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ABSTRACT 

The Christiansen and Fredenslund programs for 

calculating vapor-liquid equilibria have been modified 

by replacing the Soave-Redlich-Kwong equation of state 

with the newly developed Peng-Robinson equation of state. 

This modification was shown to be a decided improvement 

for high pressure systems, especially in the crit ical and 

upper retrograde regions. Thermodynamic consistency tests 

were developed and used to evaluate and compare calculated 

values from both the modified and unmodified programs with 

reported experimental data for several vapor-liquid systems. 
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A THERMODYNAMIC CONSISTENCY TEST PROCEDURE 

USING ORTHOGONAL COLLOCATION 

AND THE PENG-ROBINSON EQUATION OF STATE 

BY 

LUTHER L. HAMM 
AND 

V. VAN BRUNT 

SCOPE 

Christiansen and Fredenslund have extended the differential 

consistency test developed by Van Ness et al . (1967) to high-

pressure systems. In the extention of the development, they 

introduced a numerical method for solving differential equations, 

known as orthogonal collocation, to calculate the value of the 
•I 

excess Gibbs free energy at chosen values of liquid composition. 

From these values, the Christiansen and Fredenslund program 
l • £ } 

J 
package evaluates the equilibrium vapor mole fractions corre-

sponding to each experimental liquid mole fraction, x^. 

Experimental data of the form pressure, temperature, and 

the composition of both phases enables one to test the data 

for thermodynamic consistency. Two forms of the Gibbs-Duhem 

equation can be used to test the data. The f i r s t form is the 

common isothermal, isobaric Gibbs-Duhem equation. This 
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equation is used in the commonly applied area tests; however, 
fi 

Van Ness et al . (1967) have shown that this method is of 

limited value. The second form, which is the one used in this 

study, is known as the isothermal, nonisobaric differential 

Gibbs-Duhem equation. The major difference between the two ,l 

forms is that the second form includes a term containing 

the slope of the P-X curve. The value of this term is small 

at low pressures and is often neglected, but at higher pressures 

this term cannot be neglected. Additionally, the isothermal, 

nonisobaric differential Gibbs-Duhem equation requires additional 

knowledge of the liquid molar volumes of both the pure 
components and mixtures. 

In this report, the Christiansen and Fredenslund programs 

are modified with the Peng-Robinson equation of state. Compari-

son of the results obtained with the original and the modified 

sets of programs showed definitive superiority' of the Peng-\\ 

Robinson modification. 

Development of a separate program for determining the 

interaction parameter used in the Peng-Robinson equation has been 

generated. The correlating parameters for the cr i t ical tempera-

ture, cr i t ical volume, and the characteristic constant for the 

i - j interaction must be taken from the l i terature. Procedures 

for the estimation of these parameters are under development. 
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I . INTRODUCTION 

Advances in chemical engineering made during the 1950"s 

through the development of the Benedict-Webb Rubin^ and Redlich-
2 

Kwong equations of state have broadened the base for performing 

fluid property calculations. Further advancement in the 1960's '•> 

came from the advent of tfr? generalized or mixed-model type 3 
correlation by Chueh and Prausnitz. 

At that particular time, the design engineer had available 

to him an analytical method which could use entirely computer 

calculations for calculating vapor-liquid equilibria. These 

methods relied mainly on the Soave-Redlich-Kwong two-constant 

equation of state to describe the behavior of the equilibrium 

vapor phase. 

In 1976, the Peng-Robinson two-constant equation of state 4 was made available . The primary advantages of the Peng-

Robinson equation to that of the Soave-Redlich-Kwong equation /.». 
i ;„• 

are its abil i ty to describe more accurately the behavior of the 

equilibrium vapor phase in the crit ical region as well as in the 

upper retrograde region. One further feature of the Peng-

Robinson equation is the reduction of the four omega constants 

required for a binary mixture in the Soave-Redlich-Kwong 

equation to a single interaction parameter. r 5 
In this report, the Christiansen and Fredenslund programs 

which use the Soave-Redlich-Kwong equation of state have been 

modified by replacing the equation of state with the newly 
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developed Peng-Robinson equation of state. An additional com-

puter output of graphs for the pressure and excess Gibbs free 

energy versus mole fractions are also included. In addition to 

the differential consistency analysis used, an integral consistency 

test is included to completely confirm the thermodynamic con-

sistency. 



I I . THERMODYNAMIC ANALYSIS 

Phase-rule restrictions limit the form of binary vapor-

liquid equilibrium data that can be taken. Binary data cannot 

be taken with pressure and temperature constant. However, data 

of this type may s t i l l be tested for thermodynamic consistency 

using the common isothermal, isobaric Gibbs-Duhem equation pro-

vided the system in question is a low pressure system. 

I f the system to be investigated is at high pressures, a 

more general form of the Gibbs-Duhem equation is required. The 

nonisothermal, nonisobaric Gibbs-Duhem equation is discussed in 

detail by Van Ness (1959)7. Applied to liquid systems in 

equilibrium with their vapors, i t takes the form 

2 dP° 
" - - C Y ^ V - . I ^ i t e r U l i T 

0 1 

where a is the constraint of saturation and g is equal to G /̂RT. 

For a binary mixture, the following relationship is also valid: 

g = x-jln v-, + x2ln y 2 - (2) 

When restricted to isothermal data, combination of equations 1 

and 2 yields: 

x 2 dP° 
• 9 + - R T ^ l - ^ V i t a ^ o 13) 

-3-



-4-

and 

dP i Since the terms (-t- ) and ( t—) are approximately equal in 
U a - j O u X - j ( J 

most cases, both brackets of equations 3 and 4 are approximated 

as 

E ? 
where V = Vm-X - x.V? when the standard states are the pure 

components at the temperature and pressure of the system ( i .e . 

symmetric convention) or V̂  = V" - x ^ " - XgVg when the standard 

states where component one is infinitely dilute ir. pure component 

two are both at the temperature and pressure of the.system 

(unsymmetric convention). The reference fugacity of the non-

condensable component is the Henry's constant at the system's o pressure and temperature [Prausnitz, 1969) . 



I I I . THE METHOD OF ORTHOGONAL COLLOCATION 

The representation of excess thermodynamic functions by a 

particular set of orthogonal polynomials has -been demonstrated 

to be advantageous in the treatment of data for binary systems 

by Van Ness (1967). The methods discussed by Klaus and Van 

Ness allow such data to be treated thoroughly, eff iciently, 

and rigorously, with the added benefit of being well suited 

for numerical computation. 
i ' 

In the test for thermodynamic consistency, the differential 

nonisobaric Gibbs-Duhem equation is applied on a point to point 

basis. The choice of points to be analyzed is an optimum one; 

in this study the selected points on the abscissa of the 

pressure versus liquid mole fraction data are the zero roots to 

a Jacobi polynomial, specifically the Legendre polynomial.' 

The experimental pressure-liquid mole fraction data are 

f i t ted by Legendre polynomials. The Legendre polynomials used 

for f i t t ing represent the deviation from Raoult's Law. Once 

the f i t t ing of the data is complete, an analytical equation for 
( r 

the system's vapor pressure versus liquid-mole fraction can 

readily be computed. 

In equations 3 and 4 the differential operator for g is 

determined by the orthogonal collocation method. The differential 

operator is approximated at each collocation point by the 

weighted sum of the function values of the discretization matrix 

A k l , which is determined from the Legrendre polynomials. The 
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appropriate collocation approximation for the derivative is 

where x^ refers to the particular collocation point and N is the 

number of internal collocation points plus the two end points. 

In order to compute g at the data points, a Lagrangian four 

point.interpolation is used. This enables computations to be 

made at any desired liquid mole fraction when the liquid activity 

is required to be known. The abil i ty to know 7-. a s a function 

of x. is used in the development of a integral consistency test. 



IV. THE THERMODYNAMIC CONSISTENCY TEST 

Binary vapor-liquid equilibrium data in the form of x.(P) 
i 

and y..(P) at constant temperature, variable pressure are analyzed. 

The derivatives of [dP/dx^]^ and [ d g / d x ^ are evaluated by use 

of the orthogonal collocation method already mentionedi while 

values for the volumes and fugacity coefficients are evaluated 

by the equation of state, or from the Lychman-Eckert-Chueh correla 

tion. When the system of interest is a mixture with Freon-12 as 

the solvent, the equation of state for the solvent is the one .. 

developed by McHarness^0. 

From the definition of liquid activity coefficients, 

Y i = = xTfT" » 

where is the vapor phase fugacity coefficient of component i 

and is calculated by equation 31 and since the sum of the partial 
2 

pressures must equal the system pressure Ci•e• £ y^P-3 P) one 
i=l 

obtains 

XlT-ifi X?Yofo 
P = + (8) 

$1 $2 

Substitution of equation 3 and 4 for y-j and Y 2 respectively into 

equation 8 generates an equation with g as the unknown. 

The equation is a highly nonlinear differential equation 

which applies at one given liquid mole fraction, namely a single 

collocation point. However, the differential equation can be 

-7-
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reduced to an algebraic equation by using the appropriate collo-

cation approximation (Equation 6). The result is shown in 

equation 9. 

N 
p . J . f . exp[g • x 2 J o A k l . g i - ^ v E ( ^ ) o ] 

In using this collocation approximation, the approximation i t -

self consists of a function using elements which contain the g's 

at all the collocation points. In oth£r words, the N differential 

equations in g are now converted to N coupled algebraic equations 

in g, where N stands for the total number of collocation points 

plus the two end points. To solve these equations for the 

correct N number of g's, a Newton-Raphson iteration procedure is 

used. 

The in i t ia l estimates of g for the symmetric convention 

are the following: 

g = x k 0 - xk) for a l l k, (.10) 

where x^ refers to each collocation point Ci.e- the f i rs t order 

Redlich-Kister function). 

The in i t ia l estimates for the unsymmetric convention are 

g = 0 for a l l k. 011 



-9-

Since the Legendre polynomials are all developed on an 

abscissa of range zero to one, the zero's of the polynomial for 

the unsymmetric case must have the following variable substi-

tution introduced: 

X k = X k < X l , max' ( 1 2 ) 

where x, is the largest experiment liquid mole fraction i,max 
introduced into the data. This effectively normalizes the 

mole fraction variable. 



