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Abstract.

The study of adapting and evolving autonomous agents should
be based on a complex systems-theoretic framework which
requires both self-organizing and symbolic dimensions. An
inclusive framework based on the notions of semiotics and
situated action is advanced to build models capable of
representing, as well as evolving in their environments. Such
undertaking is pursued by discussing the ways in which symbol
and self-organization are irreducibly intertwined in evolutionary
systems. With this semiotic view of self-organization and
symbols, we re-think the notion of autonomy of evolving
systems, and show that evolutionary systems are characterized by
a particular type of syntactic autonomy. Recent developmentsin
emergent computation in cellular automata are discussed as
examples of the emergence of syntactic autonomy in
computational environments. New experiments emphasizing this
syntactic autonomy in cellular automata are presented.

Keywords: Evolutionary Systems, Self-Organization,
Autonomy, Artificial Life, Semiotics, Emergence, Cellular
Automata, Genetic Algorithms, Situated Action.

1. SITUATED SEMIOSIS

1.1 Self-Organization

Self-organization is seen as the process by which systems
of many components tend to reach a particular state, a set
of cycling states, or a small volume of their state space
(attractor basins), with no external interference. This
attractor behavior is often recognized at a different level
of observation as the spontaneous formation of well
organized structures, patterns, or behaviors, from random
initial conditions (emergent behavior). The systems used
to study this behavior computationally are referred to as
dynamical systems or state-determined systems, since their

current state depends only on their previous state. They
possess a large number of components or variables, and
thus high-dimensional state spaces.

Computational self-organization is often used to model
physical matter with systems such as boolean networks or
cellular automata. The state-determined transition rules are
interpreted as the laws of some physical or chemical
system [Rocha and Joslyn, 1998]. It follows from the
observed attractor behavior that there is a propensity for
matter to self-organize (e.g. the work of Prigogine [1985]
and Kauffman [1993]). In this sense, matter is described
by the laws of physics and the emergent characteristics of
self-organization. In the following, whenever the words
matter and materiality are used, they should be understood
as reflecting this notion of self-organization both in
physical and computational environments.

1.2 Semantic Emergence

Self-organizing attractor values can be used to refer to
observables accessible to the self-organizing system in its
environment, and thus perform environmental
classifications (e.g. classifying neural networks). The
process of obtaining novel classifications of an
environment by a self-organizing system, which can only
be achieved by structural changes to its attractor landscape
(e.g. weight changes in a neural network), can be referred
to generally as emergent classification [for more details on
this argument please refer to Rocha, 1996, 1997].
Emergent because it is the result of the local interaction of
the basic components of the self-organizing system and not
from a global controller.
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There are three levels that need to be addressed when
dealing with the notion of emergent phenomena in self-
organizing systems, in particular, of emergent
classification. First, there is the material, dynamical,
substrate (physical law or computational state-
determinacy) which will be the causal basis for all other
levels that we may further distinguish. Second, we have
the attractor behavior of this dynamics. Finally, we have
the (possible) utilization of the set of attractors as referents
for some aspects of the interaction of the dynamical
system itself with its environment (e.g. the pattern
recognition abilities of neural networks). No physical or
formal description of the dynamical system and its
attractors alone can completely explain this “standing-for”,
or semantic, dimension [Pattee, 1995a]. This argument is
pursued in more detail in [Rocha 1996, 1997, 1998a].

1.3 Pragmatics: Selected Self-Organization and
Situated Semantics

For a dynamic system to observe genuine emergence of
new classifications, that is, to be able to accumulate useful
variations, it must change its structure (that is, its
components characteristics establishing a particular
attractor landscape). One way or another, this structural
change leading to efficient classification (not just random
change), has only been achieved through some external.
influence on the self-organizing system. Artificial neural
networks discriminate by changing the structure of their
connections through an external learning procedure.
Evolutionary strategies rely on internal random variation
which must ultimately be externally selected. In other
words, the self-organizing system must be structurally
coupled [Maturana and Varela, 1987] to some external
system which acts on structural changes of the first and
induces some form of explicit or implicit selection of its
dynamic representations: selected self-organization
[Rocha, 1996, 1997, 1998a].

