ard8-293 | =g 90509~

Approved for public re/ease
distribution is unlimited

Title: AMR++: Object-Oriented Design for Adaptuve
Mesh Refinement '

Authors): | Dan Quinlan _k RECE‘V E b

Submitted to: HPC ‘08 ,
™Ryl 5-9, 1998
Boston, Massachusetts

MASTER

DISTABUTION OF THIS DOCUMENT 1S UNLIMITED Qﬁ

Los Alamos

National Laboratory

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the
U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S.
Government retains a nonexclusive, royalty-free ficense to publish or reproduce the published form of this contribution, or to allow
others to do so, for U.S. Government purposes. Los Alamos Nationa! Laboratory requests that the publisher identify this article
as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports
academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory doas not endorse the viewpaint

of a publication or guarantee its technical cofrectness.

Form 836 (10/96)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disciosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available orlgmal
document.

AMR~++: OBJECT-ORIENTED DESIGN FOR
ADAPTIVE MESH REFINEMENT

Dan Quinlan
Scientific Computing Group CIC-19
Computing, Information, and Communications Division
Los Alamos NM, USA, 87545
dquinlan@lanl.gov

Keywords: Adaptive Mesh Refinement, Object-Oriented Design.

ABSTRACT

The development of object-oriented libraries for sci-.

entific computing is complicated by the wide range of
applications that are targeted and the complexity and
wide range of numerical methods that are used. A
. problem is to design a library that can be customized
to handle a wide range of target applications and-in-
creasingly complex numerical methods while main-
- taining a sufficiently useful library for simple prob-
lems. These problems have been classically at odds
with one another and have compromised the design
of many object-oriented library solutions. In this pa-
per we detail the mechanisms used within AMR++,
and object-oriented library for Adaptive Mesh Refine-
ment (AMR), to provide the level of extensibility that
is required to make AMR++ easily customizable for
the more obscure applications while remaining small

and simple for less complex applications. The goal .

has been to have a complexity that matches the com-
plexity of the target application. These mechanisms
are general and extend to other libraries as well.

INTRODUCTION

Structured Adaptlve Mesh Refinement (SAMR) is a
_numerical technique to tailor the resolution of -the
computational grid by locally placing structured grid
refinement: where appropriate to obtain greater ac-
curacy where required within a physical simulation.
The use of structured grids to form the adaptive pro-
cess greatly simplifies the process and permits the use
of efficient and general structured grid techniques and
their combination into efficient AMR solvers. The
use of structured grids permits the use of array ab-

‘lelism. AMR++ !

‘stractions for the simplified expression of numerical

algorithms and the encapsulation of parallelism using’
parallel array abstractions. The yse of array abstrac-
tions does not imply only FORTRAN 90, but implies
any means of abstracting the array operations on ar-
ray data. In the case of AMR++ we use internal
parts of the OVERTURE Framework which provides
array objects through the use of the A+4/P++ se-
rial/parallel array class library. The point of this ab-
straction is that OVERTURE builds more powerful
abstractions from the A++/P++ array objects (grid
functions) that include the details of handling com-
plex geometry permitting application solvers to then
be independent of geometry. Such abstractions are
algorithmicly more powerful than the array objects
represented by the array class library. AMRA++ uses
these more sophisticated grid function abstractions.

‘within OVERTURE which in current. work addresses

the requirements and complexities of industrial level

-applications such as the modeling of mternal combus-

tion engines.

The uses of AMR are numerous within physical -
solutions and arise naturally as a result of the increas-
ingly disparate length scales associated with larger
more sophisticated computer simulations. The prob-
lems with AMR within physical simulations are nu-
merous _and result from a -combination of the com-.
plexity of the numerics and the complexity of the

software required to support it. -In the parallel en-

vironment the complexity of AMR. is greatly :exac-
erbated by the added degrees and types of paral-
is a C++ object-oriented library
that simplifies the development of serial and parallel -
adaptive mesh refinement. AMR++ forms a part of

Unformation is available from the AMR~++ Home Page: http://wWw.c3.1anl.gov/~dquinlan/A‘MR++.htrhl.

the OVERTURE Framework, a much larger hierar-
chy of class libraries specific to the serial and par-

allel solution of numerical partial differential Equa--

tions (PDEs). OVERTURE ? handles complex ge-
ometries using either single or multiple (overlapping)
grid mechanisms. From these mechanisms we build
a set of higher level abstractions in AMR~++- specific
to simplifying the development of AMR applications.
AMR++ adds the ability to handle adaptive mesh
refinement within OVERTURE applications. OVER-
‘TURE is based upon the A4++/P++ array class li-
brary, where it obtains its architecture independence
on both serial and parallel architectures. A++/P++
% is a C++ array class library which provides the ar-

chitecture independence through FORTRAN 90 like

syntax and encapsulates the data parallelism of array
statements. Other mechanisms within OVERTURE
use the HPC++ thread library to permit access to
task parallelism. Using these tools the user may de-
velop serial code using-the OVERTURE Framework

and recompile that code to run it on a wide number

of parallel architectures.