V. EQUATION OF STATE 

The equation of state (Peng and Robinson, 197611) used for 
> 

/ i ' work has the form 
J 

' ! ' 

n _ RT a(T) • 'iq^ K " v-b " v(v+b) + b(v-b) 

Equation 13 can be rewritten as 

Z3 + (B-l)Z2 + CA-3B2-2B)Z + (B3+B2-AB) "= Q, (.14) 

where 

A = 2 | I ) P , ' 0 5 ) 

B = (16) 

and 

z = I f . (17) 

Equation 14 yields one real and two imaginary roots in the one-

phase region or three real roots in the two-phase region. In 

the vapor-liquid two-phase region, the largest positive real 

root applies to the vapor's compressibility factor, while the 

smallest positive real root corresponds to the liquid's 

compressibility factor. 

By imposing the restrictions of the classical derivatives 

at the cri t ical point: 
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and 

a 2 P c 
( - / ) - o 
3v: 

to equation 13 one obtains: 

r 2 t 2 
a(T ) = 0.45724 -5—^ 

and 

RTc b = 0.07780 c 
Pc 

At temperatures differing from the cri t ical 

and 

a(T) = a(Tc) • a(T r , u>) 

b(T) = b(Tc), 

where the functional form of a(T r , w) was determined by 

literature vapor pressure values such, that the equilibrium 

condition 



and the thermodynamic relationship 

ln f=) {h - })d?> <25> 
when applied to equation 13 is satisfied along the pure vapor 

pressure ci 

equations: 

pressure curve. cx(Tr,u>) was linearized by the following 

a(T .w)1 / 2 = 1 + k(l-T 1 / 2 ) , (26) 

where 

k = 0.37464 + 1.54226a) - 0.26992to2. (27) 

For mixtures, the recommended rules for use with equation 

13 are: 

bm = I x i b i> C28) 

- I I x^ .a - .^ f29) 

and 

a 
m i j 

a i j " n - C u l ^ a j ) 1 ' 2 . (30) 

where x̂  is the mole fraction corresponding to that phase and 

C.. is the binary interaction parameter f i t ted from binary ' J 

vapor-liquid equilibrium data. 

The following expression for the fugacity coefficient of 

component k in a mixture can be derived from equations 25 and 

13. 
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bk In <j»k = ^ (Z- l ) - In(Z-B) + 

2£X i a ik b 
_A , i 1 1K % , rZ'+ 2.414B. / r n v a ~ b ; i n lZ - 0.414B'' 

The partial molar volume of component k in a mixture of N 

components is defined by the triple-product relation, 

- ( I P ) 
9nk T,V,n.(i^k) 

V k = - g p 1 = f (x ,T,v) . (32) 
%V^T,n.j (al l 1) 

Using equation 13, equation 32 provides V^ as a function of 

the composition, temperature and the saturated molar volume of 

the liquid mixture. By performing the indicated operations of 

equation 32 on equation 13 and applying the mixing rules, 

one obtains 

RT bk 2 v
 at>k(v-b) 

k RT _ 2a(v+b) • 
(v-b)2 [v(v+b)+b(v-b)]Z 

These equations have been utilized to implement the Peng-

Robinson equation of state in subroutines PRVOL, PRFUG, and 

PRRON. 



xtJ. SATURATED MOLAR VOLUME OF A LIQUID MIXTURE 

The saturated liquid phase molar volume is calculated with 

the Lyckman-Eckert-Chueh correlation: 

- (34) 

psi r r r 

where V ^ ' s are functions of the true reduced temperature of \l the mixture. The formulation and values of the coefficients in the r-j\ '0 12 
equation for V~ y are tabulated by Prausnitz . 

In order to calculate the mixture's reduced temperature, 

a pseudocritical temperature has been defined as 

T « J f l V e 1 J . , <36> 

where is a volume fraction defined by 

and 

x i V ci 
• i ' T x T - . ' ' ( 3 6 ) 

p CJ 

T c i j - ^"K i j><Tci T c j ) 1 / 2 ' W 

where K- - is a binary interaction parameter which is found from 

experimental data. . ' , < 

Two regions of interest exist, one where T„„ < Q.93 and J rm — 

the other where 1.0 > T rm > 0.93. When Trm £ 0.93, equation 34 is 

used with the following suggested rules for mixtures: 

-14-



-15-

r : = vcm= I x i v c i Pcm ; c m r i c 1 • ( 3 8 ) 

and 

" S V r C39) 03 m 

T' = T r m + ( T . T - T , . m ) D(T' 1 (40) 

For Trm > 0.93, to assure that Trm = Vrm = 1.0, corrected pseudo-

crit ical temperatures and volumes are defined: 

'cm 'cm ' ^'cT lcmy u v ' rmJ 

and 
V' = V + (V -r - V ) D(T' ) , (41) cm... cm v cT cm' v rm;' K ' 

where T .j. and Vcy are the true mixture crit ical properties. 

D(T'rm) is a deviation function with constraints forcing Trm = 

V = 1.0 at the crit ical point. ^K1" ,̂) is tabulated by Prausnitz 

and in order to calculate equation 40, the modified regula-

falsi method is employed. 



V-LI. THE REFERENCE FU6ACITIES AND FUGACITY COEFFICIENTS 

In these programs for low pressure systems where nonidealities 

are negligible, the reference fugacities are the vapor pressures 

of the pure components at the system's pressure and temperature. 

When the pressures are high enough for nonidealities to be sig-

nificant, the reference fugacities for the symmetric convention 

are 

_ sat .sat e/ f? = P f exp( ^ d P ) , (42) 
,sat 
i 

while for systems where one of the components is above its c r i t i -

cal temperature, the solute's reference fugacity is' 

jxpt 
(1,2) 

•sat I S Y S V7 
f? = Ĥ 2 ^exp( \ RfdP ) . (43) 

psat 

The exponential term is the Poynting correction factor and the 

solvent's reference fugacity is that of equation 42. 

The unsymmetric convention of normalization is used when one 

component is a noncondensable, supercritical component. The 

advantage of its use is that i t avoids the ambiguity which exists 

for standard-state fugacities for supercritical gases. I t avoids 

thi;s ambiguous reference-state by using the well-defined and 
psat 

experimentally accessible Henry's constant, H - ^ . The Henry's 

constant is evaluated by extrapolating to x̂  = 0 on a plot of 

-16-
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sat 
In f-j/x-j versus x-j. The superscript P2 is the saturation vapor 

pressure of the pure solvent and V*° is the liquid partial molar 

volume of the solute inf ini tely dilute in the solvent, mathe-

matically stated as follows: 

H*2 = Tim —i- = lim . (44) 
(1,2) X1 X1 

x-j-^O x-j-HD 

The vapor phase fugacity coefficients for a l l pure components 

as well as the mixtures are calculated directly from equation 31 

which was derived from the Peng-Robinson equation of state. 

0 



VI I I ; AREA TEST 

With the integral isothermal, isobaric Gibbs-Duhem consistency 
13 test equation 

f ln(^)dxl = 
(45) 

and the analytic expressions for the y-j's obtained by evaluating 

equation 9, an area test was developed. Equation 45 was proposed 
14 

by Redlich and Kister using the isothermal, isobaric Gibbs-

Duhem equation and for isothermal data equation 45 is an extremely 

good approximation. 
To approximate the integral of equation 45, the trapezoidal 

NMAX 

rule was applied to 2 equally spaced values of liquid mole 

fractions. The maximum value allotted to NMAX is 6. Romberg 

integration was employed to evaluate the integral. As stated 

earlier, the results obtained from the area test were inconclusive. 

For systems where one component is noncondensable, equation 15 45 was rearranged by Newman to 

"XMAX Y-i 
ln(—)dx-| = constant, (46) 

where the lower limit of the integral is fixed as the smallest 

experimental liquid mole fraction; however, the lower l imit was 
15 selected arbitrari ly for convenience. 

-18-



IX. CALCULATION OF THE INTERACTION PARAMETER 

When using equation 13 for the gas mixtures, the mixing 

rules of equation 28 through 30 apply. The same rules apply for 

vapor as well as liquids, with y replacing x in the mixing rules. 

Equation 30 contains the interaction parameter C.. . This para-
' J 

meter represents the deviation of a^ from the classical geometri-

cal mean. 
Noting that the equilibrium ratio is defined as 

y • 

K i = = 7 • (47> i $. 

where and are calculated by equation 31, the interaction 

coefficient C.- can be found by t r ia l and error at any given 
' J 

x-y datum point .^ 

To minimize the error in the value of C.. for a particular 
' J 

system, each datum point was used in the t r ia l and error method. 

The procedure used to converge on the results is: a 

series of C-. 's are assumed, and the K.'s from equation 47 are IJ I 
calculated. The accepted value for C.. ts the one which yields ' J 

the minimum sum of absolute deviations in the experimental and 

calculated equilibrium ratios, namely 

/aK./ + /AK./ = minimum sum. (48) 
* J 
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' X.' PROGRAM DESCRIPTION 

Program one: (PROGRAM 1) 

PROGRAM 1 calculates vapor phase mole fractions for systems 

under low pressure. The activity coefficients used in the algorithm 

are normalized under the symmetric convention. Since the system's 

pressure is low, the standard reference state fugaciy used is the 

vapor pressure of each pure component. 

Program two: (PROGRAM 2) 

PROGRAM 2 calculates vapor phase mole fractions for systems 

under high pressures where both components are below their crit ical 

temperature. The activity coefficients are also normalized by 

the symmetric convention. At high pressures i t is necessary to 

take non-idealities in the vapor phase into account. This is 

done by using for the standard reference state fugacity the 

liquid phase pure component fugacity for each component. 

Program three: (PROGRAM 3) 

PROGRAM 3 calculates vapor phase mole fractions for systems 

under high pressures where one component is a non-condensable. 

The asymmetric convention for normalization of activity coef-

ficient is used. The standard reference state fugacity used 

for the noncondensable is Henry's constant, while for the solvent 

i t ' s the pure component fugacity. 

Program four: (PROGRAM 4) 

PROGRAM 4 estimates the binary interaction parameter, C. . , 

for the Peng-Robinson equation of state. 