Now, for selection to occur we must have some internal
vehicle for classification -— there must be different
alternatives. The attractor landscape of self-organizing
systems offers these alternatives. One way of
conceptualizing this, is to think of the attractor landscape
as a distributed {Van Gelder, 1992] memory bank, where
each attractor basin is seen as storing a given classification
function. Therefore, semantic emergence in self-
organizing systems depends on the existence of distributed
memory [Rocha, 1996].

Selected self-organization explicitly emphasizes a second
dimension of the semiosis of self-organizing systems in
situation with their environments. If classification implies

semantic emergence, selection implies pragmatic
environmental influence. In fact, these two dimensions of
semiosis cannot be separated; the meaning of the
classifications of a self-organizing system does not make
sense until it is grounded in the feedback from the
repercussions it triggers in its environment. The structural
coupling, or situation, of a classifying, self-organizing,
agent in its environment is the source of meaning. Indeed,
selection does not act on memory tokens internal to a
classifying system but on the repercussions those trigger in
an environment. Situated Semantics is pragmatic. In this
sense, meaning is not private to the agent but can only be
understood in the context of the agent’s situation in an
environment with its specific selective pressures.

1.4 Von Neumann and the Syntactic Advantage
Von Neumann’s {1966] model of self-replication is a
systems-theoretic criteria for open-ended evolution [for a
detailed discussion of this model see Rocha, 1996, 1997,
1998a]. Based on the notion of universal construction and
description it provides a threshold of complexity after
which systems that observe it can for ever more increase
in complexity (open-ended evolution). However, unlike
the situated semiosis of self-organizing systems described
in 1.3, this model clearly does not rely on a distributed but
on a local kind of memory. Descriptions entail a symbol
system on which construction commands are cast. These
descriptions are not distributed over patterns of activation
of the components of a self-organizing system, but instead
localized on “inert” structures which can be used at any
time — a sort of random access memory.

By “inert” structures, I mean components with many
dynamically equivalent states which can be used to set up
an arbitrary semantic relation with the environment. For
instance, in the genetic system (which Von Neumann’s
model conceptually describes), most any sequence of
nucleotides is equally possible, and its informational value
(genetic information) is largely independent of the
particular dynamic behavior of the DNA or RNA
sequence. Genetic information is not expressed by the
dynamics of nucleotide sequences, but is instead mediated
through an arbitrary coding relation that translates such
sequences into amino-acid sequences whose dynamic
characteristics ultimately express genetic information into
some environment. It is precisely the dynamic irrelevance
of nucleotide sequences (“inertness™) that makes DNA and
RNA ideal candidates for localized carriers of genetic
information (descriptions) given an arbitrary genetic code
[Pattee, 1995a; Umerez, 1995].
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Von Neumann showed that there is an advantage of local
memory over purely dynamic, or distributed, memory in
self-replication because if we do not have symbolic
descriptions directing self-replication, then an organism
must replicate through self-inspection of its parts. Clearly,
as systems grow in complexity, self-inspection becomes
more and more difficult [Pattee, 1995a]. The existence of
a language, a symbol system, allows a much more
sophisticated form of communication. Functional, dynamic
structures do not need to replicate themselves, they are
simply constructed from non-functional (dynamically
inert) descriptions. For instance, for an enzyme to replicate
itself, it would need to have this intrinsic property of self-
replication “by default”, or it would have to be able to
assemble itself from a pool of existing parts. But for this,
it would have to “unfold” so that its internal portions could
be reconstituted for the copy to be produced [Pattee,
1995a]. With the genetic code, however, none of these
complicated gimmicks are necessary: functional molecules
can be simply folded from inert messages. This method is
by far more general since any functional molecule can be
produced from a description, not merely those that either
happen to be able to self-reproduce, or those that can
unfold and fold at will to be reproduced from available
parts.

