C(u)i = 6 {(Va;, Vi )6 F )4k, (11)

and to the right-hand side of (9) adding the term

e28(u) = —e2Vy, ( Z @p)- (12)

tets p

Here €, and €; are set sufficiently small so that the artificial node movement
equations have small magnitude in comparison to the magnitude of the
physical interface node movement terms. With regard to the left-hand side
term, &; = &;(x) is a piecewise linear “hat function” defined for x € IR3.
&; is 1 on the j’th node in the tetrahedral mesh, and zero on all other
nodes. V@&; is the gradient of &; over the tetrahedra (i.e., V = Vx, where




x € IR®.) &"* is the Kronecker delta, and (Va&;, V&) = [Vé&; - V&, dx,
where integration is over the tetrahedra in the mesh.

Term (11) has the effect of viscously damping node movement in the
mesh. In fact, it is easily seen to be equal to

a 2
“tgig / Vvl dx, (13)

where v(x) = ), W& is interpolated mesh velocity. Inclusion of this term
thus tends to minimize [ ||Vv||? dx which is a measure of nonuniformity
in the velocity of the mesh.

With regard to the right-hand side term (12), Q, is a measure of
“quality” of tetrahedron p, and -V, (3 Qp) is a “quality force” on
node j in a direction which will cause the greatest increase in the qualities
of tetrahedra that contain node j. For Q,, we currently use

tets p

Yoo (L)Y (4P)?
(V)2 '

Qp = (14)

where the Lg) are the edge lengths, the AS{’ ) are the face areas, and V(?) is
the volume of tetrahedron p. Q, is a dimensionless quality measure which
is minimal if p is a regular tetrahedron, but approaches infinity if p has a
worsening aspect ratio. (Note: for Q,, the “quality force” acts to increase
quality, which is to say it acts to decrease Q,.)

Thus our artificial grid forces move the grid by (1) acting to minimize
nonuniformities in grid velocity, and (2) acting to continually improve grid
element aspect ratios.

The artificial grid forces have the effect of necessarily overriding phys-
ically justified node movement when it is necessary to prevent inversion of
tetrahedra. For instance, if a tetrahedron p has all 4 nodes on an interface,
the motion given by (8) might cause the tetrahedron to invert, especially if
the interface changes its sense of curvature. By adding the “quality force”
(12), the tetrahedron will “lock up” at some minimum volume (dependent
on ¢€;) and will be prevented from inverting. The effect of this on the
simulation is acceptable with regard to accuracy, since the “lock up” of a




small number of tetrahedra simply removes a small fraction of numerical
degrees of freedom from the simulation. The effect is further reduced if the
locked up tetrahedra are effectively removed by merge and swap operations
mentioned in the next section.

Grid Maintenance Operations

To model 3D processes which exhibit physically based boundary mo-
tion, mesh maintenance and mesh optimization tools are used to assure
good element quality. Primitive grid operations provided by LaGriT, the
Los Alamos Grid Toolbox [6], provide a basis for mesh maintenance and
optimization. The “merge” primitive accepts as input lists of pairs of neigh-
boring nodes: merge candidate nodes and survivor nodes. If the merge is
completed, only one of the pair survives and the mesh connectivity is re-
paired to reflect that one node has been deleted. Before the merge takes
place, LaGriT verifies that the merge will not cause tetrahedra to become
inverted and that the node types and surface constraints of the survivor
and merged nodes will lead to a legal merge. The “refine” primitive used
in these simulations adds nodes at the midpoints of selected edges. LaGriT
sets the node type and surface constraints of the added nodes by deter-
mining if the added node is in the interior, on a material interface or on
an exterior boundary. The grid connectivity is repaired to include the new
elements created by connecting the new node to the other vertices of the
elements which contained the refined edge. Depending on what is desired
by the user, the “recon” primitive interchanges connections to either im-
prove a measure of the geometric quality of the elements [closely related to
Qp in (14)], or to maximize the number of elements satisfying the familiar
“Delaunay” criterion.

The three primitives, “refine”, “merge”, and “recon” are combined into
the LaGriT grid optimization operation called “massage”. (“Massage” is
similar to the algorithm presented in {7].) “Massage” accepts three argu-
ments: a creation edge length, an annihilation edge length and a damage
tolerance. Refinement is carried out such that no edge in the grid has length
greater than the creation edge length. The “refine” primitive is invoked us-
ing a version of an algorithm due to Rivara [8]. In the algorithm, an edge
marked for refinement is placed on a stack. The algorithm then checks that
the elements containing the marked edge have no other edges longer than




the marked edge. If longer edges are encountered, they are placed on the
stack ahead of the marked edge. The process continues recursively. The
refinement candidates are then popped off the stack and refined, resulting
in a refinement pattern proceeding from the longest edges to the shortest;
this pattern is desirable since it usually does not degrade element quality.
“Massage” may attempt to “merge” pairs of points only if the resulting
grid has no edge length greater than the annihilation length. The damage
tolerance specifies the amount of change to the shape of a material interface
that is permissible. If a node that sits on a material interface is merged
out, the interface will become flatter at that point. If the distance from
the merged node’s original position to its projected position on the flat-
tened interface is greater than the damage tolerance, the merge will not be
allowed. Since “merge” and (less commonly) “refine” can produce poorly
shaped tetrahedra, “recon” is used to restore well shaped elements.

Mesh Response to Topology Changes

As grain boundaries move, topology changes must be detected and the
mesh must be modified to reflect these topological changes. The topology
changes are detected by assembling and monitoring the rate of change of
sets of topological components. To detect grain collapse, we assemble sets
of connected elements of the same material; for interface surface collapse
we assemble sets of connected interface triangles between two materials; for
boundary surface detachment, we assemble sets of connected boundary tri-
angles that lie on a given boundary surface; for triple line collapse where a
line is surrounded by three or more materials, we assemble sets of connected
edges. We monitor the rate of collapse of these sets, and when a collapse
or detachment is imminent, the mesh is adjusted. We identify a neighbor-
hood that completely surrounds the collapsing feature and assign a new
material to the elements in this neighborhood. The encroaching material
that is accumulating most rapidly is chosen to be the new material. Soon
after the material reassignment, the curvature driven interface motion will
effectively straighten the interfaces. Figure 1 is a schematic of three types
of topological change. The first frame in each sequence shows the event as
it is detected by GRAIN3D; the dotted line demarcates the neighborhood
to receive a new material assignment. The second frame shows the mesh
just after the material reassignment, and the third frame shows the mesh
after the interfaces have straightened.
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Figure 1. Topological collapse detection and resolution by GRAIN3D.

Numerical Example

As an application of GRAIN3D, in Figure 2 we model a 5 grain mi-
crostructure in which the surfaces of the grains move under mean curvature.
The figure shows a time sequence in which one of the grains shrinks and
disappears. When run to completion the simulation results in a single
grain structure. Note that the grid is maintained throughout the simula-
tion to keep the number and spacing of the nodes approximately constant.
Although only the surface grid is displayed, the quality of the mesh is main-
tained in the volume as well.




Figure 2. Grain evolution time sequence computed by GRAIN3D.

Conclusions
We have investigated the modeling of 3D processes involving physi-

cal boundary motion. We have found that for a front-tracking simulation
to be effective, it must exhibit at least three capabilities. There must be
a method of moving boundary nodes to track boundary motion, while ad-

justing positions of “interior” nodes to prevent inversion of elements. There
must be a grid maintenance capability to assure well shaped elements and
even node spacing. There must be a method of detecting topology changes
and of modifying the grid accordingly. The Los Alamos code GRAIN3D
incorporates these three capabilities.
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