-20-



-21-

All four programs have some of the same subroutines in 

conmon. Table 1 is a l ist-of-the subroutines needed for each 

main program. 
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TABLE T 

LIST OF SUBROUTINES 

PROGRAM 1 PROGRAM 2 PROGRAM 3 PROGRAM 4 

MAIN SECTION 

INTRP INTRP INTRP PLTRE 
DFOPR DFOPR DFOPR 
JCOBI JCOBI JCOBI 
GAUSL GAUSL GAUSL 
POLEG POLEG POLEG 
SCALE SCALE SCALE 
PLOT PLOT PLOT 
IPOINT IPOINT IPOINT 
ROMB ROMB ROMB 
GIBBS GIBSH GIBSA 
LEFIT LEFIT ALFIT 
PCAL PCAL PCALA 

DPX DPXA 
DPOLE DPOLE 
PLTRE PLTRE 
GNVOL *MCVOL 
MLMGN GNVOL 
ITERE MLMGN 

ITERE 
INTDAL 
INTP 

SUBSECTION ONE (The Peng-Robinson Equation of State) 

PRVOL PRVOL PRFUG 
PRFUG PRFUG PRVOL 
PRRON PRRON 

PNRPV 

SUBSECTION TWO (The Soave-Redlich-Kwong Equation of State) 

RKVOL RKVOL 
RKFUG RKFUG 
RKKON RKKON 

W RDKPV 

Description of each individual subroutine can be found 

in Appendix A;in addition, computer printouts of the main programs 

and their subroutines written in Fortran IV for use on a IBM 

370 are in Appendix A . 
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*When the system under investigation has Freon-12 (Dichlorodifluoro-

methane) as the solvertt, subroutine 6NV0L should be replaced with 

MCVOL in PROGRAM 3. Subroutine MCVOL contains the equation of 

state developed by McHarness for Freon 12. 



XIJf RESULTS 

Two systems that were previously investigated using the 

Soave-Redlich-Kwone equation of state by Christiansen and 

Fredenslund were chosen to demonstrate the performance of 

a l l the programs listed and the program superiority when the 

Peng-Robinson equation of state is used. The effects of varying 
i , 

the number of internal collocation points and the value of the 

Peng-Robinson interaction parameter, C. . , are also shown. The * J 

actual computer printouts have also been included in Appendix 

B. From the ten different runs reviewed here, the evidence 

clearly indicates that the modified programs are indeed substantial-

ly superior to the original programs. Table 2 l ists each dif -

ferent run made and indicates the values of the pertinent variables 

used. 

Case Study # 1: 

The carbon dixoide-ethane system at 10°C17 was chosen to 

i l lustrate the superiority that the new modified programs have 

over the original programs. Even though several differing systems 

of this type were tested (CH^-Ar, COg-CgHg), this particular 

system appears to show the typical improvement one should expect 

from the modified program, PROGRAM 2. 

The system chosen is a high pressure system with both com-

ponents under their respective crit ical temperatures; therefore, 

the use of the high pressure program, PROGRAM 2, was appropriate 

in this case. Both the Peng-Robinson and Soave-Redlich-Kwong 

equations of state were used in PROGRAM 2 for comparison. To 
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Table 2. A Listing of the Runs Made and Their Pertinent Values. 

System Run # Number of 
Collocation 

Points 

Degree of 
Legendre 
Polynomial 

Interaction 
Parameter, 

Equation 
of State 

Program Used 

COg-CgHg 0) 
(2) 

3 
3 

2 
2 

* 

* 

* 

S-R-K1 
PROGRAM 1 
PROGRAM 2 (R-K) 

(3) 3 2 0.147 P-R2 PROGRAM 2 (P-R) 
(4) 3 2 0.000 P-R2 PROGRAM 2 (P-R) 

CH4-C3Hq O) 2 1 -0.050 
2 

P-R PROGRAM 3 (P-R) CH4-C3Hq 
(2) 2 1 0.010 P-R2 PROGRAM 3 (P-R) 
(3) 2 0.050 P-R2 PROGRAM 3 (P-R) 
(4) 2 1 * S-R-K1 PROGRAM 3 (R-K) 
(5) 3 1 0.010 2 P-R PROGRAM 3 (P-R) 

•J 
(6) 4 1 0.010 P-R2 PROGRAM 3 (P-R) 

* This category does not apply. 
1 The Soave-Redlich-Kwong Equation of State employs four 

interaction paramters which were obtained from the 
literature (3). 

2 The Peng-Robinson Equation of State employs one inter-
action parameter which was obtained by PROGRAM 4. 
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i l lustrate the need for taking into account nonidealities due to 

high pressures, the low pressure program, PROGRAM 1, was used for 

comparing results. 

The values of the deviation between the observed and cal-

culated vapor phase mole fractions for the four runs are tabulated 

in Table 3 and are plotted on Figure 1. Figure 1 clearly indicates 

that the high pressure effects on the system must be taken into 

account. Run # 3 and Run # 4 in Figure 1 also show the effect 

of varying the Peng-Robinson interaction parameter, C. . . The 
' J 

value of the interaction parameter was computed by PROGRAM 4 for 

Run # 3, while in Run #• 4 i t was set equal to zero. This corn-

Table 3. The Results of the Consistency Test 
for the C0?-C?Hfi System 

Experimental Calculated 
Values Values 

yexp yexp ycc lie 

Run # 1 Run # 2 Run # 3 Run # 4 
iO.O 0.0 0.0 0.0 0.0 0.0 
0.061 0.033 0.0916 0.0648 0.0633 0.0730 
0.198 0.128 0.2821 0.2055 0.1982 0.1578 
0.315 0.234 0.4228 0.3228 0.3105 0.2006 
0.384 0.311 0.4985 0.3962 0.3824 0.2628 
0.480 0.421 0.5825 0.4920 0.4794 0.3878 
0.578 0.542 0.6531 0.5896 0.5813 0.5575 
0.666 0.655 0.7076 0.6759 0.6724 0.7012 
0.711 0.711 0.7334 0.7180 0.7165 0.7564 
0.727 0.730 0.7423 0.7324 0.7315 0.7726 
0.815 0.833 0.7983 0.8136 0.8150 0.8418 
0.852 0.873 0.8270 0.8488 0.8505 0.8771 
0.908 0.928 0.8803 0.9042 0.9056 0.9119 
0.947 0.961 0.9251 0.9437 0.9446 0.9416 
1.0 1 .jO "1.0 1.0 1.0 1.0 

o 
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0.040r 

0 .036"" o Sun using low pressure program 
(PROGRAM 11. 

0.032' 

D. 028 

0.024 

0.020 

0.016 

0.012!— O 

0.003 

0.0C4 

a Run 4Z, using high pressure S-R-K 
program (PROGRAM 2 (R-K)).. 

O C Run using high pressure P-R 
program.(PRCGRAM 2 (P-Rl ) . 

_ O Run using high pressure P-R 
program (PROGRAM 2 (P-R)) . 

O 

8 
O-

O 
o 

:J--> O 7 0.4- c.5 O.a 

EXPERIMENTAL l iqUID K0L£ FRACTION C02 

Figure 1. The effect of the equation of state. 
The C02-C2H6 system at 10°C, 3 collocation 
points, and a second degree Legendre 
polynomial (data from Fredenslund and 
Mollerup, 1974). 
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parison indicates the degree of improvement obtainable when the 

interaction parameter is adjusted to its optimum value by 

PROGRAM 4. 

Further investigation of the outputs between Run # 3 and 

Run # 4 in Appendix B indicates that the cr i ter ia that the sum 
it 

of deviations must be minimized is not sufficient. In order to 
. i 

conclude that the Peng-Robinson interaction parameter C^-, is 

at its optimum value, the entire set of thermodynamic properties 

calculated should be reviewed. This can clearly be seen by 

viewing the excess Gibbs free energy diagrams of Run # 3 and 

Run # 4. Even though Run # 4 converged to a solution*, i ts 

diagram of excess Gibbs free energy predicts that two homogeneous 

azeotropes exist . No system of this kind has been physically 

observed; therefore, Run # 4 should be discarded on these 

grounds. 

Even though PROGRAM 2 predicts a behavior which has not 

been physically observed, this prediction is easily explained by 

reviewing the significance of the Peng-Robinson interaction 11 
parameter C.. . From equation 30 i t is seen that C.. is a 

1! 1J 1J 

parameter which indicates the amount of deviation from the 

geometrical mean that the unlike molecules present. By setting 

C.. equal to zero in Run #4, this implies that each molecule 
J J 

wil l interact with every other molecule identically. Therefore, 

the excess Gibbs free energy should be zero throughout the 

entire range of liquid mole fractions. The diagram of excess 

* The sum of deviations for Run # 4 were smaller than for Run 

#1, (see Table 4). 



Gibbs free energy in Run # 4 shows this tendency to force the excess 

Gibbs free energy function to zero. 

Figure 2 is an expanded view of Figure 1 which shows the 

superiority that exists when the Peng-Robinson equation of state, 

using i ts optimum value for the interaction paramter, C. . , is ^ J 

used in PROGRAM 2. The four interaction paramters required by 

the Soave-Redlich-Kwong equation of state were taken from the 
3 

l iterature . 

An optimization of these four parameters was performed. 

Run # 2 represents the results with the four interaction para-

meters at a local optimum. The optimization was limited due to 

the extensive time requirements of iterating the program, PROGRAM 

2 (R-K). 

Although small deviations exist for both equations of state 

in Figure 2, an apparent trend at each experimental data point 

can be seen. The trend is a definite increase in the prediction 

of the vapor phase mole fractions with use of the modified program. 

In most cases in the l i terature, deviations of this nature are 

plotted with experimental vapor, not l iquid, mole fractions. 

By choosing the liquid mole fractions as the abscissa, one is 

able to see a systematic error as one ranges from zero to one. 

This is more apparent when solubility data are being investigated. 

The systematic error in the deviations appear to be an oscillation 
• j 

about the zero axis as shown in Figure 2. 

Table 4 shows one small drawback in the modified program. 

An extra iteration was required for finding the correct values 
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of the excess Gibbs free energy, however, this is insignificant 

compared to the improved vapor phase mole fraction prediction 

obtained. 

Table 4. Results of the Consistency 
Test for the CCL-C9Hfi System. 

Run # Deviation* 
Sum 

Total # of 
Iterations 

(1) 0.0535097 4 
(2) 0.0007760 14 
(3) 0.0001447 15 
(4) 0.0452195 16 

1 m ' - 2 * Deviation Sum = - T] |ycalc.-yexp.j 
m i = 1 i i 

where m = the number of data points 
(excluding pure components). 

