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Abstract. An experimental free-space quantum key distribution (QKD)
system has been tested over an outdoor optical path of ~ 1 km under
nighttime conditions at Los Alamos National Laboratory. This system
employs the Bennett 92 protocol; here we give a brief overview of this
protocol, and describe our experimental implementation of it. An anal-
ysis of the system efficiency is presented, as well as a description of our
error detection protocol, which employs a two-dimensional parity check
scheme. Finally, the susceptibility of this system to eavesdropping by
various techniques is determined, and the effectiveness of privacy ampli-
fication procedures is discussed. Our conclusions are that free-space QKD
is both effective and secure; possible applications include the rekeying of
satellites in low earth orbit.

1 Introduction

Quantum cryptography was introduced in the mid-1980s [1] as a new method for
generating the shared, secret random number sequences, known as cryptographic
keys, that are used in crypto-systems to provide communications security. The
appeal of quantum cryptography is that its security is based on laws of Nature,
in contrast to existing methods of key distribution that derive their security from
the perceived intractability of certain problems in number theory [2], or from
the physical security of the distribution process.

Since the introduction of quantum cryptography, several groups have demon-
strated quantum key distribution (QKD) over multi-kilometer distances of opti-
cal fiber [3]-[10], and recent advances have led to demonstrations of QKD over
free-space indoor optical paths of 205 m [11], and outdoor optical paths of 75 m
[12]. These demonstrations increase the utility of QKD by extending it to line-
of-site laser communications systems. Indeed there are certain key distribution
problems in this category for which free-space QKD would have definite prac-
tical advantages (for example, it is impractical to send a courier to a satellite).
We are developing QKD for use over line-of-sight paths, and here we report our
results of free-space quantum key generation over outdoor optical paths of up to
950 m under nighttime conditions.




2 Quantum-Key Distribution

The faithful transmission of polarized single photons through a turbulent me-
dium (the atmosphere), receiving them with non-negligible probability and de-
tecting them against a high ambient background, appear to be serious obstacles
to free-space QKD. However, thése obstacles can be overcome by exploiting sub-
nanosecond timing techniques, narrow wavelength filters [13, 14] spatial filtering
[11], and adaptive optics [15]. To define the problem, we will require the gener-
ation of ~ 1,000 secret key bits between a ground station and a low-earth orbit
satellite (~ 300 ki altitude) in one overhead pass (duration ~ 8 minutes). In
the following analysis we will assume that the QKD transmitter (Alice) is at the
ground station and the receiver is on the satellite (Bob).

2.1 Free-Space Single Photon Detection and Transmission

The operational wavelength for free-space QKD should be chosen for both good
atmospheric transmission properties and high detection efficiency. We have cho-
sen to work at 772 nm where the atmospheric transmission from surface to space
can be as high as 80% and single-photon detectors with efficiencies as high as
65% are commercially available (silicon avalanche photodiodes: APDs). Further-
more, at these optical wavelengths depolarizing effects of atmospheric turbulence
are negligible as is the amount of Faraday rotation experienced on a surface to
satellite path.

In order to detect a single QKD photon it is necessary to know when it will
arrive. However, there will be variations in transmission time through the at-
mosphere owing to turbulence induced variations in refractive index, with time
scales of the order of 0.01 — 0.1 s. Therefore, the photon arrival time can be com-
municated to the receiver by using a bright (multi-photon) precursor reference
pulse, transmitted 100 ns (say) ahead of each QKD photon. The bright pulse
and the “single photon” (produced by highly attenuating the pulsed output of
a semiconductor laser) would each be of a ~ 100-ps duration. (Note: the tempo-
ral length of the bright pulse is not as restricted as the temporal length of the
dim-pulse; in fact, the bright pulse only needs to be short enough to allow the
detection of the bright- and dim-pulses within the time allowed by the trans-
mission rate. We also note that the atmosphere is only weakly dispersive.) The
received bright pulse would then allow the receiver to set a 1-ns time window
(say) within which to look for the QKD photon. This short time window would
reduce background photon counts dramatically, and these can be reduced fur-
ther using narrow filters at the wavelength of the QKD photons as well as spatial
filtering. For example, 1-nm interference filters can be used and even narrower
atomic vapor filters (~ 1072 nm) are possible.