The genetic symbol system, with its utilization of inert
structures, opens up a whole new universe of functionality
which is not available for purely dynamical self-
replication. In this sense, it can evolve functions in an
open-ended fashion. It also introduces the third level of a
semiosis of classifying systems in situation with their
environments: syntax — as defined by a construction code.
Arguments for the idea of language as a provider of such
an enabling syntax for cognitive systems have been
pursued elsewhere [Henry and Rocha, 1996; Rocha, 1997,
1998b].

1.5 Why do we need syntax?

It can always be argued that the random access memory
the genetic system establishes, is nothing but complicated
dynamics, and the syntactic dimension is just the result of
our subjective observation. But similar arguments can
always be pursued to discourage any kind of emergence.
Indeed, the notion of self-organization also requires an
emergentist argument as pursued in sections 1.1 and 1.2.
The dynamic/self-organizing level resuits from the
necessity of complementary modes of description to
describe our (ultimately subjective) observation. So why
stop there? The genetic dimension has established a new
hierarchical level in evolutionary systems which allows a
greater level of control of the purely self-organizing bio-
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chemical dynamics. Failing to recognize this emergent

.symbolic level, would prevent the distinction between self-

organizing systems such as autocatalytic networks
[Kauffman, 1993], from living systems whose replication
by genetic memory is much more efficient than template-
based replication. '

In evolutionary systems this is at the core of the feud
between those who claim that natural selection is the sole
explanation for evolution and those who stress that other
aspects of evolutionary systems, such as developmental
constraints, also play an important role. It is no wonder
then that the first group stresses the symbolic description,
the gene, as the sole driving force of evolution [Dawkins
1976, Dennett, 1995], while the second group likes to
think of the propensities of matter or historical
contingencies as being of at least equal importance in
evolution [Gould, 1989, Salthe 1985, 1993, Kauffman
1993]. In pragmatic terms, however, most evolutionary
theorists, one way or another, acknowledge that all these
factors play important roles [Eldridge, 1995].

Since all of these aspects of evolutionary systems co-exist,
we need inclusive theories and models that incorporate
both symbolic and dynamic characteristics [Pattee, 1995b;
Rocha, 1996, 1997; Mitchell, 1998]. Classifying systems
exist that are purely dynamic; they observe the selected
self-organization with distributed memory discussed in 1.3
that is capable of semantic emergence in a selective
environment (pragmatics). But the introduction of the
syntactic level as prescribed by Von Neumann defines a
richer (open-ended) classifying function available to
systems capable of a full situated semiosis (semantics,
pragmatics, and syntax) with their environments.

2. SYNTACTIC AUTONOMY

2.1 Semiotic Codes

Semiotics concerns the study of signs/symbols in three
basic dimensions: syntactics (rule-based operations
between signs within the sign system), semantics
(relationship between signs and the world external to the
sign system), and pragmatics (evaluation of the sign
system regarding the goals of their users) [Morris, 1946].
When Von Neumann’s universal constructor interprets a
description to construct some automaton, a semiotic code
[Umerez, 1995} is utilized to map instructions into actions
to be performed in some environment to construct the
described automaton. When the copier copies a
description, only its syntactic aspects are replicated.
Semiotics leads us to think of symbols not simply as
abstract memory tokens, but as material tools [Prem,




1998] for a situated open-ended semiosis of classifying
systems with their environments, which requires the
definition of components that interact and self-organize
with the laws of their environment’. Thus, a situated
semiotic code presupposes a set of components (e.g. parts
and processes) for which the instructions are said to “stand
for”. Descriptions are not universal as they refer to some
building blocks which cannot be changed without altering
the significance of the descriptions.