Case Study # 2: 
1 q 

The methane-propane binary system at'-17°C was chosen to i l lus-

trate the effects of varying the internal collocation points and 

the value of the Peng-Robinson interaction parameter. This 

system is one of several solubility systems tested that were 5 

studied by Christiansen and Fredenslund (COg-^Hg, N2-CH4, C02-

CgHg, CH^-Ar). Solubility systems are high pressure systems 

where one component is noncondensable and the unsymmetric con-
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vention for normalization of the activity coefficients is preferred. 

When the unsymmetric convention is used, the evaluation of the 

Henry's constant is required. 

Since the system chosen is a solubility system, the use of 

the high pressure program, PROGRAM 3, was. appropriate in this 

case. Both the Peng-Robinson and the Soave-Redlich-Kwong equations 

of state were used in PROGRAM 3 for comparison. 

The values of the deviations between the observed and cal-

culated vapor phase mole fractions for the six runs are tabulated 

in Table 5 and plotted in Figure 3 and Figure 4. Figure 3 shows 

the effect of the number of internal collocation points on the 

calculated vapor phase mole fractions. Figure 4 shows the effect 

of the interaction parameter on the calculated vapor phase mole 

fractions. In both ficures the results from using the Soave-

Redl ich-Kwong equation of state have been included for comparison. 

Figure 5 is an expanded view of Figure 4 which clearly shows the 

superiority in the vapor phase mole fraction prediction when the 

Peng-Robinson equation of state is used. Also the systematic 

trend is quite apparent in Figure 5 when the abscissa is the 

liquid mole fraction The Henry's constant for each run is 

tabulated in Table 6. 

The results reported here clearly indicate that the new 

modified programs are superior to the original programs. 

Further superiority resides in the fact that only one interaction 

parameter is required for the Peng-Robinson equation, while four 

are needed for the Soave-Redlich-Kwong equation. The availabil i ty 



Table 5. The Results of the Consistency Test for the CHA-CoHfl System 

ycalc 

yexp xexp Run # 1 Run # 2 Run # 3 Run # 4 Run # 5 Run # 6 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.560 0.034 0.6665 0.6682 0.6693 0.6739 0.6867 0.6893 
0.767 0.089 0.8283 0.8310 0.8327 0.8351 0.8437 0.8428 
0.832 0.142 0.8765 0.8798 0.8819 0.8330 0.8882 0.8866 
0.861 0.197 0.9001 0.9040 0.9065 0.9073 0.9089 0.9073 
0.880 0.249 0.9124 0.9169 0.9197 0.9202 0.9191 0.3729 
0.888 0.303 0.9199 0.9250 0.9283 0.9285 0.9250 0.4571 
0.890 0.357 0.9240 0.9300 0.9337 0.9337 0.9283 0.6706 
0.892 0.410 0.9257 0.9328 0.9370 0.9368 0.9300 0.9289 
0.891 0.464 0.9257 0.9341 0.9390 0.9385 0.9307 0.9296 
0.889 0.518 0.9240 0.9343 0.9399 0.9391 0.9307 0.9295 
0.882 0.572 0.9207 0.9334 0.9400 0.9388 0.9302 0.9288 
0.869 0.636 0.9145 0.9312 0.9392 0.9376 0.9290 0.9276 
0.845 0.718 0.9060 0.9293 0.9390 0.9370 0.9285 0.9270 
0.800 0.800 0.9023 0.9306 0.9414 0.9392 0.9294 0.9279 
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pressure program (PROGRAM 3 (P-R)). 
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Figure 3. The effect of the number of internal col-
location points. The CH4-C3Hg system 
at -17°C, C.. = 0.01. and a second degree 

' J 
Legendre polynomial. 

o n 

A Run 42, 2 collocation points, using high 
pressure program (PROGRAM 3 (P-R)). 

o Run 3 collocation points, using high 
pressure program (PROGRAM 3 (P-R)). 

C Run 46, 4 collocation points, using high 
pressure program (PROGRAM 3 (P-R)). 
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0. 2Qr 

0 Run ?1, C.. = -0.05, using high pressure 
u program (PROGRAM 3 (P-R)). 

a Run #2, C,. • 0.01, using high pressure 
J program (PROGRAM 3 (P-R)). 

o Run C. . » +0.05, using high oressure 
J program (PROGRAM 3(?-R)). 0.16 — 

O Run t 4 , using high pressure program S-
R-< program (PROGRAM (R-K)}. 

o. i4 o o 

0.12 — 

0.10 — 

0.C8 — 

o 
o 

9 8 
0.06L 3 g A • 

I t 8a ® 0? " * 9 I * • 

• • A • • ° a 

0.Oct— 

0.0 I . I J . 070 lT2 tf^ Cto T3 

EXPERIMENTAL LIQUID MOLE FRACTION CH 4 

Figure 4. The effect of the interaction parameter, 
C^. The CH4-C3H8 system at -17°C, 2 
collocation points, and a second degree 
Legendre polynomial (data from Wichterle 
and Kobayashi, 1972). 
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Figure 5. An expanded view of Figure 
4 (Run #1 and 4) for the 
the CH4-C3H8 system at -17°C. 



-37-

Table 6. Calculation of Henry's Constant and Results of the 
Consistency Test for the CH«-C-HP System. 

Run # Henry's Constant, 
(3 tin) 

Deviation* 
Sum 

Total # of 
Iterations 

(1) 112.55 0.0431585 16 
(2) 113.02 0.0605322 17 
(3) 113.02 0.0699474 17 
(4) 115.65 0.0700868 16 
(5) 120.46 0.0661260 17 
(6) 124.16 0.5517500 greater than 100 

. . . I m 2 
* Deviation sum = — | yea Ic^-yexp..| 

wh'ere m = the number of data points (excluding pure components). 

of data to estimate these four parameters in some cases does not 

exist. The estimation of the Peng-Robinson interaction parameter 

can always be computed when data for a thermodynamic consistency 

test are present. 



XI I . DISCUSSION OF RESULTS 

The two systems tested appear to be thermodynamically con-

sistent. However, to assure that they are one must f i rs t com-

pute the experimental uncertainties in the liquid and vapor phase 

mole fractions. Christiansen stated that the following empirical 

criterion must be met i f the data is to be thermodynamically 
19 

consistent : 

|ycalci - yexp,. | < Axi + Ay,., (49) 

where Ax- and Ay,, are the experimental uncertainties in the 

data at each data point i . 

The modifications done in this work on the original programs 

show that the Peng-Robinson equation of state has improved per-

formance over the Soave-Redlich-Kwong equation of state in the 

critical and upper retrograde regions. The reduction of four 

interaction paramters to one when using the Peng-Robinson equation 

shows the strength of the equation of state for this application, 

since the procedure for optimizing the constants is further j / 

simplified. Further modifications can be made by extending 

the modified programs to multicomponent high-pressure systems and 

by placing specific equations of state for a desired system 

into subroutines PRVOL, PRRON and PRFUG. 
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NOMENCLATURE 

Symbol Description Typical 
Units 

Roman Form: 

A 

ABS(X) 

3 i j 

am,a(T) 

B 

b. i 

CiJ 

1 

Grouping of parameters used 
in the Peng-Robinson 
equation 

The absolute value of the 
expression x 

Parameter used in the Peng-
Robinson equation 

Elements of the discreti-
zation matrix 

Mixture parameter used in 
the Peng-Robinson equation 

Grouping of parameters used 
in the Peng-Robinson equation 

Parameter used in the Peng-
Robinson equation 

Mixture parameter used in 
the Peng-Robinson equation 

Binary interaction parameter 
for the i - i interaction 

Reference-state fugacity of 
component i 

Partial fugacity of component 
i 

GE/RT 

Excess Gibbs free energy 

Excess enthalpy 

unitless 

unitless 

(atn> cc ) / 
2 

gmole 

unitless 
(atnrcc ) / 

2 

gmole 

unitless 

cc/gmole 

cc/gmole 

unitless 

atm 

atm 

joules/ 
(atm«cc) 

joules/ 
gmole 

joules/ 
gmole 
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NOMENCLATURE (Contd.) 

Symbol Description Typical 
Units 

' ( 1 . 2 ) 

k i j 

K i 
n i 
NMAX 

P 

P. 

P i 

P i 

P-R 

R 

S-R-K 

Tci 

T . . c i j 

Henry's constant for solute 
1 in solvent 2 

Constant in Peng-Robinson 
equation for a 

Characteristic constant for 
the i - j interaction of the 
deviation from the geometri-
cal mean 

Equilibrium ratio 

Moles of component i 

Maximum number of Romberg 
integration employed 

Pressure of the system 

Critical pressure 

Partial pressure of component 
i 

Vapor pressure of pure com-
ponent i 

The Peng-Robinson equation 
of state 

The gas-constant 

The Soave-Redlich-Kwong 
equation of state 

Temperature of the system 

Critical tenperature of 
component i 

Critical temperature 
characteristic of the 
i - j interaction 

atm 

unitless 

unitless 

unitless 

gmole 

unitless 

atm 

atm 

atm 

atm 

(atm- cc)/ 
(gmole- °K) 

°K 

°K 
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NOMENCLATURE (Contd.) 

Symbol Description Typical 
Units 

cm 

cT 

rm 

ĉm 

v 

V 

Vci 

cm 

'cT 

mix 

V rm 

vT 

VI cm 

V i 

,(J) 

Pseudocritical temperature 
of the mixture 

True crit ical temperature 
of the mixture 

leduced mixture temperature 

Corrected pseudocritical 
temperature of the mixture 

Specific molar volume -

Volume of the solution 

Excess molar volume of the 
solution 

Partial molar volume 

Critical molar volume of 
component i 

Pseudocritical volume of 
the mixture 

True crit ical volume of 
the mixture 

Mixture molar volume 

Reduced vol'ime of the mixture 

Partial molar volume of species 
i at infinite dilution 

Corrected psaudocritical 
volume of mixture 

Molar volume of pure com-
ponent i 

Generalized reduced molar 
volume function 

°K 

°K 

unitless 

°K 

cc/gmole 

cc 

cc/gmole 

cc/gmole 

cc/gmole 

cc/gmole 

cc/gmole 

cc/gmole 

unitless 

cc/gmole 

cc/gmole 

cc/gmole 

unitless 

c> 
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NOMENCLATURE (Contd.) 