We now consider the rate at which QKD photons would be received at a
satellite from a ground station transmitter. We will assume 20-cm diameter
optics at both the transmitter and satellite receiver, leading to a ~ 1-m diameter
diffraction-limited spot size at the 300-km altitude satellite. However, there will
be beam-wander owing to turbulence which can be as much as ~ 10 times the




diffraction limit (i.e., 10 arc-seconds of wander) so that the photon collection
efficiency at the satellite is ~ 1074, Thus, with a laser pulse rate of 10 MHz,
one photon-per-pulse on average and an atmospheric transmission of ~ 80%,
photons would arrive at the detector at a rate of ~ 1 kHz. Then, with a 65%
detector efficiency and allowing for the 25% intrinsic efficiency of the quantum
cryptography protocol, a key generation rate of ~ 150 Hz is feasible. With a
beam tilt feedback system to keep the beam directed onto the satellite the key
rate could be increased by a factor of 100. We must also consider the error rate.

We first consider errors arising from background photons arriving at the
satellite. On a night time orbit with a full moon a typical radiance observed at
the satellite at the transmission wavelength would be ~ 1 mW m™2 str™! pym™!
or ~ 4 x 10'® photons s™! m~2 str~! ym~!. On a night with a new moon we take
the background to be ~ 10! photons s™* m~2 str~! um~!. We will assume that
the receiver “sees” a solid angle ~ five times the apparent size of the source (i.e.,
5 arc-seconds) and that there is a 1-nm bandwidth interference filter placed in
front of the detector, giving a background photon arrival rate of ~ 150 Hz (full
moon); and ~ 4 Hz {(new moon). With a 1-ns long time window on the detector,
the probability of a background photon detection would be ~ 107 (full moon);
and ~ 2.5x107° (new moon) per 1-ns window. The single photon detector would
only be triggered for precursor bright pulses that impinge on the satellite, giving
approximately 120 detector triggers per arriving QKD photon, or 800 detector
triggers per detected QKD photon. The bit error rate (BER) from background
photons would therefore be ~ 10™* (full moon); and ~ 2 x 107% (new moon).
Assuming a detector dark count rate of 50 Hz the BER will be dominated by
background photons during full moon periods, and by detector noise during a
new moon, with a BER ~ 5 x 1075,

On daytime orbits the background radiance would be very much larger, ~
10%2 photons s7* m=2 str~! um~!. Nevertheless, with an atomic vapor filter the
rate of arrival of background photons would only be ~ 40 kHz (assuming a 1073
nm filter width). The BER from this background would then be ~ 2%.

From this simple analysis we see that QKD between a ground station and
a low-earth orbit satellite should be possible on night time orbits and even in
full daylight. During the several minutes that a satellite would be in view of the
ground station there would be adequate time to generate tens of thousands of
raw key bits, from which a shorter error-free key stream of several thousand bits
would be produced after error correction and privacy amplification. A crypto-
graphically useful quantity of key material could therefore be generated for this
application.