AMR++ was developed to simplify the develop-
ment of Adaptive Mesh Refinement applications. It
is designed to leverage an éxisting serial application
as completely as possible and permit its reuse within
the context of an AMR application with minimal ex-
tra work.

OBJECT-ORIENTED DESIGN

An example of the adaptive mesh refinement grid is
presented in figure 1. This sort of adaptive grid is
referred to as a structured adaptive grid due to its
construction from. structured grid pieces. An alter-
native is the use of cell by cell refinement which per-
mits the refinement of only regions where refinement

is desired but has higher overhead and can reduce to -

an unstructured organization of the underlying data
which complicates its use in the parallel environment.

The AMR-++ design is organized into objects that
represent .the adaptive grid structure and that pro-
vide specific functionality with those representing the
adaptive grid. The organization of the adaptive grid
is split into three parts, each of which is optionally
represented by a derived object build by the user.
The adaptive grid is divided as represented in figures
2, 3, and 4.

o grid patch: which defines the single grids used
in the Structured Adaptive Mesh Refinement
(SAMR) structure

¢ refinement level: which defines the collection of
grid patches that represent the same resolution

o adaptive grid: which defined the collection of
refinement levels

Within each abstraction (i.e. grid patch, refine-
ment level, and adaptive grid) the user can derive
objects and use them to permit the customization

- of the: AMR++ library for general application use.

The derivation from the refinement level and adaptive
grid levels of abstraction are optional and thus far in
the development of AMR applications not used. The
derivation from the grid patch level of abstraction is
required and is the principle mechanism by which the
solution process and the equations being solved are
specified. Numerous other opportunities exist within
the design of AMR++ to customize details of the be-
havior of the library’s functionality. The extensibility
of the AMR++ library is an explicit consideration in
its design. ' o

EXTENSIBILITY OF OBJECT-

‘ORIENTED LIBRARIES

AMR++ has an extensible design, meaning that it is
readily. customized to the specifics of different types
of adaptive mesh refinement applications. The point
of the library is to abstract as much as possible of
the reusable parts of adaptive mesh refinement and
thus simplify the development of AMR applications.
However, the specialized details and differences be-
tween both applications and numerical methods com-
plicates this task. Addressing the increasingly more
complex applications invariablely implies ignoring in-
creasing amounts of the AMR library, unless it can
be made readily customizable. There are two prin-
ciple mechanisms that AMR++ uses to provide this_
extensibility, virtual functions and template special-
ization, both are features of C++ and its template
mechanism. We have designed AMR++ to permit
the user to readily use these features to customized
the behavior of the AMR++ library.

C++ DERIVATION AND VIRTUAL
MEMBER FUNCTIONS

Derivation in C++ object-oriented design refers to
the use of a base class to define an interface and the
use-of the base class within the construction of more
specific classes. Member functions of the base class

2Information is available from the OVERTURE Home Page: http://wWw.c3.1an1.gov/?\zhenshaw/Overture/Overture.html.
3Information is available from the A++/P++ Home Page: http://www.c3.lanl.gov/~dquinlan/A++P++.html.

are defined to be virtualif the derived class is intended
to be able to redefine those member functions. That
these functions are virtual also means that member
function calls to the base class within the AMR++
library instead call the derived class member function
' if it is defined. Thus the use of derivation combined
with virtual functions provides a-mechanism for the
user to derive from AMR++ classes and customize its
execution behavior, however it requires that the user
derive a new class from an AMR~++ class. However,
forcing the user to derive new classes is often difficult
as a design style for a library using multiple abstrac-
tions since it does not provide sufficient guidance to
avoid mixing abstractions. Additionally, it may not
often.be required to derive new classes to customize
the execution behavior. A much more comprehensive
introduction to C++ derivation is available from any
introductory C++ book. A simpler mechanism is the
use of template specialization.
Within the design of AMR++ the use of deriva-

‘tion is reserved for the use within the application

where significant portions of the application must be
defined (in the case of AMR++ this is in the grid
patch abstraction level, where the equations to be
solved and the solution process is a significant part
of defining the application). As much as possible we
limit the places where derivation is required since this
otherwise burdens the user with a much more com-
plex interface and does so within the initial learning
curve of developing an initial AMR++ application (in
our experience, the most troublesome time to force
the user to deal with such complexity).

As an example, in an AMR++ application we de-

fine the member function: User_Solver< T>::error().

-In this case the User_Solver is derived from a base
class provide by AMR++. Note that different appli-
cations would have different definitions of the error()
function on a grid patch.

