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ABSTRACT

Thé Christiansen and Fredenslund programs fbr

calculating vapor-liquid equilibria have been modified

by replacing the Soave-Redlich-Kwong equation of state
with the newly developed Peng-Robinson equation of state.
This modification was shown to be a decided improvement
for high pressure systems, especially in the critical and
upper retrograde regions. Thermodynamic consistency tests
were developed and used to evaluate and compare calculated
values from both the modified and unmodified prbgrams with

reported experimental data for several vapor-1liquid systems.
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A THERMODYNAMIC CONSISTENCY TEST.PROCEDURE
USING ORTHOGONAL COLLOCATION

AND THE PENG-ROBIN%QN EQUATION OF STATE
,'( /v‘i

BY
LUTHER L. HAMM

AND
V. VAN BRUNT

SCOPE

Christiansen and Fredenslund have extended the differential
consistency test developed by Van Ness et al. (1967) to high-
pressure systems. In the extention of the development, they
introduced a numerical method for solving differential equations,
known as orthogonal collocation, to calculate the value of the
excess Gibbs free energy at chosen values of quuid'composition.
Erom these values, the Christiansen and Frédens{qu program
”"ﬁackage e¥?1uates the equilibrium vapor mole frééfions corre-
sponding to each experimental liquid mole fraction, X 5

Experimental data of the form pressure, temperature, and
the composition of both phases enables one to test the data
for thermodynamic consistency. Two forms of the Gibbs-Duhem
equation can be used to test the data. The first form is the

common isothermal, isobaric Gibbs-Duhem equation. This
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equation is used in the commonly applied area tests; howsver,
Van Ness et al. (1967)5 have shown that this method is of‘J
Timited value. The sécond form, which is the one used in this
study, is known as the isothermal, nonisobaric differential
Gibbs-Duhem equation. The major difference between the two g
forms is that the second form includes a term containing

the slope of the P-X curve. The value of this term is small

at Tow pressures and is often neglected, but atuhigher pressures
this term cannot be neglected. Additionally, the isothermal,

nonisobaric differential Gibbs-Duhem equation requires additional

knowledge of the liquid molar volumes of both the pure
components and mixtures. |

In this repqrf, the Christiansen and Fredenslund programs
are modified with the Peng-Robinson equation of state. Compari-
son of the results obtained with the original and the modified
sets of programs showed definitive superio??%y%of the Peng-
Robinson modification. ﬁ

Development of a separate program for determining the
interaction parameter used in the Peng-Robinson equation has been
generated. The correlating parameters for the critical tempera;w
ture, critical volume, and the characteristic constant for the
i-3 interactidn must be taken from the Titerature. Pfocedures

for the estimation of these parameters are under development.

W
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I. INTRODUCTION

Advances in chemical engineering'made during the 1950's

through the development of the Benedict-Webb Rubin]

Kwong? equations of state have broadened the base for performing

and Redlich-

fluid property calculations. Further advancement in the 1960's !

came from the advent of th? generalized or mixed-model type
correlation by Chueh and Prausm‘tz.3

At that particular time; the design engineervhad>ava11ab1e
to him an analytical method which could use entirely computer
calculations for calculating vapor-liquid equilibria. These
methods relied mainly on the Soave-Redlich-Kwong two-constant
equation of state to describe the behavior of tﬂé equilibrium
vapor phase.

In 1976, the Peng-Robinson two-constant equation of state
was made avai]able4. The primary advantages of the Peng-
. Robinson equation Fp that of the Soave-Redlich-Kwong equation &
are its ability to%aescribe more accurately the behavior of the
equilibrium vapor phase in the crifica] region as well as in the
upper retrograde region. One further feature of the Peng-
Robinson equation is the reduction of the four omega constants
required for a binary mixture in the Soave-Red1ich-Kwong
equation to a single interaction parameter. : 5

In this report, the Christiansen and Fredenslund5 programs
which use the Soave-Redlich-Kwong equation of state have been

modified by rep1aé§ng the equation of state with the newly

-1-



developed Peng-Robinson equation of state. An additional com-
puter output of graphs for the pressure and excess Gibbs free
energy versus mole fractions are also included. In addition to

the differential consistency analysis used, an integral consistency
test is included to completely confirm the thermodynamic con-

sistency.



II. THERMODYNAMIC ANALYSIS

Phase-rule restrictions 1imit the form of binary vapor-A
Tiquid equi]ibriuh data that can be taken. Binary data cannot
be taken with pressure and temperature constant. However, data
of this type may still be tested for thermodynamic consistency
using the common isothermal, isobaric Gibbs-Duhem equation pro-
vided the system in question is a low pressure system.

If the system to be 1nvestigated is at high pressures, a
more genéral form of the Gibbs-Duhem equation is required. The
nonisothermal, nonisobaric Gibbs-Duhem equation is discussed in
detail by Van Ness (1959)7. Applied to liquid systems in

equilibrium with their vapors, it takes the form

2 dp?
In - In Yo 7 (dx Lr Lv (dx l: - iz] (dX ;) ]RT
E
dT
g ()

where ¢ is the constraint of saturation and g is equal to GE/RT.

For a binary mixture, the following relationship is also valid:
g = X710 vy + X100 vy, ‘ (2)

When restricted to isothermal data, combination of equations 1

and 2 yields:

dPs
LRREREAC AR - v 3 z HEE (3)



and
v e e -y V@) - §xy®, (4)
Y2 59 - XUk, s TRV, s L R et 4
1 1 i=1 dxi
dP?
12} are approximately equal in

Since the terms (%%-l; and (3
1

most cases, both brackets of equations 3 and 4 afe approximated

as

LY

o, (5)

£ dP
v (HY} 2

where vE = Vmix -.f]xiv; when the standard states are the pure
components at the1;emperature and pressure of the system (i.e.
symmetric convention) or vE =7 - xiv}m - x,V, when the standard
states where component one is infinitely dilute ir pure component
two are both at the temperature and pressure of the.system
(unsymmetric convention). The reference fugacity of the non-

condensable component is the Henry's constant at the system's

pressure and temperature (Prausnitz, 1969)8.



IIT. THE METHOD OF ORTHOGONAL COLLOCATION

The representation of excess thermodynamic functions by a
particular set of orthogonal polynomials has -5een demonstrated
to be advantageous in the treétment of data for binary systems
by Van Ness (1967). The methods discussed by Klaus and Van
Ness allow such data to be treated thoroughly, efficiently,
and rigorously, with the added benefit of being well suited
for numeri?al computation.

In thé test for thermodynamié consistency, the differential
nonisobaric Gibbs-Duhem equation is applied on a point to point
basis. The choice of points to be analyzed is an optimum nne;
in this study the selected points on the abscissa of the
pressure versus Tiquid mole fraction data are the zero roots to
a Jacobi polynomial, specifically the Legendre polynomial:

The experimental pressure-liquid mole fraction data are
fitted by Legendre polynomials. The Legendre polynomials used
for fitting represent the deviation from Raoult's Law. Once
the fitting of the data is complete, an analytical equation for
the system's vapor pnﬁssure versus liquid-mole fraction can
readily be computed./\

In equations 3 and 4 the differential operator for g is
determined by the orthogonal collocation method. The differential
operator is approximated at each collocation point by the
weighted sum of the function values of the discretization matrix

Ak]’ which is determined from the Legrendre polynomials. The

-5-



appropriate collocation approximation for the derivative is
dg N
@k L, = L Aagr (6)

where Xy refers to the particular collocation point and N is the
number of internal collocation points plus the two end points.

In order to compute g at the data points, a Lagrangian four
poini,interpo]ation is used. This enables computations to be
made at any desired 1liquid mole fraction when the liquid activity
is required to be known. The ability to know Y; as a function

of X5 is used in the development of a integral consistency test.



IV. THE THERMODYNAMIC CONSISTENCY TEST

Binary vapor-liguid equilibrium data in the form of xi(P)
and yi(P) at constant temperature, variable pressure aré analyzed.
The derivatives of [dP/dx]]0 and [dg/de]0 are evaluated by use
of the orthogonal collocation method already mentioned, while
values for the volumes and fugacity coefficients are evaluated
by the equation of state, or from the Lychman-Eckert-Chueh correla-
tion. When the system of interest is a mixture with Freon-12 as
the solvent, the equation of state for the solvent is the one
developed by McHarness]O.

From the definition of 1iquid activity coefficients, Yi»

fi P

Yy © x: 13 - x;f; ° (7)

where ¢1 is the vapor phase fugacity coefficient of component i

and 1is calculated by equation 31 and since the sum of the partial
2

pressures must equal the system pressure (i.e. X yiPi= P) one
i=1 o

obtains

iy, Xevefs
+ . (8)
% 7

Substitution of equation 3 and 4 for Y1 and \0 respectively into
equation 8 generates an equation with g as the unknown.

The equation is a highly nonlinear differential equation
which applies at one given liquid mole fraction, namely a single

collocation point. However, the differential equation can be



reduced to an algebraic equation by using the appropriate collo-
cation approximation (Equation 6). The result is shown in

equation 9.

N
1 o d
P = 5— exp[g + Xo ;GAk'igi 2 E( d )]
Xo . N
+ 5; 3 exp[g - Xy 120 Ay;9; +___VE( ) ]. (9)

In using,this collocation approximation, the approximation it-
self consists of a function using elements which contain the g's
at_all the collocation points./ In othér words, the N differential
equations in g are now converted to N coup]ed algebraic equations
in g, where N stands for the total number of co]]ocat1on points H
Plus the two end points. To solve’ these equat1ons for the
correct N number of g's, a Newton-Raphson iteration procedure is
used.

The initial estimates of g for the symmetric convention

are the following: -

xk(1 - xk) for all k, (10)

| where Xg refers to each collocation point (i.e. the first order
" Redlich-Kister function).

The initial estimates for the unsymmetric convention are

g=0 forall k. (11)



!

Since the Legendre polynomials are all developed on an
abscissaofrange zero to one, the zero's of the polynomial for
the unsymmetric case must have the following variable substi-

tution introduced:
1 :"‘ 2
X = X XL max® (12)
where X max is the largest experiment 1liquid mole fraction

introduced into the data. This effectively normalizes the

mole fraction variable.



V. EQUATION OF STATE

The equation of state (Peng and Robinion, 1976]]) used for

#1" work has the form

"

Teor, s, ‘,"/

¥

'
!

p = RT

T . ,
Vb " v(v+b)a$ %(V457 (13)

Equation 13 can be rewritten as

14,

23 + (B-1)Z% + (r-38%-2B)7 + (B3+B%-AB) = 0, (14)
where ' , -
RET
b
B = 2%, ~ (16)
and
P
7= §¥. (17)

Equation 14 yields one real and two imaginary roots in the one-
phase region or three real roots in the two-phase region. In
the vapor-liquid two-phase region, the largest positive real
root applies to the vapor's compressibility factor, while the
smallest positive real root corresponds to the liquid's
compressibility factor.

By imposing the restrictions of the classical derivatives

at the critical point:

-10-
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and

to equation 13 one obtains:

R2T

a(T,) = 0:45724 —

and

RT

PC

b = 0.07780

At temperatures differing from the critical

a(T) = a(T,) + a(T,s u)

and

b(T) = b(T,),

where the functional form of a(Tr’ w) was determined by

Titerature vapor pressure values such that the equilibrium

condition

= fv,

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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and the thermodynamic relationship
f v _1
in ﬁ = (RT = p)dP: (25)

s
1

when applied to equation 13 is satisfied a1on§ the pure vapor

pressure curve. a(Tr,w) was linearized by the following

¢

equations: e

(T )2 = 1+ k(17 112, ' (26)

where
K = 0.37464 + 1.54226w - 0.269920°. (27)

For mixtures, the recommended rules for‘use with equation

13 are:
b = ; X;bs s (28)
a = §§ Xi%3243, - @
and K
- (1. 172
3 (1 Cij)(aiaj) s (30)

where X; is the mole fraction corresponding to that phase and

Cij is the binary interaction parameter fitted from binary
vapor-liquid equilibrium data.

The following expression for the fugacity coefficient of
cdmponent k in a mixture can be derived from equations 25 and

13. i

‘
A
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by
Tn ¢, = g5 (2-1) - In(z-B) +

2¥x.a, N
A, ik b (z‘+ 2.4148,
7 ’

k
o T ) I G5 (31)

The partial molar volume of component k in a mixture of N

components is defined by the triple-product relation,

- (ap ‘

B Ny T,V,n, (i#k)

V= e = f(x,T,v). (32)
V' T,n; (a1l 1) '

Using equation 13; equation 32 provides Vk as a function of
the composition, temperatuﬁé and the saturated molar volume of
the liquid mixture. By performing the indicated operations of
equa?ion 32 on equation 13 and applying the mixing rules,

one obtains

b ab, (v-b)
RT 1.k 2 ;
vV, = vob o) v eees) (8% ki Vv % (vBY (33)
K RT _ _ _ 2a{v+b) .

(v-b)2 [v(v+b)+b(v-b)1°

These equations have been utilized to implement the Peng-
Robinson equation of state in subroutines PRVOL, PRFUG, and

PRRON.



I. SATURATED MOLAR VOLUME OF A LIQUID MIXTURE

I

The saturated 1iquid phase molar volume is calculated with

the Lyckman-Eckert-Chueh correlation:

P.s
Psi r r r )

where ViJ)'s are functions of the true reduced temperature of
0
the mixture. The formu1at1on ‘and values of the coefficients in the

equation for V(J) are tabulated by Prausmtz]2
In order to calculate the mixture's reduced temperature,

a pseudocritical temperature has been defined as

" Z i%3 c13, s + (35)
13 ‘
, - I
where 2, is a volume fraction defined by - W
x.v . “\ ~t N
ici ¥
o, = TV R (36)
1 JgngCJ ) . | )
and p
- 1/2
Teiy = (KT Tey) (37)

where Kij is a binary interaction parameter which is found from
experimental data. . g ) =

Two regions of interest exist, one where T £ 0.93 and
the other where 1.0 > T, > 0.93. When T < 0.93, equation 34 is

used with the following suggested rules for mixtures:

-14-



Pem ; cm % i'ci . (38)
and
Wy = 2¢iwi; (39)
For Trm > 0.93, to assure that Trm = Vr6;= 1.0, corrected pseudo-

critical temperatures and volumes are defined:

Il

TCTTI

Tem ¥ (Tep = To) D(T' ) | (40)

and

where TcT and VcT are the true mixture critical properties.
D(T‘rm) is a deviation function with constraints forcing T, = o
Vrm = 1.0 at the critical point. D(T;m) is tabulated by Prausnitz

a;d in order to calculate equation 40, the modified regula-

falsi method is employed.



VII. THE REFERENCE FUGACITIES AND FUGACITY COEFFICIENTS

In these programs for Tow pressure systems where nonidealities
are negligible, the reference fugacities are the vapor pressures
of the pure compénents at the system's pressure and temperature.
When the pressures are high enough for nonidealities to be sig-
nificant, the reference fugacities for the symmetric convention

are

Psys V.
f$ = p?at ¢?at exp( ==dP ), (42)

Psat
.i

while for systems where one of the components is above its criti-

cal temperature, the solute's reference fugacity is’

psat RE V?
f=H?2 exp( ﬁT’dP ). (43)
(1,2) .
sa
Py

The exponential term is the Poynting correction factor and the
solvent's reference fugacity is that of equation 42.

The unsymmetric convention of normalization is used when one
component is a noncondensable, supercritical component. The
advantage of its use is that it avoids the ambiguity which exists
for standard-state fugacities for‘supercritica1 gases. It avoids
this ambiguous reference-state by using the we]l—defined and

sa

experimentally accessible Henry's constant, H?ZZ. The Henry's

constant is eva1qated by extrapolating to Xy = 0 on a plot of

-16-
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sat

In f]/x] versus Xq. The superscript P2 is the saturation vapor

pressure of the pure solvent and V© is the liquid partial molar
volume of the solute infinitely dilute in the solvent, mathe-

matically stated as follows:

% $,y+P
P2 = 1im ;l = 1im —l;l— . (44)
(1,2) 1 T
x1+0 x1*0

H

The vapor phase fugacity coefficients for all pure components
as well as the mixtures are calculated directly from equation 31

which was derived from the Peng-Robinson equation of state.

4



VITE, AREA TEST
With the integral isothermal, isobaric Gibbs-Duhem consistency

test equation]3

1 ¥ )
]n(gz)dx] =0, (45)
0

and the analytic expressions for the yi's obtained by evaluating
equation 9, an area test was developed. Equation 45 was proposed
by Redlich and Kister14 using the isothermal, isobaric Gibbs-
Duhem equation and for isothermal data equation 45 is an extremely
good approximation.

To approximate the integral of equation 45, the trapczoidal

NMAX equally spaced values of 1iquid mole

rule was applied to 2
fractions. The maximum value allotted to NMAX is 6. Romberg
integration was employed to evaluate the integral. As stated
earlier, the results obtained from the area test were inconclusive.
For systems where one component is noncondensable, equation

45 was rearranged by Newman15 to
XMAX v
g; lnC;L)dx] = constant, (46)
Y2

where the lower 1imit of the integral is fixed as the smallest
experimental liquid mole fraction; however, the lower limit was

selected arbitrarily for convem‘ence.]5

-18-



IX. CALCULATION OF THE INTERACTION PARAMETER

When using equation 13 for the gas mixtures, the mixing
rules of equation 28 through 30 apply. The same rules apply for
vapor as well as liquids, with y replacing x in the mixing rules.
Equation 30 contains the interaction parameter Cij‘ This para-
meter represents the deviation of aij from the classical geometri-
cal mean.

Noting that the equilibrium ratio is defined as

L
ys &
K_i = )(_1- = —% R (47)

where @% and ¢¥ are calculated by equation 31, the interaction

coefficient Cij can be found by trial and error at any given

x-y datum po1'nt.]6
To minimize the error in the value of Cij for a particular

system, each datum point was used in the trial and error method.
The procedure used to converge on the results is: a

series of Cij's are assumed, and the Ki's from equation 47 are

calculated. The accepted value for Cij is the one which yields

the minimum sum of absolute deviations in the experimental and

calculated equilibrium ratios, namely

/AKi/ + /AKj/ = minimum sum. (48)

-19-



"X.” PROGRAM DESCRIPTION

Program one: (PROGRAM 1)
PROGRAM 1 calculates vapor phase mole fractions for systems
under low pressure. The activity coefficients used in the algorithm
are normalized under the symmetric convention. Since the system's
pressure is low, the standard reference state fugaciy used is the

vapor pressure of each pure component.
Program two: (PROGRAM 2)

PROGRAM 2 calculates vapor phase mole fractions for systems
under high pressures where both components are below their critical
temperature. The activity coefficients are also normalized by
the symmetric convention. At high pressures it is necessary to
take non-idealities in the vapor phase into account. This is
done by using for the standard reference state fugacity the
liquid phase pure component fugacity for each component.

Program three: (PROGRAM 3)

PROGRAM 3 calculates vapor phase mole fractions for systems
under high pressures where one component is a nen-condensable.
The asymmetric convention for normalization of activity coef-
ficient is used. The standard reference state fugacity used
for the noncondensable is Henry's constant, while for the solvent
it's the pure component fugacity.
Program four: (PROGRAM 4)

PROGRAM 4 estimates the binary interaction parameter, C,

ij?
for the Peng-Robinson equation of state.

-20-
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A1l four programs have some of the same subroutines in
common. Table 1 is a list.of-the subroutines needed for each

main program.



TABLE T
LIST OF SUBROUTINES
PROGRAM 1 PROGRAM 2 PROGRAM 3 PROGRAM 4

MAIN SECTION

INTRP INTRP INTRP PLTRE
DFOPR DFOPR DFOPR
JCOBI JCOBI JCOBI
GAUSL GAUSL GAUSL
POLEG POLEG POLEG
SCALE SCALE SCALE
PLOT PLOT PLOT
IPOINT IPOINT IPOINT
ROMB ROMB RGMB
GIBBS GIBSH GIBSA
LEFIT LEFIT ALFIT
PCAL PCAL PCALA
DPX DPXA
DPOLE DPOLE
PLTRE PLTRE
GNVOL *MCVOL
MLMGN GNVOL
ITERE MLMGN
ITERE
INTDAL
INTP

SUBSECTION ONE (The Peng-Robinson Equation of State)

PRVOL PRVOL PRFUG
PRFUG PRFUG PRVOL
PRRON PRRON

PNRPY

SUBSECTION TWO (The Soave-Redlich-Kwong Equation of State)

RKVOL RKVOL
RKFUG RKFUG
RKKON RKKON
3 _RDKPV

=/
Description of each individual subroutine can be found

in Appendix A;in addition, computer printouts of the main programs
and their subroutines written in Fortran IV for use on a IBM

370 are in Appendix A.
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*When the system under investigation has Freon-12 (Dichlorodifluoro-
methane) as the solvent, subroutine GNVOL should be replaced with
MCVOL in PROGRAM 3. Subroutine MCVOL contains the equation of

state developed by McHarness for Freon 12.



XI. RESULTS
Two systems that were previously investigated using the
Soave-Redlich-Kwone equation of state by Christiansen and

5

Fredenslund™ were chosen to demonstrate the performance of

all the programs listed and the program superiority when the
Peng-Robinson equation of state is used. The effects of varying
the gﬁmber of internal collocation points and the value of the
Peng-Robinson interaction parameter, Cij’ are also shown. The
actual computer printouts have also been included in Appendix

B. From the ten different runs reviewed here,ﬁthe evidence

clearly indicates that the modified programs are indeed substantial-
ly superior to the original programs. Table 2 lists each dif-
ferent run made and indicates the values of the pertinent variables

used.

Case Study # 1:

The carbon dixoide-ethane system at 10°(:]7 was chosen to

illustrate the superiority that the new modified programs have
over the original programs. Even though several differing systems
of this type were tested (CH4-Ar, COZ'C3H8)’ this particular
system appears to show the typical improvemeﬁt one should expect
from the modified program, PROGRAM 2.

The system chosen is a high pressure system with both com-
ponents under their respective critical temperatures; therefore,
the use of the high 5ressure program, PROGRAM 2, was appropriate
in this case. Both the Peng-Robinson and Soave-Redlich-Kwong

equations of state were used in PROGRAM 2 for comparison. To

-24-
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Table 2. A Listing of the Runs Made and Their Pertinent Values.
System Run # Number of Degree of Interaction Equation Program Used
Collocation Legendre Parameter, of State
Points Polynomial. Cii
€0,-C,He (1) 3 2 * * PROGRAM 1
(2) 3 2 % S-R-K! PROGRAM 2 (R-K)
(3) 3 2 0.147 p-RZ PROGRAM 2 (P-R)
“(4) 3 2 0.000 p-g2 PROGRAM 2 (P-R)
CHy-C4Hg (1) 2 1 -0.050 P-R PROGRAM 3 (P-R)
(2) 2 1 0.010 P-R PROGRAM 3 (P-R)
(3) 2 I 0.050 P-R PROGRAM 3 (P-R)
(4) 2 : * S-R-K] PROGRAM 3 (R-K)
(5) 3 1 0.010 p-r? PROGRAM 3 (P-R)
1. (6) 4 1 0.010 P-R® PROGRAM 3 (P-R)

* This category does not apply.

1 The Soave-Redlich-Kwong Equation of State employs four
interaction paramters which were obtained from the

literature (3).

2 The Peng-Robinson Equation of State employs one inter-
action parameter which was obtained by PROGRAM 4.

_92_
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illustrate the need for taking into account nonidealities due to
high pressures, thke low pressure program, PROGRAM 1, was used for
comparing results.

The values of the deviation between the observed and cal-
culated vapor phase mole fractions for the four runs are tabulated
in Table 3 and are plotted on Figure 1. Figure 1 clearly indicates
that the high pressure effects on the system must be taken into
accourst.. Run # 3 and Run # 4 in Figure 1 also show the effect
of varying the Peng-Robinson interaction parameter, Cij' The
value of the interaction parameter was computed by PROGRAM 4 for

Run # 3, while in Run # 4 it was set equal to zero. This com-

Table 3. The Results of the Consistency Test
for the COZ-C2H6 System

Experimental Calculated

Values Values
yexp yexp ycalc
. Run # 1 Run # 2 Run # 3 Run # 4
0.0 0.0 0.0 0.0 0.0 0.0
0.061 0.033 R 0916 0.0648 0.0633 0.0730
0.198 0.128 0.2821 0.2055 0.1982 0.1578
0.315 0.234 0.4228 0.3228 0.3105 0.2006
0.384 0.31 0.4985 0.3962 0.3824 0.2628
0.480 0.421 0.5825 0.4920 0.4794 0.3878..
0.578 0.542 0.6531 0.5856 0.5813 0.5575
0.666 0.655 0.7076 0.6759 0.6724 0.7012
0.711 0.711 0.7334 0.7180 0.7165 0.7564
0.727 0.730 0.7423 0.7324 0.7315 0.7726
0.815 0.833 0.7983 0.8136 0.8150 0.8418
0.852 0.873 0.8270 0.8488 0.8505 0.8771
0.908 0.928 0.8803 0.9042 0.9056 0.9119
0.947 0.961 0.9251 0.9437 0.9446 0.9416
1.0 1.0 1.0 1.0 1.0 1.0

Q
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parison indicates the degrée of improvement obtainable when the
interaction parameter is adjusted to its optimum value by
PROGRAM 4.

Further investigatiorn of the outputs between Run # 3 and

Run # 4 in Appendix B indicates that the criteria that the sum

it

of deviations must be minimized is not sufficient. In arder to

conclude that the Peng-Robinsoh/interaction narameter Cij’ is

at its optimum value, the entire set of thermodynamic properties
calculated should be reviewed. This can c1e§r1y be seen by
viewing the excess Gibbs free energy diagrams of Run # 3 and

Run # 4. Even though Ruﬁ # 4 converged to a solution*, its
diagram of excess Gibbs free enzargy predicts that two homogeneous
azeotropes exist ., No system of this kind has been physically
observed; therefore, Run # 4 should be discarded on these

grounds.

Even though PROGRAM 2 predicts a behavior which has not
been physically observed, this prediction is easily explained by

reviewing the significance of the Peng-Robinson interaction

parameter Cij' From equation 30 it is seen that Cij is a

pargmeterwhichindicates the amount of deviation from the
geometrical mean that the unlike molecules present. By setting
cij equal to zero in Run #4, this implies that each molecule
will interact with every other molecule identically. Therefore,
the excess Gibbs free energy should be zero throughout the

entire range of iiquid mole fractions. The diagram of excess

* The sum of deviations for Run # 4 were smaller than for Run

#1, (see Table 4).



Gibbs free energy in Run # 4 shows this tendency to force the excess
Gibbs free energy function to zero.

Figure 2 is an expanded view of Figure 1 which shows the
superiority that exists when the Peng-Robinson zquation of state,
using its optimum alye for the interaction paramter, Cij’ is
used in PROGRAM 2. The four interaction paramters required by
the Soave-Redlich-Kwong equation of state were taken from the
]1terature3.

An optimization of these four parameters was performed.

Run # 2 represents the results with the four interaction para-
meters at a local optimum. The optimization was limited due to
the extenﬁive time requirements of jterating the program, PROGRAM
2 (R-K).

Although small deviations exist for both equations of state
in Figure 2, an apparent trend at each experimental data paint
can be seen. The trend is a definite increase in the prediction
of the vapor phase mole fractions with use of the modified program.
In most cases in the literature, deviations of this nature are
ﬁiotted’with experimental vapor, not liquid, mole fractions.

By choosing the'1iquid mole fractions as the abscissa, one is

able to see a systematic error as one ranges from zero to one.

This is more apparent when solubility data are being investigated.

The systematic error in the deviation§ appear to be an oscillation

about the zero axis as shown in Figure 2. /

Table 4 shows one small drawback in the modified program.

An extra iteration was required for finding the correct values

]
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of the excess Gibbs free energy; however, this is insignificant
compared to the improved vapor phase mole fraction prediction

obtained.

Table 4. Results of the Consistency
Test for the COZ-CZH6 System.

Run # Deviation* Total # of
Sum Iterations
(1) 0.0535097 4
(2) 0.0007760 14
(3) 0.0001447 15
(4) 0.0452195 16

m 3
* Deviation Sum =r—1‘- leycak].-yex‘pi.{z\,
1=

where m = the number of data points
(excluding pure components).

Case Study # 2:

The methane-propane binary system at‘-17°C18

was chosen to illus-
trate the effects of varyinc the internal collocation points and .
the value of the Peng-Robinson interaction parameter. This
system is one of several solubility systems tested that were
studied by Christiansen and Fredens1und5 (COZ-C3H8, N2¢CH4, COZ'
CZHS’ CH4-Ar). Solubility systems are high pressure systems

where one component is noncondensable and the unsymmetric con-
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vention for normalization of the activity coefficients is preferred.
When the unsymmetric convention is used, the evaluation of the
Henry's constant is required. ‘

Since the system chosen is a solubility system, the use of
the high pressure program, PROGRAM 3, was appropriate in this
case. Both the Peng-Robinson and the Soave-Redlich-Kwong equations
of state were used in PROGRAM 3 for comparison.

The values of the deviations between the observed and cal-
culated vapor phase mole fractions for the six runs are tabulated
in Table 5 and plotted in Figure 3 and Figure 4. Figure 3 shows
the effect of the number of internal collocation points on the
ca]culatéd vapor phase mole fractions. Figure 4 shows the effect
of the interaction parameter on the calculated vapor phase mole
fractions. In both ficures the results from using the Soave-
Redlich-Kwong equation of state have been included for comparison.
Figure 5 is an expanded view of Figure 4 which clearly shows the
superiority in the vapor phase mole fraction prediction when the
Peng-Robinson equation of state is used. Also the systematic
trend is quite apparent in Figure 5 when the abscissa is the
Tiquid mole fraction The Henry's constant for each run is
tabulated in Table 6.

The results reported heres clearly indicate that the new
modified programs are superior to the original programs.

Further superiority resides in the fact that only one interaction
parameter is required for the Peng-Robinson equation, while four

are needed for the Soave-Redlich-Kwong equation. The availability



Table 5. The Results of the Consistency Test for the CH4-C3H8 System

yexp xexp Run # 1 Run # 2 Run # 3 Run # 4 Run # 5 Run # 6
0.0 0 0.0 0.0 0.0 0.0 0.0 0.0
0.560 .034 0.6665 0.6682 0.6693 0.6739 0.6867 0.6893
0.767 0.089 0.8283 0.8310 0.8327 0.8351 0.8437 0.8428
0.832 0.142 0.8765 0.8798 0.8819 0.8330 0.8882 0.8866
0.861 0.197 0.9001 0.9040 0.9065 0.9073 0.9089 0.9073
0.880 0.249 0.9124 0.9169 0.9197 0.9202 0.9191 0.3729
0.888 0.303 0.9199 0.9250 0.9283 0.9285 0.9250 0.4571
0.890 0.357 0.9240 0.9300 0.9337 0.9337 0.9283 0.6706
0.892 0.410 0.9257 0.9328 0.9370 0.9368 0.9300 0.9289
0.891 0.464 0.9257 0.9341 0.9390 0.9385 0.9307 0.9296
0.889 0.518 0.9240 0.9343 0.9399 0.9391 0.9307 0.9295
0.882 0.572 0.9207 0.9334 0.9400 0.9388 0.9302 0.9288
0.869 0.636 0.9145 0.9312 0.9392 0.9376 0.9290 0.9276
0.845 0.718 0.9060 0.9293 0.9390 0.9370 0.9285 0.9270
0.800 0.800 0.9023 0.9306 0.9414 0.9392 0.9294 0.9279
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Table 6. Calculation of Henry's Constant and Results of the
Consistency Test for the CH4-C3H8 System.

Run # Henry's Constant, Deviation* Total # of
(2tm) Sum Iterations
(1) 112.55 0.0431535 16
(2) 113.02 0.0605322 17
(3) 113.02 0.0699474 17
(4) 115.65 0.0700868 16
(5) 120.46 0.0661260 17
(6) 124.16 0.5517500 greater than 100

BRI m
* Deviation sum =1 yca]c.-yexp.l2
AR m & j j

QHE?e m = the number of data points (excluding pure components).

of data to estimate these four parameters in some cases does not
exist. The estination of the Peng-Robinson interaction parameter
can always be computed when data for a thermodynamic consistency

test are present.



XIT. DISCUSSION OF RESULTS

The two systems tested appear to be thermodynamically con-
sistent. However, to assure that theyare one must first com-
pute the experimental uncertainties in the 1iquid and vapor phase
mole fractions. Christiansen stated that the following empirical
criterion must be met if the data is to be thermodynamically
consistentlgz

|ycale; - yekpil < AXg * Ay, (49)
where Axi and By, are the experimental uncertainties in the
data at each data point i.

The mecdifications daone in this work on the original programs
show that the Peng-Robinson equation of state has improved per-
fdrmance over the Soave-Redlich-Kwong equation of state in the
critical and upper retroqrade regions. The reduction of four
interaction paramters to one when using the Peng-Robinson equation
shows the strength of the =quation of state for this application,
since the procedure for optimizing the constants is further
simplified. ﬁﬁrther modifications can be made by extending
the modified programs to multicomponent high-pressure systems and
by placing specific equations of state for a desired system

intc. subroutines PRYOL, PRRON and PRFUG.

~38-
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NOMENCLATURE

Symbo1 Description Typical

ooy P Units

Roman Form:

A Grouping of parameters used unitless
in the Peng-Robinson ‘
equation

ABS(X) The absolute value of the unitless
expression x

333 Parameter used in the Peng- (atm-ccz)/
Robinson equation gmo]ez

Ak1 Elements of the discreti- unitless
zation matrix

am,a(T) Mixture parameter used in (atnrccz)/
the Peng-Robinson equation gmo1e2

B Grouping of parameters used unitless
in the Peng-Robinson equation

bi Parameter used in the Peng- cc/gmole
Robinsor: equation

bm Mixture parameter used in cc/gmoie
the Peng-Robinson equation

Ci' Binary interaction parameter unitless

J for the i-j interaction

f? Reference-state fugacity of atm
component i

%i Partial fugacity of component atm
i

E .
g G~/RT joules/
(atmecc)

GE Excess Gibbs free energy Jjoules/

gmole

HE Excess enthalpy joules/

gmole
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NOMENCLATURE (Cont.)

Symbo1 Description Eﬁg%ga]
H(] 2) Henry's constant for solute atm
’ 1 in solvent 2

k Constant in Peng-Robinson unitiess
equation for o

kij Characteristic constant for unitless
the i-j interaction of the
deviation from the geometri-
cal mean

Ki Equilibrium ratio unitless

n; Moles of component i gmole

NMAX Maximum number of Romberg unitless
integration employed

p Pressure of the system atm

PC Critizal pressure atm

Pi Partial pressure of component atm
i

Pg Vapor pressure of pure com- atm
ponent i

P-R The Peng-obinson equation
of state -

R The gas-constant (atme cc)/

A (gmole- °K)

S-R-K The Soave-Redlich-Kwong
equation of state

T Temperature of the system °K

Tci Criticﬁl teriperature of °K
component i

Tcij Critical temperature °K

characteristic of the
i-j interaction
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NOMENCLATURE (Contd.)

Symbo1 Description g%?%231
T Pseudocritical temperature oK
cm of the mixture
TCT True critical temperature °K
of the mixture
Trm leduced mixture temperature unitless
Tém Corrected pseudocritical °K
temperature of the mixture
vl Specific molar volume = cc/gmole
) Volume of the solution cc K
VE Excess molar volume of the cc/gmole
solution
v Partial molar volume cc/gmole
VC.i Critical molar volume of
component i cc/gmole
ch Pseudocritical volume of
the mixture cc/gmole
VCT True critical volume of
the mixture cc/gmole
Vmix Mixture molar volume cc/gmole
Vrm Reduced volume of the mixture unitless
i Partial molar volume of species cc/gmole
i at infinite dilution
Vém Corrected psaudocritical cc/gmole
volume of mirture
V3 Molar volume of pure com- cc/gmole
ponent i
V&J) Generalized reduced molar unitless

volume function
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NOMENCLATURE (Cont.)

. s Typical
Symbol Description Units
Xi,xih Liquid mole fraction unitless
of species i
Xy Collocation point for unitless
a liquid mole fraction
x& Normalized liquid mole unitless
fraction at a collocation
point
xexp Experimental liquid mole unitless
fraction
XMAX Maximum experimental liquid unitless
mole fracticn in solubility
data
Y; Vapor‘mole fraction of species unitless
.i
ycalc Calculated vapor mole fraction unitless
yexp Experimental vapor mole unitless
fraction
A The compressibility factor unitless
Greek Form:
a Correlation used in Peng- unitless
Robinson aquation
Y3 Activity coefficient of species
j unitless
Peq Critical liqiid density of gmole/cc
.component i "
Psi Saturated Tijuid density gmoﬁe/cc
\ of component i
w; Acentric factor unitless
0 Mixture's acentric factor unitless
Constraint of saturation unitless

-
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NOMENCLATURE (Contd.)

Symbo1l Description 'Bzglga]
3. Vapor phase fugacity unitless
1 coefficient of component

i

INES) The difference between the units of
calculated and experimental property
values of the property x. X

¢y Volume fraction of species i unitless

Subscripts:

c Critical property

1,51 Indexing

k A collocation point

max The maximum valge

m,mix Mixture properﬁg

r Reduced property

s,sat Saturation

sys System property

1,2 Solute 1 in solvent 2

Superscripts:

L Liquid property

sat Saturation

V Vapor property

0 Pure component property

Partial molar property
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PROGRAM DESCRIPTIONS AND COMPUTER PRINTOQUTS
This section contains descriptions of the subroutines followed
by a 1isting of the subroutines written in FORTRAN IV for an IBM
370 computer. For a quick reference, use Table 7 to locate a
desired subroutine. A1l four main programs have also been 1isted

at the very end of this appendix.

NOTE: PROGRAM 2 and PROGRAM 3 are available for either the Peng-
Robinson or Soave-Redlich-Kwong equation of state. When choosing
an equation of state, one must also use the correct main program

which is indicated in the description of each main program.
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TABLE 7. GLOSSARY OF NAMES FOR SUBROUTINES AND MAIN PROGRAMS

NAME CLASS ' - PROGRAM PAGE
ALFIT SUBR 51
DFOPR SUBR 54
DPOLE FUNCT 57
DPX SUBR 59
DPXA SUBR 62
GAUSL SUBR 65
GIBBS SUBR 68
GIBSA SUBR 72
GIBSH SUBR 75
GNVOL SUBR 78
INTDAL SUBR 82
INTP SUBR 85
INTRP SUBR 88
IPOINT SUBR 91
ITERE SUBR 94
JCOBI SUBR 97
LEFIT SUBR 101
MCVOL SUBR 104
MLMGN SUBR 105
PCAL SUBR 107
PCALA SUBR 110
PLOT SUBR g 13
PLTRE SUBR 115
PNRPV SUBR 120
POLEG FUNCT 123
PRFUG SUBR 126
PRRON SUBR 129
PRVOL SUBR 132
RDKPV SUBR 135
RKFUG SUBR 139
RKKON SUBR 142
RKVOL SUBR 147
ROMB SUBR 152
SCALE SUBR 157
PROGRAM 1 MAIN , 159
PROGRAM 2 (P-R) MAIN 164
PROGRAM 2 (R-K) MAIN 71
PROGRAM 3 (P-R) MAIN 178
PROGRAM 3 (R-K) MAIN 185
PROGRAM 4 MAIN 193




Descriptions and Printouts of
Main Programs (MAIN),
Subroutines (SUBR),

and Statement Functions (FUNCT)
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SUBROUTINE ALFIT (X, Y, N,K)
Input Parameters:
Real X: The normalized value for the experimental mole
fraction of component one in the 1iquid phase.
Real Y: The experimental pressure of the system at
each given XEXP which corresponds to the
normalized values, X.
Integer N: The dimension of vectors X and Y, (i.e. number
of data points).
Integer K: The degree of the Legendre polynomial used for
fitting the P-X data.
The OQutput Is:
By a common statement
COMMON/LEG/AA
Vector AA:  Dimension [K + 1] and contains the coefficients
to the fitting function which represents the

deviation from ideality, (i.e. Raoult's Law).

ALFIT fits P-X data to a curve using Legendre polynomials and
calls for GAUSL, a Gaussian elimination method to solve A * X
= B where X is the vector AA. In order to use the Legendre
polynomials, which are for a range of zero to one, the liquid
mole fractions of the solubility data must first be normalized
to zero to one.

ALFIT employs the following algorithm:

A: Calculate S(I) at data points.
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B: Formulate curve with S(I) as a weighting function.

C: Formulate matrix with unknown coefficients.

D: Invert matrix (solve for AA) (call to GAUSL).
LIST OF EQUATIONS

Pays = P30T - %)

Deviation Function: S(i) S

Weighting Function: x

Fitting Function: c(i) ﬁ:S(j)xPi(X)
1=

where Pi(x) = ith degree Legendre polynomiaf.
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SUBROUTINE ALPIT (X, Y N, X)

SUBBOUTINE ALPIT PITS INDIVIDUAL POINTS O8N A CURVE UHERE I IS
THE IMDEPENDEANT YARIABLE AMD Y IS THE DEPENDENT YARIABLE USING

_A FURCTION COMNTAINING LEGENDRE POLYNOHIALS. A5 THE PITTING FUNCLION.

DOUBLE PRECISION X2,X3

DOUBLE PRECISION PP

DOUBLE PRECISION X1

DOUBLR PRECISION DPLOAT

DOUBLE PRECISION C(21),B(25,25) ,AA{21) ,PPP(51)
DOUBLR PRECISION X(25),Y(25),3(25)
DOUBLE PRECISION POLRG
CONB0M/LEG/AA

kP 1=K+ 1

DO 1 I=1,KP?

C(I)=0a.

DC 2 I={,KP1

DO 2 J=1,KP1

B(I,J)=0.

Do 3 I=1,HN
S(I)=Y(I)-T(1}*(1.-X(I))

DO 4 IB=1,KP1

DO & J=1,H8

X3=x (J)

C(XB)=C {ID)+3 (J) *X({J) *POLBG (X31,IB)
DO S Ba=1,XP1

DO 5 L=1,KP1

DO 5 Ka=1,¥

X2=X(Ka)

B(MA,L) =B (NA,L) +K [KA) *X {KA) * POLEG (X2, N4) *POLBG (X2, L)
DO 6 r=1,KP1 -

KP2=K+2

B(I,XP2)=C (I)

CALL GAUSL (25,25,KP1,1,B)
Do 7 I=1,KP1

AA (D) =B (I,KP2)

RETUBN

END
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SUBROUTINE DFOPR (ND, N, NO, WL, I, ID, FA, FB, FC, ROOT, VECT)
Input Parameters:

Interger DN,

NO, NL, N:  As in JCOBI.

Interger ID: The degree of the deviative of weights needed.

Vector FA, FB,

FC: Dimension [NT = N + NO + NL] and contains the
1st, 2nd, and 3rd derivatives of the polynomial
at the zero roots, (i.e. collocation points).

The Output fis:
Vector VECT: Dimension [NT] and contains the computed

interpolation weights for the given root.

DFOPR calculates interpolation weights in order to form a compu-
tational quadrature which enables the main program to approxi-
mate derivatives of a dependent variable at any given pqint,
provided we have the root, FA, FB, and FC available, (e.g.
evaluates the discretization matrix).
DFOPR employs the following algorithm:
A: IfID

1, compute discretization matrix for y(J).

(2)

2, compute discretization matrix for y‘“’.

If ID

If ID = 3, compute gaussian quadrature weights.
B: Place computed values in VECT.

LIST OF EQUATIONS

In this program only ID = 1 is of concern. At a given root

X; J)

B
0
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. (2)
P .
veet(3) = 1M g = 2 i hal

Pnl1(xi)

‘where x = x;. The vector of Li(])(xi) values may now be used to
approximate the first derivative of any dependent variable of x

at the given root Xs.

(1)

d L ).
& gf (X
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SUBROUTINE DPOPR(ND,B,Na,Nt,I.ID,FA,P8, FC, ROOT, VECT)
SUBROUTINE DPOPR CALCULATES THE ELENEATS OF THE DISCRETIZATION

nnan

21

20
10

25
30

35
60
61
50

BATRIX

NT=NeNO+ N1

I? (ID.GE.3) GO TO 10

DO 20 J=1,N?

If(J.¥E. I) GO TO 21

IF (ID.EQ.1) VECT (I)=PB(X)/PA(I)/2.
IF (ID.BQ.2) YECT(I)=IC{I)/®A{I)/3.
GO TO 20

1=R00T (1) -ROOT (J)

VECT (J) =PA (I) /FA (J) /1

IF (ID.BQ.2) VECT(JF=VECT(J)* (PB(I)/PR{I)-2./1)

CONTINUE

GO TO SO

Y=0.

IP(ID.2Q.3) GO 70 30
DO 25 J=t,n2

X=R0OT (J) .

AX=X*(1.-X)

IF (NO.EQ.0) AX=AX/X/X
IF(N1.8Q.0) AX=AX/{1.~X)/(1.-X)
VECT (J) = AX/PA (J) /XA (J)
Y=T+VECT (J)

GO 70 60

DO 35 J=1,87

X=R007 (J)

IF (N0.BQ.0) AX={./X

IZ (B1.2Q.0) AX=l./(1.~X)
VECT (J) =AX/FA (J) /2A (J)
I=Y+VECT (J)

DO 61 J=1,NT

VECT (J) =YECT(J) /Y
SETURS

BEND

. DOUBLE PRECISION PA (ND) ,FB(ND),FC(ND),ROO0T(RD) ,VECT (ND) ,X,Y,AX,AY
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DOUBLE PRECISION FUNCTION DPOLE (X, K)
Input Parameters:
Real X: As in POLEG.
Integer K: As in POLEG.
The Output Is: The first derivative of the Legendre polynomii’s,

th

specifically the K™ degree.

DPOLE 1is a statement function which contains the recursion formula
for the first derivative of the Legendre polynomials.
LIST OF EQUATIONS

de(x)
DPOLE = dx
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DOUBLE PRECISION PyECTION DPOLE(X,K)
DOUBLE PRECISIGS DAL(21),X

DOUBLE PRECISION DPLOAT,POLEG
DAL(Y) =0.

. DAL(2) =2.

DO 1 LG=3,K

LEN1=LG- 1

DAL(LG) = (DPLOAT (29LGA1~1) & ((2.#X~1.) *DAL [LG~1) $2. ¢POLEG (X, LGA1) )
1-DFLOAT (LGH 1= 1) ®DAL (LG-2) ) /DPLOAT {(LGA1)

DPOLE=DAL (K)

RETORN .

2D
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SUBROUTINE DPX (P2S, P1S, K, DDX, X)
Input Parameters: .
Real P2S: Vapor pressure of pure component two.
Real P1S: Vapor pressure of pure component one.
Integer K: The degree of the Legendre polynomial used for
fitting the P-X data.
Real X: Mole fraction of component one in 1iquid phase
where derivative is desired.
The Output Is:
Real DDX: The derivative of pressure versus mole fraction

at the given X input, (i.e. pressure gradient).

DPX generates the derivative of the P-X curve by using the recursion
formula for the first derivative of the Legendre polynomial and
evaluates it at the given X.
QEg_empioys the following algorithm.
A: Generate the deviation from Raoult's law by
Legendre polynomial and evalua%es it at the given X.
DPX employs the following algorithm.
A: Generate the deviation from Raoult's law by
Legendre polynomials and evaluate it at the given
X.
B: Generate the derivative of Part A.
C: Compute pressure gradient.
LIST OF EQUATIONS
Pressure Deviation: P, = x(1 - x) ALEG = x(1 - x) gi?A(i)Pi(x)
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where ALEG is the deviation function and x(1 - x) is the weight
function.