2.2 The Bennett 92 Protocol

A QKD procedure starts with the sender, “Alice,” generating a secret random bi-
nary number sequence. For each bit in the sequence, Alice prepares and transmits
a single photon to the recipient, “Bob,” who measures each arriving photon and
attempts to identify the bit value Alice has transmitted. Alice’s photon state
preparations and Bob’s measurements are chosen from sets of non-orthogonal




Table 1. Observation Probabilities
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possibilities. For example, using the B92 protocol [16] Alice agrees with Bob
{through public discussion) that she will transmit a horizontal-polarized pho-
ton, |k}, for each “0” in her sequence, and a right-circular-polarized photon, |r),
for each “1” in her sequence. Bob agrees with Alice to randomly test the po-
larization of each arriving photon with vertical polarization, |v), to reveal “ls,”
or left-circular polarization, |£), to reveal “0s.” In this scheme, Bob will never
detect a photon for which he and Alice have used a preparation/measurement
pair that corresponds to different bit values, such as |h) and v}, which happens
for 50% of the bits in Alice’s sequence. However, for the other 50% of Alice’s bits
the preparation and measurement protocols use non-orthogonal states, such as
|h) and |€), resulting in a 50% detection probability for Bob, as shown in Table
1. Thus, by detecting single-photons Bob identifies a random 25% portion of the
bits in Alice’s random bit sequence, assuming a single-photon Fock state with
no bit loss in transmission or reception. This 25% efficiency factor is the price
that Alice and Bob must pay for secrecy.

Bob and Alice reconcile their common bits through a public discussion by
revealing the locations, but not the bit values, in the sequence where Bob de-
tected photons; Alice retains only those detected bits from her initial sequence.
The resulting detected bit sequences comprise the raw key material from which a
pure key is distilled using classical error detection techniques. The single-photon
nature of the transmissions ensures that an eavesdropper, “Eve,” can neither
“tap” the key transmissions with a beam splitter (BS), owing to the indivisibil-
ity of a photon [17], nor copy them, owing to the quantum “no-cloning” theorem
[18]. Furthermore, the non-orthogonal nature of the quantum states ensures that
if Eve makes her own measurements she will be detected through the elevated
error rate she causes by the irreversible “collapse of the wavefunction [19].”

2.3 Quantum-Key Transmitter: Alice

The QKD transmitter for our experiments (Fig. 1) consisted of a temperature-
controlled single-mode (SM) fiber-pigtailed diode laser, a fiber to free-space
launch system, a 2.5-nm bandwidth notch-filter, a variable optical attenuator, a
polarizing beam splitter (PBS), a low-voltage Pockels cell, and a 27x beam ex-
pander. The diode laser wavelength is temperature adjusted to 772 nm, and the
laser is configured to emit a short, coherent pulse of approximately 1-ns length,
containing ~ 10° photons.

A computer control system (Alice) starts the QKD protocol by pulsing the
diode laser at a rate previously agreed upon between herself and the receiving
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Fig. 1. QKD Transmitter.

computer control system (Bob). Each laser pulse is launched into free-space
through the notch filter, and the ~ 1 ns optical pulse is then attenuated to an
average of less than one photon per pulse, based on the assumption of a statistical
Poisson distribution [20]. (The attenuated pulse only approximates a “single-
photon” state; we tested the system with averages down to less than 0.1 photon
per pulse. This corresponds to a 2-photon probability of < 0.5% and implies
that less than 6 of every 100 detectable pulses will contain 2 or more photons,
i.e., for a Poisson distribution, P™, with an average photon number of i = 0.1,
for every 1000 pulses there will be ~ 905 empty pulses, ~ 90 pulses of 1 photon,
~ 5 pulses of 2 photons, and ~ 1 pulse of 3 or more photons.) The photons
that are transmitted by the optical attenuator are then polarized by the PBS,
which transmits an average of less than one |h) photon to the Pockels cell. The
Pockels cell is randomly switched to either pass the “single-photon” unchanged
as |h) (zero-wave retardation) or change it to |r) (quarter-wave retardation). The
random switch setting is determined by discriminating the voltage generated by
a white noise source.