Symbol Description Typical 
Units 

V x i Liquid mole fraction 
of species i 

unitless 

xk 
i 

Collocation point for 
a liquid mole fraction 

unitless 

Normalized liquid mole 
fraction at a collocation 
point 

unitless 

xexp Experimental liquid mole 
fraction 

unitless 

XMAX Maximum experimental liquid 
mole fraction in solubility 
data 

unitless 

Vapor mole fraction of species 
i 

unitless 

ycalc Calculated vapor mole fraction unitless 

yexp Experimental vapor mole 
fraction 

unitless 

Z The compressibility factor unitless 

Greek Form: 

a Correlation used in Peng-
Robinson equation 

unitless 

Y i Activity coefficient of species 
i unitless 

pci Critical liquid density of 
component i 

gmole/cc 

PSi Saturated liquid density 
of component i 

gmole/cc 

CO. Acentric factor unitless 

(0 m Mixture's acentric factor unitless 

a Constraint of saturation unitless 
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NOMENCLATURE (Contd.) 

Symbol Description • Typical 
Units 

• l Vapor phase fugacity 
coefficient of component 
i 

unitless 

A(X) The difference between the 
calculated and experimental 
values of the property x. 

units of 
property 
x 

Volume fraction of species i unitless 

Subscripts: 

c Critical property 

i Indexing 

k A collocation point 

max The maximum value 
r, ti 

Mixture property m,mix 

The maximum value 
r, ti 

Mixture property 

r Reduced property 

s,sat Saturation 

sys System property 

1,2 Solute 1 in solvent 2 

Superscripts: 

L Liquid property 

sat Saturation 

V Vapor property 

o Pure component property 

Partial molar property 
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PROGRAM DESCRIPTIONS AND COMPUTER PRINTOUTS 

This section contains descriptions of the subroutines followed 

by a l isting of the subroutines Written in FORTRAN IV for an IBM 

370 computer. For a quick reference, use Table 7 to locate a 

desired subroutine. All four main programs have also been listed 

at the very end of this appendix. 

NOTE: PROGRAM 2 and PROGRAM 3 are available for either the Peng-

Robinson or Soave-Redlich-Kwong equation of state. When choosing 

an equation of state, one must also use the correct main program 

which is indicated in the description of each main program. 
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TABLE 7. GLOSSARY OF NAMES FOR SUBROUTINES AND MAIN PROGRAMS 

NAME CLASS PROGRAM 

ALFIT SUBR 51 
DFOPR SUBR 54 
DPOLE FUNCT 57 
DPX SUBR 59 
DPXA SUBR 62 
GAUSL SUBR 65 
GIBBS SUBR 68 
GIBSA SUBR 72 
GIBSH SUBR 75 
GNVOL SUBR 78 
INTDAL SUBR 82 
INTP SUBR 85 
INTRP SUBR 88 
IPOINT SUBR 91 
ITERE SUBR 94 
JCOBI SUBR 97 
LEFIT SUBR 101 
MCVOL SUBR 104 
MLMGN SUBR 105 
PCAL SUBR 107 
PCALA SUBR 110 
PLOT SUBR 113 
PLTRE SUBR 115 
PNRPV SUBR 120 
POLEG FUNCT 123 
PRFUG SUBR 126 
PRRON SUBR 129 
PRVOL SUBR 132 
RDKPV SUBR 135 
RKFUG SUBR 139 
RKKON SUBR 142 
RKVOL SUBR 147 
ROMB SUBR 152 
SCALE SUBR 157 
PROGRAM 1 MAIN 159 
PROGRAM 2 (P-R) MAIN 164 
PROGRAM 2 (R-K) MAIN 171 
PROGRAM 3 (P-R) MAIN 178 
PROGRAM 3 (R-K) MAIN 185 
PROGRAM 4 MAIN 193 



Descriptions and Printouts of 

Main Programs (MAIN), 

Subroutines (SUBR), 

and Statement Functions (FUNCT) 
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SUBROUTINE ALFIT (X, Y, N,K) 

Input Parameters: 

Real X: 

Real Y: 

Integer N: 

Integer K: 

The Output Is: 

By a common statement 

COMMON/LEG/AA 

Vector AA: Dimension [K + 1] and contains the coefficients 

to the f i t t ing function which represents the 

deviation from ideality, ( i . e . Raoult's Law). 

ALFIT f i t s P-X data to a curve using Legendre polynomials and 

calls for GAUSL, a Gaussian elimination method to solve A * J 

= B where X is the vector AA. In order to use the Legendre 

polynomials, which are for a range of zero to one, the liquid 

mole fractions of the solubility data must f i rs t be normalized 

to zero to one. 

ALFIT employs the following algorithm: 

A: Calculate S(I) at data points. 

The normalized value for the experimental mole 

fraction of component one in the liquid phase. 

The experimental pressure of the system at 

each given XEXP which corresponds to the 

normalized values, X. 

The dimension of vectors X and Y, ( i . e . number 

of data points). 

The degree of the Legendre polynomial used for 

f i t t ing the P-X data. 
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B: Formulate curve with S(.I) as. a weighting function. 

C: Formulate matrix with unknown coefficients. 

D: Invert matrix (solve for JA) (call to GAUSL). 

LIST OF EQUATIONS 

Deviation Function: S("i) = Psys - P^a t( l - x) 

Weighting Function: x 

Fitting Function: C(i) = £ S(j)xP,(x) 
i=l 1 

where P^(x) = i degree Legendre polynomial. 
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SUBEOFLTIBB ALFIT ( 1 , 7 . 1 1 , A) 
c 
C SOBBOOTIBE ALPIT FITS IHDITIDUAL POINTS OR II CTJBTB BHBBB I IS 
C THE IMDEPBHDBBT VABIABL2 AMD I I S THE DEPENDENT VABIABLE OSINS 
C A FUNCTION CONTAINING LEGBNDHE POLTNOBIALS. AS THE PITTIHS FUNCTION. 
C -

DOUBLE PHBCISION X2,X3 
DOUBLE PBECISIOB PP 
DOUBLE PHECISION XI 
DOOBLE PBECISIOB DFLOAT 
DOUBLE PBECISIOB C (21) , B ( 2 5 , 25) , AA{21) ,PPP ( 5 1 ) 
DOUBLE PBECISIOB 1 ( 2 5 ) , T ( 2 5 ) , 3 ( 2 5 ) 
DOUBLE PBBCISIOH POLEG 
c o a a o v / L E S / A i 

DO 1 X » 1 , KP1 
1 C ( I } « 0 . 

DO 2 1 - 1 , K P 1 
DO 2 J - 1 . K P 1 

2 B ( I , J ) « 0 . 
DO 3 1 - 1 , B 

3 S ( I ) " I ( I ) - T ( 1 ) * ( 1 « - X ( I ) ) 
DO 4 I B - 1 , K H 
DO « J - 1 , B 
X3=X (J) 

4 C ( I B ) * C ( I B ) * 3 ( J ) * X ( J ) + P O L 3 8 ( 1 3 , I B ) 
DO 5 H A - 1 , K P 1 
DO 5 L » 1 , R P 1 
DO 5 K A - 1 , I 
I2=>X(KA) 

5 a(MA,L)-B(HA,L)«-X(KA) *X (EA) •POLEG ( X 2 , N t ) *POLBG(X2,L) 
DO 6 1 - 1 , K P 1 
KP2-K+2 

6 B ( I , K P 2 ) - C ( I ) 
CALL G A 0 S L ( 2 5 , 2 5 , 1 C P 1 , 1 , B ) 
DO 7 I - 1 , K P 1 

7 A A ( I ) - B ( I , K P 2 ) 
BETOBB 
EBD 
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SUBROUTINE DFOPR (ND, N, NO, NL, I , ID, FA, FB, FC, ROOT, VECT) 

Input Parameters.: 

Interger DN, 

NO, NL, N: As in JCOBI. 

Interger ID: The degree of the deviative of weights needed. 

Vector FA, FB, 

FC: Dimension [NT = N + NO + NL] and contains the 

1st, 2nd, and 3rd derivatives of the polynomial 

at the zero roots, [i.e. collocation points). 

The Output is: 

Vector VECT: Dimension [NT], and contains the computed 

interpolation weights for the given root. 

DFOPR calculates interpolation weights in order to form a compu-

tational quadrature which enables the main program to approxi-

mate derivatives of a dependent variable at any given point, 

provided we have the root, FA, FB, and FC available, (e.g. 

evaluates the discretization matrix). 

DFOPR employs the following algorithm: 

A: I f ID = 1, compute discretization matrix for y ^ . 
( 2 ) 

I f ID = 2, compute discretization matrix for yv ' . 

I f ID = 3, compute gaussian quadrature weights. 

B: Place computed values in VECT. 

LIST OF EQUATIONS 

In this program only ID - 1 is of concern. At a given root 
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p ( 2 ) ( x } 

VECT(j) = L. (1)(.x.:) = l /2 ( ffl ' i 

J > P u ' ( x ) n+1 

where x = x. . The vector of L . ^ ( x . j ) values may now be used to 

approximate the f i rs t derivative of any dependent variable of x 

at the given root x^. 

l d X X= X l i<"l 
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SOBBOQTIIB DFOPB<»D,B, M , I I , 1 , 1 0 , PA, PB, FC, ROOT, »ECT) 
c 
C SOBBOOTIIE DPOPB CAtCtJLATBS TBS ELEHBBTS OP TH8 DISCBETIZ&TIOH 
C BATBIX 
C 

DOUBLE P R E C I S I O N PA {JtD» , F B ( I D ) , PC (HD) , ROOT ( » D ) , T E C T (ITD) , X , I , A I , AT 
»T=H*»0»»T 
I P ( I D . GB. 3) 6 0 TO 1 0 
DO 2 0 J « 1 , M T 
I P ( J . B E . I ) GO TO 2 1 
I P ( I D . EQ. 1) VECT ( I ) - P B ( I ) / P A ( I ) / 2 . 
I F ( I D . 8 Q . 2 ) TECT JI) «PC ( I ) /FA ( I ) / 3 . 
8 0 TO 20 

21 TaBOOT(I)—BOOT(J) 
f ECT (J ) - P I ( I ) / P A (J ) / I 
I P ( I D . E Q . 2 ) TECT(Of E C T ( J ) * ( F B ( I ) / P A ( I ) - 2 . / T ) 

20 COITIHDE 
GO TO SO 

10 T * 0 . 
I P ( I D . B Q . 4 ) GO TO 3 0 
DO 2 5 J ~ 1 , R T 
X>ROOT ( J | 
A X > X * ( 1 . - X ) 
I P ( N O . E Q . 0) AXaAX/X/X 
I P ( R I . B Q . O ) AX»AX/( 1 . - X ) / ( 1 . - X ) 
7 ECT (J ) - AX/PA (<J)/PA (J) 

2 5 I»I« -TECT(J) 
GO TO 6 0 

3 0 DO 3 5 J » t , B T 
X - R O O T ( J ) 
I F ( I O . B Q . O ) A X - 1 . / Z 
I P ( B I . E a . O ) A X « 1 - / ( 1 . - X ) 
VXCT (J) * AX/PA (J ) / P A (J ) 

35 I « I * T E C T ( J ) 
6 0 DO 6 1 J ~ 1 , I T 
61 VECT (J )**VECT( J ) /T 
SO BBT0B1 

BID 
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DOUBLE PRECISION FUNCTION DPOLE (X, K) 

Input Parameters: 

Real X: As in POLEG. 