Pressure System: (see subroutine PCAL).

Psys = x(Py% = P,%) + P + x(1 - x)ALEG

SysS _ S S
“E%” =P, + Py + (1 - 2x)ALEG +

<(1 - x)d(ALEG)

K
where 4(ALEG) - S* pa(4)DPOLE(x,1), (see FUNCTION DPOLE).
=1
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SUBROUTLNE DPX(P2S,P1S,K,DDX,X)
DOUBLE PRECISION P2S,P1S,AA(21),0DI,X
DOUBLR PRECISIOE POLEG,DPOLE

DOUBLR PRECISION DALEG,ALEG
CONNUN/LEG/AA

DALEG=0.

ALEG=0.

DO 1 IL=1,K
ALEG=ALEG®*AA (1L) *POLEG (X, IL)

DO 2 1K=1,K
DALEG=DALEG*AA (1K) #DPOLE(X,IK)
DDX=P1S~P25+ (1.~} * ALEG-I#ALEG* (1.-X) *K*DALEG
RETURN

END
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SUBROUTINE DPXA (P2S, K, DDX, X)
Input Parameters:
Real P2S: The vapor pressure of pure component two.
Integer K: The degree of the Legendre polynomial used for
fitting the P-X data. |
Real X: The normalized value for the mole fraction of
component one in the 1iquid phase.
The Qutput Is:: 1.
Real DDX: The derivative of pressure versus mole fraction

at the given X input, (i.e pressure gradient).

DPXA generates the derivative of the P-X curve by using the re-
cursion formula for the first derivative of the Legendre polynomial
and evaluates it at the given X. Since the Legendre polynomials
range from zero to one, the Tiquid mole fraction must also be
normalized.
DPXA employs the following algorithm:
A: Generate the deviation function from the Legendre
polynomial.
B: Generate the derivative of Part A.
C: Compute the pressure gradient.

LIST OF EQUATIONS

T T e K
Deviation Function: ALEG = 3 AA(1)P, (x)
i=1
Weighting Function: x

Pressure of System (see subroutine PCALA):



Gradient:

K
dgALEG) -
where dax o
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P - psat

oys = Po. (1 = x) + x(ALEG)

dp .
SYS _ xd(ALEG)+ ALEG - P;at

dx dx

AA(i)DPOLE(x,i), (see Function Dént).
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SUBROUTINR DPXA {P23,K,DDX,X)
DOUBLE PRECISION P2S,P1S,AA(21) ,DDX,X
DOUBLE PEECISION POLEG,DPOLE
DOUBLE PRECISION DALEG,ALEG
COBNON/LEG/AA

DALEG=0. -

ALEG=0.

bo 1 IL=1,K

ALEG=ALEG#+AA (IL)*POLEG (X,1L)
DO 2 IR=1,K '
[DALBG=DALEG+4AA (IK) *DPOLE{X,IK)
‘DDX=ALRG+X¢DALRG-P2S

RETORN s

4

BED b
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SUBROUTINE GAUSL (NRA, NCA, N, NS, A)

Input Parameters:

Integer NRA:

Integer NCA:

Integer N:

Integer NS:

Matrix A:

The Output Is:

Matrix A:

The number of rows to the matrix A read into
subroutine.

The number of columns to the matrix A-read into
subroutine.

Dimension of square matrix to be solved.

The number of columns to shift over for result
to be placed.

Dimension [N, N + 1] and contains the matrix B
[N, N], plus in the column N + 1 it also con-

tains vector T, (i.e. B-X = C).

In column N plus one the result to B-X = C for

X is placed.

GAUSL solves B-X = C by Gaussian elimination with parapivoting.

The matrix A in solving is destroyed and the result is then placed

in matrix A's N plus first column for output.

GAUSL employs the following algorithm:

A: Find largest element (value) in given column.

B: Check to see if the element in A is the first

nonzero diagonal position in matrix.

If - yes, go to D.

If - no, go to C.

C: Interchange rows, setting the element in A in

first nonzero diagonal position.



-
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Row reduce matrix (gaussian elimination).
Parapivot by column reducing matrix.
Return to A to select new element from next given

column.
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SUBROUTINE GAUSL(NEA,NCA,W,¥5,1)
DOUBLE PRECISION X,A(NRA,NCA)
DOUBLE PRECISION DABS

GAUSL SOLVES A*X=B., WHERE A IS N¢N, BY GAUSSIAN ELINIRATION
PARAPIVOTING, THR VECTOR B IS PLACED IN COLUAN Ne1 QF A
A IS DEBSTROYED, AND THE SOLUTION IS PLACED IN COLUNN N1

| RET 23]
¥T=N+NS
IP(¥.EQ.1) GO TO 50

START BLININATION ‘

Do 10 I=2.,

IP=I~-1

Il=1p

I=DABS {A {11,11))

po 11 J=1,8
IF(DABS(A(J,I7)).LT.X) GO TO 19
X= DABS(A(J.11))

IP=J

CONTINOB

IP (IP.2Q.I1) GO TO 13

ROW INTERCHANGE

DO 12 J=I1,NT

X=A (I1,J)
2(I1,J)=a(IP, )
A{IP,J) =X

DO 10 J=1,A
X=A(J,I1)/A{L1,IV)

DO 10 K=I, NT

A(JeK) =A (J,K)—-X*A(I1,K)

BLIMINATION PINSHED, NOW BACKSUBSTITUTLON

DO 20 IP=i,N

I=H1-1IpP

DO 20 K=11,37T
A{L,K)=A {I,K) /A (L,X)
IF(f.B8Q.1) GO TO 20

Il=1=-1

DO 25 J=1,I1

A(J,K) =R {J,K})~A (X, K)*A(J,]) ;
COHTINUR :
RETU RN .
END U

WITH
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SUBROUTINE GIBBS (P1S, P2S)
Input Parameters:
Real P1S: Pure component one vapor pressure.
Real P2S: Pure component two vapor pressure.

By COMMON/DIV/A, P, G, ROD, NT, NPI, AA

~-

Dimension [NT, NT] and contains the discreti=

Matrix A: -’

]‘ zation weights in each row for each root (i.e.
it row implies ith Foot).

Vector P: Dimension [NT] and contains system pressure at
the given roots. "

Vector G: Dimension [NT] and contains the initial values

. of Gibbs excess free energy [GE/RT].
VECTOR ROD: Dimension [NT] and contains the zero roots to
the Jacobi polynomial.
Integer NT: The number of internal collocation points plus

the end points. (NT = N + NO + N1).

The Qutput Is: By COMMON/DIV/SA, G
Vector SA: Dimension [NT] and contains the derivatives
o dg
at G at each zero root, [i.e. g2l cpgotd:
Vector G: Dimension [NT] and contains the values of G

after determination of iteration procedure.

GIBBS uses a Newton-Raphson iteration procedure with initial esti-
mates of Gibbs excess free energy at low pressures. The equations
(1) and (2) are inserted in equation (3), a differential equation

in G results. The derivatives are approximated by equation (4).
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As a result of inserting equation (4) for the derivatives, the
reduced differential equation is solved at the collocation points
to N coupled 1inear equations. These equations are then solved
by Gaussian elimination (AX = B).
Note: 1In Gibbs, the nonisothermal, nonisobaric Gibbs-Duhem equation
has been simplified by taking into account the Tow pressure.
1) Close to the ideal state the vofume excess is zero and )
this implies that %%i = 1 g;%u Thus, only the excess |
Gibbs free energy terms are included in the low pressure
analysis.
2) The reference state is taken as the pure component vapor
pressure.
GIBBS employs the following algorithm:

A: Calculate SA(I) by last approximation of G at the
collocation points.

B: Compute the ac;ivity coefficients S1, S2 by using
last approximation of G and SA at the collocation
points. ™

C: Formu1at;\%ext approximation of deviation term by
the Newton-Raphson procedure.

D: Invert matrix (Gaussian elimination).

E: Compute new approximation to G at the collocation
points.

F: Test for convergence of Del and new value of G.
1£/5%7 < 1078, go to return.
1£/s%/ > 1078, go to A.
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' LIST OF EQUATIONS

() 1oy =9+ Ryl ) = ST

(2) Tny, = g - x (3%1)‘)&

. sat
(3) P~ X]Y1P]

(€9
(4),“dx])|saturat10n _,, NI
Xk R
where ¢ = G = G /RT and SA =49 . '

d
{/ X1

The Newton-Raphson Procedure is as follows:

_ f(gk)
9s1 = I = Fg;)

minimize this term by letting it equal Yie

The resulting set of equations are of the form:

ﬂf'(gk)'yk f(gk)
75

Inversion yields y, which contains new approximation for G.

1
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i
SUBROUTIME GIBBS{P1S,P2S) W
SUBROUTINE GIBBS;SOLVBS THE CCUPLED NON LINEAR COLLOCATION
EQUATIONS .

DOUBLE PRECISION A(25,25),SA (25).P(25),G(25) ,RO0D(25)
DOUBLE PRECISION B(25,25),S1(25),52(25),P15,P25,5Q
DOUBLE PRECISION DEXP

DOUBLE PRECISION AA(21)
CONNON/DIY/A,SA,P,G,EQD,¥T,RP1, N
COANON/LEG/AA

PORMNAT (180, *MORE THAN 15 ITERATIONS®)
PORNMAT {1HO, *ITERATION Wx*®,I5)

SHR=6 " e
ITER=0

ITER=ITER*?

IP (LTER-15) 27,27,26 X sl
WRITE(N¥R,502) .

GO TO 100

DO 28 I=1,8T

SA (L) =0.

DO 30 I=1,HT

DO 30 J=1,87

SA{I)=SA(I) +A{I1,J)*G(J)

CONTIRUE

DO 40 I1=2,NP1 g
S1{I)=BOD (L) *PI1S*DEXP(G(I) ¢ (1--BOD(Ij) *SA (L))
SZ(I)=(1.—ROD(I))‘PZSODB!P(G(I) ROD (I} *SA(D}}

INt=f~1 .

B{IAY,APY)=P{I)-51(1)-S2(I)

CONTIRUE

bo 50 I1=2,0P1%

181=1-1 T :

DO 50 J=2,85P1 4
Jat=J-1

IP (I-J) 35,88,45

B(IA1,JR1)==ST1(I)*(1.-ROD(X))*A (I, J)osz(:)-aoo(z)-n(t 8}

GO.-T0’ 50

B(IR1, IR 1) =-S5 1(I)*{ 1. ’(1.-aon(xy)tn(x L))~S2(I) *(1.~ROD(I) *A (L, I})
CONTINUE

CALL GAUSL(25,25,§,1,B)
SQ"D. S
DO 60 =1,M . (

o

IPI1=I+ 1 h
6 (IP1) =G (XP1) =B (I,NP1) u .
50=5Q+B (I, HP1)**2 T
CONTINUE

IP(50-1.0-12) 70,25,25

MBITE (N¥R,503) ITER

CONTINGER

RETURN

END

s
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SUBRQUTINE GIBSA {FPP1, FPP2, STKOR, DELTA, ITER)
Input Parameters:

A, P, G, ROD: As in GIBBS.

Real FPP1: This quantity is the solute's reference fugacity
with the Poynting correction factor. (See
equation 1A.)

Real FPP2: As in GIBSH. (See equation 2A.)

Real STKOR: Pertains to the volume excess multiplied by
the pressure gradient. (See equation 3A.)

Real DELTA: The value of the maximum experimental liquid
mole fraction given.

The Ouput Is:

Integer ITER: Gives number of iterations done before convergence

occured.

Vector SA, G: As in GIBBS.

GIBSA uses the same iteration technique GIBBS does except both the
higher pressure effects and the noncondensable component are taken
into account, Ij.e. the unsymmetric convention).
1) The reference state is taken as FPP1 and FPP2.
2) The volume-excess terms in the Gibbs-Duhem egquation are
included in the calculations of the activity coefficients.

LIST OF EQUATIONS

sat yE
H]P ) expr 4P
2

%

“RT

Equation (1A): FPP1 =
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E
5 Exp2P
Equation (2A): FPP2 = —

}
b5

. vE dp
Equation (3A): STKOR = ﬁT(EEH)saturation

Activity Coefficients:
E

- dg _ V_.dp
1) Inyy=g+ X2(dx1 RT(dx]))sat
£
- d v-.dp
2) Iny,=g- X]‘Hﬁ} * RT(dx]))sat
3) Psys = Xy (_FPP])y-l - XZ(FPPZ)YZ = Q
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SUBROUTINE GIBSA(YPP1,PPP2,3TKOR,DELTA, ITER}

SUBBROUTIN¥E GIBSA SOLYES THE COUPLED NON LINEBAR COLLOCATION
EQUATIONS

DOUBLE PRECISION A({25,25),Sa (25).P(25),G(25),R0D(25)

DOUBLE PRECISION B(25,25),.S1(25) .52 (25),PPP1(25),PPP2(25),STKOR
1(25) ,DELTA,SQ

DOUBLE PRECISION DEIXP

COMNOS/DIV/A,SA,P,G,B0D, N, AT

ITER=0

NP 1=Ye

ITER=ITER+1

1r(1TER~-100) 27,27,300

DO 28 I=1,NT

SA (I)=0.

DO 30 I=1,nT

DO 30 J=1,8T

SA (I)=5SA (I)+4 (1,J)*C(J)*2.*ROD(T) /DELTA®*2,

CONTINUE

po 35 I=1,RT

IP {SA(1).GT?.100.) GO TO 36

CONTINUE

GO TO 38

ITEA=101

GO TO 100

DO 40 =2,87T

S1{I)=ROD (1) #FPP1(I) *DEXP(G(I)+{1.-ROD (1)} *(SA(L)~-STROR(L)))
S2 (I)= (1—BROD {I)) SPPP2 (1) *DEIP (G (1) -ROD (L) * (SA (L) -STKOR(X)})
IAt=I-1

B(IR1, AT) =P (1)~S1(I)-32(1)

CONTINOE

DO S0 I=2,NT

Int=~1

DO 50 J=2,NT

Jnt=3-1

Ir(I-J) 45,498,385
B(IN1,JA1)x=31(1)*(1.-ROD(I) ) *A(1,J) ¢2.*ROD(L)/DELTA®*2, +32 (1)
1#80D (1) *A (I,J)*2. *ROD (I} /DELTAS*2,

GO TO SO )
B(IN1,IN1)==Si(L)*(1.+{1.~ROD(L) ) *A (L, [} ¢2.%R0D(T) /DELTAS®2,) -
182(I) * (1.~ROD (I) *A(I,T) *2.+R0D (I) /DELTA##2,)

CONTIMUR

CALL GAUSL (25,25,NP1,1,B)

sQ=0.

DO 60 I=1,NP1

IP1=I+y

G(IP1) =G (IP1)~B (I, NT)

SQ=SQ*B (I ,NT) #+2

CONTINGE

IP(30~1.0~-06) 106,258,248

cColTLEGR

rETOM

11
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SUBROUTINE GIBSH (FPP1, FPP2, STKOR, ITER)
Input Parameters:

R, P, G, ROD: As in GIBBS.

Real FPP1:° This quantity is a corrected pressure (i.e. a
reference state) for component one, (see equation
1A). L |

Real FPP2: Same as for FPP1 except for component two,
(see equation 2A).

Real STKOR:  Pertains to the volume excess multiplied by the
pressure gradient, (see equation 3A).

The Qutput Is:

Integer ITER: Gives number of iterations done before convergence
occured,

Vector SA,G: As in GIBRS.

GIBSH uses tlie same iteratioi bechnique GIBBS does except the
higher pressure effects are |#}u) ilito account.
1) The reference state {s taken as FPP1 amd FPP2.
2) The volume-excess terms in Gibbs-Duhem equation are
included in the calculatiull of the aet{vity cnaff{cients.
LisT OF kguatinfy

e
Poynting correction factor usad:
E

o buniVT Ps
f 8 EXP{tet)

(2A) FppP2 = 3
2
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E
= V_ (4P
(3A) STKOR = RT (dx])saturation

Activity Coefficients:

dg _ V_,dP
g+ X2 (dx] RT(dxl))saturation

1Y In Y1

yE
= q - dg V- ,dP
2) Iny, =9-x (dx] + RT(dx]))saturation

e
e

3) P - xq(FPP1)y; - x,(FPP2)y, = O

4
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SUBRQUTINE CIBSH{PPP!, PPP2,83TKOR,ITER)

SUBRQUTIH®E GIBSH SOLVES THE COUPLED NON LINEAR COLLOCATION
EQUATIONS

DOUBLE PRECISION PPP1(25),rPPP2(25},STKOR(25),B(25,25),51(2S),

152 {25) ,5Q

DOUBLE PRECLSION A(25,25),5A (2S),P{25),G(25), ROD(25)

DOUBLE PRECISION AA(21)

DOUBLE PRECISION DEXP

COMMON/D1V/A,SA,P,G,ROD, N, NP1,AT

CONNON/LEG/AA

ITER=0

ITER=ITER+?

IF (ITER-100) 27, 27.100

DO 28 I=1,RT

SA (I)=0.

DO 30 L[=1,NT

DO 30 J=1,NT

SA (L) =SA (I) *A (I,d) *G (J)

CONTINUE

DO 35 L[=1,NT

IP{SA(T) .GT.100.) GO TO 36

CONTINUB

GO TO 38

ITERA=26

GO TOQ 100

DO 40 I=2,NP1

LRG1=(G(I) +(1.~ROD(I)) *(SA(I)~STKOR(L)))}

ARG2=(G (1) ~BOD (X} *(SA(I)-STKOA(I)))

IP (ARG1.GE. 100..0B. ARG2.GR. 100.) GO TO 36
S1(I)=80D(I)*PPP1(L)*DEXP (G(I)+ (1.~ROD (I} ) *(SA(K)~STRKOR(I}))
$2(I)=(1.-ROD (I))*=rpp2 (I)*DEXP (G (L) ~ROD (I) *(SA(I) ~SIKOR(I}))
Ift=I-1

B(IN1,8P1)=P(X)~S1{I1)~-52(X)

CONTINUR

DO 50 [=2,MP1

Intsi-1

DO S50 J=2,RP1

Jni=g-1

IP(I-J) &5,88,45

B(IN1, N 1)==S1(I)s(1.~ROD(I) ) A (I,J) #52 (I} *ROD{I) *A(L,J)

GO T0 S50
B(IN1,IN1)=~S1{I})® (1.4 (1.~ROD{I))*a (L, L))~-52(I)*(1.-ROD(T1 #A(L,I})
CONTINUE

CALL GAUSL(25,25,8,1,8)

5Q=0.

PO 60 I=1,¥

IP1=14) A

G(LP1) =G (IP1)-B(I,NPY) . ' B
saaseoa(x,lri)vtz 7
CONTINUR

Ir(sQ-1.D0~-06) 100,25,25 -,
CONRTINGR i1
RETURN

B0 47

w

Y
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SUBROUTINE GNVOL (NKOMP, X, VC, ACEM,

Inpﬁt Parameters:

Integer
NKOMP:
Real X:

Vector VC:

Vector ACEM:

Matrix TCT:

Real T:
Matrix TAU,
ANY:

Vector TC:

The Qutput Is:
Real VMIX:

TCT, T, TAU, ANY, TC, VMIX)

The number of components in the mixture.

The mole fractions of the NKOMP components in
the Tiquid phase.

Dimension [NKOMP] and contains the pure com-
ponents' critical volumes.

Dimension [NKOMP] and contains the pure com-
‘ponents' acentric factor.

Dimension [NKOMP, NKOMP] and contains the
pseudocritical constants (Tcij) which has

no physical significance except to charac-
terize bimolecular interactions between unlike
molecules, i.e. critical temperature ch;;gééw
teristic of the i;j interaction.

The temperature of the system.

Dimension [NKOMP, NKOMP] and contains the bi-
nary interaction parameters.
Dimension [NKOMP] and contains the pure com-

ponents" critical temperatures.

&
[

The saturalted liquid molar volume at the given

composition.
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GNVOL calculates the saturated molar volume at the given composition

using the suggested mixing rules for liquid mixtures in The

Properties of Gases and Liquids, 3rd edition.
GNVOL employs the following algorithm:
A: Calculate mixture properties by set of equations (I).
B: Test if Tr-i 0.93, go to C.
if Tr > 0.93,g0 to D.
C: Calculate new mixture properties by set of equations
(I1).
0: Cempute saturated molar volume with correct mixture
ﬁ%operties. ~

LIST OF EQUATIONS

SET.iI)

ch - Z xivci

i
The Pseudocritical Parameters:

Tem = Z} Y’J ®85Tcij
where Tcij = TCTij

8; = FFIi

‘.U_i =l;/,’ACEN .i

- xivci
i NKOMP
xkv

k=T “Kck
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= T/TCm

SET (IT)

TQg Corrected Pseudocritical Parameters:

T =T+ (T

cm cm - Tcm) - DTR

ct

V= Vg

cm cm -V_ ). DTR

ct cm

N

\
where TCt = E{:eiTci + ;1_: v 5__.: eieJTU
. |
Ve =0 05V, b2 Lo,

i g TiTgTid
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SUBEOUTINE GEYVOL(BKOSP,X,VC,ACEN,TCT,T,TAU,ANY,TC, VAIX)

SUBBOUTINE GEVOL CALCULATES THE MIXTURE PROPEBRTIES OSED I¥ THE
CALCULATION OF THE SATURATED LIQUID SOLAR YOLUME.

DEAENSION X(2),YC(2) ACEN(2),TCT {2,2) ,ANY (2,2),TAD(2,2),T(2)
DINENSION FPI(S),TETA(S)

YCE=0.

ACRER=0.

TCH=0.

DO 18 I=1,NKOHP

YCR=YCRe K (L) ¢ YC (1)

CONTINUER

DO 15 I=1,REKQBP

TPI(I)=X (1) #VC(I) /VCR

ACENA=ACENRPPI (I *ACER(I)

COoNrINUE

DO 16 I=1,BRQNP

DO 16 J=1,MKONP

TCH=TCHe PYI (1) *PPI (J) $4TCT(I,J)

CONTINGE

TRAIX=T/ICA

YCHN=YCA

1P (TRALIX-0.91) S50,50,20

vC23=0.

DO 21 I=1,BK08P

YC23=YC23I+X (L) *VC (L) #¢(2./3.)

cCOBTINUE

DO 22 1Is=1,BKOAP

TRTA (L) =K (L) #YC (L) ¢ (2. s3.) /¥C23 |
COUTINUE |
YNY=0.

PTAU=0.

VIC=0.

TTC=0.

DO 2& I=1,EK08P

Da 23 J=1,BK08P
leﬁ'l!&txrl(l)‘!le(J)UIIY(I.J)
TTAU=TTAUSTETA (1) *TETA (J) *TAU(L,J)
CO4TINUB

)
“YTCaVEC+TRTALI) ¢VC(I) i)

TTC=TIC+ TETA(I) *TC (L)
CONTINUE

YIC=VICs VBY

TTCaTIC*TTAU

CALL ITERZ(T,TYC,TCH,TRNIX,DTB)
YCHN=VCH ¢ (VTC~"CH) *DTR
TCA=T/TRELX

CALL MLMGN(TRNIX,ACENN,VRNIX)
YAIX=VRNII®VCEN

axTHOE

e
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SUBROUTINE INTDAL (X, ARG, VAL, Y, NDIM, EPS, IER)
Input Parameters: ] |

Real X: The experimental T1iquid mole fraction Qﬁere
interpolation value is desired.

VECTOR ARG: Dimension [NDIM] and contains the ordered, by
magnitude of distance, collocation points.

Vector VAL: Dimension [NDIM] and contains the corre-
sponding values of g for the ordered collo-
cation points in ARG.

Real EPS: Given numerical value for testing results ob-

tained in program.

Integer IER: An error code. o

IER = 0 implies no error (convergent),

IER = 1, 3 . ‘implies divergence and last
5 iteration value used for result.
Integer NDIM: States maximum number of collocation points.
The Dutput Is:
Real Y: The interpolated value of y pertaining to the

=~ given X experimental point,

IEIQAL computes the y; = f(xi) value where x; is }he experimental
(iiq;id mole fraction by four point Lagrange interpolation. The
algorithm consists of interpolatiocn using an increasing number of
interpolation points, (T;e. collocation points):
INTDAL employs the following algorithm: |
A: Test wheiher or not in the range and dimension of

the-matrix.
1 Lo
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B: Compute new approximation of y at the given x experi-
mental value.

C: Test approximation of new and old.
If/ y new - y old/ < EPS, go to E.
If/ y new - y old/ > EPS, go to D.

D: Recompute approximatien of y with increased number
of collocation points. Go to C.
E: Test for divergence; STOP.
LIST 6F EQUATIONS

Lagrange interpolation equation for y = f(x) where X5 is the

given mole fraction where value is desired:

P oxpaq) = Fieaq (g ) (0o )
Xk = XK1

e (X =

f(x) is approximated by iterations of increasing number of col-

location points included, fk+1(xk+1)'
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SUBROUTINE IltDlL(!,lRG.'AL.!,IDI! xPS IBR)
DIBZASIOR ARG (XDIN) ,VAL(BRDIN)
DOUBLE PRECISIOR ARG,VAL,X,Y.H
DOUBLE PRECISION DADdS
DOUBLE PRECISION EPS

IBR=2

DBLTZ=0.

Tz (uDIR-1) 9,7,1

DO & J=2,0DIN

DBLT ¥=DALT2

IERD=J2-~1

D0 2 I=1,IRND

H=ARG (I) -ARG(J)

Ireay) 2,13,2
'lt(&)’}'li(l)‘(X‘IIG(J))-VIL(J)‘(X-!RG(I)),/H
DELT2=DABS (VAL (J)~VAL(IEND))
I? (J-2) 6,6,3

IF (DRLT2-EPS) 10,10,%

I?(J-8) 6,5,5

IP (DERLT2-DELTT) 6,11,11
CONTINUR

J=EDIH

E=VAL(J)

BETURN

IEB=Q .

GO To 8 =
IER=}

J=IBND

GO To 8 ‘

IER=] Y

G0 TO 12

zmo .

A



SUBROUTINE INTP (X, Z, F, WORK, IROW, ICOL, ARG, VAL, NDIM)

Input Parameters:

Real X:
Real Z:

Real F:

Iiiteger IROW:

;nter ICOL:

Integer NDIM:
The Qutput Is:

Real Vector

ARG:

Real Vector

VAL:

" The experimental Tiquid mole fraction where

interpolation value is desired.

Dimension [IROW] and contains the set of col-
locations points, {.e. xi:=%>i = 7, IROW).
Dimension [IROW] and contains the corra-
sponding values of y at each collocation point,
(i-e. y; = Fx;)).

Denotes the number of elements given in a
column vector, states size, (i.e. dimension).
States number of column vectors used in inter-
polation.

States maximum number of collocation points to

be used in the interpolation algorithm.

2
;

s
g
4

Dimension [IROW] and contains the values of
the collocation points in increasing order of

magnitude of distance from X experimental.

Dimension [IROW] and contains the values of

y corresponding to the collocation points

ordered in ARG. 7.

U/

INTP orders the collocation vectors according to distance from



-86-

the X experimental point and places the values in ARGi and VALi.

INTP employs the following algorithm:

A:

Test whether desired point is within the range.

If number of rows L.E., then quit.

If number of rows G.T., then use last value.

Work. = |aX.].

Find and set B = maximum value of [aX,].

Find value IT corresponding to the minimum distance
value of Xi to the minimum distance value of Xi

to the X experimental value.

Put values corresponding to the minimum into ART
and VAL vectors;

Eliminate test for all previous values set in ARG.
and VAL vectors.

Return to B to test remaining collocation points.
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SUBROUTINE INTP (X,2,Fr,WORK,iROW,ICOL,ARG, VAL, NOIN)
DINENSION Z (KDIR),P (NDIN),WORK(WDIN),ARG(NDINR), VAL (NOIN)
DOUBLE PRECISION DABS
DOUBLE PRECISION X,P?,%,VORK,ARG,VAL,B,DELTA
IP (IROW) 11,11,1

n=NDIN

1P (n-Ipow) 3,3,2

#=1ROWN

B=0.D0

DO 5 I=1,IRO0N
DELTA=DABS (X {1) -X)

IP (DBLTA-B) 5,5,8 °
B=DELTA

VOBK (I)=DELTA

B=Be 1. D0

DO 10 Je=1,¥

DELTA=B

D0 7 I=1,IR08

1P (VORK{L)-.DELTA) 6,7,7
1=t

DELTA=WORK (I)

CONTINDE

ARG (J) =2 (L1}

1P (IcoL-1) 8,9,8

YAL (2¢J-1)=P (1)
IXII=II¢IRON .
YAL(24J) =P (IX1)

G0 1O 10

YAL(J) =P (11)

BORK (1) =8

RRTUAR

EwD
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SUBROUTINE INTRP (ND, NT, X, ROD, FA, XINTP)
Input Parameters:

Integer ND,

NT: As in JCOBI.

Real X: The abscissa x where y(x) is desired.

Vector ROD,

FA: Dimension [NT] and contains the zero roots of
the Jacobi polynomial plus the first deriva-
tive of theJacobi polynomial at the zero
roots.

The Output Is:

Vector XINTP: Dimension [NT] and contains the interpolation

weights Lf(x) used for the approximation of

y(x).

INTRP finds the interpolation weights for a given x by a four
point Lagrange interpolation and then places them in vector
XINTP. This can be done for any X value within the 1imits of the
given root and FA.
INTRP employs the following alforithm:
A: Generate the polynomial PNT(XA).
B: Evaluate the Lagrangian interpolation coefficients.

'LIST OF EQUAT IONS

Let Xp = X the abscissapoint where y is desired.

X; - the zero roots of the Jacobi polynomial.

LT the Tth degree of a Lagrange interpolation polynomial.
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(1) denotes first derivative.

CP(%,)
o ) NT XA
NINTP(1) = Li(x,) = — (1)

(xq = x;)Pyp” (x4)

Once values of y at the roots are known (yi)’ the value of

y at any point within the domain may then be computed by:

ylxy) = ;§§ XINTP(i)ey(i)
i=
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SUBROUTINE INTRD(ND,),X,ROD, PA,XINTP)

SUBROUTINE INTRP DETERBIRES THER WEIGHTS XINTP USED [N THE
LAGRANGIAN IBTEBPOLATION

DOUBLE PRECISION X,Y,POL,BOD (ND) ,PA(ND) ,KINTP (ND)
POL=1.

DO 5 I=1,N

Y=X~-ROD(1I)

KINTP (L) =0.

IP (Y.2Q.0.) XINTP(I)=1.
POL=POL® Y

IF (POL.EQ.0.) GO TO 10

po 7 I=1,n

IINTP (I) =POL/PA (I} / (I-ROD(I))
RETURE

END
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SUBROUTINE IPOINT (J, NUMPT, ARRAYP,

SSCALE, BSCALE, POINT, SYMBOH)

Input Parameters:

The

Vector

SSCALE:

Vector

BSCALE:

Vector

ARRAYP:

Integer J:

Vector NUMPT:

Vector

SYMBOL :

Output is:
Vector POINT:

3

An array containing the mini;um value from the
prominent ordinate scale reading of each

data set.

An array containing the maximum value from
the prominant ordinate scale readings of

each data set.

An array containing the ordinate values for
the given data set to be plotted.

A number which indicates the desired data

set to be plotted.

An array containing the number of data points

in each data set.

An array containing the symbols designated

for all data sets.

An array containing the given symbal for the
data set of interest and the symbol is located
in the appropriate position in the 101 charac-

ter Tong array.




=02~
"I
IPOINT computes the right location for the symbol in its 101
character long array, POINT. It then places the designated
s.mbol for the given data set into that position and returns

to PLOT for plotting.
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SUBROUTINE IPOINT (J,NUNPT,ARRAYP,SSCALE,BSCALE, POINT,SYNBIL)
DIMENSLON SUMPT (10) ,ARRAYP(10),SSCALE(10),BSCALE(10)

INTEGER U,POINT (101),.SYBBOL (10) , BLANK

DATA L/*'L'/,0/°0%/,BLANK/® */

DO 1 K=1,101 )

POINT (K) sBLANK

COHTINUR

DO 6 I=1,10

IF (J.GT.NUMPT(I})) GO TO 6
YALLS=IPIX(100.0% (ABRAYP(I) ~SSCALE(I)) /(BSCALE(I) ~SSCALE(L)) ¢0.5)
YAXIS=YAXIS +1

IF (YAXIS-101) 3,3,2
POINT (101) =0

6O T0 6

IF {IAX1S5-1) A1,5,5 .
POLNT (1) =L . o
GO TO 6

POINT(YALIS)=SYMBOL (I)

CONTINGE

RETURN

END

N
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SUBROUTINE ITERE (T, TCT, TCM, TRMIX, DTR) ..
I
Input Parameters:

Real T: The temperature of the system.

Real TCT: The true mixture critical temperature.
Real TCM: The pseudocritical temperature of the mixture.

The Output Is:
Real TRMIX: The reduced temperature for the mixture.
Real DTR: A deviation function expressed in terms of

the reduced temperature TRMIX.

ITERE used an iterative procedure in the computing of TRMIX by

using the eduations (4-10.7) and (4-10.9) from The Properties of

Gases and Liquids, 3rd edition. Also, if failure to converge to

a value results, a printout is obtained with the best approxi-
mation of TRMIX used.
ITERE employs the following algorithm:
A: Initial approximation to TRMIX.
B: Set iteration counter.
C: Compute value of DTR.
D: Test TRMIX old with new approximation.
If TRMIX (01d) - (new) < 10, go to E.
If TRMIX (old) - (new) > 10‘8, go to B.

E: Compute DTR with new approximation and return.

LIST OF EQUATIONS

(4-10.7) Tém =T..+ (TCT - Tcm)-DTR

cm
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(4-10.9) DTR = (1) ) = EXP (T, - 1)(2901.010)

- 2 104147
- 5738.92 ‘rm + 2849.85 Trm + TTW}
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SUBROUTINE ITERE(T,TCT,TCH,TRAIX,DTR)

SUBROUTINE ITERR FIXDS THE AIXTURE REDUCED TENPERATURE USING
REGULAFALS

nnno

DOUBLE PRECISIOW TR{,TR2,TR3,TRTRU,TEM,TRD,DTRO,P1,F2,F3
DOUBLE PRECISION DASS,DEXP

200 PORMAT(1HO,* ITERE PAILS TO CONVERGE I¥W SO LTERATIONS®)
UHE=26
TR1=0.9
TR2=1.0
TRTRU=T/1CT
TRA=T/TCA
TIA=TRA/TRTRYU-1.
P1=(TBRA/TE1=1.) ~TRASDRIP (~6. 019D 00)
P2=TRE~1.~TRN
ITER=0

5 ITER=ITER* 1
IP (ITER-50) 6,6,39

6 TRI=TR2-F2¢ (TR2-TR1) / (P2-P1)
DTRO=DEXP ((TR3-1.D 00) *(2.90101D 03-5.73892D 03*TR3+2.84935D 03
18TR3%22+1.78127D 00/(1.01D 00-TR3)))
F3=(TRR/TRI-1.)-TRNSDTRD
IP (DABS (TR3-TR2).LT.1.D-08) GO 70 50
1P (DABS(TR3~TR1) .LT.1.D-08) GO TO S0
Ir(F2+r3) 25,50,23

23  TR2=TR}
r2=r3
GO 10 S

25 tRI=TR3
ri=r3
G0 10 5

39  WRITE(NUR,200)

50 CONTINUB
TRAIX=TR3
DTR=DTED
RETURN
Rup

o
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SUBROUTINE Jco8I (ND, N, NO, N1, AL, BE, FA, FB, FC, ROOT)
Input Parameters:
Integer ND: The dimension of vectors FA, FB; FC, and ROQT.
Integer N: The number of interior interpolation points.
Integer NO,
N1: Tells’whether the end points are included.
If NO, N1 = 0, endpoints excluded.
If NO, N1

1, endpoints included.
Real AL, BE: The values of a\andrﬁ which denotes the quticu—
Tar Jacobi polynomial used.
The Qutput Is: I
Vector Root: Dimension [NT] and contains the zero roots to
the given Jacobi polynomial.
Vector FA,
FB, FC: Dimension [NT] and contains the first, seéond

and thirddgrivativesat the zero roots of the

given Jacobi polynomial.

JCOBI first calculates the coéfficient for the recursion formula.
Then the zeros of the po]yndﬁia] are found by a Mewton ﬁethod,with
root suppression. Finally, the deriviatves of the Jacobi poly-
nomial are evaluated at the zeros.
JCOBI emp]oys the following algorithm:
A: Evaluat{on of coefficients in reeursion formulas.
B: Store coefficients in FA and FB.

C: Determination of roots by Newton method with
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SUBROUTINE ITERE(T,2CT,TCH,TRALX,DTR)

SUBROUTINE ITERE FINDS THE MIXTURE REDUCED TEMPERATORE USING
REGULAPALS

DLUBLE PRECISIOW T8%,TR2,TR1,TATAU,TAN,TRD,DTRO,P1,F2,P3
DOUBLE PRECISION DABS,DEXP
200 FORNAT(1H0,' ITERE PALLS TO COMYERGE If 50 LTERATIONS?)
BUE=6
TR120.9
TR2=1.0
TRTRU=T/TCT
TRE=T/TCA
7 TRA=TRM/TRTRU-1.
P1=(TRH/TR1-1.) -TRN&DRXP (-6. 019D 00)
P2=TRM~1.-TRN
ITER=0
5 ITER=ITER+1
ir (ITER-50) 6,6,89
6 TI=TR2-P2% (TR2-TR1) /{P2-F1)
DTRD=DBXP { (TR3-1.D 00) #{2.90101D 03-5,73892D 03¢TR3+2.84935D 03
1srR32824+ 1. 781270 00/(1.01D 00-TR3})))
P3= (TBN/TRI-1.)-TRNSDTRD
IP (DABS (TB3~-TH2).LT. 1.D-08) GO TO 50
IP(DABS(TR3~-TR1) .LT.1.D-08) GO 7O 50
1r (P2sP3) 25,50,23
23 rR2=Ta3
P2=F)
GO 10 S
25 TRI=TR3
Fi=p3
GO 10 5
&y  @AITE(NUR,200)
50 CONTINUE
TRRIT=TR3
DTR=DTRD
RETURN
EXD
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SUBROUTINE JcoBr (ND, N, NO, N1, AL, BE, FA, FB, FC, ROOT)
Input Parameters:
Integer ND: The dimension of vectors FA, FB, FC, and ROOT.
Integer N: The number of interior interpolation points.
Integer NO,
NT: Tells whether the end points are included.

If NO, N1

0, endpoints excluded.
If NO, N1 = 1, endpoints included.
Real AL, BE: The values of « and B which denotes the particu-
Tar Jacobi polynomial used.
The Output Is:
Vector Root: Dimension [NT] and contains the zero roots to
the given Jacobi polynomial.
Vector FA,
Fg, FC: Dimension [NT]‘and contains the first, sacond
and third derivativesat the zero roots of the

given Jacobi polynomial.

JCOBI first calculates the coefficient for the recursion formula.
Then the zeros of the polynomial are found by a Newton method with
root suppression. Finally, the deriviatves of the Jacobi poly-
nomial are evaluated at the zeros.
JCOBI employs the following algorithm:
A: Evaluation of coefficients in reeursion formulas.
B: Store coefficients in FA and FB.

C: Determination of roots by Newton method with
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suppression'of previously determined roots.
D: Add interpolation points at end points.
E: Evaluate the derivatives of polynomial and
store in FA, FB, and FC.
LIST OF EQUATIONS

The Coefficients of Recursion Formula:

2 _ g2
B +1 o - B
9y = > gy = V2l - ]
ToetBr2 N (2N +a+B+1)% -1
he =0 o= —N-T)(N+oa-1)(N+B=-T)(N+oa+B-1)
TN T 2
(N+a+B-T1)2N+a+B-2)°(N+a +B- 3)

Root Determination:

= i) _ K
P = D" - 950P50 - AyP5,

1 i 1 1
P§ )= i) gj]Pg ) o1 - thg_% £ Py
(1)
5(x) = /P
(v
1 - (p,/pPt 1
(Py/P ’512'(3] oy

where P0 =]

NG
q =

Newton Iteration:
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g (1) 2y (1=1) g (i=1)4

K+1 K+1 K+1
where x(o) =x, + ¢ and ¢ is a fixed value, e 1074
K+ T XK > &9 '

Derivatives:

(1) - i}

Py 6] = O = )P ()

(2) - _ 2)

Pj (x“l) = (Xi Xj)P -1(Xi) + 2P3_1(x1-)

n
—
>

(3)
Pj (xi)

Starting with P§1)(Xi) =1, P$2)(xi) = P§3)(Xi) =0

g are the zero root approximations.

Sg is the interval in which zero Xy is located.

(1), (2), (3) are indexes of the node telling what degree
derivative is taken.

i, J are subscripts which denote the particular independent

variable used in interpolation routine.
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SUBROYTINR JCOBI(WD,W,H80,x1,6AL,B2,FA,FB,PC,ROO0T)
'SUBROUTINE JCOBI CALCULATES THE ROOTS GF TRE JCOBI POLINOAIAL

DOUBLE PRECISION AL,BE,PA(RD),PB (ND),PFC(ND),ROOT(ND),X,Y,2,R,AB,
1AC,AD,AP,XD,XH,XP,1D1,XN1

11

10

26

3o

23
21

20

"
35

a0

DOOBLE PRECISION DABS
AB=AL+BE

AD=BR-AL

AP=BESAL
PA(1)= (AD/ (AB+2.)¢1) /2.
PB (1) =0. .

DO 10 I=2,H0

K=281-2

I=4D+K
rl(I%-(IB/Z‘ID/(ZOZ.)#1.)/2.
k=1~

I? (I.8B.2) GO TGO 11
PB{L)= (ABSARK) /2/Z/(2%1.)
GO T0 10

Z=Z el

Y=K* (AB+K)

Y=Y® (AP+Y)
PB(X)2Y/3/(2~1.)
CONTINUE

X=0.

DO 20 I=1,%

I0=0.

XD 1=0.

Xi=1,

IN1=0.

DO 30 J=1,%

XP={(FA (J) =X) *XN=FB(J) * XD

XP 1= (FA (J)=X) ¢IN1=-FB(J) *XD1~XB

ID=X§

pi=I01

IN=XP

Iri=xpP1

T=1a

T=IN/XMY

IP(I.8Q.1) GO TO 21
DO 23 J=2,1

Y=Y~Z/ (X-ROOT (J~1) )
=2/

I=X-2
IP(DABS(Z).GT.1D-9) GO TO 26
ROOT (X) =X

X=X+0.0005

CONTINUR

| b <d 22 AR |

IP (M-¥E.1) GO 20 1%
PO at I.‘..

ROOT (B¢ 2~1) sROOT (¢ 1=1)
RGOT (1) =0.

IP(81.8Q.1) ROOT{RY)=1.
DO 40 I=1,NP

X=R00T (I}

PA(I)=1.

P8(I)=0. \

rC (I) =0,

DO 40 J=14,n%

I? (J.BQ.I) GO TO &0
Y=X-R0OT (J)
FC(I)=T*PC (1) ¢3.¢FB (I)
PB{I)=T+PB (I) 42.¢P4 (I)
FA (L) =T*PA(I)
CONTINUE

RETURN

END
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SUBROUTINE LEFIT (X, Y, N, K)

Input Parameters:

Real X:

Reay Y:

Integer N:

Integer K:

The Output Is:

The experimental mole fraction of component
one in the liquid phase.

The experimental pressure of system at a given
XEXP.

The dimension of vectors X and Y, (i.e. number
of data points).

The degree of the Legendre polynomial used for

fisting the P-X data.

By a common statement

Vector AA:

COMMON/LEG/AA
Dimension [K + 1] and contains the coefficients.
to the fitting function which represents the

deviation from ideality, (i.e. Raoult's Law).

LEFIT fits P-X data to a curve using Legendre polynomials and calls

for GAUSL, a Gaussian elimination mehtod, to solve A * X = B where

X is the vector AA.

At 0.02 = aAX discrete intervals the pressure

of the system is evaluated by the fitting function.

LEFIT employs the following algorithm:

A: cCalculate S{I) (deviation of Raoult's Law) at

data points.

B: Formulate curve (deviation of Raoult's Law) with

S(I) as a weighting function.
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C: Formulate matrix with unknown coefficients.
D: Invert matrix (solve for AA) (call to GAUSL).
E: Compute system pressure at 0.02 discrete jumps.

LIST OF EQUATIONS

Deviation Function:

S(1) = Pgyg = P32 - (1 - ) - P3%%

Weighting Function:
x(1 - x)

Fitting Function:
c(1) Zbi] s(3)x(1 -/{)Pi(x)
i= <

where Pi(x) = ith degree Llegendre polynomial.

T

|

,JJ‘
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SUBROUTINE LEFIT(I, Y, N,K)

SUBROUTLMNE LEPIT

CTL10¥ CONTAIMING

naoon

DOUBLE PRECISION
DOUSLE PRECISIOM
DOUBLE PRECISION
DOUBLE PHECISIONM
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PREBCISION
DIAENSLON NUNPT ()

PITS INDIVIDUAL POI“TS O A CURVE WHERE X IS IHE

INDEPENDENT VAHIABLE AND Y IS THE DEFENDENT VARIABLE USINS A PON-~

LEGEMDRE POLYMOMIALS AS THE FLTTING FUNMCEION,

12,X3

PP

1

DPLOAT

C(21) .B(25,25),AA{21),PPP(51)

X (25) ,¥(25) ,S(25)

POLEG ,
0) ,PTITLE(29) ,YSCALE(10,11),ISCALE(300), I

1 ABSAY (10,300)

COHMON/LBG/AA
CONMOMN PTITLE

500 FPOHMAT (10 (8£10-4,/))
501 FPORMAT (1HO, *INTERPOLATED PRESSURE-VALUES POR X IN THE INTERVAL
1BETWEEN 0.0 ANMD 1.0 . VALUES POR DISCRETE JUMPS QF 0.02 IN X°,/,

2' A LEGEMDRE POLYNONIAL OP DEGREE *,I12,?

308°)

NiR=6

KB 1=K+1

DO 1 I=1,KPI
1 C(I)=0.

DO 2 I=1,KP1

Do 2 Jd=1,KP1
2 B(I,J)=0.

DO 3 I=1,N

IS USED AS PLITTING FUNCTE

3 SUL}=X(0)-Y (1) * (1.—X(I) ) =¥ (¥) *X (I)

DO 4 IB=1,KP1
DO 4 Ja, N
X3=X (J)

4 C(Lb) =C(IB)+S (J)*X{J)* {V.-X (J)) * POLEG (X3, LB}

DO 5 MA=1,KP1
D0 5 L=1,KP1
DO S KA=1,M
12=X (KA)

5 B(NA,L)=B({¥A,L)+X(KA)®®2 »(1.—-X (KA))*%$2.%POLEG (X2,NA) *POLEG (X2, L)

DO 6 I}, KP1
KP2=Ke2
6 B(I,KP2)=C(I)

CALL GAUSL (25,25,

DO 7 I=x1,KP1
) AM(I)=B(L,KP2)
DO 8 LA=1,51

KP1,1,8)

X1=2.D-02¢DFLOAT (IA=1)
CALL PCAL{Y(1),Y(M) ,X1,PP,KP1)

8 PPP (IA)=PP
DO 99 I=1,51

99  ARRAY(1,I)=PPP(I)
WRITE(WWR,501) K

 WRITE(NWR,500) (PPP(I),I=1,51)
" CALL SCALB(XSCALE,YSCALE,X,Y,N,ARRAY,NURPT,2)
CALL PLOT (ARRATY,HNUAPY, PTITLE,YSCALE,ISCALE, 1)

ARTURN
END
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SUBROUTINE MCVOL
.. This subroutine will be supplied on request. It provides
‘%he specific volume of the 1iquid phase ufi]izing the information

contained in Reference 10.