2.4 Quantum-Key Receiver: Bob

The free-space QKD receiver (Fig. 2) comprised a 8.9 cm Cassegrain telescope
followed by the receiver optics and detectors. The receiver optics consisted of a
50/50 BS that randomly directs collected photons onto either of two distinct op-
tical paths. The lower optical path contained a polarization controller (a quarter-
wave retarder and a half-wave retarder), adjusted as an effective quarter-wave
retarder, followed by a PBS to test collected photons for |h) (at first glance this
may be confusing, but the effective quarter wave retarder converts |h) to |r) lead-
ing to a 50% probability an |h) photon will be detected); the upper optical path
contained a half-wave retarder! followed by a PBS to test for |r) (again, perhaps

! A polarization controller was not required along the upper path because the 50/50
BS transmitted the P polarization (the component of polarization parallel to the
plane of incidence) without introducing any phase shift, but the quarter- and half-
wave retarder pair was necessary along the lower path because the BS reflected the
P and S (component of polarization normal to the plane of incidence) polarizations
differently, introducing some ellipticity to the reflected wave.
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Fig. 2. QKD receiver.

confusing, but an |r) photon traveling this path is converted to |£), resulting in a
50% detection probability). The output port along each optical path was coupled
by multi-mode (MM) fiber to a single-photon counting module (SPCM: EG&G
part number: SPCM-AQ 142-FL). [Although the receiver did not include notch
filters, the spatial filtering provided by the MM fibers effectively reduced noise
caused by the ambient background during nighttime operations to negligible
levels (the background was ~ 1.1 kHz).]

Bit values are determined in the following fashion: a single |r) photon travel-
ing along the lower path encounters the polarization controller, and is converted
to |v) and reflected away from the SPCM by the PBS, but a single |2) photon
traveling the same path is converted to |r) and transmitted toward or reflected
away from the SPCM in this path with equal probability; in contrast, a single |}
photon traveling the upper path is converted to |v) and reflected away from the
SPCM in this path, but a single |r} photon traveling this path is converted to |£)
and transmitted toward or reflected away from the SPCM with equal probability.

In this detection scheme, there are a total of four possible optical paths
through the receiver, but only two of the paths, those which terminate upon
the detectors seen in Fig. 2, contain definite polarization information (definite
in the sense that Bob can know what polarization Alice has transmitted if one
of these detectors fire). However, while the remaining two paths contain inde-
terminate polarization information (indeterminate in the sense that Bob cannot
know with certainty whether Alice has transmitted |k}, or |r) if a detector placed
in either of these paths fires), but this information is important for the secure
implementation of B92, as will be seen later (see Sec 4.1).

3 Outdoor Free-Space Experiments

The transmitter and receiver optics were operated over 240-, 500-, and 950-m
outdoor optical paths, with the transmitter and receiver collocated in order to




simplify data acquisition. The various total optical path lengths were determined
by positioning a 25.4 cm diameter mirror at the transmission distance half way
point that reflected the transmitted beam back to the receiver. All measurements
were made at night.

3.1 System Efficiency

In determining Bob’s bit-rate, we consider that a BS partitions a weak photon
stream in a binomial fashion [20]. We further assume that the effective wave re-
tarders, combined with the PBSs, behave together as 50/50 BSs when analyzing
non-orthogonal polarizations, i.e, if Alice transmits |k) and Bob analyzes with
|€), or if Alice transmits |r) and Bob analyzes with |v). In addition, we treat
the detectors as BSs with transmission coefficient Tp = 0.65, or in other words,
that the detector, with efficiency np = 0.65 = Tp, also detects photon streams
in a binomial way. We also treat the transmission and reception efficiency n—
or power losses between the transmitter and receiver together with the losses
which occur coupling power into the receiver’s MM fibers—as random binomial
processes. From the general form of the binomial probability distribution, we
have
n
p% = Y G)TR, (1)
m=1
the probability that at least 1 photon out of n photons will be transmitted
through the optical elements along the optical path (this is important because
the detector responds to one or more photons). The net transmission probability
is T, the reflection probability is R, and T+ R = 1.
For calculation purposes, we use Eq. 2, which is equivalent to Eq. 1.