// This function overloads the base class
void User_Solver<T>::error () ’

" // Array object encapsulate the Ioops over the ‘elements
Error = abs(Solution - Exact_Solutiomn);
}
Here the base classes error() member function is
virtual and by using derivation AMR++ can refer
to the User_Solver<T>::error() by only referencing

the base class member function. This permits the .

user in the derived class to customize the behavior of
the User_Solver< T> class (i.e. the user’s representa-
tion of the solver on a grid patch) beyond that which
the AMR++ library would provide through its base
“class. This is just one mechanism for the customiza-
tion of the AMR++ behavior; but it required deriva-
tion. Since the equations and the numerical method

to be used must be specified anyway, derivation of
this single class is an acceptable method of specify-
ing these detail (i.e. a large granularity functionality
is being defined). However, we seek less burdensome
methods for tailoring the behavior of other parts of
the AMR process. '

C++ TEMPLATE SPECIALIZATION
OF MEMBER FUNCTIONS

Template specialization is a mechanism specific to
the C++ templating mechanism. It permits ob-
jects with a template interface to have their member
functions defined for the specialized use with par-
ticular template parameter.. Thus we can define a
template based class in AMR++ which defines a de-
fault behavior, and permit the user to optionally re-
define the same member function for the case of a
specific template parameter. This mechanism of re-
defining member functions of AMR++ classes is sim-
ilar to the virtual function mechanism, however it
avoids the requirement of the user building any ad-
ditional classes. Thus the use of template specializa-
tion within ‘AMR++ is specific to individual mem-
ber functions of specific library objects, it therefore
avoids the mixing of abstractions.

As an example, in AMR++ we define the mem-
ber functions: AMR_RefinementSolver< T>::error()
and we demonstrate -how the wuser can use

the template specialization mechanism to
_rewrite. this function. As an example, in
AMR++ we define the membér functions:

AMR_RefinementSolver< Users_Solver> ::error() us-
ing the template specialization mechanism. Indepen-
dent of the definition in AMR++, the user can use
template specialization to customize the implemen-.
tation of the member functions of AMR++ object
directly (without derivation of new objects which
would complicate the interface). \

double AHR-RefinementS01v€r<Users;Solver>::error()
{ .
double Total Error = 0.0;)
// STL lists are used throughout AMR++ and so the
// following loop and iterator syntax is due to STL.

for (list<Users_Solver*>::iterator n=GridSolverList.begin{();

n != GridSolverList.end(); n++)"
{ .
Total_Error += (*n)->error();
}

return Total_Error;

}

In the AMR_RefinementSolver< Users_Solver> ::error().

example we have specialized its execution indepen-
dent of the definition of the function’s templated
implementation within AMR++. This demonstrates

the mechanism by which an application can cus-
tomize the definition of AMR+4 over that of its
default behavior. Note that this mechanism is sim-
lar to the virtual function mechanism in terms of
what it provides the user, however it does not re-
quire the derivation of a class from the AMR++
AMR _RefinementSolver object. Thus by combin-
ing the use of virtual functions, where we want to
provide -an interface and intend to use derivation,
with template specialization, where we want to pro-
vide customization without forcing derivation; we
can provide a more powerful mechanism than the
exclusive use of either mechanism. In particular,
the combination of these mechanisms is superior to
that of using only derivation as'is done within many
object-oriented libraries.

CONTRASTING THE TWO MECH-
ANISMS

The most recognizable difference between the two
mechanisms is that the use of virtual functions to
modify the behavior of AMR++ requires the user
to derive an object from an AMR++ object, while
the member function template specialization mecha-
nism avoids the introduction of any new classes. The
avoidance of introducing additional classes as part
of the interface avoids the confusion associated with
mixing or complicating the abstractions, this simpli-
fies the user interface for AMR++. This further sim-
plifies the user’s ability to get simple AMR examples
implemented quickly and separates the work required
to learn how to use AMR++ along the learning curve.
We feel this simplifies the user’s initial and later use

of AMRA++.

CONCLUSION

The design of AMR++, as an example, and more
general scientific libraries in particular requires sim-
ple mechanisms to permit extensibility of the library
for widely different sorts of applications and numer-
ical methods. This requirement forces the consider
of mechanisms to that permit the object-oriented li-
braries to be customized for a wide number of appli-
cations and numerical methods that the library de-
veloper can not be expected to predict in advance.
This paper has demonstrated two different mecha-
nisms that are of use in the development of extensi-

ble libraries and demonstrated there use within the o

AMR++ library. Together these mechanism permit
the execution behavior of the object-oriented library
to be tailored to individual applications.

REFERENCES

Brown, D., et al. 1097. OVERTURE: An object-

‘oriented software system for solving partial differ-

ential equations in serial and parallel environments.
Proceedings of the STAM Parallel Conference {(Min-
neapolis, MN, March 1997).

Quinlan and Parsons. 1994. A++/P++ Array
Classes for Architecture Independent Finite Differ-
ence Computations. Proceedings of the Second An-
nual Object-Oriented Numerics Conference (Sun-
river,. OR, April 1994).

- Adaptive Grid Examplef

1T

i

Figure 1: Example Adaptive Grid

Structure of AMR++ Grid (Grid Patch)

User’s Single Grid Solver

o

: AMR_Solver<T>"
L ~AMR Services:
s =AMR Interface

Connection to list in
-AMR_RefinementLevel<T>

Figure 2: Grid Patch Solver

Structure of AMR++ Refinement Level Object

o

User’s . User’s
Solver | Solver

object / object

Figure 3: Refinement Level

Structure,_ g‘)f AMR++

AMR_AdaptiveGrid<T>

Figﬁre 4: Adaptive Grid