Rt
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SUBROUTINE MLMGN (TR, ACEN, VR)

Input Parameters:

Real TR: The reduced temperature of the mixture, (i.e.
TRMIX).
Real ACEN: The acentric factor for each pure component.

The Output Is:

Real VR: The reduced Tiquid mixture molar volume.

MLMGN uses the correlations of Lyckman, Eckert, Chueh and Prausnitz

for calculating the 1iquid density of the mixture. The coefficients
in

for the (virial) reduced volume equation, page 64 in The Properties

of Gases and Liquids, 3rd edifion, are given in the table along
with the equation (3-15.21) for VF(J) and (3-15.20) for VRMIX.
LIST OF EQUATIONS

2
r

3.8
+ djTr gt fi.ln(_l-'rr)

.+ b.T +cC.
a bJTr cJT n

r J

P
_c_y (o) 1y, 2, (2
Vv o VY‘ + w VY‘ + w Vr

Vr(J) = A generalized reduced molar volume functinn for saturated

1iquid.
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209
211

210

213

218
215
216
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SUBROUTIHNE ALEGN(TR,ACEN,YR)

SUBHOUTINE NLAGN CALCULATES THE REDUCED LIQUID AIXTURBR MOLAR
YOLOBE OSING THE LYCKMANN ECKEHT CHUEH CORRELATION

DINENSION TBR(3),VRR(3),Y(I)

DINERSION A {3),B({3).C(3),0{3} (D) .B(I)

DATA A,B,C,D,B,?/0.11917,0.98865,-0.55314,0.009513,~-1.60378,
1-0.15793,0.21091,1,.82884,-1.01601,-0.06922,-0.61432,0.38095
20,.078080,-0.385%6,0.86795,-0.084476,0.087037,-0.239938/

TRR(3) =TR

IP(TR-0.995) 209,209,211
I=3

G0 1O 210
TRR (1) 20.995
TRE(2)=1.0
I=1

YRR (I)=0.

DO 213 J=1,3

V(J) =2 (J) ¢B (J)*TRR(I) +C(J) *TRA(I) ¢¢2+D(J) *TRR (I) ** IR (J)/
1TRR(I) ¢ P (J) *ALOG (1.—-TRR(I))

CONTIBUR

VYAR(I) =V (1) ¢V (2) *ACEN+T(3) *ACEN#+2
IP(2-1I) 216,215,214

TRR(2)=1.

YBR(3)=YRA (1) * (YRR (1) ~VRR(2) ) / (TRR{1) ~TRA(2) ) *(TRR(3) ~TRR( 1))

TR=VRR(3)

RETURS

ERD



SUBROUTINE PCAL (P2S, P1S, X, PP, K)

Input Parameters:

Real P1S,
pes:
Real X:

Integer K:

The Qutput Is:

Real PP:

The pure components' vapor pressures.

The mole fraction of component one in liquid
phase in which the pressure of system is
desired. ,

The degree of the Legendre polynomial used
for fitting curve.

%he pressure of the system at the given mole

fraction X.

PCAL evaluates the pressure of the system at a given composition

by use of Raoult's Law added to the computed deviations. The

deviation function is computed by the coefficients of AA and

the appropriate Legendre polynmials.

PCAL employs the following algorithm:

A: Genefates deviation fpnctionﬁby Legendre poly-

nomial & AR coefficients.

B:

Computes pressure by addition of Raoult's Law and

deviation function.

Deviation Function:

LIST OF EQUATIONS

ALES - Z'ﬁ]AA(:n.Pi(:x)
1=
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Raoult's Law:

_ sat sat sat

System Pressure:
Psys =PP =P
where x(1 - x) is the chosen weight function.

+ x(1 - x)ALEG

P(deviation)

e
1}

P(ideal) + P(deviation)

P33%x + P32%(1-x) + ALEG- x(1-x)
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SUBRQUTINE PCAL(RP25,P1S,X,PP,K) !

SUBRQUT[HE PCAL CALCULATES THE PRESSURE OF A BILNARY ‘I
KHERES (COMPUNENT 1 HAS THE MOLE PRACTION X. I

DOUBLE PRECISION POLEG

DOUBLE PRECISION AA(21),PP,ALEG,IX
DOUBLE PRECISION P1S,P2S
COMMON/LEG/AA

ALEG=0.

DO 1 L[L=1,K
ALEG=ALEG *AA (IL) ®POLEG (X,IL)

PP=P2S* (1.~ X} ¢ 1S*X+ (1.-X) ¢X#ALEG
BETURN re
EHD
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SUBROUTINE PCALA (P2S, X, PP, K)
Input Parameters:
Real P2S: The pure component two's vapor pressure.
Real X: The normalized value for the mole fraction of
component one in the Tiquid phase.
Integer K: The degree of the Legendre polynomial used
for fitting the curve.
The Qutput Is:
Real PP: The pressure of the system at the given mole

fraction X.

PCALA evaluates the pressure of the system at a given composition
by use of the computed deviation function. The deviation function
is computed by the coefficients of AA and the appropriate Legendre
polynomials. Since the Legendre polynomials range from zero to
one, the mole fractions used must also be normalized.
PCALA employs the following algorithm:
A: Generates deviation function by Legendre
polynomials and AA coefficients.
B: Computes pressure from fitting function at the
desired normlalized mole fraction.

LIST OF EQUAITONS

Deviatijon Function:

ALEG = Ef;AA(i)(x)
1=

_ nSa -
Pys = P2 F1 = x) + x(ALEG)
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where x is the chosen weighting function.

Psat

sys

x(normalized)
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SUBROBTINE BCALA (P2S,1,PP,R)

SUBROUTINE PCALA CALCULATES THE PRESSURE OF A BINARY MIXTURE
YHERR COAPOMERT { H23 THS NOLE PRACTION X.

DUUBLE PRECISIOR POLEG

DOUBLE PRAECISION AA(21),PP,ALEG,X
DOUBLE PRECISION P1S,P2S
CONHON/LEG/AA

ALEG=0.

DO 1 IL=1,K
ALEG=ALEG¢AA {IL) *POLEG (X, IL)
PP=P23® (1.-X) +X*ALEG

RETURS
END

.



-113-

SUBROUTINE PLOT (ARRAY, NUMPT, YTITLE, YSCALE, XSCALE, XMARK)

Input Parameters:

MATRIX ARRAY:

Vector NUMPT:

Vector

YTITLE:

MATRIX
YSCALE:

Real XMARK:

A matrix containing ordinate values for up to
ten data sets which are to be plotted.
An array containing the number of data points

in each data set.

An array containing the title for the plot

(up to 116 characters).

A matrix containing the prominant ordinate

markings for the plot.

The number of divisions bhetween prominate ab-

cissa markings.

PLOT will plot up to ten sets of data consisting of 300 data points

each on a single graph. It plots the prominent ordinate markings

for each data set and plots the prominant abcissa markings for the

graph. Each particular data set is assigned a letter in order to

distinguish it from the others. The ordinate values are also

identified by the same assigned letter.
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SUBROUTINE PLOT (AHRAY, NUMPT, YTITLE, YSCALE, XSCALE, XMARK)
INTEGER SYMEOL(10),POLNT{101),XMARK

DIMENSION AHRAY(10,300),NUNPT{10),YTITLE(29),YSCALE(10,101,
1 SSCALE(10) ,BSCALE{10) , ARHAYP (10} ,XSCALE(300)
DATA SYHBOL/'I','B','C','D','E‘,'P','G','H'.‘I','J'/
NB=5

NN=6

4BITE (¥¥,500) YTITLE

PURMAT (19 ///1X,29A4//7/)

DO 1 I[=1,10

IF (HUMPT(I).LE.C) GO TO 1

WAITE (NW,510) SYMBOL(I), (YSCALE(L,J),J=1,11) ,5YNBOL (I)
FOBBAT (5K, A1,1X,11P10.2,1%,A1)

CONTIHUE

WRLTE (MW,520)

POHMAT (5X,11(9%,°I%)/131,103('X"))

HSAVESMUMPT {1)

DO 2 I=1,10

IP (MUMPT(L).GT.HSAVE) MNSAVE=NUMPT (I)

SSCALE (I)=YSCALE(I, 1)

BSCALE {1) =YSCALE (L, 11)

CONT LHUR

BAHK=XHARK~ Y

DO 4 J=1,HSAV®

DU 3 I=1,10

ABBAYP (X) =ABRAY {I,J)

CONTINUE

CALL IPOINT (J,NUNPT,ARBAYP,SSCALE,BSCALE, POINT, SYNBOL)
WHITE (HW,530) EOINT

PORMAT (33X,0X°,10141,7K")

HABK=HAKK®+ 1

IF (MARK.LT.IMABK) GO TO 4

NARK=0

WRLTE (MW,540) XSCALE (J/XMARKe1)

FORMAT (%+°,P9.2,1X,%==0_,103X,¢==~"*)

COHTINUE

WRITE (HW,550)

FORMAT (13X,103¢'X*)/5X,11(9X,'1"))

WRLTE (MW,560)

POBMAT (*11)

RETURN

END
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SUBROUTINE PLTRE (XCOF, COF, M, ROOTR, ROOTI, IER)
Input Parameters:
Vector XCOF: Dimension [m+1] and contains the m plus one
coefficients to the {virial) equation of state.
Vector COF: The working vector of dimension [m+1]
Integer M: The order of the polynomial to be solved for
roots.
The Qutput Is:
Vector ROOTR: Dimension [m] and contains the real roots to
the polynomial.
Vector ROOTI: Dimension [m] and contains the corresponding
imaginary roots to the polynomial.

Integer IER: Error code where

IER =0 no error,

IER =1 m less than one,

IER = 2 m greater than 36,

IER = 3 unable to determine root with 500
iterations on 5 staring values,

IER = 4  high order coefficient is zero.

PLTRE computes the real and complex roots of a real polynomial of
degree 'm'. The subroutine uses a Newton-Raphson iterative
technique for computing a new approximation and then tests the
result in the original polynomial.

PLTRE employs the following algorithm:

A: Zero initial value of counter.
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(v~

Increment initial values and counter.

(]

Set X and Y to current value.
Evaluate the polynomial and the derivatives.
Step up counter value.
F: Check number of iterations taken,
If .GT. 500, return.
If .LE. 500, go to C.
G: Place roots in vectors ROUTR and ROOTI.
LIST OF EQUATIONS

f(z) = ZD: anZn

n=0

Given Polynomial:

implies n n
let Z = X - Y === 7 = (X + iY)

Initial Values:

XO

1,YO = 0 wheren =0

Recursion Formulas:

Xn = X-Xn_] - Y»Yn_1
Yn =X - Yn-1 +Y - Xn—]
:fi N
U=a_ + a_X v = a Y
o &nn p=] NN
3 3V ﬂ
Eraip A (L3 SNREY- v -l,nY
oX &= "n=1"n Y =y n-1n
Newton-Raphson Method:
3 _ du aU , U
AX = (V3y - Ugp) AY = -(U5y + Vix
DET > = DET

2 .
where DET = (%) ¥ (%%3—
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Next Iteration:

X + aX

xl
Yl

Y + Y
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SUBROUTINE PILERBR(XCOP,COP,H, ROOTR,R002I,1TER)

SUBROUTIAE PLTRE CALCULATES THE BOOTS OF A ¥*TH DEGREE POLYNONTAL
THE SUBROUTINE IS A STANDARD IBA SSP BOUTINE

DOUBLE PRRCISION XO0,Y0,X,Y,XPR,?PR,UX,0Y,V,IT,XT,U,KkT2,YT2,S0N85Q,
1DX,0Y, TEAR, ALPHA

DOUBLE PRECISION XCOP(H8),COP(%),R00TR(3),RO0TI(3)

DOUBLE PRECISION DABS

10

15
20

25

30

J2
35

40

45

50

55

LAl
A

65

70

IrIiT=0
i=n
ITER=0

IP (XCOP (N¢1)) 10,25,10

IP(N) 15,15,32

SET ERROR cong to 1
ITER=1

RETURN

SET ERROR CODE tO 8
ITRA=y

G0 TO 20

SET RRROR CODR T0 2
ITRE=2

GO T0 20

1P (N-36) 35,35,30
Nx=y9

NXX=H41

N2=1

XJlale §

DO 40 L=1,KdJ1
BT=KJ1=Le¢ 1

COP (HT) = XCOPY (&)

SET INITIAL VALUES
20=0,00500101
10=0.01000101

ZERO INITIAL VALUE COUNTER

IN=0
X=X0

INCREMENT INITIAL VALDES AND COUNTER

X0=>~10.0¢Y0
Y0=-10.0¢X

SET XASD Y T0 CURRENT VALURE

=10
I=Y0
IN=LH+ 1
60 TO0 59
IFIT=1
IPR=X
TPR=Y

BVALUATE POLINONLAL AND DRRIVATIVES

ICT=@

01=0.0

UT=06.0

v=0.0

1720.0

1T=1.0

U=COF (e 1)

IP(0) 65,130,65
DO 70 T=t,M
LaN=k¢1
TENP=COP (L)
IT2=XeXT-YOIT .
IT2=X*IT+ YOXT
UsGeTERP*IT2
VaVeTENPS YT2

PI=I

UX=UXs PISXTSTENP
OY=0Y~PISYT+TENP
XT=XT2

TT=IT2
SURSQeOX#UKeUTOTY
Ir(sensq) 7%, 110,79



75

78
80

85
90

95
100

105

110
115

120
122
125

130

135

140

185
150
155

160

165

DI=(V*DY~U®TUX)/SCASQ
I=XeDX
DI=— (U#UT+V8OX) /SUASQ
Y=T+DY

ot
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IF (DABS (DY) ¢DABS (DX)~1.0D-05) 100,80,80

STEP ITERRATION COUNTER
ICT=ICT+ 1

1? {1CT-500) 60,85,85
IP(IPIT) 100,90,100
1P (IN~-5) S50,95,95
SET ERROR CODE TO 3
ITER=3

GO TO 20

DO 105 L=1,NKX
BT=KJ1-L+ 1
TEAP=XCOP (AT)

XCOP (NT) =COF (1)

COP (L) =TEBNP

ITERR=N

N=HX

HX=ITENP

Ir(IriT) 120,55,120
IP{IPIT) 115,50,115
X=XPR

Y=YPR

IFIT=0

LIF {DABS{Y)-1.0D-0&#DABS (X))
ALPHA=X+X
SURSQeXe e Yy

N=ll-2

G0 TO 180

I=0.0

yx=Nx=-1

#XX=NxX-1

T=0.0

SUNSQ=0, 0

ALPHA=X

NaN-1

COP (2) =COP(2) +ALPHASCOP (1)
IP(¥.2Q.0) GO TO 155
Do 150 L=2,8

COF (L+1) =COP? {L* 1} +ALPRASCOP (L) ~SUASQ®COP(L-1)

BOOTI(B2)=Y

BOOTR (N2) =X .
N2=N281

LP (SUNSQ) 160,165,160
I=-Y

SUNSQ=0.0

GO TO 155

IP(¥) 20,20,5%

END

135, 125,125
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SUBROUTINE PNRPV (NKOMP, X, AL, BL, R, T, V, VPART)

Input Parameters:

Integer il
NKOMP : The number of components in the mixture.
Vector X: Mole fractions in liquid phase for the

NKOMP components.

Real AL, BL: The mixture parameters for the 1iquid phase
(no physicat significance) which pertain
to the conséants A & B in the Peng-Robinson

equation of state.

Real R: The universal gas constant.
Real T: The temperature of the system.
Real V: The 1iquid molar volume of the mixture.

The Output Is:
Vector
VPART: The partial molar volume of each component in

the mixture.

PNPRV calculates the partial molar volume of each component in
the mixture, given the mixture constants and the molar volume
of the mixture.

LIST OF EQUATIONS

The Mixture Constants for the Peng-Robinson Equation:

NKOMP NKOMP
AMIX = — %z]:xixjALij
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NKOMP
BMIX =
3

- xiBLi (1)

Peng Robinson Equation:

b= R - AMIX
V-BMIX V(V + BMIX) + BMIX (V-BMIX)

where V = %—(specific volume)

The Thermodynamic Partial Molar Volume Using the Triple Product:

-3,
—w 3T, v, (i#)
Vk = (%‘I{‘)Ps Ts n.i(i#k) = 3P (2)

' (SvoT, ni(a11 i)

Doing the suggested operations of equation (2) on Equation

(1) yields:

_ 51-52-53
i~ T 54-55

where

RT(1 + BL,/(V - BMIX))

$1 V - BNIX

FACT = V(V + BMIX) + BMIX(V - BMIX)

s2 = 2/FACT
AMIX(BL,) (Y - BMIX)
$3 = (§; xjAi5) - FACT
“ - RT_
(V - BMIX)
o5 = ZAMIX (V - BMIX)

COFACTE i
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SUBROUTI MR PNBPY (NKOMP,IX, AL, BL,R,T,¥,YPART)

SUBROQUTIYE PNRPY CALCULATRS THE PARTIAL BOLAG VOLUNE USINS
THE PENG-ROBINSON EQUATION DF STATE.

DINEASION BL(2,2)BL{2),¥YPART(2),SUM(2),X(2)
ANIX=0Q.

BATX=0,

DO 10 I=1,NKONP
BALIX=BAIX+X (I) *BL(I)

po 10 J=1,NKONP

ABIX=ANLX+X (X) X (J) *AL (I,J) ,
CONTINUB et
DO 20 I=1,NKONP o
SUR(X) =0.

po 20 J=1,NKONP .

SUN(Y) =S5UN(I) +X(J) *AL(J,T)

COMTINUR

po 50 I=1,5EKONP

PACT=V* (V4BHIX) +BAIX* (V-BAIX)
Si1=R®*T* (1,+BL(X)/(Y-BHXX)) /(V~BAIX)
S2=2./PACT

S3I=SUM (L)~ (ANIX*BL(I)* (Y-BNIZ) /PACT)
S4=R*T/( (V=-BEIX) **2)

S5=2.00ANIX* (VeDAIX)/ (PACT*#2)
VPART (I) = ({51-52%53) /(58~-55)

VBITE (6,*)BL(I) ,SUB(I)

CONTINUR

RETURYN

BND
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DOUBLE PRECISION FUNCTION POLEG (X, K)
Input Parameters:
Real X: Mole fraction of component one in liquid
phase where value stands for either expgrimental
or internal collocation point.
Integer K: The degree of the Legendre polynomial used for
fitting the P-X curve. w

The Qutput Is: The Legendre polynomials, specifically the Kth

degree. I

POLEG is a statement function which contains the recursion formula
for the Legendre polynomials.

. LIST OF EQUATIONS ..&

POLEG = P, (x)

NOTE: POLEG evaluates the Legendre polynomial over the domain
[0,1] rather than over the domain [-1, +1] thus
p] (X)
Py(x)

and as a result of this variable transformation the recursion

&

1

2x -1

formula is changed.

Recursion Formula:

Pax) = (Zn - 3%(?x - uPm_1(x) - ($ - ﬁ, p - p(x)

m m

. Legendre Polynomials are Orthogonal in [-1, + 1]

Po(x) 1

P (x)

n
=
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2

Pz(x) = 1/2(3x" - 1)

P3(X) 1/2(5x3—3x)

p (x) =2n=1 xP_(x) - lIL;;llpn_z(x)

n“ n n
We need to evaluate these polynomials in the Domain [0,1]
thus a transformation is called for.

Let Z = 1/2(% + 1)

thus x = -7,0, + 1

A

u

g, 1/2, + 1

or ... expressing x in terms of Z, x = 2Z - 1 and

PolZ) =1
Py(Z) = 22 - 1
P,(2) = 1/2(3(2Z - 1)% - 1)
_(en -1) (n - 1)
PoZ) = 25— (22 - 1P _y(2) - 0L P (7)

Renumbering (starting with m = n + 1 because FORTRAN doesn't

use zero subscripts,

2m - 3)(2Z - 1)
p(z) = {Bm-3)(2Z - 1) p
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DONBLE PRECISION Puscriall POLERG (X,K)

FUSCTION POLEG CONTAINS THE RECUBSIOS -“-i' "I " OF TRE LEGENDRE
POLYNOSIAL.

DOUBLE PRECISION AL (21)
DOUBLE PRECISION X
DOUBLE PRXCISION DFLOAT
AL (1) =1,

AL (2)=2.42-1.

PO 1 LG=1,K

LGA1=LG~1

AL (LG) = {DFLOAT {2*LGA1~ 1) ¢ {2, X~ 1.) *AL(LS-1) ~-DPLOAT (LGN 1-1) *AL
1(LG=2))/DPLOAT (LGN 1)

POLEG=AL (K)

AETURN . .

BRD
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SUBROUTINE PRFUG (Y, P, T, V, R, FUGCE, AP, BP, NKOMP)
Input Parameters:

Vector Y: Mole fractions in gas phase for the NKOMP

components.
Integer Y |
NKOMP : The number of components in the mixture.
Real P, T: The pressure and temperature of the system.
Real V: The molar volume of mixture in the gas phase.
ﬁea1 R: The universal gas constant.

Real AP, BP: The mixture parameters for the gas phase
( no physical significance) which pertain to
the constants A & B in the Peng-Robinson equation
of state.
The Output Is:
Vector FUGCE: Dimension [NKOMP] and contains the fugacity

coefficients for each component in the mixture.

PRFUG calculates the fugacity coefficients for each component by
using the Peng-Robinson equation of state, given the mixture
constants and molar volume of the mixture.

LIST OF EQUATIONS

The Mixture Constants for Peng Robinson Equation:

NKOMP NKOMP

e
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The Fugacity Coefficients:

Py
LetZ—ﬁ
AP
A*:.._—
2212
_ B
B = RT
S1 = 1n{Z - B¥)
Sz:_____A_;__
2(2+2)B*
53 = In(z—5775m%)
7-1
s¢ = L1

2.0AK, BPi

NKOMP
AKi = 2 yjApij
J_
i
5)

Filn = 1n¢i = BP1-54 - S1 - 52.53 ( i -

FUGCE (i) = EXP(FILN) = (i)
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SUBROUTIRE PRPUG(Y,P,T,V,R,FUGCE, AP, BP, HKOAP)

SUBROUTINE PRPOG CALCOULATES THE PUGACITY COEFPICLENTS

USIBG THR PEAG-HOBIASOS BQUATION OF STATE.
DINENSION AK(S)

DINENSION FOUGCB(2),Y(2) .AP(2,2),BP(2)
A=0.0

B=0.0

DO 10 I=1,8KORP

DO 8 J=1,NKOHP

A=ASY(I) X (J) #AP (I, J)

B=B+1 (1) *BP (1)

CONTINUR

AO={A*P) / ((Be#2) *(T*e2))

BO= (B*P) / (RST)

Z3PRY/ (ReT)

51=ALOG (Z-BQ)

52200/ (2. 0* (2.0*%(.5) *B0O)

$3=ALOG( (Z¢2. 314880} /(2=-0.%15%BD))
SU=(2-1.) /B

pO 20 I=1,NKONP

AK(I)=0.0

CONTINUE

Do 30 I=1,MKONP

PO 25 J=1,HKONP

A% (I) =AK (L) X {J) *AP (J,I)

PILN=BP (I) ¢S8~51-52¢ {{2. 0%AK (I) /A) - (BP (I) /B) ) *S3
PUGCE (I) =E2P (PILN)

CONTINUE

RETURS

END



~-129-

SUBROUTINE PRRON (NKOMP, R, AP, BP, TCT,
TC, ANY, TAU, ACEN, VC, PC, T, LJC)

Input Parameters:

Integer -
NKOMP: The number of components in the mixture.
Real R: The universal gas constant.

Real TC, PC,

VC: The pure component's critical temperature,
pressure and volume.

Real DEL: Dimension [NKOMP] and is the i-j interaction
parameter used for the Peng-Robinson
equation of state.

Real ANY, TAU

FAK: The binary interaction paramters.

Real ACEN: The acentric factor for each component.

Real ZC: The critical compressibility factor for each
component.
The Output is: P
Real TCT: The pseudocritical constant which has no

physical significancé except to characterize
bimolecular interactions betwen unlike mole-
cules.

Real AP, BP: The mixture parameter constants for the Peng-

Robinson equation of state.

PRRON reads in the i-j interaction parameter calculated by PROGRAM
4 and computes the mixture parameters to be used in the Peng-

Robinson equation of state. This subroutine uses the 'mixing
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rules' suggested by Peng and Robinson.
PRRON employs the following algorithm:
A: Read in all pure component parameters.
B: Read in the i-j interaction parameter, DEL.
C: Compute TCT, AP, and BP.
LIST OF EQUATIONS

Reduced Temperature:

T
T . = =—

ri Tci
The Pseudoparameter:

- - 1/2,

The Mixture Constants for the Peng-Robinson Equation of State:

AKK = 0.3744 + 1.54226e0 - 0.269924°
ALF = (1 + Ak (1 - TRO+5))2
45724 RZTE.
AC = 5 L
ci
A, = AC-ALF
AP = (1 - DEL,.)+A,"2-A."> where DEL.. = C
1] i J ij ij
0.778 RT
BP:._r)___.

c
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SUBROUTINE PRROS (RKORP, R, AP, BP,TCT,TC,ANY,TAU ,ACEN,VC,PC,
1 T,LJc)
SUBROUTINE PRRON READS THR PURE COMPOWENTS PARAMETERS AND
CALCUOLATRES THE MIXTURE PARANETERS USED IR THE PENG-ROBIHSIN
EQUATION AND LYCKNANH-ECKERT-CHUEH COBRELATION.
DINENSION ZC(5) ,FAK (5,5),DEL(5,5) ,AP(2,2) ,BP{2),TC{2),
1 A{(5),TCT(2,2) ,ANY (2,2) ,TAU(2,2) ,ACEBN(2) ,VC (2} ,PT(2)
100 PORAAT(SR12.5)
101 PORMAT (1HO,'PC-VC~-TC-ZC~ACEN' ,4X,5B12.5)
104 PORMAT (5710.5)
105 ZORMAT (1HO, 'PAR-NY-TAU-DEL?)
106 FORMAT (180,5P10.5)
NRD=S
NWB=6
READ (WRD, 100) (PC({I) ,¥C({X),TC (I),2C(I) ,ACEBN(I) ,I=1,NKONP)
WRITE(MWE,101) (PC(I),¥C (1) ,TC (L) ,2C(I) ,ACEN(I),I=1,NKONP)
NKOA1=NKOHP-1 ’
JRITE (¥¥2,105)
DO & I=1,NKON1}
IP1=I+1
BBAD (NRD, 104) (PAK(I,J) ,J=IP1,NXONP)
READ (NBD, 104) (ANY (I,J) ,J=IP1,NKOAP)
BEAD(NRD, 104) (TAU(I,J) ,J=IP1,HKONP)
READ (BRD,104) (DEL(X,J) ,J=IP1,RKONP)
GRITE(NWR,105) (FAK(I,J) ,J=IP 1,NKOHF)
VAITE (W¥R,106) {ABY(L,J),J=IP1, NKONE)
YRITE(NHR,106) (TAU(I,J) ,J=IP1, RKONE)
WRITER(N¥R,106) (DEL(I,J),3=LP 1, HKONP)
4 CONTINURB
DO 6 I=1,4KONP
FAK(I,I)=0.0
ANY(I,I)=0.0
DEL{X,I)=0.0
TAO(L,1)=0.0
DO 6 J=1,NKONP
FAK{J,I)=PAK(I,d)
ANY (J,I) =ANY (I,Jd)
DEL {J,I)=DBL(X,J)
TAG (J, I) =TAT (I, J)
6 CONTINUE
DO 15 I=1,MKONP
DO 15 J=1,NKONP
TCT (I, J) =SYRT (TC (L) *TC (J) ) * (1.-PAK(L,J))
15 CONTINUE
DO 30 I=1,NKQAP
TR=T/TC({I)
AKK=0.37024¢1_,S42268ACEN (X)~ (ACEN (I) **2) *0. 26992
ALP=(1.+AKK* (1. - (TR**(0_.5)) ) **2
AC=0.45724% ((R$®2) * (TC (I) **2)) /PC(I)
A{L) »AG*ALP
BP (1) 30.07780%8¥TC (1) /PC (L)
30 CONTINGE
DO 40 k=1, MKO0NP
DO 40 J=1,NKONP .
AP (L,J)= (1.=DEL(L,J)) ® (A{L) ®#0.5) * (A (J) *+0.5)
40 CONTINUE
RETURN
END
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SUBROUTINE PRVOL (NKOMP, V, Z, X, Y, P, T, AP, BP, R, ITYP)

Input Parameters:

Integer
NKOMP:
Real X, Y:

Real P, T:

Real AP, BP:

Real R:
Integer

ITYP:

The Output Is:
Real Z:

Real V:

Number of components in mixture.

The mole fractions of each component in iiquid
and gas phase.

The pressure and temperature of the system.
The mixture parameters used in the Peng-
Robinson equation of state. -

The universal gas constant.

A command variable.

If ITYP = 1, evaluate Tiquid molar volume.

1]

If ITYP = -1, evaluate vapor molar volume.
The compressibility factor for the given mix-
ture.

The molar volume (1iquid or vapor) for the

given mixture.

PRVOL generates the mixture constants for the Peng-Robinson equation

of state using the mixture parameters read into the subroutine.

Once the mixture constants are placed into the virial equation

form of the Peng-Robinson equation, this cubic equation, in

terms of Z, is solved for the roots by a standard IBM SSP

SUBRQUTINE. The roots are then tested in order to find the correct
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N

~

one. The volume is then computed using the root (Z) in PV = ZRT.
PRVOL employs the following algorithm:
A: Compute mixture constants A and B. .
B: Evaluate the leading coefficients to the virial
equation.
C: Solve for the roots of virial equation.
D: Test roots for the correct value.
E: Compute molar volume with given root (Z).

LIST OF EQUATIONS

For Vapor Phase Volume:

C - NKOMP  NKOMP
A= 2 2y Py,
= 3

NKOMP
B = 2;;% Yi+BPyy
For Liquid Phase Volume:
NKOMP NKOMP
NKOMP

(Virial) Peng-Robinson Equation of State:
B (-K%+@-3¢-227- (K- -3 =0

where Q = —%37 and K = %%

R™T

Molar Volume:
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SUBROUTIME PRVOL (MKONBP,V,2,X,Y,P,T,AP,BP,R,ITYP)
SUBHOUTI¥NE PEVOL SOLVES THE PENG~ROBINSON EQUATIOMN AND
CALCULATES THE MOLAR VOLUME. '

1P ITYP <Ela 1 THEN THE LIQUID PHASE MOLAR VOLUME IS CALZULATED
IFP ITYP .EQ. =1 THEN THE VAPOR PHASE NOLAR YOLUME IS CALCULATED
DOUBLE PRECISION COF(4),R0O0TH(]) ,ROOTI{3) ,ROD(3),C{W)
DOUBLE PRECISION DABS

DEMENSION X (2),Y(2) ,AP (2,2),BP(2)

A30.0

B=V.0

IP(ITYP) 300,300,200

DO 210 I=1,NKOMP

DO 205 J=1, UKONE

A=A*X(I) ¢X (J) *AP (I,Jd)

B=BeX (I) B2 (L)

CONTINUB

GO TO 2

DO 310 I=1,NKOHNP

DO 305 J=1,MKONP

A=A+X (L) Y {J) *AP(1,J)

BaBeY (L) *BP (I)

CONTINUE

Q=(A*P) / ((R*92) * (T*$2))

Zu=(BeR) / {B*T) o
C(1) == (U*20~-ZCs#2-20%*3,.0)
C{2}=Q-3.%20%¢2-2,¢20

C{3) 3= (1.~20)

C{4)=1.0

CALL PLTRE{C,COF,3, ROOTR,R00TI,ITER)
NE=0

DO 5 K=1,13

IP(DABS (ROOTI (X) /ROQTR(K))~-1.D-04) 3,3,5
IP (RUOTR (X)) 5,58

NR=NE+1

BRUD (NK) =ROOTE (K)

CONTINUEB

IP(irYP) 10,10,50

AMAX=HOD (1}

IF (HB=-1) 25,25, 20

DO 23 I=2,NR

1P (ABAX-ROD (1)) 22,22,23

AMAX=R0D (I)

CONTINUE

=A8AX

GO TO 100

AMIN=8O0D (1)

LP (48-1) 75,7S,60

‘DO 70 J=2,MR

I? (AMIN-BOD (J)) 70,70,65

ARLi=R00D (J) N

CORCINUER :

2=A0LN

VuBeROL/P

RRT02E
« END
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SUBROUTINE RDKPV (NKOMP, X, AL, BL, R, T, V, VPART)

Input Parameters:
Integer
NKOMP:

Vector X:

Real AL, BL:

Real R:
Real T:
Real V:
The Output Is:
Vector

VPART:

The number of components in the mixture.

Mole fractions in liquid phase for the NKOMP
components.

The mixture parameters for the liquid phase

(no physical significance) which pertain to B
the constants A & B in the Redlich-Kwong o
equation of state.

The universal gas constant.

The temperature of the system.

The 1iquid molar volume of the mixture.

The partial molar volume of each component

in the mixture.

){
RDKPV calculates the partial molar volume of each component in

the mixture given the mixture constants and the molar volume of

the mixture.

LIST OF EQUATIONS

The Mixture Constants for the Redlich-Kwong Equation:

=

NKOMP KOMP

AMIX = > PR Xi%5AL 5

i=1 j-1

(&}
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NKOMP
"BMIX = %;BL;
1=1
. Red1lich-Kwong Equation of State:
X RT ' A
P=vy—g - (1)
Y-8 15 +8)

where !_=-% (specific volume)

and B = BMIX, A = AMIX

The Thermodynamic Partial Molar Volume using the Triple Product:

— _oV
Yk ‘(Eq)P, T, n (i#k) =

_(aP )
Bnk T, V,'ni(i#k)
(2)
(EEJ
VT, n. (a11 1)

Doing the suggested operation of Equation (2) on Equation (1)

_ yields:
v _ (ST - s2/53)
i (S4 - 55/56)
where

RT(1 + BL,/(V - B)) -

Si

V-8
NKOMP A(BL;)
sz-z[__‘_‘:j XAy - 7T

T 83 =y(v+B)T?

\
S

S4

S5
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SUBROUTIBE RDKPY (NKOAP,X,AL,BL,R,T,Y,YPAR?T)

SUBROUTINE RDKPY CALCULATBS THE PARTIAL MOLAR YOLUBE USINS
REDLICH-KWONG ERQUATION OF STATE.

DINENSION AL (2,2),DBL{2),VPART(2) ,SUA(2) ,X(2)
ARIX=0,

BH1X=0,

DO 10 I=1 , NKOAP

BEIX=BBIX¢X {I)*BL(I)

DO 10 J=1,0K0HP
ABIX=ANIX#X (I} *X(J) *AL(X,J)
CONTINUR

DO 20 I=1,%KOHP

SUN(I)=0.

DO 20 -J=1,NKONP
SUA(I)=3UR (1) +2.%X(J) *AL(J,I)
CONTINUE

DO 50 1I=1,8KOHP

Si=geTe {1, +BL (1) /(V-BRIX)) /(V-BHIZ)
52=SUM {I)-ABIX*BL (L} /(V+BRIX)
53=7¢ (V+BALIX) $SQRBT (T)
Se=@eT/(V-BHLX) *%2

SS=ANIX*® (2.*V+BEIX) /SQRT(T)
S6=¥s®2¢ (YHBALX) *%2
YPART(I) = (S51-32/83) / (584-55/36)
CONTINUR

RETURE

EBD

THE
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SUBROUTINE RKFUG (Y, P, T, V, R, FUGCE, AG, BG, NKOMP)
Input Parameters:

Vector Y: Mole fractions in gas phase for the NKOMP
components.

Integer

NKOMP : The number of components in the mixture.

Real P, T: The pressure and temperature of the
system.

Real V: The molar volume of mixture in the gas
phase.

Real R: The universal gas constant.

Real AG, BG: The mixture parameters for the gas phase
(no physical significance) which pertain to
the constants A & B in the Redlich-Kwong
equation of state,
The Output Is:
Vector FUGCE: Dimension [NKOMP] and contains the fugacity

coefficients for each component in the mixture.

RKFUG calculates the fugacity coefficients for each component by
using the Redlich-Kwong equation of state, given the mixture
constants and molar volume of mixture.

LIST OF EQUATIONS

The Mixture Constants for Redlich-Kwong Equation:

NKOMP  NKOM
A = 2 X Yi*¥1-AG; .
=1 =1 179 T
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NKOMP
B = Z ) V.- BG,
—= 7 T
i=1
NKOMP
AKi = Z - \ yJAGiJ.
J=1
where i=1, NKOMP
The Fugacity Coefficients:
eV
$1 = In(yp)
s2 = in(t4-8)
s3 = BRT'-°
_ A S2 -8B
I ETVFEB
- 1nRY
S5 = 1n(RT)
B;
FILN = 1n¢1 = S1 + —V—T—E-‘*'
2AK_i
- W + S4'B_i - S5

FUGCE(i) = EXP(FILN) = ¢(i)



nana

10

20

25

30

-141-

susmouUTINR RKPUG(!,P,?,V,R,FUGCE,AG,BG, NKOAP)

SUBROUTINE RKPUG CALCULATES THE PUGACITY COEPPICIENTS USING THE
REDLICH-KWONG EQUATIOB OF STATE

DINENSION AK{5)
DIBEUSION PUGCE(2),Y (2) +AG (2 2) ,BG(2)
A=0.

B=0.

DO 10 E=1,uEONP

DO 8 J=1,NKONP '

A=AeY (L) *Y(J)*AQ(1,J)
BxBeY (I) *8G (I)

comTINOE .

S1=ALOG(V/ (V-B))
S2=ALOG({ (Y+B) /V)
Si=geTee | 58
Sa=A/(S3%B) ¢ (S2-B/ (V+B))
SS=ALOG(P*V/ (R*T))

DO 20 I=1,NKONP

AK(I) =0

CONTINOE

D0 30 I=1,NKOHNP

Do 25 J=1,NKONP
AK(I)=AK (1) *Y (J) *2G (J.1)
PILE=S1¢BG (I)/(V~-B) ~2.¢AK{I) /534S24S8¢8G(I)~835
PUGCE (I} =BXIP (PILR)

CONTINUE

BRTURY

EBD
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SUBROUTINE RKKON (NKOMP, R, AL, AG, BL, BG,

TCT, TC, ANY, TAU, ACEN, VC, PC, T, LJC)

Input Parameters:
Integer
NKOMP:

Real R:

Real OMAL,
OMAG, OMBAL,
OMBG:

Real TC, PC,
VC:

Real ANY,
TAU, FAK:
Real ACEN:
Real ZC:

Real T:

Ineger LJC:
The Qutput Is:

Real TCT:

Number of components in mixture.

The universal gas constant.

The pure component Tiquid and gas phase
constants for the Redlich-Kwong equation of

state.

The pure component's critical temperature,

pressure, and volume.

The binary interaction parameters.

The acentric factor for each component.

The critical compressibility factor for each
component.

The temperature of the system.

A counter.

The pseudocritical constant which has no
physical significance except to characterize
bimolecular interactions between unlike

molecules.
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Real AL, AG, BL,
BG: The mixture parameter constants for the Redlich-

Kwong equation of state.

RKKON reads in the pure component parameters and calculates the
mixture parameters to be used in the Redlich-Kwong equation of
state. This subroutine uses the 'mixing rules' suggested by
Prausnitz.
RKKON employs the following algorithm:

A: Read in all pure component parameters.

B: Compute reduced temperature {Tr}'

C: If/ T, <0.93/ go to E.
If/ T.> 0.93/ go to D.
Reevaluate pure component parameters.

Compute Tcij’ P where 1#d.

cij? Veij
Compute mixtue parameters where ifd.

o moom O

Compute mixtue parameters where i=J.

LIST OF EQUATIONS

Reduced Temperature:
I
T = .
r Tci

The Pseudoparameters:

_ - 1/2 _

TCT = Tpy5 = (T Teg)d ' (1 - FAKy )
) ) 173 . ,1/3,3

ICZ = 1 = M

cij 2
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Z .. *RT ..
PCP =P ., =2 ¢l

ciJ véij

The Mixture Constants for Redlich-Kwong Equation of State:

where i#J
K=L and G kK 2.5
Q A-T s
- = c1lJ
cij
where i=j
ok RET2:°
AK = A, = cl
ii P .
ci
k
Qo RT .
BK = BP ci
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SUBROUTIRE RKKON(XKOMP,R,AL,AG,BL,D3,TCT,2C,ANY,TAU,ACEBN,VC,PC,
iT,LJC)

. SUBROUTINE BRROMW READS THB PURE COMPOEENTS PARANETERS AND CALZUOLA-
TES THE AIXTURE PARANBTERS USED IN THE RPEDLICH KWONG EQUATrTON.

DINBNSION ZC(5S),O08AL(5),0MBL (5),0NAG(5) ,0NBG(S) ,PAK(S3,5)
DINENSION AL{2,2),A6(2,2),.,BL{2),BG(2),TC(2),TCP(2,2) ,ARY (2,2},
1TAU(2,2) ,ACER(2) ,¥C (2} ,PC(2)
100 PORHAT (5B12.5)
10t PORMAT (1HO, *PC~VC~-TC=~2C~ACEN*,8X ,5B12.5)
102 PORMAT (1H0,°ORAL-OABL~0AAG-ONBG ',3X,8AR12,5)
103 FORBAT (4E12.5)
104 PORBAT(5r10.5)
105 PORNAT (1HO,'PAK-RY-TAU'}
106 PORNAT (tH0,5F 10.5)
NBD=S
NUR=6
IF(LJC.¥E.1) GO TO 8
READ (¥8D, 100) (PC(I),VC(I),TC(I) ,2C(X) ,ACEN(L}, I=1,NKONP)
READ(NRD, 103) (OHAL (I) ,ONBL(T),ONAG(I) ,ONBG(I),I=1,NKONP)
WRITE(MHR,101) (PC(I),¥YC(I),TC(I),ZC(I),ACEN(I) ,X=1,NKONP)
YEITR(NVE,102) (OBAL{I),ONBL (I),OHNAG (1) ,08BG(I),I=1,XKONP)
NKON1=NKONP~1{
WRITE(NWR, 105)
Do & I=1,HKOR1
IP1=]+ 1
HEAD(¥RD, 1084) (PAK(I,J),J=IP1,NKONP)
READ (BRD, 108) (ANY(I,J),Jd=1IP1,HKO0ND)
READ (SPD, 108) (TAU(I,J),J=1P 1,8KONP)
ARETE (NWR,106) {(PAK(I1,J),J=LP1,NKONP)
HEITE(NNR, 106) (ARY (I,J),J=LPt, NKONP)
YRITE(NWR,106) (TAU (1,J),J=1P1, NKOHP)
[ COoNTiNugR
DO 6 I=1,NKORP
FAK(I,I)=0.0
ABY(L,L)=0.0
TAU(I1,I)=0.0
DO 6 J=I,NKOBP
PRK(J,I) =PAK(1,J)
ANY(J,I)=ARY{I,J)
TAU (3, ) =TAU (X, J)
6 CONTINODS
8 DO 13 I=1,NKOBP
TR=T/TC (1)
IP(TR-0.93) 13,13,10
10 OAB=(ONBG(I) ¢OBBL(I)) /2.
B=QBB®R*TC (1) /PC(I)
ONA=PC (1) #¥C (I) & (¥C (L) ¢B) / (R®TC (X)) ¢¢2¢ (R*TC(I) /{YC(I) ~B)-PC (D))
IP(ER-1.) 11,12,12
11 DTR=RIP( (PR-1.)* (2901.01-5738.92¢TR¢2889.852TRe42+ L. TN 127/ (1. 01~
1T8)))
OMAL (I) =QBAL (I) + (ONA-OMAL (1) ) *DTR
OABL (I) =08BL {I) ¢+ (ONB-OBBL (L) ) *DTR
ONAQ (1) =08AG (I) * (ONA-OBAG (I) ) *DTR
ONBG (1) =QBBG (1) ¢ (OBB-0NBG (1) ) *DTR
GO T0 13
12  ONAL(I)=0AA
ONBL (1) =0nd
OMNAG (L) =0NA
ONBG (I) =0AB
13 CONTINUR
DO 1S5 I=1,NKOHP
DO 15 J=1,HEK0NP
TCT (L, J) =SQRY (TC (I) *IC (J) ) *(1.-PAK(I,J))
IP(I-J) 18,13,15
18 YCY={{VC (I) #¢0.33333334VC(J) #20.333333) #43) /8.0
2CI=(3C(I)*ZC (J)) /2.0
PCP= {(2CZ#R*TCT {1I,J) ) /VCY
AL{L,J)={{ONAL{I) *OBAL (J) } /2.) *R¢S20TCT (X, J) ¢+2.5/PCP
AL I)=AL(X,J)
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AG (I,J)= { (OAAG (1) *OHAG (3)) /2.) SRS$28TCT (I, J) $#2.5/PCP
AG (J,I)=AG(I,J)

CONTINOE

DO 20 I=1,8KQNP

AL{I,I)= (ONAL (I) *R®$2%TC(I) ®*#2,5) /PC ()
AG (I,1)= (OMAG (I) RV #2¢TC(I) #*2_5) /BC (L)
BL (I) = (O&DL (I) *ReTC (I} ) /PC{I)

BG (I)= (GHBG (L) *R*TC (1) ) /PC(I)

CONTINOR

RETURY

END



SUBROU
P,
Input Parameters:
Integer
NKOMP:
Real X, Y:

Real P, T:

Real A1, AG,

BL, BG:

Real R:

Integer ITYP:
The Output Is:

Real Z:

Real V:
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TINE RKVOL (NKOMP, V, Z, X, Y,
T, AL, AG, BL, BG, R, ITYP)

Number of components in mixture.
The mole fractions of each component in the
liquid and gas phase.

The pressure and temperature of the system.

The mixture parameters used in the Redlich-
Kwong equation of state.

The universal gas constant.

A command variable.

If ITYP

1, evaluate liquid molar volume.

If ITYP = -1, evaluate vapor molar volume.
The compressibility factor for the given
mixture.

The molar volume (liquid or vapor) for the

given mixture.

RKVOL generates the mixture constants for the Redlich-Kwong

equation of state using the mixture parameters read into the

subroutine. Once the mixture constants are placed into the

virial equation form of the Redlich-Kwong equation, this cubic

equation, in terms

IBM SSP SUBROUTINE.

of Z, is solved for the roots by a standard

The roots are then tested in order to find
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the correct one. The volume is then comﬁuted using the
root (Z) in PV = ZRT.
RKVOL employs the following algorithm:
A: Compute mixture constants A and B.
B:  Bvaluate the leading coefficients to ‘the virial
equation.

C: Solve for the roots of virial equation.
D: Test roots for the correct value.
E: Compute molar volume with given root (Z).

LIST OF EQUATIONS

For Vapor Phase Volume:

NKOMP NKOMP
i=1 J=1
NKOMP
B = - _y].-BG,i

For Liquid Phase Vo1ume:'
NKOMP NKOMP

A= 2::: E : xixJ-AL1.J

i=1 Jd=1

i=1
(Virial) Redlich-Kwong Equation of State:

B2 @-1-KKkI-0K =0

where Q =
BRT'*°

_ P8
and K = RT
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Molar Volume:

_ ZRT
V=7

(Virial) Redlich-Kwong Equation of State from Program:

3 PB, 'PB PB,2
R I < s a LLO LIy
BRT] 5 RT! RT BRT1 (R
R S . W i G .
2205 i L .
_ AP _BP
let A* = 7y and 8% = gy

Then Z° - 72 + (A* = B* - B*2)7 - A*B* = 0

This is equation (3 - 5.6) page 38 Properties of Gases and Liquids;

Reid, Prausnitz, and Sherwood; Third Edition McGraw HilT.