P21 =1-(1—-n-np-1/2-1/2)%, (2)

where T — 1 -np/4, n and np are as previously defined, and the factor of
1/4 = 1/2-1/2 gives the probability that a photon collected at the receiver,
of either |h), or |r), will be transmitted through the 50/50 BS followed by the
effective quarter-wave retarder and PBS (for an |k} photon), or the half-wave
retarder and PBS (for an |r) photon).

These binomial expanded products (Eq. 2) of 5, 1/4, and np, are convolved
with the Poisson probabilities, P" that there will be exactly n photons in a pulse
given that the average number of photons per pulse is 7i:

5 1" exp(—n)

The convolution is then summed to give the detection probability as a func-
tion of the Poisson average photon number. This probability multiplied by the
rate at which Alice transmits the coherent pulses, R4, gives the rate at which
Bob detects 0s and 1s, Rp:

Rp = Ray Pr[1—(1-nnp/9". (4)

n=1
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Table 2. A 200-Bit Sample of Alice’s (A) and Bob’s (B) Raw Key Material Generated
by QKD over 1 km.

0000010101
0000010101

1101101001
1101101001

0006000000
0000000000

0110010101
0110010101

0011100010
0011100010

0111011101
0111011101

1110111000
1110111000

0100100011
0100100011

1110000000
1110000000

0101101111
0101101111

1001001010
1001001010

0010000011
0010000011

0000010111
0000010111

0000111111
0000111111

1111000000
1101000000

1010101101
1010101101

FREREREEREEEEES

1111100111
1111100011

1110111101
1110111101

0100110100
0100110100

1011101111
1011101111

Our experimental result was Rg ~ 50 Hz when the transmitter was pulsed at a
rate of R4 = 20 kHz, with 7 = 0.1 photon per pulse for the 950-m path.

Finally, we note that in the limit that 5 - np — 1, and given a Fock state
of m = 1 photon, then the photon probability distribution P® = §,,_1, ie.,
dm—1 = 0V m # 1. In this limit—the limit of a perfect, lossless system—the sum
vanishes and we are left with exactly 1 term Rp = Ra/4, which shows that Bob
and Alice sacrifice 75% of their bits for privacy in agreement with Sec. 2.2.

3.2 Error Rate

The bit error rate (BER) for the 950 m path was ~ 1.5% when the system was
operating down to the < 0.1 photon per pulse level, where the BER is defined
as the ratio of the bits received in error to the total number of bits received. A
BER of ~ 0.7% was observed over the 240-m optical path and a BER of 1.5%
was also observed over the 500 m optical path. A sample of raw key material
from the 950-m experiment, with errors, is shown in Table 2.

Spatial filtering reduced the ambient background (~ 1.1 kHz), and the narrow
gated coincidence timing windows (~ 5 ns) reduced bit errors caused by the
ambient backgrourd to less than ~ 1 every 9 s. Further, because detector dark
noise (~ 80 Hz) contributed only about 1 dark count every 125 s, we believe that
the BER was caused by misalignment and imperfections in the optical elements
(wave-plates and Pockels cell).

3.3 Error Detection

Our experiments implement a two-dimensional (2D) parity check scheme that
allows the generation of error-free key material. Error detection is accomplished
by Bob and Alice organizing their reconciled bits (see Sec. 2.2) into 2D square
matrices in the order that they were detected. Once organized, the parities of
the rows and columns are determined and openly exchanged between Alice and
Bob, and any column or row in which Bob and Alice possess different parities




is discarded. To ensure privacy, Alice and Bob also discard the bits oriented
along the diagonals of their matrices. This guarantees the elimination of two
bits for each row and column of the matrix, even when no errors are detected,
eliminating knowledge revealed during the parity exchange.