We can see that a self-reproducing organism following this
scheme is an entanglement of symbolic controls and
component constraints which is closed on its semantics
only through its repercussions in an environment. Pattee
[1982, 1995a] calls such a principle of self-organization
semantic closure. Perhaps a better description would be to
refer to it as semiotic closure since this principle explicitly
recognizes the three semiotic dimensions of semantics,
pragmatics and syntax [Rocha, 1998c].

The implications of the component (enabling and
restraining) constraints for systems observing a semiotic
_closure in situation with their environments have been
investigated conceptually and experimentally in
Rocha[1996, 1997, 1998a, 1998c]. The study of genetic
systems with richer syntactics, in particular the modeling
of the RNA editing system, have also been explored in
Rocha [1995, 1997, 1998c]. Here I examine the
emergence of syntax in systems in selected self-
organization with their environments, particularly, with
respect to the notion of antonomy.

2.2 Reference and Syntactic Autonomy

A classifying self-organizing system is autonomous if all
processes that establish and sustain its dynamics are
internally produced and re-produced over and over again
[Maturana and Varela, 1987]. These are the systems
capable of self-reference (including hurricanes) [Salthe,
1998]. But how autonomous are the systems that follow
some form of situated semiosis with their environments?
Given the arguments for Selected Self-Organization, we
know that it is the environment which ultimately selects
the dynamic configurations of classifying systems. The
structural coupling between system and environment
{Rocha and Joslyn, 1998] on which situated semiosis is

2In the natural world, self-organization results from
physical law while in artificial environments it results from
some set of pre-defined state-determined rules acting as laws
of an artificial environment. See Rocha and Joslyn, 1998 for
an extended discussion of laws and rules in artificial
environments,

based requires this structural openness [Maturana, 1987;
Pask, 1992], other-reference [Salthe, 1998; Hoffmeyer,
1998]], or external scaffolding [Clark, 1997]. Semantics is
therefore defined only by the situated, pragmatic,
conjugation of system and environment, which indicates
that even though the organization of the dynamic
components of self-organizing classifying systems is
autonomous, these systems are not semantically
autonomous. But is there any kind of semiotic autonomy
in evolutionary systems?

Biological systems have developed a system of structural
perturbation of their self-organization clearly based on a
(genetic) code that essentially implements Von Neumann’s
scheme of inert symbolic descriptions (section 1.4). It is
undeniable that this syntactic code is completely specified
within organisms since its reading and constructing
machinery is found within each cell: an autonomous code
defined by specific syntactic rules. Even though
environmental conditions clearly affect what is decoded in
different circumstances [Rocha, 1995, 1998c¢], the code
itself remains fixed. The ability to generate such a
powerful system of assembly of self-organizing encoded
components for the construction of evolving classifying
systems [Rocha, 1997, 1998c], is the one defining
characteristic of all known life forms, which somehow
produced an autonomous syntax for a more efficient
situated semiosis with the environment.

A consequence of this argument is that the concept of
autonomy alone is not enough to characterize living
organisms, unless by that we mean, in addition to material
autonomy (organizational closure), also syntactic
autonomy. In other words, situated semiosis is based on
organizational closure (self-organization, self-reference,
etc), semantic openness by virtue of a situated coupling to
an environment (other-reference), and syntactic autonomy
(syntactic stability or inert codes). Hoffmeyer [1998]
pursues a similar argument to insist that it is the stable
integration of self-reference and other-reference
(established by the syntactic autonomy of the Von
Neumann code, 1 argue here) which establishes the
minimum requirement for an umwelt [Uexkiill 1982
(194001, or evolving personal categorizations of an
environment, and thereby sets living systems apart from
all their non-living predecessors.

Regarding cognitive systems, it is possible that human
language established a system of structural perturbation of
self-organizing processes similar to the genetic scheme
[Henry and Rocha, 1996; Rocha, 1997, 1998b], and that
somehow, the brain has evolved another type of coded
semiotic closure with its environment. Language may be




a syntactic tool that allows cognition the ability of open-
ended conceptual variety. For this reason, the study of the
emergence of syntactic autonomies is relevant for both
evolutionary systems research and cognitive science. Next
a model is discussed which may give some insights into
the problem of the origin of syntactic autonomy.