The original Redlich-Kwong Equation:

oo RT__A
V=B 1-Sy(v+B)
o o RTS(VE - vB) - AV + AB
T2y (v2 - 8%

pT-5v3 - p1-%%y = RT'-5v% + BRT' 3 v - AV + 4B

pT-%3 - RTT52 4 (a - P08 - BT S - B = 0
Now let PV = ZRT = N = (ZRIN
where N = 1, 2, 3

PT" (ZRT) RT] S(ZRT)

+ (A - PT"98% - gr1!- 5)ZRT - AR = 0
3.3.5 3.5

R33-3 3 g33-5 5

S -

P P
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L 2.2.5
+ (BT g2t - BRI )7 _m =0

2
=0

Bp _ B%% _  app?  _
3.5

)Z -
R3T

3,2 AP
7% - 17+ (e - ST -
2725 < RT 7 222

_ _AP % = BP
let A* = ———R2T2_5 and B RT
23 - 2% 4 (a* - B* - B*2)Z - A%B* =

This is the same equation derived at by equation in the program.
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SUBROUTINE SKVOL(MXO0AP,Y,Z,X,Y,P,T,AL,AG,BL,BC, R, ITYP)

SOUBROUTINE BKVOL SOLVYES THE REDLICH-XWONG EQUATION AND CALCULATES
THE MOLAR VOLOUAE.

IF ITYP .BEQ. 1 YHEN THE LIQUID PHASE NOLAR VOLUNE IS CALCULATED
IPF ITYP .EQ. —t THER THE VAPOR PHASE HOLAR YOLUME IS CALCULATED

anoona

DOUBLE PRECISION COP (4),BOOTR(3) ,RO0TI (3),HOD (3),C (4)
DOUBLE PRECISION DABS
DINENSION X{(2),Y(2) ,AL(2,2),4G(2,2),BL(2),B6(2)
A=0. N
B=0.
IF (ITYP} 300,300,200
200 DO 210 I=1,¥K08P | -
DO 205 J=1,NKONP
205 A=A+X{I) #X(J) AL(I, ]}
B=B+X (I) *BL {I)
210 COMTINUR
G0 0 2
300 DO 310 I=1,NKONP "
DO 305 J=1,NKONP L
305 A=ASY(I) Y (J) *AG(I,J) AT
B=BeY (I) #BG (I) :
310 CONTINUE
2 Q=A/(B*RSTH21.5)
Z0=pPeB/ (RT)
C(1) =—Q#208¢2
C(2)=(Q~1.-20)*20
C{3)==1.
c{a)=1.
CALL PLTRE{C,CO?,3, ROGTR, ROOTL,ITER)
NR=0
DO 5 K=1,3
IP (DABS (ROOTI (K) /ROOTR(K))~1.D-04) 3,3,5
3 IP (ROOTR:(K}) 5,5,8
a8 NR=AR+1
B0D {¥B) =ROOTR (X)
5 CONTINDE <
I? (ITYP) 10,10,50 %
10  ARAX=ROD {1)
IF (NB-1) 25,25,20
20 DO 23 I=2,NR
IP (ANAX~ROD (X)) 22,22,23
22 ARAX=ROD (I)
23 CONTINUE
25  T=AMAX -
GO TO 100
50 ANIN=ROD (1)
IP (#-1) 75,75,60
60 90 70 Jx2,R
IP(ABTR-RODP(J)) 70,70,65
65  ARIN=BOR (J)
70 COETINUB

15 I=ABIN
100- V=3epay/pP
18TURE
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SUBROUTINE ROMB (NMAX, C, B, T, JMAX, NRC)

Input Parameters:

Integer NMAX:

Real B, C:

Integer JMAX:

Integer NRC:

The Qutput Is:

Matrix T:

Viewed as the numbér of times the initial
integration interval [C, B] is to be
halved to produce subintervals of length
h, (i.e. h = (B - c)/2" A%y,

The upper and lower limits of integration,
respectively.

Viewed as the number of times the initial pair
of adjacent elements in the sequence TO, T1,

. TNMAX are extrapolated to converge to

the true integral value.

The size of the matrix of elements in the

Romberg sequences.

Dimension [NRC. NRC] and contains the Romberg

tableau for the given integral.

ROMB calculates the initial values by repeated halving of the

subintervals used in the estimation of the given integral using

the composite trapezoidal rule. Provided that f(x) has a

continuous and bounded second derivative on the interval (c,B),

the sequence of elements generated by the general recursion re-

Tation will converge to the true integral value of’?f(x)dx.
c

The Richardson extrapolation technique is then applied to each
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pair of adjacent elements in the sequence to produce another
sequence of estimates. The entire results are then placed in
matrix T.
ROMB employs the following algorithm:
A: Compute initial estimates.
B: Repeat part A by repeated halving.
C: Calculate entire sequence of elements by recursion
formula. |
D: Compute each value of f(x) by a four point Lagrangian
interpolation method.
E: Complete the matrix T by the Richardson extrapolation

technique.
LIST OF EQUATIONS

ng(x)dx

c

The Integral:

The Composite Trépezoida] Rule:

B -]
(" fOxax = B2E03r(c) + 47(B) + %;“]f(’c ¢ {8 =gy
c : e

where n is the number of applications, B and C, the integration
Timits.

The General Recursion Relation:

N1
21 (B =°¢C) (B - C)
T, 2T * N1 ?—:—1—5 fle + = o 1)}

where n = 1, NMAX, NMAX = N.
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The Richardson Extrapolation Technique:

31 _
oo T g1 7 T, e

naj 4\]"] - -l

where j=1, JMAX.
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SUBROUTLNE ROMB (MMAX,C,B,T,JMAX, NEC)

DOUBLE PKECISION XIMNT(25),5A(25) ,G(25) ,GGLNT (256),55IAHT {256)
DOUBLE PRECISION PA{25),ROD(25), RATD (256) ,C,B,T (NRC, NRC)
DOUBLE PRECISIONM XX,LGAM1,LGAN2,P8,CC(25,25),P(25)
CONMON/DIV/CC,SA,P,G,ROD,N, NP1, NT

COMMON/BEG/FA

T(1,1)=(C*B) /2.0

DO 2 NN=1,HMAX

T (NM+1,1)=0.0

PR=1/2.08%4N

IAAX=298 NN~

X%=0.0

DU 989 L=1,IMAX

XX=XX+EFR

CALL INTHP(25,4T,XX,BOD,FA, XINT)

SSINT (1) =0.0

GGINT(I)=0.0

DO 95 J=1,HT

GUINT(I)=GGIMT(I) +XINT (J) *G (J)

SSINT (I) =SSINT (I) +XINT (J)*SA (J)

CONTINUE

LGAN1=GGINT ()¢ {1.~XX) *SSINT (I)
LGA#2=GGINT (L) -XX*SSINT (I)

RATO (L) =LGAN V1~LGAN2

DO 1 K=1,1MAX,2

T{NHe1,1) =T (NU+1,1) +BATO (K)

T{NH+T,1) =D (NN, 1) /2.0 T (HN+, 1) /2.0%*HN

DO 3 J=2,J8AX

HXMJIP2=HMAX~-J+2

PORBJ 1=4.08% (J~1)

DO 3 HM=1,HXEJP2

T (4M,J)= (PORMJT*T (NN+1,J=1)~T (¥¥,J-1)) / (PORNJ 1= 1.0)
BETUAN

END
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SUBROUTINE ROHB(lﬂAI,C,B.T.JH&l,HRC,!C,II)

DOUBLE PRECISION SA(25),R0D(25),P(25),G (25) ,A (25,25),
WO BK (25} ,STORL, RATO (256) ,GIN,SAIK,T (NRC,¥RC),
IBXP (25) ,LGANY, LGAM2, ARG (25) ,VAL(25) ,XL(2},
PL(25) ,DPDIX (25) ,DELTA,GINN,SALNN, XC,H,FR, XX,

E N -

x2,PX,DDX

DINENSION VC(2),TCT (2,2) (ACEN(2) ,TAU(2,2) ,ANY (2,2} , IS (2},
1

YPURR {2)
COMMON/DIV/A,SA,P,G,ROD,NT, NP1, N

CONNMON/BEG/WORK,ARG ,VAL,PSAT2,KP1,YPURE,ACEN, TCT, VC, TT,

1 TAU, ANY

CONMON/BEG1/DELTA,XEXP

H=XEXP (II)-XC

T(1,1)=(C+B)*H8/2.0

No 2 NW=1,RAAX

T(¥4+1,1)=0.0

PR=H/2.08%NN

INAX=20s ¥}~ 1

1X=XC

CALL INTBP({XX,ROD,G,WORK,KT, 1,ARG,VAL,NT)
CALL INTDAL (XX, ABG, VAL,GIN,NT,1.D=06,IER)
GINN=GIN .

CALL INTRP(XX,BOD,SA,¥OBK,NT,1,RRG,VAL,NT)
CALL LHTDAL {XX,ABG,VAL,SAIN, 8T, 1.D-06, IER)
SAINN=SAIN

X2=XX/DELTA

CALL PCALA(PSAT2,X2,PX,KP1)

CALL DPXA(PSAT2,KP1,DDIX,X2)

PL (I) =PX

DPDXX (I) =DDX

IL (1) =XX

XL (2} = 1.=XL (1)

CALL GNVOL (2, iL,VC, ACEN,TCT, TT,TAU,ANY,TC,V)
VEIXL=V
VEL=VAIXL~XL (1) *YPURE (1) ~KL (2) *V PURE (2)
STKORL=VEL*DPDXX (I) / (R*TT)
LGAN1=GINN# (1.0~XX) ¢ (SAINN-STKORL)
LGAN2=GENN=XX* (SAINN-STKORL)

BATO (I)=LGAM1-LGAB2

DO 1 K=1,IMAX,2
T(NN®1,1)=T (NN+1, 1) +RATO (K)
T(NN®1,1)=T (NN, 1) /2.0¢T (NR¢1,1) /2. 058N
DO 3 J=2,JHAX

NXNIP2=NBAX~J+2

FORNI1=4.0%* (J=1)

DO 3 NN=1,NXNJP2

T{(AN,J)=(FPORMPI*T(NR+1,J=-1)~T(8N,J-1)) /(PORNI1~1.0)

BETURN
END
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SUBROUTINE SCALE (XSCALE, YSCALE, X, Y, N, ARRAY, NUMPT, NZ)

Input Parameters:

Vector X, Y:

Integer N:

Integer NZ:

The OQutput Is:

Vector

XSCALE:

MATRIX
YSCALE:

MATRIX
ARRAY:

Vector

NUMPT :

Arrays containing the pairs of data points for

the abcissa and ordinate, respectively.

The number of pairs of data points to be

plotted.

A number which designates where in ARRAY the

results are placed.

An array containing the

markings for the plot.

A matrix containing the

markings for the plot.

A matrix containing the

values in the NZ column.

An array containing the

in each data set.

prominant abcissa

prominant ordinate

array of ordinate

number of data points

SCALE generates the ordinate and abcissca scales used for plotting

the pairs of data points.

SCALE can only handle one set of

data points per calling; therefore, multiplie curves on a single

graph will require a call statement for SCALE for each desired

curve plot on the single graph.
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SUBROUTINE SCALR(XSCALE,YSCALR,X,Y,N,ARRAY, SUNPT,NZ)
DOUBLE PRECISION X(25),Y(25)

DINENSION ISCALR({300),TISCALE(10,11),B00PT(10),ARRAY(10,303)
XSCALE (1) =0.0

YRIN=Y ()

TNAR=Y (1)

DG 9 I=1,N

IP (YBIN-Y(I}) 9,9,11
YNIN=Y (L) N
CONTINOR

DO 19 I=1,1

IF (YMAX-T (L)) 17,19,19
YNAX=Y {I)

CONTINUE
YNIN=YAIN=-(YRIN®0.05)
THAX=TNAX+ (YNAX*0.05)
SPA= (YNAX~THIH) /10. 0

DO 2 J=1,2
YSCALE (3, 1) =T8IN

DO 2 XI=2,11

IAI=I-1

YSCALE (J,I) =Y SCALE(J,IN1) +SPA
po 3 I=2,51

IN1=1-1

XSCALE (I) =XSCALE (IN1)+0.02
DO 4 I=t,10

NOAPT (L) =0

NUBPT (1) 250

NURPT(NZ) =50

DO 6 I=1,51
ARBAY(NZ,I)=0.0

Do 5 I=1,N

B=X(I) +0.01

A=B*51.0

J=A

ARRAY (NZ,J) =Y (I)

RETURN

ERD



PROGRAM 1

(Tow pressure systems)
(symmetric convention)

PROGRAM 1 requires the following sections
of subroutines (see Table 1):

1) MAIN SECTION
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511
512

513
556
51w
513
516
517
518

519

520
521

522
523
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PROGRAM CTLG? CALCULATES VAPOR PHASE MOLEPRACTIONS FOR SYSTEMS
UMDER LOW PRESSURE USXNG THE CONVENTION FOR NORNALIZATION JF
ACTIVITY COEZRICIENTS

DOUBLE PRECISION A(25,25),SA (25) ,P(25) .G (25) ,ROD(25)

DQUBLE PRECISION PP,GE(25)

DOUBLE PRECISION KEBXP(25) ,PRXP(25)

DUUBLE PRECISION FA(25),¥B(25),PC{25),7V1{25),XINT (25),Y12(25),
1Y2C (25) , YBYP (25) ,P15,P25,ALF A,BETA, X1,PX,X,GANT,GAN2, SUAT, PINT,
2YINT1,TINT2,DY,SQ,9A1(25) ,¥A2{25),WA3{25) ,WA4 (25) ,DELY,DELYA,
JIDBLYS .

DOUBLE PRECISION AA{21)

DOUBLE PRECISION DEXP,DABS,DSQRT,DFLOAT

DOUBLE PRECISION PCA{25),DP, SSQ,DELP,DBLPS,DELPA

DOUBLE PRECISION GINT(25),SAINT{25)

DOUBLE PRECISION TL (25)

DOUBLE PRECISIOB GANC1(25),GANC2 (25) ,Y1CC(25) ,¥2CC(25) ,SUNTYC

DOUBLE PRECISION DDELP,MAT{20,20),C,B

DINENSION TEXT(12)

DINENSIOM HUMAT {10) ,PTITLE(29),YGCALE(10,11), XGCALE(3001,

1 AARAY (10, 300) ,GTITLE (29)

COBMOM/DIV/A,SA,P,G,ROD,NT, NP1, N

CONNON/BRBG/FA

CONNON/LEBG/AA
CONNOB PTITLE

DATA ALPA,BETA/0.D 00,0.D 00/

DATA NO,N1/1,/

FORNAT {YH1, *COASISTENCY TEST USING ORTHOGONAL COLLOCATION - KU%BER
1 0P INTBRNAL POINTS',IS,/)

PORMAT {180, *COLLOCATION POINTS',/,1X,10P10.5)

PORNAT (1HO," x°,11%,%P* 9K, 'GE/AT*, 0X, *GOOT', 7X, *GANYTA1? 61X,
1°GAANA2" ,8X,°Y1?,10X,4Y2¢,7X,'SUN COR?,3X,°GE J/NOLE')

POBNAT (1H1, *CONSISTENCY TRST BY REPEATED HALVING OF TRAPEZOIDAL
1RULE ¥ITH RONBERG INTEGRATION, AREA=',E15.6)

POBNAT (10P12. 6)

PORMAT (1HO,* NUNBER OF BIMARY DATAPOINTS *,I2//1X,'SATURATION
1VAPOB PRESSURE OP CONPONENT 1 AND 2 ',2P12.4,°' ATH. ',//1X,°
2TEMPEEATURE' ,F12.%,° DEG. K.?!)

FOBMAT (1X,12P 10.0)

PORMAT (I2)

FORMAT (140, * X°,8%,°P, 10X, *Y1°,7X,'T1EXP?,6X, 0DTY,8K,'Y2",
18X,'SUNY®,4X, 'PCAL?,8X,'DP") )

POHMAT (180,* SUM OF SQUARES OP DELTA ¥ *,P16.10,//1X,° YARIATLON
1 OF DELTA Y *,P10.4," ARTHNETIC MEAN OP DELTA Y °,F10.4,//1X,°"
2 CALCULATED EXCLUDING GIVEN END POINTS')

FORNMAT (#8.3,2P8.4,P8.3,8P6.4)

FOBRMAT (1HO, *THE POLYNOMIAL USED IN THE ORTHOGONAL COLLOCACIOR
1PROCEDURE HAS ALPA = °,P10.4,*AND BETA = *,F10.4)

FORMAT (412)

PORNAT (29A4)

POREAT (149, * XEXP nY1e pPEIPY)

FORPAT (180, *CALCULATED. VALUES OF Y1)

roRaAT (140, *SOLOTION AT THE DATAPOINTS')

PORAAT(ILY)

PORMAT (1H1, *BXPERINENTAL RESOLTS AND CALCULATED QUANTITIES POR
1THE BINARY SYSTES  °,1248,/,120 (1i%))

PORMAY (12A8)

FORMAT (212)

PORAAT (1H0,* SOM OF SQUARBS OF DELTA P °,P16.10,//1%X,' VARIATION

‘1 OQF DELTA P °*,Fr10.48,° ARITHNETIC MBAN OF DELTA P ¢,FP10.8,//1X,

2* ASITHNETIC NEAN OF DELTA P/P ' ,P14.6,//VX,' CALCULATED EXCLUODING
3 GIVEN ERD DATAPOINTS')

FORMAT (3P 10.5) p
PORMAT (1HO, *SOLDTION AT THE COLLOCATION POINTS?)

BRD2S

NYR=6 *

READ(¥8D,513) uJOB,BKONP,ASTP1, HSTP2

IFP (NJOB.EQ.Q) STOP

READ (NAD,519) TBXT

RBAD (NRD,556) PYITLE

READ (8RD,556) GTITLE
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DO 500 LJC=1,8J08B

- BEAD (MRD,S520) K, NHAX

BREAD (NRD,S508) NBPTS
READ (NRD,517) N11,82,H3
DO 5 I=1,NBETS ,
READ (NBD,511) PEXP(I),DU,DUN,TL(I),XEXP(L),DUNN,DUNNY,DN,YEXP(I),

1DaU,D8AU ,DNAUT
T=TL (I)
5 CONTINUR
c N1
c N2 ) IDENTIFICATION PARANMETERS. SEE TABLE BELOW
(o L)) -
c p v T
C
c LA R N2 R3
c -
o 1 ATA cc/uaL K
c 2 BAR GRN/CC P
c 3 BPSIA CUPT/LB.ROL c
c 4 IRCH.HG LB/CUPT R
C 5 CM.HG CUPT/LD
c 6 MM.HG Z
c
po 9783 I=1,MBPTS
GO TO ({9992,9993,9994,9995,9996,99996) , K11
9993 PRIP(I1)=PEXP(I)/1.01325
GO TO 9992
9998 PRIP (I)=PEXP(I)/14.696
. GO TO 9992
9995 PEXP (I)=PRXR(I)*0.0338211
GO TO 9992
9996 PBXP(1L)=PBIP(I)/76.
GOTO 9992
99996 PRBIP (I)=PEXP(I)/760.
9992 Go TO (9997,9998,9999,99990) ,H3
9998 T=(TL (I) +859.67)/1.8
GO TO 9997
9999 T=TL(I)+273.15
GO TO 9997
99990 T=1TL (I)/1.8 .
9997 COANTINUE
9783 CONTIWYE
KP1=K+1
P1S=PRIP (NBPTS)
P25=PRIP (1)
WRITE (¥¥Wa,518) TRIT
WRITB(NWR,512) ALFA,BRETA
WRITE (NWR,506) BBPTS,PIS,P2S,T
CALL LBPIT(XEXP,PEXP,NBPTS,K)
WRITE (MWR,514)
DO 8 I=1,NBPTS
WRLTE {NWR,522) XEXP(I) , YBXP (I),PEBXP (L)
8 CONTINUE
DO 400 E=NSTP1, HSTP2
c
c GENERATION OF COLLOCATION CONSTANTS
c
WBITE(NUR,501) N
NT=BeN0eN1
CALL JCOBI(25,8,80,N1,ALPA,BETA,?A,PB,PC, ROD)
WRITRE (4WR,502) (ROD(I) ,I=1,NT)
WP I1=N+1
;, DO 10 I=1,NT :
. X1=R0D (I)
CALL PCAL (P25,P15,11,PP,XP1)
p{L)=pPP
CALL DPOPR(25,N,¥0,K1,%,1,FA,PB, PC,ROD, V1)
DO 10 J=1,M8T
A(X,J)=2¥1(J)
10 CONTINUR
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INTIAL VALUES OF G

G(1)=0.

G(NT) =0.

pa 20 I=2,NP1

G (I) =ROD (I) * (1.~ROD (1))
CONTINUE

CALL GIBBS(P1S, P25)

. YRITE(NWR,S523)

VRITE (NWR,508)

DO 81 I=t,NT

X=20D (1)

GABC1{I) =DEXP (G (I) *+ (1.~X) *SA (1))
GAAC2(I) =DBXP (G (I)-X*SA (L))

Y1CC (I) aGAMC1 (X) *X*P 1S /P (1)

Y2CC (1) =GARC2 (L) * (1.-X) *P25/P (1)
SURIC=YT1CC(I) +12CC (1)

Y1CC (L) =Y 1CC (I) /SUNTIC

Y2CC (I) =Y2CC {I) /SUNYC
GB(I)=G(I)*T*8.31a4

WRITE(¥¥R,505) X, P (L) ,G (I).SA [(I),GANC1(I),GANC2(I),YICC(I},Y22C(I)
1,S08YC,GB (L) ’
COBTINUR

C=DLOG (GARC1(1) /GANC2( 1))

B=DLOG (GANC 1 (NT) /GAAC2 (FT))

WRLITE (NWR,516)

WRITE(NVR,500)

LAGRANGIAN INTERPOLATION

DO 80 I=1,58P1S

X=XEXP (I)

CALL INTRP(25,8T,X,B00,FA,XINT)
SAINT{I)=0.

GINT(I)=0.

Do 25 J=1,8T

GINT (L) =GINT(I) +XINT (J) &G {J)
SAINT(I)=SAIRT(X)+SA(J) *XINT(.J)
CONTINUE
GAR1=DEIP (GINT (X} * (1.~K) $SALNT (I))
3AM2=DRXP (GINT (I) -X#SAINT(I) )
TIC(I) =GANT*X+P1S/PEXP(I)

Y2C(I) GAN2® {1.~X) *P2S/PRXP (I)
SUNY=Y IC (I) +72C (L)

YIC{XI)=YIC{I) s/SuNY

Y2C(I) =Y2C(I) /SURY

GE (L) =GINT (I) *T*8.3 148
WRITE(MVWH,505) X,PEXP(I) GINT (I) ,SAINT(I) ,GANT GAN2,YIC(I},Y2C(D1),
1SUNY,GE(I)

COMTINUB

CALL SCALE(XGCALE,YGCALZ,XEXP,GE, NBPTS, AABAY, NUNNT,1)

CALL PLOT (AARAY, NUMNT, GTITLE,YGCALE, XGCALE, 1)

CALL RONB (NNAX,C,B, MAT, NEAX, 20)

WRITE (SWR,532) MAT(1,8HAX)

WRITE(NWR,515)

WRITEB (MW R,509)

SQ=0.

DELY=0..

S5Qw0.,.

DELP=0,

DDELP=(. .

DO 100 I=t,NBPTS

X=XBXP (1) .
PINT=PEXP (I} =
CALL PCAL(P2S,P1S,X,PP,KP1)
PCA(I) =PP

DP=PCR (I)~-PEXP(L)

SURYI=Y1C (I) +X2C(I)
DY=Y1C(X) ~YRXP(I)

WRITE (NWR,507)X,PINT,YIC(I), 1BXP (I),DY,Y2C(I) ,SUNTY,PCA(L),DP
SQ=SQeDY®DY
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DELY=DELY+DABS (DY)

55Q=SSQ+DP*DP

DELP=DELP+DABS (DP)
DDELP=DUELP¢DABS (DP) /PEXP(I)
CONTINUE
DELYS=DSQRT (SQ/ (DFLOAT (RBPTS-3)) )
DELYA=DBLY/(DPFLOAT (NBPTS-2))
DELPS=DSQRBT (SSQ/ (DPLOAT (NBETS-3) ) )
DELPA=DBLP/ (DPLOAT (¥BPTS-2))
DDELP=DDELP/ (DFLOAT (B~2))

WRITEB (NWR,510) 5Q,DELYS,DELYA
WRITE(NWEB,521)55Q,DELPS,DELPADDELP
CONTINUE

CONTINUE

GO 190 600

END
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PROGRAM 2 (P-R)

(high pressure systems)
(symmetric cenvention)
(Peng-Robinson Equation of State)

PROGRAM 2 (P-R) requires the following
sections of subroutines (see Table 1):

it

1y MAIN SECTION
2) SUBSECTION ONE.
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Y f

PROSRAN CTLG2 CALCOLATES YAPOR PHASE A0LEFRACTIONS POR SYSTEANS
UNDER HXIGH PRESSURE USING THE SYHHZTRIC CORVENTION FOR HORAMALI-
SATION OF ACTIVITY COEFFPICIRNTS

DOUBLE PRECISION rA(25).pa(zs),?C(zs).v1(25),t1C(25),!2C(25)@
1XINT (25) ,GAN1(25) ,GAN2Z (25) ,SORYC (25) ,FRPP1(25) ,FPP2{25) ,PLI1{25),
2P12(25) , TANC (25) ,FP1{25) ,PP2 (25) .DPDX (25), YHIX(25) ,VE (25) , STKOR (25
3

DOUBLE PRECISION A(25,25),5A(25) ,P{25) oG (25) o 20D (25} ,GE (25}
DOUBLE PRECISION XEXP({25),YEXP(2S5).PEIP(25),DELX(25) ,9A1(25),
19A2(25), WA3 (25) , FA 8 {25)

 DOUBLE F3ZCISION BCA(25S),DP,SsQ, DELP,DELPS,DELPA

.. DOUBLE PRECISION ALZA,BETA,X1,PK,DDEK,SQ,XR,PINT,YINT1,YINE2; SUHY,
“1DY DELY.2ELYS,DELIA

DOUBLE PRECISION A& (21),PP

DOUBLE PRECISION PS (2),MaAT(20,20),C,B

DOUSLE PRECISIOX DBXP,DABS,DSQRT,DFLOAT

DOUBLE PRECISION FPPIL(25).PPP2L (25).FI1L(25) ,FI2L(25),FB1L (25),
1PP2L (25) , VALXL (25) , VEL (25) ,STKORL (25)-, PL (25} , GLKT (25) ,SALNT(25) , N
2GAN1L(25) ,GARZL (25) , YICL(25) , 12CL (25)+ SURICL {25) , DPDXL (25) '
DOUBLE PRECISION TL(25)

DOUBLE PRECISIOF DDELP ;

DIHENSION AP(2,2), 3912).1(23.x(2) LFUGCR (2) , FUGS (2) o

1Y0L(2)

DINEMSION TCT(Z,Z),TC(zl,Al!(Z.Z),TlU(2,2),ACEH(Z),'C(2),PC(Z)
DINEZNSION TBXT(12)

DINENSION XL (2),YL(2)

DIAENSION RUMAT (10) ,PTITLE(29), TGCALE{1C, 11), X6CALZ(30)),

1 AARAY (10, Juo;.srxrnz(29)
COMNOB/DXY/A.SA,P,6,80D, 8, NP1,8T

CONRON/LEG/AA

CONNOM/BEG/PA ~ i

CONBNOE PTITLE J ‘
DATA R/82.0567/

DATR ALPA,BETA/0.D 00,0.D 00/

DATA %0,M1/1, 1/

FORBAT (181, 'CONSISTENCY TESTS USING ORTHOGONAL COLLOCATION -

1 MGMBER OF INTERRAL POINTSS, IS)

FORSAT (1HO, *COLLOCATION POINTS',/,1K,10P10.6)

FORBAT (180, * X',9X,%p?,7X, ' GE/RT* ,6X,¢GOOT", 5K, *GANNATY,b0X,
1'61!3’&'.6!.'!1'.8!.'!2'.5!,'SUH COR®,2X, ' GE J/NOLE?)
PORALT (180, 'NUHBER OF BINARY POINTS',IS,5X,*AT THE ISOTHERN®,
1710.2,5X,*TESPERATURE IN DEG K!)

FORRAY (1HO,*T*,F10.8,0X,90S? ,2F10.8,4X,°Y0OL?,2r10.5,8%,//,1X,
1°rxsut°;:sto.u.nx.'razesnr'.zrto.u./)

FORMAT (1X,11P10.8,P 10, 4)

FORBAT(I2) o
PORNAT (2944) e
POARAT (180..° X',8X,%p%, 10X, 'Y1*, 70, *Y1BXP ,6L,* DY’ ,08, }2°,

17X, °S58TY, 6%, *PCALY , 7T, ' DP?)
FOBRAT (180, SUA OF SQUARES OF DELTA T °,P16.7,//,' VARILANCE OF

1DBLTA ¥ ¢, F1O.4,? ARITEARTIC NEAN OF DELTA Y °,F10.%1,//,° o
2CALCULATED EXCLUDING GIVEN END POINTS')
FORBAT (5I2)

PORMAT (FO.3,2P8.8,F08.3,006.4)

FORBAT (120, °XTERATION NUNBER GREATER THAN 100°Y)

PORBAT (1RO, 11X, NUNBER OF [TERATIONS IN G*,15)

PORNAT(1HO0,* THE POLYNONMIAL USED IN THE OBTAOGONAL COLLOCATION

1PROCEDURE IS OF THE TUYPR ALPFA = °*,F10.4,°¢ BETA = ' ,P10.%,//).
vE

FORMAT (180, I FUGCET rocce2 vAIX
1DP DX CORR TO GOOTY)
FORRAT (1H0O,? IEXP 13,34 PEXPY)

PORMAT (1HO,*SOLUTION AT THR DATAPOILNTS!)
FORBMAT (1HO, '"CALCULATED VALUES OF Y1 ')
FORNMAT(3I11)

PORMAT (12A4)

PORBAT (141, 'EXPERINENTAL BBESULTS AND CALCULATZD QUANPITIES POR
ITHE BINAEY SYSTEA ¢, 1244,/ 120 (1H%))

PORMAT (212)

PORRAT (1HO,t SUN OF SQUARES Or DELTA P ',P16.7,//,°' VARIANCE OF
1DELTA P S L,P10.8,"0 ARITHARTIC HEA® OPF DELTA P °',P10.8,//,
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2* ARITHARTIC HEAR OF DELTA P/P ',P14.6,//1X,' CALCULATED EXCLUDIN
3G GIYEN END POINTS®)

FORMAT (3210.5)

POREAT (110, *SOLUTION AT THE COLLOCATION POINTS')

PORMAT (141, 'CONSISTENCY TEST BY BEPEATED HALVING OF TRAPEZOLDAL
180LE WITH ROMBEBRG I NTEGRATION, ABEA= *,E15.6)

LOGICAL UNIT NUMBERS

NED=5

HUR=6

READ (RBD,511) NJOB,NKOAP, NSTP 1, NSTP2
17 (MJOB. RQ-0) STOP

READ(NRD,521) TEIT

READ/NRD,556) PTITLE

READ (NBD,556) GTITLE

DO 500 LJC=1,NJOB

READ (NRD,S523) K,NMAX

READ(NRD,508) HBPTS

READ(NRD,520) N11,82,N3

VRITE (NWR,522) TEIT

¥BLTE (NWR,515) ALFA,BETA

DO 5 I=1,NBRTS

READ(MBD,512) PEXP(I),DU,DUN,TL(I), XEXP{I),DUNN,DUANY,DN,TEXP (L)
1,D80,DHHU, DHRUY

- T=TL(I) ‘ -
CONTINUE
CALL PRROM(NKONP,R, AP, BP,TCT,TC, ANY,TAU,ACEN, VC,PC,T, LJC)
LB R
52 ) IDEBTIFICATION PARABPRTERS, SEE TABLBE DELOW
13 )
] Y . T
LR ] N2 ‘ N3
arH cC/nOL K
BAR aRa/cc 1 4
PSIA CUrr/LB. BOL c
INCH,.HG LB/CUPYT 2
CN. HG CUPT/LB
1.7y z

Do 9783 I=%,NBPTS

GO To (99°22,9993,9993,9995,9996,99996) ,N11
PEXP(X)=PEXP(L)/1.01325

GO TO 9992

PEXP(X)=PEIP(I) /14.696

GO TO 9992

PEXP (L) =PEXP(I) *0.0338211

GO TO 2992

PEXP (L) =PEXP(X)/T6.

GO TQ 9992

PEXP (L) =PEXP(I)/760.

GO TO (9997,9998,9999,99990) ,8)
T=(IL (L) +859.67) /1.8

G0 TU 9997

T=TL(L)+273.15

GO TO 9997

T=TL (L) /1.8

CONTINUE

COoBTINDE

KP 1=K+

PS(1)=PE1P (¥BPTS)

PS (2)=PRIP(Y)

YRITR(NUR,505) NBPTS,T

CALL LEPIT (XEXP,PEXP,NBPTS,K)
SRITE(NWR,517)

DO 8 1=1,NBPTS

URITE (NVUR,525) XEXP (1), IEXP(I) ,PEXP (L)
CONTINUR
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CALCBLATION OF PURE COMPONZNET PROPERTIES

DO 10 I=1,HKONP

J=V+BKOAP-I

PSAT=PS (I)

T(D)=1.0

T{J)=0.

CALL PRYOL(®KOMP,¥,2,X,Y,PSAT,T,AP,82,R,-V)
CALL PRFUG(Y,P5AT,T,V,R,PUGCE,AP,BP,NKOAP)

Y (I)=0.

P UGS (L) =PUGCE (I) *PS (I)

CONTINUE

X(1)=1.0

X(2)=0.0

CALL GNVOL(¥KOMP,X, VC,ACEN, TCT,T,TAU,ABT.TC,Y)
VOL (1) 2¥ \
1(1)=0.0

X(2)=1.0

CALL GHVOL(NKONP,X,VC,ACEN,TCT,T,TAU,ANY,TC,V)
VOL(2) =¥

CONTINUR

DO 400 N=MSTP1,NSTP2

GENERATION OPF COLLOCATION CONSTANTS

WRITE (N¥R,501) N

NT=NeBO* ¥1

CALL JCOBI(25,8,80,H1,ALFA, DETA, FA,?B,FC,R0D)
WRITE(NWR,502) (ROD(I),I=1,NT)

DO 14 I=1,KT

CALL DPOPR(2S5,N,M0,N1,I,1,PA,FB,RC,HOD, V1)

DO 18 J=1,MT

A(L,Jd)=V1(J)

CONTINOR

NP V1aNe )

FI1({NT)=PUGS( 1) /PS(T)

FI2(1) =FUGS (2) /PS(2)

WRITE (NWR,506) T,PS (1) ,PS{2) ,VOL (1) ,VOL{2) ,FY1(NT),FI2( V),
170GS (1) , PUGS (2)

THERMODYNAMIC PROPERTIES AT THE COLLOCATION POINTS

DO 22 I=1,NT

X1=ROD (I)

CALL PCAL (PS(2),PS(1),X1,PP,KP1)

CALL DPX (Ps(2),Ps (1) ,KP1,DDX ,X1)

P(I)=PP

DPDX (L) =DDX

X(Y)=x1

X(2)=1.~X(1)

CALL GNVOL (RKOAP,X,¥C,ACEN,TCT,T,TAU,ANY,TC,V)
VHIX(L)=V

YE (I)=VHLX (I) -X (1) $VOL (1) ~X (2} *VOL(2)

STKOR (L) =VE (1) *DPDX (I) / (B*T)

PP1(I) =PUGS (1) *DEXP (VOL (1) / (R*T) * (P (1) -PS (1))}
PP2 (L) =PUGS (2) *DEXP (VOL (2)/ (R*T) * (P (L) ~PS (2)))
TANC (I)=0.5

COWTLNDE

THERGDTNARIC PROPERTIRS AT THE DATA POLNTS

DO 227 I=1,EBPTS

I1=XBXP (1)

CALL PCAL(PS(2),PS{1),X1,PP, KP1)

CALL DPX (PS(2),PS (1) ,XP1,DDX ,X1)

PL (I)=PP

DPDXL(I)=DDIX

IL (1) =1

AL (2) % 1. -XL (1)

CALL GRYOL (NKONP, XL,¥C,ACEN, TCT

VUJ:U.(I)-V‘ +XL,7C, . s ToTAU,ANY,TC, V)
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VEL(I)=VAIXL(I)=-XL{1)#VOL{1) -XL {2) *YOL {2)

STKORL (I) =Y EL (X) *DPDXL (I)/ (B*T)

PPIL ([) =PUGS( 1) *DEXP(YOL(1) / (R*T) *(PL (1} =PS (1}))
PP2L (1) =PUGS (2) *DEXP (YOL (2) / (R*T) * (PL (1) -PS (2)) )
CONTINUE

LNITIAL VALUES OF G AND PI

DO 26 I=1,RT

G (L) =ROD (I) * (1.-80D {1} )
FI1(I)=1.

PI2(I)=1.

CONTINUR

DO 261 LI=1,NBPTS
FIVL{I)=1.0
PI2L(I)=1.0

CONTINUE

START ITEBATION

N1=0

DO 30 I=1,H8T

FPP1(X)=PP1(I)/PI1(1)
PPP2{I)=PP2(L)/FI2{1)

CONTINUB

DO 301 x=1,RPPTS

PPPIL (1) =PP1L (I) /FITL(I)

FPP2L (L) =PP2L {I) /FL2L(I)

CONTINUB

CALL GIBSH(PPPV,FPP2,STKOR,ITER)
BY=NY+1

IP (NY.GT.20) GO TO 400

WBITE(¥WR,513)

GO TO 400

YRITE (NWQ,518) ITER

DO 5O I=1,NT

GAN1 (I)=DEXP (G(X) +(1.-BOD(I) )* (SA{L)-STKOR(I)))
GAHNZ(X)=0BXP (G(X)~-ROD(X) *{SA{I) -STKOR{I)))
Y1C(I) *GAN1 (1) #*ROD (I)*PPP1 (L) /P (I)

Y2C (X)=GAN2 {I)* (1.~ROD (I)) *#PP2 (I) /P (I)
SUNTIC (I) =Y 1C (1) +12C (X)

CONTINUR

C=DLOG (GAN1 (1) /GAN2(1))

B=DLOG (GAAT(NT) /GAN2 (NT) )

LAGRANGE INTERPOLATION

DU 411 I=1,NBPTS
GINT (I)=0.

SAINT (L) =0.

IB=IEXP {I) :

CALL INTRP(25,MT,XB,ROD,PA,LINT)

DO 412 J=1,HT

GINT (L) =GINT (I) +XINT (J) *G (J)

SAINT (1) =SAINT {I) +XINT (J) *SA (J)

CONTINDE

GAN1L (I) =DEXP {GINT (I) + (¥.~XB) *(SAINT (I) -STKQEL(I)))
GAN2L{I) »DEXP (GINT{I)~IR® (SAINT (I)-STKORL (I}))
Y1CL(I)=GAN1L (I) *XEXR(I) *PFPP 1L{I) /PL(I)

Y2CL (1) =GAN2L (I) *(1.-XEXP(I) ) *PPP2L (I) /PL(Z)
SUNTICL (I) =Y 1CL{I) +T2CL{I)
11CL{I) =1 1CL (1) /SURICL (I)

Y2CL (1) =T 2CL (I) /SUA ICL (I)

YL (1) =Y1CL (1)

YL (2) =Y2CL (X}

PR=PL (I)

CALL PRVOL{NKOMP,V,Z,XL,YL,PR,T,AP,BP,8,~1)
CALL PRPUG(IL.PR.T,Y,R,FUGCE, AP, EP,NKOKP)
PI1L(I)=POGCE (1)

PI2LIT)=PUSCE (2)
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CONTINUE
TEST FOR VABRIATION IN TYICAL

DO 60 I=1V,NT

IF(DABS (Y1IC (I)—-YANC (I))~-1.D~-05) 60,65,65
CONTINUEB

GO TO 80

HEV VALURS OF PUGACITY COEPFICIERTS

DO 68 I=1,NT

TAKC (I) =Y 1C (I)

Y (1) =11C {I)

Y (2) =Y2C (I)

PR=P (I) .
CALL PRYOL(MEOMP,V,2,X,Y,PR,T, AP,BP,R,-1) i/
CALL PRFUG(Y,PR,TY,¥,R,PUGCE, AP,BP,¥KOAP) vl
PIN(I)=FUGCE(T) U
PI2(I)=PUGCE(2)

CONTINUE

GO TO 28

CONTINUE

VRITE (MW R,530)

SRITE(NYE,500)

DO 4117 I=1,NT

GE (L) =G (I)*T*8. 3148
WRITE(RUR,507)ROD(I) P (I} ,6(I),SA{I),GANI{I),GAN2(I),YIC(L),

112C(1) ,S0NIC{I) ,GE(I)

CONTINUE

ARITE(NVR,516)

DO 4116 I=1,M7T

WRITE (¥WR,507)ROD(I) ,PX1(I), PI2(I),VAIX(I),VE(1),DPDX (I),STKOR (L)
CONTINUE

WRITE (NWR,518)

WRITE(NWE,500)

DO 85 I=1,EBPTS

GE (I) =GINT (I) *T#8.3 140

WRITE (NWR,577)XBXIP(I},PL(I),GINT (I) ,SAINT(L),GANIL (I) ,GAN2L (I},

1Y1CL(XI), ¥Y2CL{I) ,SUNYCL (X),GE (I)

CONTINUE

CALL SCALE(XGCALE,YGCALE,XBXP,GE,{APTS, AARAT, NONAT, 1)

CALL PLOT (AABAY,NUMAT,GTITLE,YGCALE,XGCALE, 1)

CALL ROMB (§MAX,C,B, BAT,NBAX, 20)

YRITE (N4R,532) BAT(1, uanx)

URITE (SUR,516)

DO 86 I=1,ABPTS

WRITE (NWR,507) XBXP(I),PI1L(I),PT2L(I), YRIXL(I), VEL (I) ,DEDIL (L),

’"m*
é ‘H 5 BJQ’
1

‘l
é
¢

ﬂxrz1né
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CONTINUE
DELYS=DSQRT (SQ/ (DFLOAT {RBPTS5-3) ) )
DELYA=DELY/ (DFLOAT (NBPTS-2))
DRLPS=DSQRT (SSQ/ (DFLOAT (RBPTS-3)))
DELPA=DELP/ (DPLOAT (NBPTS-2))
DDELP=DDELP/ (FLOAT (8-2))

WRITE (N¥R,510) SQ,DBLYS,DELYA
WRITE(N¥R,528) SSQ, DELPS,DELPA,DDELP
CONTINUE

CONTINUE

60 TO 600

END



PROGRAM 2 (R-K)
(high Pressure systems)
(symmetric convention)
(Soave-Redlich-Kwong Equation of State)

PROGRAM 2 (R-K) requires the following
sections of subroutines (see Table 1):

1) MAIN SECTION,
2) SUBSECTION TWO.

/1
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PRUGKAM CTLGZ CALCULATES VAPOR PHASE MOLEFPRACTIONS FOR SYSTEMS
UNDER HIGU PRESSURE USING I'ME SYMMETRIC CUNVENTION FUR HOUMALL-
SAELIO¥ OF ACTIVITY COEFPICIENTS

DOUBLE PRECISION FA (25),F8(25),FC(25) ,V1(25),¥1C(25),Y2C(25), -
1XINT (25) ,GAN1 (25) ,GAN2 (25) , SUNYC (25) ,FRR1(25) ,FRR2(25) ,FL1(25),
2F12(25) , YANC (25) ,FP1(25) ,PP2 (25) ,DPDX (25) , VHLX (25) , VE (25) , STKOR (25
3)

DOUBLE PRECISION A(25,25),5A(25) ,P(25) ,G(25) ,80D(25),GE (25)

DUUBLE PRECISION XEXP(25),YEXP(25), PEXP(25),DELX (25} ,4A1(25),
14A2(25) , WA (25) , A4 (25)

DOUBLE PRECISION PCA(25),DP,SSQ, LELP,DELPS,DELEA

DUOUBLE PHECISION ALFA,DETA,X1,PX,DDX,5Q,%R,PINT,YINT1,YINC2,504Y,
1DY,DELY, DELYS ,DELYA

DOUBLE PRECLSIGN AA(21),Pe

DOUBLE PKECISION PS (2),MAT(20,20),C,B

DUUBLE PBECISION DEXP,DABS,DSQAT,DPLOAT

DUUBLE PRECISION FEEBIL(25),PPP2L (25),PL1L(25) ,FI2L(25),FP1L (25),
1PP2L (25) , VMIXL (25), VEL (25) ,STKORL (25) , PL (25) , GINT (25) ,SAINT (25) ,
2GAMIL(25) ,GAN2L(25) ,Y1CL(25) ,¥2CL(25) ,SUMYCL (25) ,DPDXL (25}

DOUBLE PRECISION TL (25)

DOUBLE PBECISION DDELP

DLMENSLUN AL(2,2) »BL(2),AG(2,2),BG(2),Y(2),X(2),FUGCE (2),FPUGS (2),
1VOL (2)

DLHENSION TCT (2,2) ,TC(2) ,ANY (2,2),TAU(2,2) ,ACEN (2) ,VC (2),PC (2)

DLMENSLON TEXT(12)

DLAENSION XL (2),YL{2) :

DIBENSLOM NURNMT (10) ,PTITLE(29),YGCALE(10, 11), XGCALE (300),

1 AARAY (10, 300) ,GTITLE(29)

COMBON/DIV/8,5hP,G,HOD, K, 4P 1, NT

COBAON/LEG/AA
COMHON/BEG/FA

COMMON PTITLE

DATA B/82.0567/

DATA ALFA,BETA/0.D 00,0.D 00/

DATA HO,N1/1, 1/

FOKAAT (181, *CONSISTENCY TESTS USLNG OSTHOGONAL COLLOCATION -

1 MUNBEH OF INTERNAL POINTS*,IS) O

FOKMAT (1HO, "COLLOCATION POINTS®,/,1X,10F10.6)

PORMAT (140, X*,9X,%p¢, 7%, 'GE/BT® 6K, GOOT®, 5X, ' GANNA1*,4X,
19GANMAZ® ,6X, Y1 ,8K,9Y27,5K, ¢SUN CORY,2X, GE J/MULE')

FOKRNAT (140, *NUMBES OF BINARY POLNTS',IS,5X,'AT THE ISOTHERM!,
1P10.2, 5K, 'TENPERATURE IN DBG K*)

FORMAT (1HO0,*T*,P10.4,4X,'BS" , 2F10.4,4X, *VOL, 2F10.4,4X,//,1X,
14FISAT®, 2F10.4,4X," FREESATY, 2P10. 4, /)

FURHAT (1X,11P10.4,F10. 4) .

FOKMAT {I2) !