Figure 3 illustrates the error detection protocol. In this example, Alice pos-
sesses the ‘good’ bits, and it is necessary for her and Bob to remove his ‘bad’
bits and distill error free key material. Bob possesses only two bad bits, but af-
ter openly communicating the column and row parities, they sacrifice good bits
along the diagonals, and the 2 rows and 2 columns where parity differences were
seen (parity differences are seen in columns 3 and 6 and rows 3 and 6). The net re-
sult, in this example, is 24 error-free bits: key := {100000110111110000010111}.
Thus, in addition to the minimum 75% key lost during the B92 protocol, Bob
and Alice have sacrificed another 62.5% of the detected bits. More complicated
error detection codes could be employed to detect these as well, such as cyclic re-
dundancy codes [22], but this was not done in our proof of principle experiment.

\ Alice’s Bits / ) ) N Eﬁ)b’s B_its _/
WOM% 0| [ fib ot
oN1 1ok 1 1 1 oR|1p 1fjojd 1
1 1|8j0 opffo 1] 0 1 sl olAlo 1
011}@011 1 1 ottt dolr 1
1o 100 0 0 110%100
Lrep i1 0 1 [alFo N1
0 1p01®\1g 1 1 ;/“pm\lq
ofoft 1jo|t 0 0 ofoft 1jolt
/ L — A\ Alice’s B;E)’S / L L \
Alice’s Column Parity llia(ﬁiy g:r\i’\;y Bob’s Column Parity

[o1000110] [o1100010

Fig. 3. Two-dimensional parity check scheme.

This is not the whole story, because the detection protocol does not detect
all errors. For example, 2 errors in a column, combined with another error in
a row containing one of the column errors (an ‘L’ shaped pattern), results in
a missed bit-error. If there were 4 errors in a ‘box’ pattern, none of the errors
would be detected, and so on.

We must emphasize, however, the strengths of the 2D routine as well. For
example, the minimum Hamming distance [21,22], d, for a 2D scheme is the
square of the minimum Hamming distance of the same detection scheme imple-
mented in one-dimension (1D). (The Hamming distance tells how many errors
can be detected, and/or corrected—one can detect d— 1 errors.) For our particu-
lar detection code, a parity check code, the minimum Hamming distance is 2 for
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the 1D case, but in 2D this becomes 4. Once again, this is not the whole story,
because there are situations in the 1D parity check scheme where more than one
error can be detected, if the word is long enough; parity in 1D can detect an odd
number of bit flips: 1, 3, 5, etc; however, even parity flips cannot be detected.?

To test our error detection scheme, we simulated random bit strings, with
errors, and found that key material with bit errors as low as a few tenths of a
percent had to be processed with the detection protocol at least twice to reduce
errors to negligible levels. For random bit strings with high BERs (BERs of more
than a couple of percent), small 2D matrices were needed on the first pass, but
with each subsequent detection pass a larger 2D matrix could be used. We found
that bit strings with BERs as high as 10% could be reduced to an estimated ~ 1
bit-error in a total of 10° bits after 4 passes, with ~ 14% of the initial key
remaining; the sizes of the matrices in the 4 passes were 6 by 6, 7 by 7, 13
by 13, and 13 by 13, respectively.® (We never operated our system with BERs
this high, but in our simulations we wanted to determine the detection scheme’s
capabilities. We also found that there exists an optimal matrix size which most
efficiently reduced errors while preserving a maximal amount of key material.
The sizes varied from a 6 by 6 to a 12 by 12, almost linearly, for BERs between
10% and 1%.)

4 Favesdropping: an Attack by Eve

Much has been said about the security of QKD against attack by an eavesdropper
[19]. There are essentially two types of attack to consider: opaque attacks and
translucent attacks.