Integer K: As in POLEG. 

The Output Is: The f i rs t derivative of the Legendre polynomii/V 
f L 

specifically the K degree. 

DPOLE is a statement function which contains the recursion formula 

for the f i rs t derivative of the Legendre polynomials. 

LIST OF EQUATIONS 

DPOLE = 
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DOOBLI PBBCISIOH PUfCtlOB DPOLE(X,K) 
DOUBLE PBBCISIGI DAL(21) ,X 
DOUBLE PBBCXSIOI DPLOIT.POLEG 
DAL( 1) - 0 . 
D A L ( 2 ) * 2 . 
DO t L 0 - 3 . K 
L6H1>LG-1 
D A L ( L G ) - ( D P L O A T ( 2 « L G B 1 - 1 ) * ( ( 2 . * X - 1 . ) *D»L(LG-1) f2 . 'POLKS(X,LGH11 ) 

1-DPLOAT (LGB 1 - 1) +DAL (LG—2) ) /DPLOAT (LOB 1) 
DPOLB'DAL(K) 
IKTOiV 
SBf> 
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SUBROUTINE DPX (P2S, PIS, K, DDX, X) 

Input Parameters: 

Real P2S: Vapor pressure of pure component two. 

Real PIS: Vapor pressure of pure component one. 

Integer K: The degree of the Legendre polynomial used for 

f i t t ing the P-X data. 

Real X: Mole fraction of component one in liquid phase 

where derivative is desired. 

The Output Is: 

Real DDX: The derivative of pressure versus mole fraction 

at the given X input, ( i .e . pressure gradient).. 

DPX generates the derivative of the P-X curve by using the recursion 

formula for the f i rs t derivative of the Legendre polynomial and 

evaluates i t at the given X. 

DPX employs the following algorithm. 

A: Generate the deviation from Raoult's law by 

Legendre polynomial and evaluates i t at the given X. 

DPX employs the following algorithm. 

A: Generate the deviation from Raoult's law by 

Legendre polynomials and evaluate i t at the given 

X. 

B: Generate the derivative of Part A. 

C: Compute pressure gradient. 

LIST OF EQUATIONS 

Pressure Deviation: P(jev = x(l - x) ALEG = x(1 - x) ^AA(i)P.(.x) 
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where ALEG is the deviation function and x(.l - x) is the weight 

function. 

Pressure System: (see subroutine PCAL). 

Psys = x(P1
S - P2

S) + P2
S + x(1 - x)ALEG 

dP 
— = P2

S + P^ + (.1 - 2x)ALEG + 

where = AA(i)DP0LE(x,i), (see FUNCTION DPOLE). 
a x i=l 
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SOBIOOTIII DPX(P2S ,P1S , IC,DDX,X) 
DOUBLE PBBCISXOH P 2 S . P I S , A A ( 2 1 ) , D D I . X 
DOUBLE PBECISIOB POLEG.DPOLB 
DOUBLE PBECISIOB DALEG,ALBG 
COHHOB/LEG/AA 
DALEG-O. 
ALBG-O. 
DO 1 IL*1,IC 

1 ALEG-ALBG»AA(IL)•POLEO<X,IL) 
DO 2 1K=» 1 ,K 

2 DALBG-DALEG*AA(IK)*DPOLE(X,IK) 
DDX=PlS—P2S* ( 1 . - I ) * A L E G - X * A L S G M 1 - - X | *C*DALES 
BBTOBB 
BHD 
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SUBROUTINE DPXA CP2S, K, DDX, X) 

Input Parameters: 

Real P2S: The vapor pressure of pure component two. 

Integer K: The degree of the Legendre polynomial used for 

f i t t ing the P-X data. 

Real X: The normalized value for the mole fraction of 

component one in the liquid phase. 

The Output Is: i. > . 

Real DDX: The derivative of pressure versus mole fraction 

at the given X input, ( i .e pressure gradient).. 

DPXA generates the derivative of the P-X curve by using the re-

cursion formula for the f i rs t derivative of the Legendre polynomial 

and evaluates i t at the given X. Since the Legendre polynomials 

range from zero to one, the liquid mole fraction must also be 

normalized. 

DPXA employs the following algorithm: 

A: Generate the deviation function from the Legendre 

polynomial. 

B: Generate the derivative of Part A. 

C: Compute the pressure gradient. 

LIST OF EQUATIONS 

" v.- • ; .' ' K 
Deviation Function: ALEG = J]AA(i)P. (x) 

i=l 1 

Weighting Function: x 

Pressure of System (see subroutine PCALA): 
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Psys = ^2a t ( 1 " x ) + x ( A L E G ) 

Gradient: d P ^ , d(ALEG) , AL£G , psat 
dx x dx M L t b 2 

where = AA(i )DPOLE(x,i), (see Function DPCjilE). 
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SOBBODTIlt DPXA(P2S,K,DDt,X) 
OOOBLB PB8C23ION P 2 S , P 1 S , A A ( 2 1 ) ,DDX,X 
DOOBLB PB3CXSIOI POtEG,DPOLE 
DOOBLB PBSClSIOH DlLBG.HLEa 
COHJIOH/tEG/AA 
DALBG-O. 
ALBO-O. 
DO 1 1 1 - 1 , 1 5 

1 ALEG-ALBQ+AA ( I . l ) * P O t B O ( X , I l ) 
DO 2 IK— 1 , K 

2 ,DAL£G«DAL2C+AA(IK)*DFOlS<X,2K) 
' DDX-ALEO*I»DALEn-P2S 

BBTOBB 
BID 
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SUBROUTINE GAUSL (NRA, NCA, N, NS, A) 

Input Parameters: 

Integer NRA: The number of rows to the matrix A read into 

subroutine. 

Integer NCA: The number of columns to the matrix A-read into 

subroutine. 

Integer N: Dimension of square matrix to be solved. 

Integer NS: The number of columns to shift over for result 

to be placed. 

Matrix A: Dimension [N, N + 1] and contains the matrix F 

[N, N], plus in the column N + 1 i t also con-

tains vector U, [ i .e . B"»X = C). 

The Output Is: 

Matrix A: In column N plus one the result to S-)T = C" for 

X" is placed. 

GAUSL solves B-)T = C" by Gaussian elimination with parapivoting. 

The matrix A in solving is destroyed and the result is then placed 

in matrix A's N plus f i r s t column for output. 

GAUSL employs the following algorithm: 

A: Find largest element (value) in given column. 

B: Check to see i f the element in A is the f i r s t 

nonzero diagonal position in matrix. 

I f - yes, go to D. 

I f - no, go to C. 

C: Interchange rows, setting the element in A in 

f i r s t nonzero diagonal position. 
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D: Row reduce matrix (.gaussian elimination). 

E: Parapivot by column reducing matrix. ' 

F: Return to A to select new element from next given 

column. 
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S U B B O U T I I B G A O S L ( I E A » I I C A , L L , « S , A | 
DOUBLE P B B C I S I O N X , A ( M B A , S C A ) 
DOUBLB P B B C I S I O B DABS 

C 
C GAOSL SOL TBS A * X - B . I H E 8 B k I S » * » , BT G A O S S I A * B L I B I 8 A T I 3 S BITH 
C P A B A P I T O T I B G . TBB TECTOB B I S PLACED I D COLUNH H » 1 OP A 
C A I S D B S I B O I E D , A I D THE SOLUTION I S PLACED I S COLUON R»1 
C 

11-1+1 
8T-N+IS 
I P ( I . E Q . 1 ) GO TO 5,0 

C 
c S T A B T B L I B I B A T I O I 
c 

DO 1 0 1 - 2 , 1 
I P - I - 1 
I 1 - I P 
X A DABS ( A ( 1 1 , 1 1 ) ) 
DO 1 1 J - 1 , 1 
I F ( D A B S (A ( J , I I ) ) . L T . I ) GO TO 1 1 
X» DABS (A ( J , 1 1 ) ) 
I P - J I 

11 C O I T I N O B 
I P ( I P * E Q . I 1 ) GO TO 1 3 

C 
C BOH IHTBBCHAIGB 
C 

DO 1 2 J - I 1 , R T 
X - A ( I 1 , J ) 
A ( I 1 , J ) - A ( I P , J ) 

1 2 A ( I P , J ) —X 
1 3 DO 1 0 <1—1,8 

X " A | J , I 1 ) / A ( 1 1 , 1 1 ) 
DO 1 0 R - I , M R 

10 A(J,K)-A(J,K)-X«A(I1,K) 
C 
C BLiaiBATIOB PUSHED, 801 BACKSOBSTITOTION 
C 

5 0 DO 2 0 E P - 1 , 8 
I » B 1 - I P 
DO 2 0 K - I 1 . I T 
M T . K ) » M T , K ) / M I , I ) 
I F F L . B Q . 1 ) GO TO 2 0 
I1-I-1 
DO 2 5 J - 1 , 1 1 

25 A ( J , K ) - A ( J , K ) - A ( I , K ) * A ( J , I ) 
2 0 COKTIHUE 

BETU KB 
END 

» 
(( 
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SUBROUTINE GIBBS (PIS, P2S) 

Input Parameters: 

Real PIS: 

Real P2S: 

Matrix A: 

Vector P: 

Vector G: 

VECTOR ROD: 

Integer NT: 

The Output Is: 

Vector SA: 

Vector G: 

Pure component one vapor pressure. 

Pure component two vapor pressure. 

By COMMON/DIV/A, P, G, ROD, NT, NPI, AA 

Dimension [NT, NT] and contains the discrete 

zation weights in each row for each root ( i .e . 

i row implies i root). 