FORMAT (29A4)

FORMAT (1HO, * X*,8%,987, 10X, Y14, 7, 1BEXP® ,6X," DY? 8K, ¥2°,
171, 1SUMY ¢, 6X, *PCAL® , 7Y, 'DR")

PORNAT (1HO,* SUA OP SQUARES OF DELTA T ',F16.7,//,° VARLANCE OF
1DBLTA Y ¢,P10.8,° ARITHNETIC MEAH OF DELTA Y °,F10.%,//,°
2CALCULATED EXCLUDLNG GIVEN END POINTS')

FORMAT (512)

PORMAT (F8.3,2F8.4,F8.3,8F6.4)

PORMAT (1HO, * ITERATION NUMBER GREATER THAK 100 %)

PORBAT {1HO, 1X,*NOMBER OF ITERATIONS IN G', I5)

PORNAT (140, * THE POLINONIAL USED IN THE DRTHOGONAL COLLOCATION
1PROCEDURE IS OF THE TYPE ALFA = ',F10.4,' BETA = °*,P10.4,//)

ot

FORMAT (1HO,* X PUGCE1 FUGCE2 vaIx vE
1DPDX CORR TO GOOT?)
FORNAT (1HO,* XEXP YEXP PEXP?®)

FOBHAT (1H0, * SOLUTION AT THE DATAPOINTS')
FORMAT (1HO, *CALCULATED VALUES OF Y1 )

POBRNAT (3I1) . ,

FORMAT (12A8) 1

PORNAT (141, 'EXPERIBENTAL RESULTS AND CALCULATED QUARTITIES POR
1THE BINABY SYSTEM +12A6, /120 (1H®))

’/

FORBAT (212)
POIHIT(IBO.' son or SQUAR!S oF DBLTA P ',P16.7,//,° VARILARCE OF
IDELTA P ', 710.0," ARITHHETIC MEAN OP DELTA P °',F10.4,//,
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2% ARITHMETIC BEAN OF 'DELTA P/P ",éTQ.G.//1X,' CALCULATED EXCLUDILN
36 GIVEN END POLNTS')

PORBAT(3P10.5)
FORMAT(1HO, 'SOLUTION AT THE COLLOCATION POINTS')

532 POBMAT (141,*CORSISTENCY TEST BY REPEATED HALVING OF TRAPEZOIDAL
TRULE WITH BRONBERG IRTEGRATION, AREA= ', E15.6)

LOGICAL UNIT NUMBERS

NRD=5

NUB=6

READ (NRD,511) NJOB,NKOMP, NSTP1, NSTP2
IF (NJOB.EQ.0) STOP

READ (NED,521) TEXT

READ(NRD,S556) PTITLE

READ (NED,556) GTITLE

DO 500 LJC=1,NJOB

READ (NRD ,523) K,NMAX

READ (NED,508) NBETS

READ (NG&D,520) N11,82,83

WRITE (N¥R,522) TEXT

WRITE (NWBe515) ALFA,BETA

DU 5 I=1,NBPTS

BEAD (N&D,512) PEXP(I),DO,DUN,TL(I), XEXP(L),DUNM,DUNMY, DN, TEXD(T)
1,DNU,DENY, DUNDY

T=TL(I)

CONTINUE

CALL REXON:(NKOMP, R.AL.AG BL, BG,TCT,TC,ANY,TAU ,ACEN,¥C,PC, T, LJT)
L3R )

n2 } IDENRTIPICATION PARARBRETERS, SEE TABLE BELOW
3 ) .

P v T

N1 02 N3

ATH cCc/noL K

BAR GRM/CC P

PSIA CUFT/LB. HOL (4

INCH.HG LB/CUFT R
CH.HG CUFT/LB

NN HG A

DO 9783 I=1,RBPTS
GO TO0 (9992,9993,9994,9995,9996,99996) ,N11

9993 PEXP (I)=PEXP(I)/1.01325

GO TO 9992

9994 PEXP (I) =PEXP (I)/14.696

GO TO 9992

9995 PEXP (I)=PEXP (I) *0.0338211

GO TO 9992

9996 PEXP{I)=PEXP(I)/76.

GO TO 9992 T

39996 PEXP (1)=PEXP (I)/760.
9992 GO TO (9997,9996,9999, 99990).&3
9998 T= (TL(I) +459.67) /1.8

GQ TO 9997

9999 TXTL(I)+273.15

GO TO 9997

99990 T=TL(I)/1.8
9997 CONTINUE
97831 CONTINUE

8

KP1=K+1

PS5 (1) =PEXP (NBPTS)

P5 (2) =PEXP (1)

WRITE (NWR,505) HNBPTS,T

CALL LEPIT (XBXP.,PEXP,NDBPTS,K)

SRITR (NWB,517)

DO 8 1=1,NBPTS
WRITE(NWD,525) XEXP(I) ,YBXP(X) ,PEXP(I)
CONTINUR
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CALCULATION OF PURE COMPONENT PROPERTILES

DO 10 I=1,NKONP

J=1+NKONP-I

PSAT=PS (L)

Y(I)=1.0

Y (J) =0,

CALL BKVOL (NKOMP,Y,2Z,X,Y.PSAT,T,AL,AG, BL, BG,R,~1)
CALL BKFUG(Y,PSAT,T,¥,R, PUGCE, AG, BG, NKONP)

Y (I)=0.

FUGS (L) =PUGCE (I) *PS {I)

1(I)=1.

X {J)=0.

CALL GNVOL (NKOMP,X,YC,ACEN,TCT,T,TAU,ARY,TC,V)
VOL (1) =V

X(I)=0.

CONTINUE

DO 400 N=NSTP1,%STP2

GENEBRATION OF COLLOCATION CONSTANTS

WRITE(NWR,501) N /"
NT=N#NO+ N1

CALL JCDBI(25,8,80,N1,ALFA,BETA, FA,FB,FC,ROD)
WRITB(¥4WB,502) (ROD({I), I=1,NT)

DO 14 I=1,NT

CALL Dropn(zs N, no,nt,r 1,PA,FB, FC,ROD, V1)

DO 14 J=1,uT

A(L,d)= v1(a)

CONTINUE

NP 1=N+1

FIV(UT) =PUGS (1) /PS5(Y)

FL2(1)=PUGS (2) /PS(2)

WBLTE(NWR,506) T.PS(I),PS(Z),VOL(1) YOL ({2} ,PI1(NT),PL2(Y),
1PUGS (1) , PUGS (2)

THERMODY NAMIC PROPERTIZS AT THE COLLOCATION POLNTS i
1y
DO 22 I=1,NT t/
£1=R0D (1) ‘
CALL PCAL (PS({2),PS(1),X1,PP,KP1)
CALL GPX (PS (2),PS(1) ,KP1,DDX,X1)
P{I)=PP
DPDK(I)=DDX
L(1)=x1
X(2)=1.-X(1)
CALL GNVOL (NKONP, X, VC.ACEN TCT,T,TAU,ANY,TC_.V)
VAIX(T)=V
VE(L)=VAIX(I}~X([1)*VOL (1)-X(2)*VOL(2) 3
STKOR () =VE (1) *DPDX (L) / (BR*T) . ,
PP1(I)=PUGS {1) *DEXP (VOL (1) / (R*T) *(P (I) - Pa(1)))l’
PPZ(I)=?UGS(2)‘DBXP(VOL(Z)/(R‘T)‘(P(I) PS(2)))
YANC {I)=0.5 ,
CONTINUB “

THERODYNANIC PROPERTIEBS AT THE DATA POILNTS

DO. 227 I=1,NBPTS

X1=XBXP(I)

CALL. PCAL (PS (2) ,PS(1) ,X1,PP, KP1)

CALL DPX (PS (2),PS (1) ,KP1,DDX,X1)

PL (L) =PP

DPDXL (I) =DbX

IL{1)=X1

XL (2) =1.-XL (1)

CALL GNVOL {NKOHP,XL,VC,ACEN, TCT,T,TAU, ANY,TC, V)
VAIXL (I) =V ‘
VEL(I)=VMIXL (I) —=XL (1) *VOL (1) -XL (2) *¥YOL (2)
STRORL (I) =VEL (I) *DPDXL (I) / (R *T)

PP1L (1) =PUGS (1) *DEXP (VOL(1) / (R®T) * (PL (L) ~PS (1))
PP 2L (1) =PUGS (2) *DEXP (VOL (2) / (B*T) * (PL (L) ~PS (2))
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CONTINUE
INITIAL VALUBS OF G aND PIL

DO 26 I=1,NT

G {I) =ROD (I) * (1.~BAD (I))
FI1(I)=1a

FI2(I)=1.

CONTINUE

DO 261 [=1,HBPTS
PITL(I)=1.0
PI2L(I)=1.0

CONTINUE

START ITERATION

NY=0

DO 30 I=1,NT

PPR1(I)=PP1(I}/PI1(I} \
EPP2(L)=PP2 (1) /PI2(1) )
CONTINUE %
DO 301 I=1,NBPTS

FPPPIL (L) =PPIL (I} /PI1L(I)

FPPP2L(I) =FP2L (1) /FI2L (L)

CONMTINUE

CALL GIBSH(FPP1,FPP2,STKOR,ITER)

NY=NY+1

IP (§Y.GT.20) GO TO 400
I? (ITER-100) 33,32,32
WRITE (FUR,513)

GO TO 400

WRITE (NWR,514) ITER

DO 50 I=1,NT

GAN1 (L) =DEXP (G (L) * (1.~ROD (I} ) *{SA(L) =5TKOR(I)))
GAN2 (L) =DEXP {G (1) ~ROD {I) * (SA (I) - STKOR{I)))
T1C(I)=GAM1 (L) *BOD (L) *rppP1(L) /P (1)

12C (1) =GAN2 (1) % (1. —ROD(I))tPPPZ(l)v.ﬂn

T

SUNIC (1) =T1C (I) *+Y2C (I) A
CONTINUE W

C=0LLOG (GAR1T {1} /GAN2 (1)) '\

B=DLOG (ANl (RT) /GAN2 (NT)) N

s

LAGRANGE INTERPOLATION

DO 41% [=1,HBPIS

GINT(IL)=0.

SAINT (I) =0.

IG=XEXP (I)

CALL INTHP(25,NT,XR,ROD,PA,XINT)

DO 812 J=1,8T

GINT(I)=GINT (I) *XINT (J) *G (J)

SAINT (L) =SAIRT(I) +XINT (J) *SA ()

CONTINUE
GANTL(I)=DEXP (GINT (I)# (1.—KR) *(SAINT(I)-STKORL{I)}))
GAN2L(I)=DEXP (GIRT (I)-XB® (SAINT (I)~STXORL (L)) )
YICL (L) =GAB 1L {I) *XEXP (I) *Fep 1L {I) /PL (I)

Y2CL (I)=GAM2L (L) *(1.~XEXP (I} ) *FPP2L (I) /PL (I)
SUMYCL (I) =Y 1CL(I) +Y 2CL (I)

Y1CL (L) =Y 1CL {I) /SUNICL (I}

12CL (X) =Y2CL (I) /SUM XCL (I)

1L (1) =Y1CL (X)

1L (2)=Y2CL (1)

PR=PL (L) :

CALL BKVOL (¥XO®®,¥,%,XL,YL,PR,T,AL,AG,BL,BG,R,-1)
CALL BKPUG (YL,PR8,T,Y,R,FUGCE, AG, 5G,RKOAP)

FLIL (I)=PUGCE (1)

PI2L (L} =FUGCE (2)

CONTINUE

TEST POR VARIAT10M IN YICAL

(R
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DO 60 [=1,NT

1P (DABS (Y1C (I)~YANC (I))=1.D-05) 60,65,65 .
CONTINUE

GU TO 80

NEV VALUES OF FUGACITY COEPFICIENTS

DG 68 I=1,NT
IANC (I} =Y iC (X)
Y () =Y1C(I)
Y(2) =Y2C(I)
PR=P (I)

CALL RXVOL (NKONP,V,2Z,X,Y,PR,T,AL,AG,DL,BG,R,~-1)
CALL RKPUG(Y,PR,T,V,R,PUGCE,AG,BG,NKONP)

PI1(I)=FUGCE(1) v
PL2(L)=PUGCE (2) <«

CONTINUE

GO TO 28

COHTINURB

WRITE(NWR,530)

WRITE (HNR,508)

DO 4117 I=1,NT

GE {I) =G (L) *T*08.3144

WBRITE(NWR,507)ROD(I) 9(1),&(1) SA{I) ,GART{L) ,GANZ (), YIC(L),

1712C{I) ,SUMYC(I) ,GE (I)

CORTINUE

VRITE (NWR,516)

pO 43116 I=1,NT

WRITB (MU R, 507)ROD(I) PIV(Y) ,FI2(I),VNIX(I),VE(L),DPDX(L) ,STKOR(D
CONTINUE

WRITE(NVR,518)

WRITE (NWR,504) »

DO 85 I=1,NBPTS

GB (L) =GLNT (I) »T*8. 3148

WRITB(NWE,507)XEXP (I),PL (L), GINT (1), SALNT(I),GANIL (I} ,GAN2L(I),

1Y1CL (L), Y2CL{I) ,SUMYCL (I),GE (I)

CONTINUE

CALL SCALE(XGCALE,YGCALE,XEXP,GE,NBPTS, AARAY, NUNAT, 1)

CALL PLOT (AARAY,NUMMT,GTITLE,YGCALE, XGCALE, 1)

CALL ROHB (NNAX,C,B, MAT ,NMAX, 20)

WRITE (NWR,532) MAT(1,NNAX)

YRITE (N¥8,516)

pO 86 I=1,NBPTS

WRITE (WWR,507) XEXP(I), PI1L(I),PT2L(), VHIXL (L), ¥EL (L) ,DPDXL (L),

1STKORL (I)

CONTINUE

WRITE (R¥H,519)

WaLITB (HVH,509)

5Q=0.

DELY=0.

$5Q=0.

DELP=0.

DDELP=0

DO 300 I=1,HBPTS

XB=XEXP (I)

CALL PCAL(PS(2),PS(1),XB,PP,KP1)
PCA (I) =PP

DP=PCA (1) -PEXP(I)

PINT=PEXP (I)

50NMY=Y ICL (I) + Y2CL (I)
DY=X1CL(I)~1EXP(L)

WAITE(NWR,507) XR,PINT,YICL(I),YEXP(I) ,DY,Y2CL (L) ,SUMY,PCA(L),DP
5Q=5Q¢DY**2

DELY=DELY*DABS (DY)

S5Q=S5Q+0P*DP

DELP=DELP*DABS (DP)
DDELP=DDELP+DABS (DP) /PEXP(I)
CONTINUE
DELYS=DSQRT (SQ/ (DPLOAT (NBPTS-13)} )
DELYA=DBLY/ (DFLOAT (NBPTS=2))
DELPS=DSQRT (SSQ/ (DPLOAT (NBPTS-3) ) )
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DELPA=DELP/ (DFLOAT (NBPTS-2))
DDELP=DDELP/ {FLOAT (N~2) )

WRITE (NWR,510) SQ,DELYS,DELIA
WRITE(NWR,S24) S5Q, DELPS,DELPA,DDELP
CONTINUE

CONTLINUE

GO TU 600

END

¥
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PROGRAM 3 (P-R)
(high pressure systems)
(asymmetric convention)
(Peng-Robinson Equation of State)

PROGRAM 3 (P-R) reguires the following
sections.of subroutines (see Table 1):

1) MAIN SECTION
2) SUBSECTION ONE.
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PROGRAR CTLG) CALCULATES VAPOR® PHASE MOLEBPRAZTIONS FOR BIVARY
SYSTEAS UNDER HIGH PRESSURE USING THE ASYMNETRIC CONVENTIDON FOR
NORNALIZATION OF ACTIVITY COBPFICIENTS.

DOUBLE PRECISION A{25,25),SA (25),P (25),G(25), ROD(25)

DUUBLE PRECISION FA (25) ,FB(25),FC(25) ,¥1(25), XINT (25),Y1C(25),
1Y2C(25) , PD(25) ,GANY {25) ,GAA2 (25) , SUMYC (25) ,RDOOT {25) , FPP 1(25),
2PPP2(25) ,P11(25) ,P12{25), TANC(25) ,EP1(25),FP2(25) ,DPDX{25),
3VMIX(25) , VB (25) ,STKOR(25) ,PE (25) . PP (25) ,XEXP(25), YEXP (29),
4PEAP(25) ,DELX (25),8A1(25),WA2(25),¥A3(25) , #AG (25)

DOUBLE PRECISION ALFA,BRTA,XI,PL,D,DELTA,X1,0X,0DX,WEXAY,XR,50Q,

1DELY,DRLYA,DY,XINT1,YINT2,DELYS
IDOT(25),X2,X4

DOUBLE
DOUBLB
DOUBLEB
DOUBLE
DOUBLE
DOUBLE

DOUBLE
DOUBLR
DOUBLE
DQUBLE
DOUBLE
pDouBLE
DOUBLE
DOUBLE

DIMENSION XL (2),YL(2)

PRECIS10M
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION

PRECISION

PRECISION
PRECISION
PRECISION
PRECISION
PRECISTION
PRECISION
PRECISION

AA (21) ,pP )
PCA (25) ,DP,SSQ, DELP,DELPA,DELPS
DABS, DRIP, DFLOAT,DSQRT
TL (25)
PL(25) ,DPDXL{25),VRIXL (25),VEL (25),5TKOBL (25},

1PP1L {25) ,FP2L (25) , PX L (25) ,PI2L (25) ,GANIL{25) ,GAM2L(25) ,YICL(25),
2Y2CL{25) , SUNYCL (25)

GINT(25),SAINT (25)

FPP1L (25) ,PPP2L (25)
SROQT (25)
WORK(25) ,GIN,SAIN

BAT (20,20),C, B (25) LUNSY, XC

ARG (25) , VAL (25)
WILL(S0),9ILLRY
DDELP

DINENSELQR TEXT(12),2ZC(5)

DINENSION YPURE (2),YPART (2),TCT{2,2),TC(2) ,AKY{2,2),TAO(2,2),

1ACEN{2) ,VC(2) ,PC(2) ,AP (2,2) ,BP(2),Y (2} ,X(2) ,FUGCE

2(2) ,PUGs (2} ,VOL (2)
COMMON/DIV/A,SA,P,G,ROD, N, NT

counoN/

SEG/ZC

COMMUN/BBG/VWORK , ARG, VAL, PSAT 2,KP 1, VPURE; ACEN, TCT, ¥C, T, TAU,

1
counan/

ARY
LEG/AA

CoOMNON/BEG1/DELTA,XEXP
DATA ALPA,DETA/J.D 00,0.D 00/

DATA R/
DATA N0

82.0567/
B/, Y

FORBAT (1H1,*'CONSISTENCY TEST USING ORTHOSONAL COLLOCATION -
1HUMBER OF INTERNAL POINTS*,IS)

FOHMAT (1HO, *COLLOCATION POIRTS'/,1X,10F 10.6)

FORMAT (

140,

1',10X,*P*, 7%, ' GE/RT', 5%, 'GOOT*,6X, 'GAKNATY, 4K,
1Y GANNA2' ,5X,* T1* ,8X,*Y127,6%, *SU® CORR',4X,'GE J/NOLE?)
PORNAT (150, 'NONBER OF BINARY POINTS’,I5,5X,'AT THE ISOTHERM',F10
1.2,5X,TENPERATURE IN DEG K')
PORMAT (1140, T*,P10.9,82,'PS*,210.4,0X, ' YOL' ,2P10.84,4X,//,1X,
1'PISATY, 2P10.4,4X," PRRESAT, 2710.8)
FORMAT (1X,11P10. 8,7 0. 4)
FORMAT (12)
FORMAT (14O, "

X',8L,'P, 10X, Y1,7X, Y1EXP! ,5X, DY’ ,OX," 12",

18X,*SURY? ,6X,PCAL’ ,7X, ' DP?)

FORMAT (1HO,*

1DELTA Y

PORMAT (

*,P10.4
512)

SUH UF SQUARES OF DELTA Y

ABITHMETIC NEAN OP DELTA Y

YORMAT (FP8.3,2P8.4,P0.3,8P6.4)
FOBMAT (140, ITRRATION NUMBER GREATER THAN 100°7)

PORMAT (140, 1X,'RUMBER OP ITERATIONS IX G*,1S5)

"1CALCULATED RXCLUDING GIVEN END POINTS*)

*PI6.7,//,* YVARLANCE OF

', 210.8,//,!

PORMAT (140,* THE POLYMONIAL USED IR THE ORTHOGGNAL CILLOCATION
1PBOCEDURE I5 OF THE TYIPE ALPA

PORMAT (14O, 'HENRY LAW CONSTANT BY LAGRANGIAN EXTRAPOLATIONY,

1710.4)
FORMAT (

1u0,*

XBXPp

YEXP

' F10.8,°

PEXP?)

PORMAT (1HO, *SOLUTION AT THE DATA POINTSY)
FORMAT (1HO,'CALCULATED YALUES OF Y1°)

rORMAL (

311)

BETA

= ', . P13.8,/7)



-180-

521 FORNAT (1HO,* x PUGCF 1 ruGcr2 vaIX VE
"~ 1peDX CORR TO GOOTY)

522 PORMAT(I2)

S23 PORNAT (12A4)

524 FOBMAT (141, 'EXPERIMENTAL RESULTS AND CALCULATED QUANTITIES FOR
1THE BINARY SYSTEN  *,12A8,/,120 (1H®)})

525 FORMAT (1HO,' SUM OF SQUARES OP DELTA P °,F16.7,//,' VARILANCE
10F DELTA P *,P10.4,° ARITHNETIC NEAN OF DELTA P ¢, ,f10.4,
2//,% ARITHMETIC MEAN OF DELTA P/P ',FP14.6,//1X,' CALCULATLED
JEXCLUDING GIVEN END POINTSY)

526 PORMAT (3210.5)

527 PORMAT (1HO, *SOLUTION AT THE COLLOCATION POIATS!)

532 POBMAT (1H1,°*CONSISTERCY TEST BY REPEATED BALVING OP TRAPZOIDAL
1RULE WITH RONBERG INTEGRATIOR')

533 PFOBMAT (1H1,15X,*CONSTANT= ' ,E15.6)

c
c LOGICAL UNIT NUMBERS
C

HRD=5

N B=6

600 READ (RRD,511) NJOB,NKGHP, NSTP 1, RSTP2
I? (NJOB. EQ.0) STOP
BEAD (NRD,523) TEIT .
D0 500 LJC=1,KJOB
READ (NRD,522) K
BEAD (NRD, 508) NBPTS
READ (WRD,520) 811,82 K3
RITE(N¥R,528) TEXT
" WRITE (WVR,515) ALPA,BETA .
DO 5 I=1,NBPTS
READ (NRD,512) PRXP (I) ,DU,DUA, TL (I) ,XEXP (1) ,DUN N, DINNY,DN,TEXP (L),
1p#0,DAAD ,DAADY
. T=TL(L)
5 CONTINDE .
CALL PRAON (NKONP,R, AP, BP,TCT,TC, ANY,TAU,ACEN, YC,PC,T, LJC)

UBITE(G, *)AP,BP
c
c R R) )
c 52 ) IDENTIPICATION PARANETERS, SEE TABLE BELOW
c »3 )
c P v T
o N1Y N2 "3
c
C 1 ATS cc/noL K
C 2 BAR GRB/CC r
¢ 3 pIsa CUFT/LB.NOL c
G & INCH.HG LB/CUFT ]
¢ 5 cn.bc CuUPrT/LP
C 6 H#AM.HG z
v

DO 9783 I=9,NWBPTS

GO TO (9992,9993,9994,9995,9996,99995; ,N11
9993 PEXP(X)=PEXP (I)/1.01325

GO TO 9992
999 PEXP(I)=PEXP (I)/14.696

GO TO 9992
9995 PBXP (L)=PEXP (I)*0.0338211

GO TO 9992
9996 PBXP (1) =PEXP {I)/76.0

GU T0 9992
99996 PEXP (1) =PEXP(X)/760.
9992 GO TO (9997,9998,9999,99930) ,A3
9998 T= (TL(I) +459.67) /1.8

GO TO 9997
9999 T=TL (I)+273.15

60 TO 9997
99990 T=TL{I)/1.8
9997 CONTINUE
9783 CONTINUE

an

BORSISATION PACTOR
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DELTA=IBXP (NBPTS)

KP 1=Ke

YRITB{H®¥R,505) NWBPIS,T

po 250 I=1,NBPTS

IDOT{I) =XEXP(I) /DELTA

CALL ALPIT(XDOT,PEIP,NBPTS,K)
VRITE(MWR,517)

DO 8 I=t,NBPTS
IRITE(NWR,526) XEXP(I),YRXP(I),PRXP(I)
CONTINUE

PSATZ2=PEXP (1)

CALCULATION OF PUHBE COBPONENT PROPERTIES AND INITIAL GUESS OFf
HENBYS CONSTANT

(1) =0.

1(2)=1.

1(1)=0.

r1(2)=1.

CALL GNYOL {MKOMP,X,¥C,ACEN,TCT,T,TAU,ANY,TC,V)
VOL (2) =¥

CALL PRVOL(NKOAP,V,%,X,Y,PSAT2,T,AP,BP,R,-1)
CALL PRPUG(Y,PSATZ2,T,V,R,PUGCE,AP,BP,HKONP)
PUGS (2) =PUGCE (2) *PSAT2

X(1)20.05

K(2)=1.-X(1)

L= (1)

CALL PCALA (PSAT2,XI,PI,KPY)

PIE2P1

CALL PRVOL(MNKORP,¥L,Z,X,Y,PIE,T,AR,BP,R, 1)
CALL PWRPY (NKXOHP,X,AP,BP,8,T,VYL, VPART)
FRLTE(6,*) YL, VPART

Y(2) =X (2) *FUGS (2) /P

(1) =1.~-1(2)

CALL PRYOL (NKOAP,¥G,Z,%,Y,PLE,T,AP,BP,R,-1)
CALL PRPUG(Y,PIE,T,YG,R,PUGCE,AP,BP, NKONP)
rucs¢1)=(pl-x(2)-rUGS(z)/ruccs(2)tn:xp(von(zpc(px psurz;/(atryv)-
1PUGCE (1) /X1 *DEXP (-VPART (1) ® (PI-PSAT2) / (B*T))

P12 (1) =FUGS (2) /PSAT2

FPP1 (1) =0.

PPP2 (1) =PSAT2

1(1)=0.

1(2)=t.=x(1)

CALL GNYVOL (NEOMP,X,VC,ACEN,TCT,T,TAU,ANY,TC,¥)

CALL PNRPY (NKONP,X,AP,BP,R,T,V,VEART)

WRITE(6,%) V,VPART

YPURE(1) aVPART (1)

VPURE (2) =V

VRITE(NWR,506) T,PSAT2,VPURE (1), VPURE(2) ,PUGCE(T),FI2(% ,PUGS (1),
1PUGS (2)

DO 400 A=NSTP1,NSTP2

GENERATION OF COLLOCATION CONSTANTS

9RITE(NVR,501) N

TNTeTISE)

CALL JCOBI{25,R,N0,81,ALPA,BETA,FA,PB,PC, ROOT)
VRITE(FHR,502) (ROOT(I),I=1,NT)

DO 12 I=1,8T

CALL DPOPR (25,M,80,%1,I,1,FA,FB, FC,BO0T,V 1)
DO 12 J=1,HT

A(I,J}=V1(J)

COUTINUE

DO 19 I=1,NT

20D (1) =D ELTA$R00T (1) 5

CONTIBNUE

THERBCDYNANIC PROPERTIRES AT THRE COLLOCATION POINTS

DO 22 I=1,NT
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#3001 CONTINUE

aoa

aan

aan

anon

a1

412

401

50

65

68

6815

70

DO 40 I=1,NT )
GAM1(I)=DEXP(G(I)*(1.~ROD(I) ) *(SA(I)-STROR(I)))
GAM2 {I)=DEXP (G (I)-BOD (I) * (SA (I) -STKOR(L)})

Y1C (1) =GAN1 (1) *BOD(I)*PPP1({I) /P (I)

¥2C (1) =GAB2 (L) * (1.—ROD (L) ) $EPP2 (1)} /P (I)
SUMIC({I) =T1C (1) +Y2C {I)

CONTINOUB

LAGRANGE INTERPOLATION

DO 411 I=1,NBPTS

IR=XEBXP (I}

CALL -INTP (XR,ROD,G, WORK,NT, 1,ARG,VAL,NT)
CALL IN?DAL (X8, ABG, VAL,GIN,NT,1.D~06,LER)
GINT(I)=GIN

CONTINOE

DO 412 I=1,NBPTS

IR=XEXP (I)

CALL INTP(XR,ROD,SA,WORBK,NT, 1,ABG,VAL,NT)
CALL INTDAL (X8,ARG, VAL,SALK, NT, 1.D~06, LER)
SAINT (1) =SAIN

CONTINUE

DO 401 I=1,RBPTS

GABIL (I) =DEXP (GINT (L) * {1.0-XEBXP (I)) * (SAINT (I) ~STKORL (I}))
GAN2L(I) =DEXP (GINT (I)-XEXP(L)*(SALNT(I) -STRORL(I})))
Y1CL (1) =GAA 1L (1) *XEXP(I) *PPP 1L (I) /PL (I)

Y2CL (I) =GAN2L (L) * (1.~XXXP (I) ) *FPP2L (I) /PL (I)
SUBYCL (L) =T ICL (I) +¥ 2CL (I)

YICL (I) =Y 1CL (I) /SUM ICL (I}

Y2CL (L) =Y2CL (I) /SUN YCL (I)

B(I)=DLOG (GAR1L(I) /GAN2L(Y))

CONTINUE

C=DLOG (GANTL (2) /GAN2L(2))

TEST POR VARIATION IN TICAL

DO 60 I=1,MT

IP (DABS (Y1C(I)-YANC (I))~-5.D-05) 60,65,65
CONTINUR

GO TO 80

NEW VALUBS QF THE PUGACITY COEPPICIERTS

DO 68 I=1,NT

YANC (I)=Y1C (I)

(1) =Y 1C (1)

Y(2) =Y2C (I)

PR=P (I)

CALL PRVOL(NKONP,Y,Z,X,Y,P8,T,AP,BP,R,-1)
CALL PRPUG(Y,PR,T,V,R,PUGCE,AP,BP,NKONP)
FI1(I)=PUGCE(1)

PI2(I) =PUSCE(2)

CONTINUE

DO 6815 I=1,NBPTS

XL (1) =XEXP (1)

XL (2) = 1. =XL (1)

YL (1) =Y1CL{(I)

YL (2) =Y2CL (1)

PR=PL(I)

CALL PRVOL(NWKONP,V,Z,XL,YL,PR,T,AP,BP,R,-1)
CALL PRPUG(YL,PR,T,V,R,PUGCE,AP, BP,RKONP)
FIIL(L)=PUGCE (1)

PI2L(I) =PUGCE (2)

COBTINUE

CALCULATION OF HEEERY3 CORSTANT
DO 70 (=2,NT

PD(XI)=YIC (I)*PI1(I) *P(I) /ROD(T)
CONTINUE
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MHENR=NHENR+)
IP (NHENB-2) 28,28,72
72 CALL JCOBI (25,N,0,0,ALFA,BETA,FE,FB,FC,FF)
HENRY=0.
XR=0Q.
CALL INTRP(25,M,XR,PF,PE,XINT)
DO 74 I".n
J=I+1
HEHRY=HENRYI4+XINT (I) *FD (J}
74 CONTINUE
WILL (NY) =HENRY
IP(NY.LT.7) GO TO 873
HENRY=(WILL (NY) *RILL ({RY-1) *@ILL(NY-2) ¢WILL (NY-3})+WILL (NY-23)) /5.
GILLRY=0.001*HEKRY
IP (DABS (HENRY-WRILL({RY))}.LE.RILLRY) GO TOD 80
873 FUGS{(1)=HENRY
Do 75 I=1,NT
FP1(I)=PUGS (1) *DEXP (VPART (1) /(BReT)* (P(I) ~PSAT2))
75 CONTINUE
WRITB{(NWR,516) HENRY
IP {NY.GT.50) GO TO 80
DO 581 1=1,8BPTS
PP1L (I) =PUGS (1) SDEXD (YPART (1) /(R#T) # (PL (I) -PSAT2) )
681 CORTINUBE
GO TO 28
80 CONTINUE

PRINTS THE RESULTS

WRITB(N9A8,527)
VRITE(NWR,S504)
DO 8557 I=1,MT
GE=G (I)*T*8.3 140
'BLI!("HR,507)RQD(I)'P(t),G(I),SA([),GA“1(I‘,G“HZ(I‘,Y‘C([),
1Y2C(I) ,SUBYC(I) ,GE
8557 COMTINUB
WRITE(NWR,S521)
DO 8667 I=1,NT
WRITB(NWR,507)BOD(X),PI1(L),PL2(I),VNIX(L),YE(I),DPOX(L),
1STKGR (I)
8667 CONTINUR
WRITE (NWR,518)
SRITEB(NER,504)
DO 85 I=1,MBPIS
GE=GINT (I)*T*8.3148
VRITE(NWR,507)XEXP (1), PL(X),GINT (I) ;SAINT(I),GARIL(I) ,GAN2L(L),
1!1CL(1),!2CL(I),SURYCL(I).G!
85 CONTINOE
SRITE (NWR,521)
DO 846 I=1,NBPTS
9&[?3(!08,507)!8!9(1),Ft?L([).!IZL(I),VHIXL(II,'BL(I),DPDKL(I),
1STKOBL {I)
: 13 CONTINUR
WRITE(NWE,532)
XC=IBXP (2)
D0 57 I=3,NBPTS
UISYtﬂ(I)
CALL R0aB{6,C,UNSY,BAT,6,20,XC,I)
VBITE(NWUR,533) HAT(1,6)
57 CONTINUER
VRITE(BUR,519)
JRITR(R®R,509)
SQ=0.
DELY=0.
55Q=0.
DELP=0.
DDELP=Q,
DO 100 X=1,NBPTS
IR=XBXI (I)/DELTA
I8=IPIP (I)/DELTA
CALL PCALA(DPSAT2,18,PP,KP1)
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. PCA(L) =PP

DP=PCA (L) ~PEXP (I)
SUBYaTICL (I} ¢ Y2CL (L)

DY=Y1ICL (X)~YEXP (I)

WRITEZ (MUR,507) XEXP(I), PEXP (L) ,Y1CL (L), YEXP(I) ,DY,Y2CL(L),5UNY,
1BCA (L) ,DP . -
5Q=5Q¢DY*#2

DELYI=DELY+DABS(DT)

S5Q=55Q+ DP*DP

DELP=DELP*DABS (DP)
DDELP=DDELP+DABS (DP) /PEXP (1)
CONTINUE
DELYS=DSQRT {SQ/ (DFLOAT (NBPTS=2) })
DELYA=DELY/ (DFLOAT (NBRTS-1))
DELPS=DSQRT {SSQ/ (DFLOAT (NBPTS-2)))
DELPA=DELP/ (DPLOAT (RBPTS=1))
DDELP=DDELP/ (FLOAT (N-2))

WRITE (¥¥R,510) SQ,DELYS,DELYA
WRITE(MWR,525) SSQ,DELPS,DELPA,DDELP
CONTIRUE

CONTINUE

GO TO 600

END



PROGRAM 4
(Peng-Robinson interaction parameter)

PROGRAM 4 requires the following sections
of subroutines (see Table 1):

1) MAIN SECTION,
2) SUBSECTION TWO.
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PROGRAN CTLGI CALCULATES VAPOR PHASE MOLBPRACTIONS POR BINARY
SYSTEAS UNDER HIGH PRESSURE USING THE ASYAAETRIC CONYENTION FOR
NOBRMALIZATION OP ACTIVITY COEPPICIEANTS.

DOUBLE PRECISION A(25,25),3A (25) ,P(25) .6 {25), ROD(25)

DOUBLE PRECIS10H FA(25),PB(25),PC{25),V1(25), XIRT (25) ,71C(25),
1Y2C(25),FD{25),GAN1 (25) ,GAN2 (25) ,SUNYC (25) , ROOT (25}, PPP1(25),
2PPP2 (25) , PT1(25) ,P12(25) ,TANC(25),PP1(2S) ,PP2 (25) ,DPDX(25),
IVAIX (25) ,TE(25) ,STKOR(2S) ,PR (25) ,2P(25) ,XBXP (25) , T BXP (25),
4PEXP(25) ,DELX (2S) ,WA1(25),9A2(25) ,WA3 (25) , VAR (25)

DOUBLE PRECISII)N ALFA,BETA,XI,PL,D,DELTA,X1,PX,DDX,BENRY,IR,SQ,
1DBLY,DELYA,DY,TINTY, YINT2,DRLIS

DOUBLE PRECISIOB XDOT(25),%2,%4

DOUBLE PRECISION AA (21),PP

DOUBLE PRECISION PCA(25) ,0P,SS5Q,DELP,DELPA,DELPS

DOUBLE PREC1SIOM DABS,DEBXP,DPLOAT,DSQRT

DOUBLE PRECISION TL {25)

DOOBLE PRECISION PL (25),DPDXL(25),VNIXL(25),YEL (25),STEORL (25),
1P 1L (25) , PP2L (25) ,PI1L(25) ,FI2L (25) ,GAAIL (25) ,GAN2L{25) ,71CL{25),
2Y2CL {25) ,SUNICL {25)

DOUBLE PRECISIOR GIWT(2S5),SAINT (25)

DOUBLE PRECISION FPPIL(25),PPP2L (25)

DOUBLE PRECISICN SROOT({25)

DOUBLE PRECISION WORR{25),GIN,SALN

DOUBLE PRECISION ABG (25),.VAL (25)

DOUBLE PRECISI0S WILL({50),"ILLRY

DOUBLE PRECISION DDELP

DIMERSION TEXT{12)

DIBENWSION IL(2) ,YL(2)

DENENSION YPUBE(2),VPART (2),TCT(2,2),TC{2) ,ABRY{2,2),TA0(2,2),
T1ACEN{2) , YC (2) (PC (2) ,AL({2,2) , BL(2) ,AG(2,2),BG(2),Y(2),X(2),PUGCE
2(2),PUGS (2) ,YOL {2)

COBBON/DIV/A, SA,P,G,R0D,N,NT

COBNON/LEG/AA

DATA ALPA,BETA/0.D 00,0.D 00/

DATA R/82.0567/

DATA #0,01/1, 1/

FORWAT (18!, *CONSISTENCY TEST USEING OETHOGOWAL COLLOCATION -
1RONBER OF INTERNAL POINTS',IS) -

PORBAT (180, COLLOCATION POLNTS'/, X, 10P10.6)

FORNAT (1HO,* X' ,10X,'P*, 7X, *GE/RT",5X, *GOOT*,6L,*GANAL1? aX,
1*GABNA2",SX,*Y1?,8X,°72°,6X, *SUN COBB® ,4X,°GE J/HOLE®)

FORRAT{1H0,*RUABER OF BINARY POINTS*,15,5X,'AT THE ISOTHERN*,P10
1.2,5K, "TENPERATURE IN DEG K')

PORBAT (1HO,°T*,F10.4,8X,°pP5* ,F10.8,8X,°VOL",2710.4, nx,//,lx,
19PISATY,2P10.8,8X, PREESAT®, 2P10.8)

PORMAT (1X,11P10.8,P10,.4)

PORBAT (13)

PORBAT (1RO, ° X¢,3%,¢P° 10X,'71°,7X,* Y1EXP? ,5%,%DY*,8X,'Y2",
'G‘I.'”ﬂ',"l.'mﬂa'.n .".’

rolmnu,' SeN. or m‘” of DILTA Y ¢,P16.7,//,* VARIARCE OF

IDELTA Y ¢,P10.8,¢ ARITRORTIC BP>J OP DELTA Y ¢,P10.8,//,°
1CALCULATED EXCLODING GIVRS END POINTS')

PORRAT (512)

PORNAT (P8.3,200.48,P8.3,5%6.8)

PORSAT (180, *ITERATION NURSER GREATER THAN 100°)
PORAAY (180, 1X,* BUMBER OF ITERATIONS IN G*,IS)

roRRAT (1H0,? THE POLYNOSIAL USED IN THE ORTROGONAL COLLOCATION
1PROCEDURS IS OF THE TYPE ALPA = ¢,P10.8,° BEFA = ¢,F10.%,//)
':2:u=f(1ao.°nxlnr LA® CORSTABT BY LAGRANGIAN EXTRATOLATIONY,
PORNAT (1d0, ! xEXP 1.3 ¢ PEXDY)
FPORBAT (180,  SOLUTION AT THE DATA POINTS®) ’
PORMAT (180, 'CALCULATED VALURS OF 11¢)

FORNAT (311)

PORRAT (1HO,* x rucc? | PUGCP2 varg vE
1DPDX CORR TO GOOT!)

PORNAT (I2)

PORRATY (12A4)

PORNAT (181, ‘RIPRRINENTAL RESULTS AND CALCULATED QUANTITIES POR



ITHE BINARY SISTEN ¢, 12A8,/,120 (16%))

525 PORAAT(180,° SUN OF SQUARES OF DBLTA P. °*,P16.7,//,' VARILANCE
10P DELTA P ¢,P10.4,¢ ABITHNETIC RZAN OF DELTA P ',F10.54,
2//,% ARLTENETIC HEAX OF DELTA P/P ',F18.6,//11,' CALCULATED
3BICLUDING GIVEN END POIATS')

526 FOBAAT(3IP10.5)

527 PFORBAT{1H0,*30LUTION AT THR COLLOCATION POINTS')

LOGICAL UNIT RUNBERS

non

#8D=5
nvexs
600 READ(NED,511) NJOB, RKONP, SSTP1,NSTP2
IF (MJOB.EQ.0Q) STOP
READ (NRD,523) TERIT
DO 500 LJC=1,NJOB
READ (MED,522) K
READ (NRD,508) WBPTS
READ (WRD,520) N91,82,83
WRITE (N¥R,524) TBIT
BRITE(NWR,515) ALPA,BETA
DO 5 I=1,MBPTS
BREAD(NRD,512) PEXP(X) ,DU, DUN, TL(I) ,XEXP(X) ,DUNM, DUNCY, DN, YEXP (LI ,

1DBU,DBRU ,DARYY
T=TL (I)
s CORTINUE
CALL RKKON(BKOMP,R, AL,AG,BL, BG, TCT,TC,ANY,TAU,ACEN,VC,PC,T, LIC)
c
c i )
(o 82 ) IDBSTIPICATION PARAAZPEAS, SEE TABLE BELOW
c 3 )
c P v T
c Bl .oomn "3
c
cC 1 a7a cc/not R
cC 2 BAt GRE/CC r
c 3 PISA cuPT/LB.ROL c
C 4 INCH.HG LB/curt ®
¢ 5 ca.Hg CUFT/LB
C 6 AA.HG z .
o4 .

DO 9783 r=1,uBPTS v
60 TO (9992,9993,9994,9995,9996,999536) ,K11
9993 PEXP(I)=PEXP(1)/1.01325
GO TO 9992 .
9998 PBXP(I)=PEXP(I) /18.696
G0 10 9992
9995 PRUP(L)=DPBXP (1) *0.0338214
GO0 1G 9992
9996 PBXP(I)=PRXP(I)/76.0
G0 T3 9992
93996 PEXP (I)=PEXP (1) /760.
9992 GO TO {9997,9993,9999,99990) ,n3
9998 T= (TL(I) +459.67) /1.8
G0 TO 9997
9999 T=TL (L) +373. 15
60 10 9997
$9990 PT=TL(I)/1.0
9997 CONTINUR
9783 CONTINTE

HORBISATION PACTONR

aan

DELTA=ZEXP (RDPTS)
KR 1=Ks 1
WRITE(NUNR,505) NBPTS,?T
DO 250 I=1, NBPTS
250 XDOT {I)=REXP (I) /DELYA
CALL ALFIT(ZDOT ,PEXP,EBPTS,K)
TRITE (RER,517)
DO 8 I=1,NBPTS
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WRITE(NY¥R,526) XBIP(I) ,YEXP{I),PEXP(I)
CoRTINUE
PSAT2=PEIP (1)

CALCOULATION OF PURE COHPONENT PROPERTIES AND INITIAL GUESS OF

HENRY3S CONSTANT

1(1) =0

1(2) =1,

1({1)=0.

1(2) =1,
CALL GHYOL (RROBP,X, ¥C,ACEN,TCT,T,TA0,ANY,TC,V)
YOL(2) =V
CALL REVOL(NEXOBP,Y,2,X,Y,PSAT2,T,AL,AG,BL,BG,R,-1)
CALL BRKPUG(1,PSAT2,T,V,R,FUSCE,AG,BG, NKOHP)

PGS (2) =PUGCE (2) #PSAT2

xm-o.os

1(2)=t.-2¢1)

1I=x(1)
CALL PCALA (PSAT2, n,Pt.RM)

PIEB=pI
CALL BKYOL (BKOCAP,VL,2,X,%,PL1R,T,AL,A8,BL,BG, 1, 1)
CALL QDKPY (NKONP,X, AL,BL,R,T,VL, VPART)
1{2)=x (2} *PUGS{2) /PL

1) =1a-1(2)
CALL nnvonqukoar.vu.z.x prs.r.AL.Ae.BL BG,R ,-1)
CALL BK2VUG (Y,P1E,T,¥G,R,PUGCE,AG, BG, NKOAP)

PUGS (1) » (PI~X (2] $PUCS (2) /PUGCE (2) *DEXP (VOL (2) # (PI=PSAT2Z) /(2%T)) )

1PUGCE( 1} /XTI *DEXP (~VPART{1) *(PI-PSAT2)/ (R*T))
PI2(1) =PUGS {2) /PSAT2

PPP1 (1) =0,

PPP2(1) =PSAT2

1{1)=0.

X(2)=1.-1(4)

CALL GNYOL(BKOHP,X, VC, ACEN,TCT,T,TAU,ANY,TC,T)
CALL RDKPYV (NKOAP,X,AL,BL,R,T, ¥, VPART)
VYPURB (1) =VPART (1)

YPORR{2) =¥

WRITE(WUR,506) T,PSAT2,VPURE (1), VPORE(2) ,FUGCE(1),PI2(1),PUGS(1),

17UGS (2)
DO 800 E=NSTP 1,MSTP2

GEN RATION OF COLLOCATION CONSTANTS ~

SRITE(NRE,501) ¥

NT=NeNOM U1

CALL JCOBI{25,%,40,81,ALPA,BETA,PA,PB,FC, ROOT)
WBITE(¥9R,502) (ROOT(I),I=1,NT)

DO 12 I=1,NT

CALL DFOPR(25,8,40,¥1,I,1,PA,FB, FC,RO0T, V1)
DO 12 J=1,NT

AL, J) 2V1(J)

CONTIHUR

DO 19 I=1,RT

ROD (I) =DELTA®HOOT (1) *%.5

CONELIOR

TEBRRODYFARIC PROPBATIES AT THE COLLOCATION POINTS

Do u L= ‘“

X1=R6D (1)

I2°ROOT (1) ¢9. 5

CALL PCALA (PSAT2,12,PI,KkP1)

CALL DPXA (PSAT2,KP1,DDX,X2) !

P(I)=PX

DPPX (1) =DDX

(=11

X(A=t.~1(1)

CALL GRVQOL (NKOAP,X, YC,ACEN, ICT,T,TAU,ANY,TC,V)
VHIX (L) =V

VE(I)=YAIX (I)~X (1) *YPORE(1) - K (2) $YPORE (2)
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STEOR (I) =VE (I) *DPDX (I} / (R®T)

PP (L) »PUGS (1) *DRXP (YPART (1) / (R®T) * (P (L) -PSAT2) )
PP2 (I) =PUGS (2) *DBXP (VOL (2) / (R*T) * (P (I) ~PSAT2))
TARC(I)=~0.5

CONTINUE

THEREODYNANIC PROPERTIES AT THE DATA POINTS

DO 227 I=1,NBPTS

X1=XEXP (L)

X2=XEXP (I) /DELTA

CALL PCALA(PSATZ,X2,PX,KP})

CALL DPIA (PSAT2,KP1,DDX,X2)

PL (L) =PX

DPDIL (I) =DDX

IL (1) =11

Ik (2)=1.~XL (1)

CALL GB¥OL {¥KONP,IL,VC,ACBS, ICT,T,TAD,ANY,TC, V)
VAIXL(I) =V

VEL (I) sVAIXL(I)~-IL (1) *VPURE (1)~-KL(2) *YPURE (2)
STXORL (I)=VEL (I) *DPDXL (X)/ (R *T)

PP 1L (1) =PUGS (1) *DEXP (VPART (1) /(8*7) *(PL {I) ~PSAT2))

PP2L(X) =PUGS (2) *OEXP {YOL (2) / (B*T) *(PL(X) -PSAT 2))
CONTINUE

INITIAL YALUES OF GE/RT AND PI

DO 26 I=1,N7
G(I)=0.