4.1 Opaque Attack

In an opaque attack, Eve intercepts all collectable bits, or single photons, by
positioning herself between Alice and Bob. If Eve possesses a transmitter and
receiver identical in every way to Bob’s receiver and Alice’s transmitter, and
Bob, Alice and Eve are operating under the B92 protocol, then Eve can deter-
mine as much information about the key as could Bob. For example, if Alice’s
transmission basis is |h) and |r), and Eve’s measurement basis is |[¢) and |v),
then Eve can know Alice’s transmitted bits with a maximum efficiency of 25%.4
If Eve retransmits the bits she “knows,” then she will lower Bob’s expected bit-
rate, relative to Alice, by at least a factor of 4, but she will be forwarding bits
of the correct value to Bob.

? We only detect and eliminate errors, and do not attempt to correct them.

3 We used square matrices of an odd size (7 by 7 and 13 by 13) in our simulations,
but decided against using them in our experiments when we determined that the
elimination of the diagonals of the matrices of odd size was insufficient to ensure
security.

4 In a real system, Eve will experience reception losses associated with the collection,
fiber launch and detection of the single photons.
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If Eve can collect, measure, and quickly retransmit the bits she detects, she
can then listen to Alice’s and Bob’s open bit reconciliation protocol (see Sec.
2.2). And, while Bob never reveals his bits values, Eve still knows what bits
Alice and Bob commonly share because she knows when Alice began transmitted
random bits. At this point, if Alice and Bob know their system well, Eve has
been revealed by the additional factor of 4 attenuation, e.g., Eve has discarded
a minimum of 75% of her bits, but Alice has discarded a minimum of 93.75% of
her bits, i.e., Eve discards (1 — 1/4), but Alice discards {1 — 1/16).

Some could argue this additional attenuation to Bob’s and Alice’s common
key is protection enough against an opaque attack, but our implementation of
B92 adds another layer of protection if Eve attempts to bring Bob’s bit rate
to a rate indistinguishable from her own. Eve can do this by retransmitting a
bright classical pulse to Bob for each single photon she detects.> However, our
system protects against this attack when operated in either a 2, 3, or 4 SPCM
mode. In a 2 SPCM system, this type of attack would be revealed through
an increase in “dual-fire” errors. Dual-fire errors occur when both SPCMs fire
simultaneously. (In a perfect system there would be no dual-fire errors, regardless
of the average photon number per pulse. However, in an imperfect experimental
system dual-fire errors will occur, because there will be bit-errors associated with
the transmission and measurement protocols, i.e., impure bit preparation and
measurement associated with optical alighment of the transmission, receiving,
and analysis optics.)

If we consider only a perfect system, then no matter how many horizontally
polarized photons travel the |r) analysis path, none will reach the |r) analyzing
detector. However, if this analysis path includes an effective half-wave retarder
followed by a PBS, then the half wave-retarder will convert right-circular polar-
ized photons to left-circular polarized photons which will then be equally split
equally between the two output paths. If both paths are each followed by an
SPCM then both SPCMs will fire.

The component of a right-circular polarized pulse that travels the |h) analysis
path encounters the effective quarter-wave retarder followed by another PBS.
The quarter-wave retarder converts this right-circular polarized ‘bright’ pulse to
a vertical-polarized ‘bright’ pulse which is reflected along the path away from
the |h) analyzing detector. If this path contains an SPCM, then this SPCM will
fire together with the two SPCMs which terminate on the |r) analyzing path.
Thus, 3 of 4 detectors have fired alerting Bob and Alice that Eve is opaquely
attacking the key. A similar argument applies if Bob is using 3 detectors.