Dimension [NT] and contains system pressure at 

the given roots. 

Dimension [NT] and contains the in i t ia l values 

of Gibbs excess free energy [GE/RT]. 

Dimension [NT] and contains the zero roots to 

the Jacobi polynomial. 

The number of internal collocation points plus 

the end points. (NT = N + NO + Nl). 

By COMMON/DIV/SA, G 

Dimension [NT] and contains the derivatives 

at G at each zero root, [ i . e . {{jl x = r o o t ] • 

Dimension [NT] and contains the values of G 

after determination of iteration procedure. 

GIBBS uses a Newton-Raphson iteration procedure with in i t ia l esti-

mates of Gibbs excess free energy at low pressures. The equations 

(1) and (2) are inserted in equation (3), a differential equation 

in G results. The derivatives are approximated by equation (4). 



-69-

As a result of inserting equation (.4) for the derivatives, the 

reduced differential equation is solved at the collocation points 

to N coupled linear equations. These equations are then solved 

by Gaussian elimination (A»X = B). 

Note: In Gibbs, the nonisothermal, nonisobaric Gibbs-Duhem equation 

has been simplified by taking into account the low pressure. 

1) Close to the ideal state the volume excess is zero and 

Gibbs free energy terms are included in the low pressure 

analysis. 

2) The reference state is taken as the pure component vapor 

pressure. 

GIBBS employs the following algorithm: 

A: Calculate SA(.I) by last approximation of G at the 

collocation points. 

B: Compute the activity coefficients SI, S2 by using 

last approximation of G and SA at the collocation 

points. ]\ 

C: Formulate next approximation of deviation term by 

the Newton-Raphson procedure. 

D: Invert matrix (Gaussian elimination). 

E: Compute new approximation to G at the collocation 

points. 

F: Test for convergence of Del and new value of G. 

I f /S 2 / < 1(T6, go to return. 

dP 
Thus, only the excess 

I f /S 2 / > 1Q'6, go to A., 
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LIST OF EQUATIONS 

0 ) i n Y l = g + ) = s i . t 

(3) P - x ^ P ^ * - X2Y2P2S2A:.= q 

*' saturation " k % 
where g = G = GE/RT and SA = . 

(7 1 

The Newton-Raphson Procedure is as follows: 

f(gk) 
gk+i ~ gk ~ TTg^) 

minimize this term by lett ing i t equal y^. 

The resulting set of equations are of the form: 

, f ( g k ) - y k = f(gk ) 

%y = B 

Inversion yields ys which contains new approximation for G". 

• t 
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S U B R O U T I I E G I B B S ( P I S , P 2 S ) 
c ' 
C S U B R O U T I N E G I B B S S O L ? E S THE COUPLED HOB LINEAR O L L O C A T I 3 . 1 
C EQUATIONS 
C 

DOUBLB P B E C I S ION A ( 2 5 , 2 5 ) , SA ( 2 5 ) , P ( 2 5 ) , G ( 2 5 ) , ROD ( 2 5 ) 
DOUBLB P R E C I S I O N B ( 2 5 , 2 5 ) , S I ( 2 5 ) , S 2 ( 2 5 ) . P I S , P 2 S , S Q 
DOUBLE P B E C I S I O B DBZP 
DOUBLE P B E C I S I O R A A ( 2 1 ) 
C 0 8 H 0 N / D I V / A , S A , P , G ,FIOD, I T , N P L , N 
C O B H O H / L X 6 / A A 

5 0 2 FORHAT ( 1 B 0 , ' B O R E T H A I 15 I T E R A T I O N S ' ) 
5 0 J F O B B A T ( 1 H O , ' I T E B A T I O B N A ' , 1 5 ) 

Nil 8*6 
I I E B S 0 

2 5 I T E R — I T E R * 1 
I F ( I T E B - 1 5 ) 2 7 , 2 7 , 2 6 

2 6 R B I T E ( I B B , 5 0 2 ) 
GO TO 1 0 0 

2 7 DO 2 B I = " 1 , B T 
2 8 S A ( I ) ' 0 . 

DO 3 0 1 = 1 , N T 
DO JO J » 1 , N T 
SA ( I ) = 5 A ( I ) +A ( I , J ) • G ( J ) 

3 0 CONTINUE 
DO HO 1 * 2 , B P L 
5 1 ( I ) - B O D ( I ) • P I S ' D E X P ( G ( I ) • ( 1 . - B O D ( I J ) • S A ( I ) ) 
5 2 ( I ) > ( 1 . - B O D ( I ) ) * P 2 S * D B X P (G ( I ) - R O D ( I ) • S A ( I ) ) 
I B 1 - 1 - 1 
B ( I B 1 , 8 P 1 ) S P ( I ) - S I ( I ) - S 2 ( I ) 

4 0 CONTINUE 
DO 5 0 1 * 2 , B P 1 
I B 1 = 1 - 1 
DO 5 0 J - 2 , B P 1 
J«1=J- 1 
I F ( I - J ) 1 5 » * 8 , 9 5 

I S B ( I B 1 , J H 1 ) — S I ( I ) « ( 1 . - B O D ( I ) ) *K ( I , J ) * S 2 ( I ) • H O D ( I ) * A ( I , J ) 
GO TO 5 0 

» 8 B ( I B 1 , I B L ) — S 1 ( 1 ) • ( " > - • ( I . - R O D ( I ) ) *A ( 1 , 1 ) ) - S 2 ( I) • ( 1 . - R O D ( I I * A ( I , I ) ) 
5 0 CONTIHOE 

CALL G A U S L ( 2 5 , 2 5 , N , 1 , B ) 
SQ=»0. 
DO 6 0 1 - 1 , H 
I P 1 = 1 + 1 
G ( I P 1 ) - G ( I P 1 ) - B ( I , N P 1 ) 
SQ = SQ+B ( I , » P 1 ) **2 

6 0 CONTINOE 
I F ( S Q - 1 . D - 1 2 ) 7 0 , 2 5 , 2 5 

7 0 H B I T E ( N H R , 5 0 3 ) I T E B 
, ; V 0 0 CONTINUE 
'' 1 ' R B T 3 M 

EID 
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SUBROUTINE 6IBSA (FPP1, FPP2, STKOR, DELTA, ITER) 

Input Parameters: 

A , P, G, ROD: A s in GIBBS. 

Real FPP1: This quantity is the solute's reference fugacity 

with the Poynting correction factor. (See 

equation 1A.) 

Real FPP2: As in GIBSH. (See equation 2A.) 

Real STKOR: Pertains to the volume excess multiplied by 

the pressure gradient. (See equation 3A.) 

Real DELTA: The value of the maximum experimental liquid 

mole fraction given. 

The Ouput Is: 

Integer ITER: Gives number of iterations done before convergence 

occured. 

Vector SA, G: As in GIBBS. 

GIBSA uses the same iteration technique GIBBS does except both the 

higher pressure effects and the noncondensable component are taken 

into account, I i . e . the unsymmetric convention). 

1) The reference state is taken as FPP1 and FPP2. 

2) The volume-excess terms in the Gibbs-Duhem equation are 

included in the calculations of the activity coefficients. 

LIST OF EQUATIONS 

psat .VE p 

Equation (1A): FPP1 = r 
h 
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£ 
f ° EXP{^-} 

Equation (2A): FPP2 = -z — 
2 

Equation (3A): STKOR « ^ ) s a t u r a t i o n 

Activity Coefficients: 

1) i n r , - g + x j , ^ - ^ D s a t 

2) in v2 - g - x,(jja ^ ^ C ^ J s a t 

3) Psys - x^FPPlh, - x 2 ( F P P 2 ) t 2 = 0 



I 
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S0BROOTIHE GIBS* | » P 1 ,PPP2, JTKOR, DBLH, ITER) 
C 
C SUBROUTINE GXBSA SOLfES THE COUPLED BOB LIRBAB COLLOCATION 
C EQUATIONS 
C 

DOUBLE PBECISIOB A ( 2 5 , 25) ,S& (25) , P ( 2 5 ) ,G (25) , BOO(25) 
DOUBLE PRECISION B ( 2 5 , 2 S ) , S 1 ( 2 5 ) , S 2 ( 2 5 ) , P P P 1 ( 2 5 ) , F P P 2 (25),STKOB 

1 ( 2 5 ) , D E L T A , S Q 
DOUBLE PBECISIOI DEXP 
COHHOM/DXV/A,5A,P,S,BOD,B, NT 
ITEB-0 
BP1-MO 

25 ITEB-IXEB*1 
I P (ITEB- 100 ) 27 , 2 7 , . 1 0 0 

27 DO 28 1 - 1 , N T 
28 S A ( I ) - 0 . 

DO 3 0 I - 1 , NT 
DO 30 J - 1 ,BT 
S A ( I ) » S A ( I ) ( I , J ) * G ( J ) *2 . * B O D ( I J / D E L T A * » 2 . 

30 COBTIBUB 
DO 35 I—1,NT 
I P ( 5 A ( I ) . G T - 1 0 0 . ) GO TO 36 

35 COBTIBUB 
GO TO 3 8 

36 ITEB—101 
GO TO 100 

38 DO 4 0 1 - 2 , I T 
51 ( I ) -BOD ( I ) *FPP1 ( I ) *DEXP(G(I) + < 1.-BOD ( I ) ) * (S A (I)-STKOB (II I ) 
52 ( I ) - (1 . -BOO (I ) ) »PPP2 ( I ) *DEIP (G ( I ) -BOD ( I ) • (S A ( I ) -STKOB (I) ) ) 
I H 1 - I - 1 
B ( I B 1 , B T ) = P I I ) - S i ( I ) - S 2 ( I ) 

40 CONTINUE 
DO 50 I - 2 . B T 
IB 1 - 1 - 1 
DO 50 J - 2 , M T 
JH 1 - 0 - 1 
IP ( I - J ) 4 5 , 4 8 , 4 5 

45 B ( I M , J R 1 ) » 3 1 ( 1 ) • ( 1 . - B O D ( I ) ) « A ( I , J ) * 2 . *ROO(I) /DELTA*«2. »S 2 ( I ) 
1•BOD(X)•A ( I , J ) * 2 « *BOD(I)/DELTA** 2* 

GO TO 5 0 
48 B ( I H 1 , I B 1 ) — S l ( I ) * ( 1 . « - ( 1 . - B O D ( C ) ) * A ( I , [ ) • 2 . * R O O ( I ) /DELTA**2. ) -

1 S 2 ( I ) * ( 1 . - B O O ( I ) * A ( I . I ) * 2 . » B O D ( I ) / D E L T A * * 2 - ) 
50 COHTXBUE 

CALL G A U S L ( 2 5 , 2 3 , H P 1 , 1 , B ) 
SQ-O. 
DO 60 1 - 1 , B P 1 
I P 1-1*-1 
G ( I P 1) «G ( I P 1) - B ( I , B T ) 
S«-S©*-B(I ,NT) **2 

60 C O M I M B 
IP(*0-1.»-0») 1M»2S»24 

100 COBtLBVB 
nt>M 
EM 
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SUBROUTINE GIBSH (FPP1, FPP2, STKOR, ITER) 

Input Parameters: 

A, P, G, ROD: As in GIBBS. 