PII(I) =1,
PI2(X) =1,
CONTINUE
BHENR=0

Nr=0
PPP2L (1) =PSAT2
DO 261 I=1,RBPTS
PLIL(I)=1.
rI2L(I)=1.
CORTINGE

START ITRRATIOHN

00 30 I=2,8? >
PPR1(X)=PP1{1)/P11(1)

PPP2 (K) =FP2 (1) /PI2(1)

CORTINUR

DO 301 I=2,8BPTS

PPRIL (I) =PP 1L (1) /PT 1L (1)
PPP2L(I) =PP2L (1) /PI2L(1)

CONTIRUB

NY=8Ts 1 .

CALL GIBSA(PPP1,FPP2,3TKOR,DELTA,ITRR
17 (xTER-10G) 33,32,32

VRITE(NE R, 511)

DO 3377 I=4,HT

SA{I)=0.1

G(I)=0.01

coNTINOR

GO To 8001

WRITE(NUR,518) ITER

CONTINUE

DO 30 I=1,8T

GAN1 (L) =DEXP (G () ¢ (1.~ROD (I} ) * (SA (L) ~STROR(I)))
GAN2 (I) =DEXP (G (I)~ROD (I)* (SA (I)~STKOR(L)))
YIC (L) =GART (I) *ROD (I) *PPP1 (1) /P (1)

12C (1) =GAN2 {I) * {1.~ROD {1} ) *PPP2 (I} /P (1)
SUNYC(I) =Y 1C (I) ¢Y2C(I)

CONTINUR

LAGRANGE IRTERPOLATION
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DO 311 I=1,BBPTS,
IR=IRKP(I)
CALL INTP(XR,ROD,G,V¥ORK,HT,1,ARG,

VAL, NT)

CALL INTDAL {XR,ABRG,VAL,GIN,NT,1.0-06,LER)

GINT(I)=GLN

CONTINOE

DO 412 I=1,8BPTS

1R=X2XP (I)

CALL INTP (XR,ROD,SA,NORK,¥T, 1,ARG,
CALL INTDAL {XR, ARG, VAL,SAIN,NT, .
SAINT (I) =SAIN

CONTINGE

DO 401 L=1,RBPTS

GANTL{I)=DEXP (GINT(I)* (1.0-XEXP (I
GAB2L (I) =DEXP (GINT (I)-XEXP(I) *(S2
YICL (I) =GAN IL (L) *XEIP (I) ¢PPP 1L (1)

YAL,ET)
D-06,1ER)

}) *(SAINT({I) -STKORL (I} }}
INT (I) -STRORL(I)))
/PL(I)

T2CL (X) =@AA2L (1) ¢ (1.-XBDP (1] ) 4PPP2L(T) /PL (1)

SERTCL (I) =Y L (1) +Y2CL (T)
T1CL () = Y ICL (I) /S8 %CL ({I)
Y2CL (I) =Y 2CL(I) /SUNICL (1)
CONTINGE

TEST POR YARIATION I3 YICAL

DO 60 I=1,mT

IP(DABS (Y 1C (2j-YANC (I} ) ~5.0~05) 6

COBZINUR

GO 70 80 o
.

Y
NEW VAZURS OF THE PUGACITY CORFPI

DO 68 1I=1,AT .
IARC(I)a11C (1)
(i)=Y 1C(I)

f«‘!(Z)’YZC(I) 1

68

{PR=P (I)

'CALL BKVOL(NEONE,V,%,1,1,PR,T,AL,
CALL RXPUG(Y,PR,T,V,R, PUGCE, AG, BG,
PIV(I)=PUSCER{1)

PI2(I)=PUGCE(2)

CONTIRUR

00- 6315 I=1,NBPTS

TL.(1)=EEXR(T)

IL(2)= 1. ~IL41)

TL{1)=Y1CL(T)

1L.(2) =Y2CL (1)

Pa=pPL (L)

CALL RKYOL(UXOHP,V,2,XL,1L,P8,1,4
CALL RKPUG(YL,PR,T,V,8,P0GCE,AG,B
PINL(I)=PUGCE (1)

PI2L (L) =PUGCR (2)

6815 CONTINUR

aan

70

72

78

RSN

RS

CALCULATION OF HENERYS COlell?//

Ve

p0 70 I=2,MT
rncz)-tlc(x)trx1¢xyop(x)/aon(x)
CONTINUE

AAEPR=RARER S

IP(BuRNR-2) 26,26,72 -

CALL Jcoaz(zs.n.o.o,aer.nxrA.rx.
HENRY=0. 3y

=0, Ve

CALL LETRPF(25,N,XR, PP, PE,XINT)

DO TN E=t,H

JeLe ’
mrnnt-nllnioxxqut)orncdl
COFrINGE /s

VILL (ST) ~HEBRY &
IP{RL.L7.7) €6 T0 873
g...r,(gxggtjtj0IILL(II—I)&IILL(I

’z

0.65'55

CIEnTs3

AG,BL,BG,R,~- 1)
RRO&GP)

L..Gp B’.' 56..."’
G,lKOHP)

e
7

£8,2C, rY) ;f?

N

1‘2)0!1&&(!!-3)’!1&&('!-!))/5.
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WILLRY=9.00 14 HANRY

IF (DABS (HENRY-WILL(NY)}).LE.WILLRY) GO TO 80
873 PUGS (1) =HERRY

DO 75 I=1,NT

PP 1{I) =P OGS (1) *DRXP (VPART (1) / (BR*T) * (P (1) -PSAT 2} )
75  CONTINUE

WRITE(NVR,516) HENRY

1P (NY.GT.50) GO TO 80

DO 681 I=1,MBPTS.

PPIL(I) =PUGS (1) ®DEXP (VPART (1) /{2T) * (PL (I) -PSAT2))
681 CONTINOE

GO TO 28
80 COSTINUE

PRINTS THE RESULTS

WAITE (R¥R,527)
WRITR(N¥B,508)
DO 8557 I=1,KT
GB=G (I) »7+6.310843
WRITE(NWR,507) ROD(I) ,P (1) ,G(I) ,SA(I) ,CAN1(T),GAN2(T),TIC(L),
{Y2C (I) ,SURYC(I) ,GE
8557 CONTINOE
WRITE(NWR,521)
DO 8667 I=1,AT '
WRITR(BWR,507}800(X),PX1(X),PT2(X},TYBIX (1), VE(I),DPDX{I),
1STXOH (I)
8667 CONTINOE
WRITE(NWR,518)
WRITE (N¥R,508)
Do 85 I=1,NBPTS
GE=GIRT (1) *T*8.3144
WRITE(NUR,507) XEXP (I}, PL(X),GINT (I} ,SAIRT (L) ,GANIL{I) ,GAM2L(I),
121CL (1), T2CL (I} ,SOBYICL(I),GE
8% CUSTIFUE
WRITE(NWR,521)
DO 86 I=1,NBPTS ‘
NRITB(MWR,507)XE2XP(I),PFL1L(I),FL2L(I), YHLIXL (X}, VEL (I} ,DPORL (LK),
1STXKORL (X)
86 CONTINUE
WRITE(NUR,S519)
WRITE(N®R,509)
SQ=0.
DEL-Y=.
33509, o,
DELPwg, .
DFRPLRP=0. .’
DO 100 I=1,MBPES
IR=XEIP (I) /DELTA
X4=XEXP (I)/DELTA
CALL PCALA(PSAT2,IN,PP,KEY)
PCA(I) =P?
DP=PCA (1) -PRIP(I)
SYAY=Y 1CL (X) ¢ T2CL (1)
DY=YICL (I)~IBXP (1)
WRITE(NWR,507)XEXP({1),PRXP(L),Y1CL(I),YRXP{I) ,DY,Y2CL(L),SUNY,
teca(r) ,op
SQ=SQeDYe*2
DELXY=DELY+DABS (DY)
S50=SSQ+DPeDP .
DELP=DELP*DABS(DP) .
DDELP=DDELP ¢DABS (DP) /P BXP (1) }
100 CONTINUE :
DELY S=DSQRT (3Q/ (DPLOAT (#BPTS-2)) )
DELYA=DRLY/ (DFLOAT (NBPTS-1))
DRLPS=DSQRT (S5Q/ (DPLOAT (NBPT5~2)) )
DELPA=DELP/ (DFLOAT (NBPTS-1))
DDELP=DDELP/ (PLOAT (B-2}}
WRITH(NNE,510) 3Q,BELIS,DELYA
. WRITE(NWR,529) 33Q,DRELPS,DRLPA,DDEL?
400 CONTIFER

t

I



' 500 CORTINUR

GO TO 600
END
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PROGRAM 3 (R-K)
(high pressure systems)
(asymmetric convention)
(Soave-Redlich-Kwong Equation of State)

PROGRAM 3 (R-K) requires the following
sections of subroutines (see Table 1):

1) MAIN SECTION,
2) SUBSECTION TWO.

i
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PROGRAN4 ESTIMATES THE BINARY INTERACTION PARANETER POR THE
PENG-BOBINSON EQUATION OF STATE.

DIMENSION XEXP(25),TEXP(25),PEXP (25) ,FUGCEL(2),PUGCEV(2) ,
1 AP(2,2),BP(2),DEL(1000),TC (2} ,PC(2) ,ACEN (2) ,A(2),
2 sua (25) ,TBXT (12) ,C (2,2) ,TL (25} , X (2} ,X(2) ,CC (25},
3 SUMMYN (25)
DATA 8/82.0567/
512 PORNAT (4£10.4)
521 PORMAT (12Ab)
655 FORMAT (2B12.5)
644 PORMAT (1d1,* C(I,d) DEYIATIORY)
508 PORMAT (212)
666 PORNAT (1H1,3X,°X(?) ",5K,'Y(1)*,6X,'KEXP1',5X, 'KBXP2*,5X,
1 YKCAL1Y,5X,% KCALZY ,5X, *SUN?)
522 PORMAT (141, *EXPERINENTAL RESULTS AND CALCULATIOND COMSTANES
1708 THE BINARY SISTEN 9,12A8,/120(1H%})
100 PORNAT (JE12.5)
101 PORMAT (14O, *PC-TC~ACEN?,8X,3B12.5)
601 POENAT {1HO,'THE INTREACTION PARAMETER VALUE USED IN THE
1POLLOVING TBST, C(I,J)= *,E10.3)
602 FOBRAAT (7E10.3)
603 FORMAT (1H1, *THE SUM OP DEVIATIONS FPOR ALL DATA POINTS ARE,
1 sua= *,E10.3)
WRD=S
NUR =6
READ(NRD,S521) TEXT
HBAD (NRD,508) ¥BPTS,NKONP
WRITE (NWH,522) TEXT
DO 5 I=1,NBPTS
READ(NBD,512) PEXP(I),TL(I),XEXP (I),YEXP (1)
T=TL(I)
5  CONTINUR
READ (KR&D, 100) (PC (I) ,TC(I) ,ACEN(I) ,I=1, NKONP)
WRITE(NWR, 101) (PC(I),TC (I) ,ACEN(I),I=1,8K0ONP)
DBL(1)=0.0
po 1 I=2,100
DEL(IX) =DEL (I~ 1) +0.001
1 CONTINUE
DO 200 K=1, 100
C{1,2) = 0..100¢DEL (K)
DO & I=}1,NKOMP
C(I,I)=0.0
DO 6 J=1,NKOAP
c(J,I)=C(X,J)
6 COMTINUE
DD J0 I=1,NKONP
TR=T/TC (1)
AKK=0. 3788+ 1. 54226¢ACEN (I) ~0.26992% (ACEN (I) #¢2)
ALP= (1.¢AKK® (1.~ (TR*%9,5))) s*2
AC=0.45724s ( (Re#2) * (TC (I) #%2) ) /PC (L}
A(L) =AC*ALP
BP (X} =0.07780#R*1C (1) /PC(I)
30 CONTINUE
DO 40 I=1,NKQNP
DO 40 J=1,NKOBP
AP (1,J)=(1.~C(L,J)) * (A (L) #20.5)* (A(J) **0.5)
40 CONTINUE
WRITE(UWE,601) C(1,2)
WRITE(NUR,566)
DO 99 L=1,NBPTS
X{1)=X8XP (L) )
X(2)=t.-x(1)
Y(1) =Y EXP (L)
Y(2)=1.-1(1)
P=PEXP (L)

CALCULATION OF THE LIQUID MOLAR VOLUME AND PUGACITY
COEFFICIENT.
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CALL PRYOL(pNKOMP,YL,z,X,Y,P,T,AP,BP,R, 1)
CALL PRYUG(X,P,T,VL,R,PUGCEL,AP,BP, NKONP)

CALCOLATION OF THE VAPOUR NOLAR VOLUME AND PUGACITY
COEFPICIENT.

CALL PRVOL(NKOMP,¥YV,Z,X,1,P,T.AP,BP,R,-1)
CALL PRPUG(Y,P,T,VY,R,PUGCEV,AP,BP, NKONP)

CALCULATION OF NIRIWON SUM OF ABSOLUTE DEVIATIONS oOF
EQUILIBRIUM BATIOS.

REXP1=Y (1) /X{1)
REXP2=Y(2)/X(2)
BCAL1=PUGCEL (1) /FUGCEY {1)
RCAL2=PUGCEL (2) /FUGCEY (2)
DHCAL3=ABS (RCAL1-REXP1)
DRCAL2=ABS (BCAL2-REXP2)
SUM{L) =DRCAL1¢DRCAL2
S5UMN=SUM (L)

PRINTS RESULTS

WRITE (N¥R,602)X{1),Y(7),REXP1,REXP2, RCAL1,RCAL2, SUNN
CONTINUE :

SUNN=0.0

DO 9 I=1,NBPTS
SUNN=SUNnA+SUA (1)

CONTINUZ |

WRITE (W4R,603) SUBA
SURMNA (K) =5DRA

cC(K)=C(1,2)

CONTINUE

WRITE (KW R, 630)

po 25 I=1,100

¥RITE(NWR,655) CC(X),sSoNmnA(I)
COMTINUR

STop

END



APPENDIX B
SAMPLE INPUT AND OUTPUT

-196-



-197-

Results of Run # 1 for the

COZ-C H. System at 10°C.

2’6
See Table 1 for the Values of the~

Pertinent Variables Used.

The formated input is as follows:

y 233

CARBON DIOXIDE(4)-ETHANE(2)

INTERPULATED AND EXPERIMENTAL PRESSURE-VALUES(ATM) YS. MOLE FRACTIONS
GIBBS EXCESS FREE ENIRGY(J/MOLE) VS. MOLE FRACTIONS

26
15
1414
29.700 0.0 0.0
34,610 9.033 0.044
36,700 6.128 0.178
40.45 0.234 8.315
42.52 8.344 6.384
45,57 6.424 0.480
47.88 8.542 0.578
49.10 0.455 - 8.666
49.34 6.741 6.714
49,29 6.730 0.727
48.60 0.833 0.815
48.99 6.873 9.852
244,79 0.928 9.908
45,78 0.944 0.947
34,34 203.1%50 1.0 1.0
0000

The formated output is as follows:



EXPERINENTAL RESULIS AND CALCULATED QUANTITIES FOR THE BIMARY SYSIEM  CARRDN DIOXIDE(§)-ETHANE(?2)
B0 000000000 0600 00060600000 0006 000 0 0060606 06 00 0000 000 0654 06 06 0008 06 08 O 0000 06066 06 0606 060 0600606006010 0t 060 06 00060 0 D000 000606060606 00 0 OO 6

FHE POLYNONIAL USED IN THE DRTHOGONAL COLLOCATION FPROLCEDURE HAS ALFA = o. AND BETA = 0.
NUNBER OF BIMNARY DATAFOINTS {5
SATURATION VAFOR FPRESSUIRE OF CUHMPONEMT 1 AND 2 44.3400 29.7000 ATH.

TENPERATURE 203.9499 DEL. K.

INTERPOLATED PRESSURE-VALUES FOR X IN THE INTERVAL BETWEEN 0.6 AND 1.0 . VALUES FOR DISURETEC JAUMPSF OF 6,02 1IN X
A LEGENDRE PDLYNOMIAL OF DEGREE 2 IS USED AS FITTING FUNCTION

29.7000 30.7094 32,0500 33,4269 34.1444 35.90462 36,0145 36.6786

37.626% 38.4729 39,2094 392.9443 40.5797 41.2473 41.60260 42.4077

42,9692 43,9968 44.00468 44,9954 84.9627 45.4100 45.8374 446.24%50

45,6327 47.0004 47.347% 47.6733 47.9767 48.2564 40.51146 48.7402

48.9405 49.4405 49.2480 49.3504 49.4151 47.4292 49.4175 49,352

49.2354 47.0637 48.8336 48.5408 AB.401414 A7.7497 47.2417 44.6522

45.9758 45,2069 44.3400

-861-
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[4 ]



XEXP

o.

8.03300
0.12800
0.23400
9.31100
0.42400
0.54200
0.65500
9.74100
9.73000
©.83300
0.873060
6.92000
8.956100
1.00000

CONSISTENCY

COLLOCATION
0.

YEXF
9.
0.06166
0.492800
8.31500
0.38400
$.48000
0.57800
0.66600
6.741060
0.72700
0.84560
0.85200
0.70800
0.94700
1.66000

TEST USING ORTHOGOHAL COLLOCATION - NUMBER OF INTERMAL PDINTS

POINTS

0.142702 0.500000 0.6887298

ITERATION HR 4

PEXP
29.70000
31.61000
36.70000
40.450600
42.52000
45.57600
47.88000
49.40000
49.31000
49.29000
48. 460000
48.99000
46.79000
45.78000
44.340066

SOLUTTON AT THE COLLOCATION POINTS

X
0.
@.112702
0.500000
0.9687278
$.0000060

SOLUTION AT
X

0.033000
6.428000
0.234000
0.311000
0.421000
0.542000
0.5655000
0.7411000
0.730000
¢.833000
6.873000
0. 228000
0.961000
1.000000

P

GE/RT

29.7060000 0.
35.690064 9.074218
47.000552 0.223343
48.032493 0.115674
44, 340000 0.

THE DATAPQLINTS

P
29.700000

GE/RT

Q.
31.610000 0.023135
35.700060 0.0832548
40.1560000 0.139356
42.520000 0.17241@
45.570000 0.208030
47.880000 ©.227544
7.9060000 0.222454
49.316000 0.210194
49.270000 ©.204245
48. 600000 0.45403Y
4B.990000 0.1267950
45.790000 0.077574
45.780000, 0.045700
44.340000 0.

6ooT
0.749253
0.599444
0.1338014
-0.813535
~4.254457

BROT
6.71%253
0.683067
0.503725
0.473886
6.368%02
0.250900
0.0634667

-0, 158309
~0.287206
-0.337283
~0. 632200
~0.763924
~Q0, 62295
-1.09§ 462
-4 . AT4457

4.000000

GAHHMN
2.052900
1.833274
4.3346733
1.024279
§.600000

GANMAY
2.052200
§.984110
1.808100
4.632604
1.553593
1.423757
1.2926147
1.182983
1.4349252
§.419832
$.050495
1. 030304
§.010.542
4.003144
1. 000000

GAHMAZR
1.0¢00000
1.006682
1.469243
2.310616
3.505934

GANNAZ
1.000000
1.000%%4
{.008508
1.0208746
1.633027
1.107827
1.212004
§.305670
1.515670
1.562038
§.974765
2.214900
2.6497468
2.987978
3.500934

3

Y
0.
8.2546400
0.6350542
0.830977
{.000000

Y4

0.

0.071634
0. 282054
Q. 922843
0490549
0.582402
0.654425
0.70/552
0.733553
0.742323
0.770200
0.827007
0.080254
0. 725094
1.0000060

ve
1.0060000
0.7433¢2
0.369358
0.164024
0.

A
§.000000
0904367
0.747746
0.577407
QL5041 9%9
0.4175418
0.346075
0.2924498
Q. 286647
Q257677
0.204 720
QU798
0417749
0.074704
Q,

sun CcoOR

1. 000000
§ . 000000
§.000003
4. 000000
1.000000

S\ COR

1.000000
§.0000845
0.991355
1.0000508
1.010632
1.001273
QLIPIXT7?
0. 78007549
0.907452
0.790498
f.000097
Q.7039497
1.009374
1.00%501
1.000000

PERYS

GE J/7HOLE
0:

179.7254467

SA5, 778306

272.323347
0.

GE JHULE

%4.4447107
196,041 395
320.067400%
404 . 3R0%0%
AP FAT
535.610274
S04 100716
A94,043509
IR0 .QI72V/
34N, 524777
DI PLY 7T
107, 3390834
107.602303
o.

-00¢2-



BIBRS EXCESS FREE ENLKOY(J/MN.E) VS, BMOLE FRACIIUNS

8.82
9.04
.64
9.00
0.10
9.42
o.§9
9.44
e.i8
9.20
$.22
.24
9.26
.28
8.30
6.32
®.34
$.36
$.38
9.40
e.42
0.44
9.46
9.40
8.50
.52
0.54
8.54
#.58
.40
.62
6.64
[ 9.7.]
0.68
6.70
e.72
0.74
0.746
.78
.00
0.b2
.04
8.8
6.88
0.9¢
8.v2
8.v4
0.76
0.90
1.00

0. 36.24 142,48 163,72 229,94 W .20 337.43 $93.67 449 94 506.4% 562.39 A
1 . I i 1 )} 1 1 ' ]

AEDEOUNE U000 000600 00 00T 00060 O 0 00000 0006000 0 000060000000 0 00000 00 06 00 0000000060640 00 06 06 061600 00 o 1 060000 1 0000 00 00 00 0 O 6 6 00 OGN DF BE ORI DO DO
-8R . -
—— A "o
-—BA “—
—8n . LB
Ty .- -
——np .
—— " "
—nfy -
Y .-
P Y Y . o
--®h - L
-— ] -
- KA " -
~- 43 . .-
-=h@ .-
-—n A .-
—-—Nf -
——ap [y
—— A . - »--
- %A .- -
-y 'Y .-
——NA .
— WA Pyes
Y Y .-
——nf »-—
- Py
--4p -
- s
~ WA .-
-~BA »
~-uA .
- uA ---
——n Py,
—-—a Py
Y'Y .-
- . A .-
——n rs "
) .-
~—wA -
7Y . -
- A [
" Fy [T
T Y .-
[Py .. -
Y A e -
- N .-
——a A -
TS . -
- A .-
—— gy "

00 0 0 00 0 DO 006000 00 0 0 0 0 000U N 0000 000 00000000 20O 0N A6 ORI SN

] 1 4 1

CUNSISTENLY 1EST HY REPEAITED HALVING OF THAPLIUIDAL

HILE BEFN RORBERD JNIEGHATION,

AKF A~

0.%40014D 14

1
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CALCULATED VALUES OF Y1

X

0.

8.6330
0.1280
p.2340
0.3110
0.4210
0.5420
0.46550
0.7110
0.7306
©.8330
0.873¢0
0.9280
9.9410
$.6000

P
29.7000
31.46100
36.7000
40.4560
42.5200
45.5700
47.88060
49.1000
49.31006
49.2900
40,6000
48.9900
46,7900
45,7800
44.3400

Y4
Q.
0.0916
0.28214
0.4228
0.4985
0.5825
0.6534
0.7076
0.7334
0.7423
0.7983
0.8270
0.4803
0.9259
1.06000

SUN OF SUUARES OF DELTA Y

VARIATION OF DELTA ¥

0.05:8

Y1EXP
0.
9.0640
6.t1780
0.3150
0.3840
0.4000
0.5780
0.6660
a.7110
6.7270

»y

0.
0.0306
0.0044
0.10670
0.1115
0.1025
0.6751
a.,8416
0.0224
0.0353

0.8150 -0.0167
0.8526 ~-0.025

0.90680 -

6.0277

0.9470 -06.0219

1.0000

0.05350972314

CALCULATED EXCLUDING GIVEN END FOINTS

SUH OF SQUARES UF DELTA P

VARIAIIOH

OF DELTA F

0.27467

ARITHHETIC HEAN (OF DELIA P/P

3.7169254508

0.0464535

CALCULATED EXCLUDING GIVEN END DATAPUINIS

sror

TIME 1.5 SECS

e,

Y2

1.0000
8.9084
Q.7479
0.5772
0.50145
0.41475
0.3449
0.2924
0.2466
0.2577
0.2047
0.4720
0.4497
5.0749
Q.

ARTHHETIC MEAN OF DELIA Y

ARITHHETIC HEAN OF DELTA P

Suny
$.0000
1.0000
1.00060
1.0000
§.0000
1.0000
1.6000
4.0000
1.06000
§.00600
1.0000
i.0000
1.0000
1.0000
1.00a0

v

I

PCAL
29.7000
31.6582
36.3649
40.38YS
42.7148
45,4344
A7.7047
47.0710
49.3908
A7.4324
48,9210
40.3147
47.01560
45.93946
44,3400

bFP
0.
0.0482
~0.3334
0.2325
0.1948
~-0.13a2
-0.1753
~0.6290
¢.6800
0.1424
0.3210
-0.6754
©.22¢0
0.15956
0.

-20¢2-



-203-

Results of Run # 2 for the

COZ-CZH6

See Table 1 fgr the Values of the

System at 10°C.

Pertinent Variables Used.

The formated input is as follows:

v 233
CARRON DIOXIDE(4)-ETHANE(2)

INTERPOLATED AND EXPERIMENTAL PRESSURE-VALLES(ATM) US. MOLE FRACTIONS
GIRRS EXCESS FREE ENERGY(J/MOLE) U5, MDLE FRACTIONS

26
5
144
29.700 8.0 0.0
31.610 3,033 6.0414
26,700 0,128 9.498
49,45 0,234 . 0.345
42,52 0,344 6.384
A5.S7 : 8.42% £ 0.486
47.38 0.542 0.578
49,40 0,455 0.666
49,34 0,744 6.744
49,27 0.730 0.727
48.60 0.833 6.815
48,79 0.873 6.0852
46,79 9.928 6.908
45,78 0,769 0.947
43,34 283.156 1.0 1.0
72.9Q7 94,492 304.147 0.274 0.225
48,494 134 .584 305,444 0.28% 6.105
0.4184 0.0794 0.4470 0.0744
0.4347 0.0827 0.4340 0.088¢
Q.139 .
~40.292
-27. 768
0000

The formated output is as follows:



i
N

Sy
i

EXPERIHENVAL RESULTS AND CALCULATED QUANTITIES FOR THE BIMARY SYSIEH  CARBIW DIOXIDE(Y) -EFHANE (D)
B 00600000000 06 0 0006000000606 06 060001060600 000000606 O G010 06 0606 06 0000060006 000 0600 000 0060000061606 06D 5060006060406 00000000000 B D D MO O

THE FOLYNHOMIAL USED IN THE ORTHOGONAL COLLOCATION FROCEPURE IS OF THE TYFE ALFA =

0. BEVA = 0.

PE-YEC-TC~ZC-ACEN 0.72907E+02 0.94382E+62 0.30417E+03 0.27400E+400 0. 2500 +00

PC-UC-TC-IC-ACEN 0.4D494E+02 O.1AVSBE O 0. I0SA4EA03 O.2BSOOEIO0 O.)0500E B0

OMAL -OMBL. -OHAG-DHEG 0.41840E+8€ 0.79400E-01 0.44700E+60 B.91100E-01

OMAL -DHEL ~UNAG-OMEG 0.43470E+00 0.B82700E-01 0.43400E+08 0.BHOOOE-D

FAK-NY-TAU ) ‘ . lg

0.13000 .= I S T

~40,29201 o " =

-27.76804 . L o=

NUBBER UOF BINARY PDINTS 45 AT THE ISDTHERN  2B3.15 TENFERATURE IN PED K

INTERPOLATED PRESSURE-VALUES FUR X IN THE TMIERVAL DBETWEEN 0.0 AND 1.0 . VALUES FOR DINURETE JHHEFS OF 0.02 IN X
A LEGENDRE POLYNOHIAL OF DEGREE 2 IS USED AS FITTING FUNCTION

29.7000 30.9694 32.0500 33.1269 34.4444 45,9062 36.0465 36.0786
37.696% 38,4724 39.2096 37.91443 40.5797 34.2473 41.6260 42,4077
42.9542 43.4768 44,0068 44.495% 44,9627 45.4100 45.4374 46,2440
46,6327 47.0006 47.3476 47.6733 47.9767 L PALT.T.] 48.5116 40. 7402
48.7405 49.4105 49.24806 4%.3504 49.4151 49,4392 47.4195 49,8528

47.2354 49,0637 48.8334 48.5308 90,1041 47.7497 A7.2447 46.6522
45.9758 45.,206% 44.3400



INTERPOLATED AND EXP‘RIHER;AL PRESSURE-VALUES(ATH) V5. HULE FRACIIONS

9.02
.64
.06
0.08
6.40
.12
6.14
.46
9.0
.20
6.22
©8.24
.26
$.28
$.39
.32
®.34
0.356
.38
0.49
9.42
.44
0.4%
$.49
$.50
.32
9.54
®.56
.58
9.560
9.62
@.64
0.66
0.409
6.70
.72
9.74
e.76
8.7/8
¢.80
e.062
0.84
.88
0.88
0.90
¢.92
9.94
. 8.98
0.98
t.00

28.24
8.2
5

TR
—

-0
-—nL
- K]
-]
-="

RN 1 8
—TH
—=uL
~—ulL
.t

—~=%L
——ut
Ty
——n

ey

-y,
-l
——L
—-——
——u]
-=~ul
—-—wh
-y
Ty
Ty
—n
L
Ty
)
purTy
—_—"
Py
-l
—-——
—
e 1 N
- -uh
—wemf,
RS [
—— i
——ul
——nf
)
Y
-
——wl
——w
—-nL®

30.57
30.537
]

A B

A

32.93
32.93
1

35.20
35.28

37.64
37.64
1

A

40.00
40.00
1

42.35
42.35
1

~
a4, 24
449. 7

I

A"

A7.04
47.04
I

42 .42
49.42

54,10 N
S, B

I ¥
ACOLTUULI Y00 05950 00 DU D020 06 0 00 D0 06 0006 00 00 48 06 00 0 00 06 00 00 00 00 000 00 00 00 00400 6 90066 00 0600 00 0000 00 0600 0006 0606 06 0000 00 0000 1646000 0 6 6060060 6 A0 00 00000600 00600 00 00 00 8

N

T T T sgexnEan
v
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o

T e RN Y REEEENTREEES RERESR
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i

1

]
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XEXP
0.
0.903300
0. 12800
0.23400
0.31400
0.492)00
BLE54200
0.65500
0./1100
0. 73000
0.84300
AT R
0.92800
D.95100
1.60000

CUNSISTENCY

COLLOCATION

T 203.34vY

Fisal [UN

HUHBER OF
HUHBEK WF
NUNBER OF
HUBMER DF
HUNBEK OF
HUHBLK OF

bk OF

YEX¥
a.
9.06100
2.192800
QL3500
9.38400
0.40a800
0.5/400
0.58500
(<R AR
Q. 72700
O.HI500
0.85200
0.70000
D.24700
§.00000

TEXTS USIHG ORTHOGUAAL COLLOCAT LUH

FOINIS
142702
[ 4

7379 0.

[TERATIONYS
TIERATEONS
TIERAT1O0ONY
TIERATIONS
TTERATIUNS
[IERATIUNS

TIERAT FONS

PEXE
9. 70000
31.61900
35.70000
49, 15000
A2,50000
45.57000
A 780000
49, 10000
49.31000
39.29000
A8, $0000
AH 99000
A& . 19008
45.70000
44.34000

6.500000 0.484/298

4. 3400

7399

oG
NG
1M G

IN

o

N

o o

N

n

c

29 . 7000

FREEXNT

HUNHER OF IHIERHAL FULINTS

-902-



SOLUTION A1 THE COLLOCAITON PUINTS

X
0.
0.3127
0.5000
0.80873
§.0000

X
o.
0.14237
0.50800
D.8873
$.0000

P
29,7000
35.69014
47.08006
48.0322
44.3400

FUGCEY
0.9942
0.921469
0.7563
Q.7292
3.7398

GE /K1
0.
0.0735
0.9832
0.0866
0.

FUGLE2
0.7400
0.5920
©0.6507
0.7320
8.8051

SOLVVION AF THE DATAFOLNIS

%

o.

9.0330
0.12u0
9.23540
8.3110
0.4210
0.5420
0.8550
B.7490
9.7508
0.9330
0.8750
2.9280
0.9510
1.0000

P
29,7800
31,6502
36.3659
40. 3025
32,7448
45,4344
47.7947
49.0719
19,3908
49,4324
48,9210
A3.3149
47,9450
LI KT
34,3900

GE KT
0.

0.0240
0.004G8
8.4291
0.4537
8.1784
0.4839
0.1740
0.1620
0.1548
@.116H
0.0752
0.0594
0. 0540
0.

GOuY
0.7622
0.5545
0.0421

-0.461%90
~0.9308

UNIX
54.9454
78.2304
76,9940
S9.1942
51.5444

GOOT
P.7622
0.6954
65064
8.3790
0.2704
0.4377

-0.6109
-2.1407
-0.2587
~0.2945
~0.4934
-9.584%
-0.72354
-0.8144
-8.9308

GAHNAY
2.1430
$.46718
1.2148
1.0170
1.69Qa

VE
0.
26.343&
25.2690
7.6312
Q.

UAHNAY
2.4430
1.8067
4.64%%
1.4475
§.37496
$.2733
b .10869
1.1499
1.0704
§.0u10
3.0349
1.90229
1.0078
1.0024
1.0000

GANNAZ
1.0000
1.0473
1.4875
1.8771
2.5365

DFDX
£2.24926
45,9602
17.8740

~21.0627
-45.6908

GANNA2
1.0000
1.06032
1.0209
1.0537
1.0027
1.437%
1.2498
1.3354
§.9159
1.4402
.67
1.9243
2.0644
2.2538

2.5355

Yi
o,
0.1840
0.5565
6.6622
1.0000

A
1.0000
0.68140
06.4435
0.4378
O.

CORR TO GoOT

0.0542
0.04%4

-0.0059
0.

Y
.
0.0440

LN
0. 5208
0.3962
0.4920
0.589¢%
0.675Y
0.7180
0.7529
0.8134
0.08480
0.9042
8.94487
1.0000

¥2

1.,0000
0.9352
0.794%
6.6772
¢, 6038
0.5080
0.4104
0.324%
O.2820
6._2675
0.1H64
0.1512
0.0958
0.05638
0.

Sun Cuk
1.06000
§.6000
1.06000
§.6000
1.6000

SUH CUR
1.0000
1.0004
0.9999
0.999h
0.9978
1.0001
0.9998
0.499u9
09.9945
a.9985
0.999Q
0.9997
1.0008
1.0019
1.0000

LE J/MOLE
0.

$735.4095

431 .3075

203.9545
0.

GE J/HOLE
0.
56.5894
192.6192
305.89144
351.8014
414.5262
432.8707
409.5747
J04.4987
3469.9942
474.,08969
2:194.2037
1397254
B80.043%7
0.

=102~



UIBRS EXCESS FHEE ENERUY(J/MLE) VUS. BOLE FRACTIONS

L] o. 45.45 99.90 135,35 184 .64 227.24 212,714 3ia.44 363.64 409 .04 454.% A
1 ) | 3 H 1 1 1 I |} 1 ]
B0 0006 0% 06 00 00 00 38 01 0% 46 00 86 D¢ 0% 6 DE 08 0% 6 O 06 38 0% 0 00 06 0 0005 00 0 00 00056 000600060 O YO OO0 D0 060 0 e 00 06 0 0 D D O D N
0.02 —-%A
6.04 —-n A
0.08 —-"A
0.0 —-%A
0.19 —-"A
e.§2 --vA
0.44 —-» A
o.16 ——wA
9.18 —-%A
0.20 --%A
0.22 ~-up
9.24 —~~® A
0.26 ~-"H .
0.20 —-¥A .-
0.30 ~-%A . .-
6.32 -~ A .-
0.34 --vA e
0.356 —-%A e
0.30 --"A Py
0.40 --wA -
.42 ~-» [ w- .
0.44 ~-¥A .-
0.44 —-uA .-
0.48 --"A .-
.50 ~-"A .-
0.52 ~-"A "-.
0.54 ~-%A [y,
Q.56 --% A " .
8.59 -4 w--
0.60 —~-"A -~
©.42 --8h LI
0.64 —-NA L
0.66 --¥ ” "
Q.68 --*0 L
0.70 —-«.h .. -
6.72 --u n LI
0.74 --¥ n .-
0.76 —-"A LR
0.78 ——%A .
0.80 —-%A [y
0.82 --%A .-
.84 ~~» L] .-
6.86 ~-%A .- -
©.80 ~-%A -
6.90 --% ) . -
9.92 ~-*A . "
0.94 —-» h >
0.96 —-%A "
8.79 --¥ n "
1,00 ~-%A L]
Ll Y R Y Tt Y I I T Ry Y Y T L T T A T Y L TR N PR Y YT Y Y TR TNy )
1 1 1 1 1 [ § 1 1 1 1 i

CUNSISTENCY TES] BY HEPEATED HALUVEING (W IRAPLIGIDAL R E BITH ROHBIRU TNIFURATIUN, ARE A~ QA0 14
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X

..
0.0330
0.1200
0.2340
6.3140
6.4240
0.5420
0.4550
0.7110
6.7300
©.9330
0.8730
0.9280
0.9610
1.0000

CALCULATED VA

X
0.

0.0330
9.1280
0.2340
9.3110
6.4210
$.5420
8.,6550
5.7440
9.7300
0.0330
0.8730
8.9280
8.7640
§.0000

FUGCE"
0.9942
0.9680
0.7604
0.9570
0.8258
6.7884
0.7560
6.7339
0.7263
0.7243
0.7192
0.7203
0.7254
0.7307
6.7398

LUES OF

P
29.7000
34.6100
36.7000

40,1500

42.5200
45.5700
47.8800
49.4000
49.3100
49.2900
48. 56000
46,7900
446.7900
45.7800
44.3400

Y4

FUGCE2
0.7400
0.7229
0.6874
0.5640
0.6546
0.56493
0.56534
0.6656
0.6757
0.46799
0.7097
0.7255
0.7529
0.7734
0.80314

Y1
0.
0.0648
0.2055
0.3228
0.39462
0.4920
0.35894
0.46759
9.7180
©.7324
0.8134
0.08408
0.9042
0.9437
1.0000

SUH UF SUUARES OF DELYA ¥

VARIANCE OF

DELTA Y

©.0080

UKIX VE
51.9454 0.
78.1300 26.1989
78.2603 26.3706%
78.3%53 256.5168
78.3403 26.52906
77.9410 264779
76,4482 24,4364
72.4534% 20,7904
69.8545 18.2456
68.8637 17.2329
62,7372 14.4509
60,1394 8.5700
56.4664 4.9210
54.2436 2.6825
54.5144 0.

Y1EXF by

0. 0.

0.04610 0.0038

0.1980 0.0075

0.3150 0.0078

8.3840 0.0422

0.4800 0.0120

0.5780 0.0116

0.65660 0.0079

0.7440 0.6070

0.7270 Q.0054

6.8150 -0.00%4

0.0520 -0.0632

0.9000 -0.0030

0.%9470 ~0.0033

$.0000 0.

08.0007740

ARITHMETEC HEAN OF DELTA Y

CALCULATED EXCLUDING GIVEH END FOINIY

SUK DF SQUARES OF DELTA P

VAR1ANCE OF

DELTA P

0.27&7

ARITHHETIC MEAN OF DELIA F/P

0.9189255

ARTTHME T I

0.061535

CALCULATED EXCLUDING GIVEN EMD FOINIS

s1op
1IME 3.0 SEL'S

DPPX
62.2426
56.5388
43.3328
33,1009
27.7586
24 .8457
15.4238

B8.10uB

3.1432

$.2108
~14.9539

-18.5033
~29.0458
-34.3455
-45.8v68

Y2
1.0000
6.9352
0.7945
0.5772
0.4030
0.5080
0.4104
0.3241
0.2020
0.2674
0.1864
6.1512
0.0758
0.0543
8.

MEAN OF DELIA P

CURR TD GODOY

e,
0.04630
- 0.0492
0.0378
6.0317
6.0246
0.0164
0.0073
¢.0025
0.06009
-0.00657
-0.0068
-0.0062
~0.0042
0.

SUHY FCAL
4.0000 29.7600
4.0000 34,6502
$.0000 36.3469
§.0000 40.3025
$.0000 42,7168
1.06000 45.4518
§.06000 47.7047
§.0000 49.0710
1.06000 49,5908
1.0000 49.4324
§.0000 48.9240
1.0000 4AB.31 47
1.0000 47.0160
1. 0000 45,934
1.0000 44.34060

8.0068

oI

0.
0.0482
-0.3334
8.23U5
0.1260
~-0.1302
-8.4753
-@.00%0
6.06H0H
6.§424
0.3210
-G, 4754
0.2260
6.15%8
0.

-602-
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Results of Run # 3 for the
COZ-CZH6 System at 10°C.
See Table 1 for the Values of the

Pertinent Variables Used.

The formated input is as follows:

1 233
CARRON DIDXIDE(§)-ETHANE(2D)
INTERPOLATED AND EXPERIMENTAL PRESSURE-VALUES(ATM) VUS. MOLE FRACTIONS
GIRRS EXCESS FREE ENERGY(J/MDLE) VS. MOLE FRACTIONS

26
iS5
134
I9.70Q 2.0 o.e
31.640 0.033 : 0.061
356.769 9.128 0.198
40.15 9.234 9.345
42.52 0.3%1 8.3684
45,57 0.421 0.480
47.86 0.542 0.578
49.10 ' 9.655 8.666
49,34 0.794 9.714
49,29 0.730 6,727
48.60 0.833 0.815
48.99 0.873 0,852
46.79 0.928 0.909
45.78 0.764 0.947
44,34 283,150 1.0 f.o
72.907 94.4162 304,467 0.274 6.225
48,496 144 .584 305.444 6.285 8.405
0.3
-46.272
-27.768
G.1479
90069

The formated output is as follows:



EXPERYHENTAL RESULTS AND CALCULATED QUANTITIES FOR THE BINARY SYSIEH CAKBON DIOXIDECIY -ETHANE (2)
PG 0G D000 0006 0000200 0606000606 0606 00 060606 DG 00 06 0 06 D6 06 00 06 06 06 00 06 06 D6 00 00 00 00 06 606 0 06 06 06 00 0 06 D 06 06 006 0 00 G 00 06 06 06 060 0016 00 06 06 0 06 000 6 0 0 0.0 060 066 00 06 06 06 06 06 06X 00606 0 00 0606 06 D6 06 B0 B0 0 06 06 06 6

THE POLYNOMIAL USED IN THE ORIHOGONAL COLLOCATIDN FROCEDURE IS5 OF THE 1YFE ALFA = 0. HEIA = (L%
PC-VC-TC-ZC-ACEN 0.72967E4+02 0.94102E+02 0.30447E+03 0.27400£+00 0.22500E100
PC-YC-TC-ZC-ACEN 0.48196E+02 0.19158E+03 0.30544E403 O.2B500E+00 0.910500E 100
FAR-NY~-TAU-DEL
0.13000
~40.29201
-27.746801
0.14700
NUHEER OF BINARY POINYS 15 AT THE ISDTMER” 203.15 TEHFERATURE I[N DEG K
INTERFOI.ATED PRESSURE-VUALUES FOR X I“ THE INIEKVAL EETWEEN 0.0 AND.i‘O . VALLES FOR PISCREIE JUHPS OF 0.02 1IN0 X

A LEGENDRE POLYHOMIAL OF DEGREE 2 IS USED AS FITTING FUNCTIOM e

292.7000 30.9094 32.0500 33.1269 34.1444 33.1062 36.0165 34.07086

37.6964 38.472% 39.20946 39.9143 40,5777 41.2473 4§.8240 42.4077 -
42.9642 43.4768 44.0048 44.4954 49,9627 45.4100 4-.8374 46.2450
44,6329 47.0004 47.347¢ 47.6733 47.9767 18.2564 48.5116 468. 7402
48.7465 49.1105 49.24080 49.3504 A9 . A58 49.4392 47 .4495 49 . 33728
49,2354 49.0437 48.8336 40.5408 48.16149 47.7497 47.2417 44,6522
45.9758 45,2069 44.3400

~Lie-



INTERPRLATED AND EXPERIMENTAL PRESSURE-UALUES(ATH) US. KULE FRACIIOHS

28.2¢ 30.57 32,93 35.28 37.64 49.00 42.35 8.7 47.04 4942 Sh.70 A
28.2¢ 30.57 32.93 35;28 37.64 40.00 42,35 .74 47.08 49.42 St.78 B
I 3 1 1 1 1
IlIII.IllllluhlﬂlliﬂllillllII.ll-Illl.lnllllllll'll:llllll!llllllllllllllullilIllllllll!lﬂlﬁlllllllllll

—uf, 'y [ =
—_— ' Y no—
-t . . -
--nb f ) .-
~~nl. A .
~-WL ] "
- AP ..
—~—ul A .-
-—ui A . " .
- A -
——wl A " -
- AR [ 2
~—¥L A ..o -
--wb A LB
——uf ry [y
- AR PP,
Rand - - - - ] ot
—_—), A .-
--ulL A [
—~ul A .-
- A B . -
P 1 » . .
~~nL n " -
——ul A [ P
~-ul L LR
—-~uL . A [ P
-~k N . -
-—n B "-
——nL [y [
——uL n . -
~--Wh H » -
--uL A »--
- OR -
-l . - A .-
~-—nl A [y
—-—— R [ T
--n B L
-——n] n L 2
-l H »e
-] f:) ..
pu N [ ey
- RA LEE
~-uL n LS
—-—u] A [ I
- A R L]
-] F .-
—— naA - .
- ML N -
- n . -
—-—nL [ L]

LU T S YT S A R R R LV R Y R L e e L L YLl

1

1 1 1 1 1 ] 1 ] i

-¢le-



“l Ay

6.

D.048300
0.42300
0.23400
0.31100
0.42100
B.54200
0.85500
0.71100
V. 73000
0.683300
0. 87300
0.9L000
9.93100
100000

CUNS IS TERCY

LOLLOCATION

0.

JOABS.1aVY

FLEAT

HUHLL R
HUNBER
HUHLLR
HUMBLER
MR
HilbLK

HUNBE

(L)

OF
vF
OF
OF
UF

OF

Thoabe
0.
0.004v0
0.194300
0. 31500
a.384900
0. 38000
0.% /800
[( LY T ]
0. 71100
DL LD
G U500
Q. 8LH200
9. 90000
3.94700
1 .00000

LAy
2970000
31.41000
36 . T00G0
0. 15000
A2, 90000
45. 57000
47. 80000
Y., 10000
29. 31000
3924000
4. 60000
44, 99000
15, 79000
A%, 73300
49. 349000

JESIS USIHG ORIHOGUHAL COLLOUATLION

FOINTS
9.412702

ry 4

7285 [

TIEKATIONS

LVIERATIONS

0.500000 0.d0/290

4.3300

Te2y

IN G

IN G

ITEKA&TLONS TN G

JITERATIONS

IERAYIONS

G

WG

FIERATIONS AN G

OF LIERATIONS IN G

29, /600

FREESAL

HUBLEK OF INTLIROAAL FOINITS

1000000

VoL

L4.4733

51.51494 51.9454

21 .49597

4

-€le-



SOLUVION AL THE COLLOCATIDN FOINFS

X
a.
e.4127
0.5000
0.8873
4.0000

X
e.