3. SYNTACTIC AUTONOMY IN
COMPUTATIONAL ENVIRONMENTS

3.1 Emergent Particle Computation
A very interesting problem that genetic algorithms (GA’s)
have been used successfully in, is the evolution of Cellular
Automata (CA) rules for the solution of non-trivial tasks®.
. Certain CA rules are capable of solving global tasks
assigned to their lattices, even though their transition rules
are local (each cell computes its next value given.the
current value of the cells in its immediate neighborhood).
One such tasks is usually referred to as the density task:
given arandomly initialized lattice configuration (IC), the
CA should converge to a global state where all its cells are
turned “ON” if there is a majority of “ON” cells in the IC,
and to an all “OFE” state otherwise. This rule is not trivial
because the local rules of the component cells do not have
access to the entire lattice, but can only act on the state of
their immediate neighborhood.

Crutchfield and Mitchell [1995] used a GA to evolve the
CA rules for such a task. The GA found a number of fairly
interesting rules, but a few of the runs evolved very
interesting rules (with high fitness) which create an
intricate system of lattice communication. Basically,
groups of adjacent cells propagate certain patterns across
the lattice, which as they interact with other such patterns
“decide” on the appropriate solutions for the lattice as a
whole. An intricate system of signaling patterns and its
communication syntax has been identified, and can be said
to establish the emergence of embedded-particle
computation in evolved CA’s [Ibid; Hordijk, Crutchfield,
Mitchell, 1996]. The emergent signals (or embedded
particles) refer to the borders of the different patterns that
develop in the space-time diagrams. If the areas inside
these patterns are removed, their boundaries can be
identified as a system of signals with a definite syntax, or
emergent logic grammar. This syntax is based on a small
number of signals, o, B, 6, ¥, 1, and p, and a small

3 This work has been mainly pursued by the
Adaptive Computation Group of the Santa Fe Institute. I am
indebted to Melanie Mitchell and Wim Hordijk for many
illuminating discussions.
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number or rules such as: & + 6 - y, meaning that when
signals & and § collide, the p signal results. Please refer to
the references above for more details.

These experiments are very interesting because from the
interaction of self-organization (CA’s) and selection (GA)
a very simple semantics emerges from the selective
pragmatics of the GA: the CA rule either classifies its
initial lattice configurations correctly or incorrectly. Now,
most CA rules evolved with this set up show very simple
space-time patterns: they try to solve the problem by
block-expansion, that is, when large neighborhoods of
either “ON” or “OFF” states exist in the initial
configuration, they are expanded. These block expansion
rules solved the task in typical dynamical fashion: by
taking into account only local information.

Instead, the system of particle computation uses signals
that are capable of integrating distant global information
to solve the task. These CA rules rely on a system of
personal (to the CA rule) signals used to communicate
across the lattice and compute the answer to the task: an
autonomous sign system that grants great selective
advantage to the rules capable of developing it. The
particle computation system truly introduces a
qualitatively different way of solving the task: through the
emergence of autonomous syntax, which allows certain
rules to gain access to global lattice information.
Obviously, such a system does not possess the rich self-
reproduction scheme of Von Neumann, but it does show
how the emergence of autonomous syntax grants simple
dynamical systems the ability to move from trivial to non-
trivial classification of their interaction with an
environment.

3.2 Increasing Arbitrariness: Logical Tasks

The signals of the emergent particle computation system
in CA’s, even though being a small set of discrete entities,
are not full-fledged symbols in the senses described in
section 1, because they do not possess the degree of
arbitrariness required of pure symbols: the syntax is
specific to the task solved. However, very similar signals
and grammars can be evolved to solve different tasks, e.g.
the synchronization task [ Hordijk, Crutchfield, and
Mitchell, 1996]. In other words, this class of CA’s can
develop similar signals to solve different problems.