4.2 'Translucent Attack

Eve could also passively, or translucently, attack the quantum transmission with
a BS. In this scheme, Eve receives the binomial reflection probability of the BS
she uses to reflect photons toward her receiving optics, and Bob receives the

5 In BO2 it is possible to send bright classical pulses of the appropriate polarization to
ensure that every bit transmitted is detected at the receiver.
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binomial transmission probability of the BS Eve uses. In a translucent attack
it is necessary to consider Eve’s and Bob’s reception and detection efficiencies,
which are independent; Eq. 5 shows the amount of information on the key Eve
receives as a function of the reflection coefficient, R = 1 — T, of BS she uses
in her translucent attack, her receiver efficiency ng, and her detector efficiency,
ng. Equation 6 shows the amount of key Bob receives as a function of the
transmission coefficient, TZ, of the BS Eve uses in a translucent attack, and his
reception and detection efficiencies, ng and etag.

oo E E
— 7 nETID(l -7 ) n
Rg = Ry nE:Ian [1-(-=0—), (5)
and
ot B E
_ i anDT n
Rp = RAnE=1Pn [1—(1——*4 )1, (6)

The 1/4 reduction of these products is as previously described in Sec 3. Eve’s
bit rate is Rg, and Rg is Bob’s, and R4 is the rate Alice is transmitting.

The privacy P, or the percentage of information Eve possesses on Alice’s and
Bob’s common key, is determined as the ratio of the number of bits Eve and Bob
share (observe coincidently) to the number of bits Alice and Bob share. First of
all, if there is only 1 photon in a pulse, then either Eve or Bob will receive it,
but not both. Based on this premise, Eq. 7 shows the number of bits that Bob
and Eve will share if Eve attacks the key with a BS of transmission coefficient
Tg, and reflection coefficient Rp =1 —T§g.

o0 n—1 B FE
Nonw = Ray PRy GITERE™1- (1 -2y — -y (1)

n=2 m=1
Equation 8 shows Alice’s and Baob’s privacy, P.

o0 n--1
PR (R)T™RY™[1 — (1 — 12IRym[] — (1 - 2E0R yn=m]
=2 m=1

pPp=2=

= (®)
d_PolL - (1~ met)n)
n=1

Under this type of translucent attack, if Eve uses 50/50 BS, and if Alice
transmits coherent Poisson pulses with an average of 0.1 photon per pulse, and
if Bob’s and Eve’s system and detection efficiencies are equal, then for every 250
bits Eve and Bob acquire, Eve will commonly share ~ 3 of her 250 bits with
Bob’s 250 bits, or ~ 3/250 of Alice and Bob’s common key. In fact, because Eve’s
knowledge on Alice’s and Bob’s common key is coupled to hers and Bob’s system
efficiencies, this situation represents the maximum amount of information Eve
can obtain on Alice’s and Bob’s common key even if her system is perfectly
efficient and Bob’s is not. The inverse is also true, i.e., if Bob’s system is more
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efficient than Eve’s, then the amount of information Eve can determine on Alice’s
and Bob’s common key decreases. (Note: at this point, we have only been able
to show this empirically, but we have found no exceptions to these facts). Eve
could determine which bits she commonly shares with Bob when Alice and Bob
reconcile their common bits.

Finally we note that because Alice transmits coherent states, as opposed to
single photon Fock states, she and Bob also need to add a stage of “privacy am-
plification [23]” to reduce any partial knowledge gained by an eavesdropper to
less than 1-bit of information. We have not implemented such a privacy ampli-
fication protocol at this time, but our free-space QKD system does incorporate
“one time pad [24])” encryption—also known as the Vernam Cipher: the only
provably secure encryption method—and could also support any other symmet-
ric key system.

5 Conclusions

The results in this paper demonstrate free-space QKD through a turbulent
medium under nighttime conditions. We have described a system that provides
two parties a secure method to secretly communicate with a simple system based
on the B92 protocol. We presented two attacks on this protocol and demon-
strated the protocol’s built in protections against them. This system was op-
erated at a variety of average photon number per pulse down to an average
of < 0.1 photon per pulse. The results were achieved with low BERs, and the
240-m experiment demonstrated that BERs of 0.7% or less are achievable with
this system. This protocol could be implemented with classical signature au-
thentication [2] and privacy amplification procedures to ensure the security of
private information. From these results we believe that it will be feasible to use
free-space QKD for re-keying satellites in low-earth orbit from a ground station.
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