0.1127
9.5000
6.84873
1.9900

SOLUTION Al

X

0.

¢.0330
0.1280
0. 2540
0.3119
0.92190
0.5420
9. oLuY
8.7110
Q. /300
0.8330
9.873%6
0. P2080
9.7630
1.0000

P
29,7000
35. 46901
37.0006
98.0322
44.3400

FUGCE Y
0.94U0
0.0834
0.74354
0.7054
0.7256

GE KT
d.
0.05680
0.45627
0.0782
9.

FUGLE2
0.7229
0.58740
0.46114d
0.67514
0.7370

THE DATAFOLNTS

K
29,7900
3i.6582
35,4569
40,3025
32,7158
45,4318
37.7947
¥2.0740
39,3908
49,4304
40.9210
38,3149
47.9450
35,9896
43,3900

GE/RY
o

0.0225
0.0754
0.1474
0.1.562
0.1569
0.1632
0.1546
0.1444
0,439
0.1049
0.0859
9.0548
0.0306Y
[

uoor
@.7182
0.4984
0.0851
~-0.5513
-0.8505

UHIX
59 .94%4
TU. 2904
T6.9904
59.1942
51.5149

GouT
9.71082
0.6473
0.47450
0.3205
0.2209
0.1434

~0.0412
~-0.4948
~0.2240
-0.2519
~0.43449
-0.5190
~0.6500
~0.78756
~0. U505

[shdriing
2,00t
1.99215
§.104b
1.91/0
§. 0000

VE
0.
24,5436
25,2590
7.631%
9.

GAKHAT
2,05%07
$.7902
{.58408
1.3754
$.3453
1.2847
$.1624
$.1074
1.04329
$.0742
4.0339
1.0210
§.0075
1.0024
1.0000

GrniR2
1.0000
$.0177
f.1607
1.7529
2.3409

JU S HIN
62,2426
45,1642
17.8790

=24.0627
-45.8v48

GANBAZ2
1.06000
§.0033
1.0214
$.0523
1.0799
$.4270
1.4950
§.2895
1.3562
4.3832
$.5072
4.7040
1.9100
4.0U70
2.3409

¥4
0.
0.17/96
0.5455
0.8539
1. 0000

ya
1.0000
0.0204
0.4535
0.1364
0.

CORKR TO GOOD

0.
0.0512
0.0194

-0.006%
0.

Y1
0.
0.0533
0. 1982
0.31065
0.3424
0.47%3
0.5813
0.672
0.7185
Q.7345
6.U150
0.U505
0.90%6
0.9444
1.0000

Y2

1.9000
0.9357
0.8018
0.4H895
0.6175
0.5206
0.407
0.3276
Q.2855
0.2585
0.1850
0.1495
0.0944
0.0554
0.

S COk
§.9000
§.0000
1.0000
1.0000
1.0000

SUH COR
4.0000
1.0007
0.999%98
0.9991
0.9992
0.99%8
1,000
0.9494
0.9993
0.9992
0.9993
0.99vd
1.0004
1.0008
1.0000

Gk J/HOIE
0.

1560.0208

3B83.072%

184, 9525
Q.

~vle-

GE J/HOLE

53.0022
177.5113
25,7516
325,355
369.4414
3u4.40vy
364.0148
339.4730
329.2557
244.9859
202.16338
126.6769

72,8287

0.



SIBSS EXLESS FREE ENEROVIJI/MOLE) VS. MOLE FRACIIUNS

A 0. 4044 Ho. 40 101,02 ~T1ad.d4 .40 L4204 KUK Ja2,728 3463.08 3. 40 A
i ) ] i ] i 1 ] ) 1 H
RARRARERARAR AN AR A NN A RA S AN RN RN ARE R R AR RA AR SR RBARE kAR Na i anbhrhbahlhdNAR bR NARtaRREny
0.0 LT .-
0.4 »- A "
8.046 --mA a--
G.0U --wi N
[T ERYY : =
0.42 ~-mp .-
0.94 ~--» A .-——
9.06 - .-
0.8 --mA »--
0.20 --mA .-
0.22 - =3 .- -
8.24 A LB
0,26 .-~
0.0 o -
8.3 L Rt
8.3 - -» A LB
0.44 ~-rA : [
0.36 --»A » e
8.8 --np -
0.40 ~--mH [
.42 --n A .-
0.94 —-»7 o (B2
0.4 —-mA o~—
0.40 --»p "
8.50 ~--»a L
0.52 ~-»3 .-
0.54 —-np .-
9.54 --w A "—-
0.58 - -mA “—-
8.40 ~ WA w—-
0.6 — %A .- -
O.44 -24 "--
Q.66 —» A .-
$.8U ~-»i -
B.70 —-»A .-
[ U ] S »—-
0. 44 ~-m A [
0. 16 --»A .-
0.8 -0k .-
0.40 —-nA . .-
@.H2 - A 0o
B.H4 ~-n A o--
O.4s ~-eA A,
[ TTREE ¥ . [
.90 ~—-» LY a--
8.2 L1} .-
.74 -~ A .-
0.%46 --»p "
.94 ~-» A .-
$.90 s

ARRARARRA AR SRR R AN RS AN RR RN R AR RARANA SRR NARR R SRR ARG R ARR NN AR AR RN R R RARAA AR RS EBaARSRRSREARENRRES
1 |} 1 ! ) 1 1 I i 1

TONSISIZHUY JES) ¥Y KEFEAIED JIALVINL Dy BRAFE ZULDAL Hitk WITH KOMBERD IMTEUHATION, AHEA= -0./10480D-16

-4le-



- .. X
0.

9.03.350
9. 110

O.2340

D.3330

9.49210

0.54220

- 0. 6250
0.7410

O. 7300

9.8330

0.8730

0.9200

0.94610

4.0000

CALCULAIED

X

0.

B8.03350
0.4200
0.2340
9.3140
D.4210
a.%420
0.655%0
D.7410
0.7300
0.8330
0.u/730
0.2.80
G.7510
1.0000

FUGLEY
0.7440
0.9262
0.0733
0.6317
0. B39
0. /o830
@.7354
0.7151
9. 7080
[ DL T A
0.70L5
0. 7044
9. /402
V.7154
0.7256

VUNLUES OF

14
29,7900
31.6400
35,7000
40.3500
42,5200
45.5700
47,0800
49.4000
4¥.3100
42,2900
48, 5000
48,9900
45,7700
45. /800
44.3400

v

FUGLED
0.7239
0.7050
0.4657
9.6371
0.35205%
d.6137¢
O.6145
9.5u97
0. 5285
0.56449
3. 65569
0.6706
0.6944
07447
0.7570

1
0.
0.0653
0.99402
0.3105
0.3824
6.4794
0.5813
0.6724
0.7155
0.7315
0.08156
0.8505
0.9056
0.9446
1.0000

SUN OF SUWUARES UF BELTA V

VAKLANCE OF DELTA Y

G.00355

Viix VE
54.9454 0.
0.4 500 PP RLTY
7H.2509 24,3700
78,3555 23,8104
74..5403 U3.5290
71.9419 26477
76,1982 2404344
72,4534 29.7901
-2 -1 1) 148.2154
&i. 8587 $7.2807
H6Q.F8IL 14,4509
60,1394 B.5700
58.9664 4.7249
54.2136 2.6U25
51.5134 0.

YIEXF by

0. 9.

0.0540 0.0023

0.19u40 9.0002

0,315 ~0.004>

8. 3340 ~0.9016

0.4800 -0.0004

0.5780 0.0033

0.464660 0.0054

0.7140 0.9055

0.7270 8.0045

8.08450 0.0000

G.9520 -0.0045

0.9000 -0.0024

0.9470 -0.0024

1.0000 9.

0.9001 447

ARITHHETIC HEAN OF DELIA Y

CALCULATED EXCIUDING GIVEN END FOXNIS

SUN U SUUAKES OF DELTA ¢

VARIAHCE OF DELYA P

AHETHNETILC

0.2767

HEAN UF DELTA FP/FP

0.9989255

ARVINNESIC NEAN OF

6,061535

CALLVULAIED EXCLUDING GIVEN ERD POLNHIS

SHw

fint 3.0 SECS

[ 1) 4
2.24825
2é6.5 3568
43.3328
33,1004
277505
29,8457
L0320
8,106
3.1442
L2400
-4 .9559
-18.%0038
~19.0450
-36.3455
~4%.8548

Y2
1.0000
0.9367
0.8010
8.6U95
6.4 146
0.5204
0.4407
0.3276
0.2D35
9.2685
9. 1H59
9.1475
0.0944
0.0554
8.

Cukk U BODT

0.

9. 0850
[ R R
0.0374
o.0517
0.0.448
3,014
0.00/73
0.00u5
0.000Y
-0, 0057
-0.(M68
-0.0062
-9.004.!
0.

SUHY PLAL
§.0000 29,7000
1.0000 31.46502
1.0000 36.366Y
§.0000 30,3825
1.00800 42,7460
1.0000 45.434d
1.0000 47.7047
1.0000 49.0710
1.0000 49. 3900
1.0000 49.4324
§.0300 I8.9240
4 .0000 AH. 3149
1.9000 47.0460
1.0000 45.93%46
1.6000 44.3400

0.0027
0.2422

BELTA P

bF
0.
06.0442
~0.33%y
0.2325
0.1940
—-6.1342
-0.4/53
-0.0290
0.0808
O.14924
6.3240
-0.6751
0.2269
0.15%4
0.

~9le-
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Results of Run # 4 for the

COZ'CZHG Systems at 10°C.

5ee Table 1 for the Values of the

Pertinent Variables Used.

The formated input is as follows:

233 .
CARBON D(OXIDE(1)-ETHANE(2) .
INTERFOLATED AND EXPERIMENTAL PRESSURE-VALUES(ATM) US, MOLE FRACTIONS
GIERS EXCESS FREE EMERGY(J/MOLE) VS. MOLE FRACTIONS

29
5
[XR]
29.706 0.9 0.0
31.010 0.033 0.961
36.700 0.128 a.198
40.495 0.234 0.315
2.52 0.311 0.384
45.57 9. 424 0.980
47.88 9.542 0.578
49.10 9.655 Q.5666
49 .39 Q.,744 0,741
49.29 8.730 8.72
48.460 9.833 9.815
38.99 0.873 6.852
46.79 ¢.928 0.908
A5.78 8,954 0.%47
44,44 283,150 1.0 5.0
i2.907 94,482 304,967 0.274 9,225
48,196 $44.584 305. 449 8.285 0.105
a.130
-40, 292
-27.748
9.0009
09 00

The formated output is as follows:



EXPERIMENTAL RESULTS AND CALCULATED QUAMNIITIES FOR THE BINARY SYSTEH  CARBUN DIOXIDE (1) -EFHANE(2)
B 0606 06 D000 0606 06 06 06 D0 D 06 00 08 06 00 0 6 06 06 D0 06 06 0 06 00 00 00 00 06 36 06 2606 06 0600 00 06 00 B0 06 0 06 D 06 06 0C 06 06 00 00 0 006 00 06 06 06 00 06 D0 06 A0 06 0 010 06 06 00 00 06 0 0606 0606000060 006 000K 60606 06 06 I 060 0606 06 06 600 06 06 0 06 06 v 6 B

THE FOLYNOMIAL USED IN THE ORTHOGOMAL COLLDCAYION PROCEDURE IS OF YHE TYFE ALFA = o, BETA = 0.
PC-VC-TC~ZL-ACEN 0.72907E+02 0.94482E402 0.30417E+03 6.27400E4100 0. 2US00E+00
PC~YC-TC-ZL-ALEN 0.48196E+02 0.1445BE+03 0.3G544E+03 0.28500E+00 0.10500E+00 '

FAK-NY-TAU-DEL
0.13000
~40,29204

-27.76890%

-8lLe-

0. -
NUMEER OF EINARY POINTS 15 AT THE ISOTHERM  283.45 TEMPERATURE IN DEG K

INIERPOLATED PRESSURE-VALUES FOR X IN THE INTERVAL BETUEEN 0.0 AND 1.0 ., VALUES Fi)k DISCKEIE JUNHPS OF 0.0 IN X
A LEGENDRE POLYNOMIAL OF DEGREE 2 18 USED AS FITTING FUNCTION

29.70600 30.907% 32.0500 33,1269 34,9424 35.10482 36.0465 34.8786
37.4964 30.4721 39.20%6 32,9143 40.5797 T 41,2173 41.0240 42.4077
42.9642 43.4948 44.0048 44,4951 49,9527 45.4100 A45.8374 46.2450
46.6329 47.00064 47.3476 A7. 6733 47.79767 48,2566 AB.54%¢& AR, FA02
49. 7405 49.4165 49.24060 47.3504 49,4454 49,4392 49.4495 49.35208
47.23%4 47.0637 48.68334 403.5408 48.1811 A7.74%7 A7.2497 44,6522
45.97568 43.2069 44.3400




INTERPOLATEP AND EXPERIHENTAL PRESSURE-VM.UES(ATH) VUS. HULE FRACHIONS
.

30.57

A 20,24 32.93 35.28 37.64 43.00 42.35 .0 47.04 47.42 si.10 A
[ ] aB.21 30.57 32.93 35.28 37.64 40.00 42.35 M.n 47,06 49.42 “1.78 B
1 ) § 1 1 1 1 ] I 1 ) | I
0000060000 0000 06 0 0000000 00,00 00 000 10 00 0 00 000 160015 00 00 0 0 00 006 900 0 10 00 00000 00 00015906000 00 00 00600 000050006 0 006 00 000070 006 00000 0000060 0060006600 00006 06 06 006 6
9.02 ~-nl [
9.04 - . A B "
9.686 --wL A .
9.08 --w .-
9.0 —-wb L
0.42 ——uL [] "
0.44 ——n ..
0.46 —-wL A "
6.10 --wL » -
0.20 —-sL A LB
€.22 --%L L]
0.24 -4 AP ...
0.26 --wl [y .-
0.28 --ul .-
0.30 —-uL A “.
9.32 —-n AR -
9.34 —uL b .. L
9.6 ——mL "--
9.38 --ul -
$.40 --nb A .-
9.42 --» “-
0.44 —-nL L)
9.44 --»i ...
9.48 --wL w--
®.50 —-L A oo
$.52 --sL A -
0.54 ——nL M - -
) 9.%54 ~-% .-
{ .58 --sL "
RS :.408 ——aL .-
0.42 ~-nl, "
0.64 ~-nL A . -
®.6& ~-n 1Y . -
©.68 ~-wL ) Py .-
.70 ~-sL = N » -
©.72 ~~w R “.
6.74 ~--» HA “
0.764 ~-»L A .-
€.78 ~-wL N -
.80 ~-nL ' N "..
0.62 ~-nL A ..
6.64 ~-u B .-
f.86 ~-nl IS »-
0.08 --» .-
8.70 - » [ "
0.92 ~-wL w. .
.94 - naA "
f 0.96 ~-%L A .
.76 ~--» L
$.00 —-wL -
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i X§
a.
0. 83500

3.12800

9. 23400

0.31400

042100

3.54200

DL HLS0D

0./1100

. 28000

0.84.5u0

0.443500

0.924300

8.94400

1. 900N
CONY IS ITLHCY

(L8
[V
o.
0.
0.
[UN
(U
D,
a9,
U
Q.
[UN
(U8
g.
1.

IESLS USIHG OKTHDGURAL CUOLLOCATION -~

YL

G400
1800
31500
30300
40000
57000
$5500
74100
iei00
Uinig
85200
2OUDD
94700
00000

COLLOUATION PUOLRIS
' G.442702  0.50000

(U8

Io2U5. 8499

[

FiXA 0. /A58

HUHBER (U
HOBBLK OF
B OF

HUHBEKR Q)

|3 R
29, /0000
301000
$6. 70000
4015000

2.52008
45.57000
47.48000
49, 10000
1934300
A9, 22000
48 47100
48. %2000
48, 79080
A5 . 70009
9. 53W00

49,3400

0.7229

LICRATIONS N G

LILRATIONS [H G

LILKALIOHS IH G

TIEKALIONS 1W 6

NUKELK OF TIERATIONS IN 6

Hse OF TIERAIIOND IH 6

HUMBER UF THIERNAL POINTS

9 QLUB IV {,000000
49,7000 Vol 51.5144 31,9453

FREEZAT SL.9733 29 .9497

v own

w

3

~0¢2¢-



SUOLUTION AT THE COLLOCATION POINTS

X
o.
0.4427
0.5000
9.8873
1.00060

X
0.
0.1127
8.5000
8.8973
$.0000

P
29,7000
35.469014
47.00046
48,0322
44.34060

FUGCEY
0.84482
0.8089
0.6954
0.7034
0.7256

GE/RY
0.
0.05600
0.04B3
0.0583
9.

FUGCE2
0.7229
0.6645
0.48080
3.5688
0.61414

SOLUTION AT THE DATAPOINTS

X

a.

0.0330
0.1200
0.2340
8.3110
0.4210
8.3420
0.6550
0.74110
0.7500
0.08330
0.873¢
0.7200
0.9410
1.6000

P
29,7000
31,6502
34. 8447
40, 36825
42.7148
45.4318
87.770%7
49.0740
49.3908
49,4429
48.9240
8. 3147
47.0140
43.93%¢6

44.3400

GE/RT
Q.

a.0276
0.04632
0.0548
0.0436
©.02308
0.0
0.0344
0. 0a85
0.0493
0.05624
0.0405
0.0344
3.Q299

GOUT
0.9574
0.1979

-0.6079%
-0.1652
-0.9275

VHIX
51.9454
70.2404
74.9988
59.1942
51.5144

(]
Q.9599
Q0.686%
0.12%1

-0.1630
-0.2%17
~0.1263
0. 050
Q. 1uvs
0.2017
G, 1942
0.01472
-, 4222
-Q., 3999
~Q.690%
-0.9275

GANMAL
2.6093
1.2103
1.0047
§.0389
1.0000

VE
o.
24.3436
45,2670
7.46342
o,

GAHHAY
2.6073
§.8759
f.44924
0.79074
0.8R3%3
0,254
1.0373
1,102
1.4004
f.40480
§.04604
§.0440
1.0484
1.0040
1.0000

GAMIAZ
1.0000
1.0452
1.06325
1.2448
2.5204

DFDX
£2.2426
45,1602
17.8740

-29.84627
-45.8948

GAKMA2
1.0000
$.0065
1.0594
1.1116
1.4247
1.0912
0.9968
0.91895
0.90us
G.P123
1.042%
1,475
1.5078
LIS L--¥
2.5204

Y1 Y2
Q. §.0060
0.14%4 0.850?
0.4976 0.5024
00,8054 0.1144
1.0000 0.

CORR TO GDOI

.

0.0512
0.6174
0.006%
0.

Y Y2
[UN 1.0000
0.0730 0.2270
0.1574 (LN R YAl
0. 2006 0.77974
G. 240 0. 7872
0.30/0 0.464200
05570 0. 4905
[P DA 0. 27980
QL7569 0LAN34
0,770 0.2074
O.8410 Q. 1502
08771 01207
O.9417 d.onpy
0.7114 0,009

1.0000 (U8

SuUM COK
$.Q000
$.0000
4.0000
§.0000
1.0000

Fun 0K
$ . 0000
U
Q0,295 ¢
1.04/3%
§.0823
1.0078
§.00047%
§.028
1.04/0
(A R RV
1,058
(U
10080
§.001%
§.0000

GE S/ /HOLE

[\ )
143,
45,
137.
(L

BE JHME

Q.
63,
140).
LRI
o,
LS.
A5,
a9,
107.
16,
194,
(R YN
XU
0,

[t

0244
1628

26290

L0
H2 09
387U
TARRA
7804
4dve
HRIA
19470
(ORI L]
9204
40
&8
1343

~lée-



GIRRS EXCESS FREE ENERGV(J4/NOLE) V5. HULE FRACVIUNS M

L] 0. 15.63 34.27 45.90 62.53 T0.47 vy.e0 109.43 12%.07 $40. 70 154.33 A
] H 1 1 1 H 1 ] 1 ¥ 1
DR800 000 U0 0000 00 0020 00 o0 06 0 00 D000 0000 D U000 600 00 06 0000 0000 000 0 U 0000 06 0000 00 00 06 08060 066 0 0% 0 60 00 D06 06 0 0 0 N
$.62 --mA . -
0.04 —-u A w .
0.04 --mA P
$.0B --"A ".-
0.10 --A L
.12 —-un .. .
. t4 [ LI
0.16 . LEE
0.8 . -
.20 . -—-
8.2 .~
6.4 A 4 -
* .28 "
.28 "em
0.30 . -
9.32 A L
.34 v .-
.38 .-
6.30 .-
0.40 -
6.42 A ..
Q.44 [
0.46 [
0.40 ...
9.50 L
9.52 ..
9.54 -
8.56 [ .
0.58 LE
.40 "
9.42 L
9.64 LR
0.66 * A “— .
0.68 L
9.70 "
9.72 A " .
.74 A - -
8.756 LES
e.70 .
@.80 »
|.02 .-
@.RA N LI
0.8 ~ -
0.00 . -
©.90 A -
.92 A -
.74 H L]
0.96 ~-up .
0.98 —-¢ A »
1.00 --%p ..
EHNBANUENRRU N BRI RN AN E NP RUP AR NN RNV U RN P A NN NN UURNN S NPV NN R BN RSN F NN NS RN
1 1 ] 1 b 1 1 1 [} 1 {

CONSISFENCY TEST BY REPEATED HALVIND UF TRAPEZIULDAL RULE WEH ROMBERG THITGRABEIN, AlE A~ Q. 4979150 07
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Cale

13

9.

0. 0330
0. 9480
0.2340
0.51190
0.4210
0.5%3290
9.44%50
0.7310
0, 7300
0.83.30
0.8730
0.493u0
0.94610
1.0000

WAIED VA

X

0.

0.0330
0. 1280
0.2340
0.3140
0.4210
0L5329
0. 4550
0.74 10
0.7300
0.84530
0.8 730
6.9280
0.9640
1 .0000

FINiLE )
0.68382
0.8160
[UAITLE
0. 7998
0.75Y8
0.7476
0.6052
0.5354
0.56520
0.5643
0.6547
0.7015
Q.7992
0.7157
0.7256

L UES OF

ll
27./009
31,4400
34.7000
40.1500
42.5200
45.5700
4/7.6800
W.I000
49.3100
492909
48. 5000
A.9900
346. 7900
45,7300
49. 3400

Y4

Fuut'e2
[P R
9.7043
0.6570
L5030
0.52079
0.5094
0.40825
0.4734
0.4724
Q.4722
0.4705
0.5642
0.5028
0.5955
G.6144

Y1
0.
0.0730
0.4578
0.2004
0.2420
0.3874
©.5575
0.7042
0.7554
0.7728
0.8410_.
0.8774
0.9149
0.Y4156
1.0000

SUM UDF SQUARES OF DELIA Y

VARIANLE OF BELTA Y

0.05614

CALLCULATED EXCLUDING GIVEN LMD FUOINIS

sun

I FUUAKES UF DR TA P

VAKIANUCE DF BLLIA ¥

0.226¢

AKLITHML L HEAN OF DELTA P/F

(UTTRY Vi DHPY FOKK 10 6
55,9344 o, FXME R 0.
/3.1 300 26,190y S6.5580 L0465
T.A508 26,801 A8 3808 0,042
78,3453 PR R | 33,1004 .05/
THLSWS 28,5000 LT, /508 0.0517
TEOND DS VIEY 21 ST 0.0246
T6.49H2 4,934 15,5034 0.0134
TA.4A534 20, 1904 B.10HY 0.0073
&9 8545 10,2156 3.1452 0. 0024
48,8547 470309 1.2500 0. 800Y
SR.TIT2 A1 450Y  -11.9539 - 0.20%7
0. 13914 B.5700 16,5003 -0.06040
56,4664 4.9210  -2Y_0458 - 0.0052
54,2136 2.6825 -34.3155  -0.0041
51,5144 0. -45. 990 6.
VIEXF DY Yo Uy
0. o, 1.0000 1.0000
0.0610 6.0120 6.9270 1.0000
D.1960  ~0.0402 0.06422 1.0000
0.3150  -0.4144 0.7994 1.0000
0.3840  -0.4292 0.7372 1.0000
b.4U00  -0.0%22 0.618u  1.0000
0.5740 -0.920% 0.4325° . 1.0006
0.6660 0. 0352 0.29u88 N 1.0000
0.7110 0.04%4 0.2436 1.0000
0.7270 6.04%4 6.2274 1.0000
0.8150 6.0244 6.15u2 1.0000
8.8520 0.02514 0.12u9 1.0000
0.9040 0.003y 0.006u1 1.0000
0.¥370  ~0.0053 0.0584 1.0000
1.0000 0. 0. 1.0000
0.0452195
AMITHHET LG HEAN OF DEITA Y 0.0
0. 91892454
AREINNETIE HEAN OF DELIA F 0.2

O 0915585

Ul 17U ATED EXCLUDING GIVEM END FOINIS

Siop
11Nk

.0 SEiY

ULy

FCAL
29.7000
31.6502
36,3689
40.3825
42,1168
45.4518
47.7047
47.0710
49.3900
49.4324
40.9210

48.3149

47,0160
45,9394
44.3400

br
Q.
0.0482
-0.3334
0.2329
B.1948
~0.13682
-0.1753
-0,0290
0.00808
0.1424
0.3290
-0.5754
0.2240
0.1594
0.

-tce-
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Results of Run # 1 for the

CH4-C3 3

See Table 1 for the Values of the

H, System at -17°C.

Pertinent Variables Used.

The formated input is as follows:

§ 222

HETHANE (4 ) ~PROPANE (2)

1

is

49

1.8 e.0 Q.6
4.8 6,038 6.56
13.48 0.089 0.7567
20.4 G.142 0.832
27.2 @.197 0.861
34.0 0.249 6.880
46.8 0.303 ©.8088
47.4 8.357 0.8%70
S54.4 0.41 0.892
64 .2 0.464 .89
68 .70 9.518 0.889
74.7 0.572 @.8a2
84.7 256.40 0.636 0.867
88.5 256.40 0.718 0.843%
3.9 256.40 0.80 8.80
45.4 99.0 190.6 8,288 0,008

44,9 203.0 369.9 8.281 0.152
9.,00648

-410,.3206

79.0144

~-Q.05

6900

The formated output is as follows:



EXPERIHENTAL RESULYS AND CALCULATED QUANIITIES FOR THE BINARY SYSV1EH HEFHANE($) -PROFPANE L)
D600 06 00 00 06 06 016 B0 06 06 00 06 06 0000 00 060400 06 0 0 06 06 04 06 08 04 06 00 00 5 B0 06 D6 06 06 10 I 0 06 06 06 0 0 1 000060 000 0 060000006000 00 0060900060600 000000000000 D0 00X 000000606 000060 D 800 O 0 D

THE FOLYNOMIAL USED IM THE ORTHOGONAL COLLOCATION FROCEDURE 15 OF THE TYPE ALFA - 0. REVA = [
FC-VE-TC~-ZL-ACEN 0.45400E+02 B.29000E+02 0.190460E+03 0.20000E+00 0.B8000G0E -0
PC~-VC~-TC~ZC-ACEN 0.44900E+02 0.2030G0EI03 0.34PH0E+03 0.201060E+00 0.15200E400

FAR-NY-TAU-DEL

0.60418
-1 10.320460
79.01640
-90.05000
NUMBER OF BINARY POINTS 15 AT THE ISOTHERM 256.40 TEMPERATURE 1M DEG K
XEXP YEXP PEXP
0. 0. 1.80000

9.03400 6.55000 $.800800

6.08900 0.76700 13.606000

0.44200 0.683200 20.40000

0.17700 0.86100 27.20600

0.24900 0.88000 34.,00000 =
6.30300 0.688800 40.80000

0.35700 0.89000 47.40000

0.41000 0.62200 54.,40000 .
0.46400 0.89160 51.20000

0.51800 0.844700 4B.000006

9.57200 0.80200  74,90000

0.463400 0.84900 81.70000

0.73800 0.83500 88.506000

0.800089 0.80000 93.90000

T 256.3999 [} 1.80006 viL 79.6242 91.5029

FISATY 0.978% 0,9555 FREESAT  104,3365 1.7200
CONSXSTENCY TEST USING ORTHOGONAL COLLOCATIUON - HUMBLR OF INJTERMAL FOTHIY 2

COLLOCATION POINTS
0. 0.244325  0.788475  1.000000

NUMBER OF TTERATIONS IN G 4

HUMBER OF [IEKATINS IN G 4

=Sd¢-



HUHOER OF ITERATIONS

HENRY LAl CONSTAND BY

in G

LAGRANGIAN EX1KAFOLATION

HUMBER OF ITERAVIUNE 1M 6

HENRY LAW CONSITAND HY

NUMBER OF ITERATIONS IN O

HENRY LAW CONSTANT RY
NUMBER OF ITERATIONS
HENRY LAW CONSTANT RY

NUMBER OF ITERATIONS

LAGHANGIAN EXTRAPULATION

Ino

LAGRANGIAN EXTRAPOLATION

IN G

LABKRANGIAN UXTHAFPOLATTON

SOLUTION AT THE COLLOCATION-POINTS

X
0.
0.34670
6.7105
€.8000

X
Q.
0.34678
6.7105
0.8000

14
1.8000
49,6207
87.4597
96.2919

FUGCFY
1.06093
0.68442
0.7519
0.7347

SOLUTION AT THE DPAYA

X
0.
6.0340
0.0090

L1920
8.4770
6.2499
6.3030
0.3570

. 0.4100
8.4640
6.5180
8.5720
6.6360
6.71080
0.38000

4
1.8000
6.5340

14.0569
21.4404
28.3438
34,7733
41.7407
48.3274
54.6357
60.9037
67.0109
72.9574
79.7%68
68.227v8
26.2719

GE/RT
-0.0544
~0.2915
~0.4006

FUGCF2
0.9555
0.37066
0.1414
0.1427

POINTS

GE/RT

0.
~0.0027
-0.0048
~-0.0114
~0.047&6
-0.0254
~0.0344
~0.0510
-0.06476
-0.0738
~-0.1239%
-0.14600
-0.2143
-0.3003
-9.40086

GOool

10,3442
-1.1474
~4.4745

VH1X
f1.5027
73.4460
74.8244
78.2168

GOO¥
Qa.
~0.0194

- —0.0543

~0.0932
-0.9403
~0.1923
-Q.2552
-0.3283
~-0.4912
~0.5003
-0.6194
-0.7456
~-0.9166
~§.4728
-1.4745

IRR T I
112.5508
$142.494%%
112.5517
GANMAY GANNNAZ
i .0000 1 .0000
0.7782 §1.6647
0.5394 }.6637
0.4955 2.4507
VE DFDX
0. $12.1372
~7.3648 95.9441%
—-5.3443 00.7967
-1.7867 76.8467
GANNAY GABNAZ
1.0600 1.0000
0.97239 0.9979
0.9546 0.7970
0.7256 @.7995
0.U07234 1.0058
0.8606 1.0944
©.8243 $.0324
0.7840 1.0559
0.74794 1.0103
0.70569 §.43356
0.4667 i.4955
0.6276 1.2802
0.5833 1.4238
0.5350 1.6947
0. 4755 2.4507

Y4
0.
0.924°
Q.72069
0.9024

CORR 10
o,
~0.03%6
-0.0205
~0.0055

1
6.
0.6465
¢.8a3
0.8765
0.92004
0.7124
¢.919%
0.9240
0.9257
0.9257
0.9240
6.9207
0.9145
0.90460
0.9623

Y2
1.0000
0.0755
0.0933
0.6977

GooT

ya2
1.0000
6.3335
0.1747
01235
0.0999
0.0876
0.0804
6.0760
00743
0.0743
0.0740
©.0793
0.0u55
0.0740
0.0%/77

SUH CORK
1.6000
§.0004
1.0001
1.0004

SUM COKR
1.0000
A.R749
H.7013
0.9236
0.9474
0.7?480
0.71R%y
0.7703
1.0044
1.0106
§.610%
1.0084
1.003%
0.9799
i.0009%

GE JS/7HOLE
0.
-§15.9619
-621.4853
-@7a.7ae0

GE W/MOLE
0,

-5, 6503
-14.58462
AL I 3
-X7.4765
-5, §582
—-77.5207

100, 46777
-440 . 4313
-199.7442
~2464.1243
-340. 7175
<456, 7668
630, 2034
~B76.,9880

-92¢-



ISTENC ] 3 3 4 LE W KOHDEKG N1 GHATTON
COMSISIENCY TEST BY REFEATED HALVING W4 TRAPZOLDAL Eg[} uin 5 v

COMSTANE= Q.842642D -1 e
CUHSTANT= @.3825490- 44 K
CONSTANT= 0.934154D 44 s
CONSTANT = 0.1B5004D- 10

CUONSTANT= 0.341084D0-10

CONSTANT= 0.954794D~-10

CONSTANT = 0.150444D-09

COHSTANT= ¢.230371D- 09

CONSTANT= 0.343562D--09

CUNSTANT = 6.5380461D-09

CONSTANF= 0.8985946D-069

CONSTANT= 0.1456730-08

CALCULATED VALUES DF Y§

X P Y YIEXP U g y2 SUHY PUAL oF
0. 1.80600 e.. 9. Q. 1.0000 1.00060 1.8000  -0.0600

0.0340 6.8000 0. 6665 0.54600 Q.§065 0.3335 1.0000 6.5340 =0, 4640
6.0890 13,6000 0.8283 0.7670 0.0643 0. 1747 1.0000 $4.0569 0. 4569
6.1420 20.4000 0.8765 0.8320 0.0445 0.4235 §.0000 2§.1489 0.7484
0.4770 27.2000 0.7004 0.8410 0.0394 0.099% 1.0000 28.3438 1.1430
0.2490 34.0000 0.9124 0.08060 0.0324 0.0876 1.0000 34,9933 0.9938
0.3030 40,8000 0.91%9 6.88R0 0.0319 0.0804 §.0000 4% .7407 0.9407
6.3570 47.46000 0.9240 6.8700 0.0340 0.0750 1.00600 46. 3274 Q.7274
©.4100 54.4000 0.9257 0.8920 0.6337 0.0743 §.0000 54.6357 0.2357
0.4640 61.2000 0.9257 0.8910 0.0347 0.0743 1.0000 60,7037 -Q.2963
8.5180 48.06000 0.9240 0.BB70 0.6350 0.07460 1.0000 &7.0107 ~0.9894
8.5720 74.9000 0.92067 0.8020 q.63a7 Q.0793 3.00600 72.9574 ~1.9476
08.6360 a1.7000 0.9145 0.8690 0.0455 0.0855 t.0000 77.77968 -1.90352

0.71B0 88.5000 0.9060 0.8450 0.0610 0.094¢0 f.0000 86.2278 -0.2702
0.68000 93.9000 0.9623 8.8000 0.1023 0.0977 1.0060 96,3919 2.48947
X FUGCF Y FURCF2 UHM1IX VE DHDY COKR 1O 00

0. §.0093 ¢.9555 Bi.5027 0. 19,1372 0.

0.0340 6.7032 Q.86465 80.6193 -0.8997 110.6473 -0.0043

9.0uva 0.97544 0.753% 19.2345 -2.1037  §109.2111 S0 0100

0.4420 0.72298 G, 4572 77.9209 ~5.2048 105.08734 ~90.0165

0.1770 0.2060 0.5739 76,6924 ~4.4401 103,444 -0.0210

0.2490 0.8048 0.5034 75.5019 S5.524 0 1044530 00252

0.303% D.QAHAZ ¢.4389 73,5308 6,302 V. 7i0 -0, 0301
0.3570 0.9448 G.2813 73,4105 ~7.220& Q& . 3HUN -0, QXA
0.4100 0.8271 0.3319 72.874% 7.08573 Lq.0000 0, 0359

0.44640 0.0503 0,.2874 74.3549 -B.2749 Y1.60107 0.03541
0.2180 0.7740 0.2479 72,9744 -B.3547 R2.20404 RUN K
0.5/20 0.7808 6.2128 Te.51381 -7.9435 H& L2045 -0.0xN7
8.4360 0. 76463 0.1764 74.1778 -6.10838 Ba.001 8 S0.0799

6.7180 0. 7505 0. 4304 74,9800 N8 /218 BO.4AN0 -0_0493
6.A000 0.73547 0.4127 70.2968 -1.7807 760487 -0, 008S

A2 A



SUN OF SQUARES OF DELTA Y 8.0431585 )

VARIANCE OF DELTA ¥ 0.0576  ARIVHHEIIC HEAN OF DELTA Y

CALCULATED EXCLUDING OIVEN END POINTS
SUN OF SQUARES OF DELTA P
VARIANCE OF DELTA P

+18.8602577

§.2045 ARITHMETIC HEAN OF DELTA P
ARITHHETIC MEAN OF DELTA P/P 0.3204983
CALCULATED EXCLUDING OIVEN END POINTS
STOFP

TIME 2.9 SECS

-Q77 -
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Results of Run # 2 for the

CH4- 3H8 System at -17°C.

See Table 1 for the Values of the

Pertinent Variables Used.

The formated input is as follows:

1 222

METHANE( {)-PROPANE(2Q)
L]
i3

(RR

1.8 0.9 8.0
4.8 0.034 0.56
13.6 0,009 0.7467
20.4 0.142 0.832
27.2 0.197 0.8614
34.0 .249 0.880
40.8 9,303 0.880
37.46 9.357 0.890
S54.4 .41 0.872
6.2 0.464 @.89f
$8.0 8.548 0.889
T4.7 9.572 0.882
1.7 256.49 9.636 0.86%
a8.5 156.40 6.748 9.845
3.9 256.40 0.80 0.86
45.4 9.0 170.8 0.288 0.068

44 .7 203.0 36%9.8 0.2081 6.452
9.00418

~140.32048

79.01464

6.04

6000

The formated output is as follows:



EXFERTIAENTAL RESUL IS AND CALCHLAIED QUANT LIEEY | UK THE BIHARY XYXIER HE R E 1Y RO AL ¢
AR KRR RRARE AR AR R AR AR R AR KR KRR R R KRR AR AR RN AU R AR R A R AR R R AR R R AR U R AR R AR U AR AR R AR R R AR AR R U AR R R A RARR R KRR R AR AR R KR KU RN R KK R R R RN

ik FDLYHDHIAL USED 1N THE UKITHOGONAL CULLOCAT 10 FHUCEDURE I8 OF THE IYPE ALFA

FC-VC-1C-ZC-AEEN 0. 459001102 0.99000E 102 0.12030K403 0. 2BBUOEOO 0.80000E-02
PEC-VE-TC~ZEL -ACEN 0.41Y00E 402 0.2030084103 0.36980L103 0,281 00E400 0. 15200F 4100

FAR-NY -1 AU-DEL

6.00510
-146.32050
79 . 01549
0. 0160
HUHBEN OF BINARY FUINIS 15 AT THE ISOIHERN  255.40 IEHFERATUKE 1H DEG K
KEXP YEXF FEXF
0. 0. 1.80000

0.03409 @.56000 5.80000
0.0u%00 D.74700 13.60000
0, 134200 0.83200 20.40000
6.19700 0.846100 27.20000
8.24700 0.BBOOG  34.00000
9.30430 0.6808800 40.80000
0.35700 0.89000 47.60000
2.431000 4.B9200  53.30000
9. 46400 G.89100 61.20000
0.51800 9.88Y00  48.00000
0.57200 QL8200 74.90000
0.5.35D0 D.B5%200 BI.T70000
0.71800 0.99500  88.50000
0.80300 0.80060 93.90000

V2563999 ) 1.8000 Vol 83.5935 B81.5029
FLERT D.¥773 0.9555 FREESAT  104.5/93 T4, 7200

PORSISTENEY TES) UXING DRTHOGDNAL COLLOCATION - HUMKER OF INTERHAL 1FILINTS 2
COLLOCATION FOINILS r

0. 0.251325  0.788675 1 .000000
HUHGEN OF (TERSTIUNS IN G 4

HUHBER OF TIERAIEIDNS 1 6 L]

-0€2-



NHUHBEK OF 1FLKATIONS IH 6 a
HENRY LAY COMSTANHTY BY LAGKRAHGEME EXTHAFOLATIUON  193.412%5
NUNBER OF §1IEKATIONS IN G 3
HEHKY LaW CONSIAHT BY LAGKAHILAN LXTRAFOLAIION 1130156
NUHBEN UF LIFKAIIUNS IN G 2
HENRY LAW CUNSTANI BY LAGRANGIAN EXIRAPDLAIION 113,0158
NUMEER UF ITERATIONS IN B 9
HENRY LAW CONSTANT BY LAGRANGIAN EXTRAPOLATION 153,029
NUMBER OF ITERATIONS IN 6 9

SOLUTION AT THE COLLOCATION POINTS

X P GE/RT G007 GANHAY BAHHAL Y1 Y2 SUM CORR  GE J/MILE
[ §.8000 0. . §.0000 1.0000 0. 1.0060 1.00040 0.
9.3678 4%.6207 ~0.08572 ~0.3583 0.7723 1.06145 0.9308 0.0673 1.0000 ~§22.0302
0.7105 B87.4697 ~0.2985 -§.1539 0.535% 1.64714 0.9294 0.0706 1.0000 -636.3571
9.8000 96.2949 ~-0.4158 -4.4738 0.4932 2.1144 0.9306 0.0494 §.0000 -886.3577
X FUGCF4 FUBLCF2 VHIX VE DF DY CORR TD GOUF
0. 1.0119 0.9555 B81.50629 0. 142,14372 a.
9.35678 Q.84405 0.4044 73.4460 -8.8257 95.91 44 ~0.0402

9.7103 0.7442 6.1850 74.82456 -0.1634 80,7967 ~0.0344
8.8000 0.7243 8.4570 78.2168 ~4.9586 76.8467 -0.0181

SOLUTION AT THE DATA FPOINTS
C X P BE/RT Goay GAMNAY GANNKAZ Y 7 SUM CORR GE J/MOLE

0. {.8000 0. [ 1.6000 1.0000 0. §.0000 1.0000 0.
0.0340 6.5340 -0.00246 -0.0242 ¢.9820 9.7980 0.56682 0.3318 0.09L) “D. AT

9.0890 14,0569 -0.0048 -0.0589 0.9522 0.9973 0.083410 Q.1670 0.%017 $4.5705
©.19420 29.14684 ~0.0417 -0.1003 0.9224 6.9998 8.8798 0. 1202 0.9236 24,7340
9.1970 28.3438 ~-0.0103 ~0.4497 0.8808 1.0062 6.9040 0.0940 G.99749  -3B8.700.48
9.2490 34.9933 -0.0267 -0.2035 ¢.8553 1.0164 QL9449 0.0034 O.PTH GHLTSA
0.303¢ 41.7407 -0.0383 ~(.2680 0.8186 1.0326 0.9250 0.0750 0.9U%0 -8 .6647
Q.3570 48.3274 -0.0537 ~0.3422 0.7a02 1.0559 0.73060 @.0700 0.9980 -119.9159
6.4400 54.46357 ~0.073% -0.4258 0.7444 1.0877 0.7328 00672 1.0069 155,011 39
0.4640 60,9037 ~0.0780 -0.5230 0.70449 1.4322 0.97344 0. 6459 §.0106 -208,70607
0.5180 67.0109 ~0.1287 -0.6335 0.6647 1.4929 0.9343 0.05657 §.0442 -274.8927
0.5720 72.9574 ~0.1445 -0.75856 0.6230 $.2756 6.9314 0.0646 1.0007 - 3%4,07%3
0.6340 79.77948 -0.2207 -0.9273 0.5795 §.4450 0.9342 0.0600 1.0088 -470,4.4895

9.7180 88.2298 -0.3073 -4.1788 0.5320 1.6769 0.9293 0.6707 0.9998 -&5%5,00034
9.80600 ?6.2749 ~0.4456 -1.4738 0.4932 2.1144 0.9306 Q.0499 1.0000 -Bij6, 3597

R



X FUGCF 4 FUGCF2 VHIX VE
0. 1.6419 0.9555 81 .5629 e.
0.0340 0.98414 0.8705 00.56193 ~0.9547
9.0490 0.9547 0.765% 79.2345 ~2.45749
0.1420 0.9299%9 0.6775 77.95069 ~3.8487
0.1770 0.905% 0.5975 76.691 5.2226
6.2490 0.8847 @.5305 75.5849 ~-6.49415
6.3030 0.8639 0.968% T74.5306 ~7.605H
0.3570 0.8443 0.4143 73.6405 ~B.650D
0.4100 0.0263 0.346467 72,8744 -~9.4H40
0.4640 0.680%0 ©.3238 TR.3549  —-10.418%4
0.5180 0.7729 0.20859 72414 10,4444
0.5720 0.7780 0.2522 T2.913%  -10.18%7
6.6360 8.7647 0.24756 74,4770 -8.46340
0.7480 0.7425 0.1822 74.7800 ~8.040
©.8060 0.7243 9.1370 78.2160 -4, 706
CONSISTENCY TESY BY REFEATED HAL VENG OF ITHAFZODIDAL
CONETAN] = 0.427050D {4
CONZTANT= 0.425136D -1
CUNSTANT= 0.102210D-106
CONSTANT= Q. 4925740 10
CONFTANT= ©0.362921D- 10
CONSTANT= 0.617417D-10
- CONSTANT= 0.9916823D-10
CUNSIANT= 0.§598/6D-0y
CONSTANT= 9.234639D-09
CONSTANRT= 0.344942D--09
CONSTANT= 0.5368690D-09
CONSTANT= 0.8909606D-07
CONSTANT= 0.143251D-09
CALCULATED VALUVEY DF Y4
X P YIEXFP 133
0. 1.8000 0. . 0.
0.0340 4.8000 0.56682 0.5600 0.4082
0.08%0 13.6000 0.8310 0.7470 0.0640
0.3420 20.4000 0.8798 0.8320 0.0478
0.1970 27.2000 0.9040 0.0640 0.0430
0.2490 34.0000 0.9169 0.8800 0.0367
0.3030 40,8000 0.9250 0.8800 0.0370
0.3570 47.6000 0.92300 0.8900 0.6400
0.4100 54.4000 0.9328 0.8920 ©.0408
0.45640 61.2000 0.9344 ©.8910 0.0434
0.5180 4£B.0000 0.9343 0.8a7¢ @.6453
0.5720 74.72000 0.7334 0.8820 0.65494
8.63460 a4.7000 6.9342 $.8690 0.0622
0.7180 88.5000 06.9293 ©0.8450 0.0843
0.8000 93,9600 0.9306 0.8000 0.1306

DI-DX
$42.1872
146.4373
108.2141
105.8734
103, 84449
101.4530
98.770%
94, 3000
94.0508
916487
09,2064
06,9045
Ha, 0014
B0, 4440
76. 04467

RULE WEIY

ya
1.0000
0.3318
0.1699
0.1302
0.0%240
0.0031
0.075%0
6.0700
0.0672
0.0457
0.0657
0.0646
0.0608
0.6707
0.06%4

CORK TO GROT

0.