To increase the arbitrariness of the emergent syntax of
these rules, we can evolve rules that are good at solving
several tasks. I have conducted some experiments to
evolve CA rules with radius 3 which can solve both the
density task and some related logical tasks. To implement




logical tasks, we divide the CA lattice in two halves (the
center cell is not used). The first half is interpreted as the
first bit, and the second half as the second bit. A bit is
“ON” if there is a majority of “ON” cells in its half, and
“OFF”otherwise. Notice that since the boundary
conditions of the lattice are periodic, this lattice has two
boundaries between the two halves or bits. The cells on the
neighborhood of these boundaries compute their values
from cells in both halves, which in most cases makes the
computation on these boundaries unreliable. However,
since we are looking for global communication across the
lattice, we expect the local errors at the boundaries not to
be too relevant for the global computation, especially as
lattices grow in size.

We can now define such logical tasks as the AND and the
OR task, according to the values of the bits. For the AND
(OR) task, for all values of the bits the lattice should
converge to an all “OFF” (“ON") state, except when both
bits are “ON” (“OFF”). These tasks are both related to the
density task because when the density of both halves is
below (over) 0.5, both bits are “OFF” (“ON”), leading to
a desired final lattice with all cells “OFF” (“ON”). They
differ for the cases when the two halves of the lattice have
opposing densities. In other words, these tasks should
perform the density task in each half, and then integrate
the results, with the AND (OR) task biased by “OFF”
(“ON™) information on either half.

Several rules were evolved with a GA whose initial
population was composed of some of the best rules
evolved so far for the density task, and whose fitness
functions was derived from presenting each rule with 100
different initial lattices, 50 to be analyzed by the density
task, and the other 50 by either the AND or the OR task.
The 50 rules to be presented to the density task have their
density of “ON’s” uniformly distributed over the unit
interval (just as the experiments described in 3.1). The 50
rules presented to the AND (OR) task are biased to a
uniform distribution of lattices leading to at least one bit
“OFF” (“ON”) 50% of the time, and both bits “ON”
(“OFF) the other 50%. If we were to use an unbiased
generation of lattices, only 25% of the time would the case
of both bits “ON”’ (“OFF”) be generated, making rules that
always tend to “OFF” (“ON”) always too favorable.

From these experiments, several rules were evolved that
can solve both the density task and one of the logical tasks
very well. Also, as expected, and unlike the density task,
the performance of the logical tasks actually increases with
the lattice size as the boundary errors described earlier
loose relevance. Details of these experiments will be
shown at this conference.

The relevance of these experiments is that they show that
there is a family of particle computation rules which with
a few mutations can develop a system of particle
computation that can solve two different, yet related, tasks.
That is, the particle computation systems provides a self-
organizing system with the ability to adapt to a new
environment that requires the solution of two similar tasks.
In other words, it has the ability to evolve into a system
that with the same syntax can effectively solve a related
class of problems and not just one single task. In this case
the class of tasks includes the density task and some
logical task that is coherent with the density task. The
ability to solve more than one task increases the
arbitrariness of the emergent syntax of these rules, as the
same syntactic rules of particle computation are used to
compute different tasks.

4. EMERGENCE OF ARTIFICIAL SYMBOLS

These particle-computation CA rules possess the
intertwined semantics and pragmatics of selected self-
organization (CA rules evolved with a GA), plus a
primordial autonomous syntax (the emergent grammar of
the particles) in an artificial environment. In this sense
they are a case of a purely computational situated semiosis
as described in section 2, which represents a truly exciting
new development in evolutionary systems research. These
experiments provide an abstract model of how signs can
emerge from purely dynamical interactions evolved under
an artificial situated semiosis. These experiments seem to
indicate that it is possible to evolve symbols from artificial
matter, in other words, that it is possible to study syntactic
autonomy, so important to distinguish living from non-
living systems as discussed in section 2, in computational
environments.
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