-0, 0050
-0.0§24
-0.0194
~0.,0257

-0.0310

~-0.0357
-6, 0396
—-(1.0424
-0.044%
~0.0442
-0. 040
-0, 0345
-0.0807
-6.0181

KOMBE KRG

SUHY
1.0000
1.0000
1.0000
§.0000
1.0000
1.0000
1.0000
1.0000
§.0000
§.0000
4.0000
§.0000
$.0000
1.0000
1.000¢

EHE GG S0

FCAL
§.8000
6.5340

14,0569
21,1404
208.3438
34,9933
41.7407
46.3274
54.6357
60,7037
67.0107
72,9574
T9.7968
808.2290
96.294%

b
~Q. 0000
~0.2440

0.4%67
0.74849
1.1438
0.9983
0.9407
0.7274
0.2357
-~0.29463
-@.73714
-1.92424
3.90372
-0.2702
2.5949

-¢€e-



SUM OF SQUARES UF DELTA Y 0.0605322

VARIANCE OF DELTA Y- 0.0682 ARITHHETIC HEAN DF DELIA Y
CALCULAIED EXCLUDING GIVEK: END FODINIS

SUN OF SQUARES OF DELYA P 18.8602577

VARIANCE OF DELTA P 1.2045 ARTTHHETIL MEAN OF DELTA F

ARIVHNETIC MEAN OF DELTA P/P 0.320483

CALCULATED EXCLUD]“B BGIVEN END POINTS

syae
TIHE 2.7 SECS

(.9504

-€€e-
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Results of Run # 3 for the

CH4-C3H8 System at -17°C.

See Table 1 for the Values of the

Pertinent Variables Used.

The formated input is as follows:

$ 222

HETHANE (4 ) ~PROPANE(2)
4

15

$44

4.8 0.¢ 0.0
6.3 0,034 0.56
i3.4 6,089 0.767
20,8 0,442 0.832
27.2 0,397 0.864
4.0 0.249 9.R880
40.8 * 6.303 0.88a8
47,4 0,357 8.R90
54,4 0. 94 0,892
63,2 6,464 6.8914
48,0 0.518 9.8099
74,2 0.572 0.882
8.7 256.40 0.636 0. 869
ag.s 256,48 4,718 6.845
23,7 2%556.40 0.00 6.906
45,4 79,0 190.4 0.208 6.008

44,9 203.0 369.8 0.284 0.152
0.00618

-440.3206

79.0104

@.05 .
60 00

The formated output is as follows:



EXI’ERTHENTAL RESULTS AND CALCULATED QUANTITIES FUR THE BINARY SYSIEH HETHANE (1) ~-PROSFFANL (2
U0 0000 00606060000 0000060600000 000600 0600600 0 006100000606 06 0600600 00 0D 600000600 O 0060660601600 000 060600 D KO B0 DK D00 O 6

THE FOLYMOHIAL USED IM THE ORTHOOGDMAL COLLOCATION FROCEDURE 1§ OF THE TYPE ALFA = 0. BETA = o.
FC-VC-TC-ZC-ACEN 0.45900E+02 0.99000E +02 ©.19040E4063 0.2BB0VE+00 0.DO00GE-02
PL-YC-TC-ZC~-ACEN 0.41900E+02 0.20300E+03 0.349B0E+03 0.2B100E+00 0.15200E100

FAK-HY-TAU-DEL

0.00618
-110.32060 -
79.01640
6.05000
NUMEER DF BINARY POINTS 15 AT THE ISOTHERH  255.40 TENPERATUKE TH DED K
XEXP YEXP PEXP )
0. 0. $.80000

0.03400 0.56000 6.80000
0.08?00 0.74700 13.560000
0.44200 0.83200 20.40000
0.19700 0.86400 27.20000
0.24900 6.688060 34.60000
0.30300 0.898000 40.80000
0.35700  0.89000 47.60000
0.41000 0.89200 354.40000
0.446400 0.894100 61.20000
0.51800 0.88%900 469.00000
0.57200 0.088200 74.706000
0.463600 0.847006  084.70000
06.71B00 0.84500 B80.500060
0.80000 0.86000 93.90000

-Gge-

¥ 256.3997 PS 1.6000 VoL 86.2419 81.5029

F15Al 0.97717 0.?555 FREESAT 404.73922 1.7200
CONSISTERLY TEST USING DRTHOGONAL COLLOCATION - HUMBEK OF TNTERNAL FOINTS 2

COLLOUATIDN PDINTS
0. 0.244325 0.780475 1.000000

NUHBER OF 1I1ERATIONS IN G 4

NUMEER OF ITERATIUMSE INH G 4



NUMBER OF ITERATIONS
HENRY LAM CONSTANT BY
NUMBER OF STERAFIONS
HENRY LAW CONSIAHT Ry
NUHBER OF JITERATIDNS
HEHKY LAW COMSTANT BY
NUKEER OF ITERATIUNS
HENRY LAW COMSTANY RY
NUHEER OF ITERATIONS
SOLUTION AT THE COLLOD
X P

0. 1.8600
0.3678 49.46207
0.7405 B87.4697
©.80060 956.2919

X FUGCFY

Q. 4.0137
0.3478 0.8402

0.7105 8.7424
0.8000 0.7218

SOLUTION AT THE DATA
X P
<] 1.8000

0.0340 5.5340
6.0890 $14.0549
0.9420 21.1404
6.1970 209.3438
0.24%0 34.9733
0.3030 44.7407
0.3570 48.3273
0.41006 54,6357
0.4640 60.9037
0.5180 67.0109
0.5720 72.9574
0.64460 19.79468
0.7100 868.22798
0.8000 96.2949

G 2

LAGRANGIAN EXIRAPDLATION  $15.4470
IH 6 3

LAGRAHGIAN EXTRAFDLATION  §13.8049
ING 2

LAGRANGIAN EXTRAPOLATION $13.3240
IN G 1

LAGRANGIAN EXTRAFOLATION §13.3187
ING 1
CATION POINTS

GE/RY GOoT GAHHA T GhHKAZ

-

1.0000 1.0000

-0.0592 -0:3676 08.7685 1.0614
-0.3038 -§.4635 9.5328 1.6411

-0.4219 ~1.4830 0.47%060 2.4639
FUGLF2 UNIX DPDHY
0.9555 84 .5029 e, 142.4372

0.4275 73,4440 ~2.71997 95.9144
0.2933 74.8246 -10.04514 80.7967
0.1849 78.2468 -7.0773 76,8487

POINTS
GE/RT GooT GANHAS GANHAZ
8. o 1.0000 1 .0000

-0.0026 ~0.0228 0.9040 0.9?80
~0.0070 ~-0.0424 0.9504 0.9974
-0.0420 -0.1055 0.9192 0.9799
-0.0189 -0.1563 0.080654 1.0063
-0.0276 -0.2142 0.85146 1.0164
~-0.0377 -0.2765 0.8147 1.0327
-0.0555 -6.3514 0.7743 1.6558
~0.0754 -0.4355 9.7375 1.0074
-0.1609 -0.5329 0.6977 1.1314

-0.4323 ~0.4436 0.6584 1.4945
-0.4704 -0.7687 0.63196 §.2733
~-0.2253 ~0.9372 0.5764 f.4144
-6.3128 ~1.1884 0.5200 $.6707
-0.4219 ~1.4830 0.47060 2.1039

Yi
[
0.9345
$.93%0
0.9414

COKR TO
o,

-0.0447
~0.0304
~-0.0250

Y9
0.
0.6693
0.8327
0.0817
0.9065
0.9177
0.72A3
0.7337
0.9370
0.9370
0.9399?
0.9400
0.73722
0.9590
0.9444

Y2
1.a6000
0.0455
0.05610
0.0506

GOOT

¥a
1.0000
0.3307
0.1673
0.1181
0.0935
0.0803
0.6747
0.0463
0.04630
0.0640
0.0604
0.6400
0.0400
0.0610
0.0584

S CORKR
1.0000
1.0000
§.0000
4.6000

SUM CIRR
1.0000
0.u4950
0.7044
0.7234
0.7448
0.7671%
0.7047
Q.97
§.0085
1.0109
$.0145
1.0079
1.003%
0,7
1.0000

E J/HOLE
¢,
~-126.1005
~647.73%%
~899.5103

GE J/MILE
0.
=5.927Y
-~§4.R548
25,6409
-40.3016
~5H. 0640
-094.56383
118, 2698
360, 7268
~d15.0454
~PRL, 0425
~3A3 . DHES
-4R0. 1310
bhb . TAN
HBP? . 5103

-gg2~



X

0.

0.0340
0.0H90
0.41420
0.1%70
0.2470
6.3030
0.3570
0.4100
0.44640
6.518¢
0.5720
0.4360
9.7100
§.68000

FULEF § FUGCF2 UHIX

$.0137 06.9555 81 .%029
0.7844 0.8731 80.46193
0.72550 0.7734 79.2345%
0.7300 0.4879 777507
0.905¢% 0.56136 T6.692
0.688446 0.5495 75.56849
0.8637 0.4901 74.5304
0.8440 0.4373 73.4105
0.8258 0.39114 72.8744
0.8004 0.3473 TR.35347
0.7924 0.3922 TR0
0.7769 0.2773 72,514
0.7604 0.2454 74.1978
9.7403 0.2103 74,9800
0.7218 G.1049 70,2140

VE
Q.
~1.0444

~d.6%9 384
cq.8250
-5.7444
-7.4010
-0.4002
~9.5640
-fa.s710
-11.3449
~41.70362
-1, 7005
40,8479

L Y )

~7.07F4

CONSESTENCY TEST BY REPEATED HALWIHG OF  that Z01DAL

CONSTANE=
CONSTANT=
CONSTANT=
COHSTHY -
CONSTANT =
CONSTANT=
CONE AN
CONS AN F=
CONSTANT =
CONSTANT-
CONSTANI=
CONSTANTe
CONSTANT =

CALCULATED VALUES OF Y4

X

9.

8.03540
8.00%0
0.1420
0.1270
0.2470
0.3030
0.3570
0.4)00
0.44£40
0.5980
0.5720
0.6350
9.741680
0,806

Q. 137464690 -4
QL ASI96D 14
G.50R°202D0 10
0.210072H-10
a.877/785h-10
0.,637326D-40
U101 apsh Yy
0.14578446D~-69
0.239844D-07
©.3505615D-0%
0.5425220-09
0.894534D-09
0.143531D-08

P Y4EXS
4.8000 o. 0.
4.8006 0.6473 f.5400

13,6000 0.9327 0.7670
20.4000 0.8819 8.8320
27.2000 0.9665 0.8610
I4.0000 0.9477 6.8800
40.8000 0.7203 0.0800
47.6000 0.9337 6.8700
54,4000 8.9370 0.8920¢
61.20040 0.9320 9.87410
68.0000 0.9399 0.068%0
74.9000 0.9400 0.8020
81.70060 0.9392 0.84%90
88.5000 9.9370 ©.8450
93.9000 0.9414 0.8000

by

0.

Q.1093
0.0657
0.0499
0.0455
0.0397
0.04063
0.0437
0.0450
0.04980
0.0507
0.0580
0.0702
9.0740
0.1414

PEPX
142.1872
(10,6373
100.2419
105.873¢
$03. 4447
101.1530

H.770%
v6. 3044
74,0508
94.46687
87,2064
Q4.9035
04,0884
BO. 4440
76 0367

KiLe Wiin

¥2

1.0000
©.3307
0.1673
0.1181

0.0935
6.0803
0.0717
0.0663
0.0680
0.0510
0.0601

0.0400
0.0408
6.0610
0.058¢4

CURK 10 GOOF

0.

-0.005%
-0.08 49
0,013
- 0.0202
~0. 0344
- 0.039%
~0.0449
~-0.0473
=007
0. 0500
0. 0903
-(.0492

0. 080

- QM0

O S DITL G E L

Sy
{.4000
1.0000
1.6000
§.0000
1.0000
{.0000
§.0000
§.0000
1.0000
$.0000
1.0000
1.0000
1.0000
4.0000
1.0000

PLAL
1.3000
HL5340

14,0567
29,9909
24. 3434
34.9933
41.7407
40.3274
54.6457
60,7037
47.0107
78.79574
79.7948
68,2298
96,2919

o
0.0000
-0.25660
0. 45569
0.7404
1.14349
0.7733
0.?7407
0.7279
0.23%7
-0,27463
-0.7471
~1.94264
-1.9032
-0.2708
2.3949

AN A



SUW OF SQUARES OF DELTA Y 0.0697474
VARIANLE OF DELTA Y 6.0734 ARITHHEJIC HEAM OF DELIA ¥
CALCULATED EXCLUDING GIVEN END FOINIS
SUH UF SQUARES OF DELTA P 18.0602577
VARIANLE OF DELTA P 1.2045 ARITHHETIL HLAM OF DELFA P
ARTTHHETIC MEAN OF DELYA P/P 0.320483
CALCULATED EXCLUDING GIVEM END POINIS

S1op
TINE 2.9 SEUS

0.0544

0.9504

-8€¢-
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Results of Run # 4 for the
CH4-C3H8 System at -17°C.
See Table 1 for the Values of the

Pertinent Variables Used.

The formated input is as follows:

222
HETHANE (1 ) —PROPANE(2)

i

15

194

.8 8.4 8.0
6.8 0.034 0.56
13.6 8.08¢9 0.767
20.4 Q.142 0.832
27.2 0.197 0.8561
34.0 0,249 6.860
40.8 0.303 0.868
a7.6 0.357 0.890
S54.4 0.414 0.892
61.2 9.464 8.871
&8.90 0.54%8 0,869
7a.9 8.572 0.862
8.7 d56.40 0,636 06.869
8a.5 256.409 0,748 0,845
R3.9 256.40 0.80 ©.80
45.4 99.6 190.6 9.288 0.008

4.9 203.0 365.8 0.2R4 0.008
0.4546 0.0872 0.4278 0.0867

9.44328 @.0802 ¢.4380 ©.0889

0.01413

-116.32046

77.01464

5600

The formated output is as follows:



EXPERIHENTAL RESULTS AND .CALCULATED QUANTITIES FOR THE RINARY SYSTEN HE THANE (1) -PROFANE(2)
U000 D00 0060000060606 0500000000 00000000 00 000000000 000000606 00 0666000 D06 060K 00 00 0K 0K 0 000K 5006000 00606066 0606 96 006 00 1608 0K D0 00 B¢ 066 6 06

THE POLYNMOMIAL USED IN THE ORVHOGONAL COLLOCATION PROCEDURE IS UF THE TYPE ALFA = 0. DEIA = 0.
PC-YC-TC-2ZC~ACEN 0.45400E+02 0.99000E+02 0. §90560E+03 0.28B00E+&D 0.80000E-02
FC-VYC-TC-2C-ACEN 0.44900E+02 0.20300E+03 0.34960E<03 0.28100E+00 0.80000E-02
OHAL -OMBL-0OMAB-DONEG 0.45450E400 0.87200E-04 0.42780E+00 0.D46700E-01
OMAL -OMBL -ONAG-DHMRO 08.41380E+00 0.B0200E-04 0.4A3800E+00 O.HHIOOE-OH
FAR-NY-TAU
0.04443
~110.32060
79.01640
HUMRER OF BIMARY POINTS 15 AT THE ISOYHERH 256.49 TEMPERATURE IN DEB K Aa
KEXP YEXF PEXP é;
[ 9. 1.80000 !

6.03400 0.56000 6.806000
6.08%700 0.76700 13.60000
0.§4200 6.03200 20.40000
@.19700 0.66100 27.20000
6.24906 0.88000 34.006000
©¢.30300 0.88300  40.,.800060
6.35700 6.89000 47.40000
6.410600 0.89200 54.40000
0.49464900 0.97100  £1.20000
8.51800 0.88900 £8.00000
6.37200 0.88206 74.90000
0.563600 - 0.B6700 B1.76000
8.71800 ©.84500  BB.50000
0.80000 6.800060 93.20000

T 256.3999 5 4.8000 VoL 80.4475 83.5078

FISAT 0.994 ¢ 0.9586 FREESAI 109,050 §.7255
CONSISTEHDY TEST USING ORTHOGONAL COLLOCAFION -~ HUMEER OF INTERNAL #OINIS 2

COLLOCATION FPOINTS
e. 0.311325 0.7884675 1.000000

NUMBER OF ITERAIIUNS IH 6 4



HUMEER OF 1TERATIOMS

NUHBER OF ITERATIDNS

HENRY LAWY CUNSTANT RY

HUMBER UF ITEKATIONS
HENRY LAW CONSTANS RY

HUNBER OF 1JERATIUNS IH G 2

HENRY LAW CONSTANT BY

HUMBER OF ITERATIONS

HENRY LAW CONSTANT BY

HUMBER OF ITERATIDNS

IN G 3

ING 2
I AGKANHG LAN EXTRAPFOLATION

e 3
LAGHANGLIAN EXTHAPULATIUN

LAGRANGIAN EXTRAPOLATIONM
in e b}

LAGRANGIAN EXTRAPOLAYION

NG 1

SOLUTION AT THE COLLOCATION POINTS

X
0.
9.3678
0.7165
9.8000

X

8.
0.3478
0.7105
0.8000

P
1.8000
49,6207
B87.4697
956.2919

FUGCF 1
1.0418
0.8407
0.7746
0.7527

SOLUTIDN AT THE DATA

X
0.
.0340
0.0890
6.4420
0.1970
0.2490
0.30306
0.3570
0.4400
0.4640
0.5180
0.5720
9.6360
0.71060
6.8000

P
§.8000
6.5340

14.0569
21.1484
20,3433
34.9933
44.7407
48,3274
54,6357
60.7037
£7.0107
72.92574
17.7968
88.2298
96.2949

GE/RT

0.
=-0.0549
-0.2825
-0.3929

FUGCF2
0.9586
0.4292
0.2043
8.1747

POINTS

GE/RT

0.
-0.0025
-0.0047
-0.0914
-0.0178
-0.0258
-0.0369
-0.0545
-0.0699
~0.0935
-0.4206
-0.15081%
~-0.2092
-0.2908
-0.3929

GooT

0.
~0.34410
~1.0858
~1.38685

VHIX

83.5078
74.34460
75.5323
79.1624

GooT

0.
-0.0216
~0.0590
~0.0994
-0.146%
~0.1967
~0.2549
-0.3240
-0.4038
~0.4943
-6.5974
~-6.7143
-0.8725
-$.1093
-1.3885

s, 7.
$115.4550
$15.6545
$45.6502
GAHNAY GANMAZ
1.0000 1.0000
0.78114 1.6585
0.5542 1.4043
0.5422 2.6380
VE DFDX
0. 112.4372
-8.13%0 95.91414
~5.9434 B80.7967
~-2.037% 76.84867
GAHMAY GANNAZ2
{ . 0000 1.0000
0.9814 8.9981
0.9517 0.9975
0.9224 §.6004
0.8207 1.0063
0.8592 1.0164
0.8244 1.0344
0.7885 1.0532
0.7549 1.0830
@.7939 1.1246
0.6757 $.1892
0.4397 §.2504
0.5%464 1.3009
6.5502 1.6321

0.5122

2.03U0

Y4
a.
6.9344
0.9370
0.9392

CORR TD
0.

~0.0374
-0.0228
~0.06074

Y

0.

0.6739
0.8354
6.8933
0.9073
0.9202
0.9205
0.93187
0.9368
0.9345
0.937%
¢.?2380
0.9376
0.93570
L9392

y2
1.6000
0.0656
0.0630
06,0408

BDLT

Y2
1.0000
0.3264
0.1649
6.1167
0.0927
0.0798
6.0715
0.06648
0.0632
0.04145
0.0607
@.0642
@.06L49
0.0630
0.0608

FUH ORR
1.0000
1.6006
4.06000
1.0000

SUHM CURK
1.0000
0.7044
0.90%6
8.92392
0.7508
0.5
@.72057
0.7200
$.004]
1.0003
1.0109
1.0004%
1.0034
Q.Iv9T
§.0000

GE J/7HOLE
0.
~116.9726
~602.19414
-837.53714

GE J/7NOLE

[N
~5.3677
~14.2514
—24.3267
-37.8/85
~54.%935
~78. 6440
~-1Q7,7522
44B.7759
~1979.2540
~261.42175
—134.,90874
~445,9023
617 ,9345
~B37.537%

-Lve-



) FUGCF 1

0.

9.0340
0.08%0
0.1420
0.1970
9.247¢
0.3030
9.3570
6.4100
9.45640
9.5180
0.5720
0.6360
0.7180
9.8600

EALCULAJED VA

X

0.
P.0340
9.0899
9.1420
9.1970
9.2490
0.3030
8.3570
0.4100
0.4640
@.51a80
0.5720
0.6340
0.7180
9.B8o00O

FUBCF2
§.0440 0.9584
9.9648 0.8797
0.95644 ‘9.7807
6.9398 0.6973
0.9189 0.6202
0.90014 0.5548
0.8846 0.4939
0.0644 0.4373
0.0470 0.3943
6.68329 0.3475
0.8473 0.3086
0.8034 8.2739
0.7882 0.2384
0.77006 0.2013
9.7527 0.1747
LUES OF Y4
P Y4
¥ .8000 o.
. b.BUNY ... 0.6789
13.6000 5.835%
20.4060 9.0033
27.2000 0.9973
34.0000 0.9202
40.8000 0.9285
47.56000 0.9337
54.4000 0.9340
61.2000 0.9385
48.0000 9.93%4
74.9600 9.9388
B81.7000 0.9376
€88.5000 0.9370
93.9000 0.9392

SUHM OF SQUARES OF DELTA Y

VARIANCE OF

CALCULATED EXCLUDING GIVEM END POINTS

DELTA Y

0.0734

SUH OF SQUARES OF DELTA P

VARIANCE

OF DELTA P

1.2045

ARITHHETIC MEAN OF DELTA P/P

CALCULATED
STOF
TIME 2.5 SECS

VHIX VE
83.5078 0.
02,5042 -0.9063
80.9270 ~-2,3242
79.45678 -3.6310
78.0355 -4.96880
76.7680 ~6.0276
75.5643 ~7.07468
74.50460 -7.9807
73.6516 -B.6835
73.0362 -9.1444
72,7908 ~9.23549
73,4230 ~-0.7487
74,9284 ~6.74605
75.7134 -5.7404
79.482% ~2.0474
YiEXF DY
8. e.
8..5600 0.1159
9.7470 @.04681
0.8320 ©.0513
8.8440 9.0453
0.8600 9.68402
0.8880 0.0405
0.a8900 0.0437
0.8920 0.0448
8.8910 0.0475
9.8690 0.0504
0.88220 0.0548
0.64690 0.0486
0.8450 0.06920
0.8000 0.1392
0.0780848

ARITHHETIC HEAN OF DELIA Y

18.84602587

0.320483

EXCLUDING GIVEN END POINTS

DX
112.9372
110.56873
108.29144
105.8734
103, 44569
101.4530

?0.7709
94. 38088
94.05008
91.84087
B87.2866
Bé.7045
b4.0813
8O, 4440
74.8467

ya
1.0000
0.3261
0.1447
0.1167
0.09272
0.6798
0.0745
0.0663
0.06632
0.0645
0.06609
0.0642
0.04624
0.0430
0.04608

COKR 1O GDUT

-0.0604b

~0.0120

~6.6183

~0.0241

-0, 0270

~0.0332

-0.0366

-9.0388

-6.6390

-0.0392

-0, 0364

-0.0270

~0,0210

-6.0079

SUMy I
1. 0000 1. 8000
1.0000  5.5340
1.0000  14.0569
1.0060  1.1484
1.0000  2B.3438
1.0600  34.9933
1.0000  44.7407
1.0060  48.3274
1.0060 54.6357
1.0000  60.9037
1.0000  47.0909
1.0060  72.7574
1.0000  79.7948
1.0000  ©0.22798
1.0000  96.2919

0.0445
0.9504

ARITHHETIL HEAM OF DEIL.TA P

[U%
- G.0a00
0. 2660
0.4u6%
e.7484
$.1438
8.7733
0.9407
0.7274
0.2357
-0.29463
~0.98714
~1.9426
-1.9932
-9.2702
2.3999

-
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Results of Run # 5 for the

CH,-C,H, System at -17°C.

4 ~3'8
See Table 1 for the Values of the

Pertinent Variables Used.

The formated input is as follows:

1 233
HETHANE (1) ~PROPANE (2)

1

i5

14

1.8 0.0 0.0
6.8 0.024 0.56
13.6 0.089 08.7567
20.4 0.142 ©6.832
7.2 0.197 0.869
34.0 0.249 0.880
40.9 Q.303 0.948
47.6 0.357 6.890
54.4 Q.41 0.892
&4.2 0.464 ¢.891
4.0 e.54@ 0.889
74,59 0.572 0.882
Bf.7 256.40 0.636 0.869
88.5 256.40 0.719 0.845
3.9 256.40 0.80 0.80
45.9 ?9.0 190.6 9.288 0.008

4.9 203.0 369.8 6.284 0.452
0.00648

~140,.3206

7R.9464

a.84

o000

The formated output is as follows:



EXPERINENTAL RESULTS AND CALCULATED QUANTITIES FOR THE RINHARY SYSIEH  HETHAHE(4) ~PROFANE (D)
060606 0006 D06 06 D6 0000 06 00 0600 0 D6 06 DD 56 0F 06 00 0 06 000 DG 06 DE 04 00 06 06 08 00 06 0006 I 06 04 06 D6 30 06 04 04 00 00 1 06 06006 0 00 06 06 06 0 060 06 060K 060606 0 00 K 00 D00 060060606 60606 606 06 O 06 O OO O 6

THE POLYHOMIAL USED IN THE ORTHOBONAL COLLOCATION PROCEDURE IS OF VHE TYPE ALFA = 0. YETA = <
PC~VC-TC-ZC-ACEN G.45400E402 0.99G00E+02 O.§9040E+03 0.2BHOOE+DO 0.BOROBE-P2
PC-YE€-TC-ZC-ACEN 0.41900E+02 0,20300E+03 0.349B0E+03 0.2B8100E+00 0.§5200E+00

FAXK-NY-TAU-DEL

9.00618
~110.32060
79.01640
0.01000
NUMBER OF BINARY POINTS i5 AT THE XYSOTHERM 254.40 TEMFERATURE IN DEQG K
XEXP YEXP FEXP -
0. 0. 1.80000

6.63400 0.546060 6.080000
G.08900 0.76700 13.60000
0.14200 0.83200 20.40000
0.49700 0.8461060 27.20000
8.24900 0.68060 34.00000
0.30300 0.808008 40.00000
0.35700 0.89000 47.40000
0.41000 0.89260 34.40000
0.46400 0.87400 51.20000
0.51800 ©.80900 68.00000
8.57200 0.88200 74.90000
0.63400 0.84900 B81.70000
0.71800 6.84500 68.50000
0.80000 0.80000 93.90000

T 256.3999 PS §.8000 VoL 83.5934 81.5027

FISAT ©.9774 0.9555 FREESAT 404.5793 §.7200
CUNSISFENEY TEST UYXING ORFTHOGOMAL COLLOCATION - NUMBER OF INTERHAL FPOIMIS 3

COLLOCATION POINTS
0. 0.112702 0.500000 0.887298 1.0000060

NUHBER OF ITERATIUNS IMN G 4

NUNHER OF ITERATIONS IN O 4



‘~
Y

HUHEBER OF IIEHATIONS IN G 2
HENRY LAW CONSIANT BY L AGRARGIAN EXIRAPDIATION  170.5768
HURBER OF YTERATIDNS 1IN G 3

HEHRY LAW CONSTANT BY LAGRANGIAN EXIFRAFOLALION  §20. 390442

HURRER UF LILRATIURS IR b 2
HENRY LAW COMSTANT BY LAGRAMGIAN EXTRAFOLATION 120.4700

NUHBER OF ITERATIONS IN G §

HENRY LAW CONSFANT BY LAGRANGIAN EXTRAPOLATIUN 120.4558

NUMBER OF ITERATIUHS IN G 1
SOLUTION AT THE CDLLOCATION POINTS

X P GE/RT GODT BANHAY GAMHAZ - Y4 Y2 SUM CORR  OF J/HOLE
0. §.8000 . 4.0000 1.6660 0. 1.0000 1.0000 0.

0.26B6 37.4570 -0.0327 -0.2727 a.8420 $.0323 0.9216 0.0783 0.3999  -49.4993
8.5657 72.2703 -0.1920 ~0.8375 6.58108 $.3043 0.93063 0.04697 1.06000 407, 3804

|
0.7536 4.7727 -0.3973 -4.3747 @.4023 1.08537 0,728 0.0746 $.0000 -B47.0510 ~nN
6.8000 96.2949 -0.4630 -1.5508 0.4623 2.1406 0.9294 0.0706 1.0000 -974.3H16 i;
1
X FUGCF § FUGCF2 VHIX VE DPDX CORR TO GDOT
Q. 4.04149 0.9555 84.5029 0. 142.4372 0.

0.26B4 0.8749 0.5080 75.1077 -6.8766 100.2878 -0.0320
0.5657 0.7802 06.2535 72,4365 -10.2194 B87.1834 -0.0425
0.7534 0.7347 0.1694 76.2849 -6.7944 70.8740 -0.02355
0.8000 0.72496 0.1562 78.2148 —-4.,958¢4 76.8467 -g.0i684

SULUTION AT THE DATA POINTS

X F GE/RT GONT GAHHAY GAHHAZ2 Yi Y2 SUH CORR GE M/HDIE
0. 1.8000 0. 0. 1.0000 1.0000 0. 1.0000 1.0000 0.
0.0340 6.5340 0.0002 -0.0034 $.002¢4 i.00062 0.6067 0.3133 0.7480 0.5007

9.0890 14,0549 -0.0019 -0.0339 0.9790 §.0000 /-0.8437 0.1563 8.9739 -4.0014
0.4420 21.14B4 -0.007¢ -0.06870 6.9370 1.0026 0.0082 0.1i18 Q.?715  ~14.40148
8.17270 28.3438 ~-0.0157 -0.1599 0.803Y §.0100 o.y08% 0.0919 0.2974  ~33.4951
9.2470 34.79733 ~0.0274 -0.2403 6.8314 $.0251¢ 0.9194 0.0809 §.0002 -58.3472
0.3030 41 .7407 ~0.0434 -0.3349 6.7709 1.0475 0.7250 0.0750 0.990% -92.4566%
0.3570 48.3274 -0.0637 ~0.4294 @,.7304 {.07682 Q.9283 0.6747 0.9974 -135.02446
0.4100 54.6357 -0.0883 -0.52849 0.6872 $.9473 0.9300 0.0700 0.9769 --180.7043

0.45640 60.9037 ~-0.1186 -0.463346 G.6475 1.1676 0.9307 0.06693 @.9776 ~1%52.Q859
9.5180 67.0109 -0.1548 -0.743% 0.46414 1.2308 0.9307 0.0693 0.9909 -349,9340
0.5720 72.9574 ~0.1974 -0.864%7 0.5780 1.3419 0.9302 0.06"8 1.0000 --420,7576
0.56360 79.7768 -0.2572 -4.0163 0.5409 1.4438 0.9290 0.0740 0.9799 -540.27643
6.7409 88.2278 -0.3504 -4.2514 0.4992 1.6923 0.7205 8.0715 §.0006 -747.0297

6.8000 96.2949 -0.4565¢0 -1.5508 0.4623 2.1404 0.9294 0.0704 1.00600 -994.30314



X
0.
0.0340
0.08%0
0.4420
0.1770
0.24%0
6.3030
9.3570
0.410¢
0.4640
D.5180
0.5720
0.6340
6.7180

FUGCF 4
1.6149
0.9032
0.9541%
6.9294
0.9056
0.8845
0.8639
0.08445
0.8264

1 0.8075

0.,7935
0.7705
0.74621
0.7427

FUBCF2 UNIX

0.9555 81 .5029
@.8720 80.6173
0.7677 79.2345
0.60801 77.9509
0.3995 76.6924
0.531é 75.5849
0.4489 74.5306
0.4132 73.6405
0.3648 72.8744
6.3243 72.3549
6.2832 72,1744
0.2498 T2.5151
0.2160 74.4978
0.1846 74.9400

VE

0.
~0.7547
-2.4574
-3.8409
~5.9226
~6. 44145
-7.6058
-8.,63588
9. 4840
10,1181
16.9144
10 40D/
~8.6440
~-6.0240

v

CONSISIENCY TEST kY REPEATED HALVING UF TRAPZOIDAL

CONSTANT=
CDNSTANT=
CONSTANT=
CONSTANT=
CONSTANT=
CONSTANT=
CONSTANT=
CONSTANT=~
CONSTANT=
CONSTANT=

CONSTANT=-

CONSTANT=
CONSTANT™

CALCULATED VALUES OF Y9

X

0.

0.0340
©.0890
0.4420
9.17270
0.2490
0.3030
0.3570
0.41060
0.45440
0.5480
0.5720
8.63560
0.7480
0.80060

0.3024740-12
9.309234D-11¢
9.121691D-16
0.29462608D~10
0.593179D-10
0.1062564D~0%
0.1597046D~07
0.234969D--09
0.3316066D-0%
0.454299D-09
0.651677D-09
0.1007490-08
9.158815p-08

P
1.8000
6£.8000

13.46000
20.4600
27.2000
34.0000
40.8000
47.4000
54,4000
61.2000
68.0000
74.9000
81 .7000
88.5000

?3.9000

Yi Y1EXP
Q. .
0.68487 0.5400
¢.8437 0.7670
0.8882 0.8320
8.908% 0.04610
0.91914 ¢.80o0
0.9250 0.8880
0.9283 0.8%00
0.9300 ¢.8920
0.9307 0.8910
0.9307 0.0890
0.9302 06.8020
6.9290 0.86%90
0.7283 0.8450
0.9294 0.8000

by

0.

0.4267
0.0767
0.6542
8.0479
0.03%1
0.6370
0.6383
0.¢3830
0.0397
0.04497
0.04082
0.04600
0.0835
0.1294

DPDX
1$2.1372
110,63873
108,211 4
105.8731
103.446%
104.4530

°B. 7707
94,3008
94. 0508
?1.6807
89.20866
Q4. 709%
84.081 48
B80. 4440

COKK 1O GOOF

0.

-0, 0050
~0.0124
-0.0194
=0.02%7
~0.0%40
~0.0357
-0.0374%
-0.0424
-0.04414
-0,0442
~0.040)
-0, 08495
. 0307

RULE WETH RUMBERG SNILEGRAITON

Y2
1.0600
0.3132
0.1563
(PR RRY:]
0.09414
06.0807
0.0750
0.0747
0.6700
0.0673
0.0493
0.0698
0.0740
6.0745
0.0706

SIIHY
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.00600
{.0000
1.0000
1.0000
1.0000
1.0000
1.0000

PCAL
1.68000
£.5340

14.0569
21.1484
28,3438
34,9933
41.7407
48.3274
54,6357
60.9037
67.0109
72.9574
79.7968
88.22v8
26,2949

I
~0.00060
~Q, 2560

0.4569
0.7484
1.1438
0.9733
0.9407
0.7274
0.2357
-0.,29463
-0.7074
-1.9426
~1. 7032
-0.2702
273949

-9%¢e-



7

SUM OF SQUARES OF DELTA Y 0.06561240
VARIANCE OF DELTA ¥ 0.0743 ARITHHETIC HEAN OF DELYA Y
CALCULATED EXCLUDING GIVEMN END POINTS
SUM OF SQUARES OF DELFA P 18.8402577
VARIANCE OF DELTA P §.2045 ARITHHET I HEAM OF DELIA ¥
ARITHHETI: MEAN OF DELTA P/P 0.1460241
CALCULAITED EXCLUDING GIVEH END FOINTS

STor
TIHE 3.1 SECS

B0.0614

0.9

-

A A
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Results of Run # 6'for the

CH,-C,H

4

38

System at’-17°c.

See Table 1 for the Values of the

Partinent Variables Used.

The formated input is as follows:

’

24 3

HETHANE ( 1 ) ~PROPANE(2)

f

S

1914
1.8
4.8
13.6
20.4
27.2
34.0
46.8
A7.6
54.4
6.2
48.0
74,7
81.7
88.5
Q3.9
45.4
41,7
0.00618
-410,.3206
77.0464
0.04
60840

9.6
203.90

256,40
256.40
256.40
190.6
367.8

0.0
0,034
0,089
8.142
0.497
0.249
6.363
0.357
0.44

0.444
0.548
0.572
0.436
0.748
0.89

9.288
9.289

The formated output is as follows:

6.008
0,452



EXPERIMENTAL. RESULTS AND CALCULATED WUANTITIES FOR THE BINARY SYSTEH HETHANE (1Y PROIFANE (1)
006 0000 0 06 0 06 066000606 0606001 606 06 00 0 06 06 06 06 06000006 D0 06 06 06 0 06 00 06 06 B 06 00 B0 0K D 06 06 06 04 160006006006 D600 06 00 00000006006 O 00 0000600 06 D A I G DM MBI M MM KGR KR D I D MM M BN

THE POLYNOHIAL USED IN THE ORVHOGONAL COLLOCATION PRUCEDURE 15 OF IHE IYFE ALFA = 0. Bt 1A - 0.
PC-VC-TC-ZC-ACEN 0.45400E+02 0,99000E+0X 0.19060E+63 0.2880CE+00 0.B0000E-02
PC--VC-1C-ZC~ACEN 0.41700E+02 0,20300E+03 0.346780E+03 0.20100E+00 6.45200E400

FAK~NY-TAU-DEL
0.00548

-110.32060

79.01640
8.01000
NUNBER OF HINARY FOINIS 43 AT THE ISOTHERM 2546.46 TEHFERATURE 1IN DEG K
XEXP YEXP PEXP

- [ 4.80000
0.03400 @.56000 6.80000
0.68760 0.76700 13.40000
6.14200 0.83200 20.,40000
0.19700 0.86100 27.20000
0.24900 0.BROOO 34.00000
0.306300 4.88000 4G6.80000
8.35700 0.89000 47.40000
0.41800 Q.89200 54.40000
0.46400 0.89100 61.20000
0.51800 0.8B700 48.00000
8.57200 0.88200 74.90000
0.463400 0.86700 64.70000
0.71800 0.84500 086.50000
6.680000 0.80600 93.96000

-6~

T 2546.3799 Ps 1.8000 VoL 03.5936 B1.5029

Fi5Aa1 0.9774 Q.959% FREESAT  1404.5793 1.7200
CONSISTENCY TEST USING ORINDGUONAL COLLOCATIUN - HUMBER OF SHTEKNAL POINIS 4

COLLOCATION POINTS
0. 0.067432  0.330009 0.66Y991  0.730548  §.030000

NUNBER OF LFERAFIONS TN G 10

TIEKATION NUMBER GREMNTER FHAN 100



TTERATIUN NUMBER GREATER FHAN 106

HENRY LAW UCONSTANT RY
NUMBEK OF TIeKATIUNS
HEHKY LAl COHSEANT By
NUHBEKR OF LIEKAT TUNS
HENRY LAW CONMSIANT by
HURBER OF TIERATIONS
HENRY LAW CONSTANT HY
HUMBER OF LTERA)TONS
HEHKY LAY CONSTANT kY
NURKMEK OF ITERATIONS
HENRY LAW CONSTAHT RY
HUMBER OF TTERAT10RS
HENKY LAW CONSIEANT Wy

HUBBER OF LTIERATIONY

LAGKRAHGIAN EXIHAFUE AT LON 1053802

i v a7
§ HGKAMG TR
n 6 3
LAGKRANG IRN
m 6 K
LAGRANGIAN
i 6 4

LAGKRAHGIAN

I 6 2
LABKANGIAN
In 6 2

LAGRAHGIAN

1IN 6 2

EXITRAFOLALIOH V27, 5808

EXTRAPULAITON  124.9436

EXTRAFOLATVION  125.9927

EXTHAFOLATION 12585154

EXTRAFOLAILON  1035.2429

EXNTHAPOLAITION 124.1647

SOLUTION AT THE COLLOCAYION POINTS

X [
6. 1.8000
0.2908 301229
0.4596 60,3957
0.8548 B81.7454
0.7747 93.554%
0. 8000 76,2949

X FUGCF
o, 1.0126
D.2408 Q0.2000
0,499 O.uHi0

0.6548 0.79748
Q.77 Q.7344
9.68000 a.7253

GE/RY

6.0100
-0.0422
-0.92485
-0.2927
-0.4433
-~0.48569

FUGELF2
Q. 955L
0.5300
0. 3239
0.2060
0.§624
0.1542

6001
Jg.

-0.2283
-0 6697
-f.1428
~1.4445
-1 .58997

ViHlX
61 .5029
74,3093
72.3086
79.62U9
77.2143
78.2148

GANIAY GAHKA2
§.01014 1.01409
0.8429 1.0306
0.46322 §.4818
0.5144 1.5446
0. 4575 1.9877
0.4479 2.4740

vk bPDX
0. 112.4372
~5.5994  102.B:582

-10.0774 ?1.06491
-4.u130 83,2209
~5.9020 168.0939
-4.9%U6 T6.8467

Y4
g.
0.9167
0.9295
3.9272
0.9242
0.9286

COKK TO
o.
-0.0271
=0.0440
-0.0349
~0.0219
~0.0161

1.

y2
01014

0.08%4
90,0705
8.072d
0.0739
0.06734

6ol

JUM CORR  GE J/HODLE
1.0101  24.314d4
1.0000 -24.0585
1.0000 -255.8225
1.0000 ~523.9194
10000 -934.9622
1.0000-1047.9207

—OSZ—



S0V TN &

X

0.

0.0340
0.0890
0. 1420
0,127
0.24%0
©.3030
0.3573
0.4100
0.44490
0.5180
0.5720
0.6340
9.7180
©.64000

X
9.
o VAR
[

09,0340
0.06890
0.1420
0.1970
0.2490
©.3030
0.3570
6.4100
0.4440
0.5180
e.5720
0.6360
0.7180
6.8000

HIE balA FOIL

ms

GARNHAY
1.01014
0.9920
0.952
0.9072
0.64559
0.4050
0.7573
0.74107
0.6585
0.52914
d.5954
0.546014

PRIy 1]
0.4858
G.94/9

VE

o
SO, Y/

0,
-0.9547
~2.4574
~3.6489
-5.2226
-6.4415
~7.6058B
-8.6308
~?. 4840
-10.4184
~10.4144
~$0.1857
-8.4348
-8.Q0240
—4,9586

CONSISTERLY TEST BY REPEATED HALVING OF TRAPZOL1DAL

P GEYRI1 GOUT
1.08000 0.06100 0.
&.5340 0.0080 ~0.0216

14,0559 0.0045 ~-0,0707
29,9489 ~0.0007 -0.4329
20.3430 -0.00v4 -0.2077
34,9933 ~-0.0216 ~0..28680
©1.7407 ~-0.0391 -0.3784
44,3274 ~-0.0419 ~0.4745
54.6357 -0.009%958 -0.5733
69,9037 ~0.4235 -0.6785
67.0109 -0.14632 ~-0.7493
ARG ) -06.,230392 -0.%078
19. 1968 -0.2722 ~1.0530
gy . 2098 -0.3468656 -4.2984
P6.4949 - 9. 8AR49 -3 .5%Y7
FULLE Y FULLCED UHIX
VL0417 [P Hy . 500y
[ H RS ] (UM F UK Ho. 6173
1.000Y O.9LLD g1.502Y
0.9434 0.8722 86.4193
0.95414 Q.7675 79.2345
0.9295 8.6796 77.95069
0.9057 0.5988 76,5924
2.7443 ©.08547 75.5819
2.45082 0.6785 74.5306
4.3582 ¢.1143 73.4105
0.8267 0.3444 72.87414
0.8096 0.3285 72,3549
06.7737 0.20823 72.1714
©.7768 0.24088 72.51314
0.7623% 0.2149 74.9978
6.7430 0.1805 74.9800
0.7250 ©.1551 78.2148
CONSTANT = 0.209162D-11
CONSTANT= 0.840344D~4 4
CONSTANT= 0.222954D -0

CONSFAN =
CONSTANT=
CONSTANT=
CONSTANT=
CONSTANT=
CONSTANT=
CONSTANT =
CONSTANT=
CONSTANT=
CONSTANT=

0.4448/73D-10
0.722339D-10
0.427675D-09
0.1?203370-09
0.271936D--09
0.375204D-09
0.506575D-07
0.715008b-09
0.1084465D-08
0.1691054D-08

GARNKAL
1.0104
1.0086
$.0097
1.0154
1.0268
1.04334
1.06469
1.0979
1.1368
1.1864
§.2495
§.3312
1.4651
1.7189
2.47806

brDX
1120372
110.5573
12,1872
116.6373
108.241%
105.8734
103.4469
10§.9530
98.7709
?6.3886
94.0500
91.646B7
$9.26866
B5.9095
84.0043
80.4640
76.8467

Y
0.
0.46893
9.0428
0.88646
0.9073
6.3729
0.45714
0.6706
0.9289
0.929s
0.9295
0.y2u48
0.92/8
0.9470
0.y27y

CUORK 14}
0.
WL.OUL0
o,

-0.00%0

-8.0126

~0.01%4

-0.0257

~0.0310

-0.0357

-0.0596

-0.0424

—0.0441

-0.0442

-0.0421

-0, 0845

-8.0307

-0.01814

Y2
1.0000
0.3107
0.15722
d.11354
0.0927
0.52714
0.5429
0.3294
0.0714
0.0704
0.0705
0.0742
0.0724
0.0730
0.0724

GOUT

SN CORK  GE J/HULE

1.0404
0.9636
0.9779
0.7911
0.99u9
0.0044
0.H159
0.8398
1.0004
1.0000
0.9999
) .6000
0.9973
1.0004
§.00006

RULE W1l ROHBERG TNTEGKATIUN

29,3104
14.90428
9.5454
~-1.4947
~20.0118
-46.1010
-83.3016
~134.9050
-190.9433
-263.2114
-347.9788
~445.0798
~SH0. 2464
-785.8%49
“1035/7.9207

-1S¢-



CALCULATED VALUES OF Y4

X ¢ Y4 Y1EXF by ya SUNY PCAL. hy
0. 1.68000 0. 6. 0. 1.0000 1.0000 1.68000 -0, 0000
0.0340 6.6000 0.4893 0.5600 0.1293 0.3107 1.0000 6.5340 - 0.2660

0.0390 §13.6000 0.8428 Q.7676 0.0758 0.1572 1.0000 14.0567 0.456%9
@.14220 20.4000 0.8864 8.8320 0.0544 0.1134 4.0000 21 .14 0.7484
6.1770 27.2000 0.9073 0.84610 0.0463 0.0927 4.0000 23.3438 §.1438
8.2490 33.060600 0.3729 8.0000 -0.50714 0.62714 §.006060 34,7933 0.9933

©.3030 40.08000 06.4574 0.868080 ~-0.4309 0.5429 1.0000 41.7407 0.9407
0:3570 47.6000 0.4704 0.8700 ~6.2994 0.3294 §.0000 48.3274 0.7274
2.4400 54,4060 ©.9289 8.8920 0.03469 0.0749 §.0600 S4. 6357 6.2357

8.4440 £4.2000 0.9294 0.8910 0.03864 06.0704 4.0000 60.7037 -0.29463
0.5100 68,0000 0.9295 0.80°%0 0.0405 0.0765 §.0000 67.01069 -, 20914
e.5720 74.9000 0.9288 8.8820 0.0448 |, 0.0742 {.0000 T72.9574 ~§.9426

0.63460 B81.70060 0.9274 0.8470 0.0534 0.0724 §.0000 79.7948 ~4.9032
0.7180 88.5000 9.9270 0.8450 0.90820 0.0730 1.0000 gn.2296 <0.2702
9.8000 ?3.9000 0.2279 9.8000 6.1279 0.0724 1.0600 96.2749 23949
SUM UF SQUARES OF DELTA Y 0.3547500
VARIANLE OF DELTA Y 0.20606 ARITHHETIC HUAH OF BELTA Y $.4354

CALCULATED EXCLUBING GIVEN EMD PUDINIS
SUN OF SWUARES OF DELTA P 18.8602577
VARIANLE OUF DELTA P . 1.2045 ARLITHHLT G MEAN 1 DELTA & 0. 2504
ARITHHE ] [C MEAN DF DELIA P/T 0. 104D28
CALCULAIED EXCLUDING GIVEN END POIHIS

SIap
TINL 4.7 SECY

-2G7-