Real FPP1: This quantity is a corrected pressure ( i .e . a 

reference state) for component one, (see equation 

1A). 

Real FPP2: Same as for FPP1 except for component two, 

('see equation 2A). 

Real STKOR: Pertains to the volume excess multiplied by the 

pressure gradient, (see equation 3A). 

The Output Is: 

Integer ITER: Gives number of iterations done before convergence 
occured. 

Vector SA,G: As in GIBBS. 

GIBSH uses the same iteratHoil technique GIBBS does except the 

higher pressure effects are hlj-MII jftto account. 

1) The reference state is |aj<en fts FPP1 amd FPP2. 

2) The volume-excess terms iii Qibbs-Duhem equation are 

included in calculat'lu|| Pf the ^plijVity cnRff|r1ent§-

l i s T 

( 1 A ) • M 
I 

T L 

Poynting correction factor Used* 

(2A) FPP2 = 
f I EXP{^£} 
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C3A) STKOR = ^ ( ^ ) s a t u r a t 1 o n 

Activity Coefficients: 

1) In Y l = 9 + x2 - )s a t Uration 

2) In y2 = 9 - x-| (d + RT^) )saturat ion 

3 ) P - x 1 ( ; F P P I ) y 1 - x 2 ( ; F P P 2 ) y 2 = o 
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S U B B O U T I I E G I B S 8 ( P P P 1 , P P P 2 , S T K O R , I T E B ) 
C 
C 5 Q B B 0 D T I B E G I B S B SOLVES THE COUPLED MOB LINEAR COLLOCATION 
C EQUATIONS 
C 

DOUBLE P R E C I S I O N P P P 1 ( 2 5 ) , P P P 2 ( 2 5 ) , S T K O R ( 2 5 ) , B ( 2 5 , 2 5 ) , S 1 ( 2 5 ) , 
1 S 2 ( 2 5 ) , S Q 

DOUBLB P R E C I S I O N A ( 2 5 , 2 5 ) , S A ( 2 5 ) , P ( 2 5 ) , G ( 2 5 ) , H O D ( 2 5 | 
DOUBLB P R E C I S I O N A A ( 2 1 ) 
DOUBLB P R E C I S I O N DEXP 
C O H N O N / D I V / A , S A , P , G , B O D , N , N P 1 , NT 
CONNON/LEG/AA 
ITER—0 

2 5 I T E R - I T E R F L 
I P ( I T E R - 1 0 0 ) 2 7 , 2 7 , 1 0 0 

2 7 DO 2 8 1 * 1 , B T 
28 SA(I)=0. 

DO 3 0 1 * 1 , N T 
DO 3 0 J * 1 , NT 
SA ( I ) * S A ( I ) +A ( I , J ) *G ( J ) 

3 0 CONTINUE 
DO 3 5 1 = 1 , N T 
I P ( S A ( I ) . G T . 1 0 0 . ) GO TO 3 6 

3 5 CONTINUE 
GO TO 3 0 

3 6 I T B R - 2 6 
GO TO 1 0 0 

3 8 DO 4 0 1 = 2 , N P 1 
A R G 1 = ( G ( I ) • | 1 . - R O D ( I ) ) * ( S A ( I ) — S T K O R ( I ) ) ) 
A R G 2 - ( G ( I ) - B O D ( I ) * ( S A ( I ) - S T K O R ( I ) ) ) 
I P ( A R G 1 . G E . 1 0 0 . . 0 B . A B Q 2 . G E . 1 0 0 . ) G O T O 3 6 
Si (I) 3ROD (I) * P P P 1 (I) *DEXP (G (I) • ( 1 . - R O D (I)) *(SA(I) -STKOR (I) ) ) 
S 2 (I)*(1.-ROD ( I ) )*PPP2 (I)«DEXP(G (I)-ROD(I) *(SA(I) -SrXOB (II ) ) 
i n 1 * 1 - 1 
B ( I F L 1 , 8 P L ) * P ( I ) - S 1 ( I ) - S 2 ( I ) 

4 0 CONTINUE 
DO 5 0 I - 2 . B P 1 
181*1-1 
DO 5 0 J * 2 , 8 P 1 
J H 1 = J - 1 
I P ( I - J ) % 5 , » 8 , I » 5 

4 5 B ( I H 1 , JH 1) * -»S 1 ( I ) * ( 1 . - R O D ( I ) ) * A ( I , J ) » S 2 ( I ) * R O D ( I ) * A ( I , J ) 
GO TO 5 0 

4 8 B ( I B 1 , I H 1 ) = - S 1 ( I ) * ( 1 . + ( 1 . - R 0 D ( I ) ) • » ( I , I ) ) - S 2 ( I ) * ( 1 . - R O D ( I I « A ( I 
5 0 COBTINUB 

CALL G A U S L ( 2 5 , 2 5 , B , 1 , B ) 
S Q * 0 -
DO 6 0 1 - 1 , V 
I P 1 - I + 1 
G ( I P 1 ) * G ( I P 1 ) - B ( I , N P 1 ) 
S Q - S 0 * B ( I , N P 1 ) **2 <>'"" 

6 0 C O B T I B O I 
I P ( S Q — 1 . D - 0 6 ) 1 0 0 , 2 5 , 2 5 

1 0 0 COBTIBOB : 
BETOBB 
B I D 
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SUBROUTINE GNVOL (NKOMP, X, VC, ACEM, 

TCT, T, TAU, ANY, TC, VMIX) 

Input Parameters: 

Integer 

NKOMP: 

Real X: 

Vector VC: 

The number of components in the mixture. 

The mole fractions of the NKOMP components in 

the liquid phase. 

Dimension [NKOMP] and contains the pure com-

ponents' crit ical volumes. 

Vector ACEM: Dimension [NKOMP] and contains the pure com-

ponents' acentric factor. 

Dimension [NKOMP, NKOMP] and contains the Matrix TCT: 

Real T: 

Matrix TAU, 

ANY: 

Vector TC: 

The Output Is-: 

Real VMIX: 

pseudocritical constants (Tc.^) which has 

no physical significance except to charac-

terize bimolecular interactions between unlike 

molecules, i .e . crit ical temperature charac*;: 

teristic of the i - j interaction. 

The temperature of the system. 

Dimension [NKOMP, NKOMP] and contains the bi-

nary interaction parameters. 

Dimension [NKOMP] and contains the pure com-

ponents' crit ical temperatures. 
A 

The saturalted liquid molar volume at the given 

composition. 
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GNVOL calculates the saturated molar volume at the given composition 

using the suggested mixing rules for liquid mixtures in The 

Properties of Gases and Liquids, 3rd edition. 

GNVOL employs the following algorithm: 

A: Calculate mixture properties by set of equations ( I ) . 

B: Test i f T r <_ 0.93, go to C. 

i f T r > 0.93, go to D. 

C: Calculate new mixture properties by set of equations 

( I I ) . 

D: Compute saturated molar volume with correct mixture 

properties. 

LIST OF EQUATIONS 

SET ( I ) 

Vcm = S v c i 

The Pseudocritical Parameters: 

T = Y ] 9.8 .T . . cm . 1 j c i j 

where T . . = TCT^ c i j i j 

= £ e ^ . 
171 ! 

8. = FFI. 

a). = ACEN. 1 1 

e_. = 
x.V • A i ci 

i NKOMP 

\\ 
i i 



-80-

T rm ^ c m 

SET ( I I ) 

The Corrected Pseudocritical Parameters: 

Tl — T + f T _ T \ 
cm cm v ct cm' 

V' = V + (V ^ - V ) cm cm ; ct cnr 

where T c t , £ e ^ + £ V £ e ^ 

y V 2 / 3 

e, 
k y : / u 2 / 3 

i 
Vy-V"'.' ci 

v = v - v m rm cm 
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SOBBOOTHB CBTOL(BKOBP,X.TC,ACER,TCT,T,TAO,All ,TC,THIX) 
C 
C SOB BOO T H E GBFOL CALC0LATB3 THE BIXTOBE PROPERTIES OS ED I I THE 
C CALCULATION O P THE SATURATED L I Q U I D SOLAR FOLURE. 
C 

DIf lBBSIOl X (2 ) , T C ( 2 ) .ACER (2 ) , T C T ( 2 , 2 ) . ABI ( 2 , 2 ) ,TAD ( 2 , 2) , T C ( 2 | 
DIBBBSIOB FFI ( 5 ) , T E T 1 ( S ) 
TCB»0. 
ICEBH-O. 
TCH«0. 
DO 1* I - 1 . B K O B P 
T C R » T C 8 * I ( I ) M C ( I ) 

I t COBTIBOS 
DO IS I - 1 . B K 0 8 F 
P F I < I ) » X ( I ) * ? C ( I ) / 1 C B 
ACEBB*ACSBN+PFI (I)-*ACER<I) 

15 COBTIBDB 
DO 16 I*1 ,BKQBP 
DO 16 J * 1,BKOBP 
TCB-TCH* FFI ( I ) • F F I ( J ) * T C T ( I , J ) 

16 COBTIBUB 
TBBIX-T/TCH 
TCBB-TCH 
IP ( T B B I X - 0 . 9 3 ) S O , 5 0 , 2 0 

20 V C 2 3 ' 0 . 
DO 21 I * 1 , B I O B P 
TC23-»C23»X ( I ) * V C ( I ) ( 2 . / 3 . ) 

21 c o B T i a a s 
DO 2 2 I - 1 . B R 0 B P 
TBTA ( I ) • X ( I ) *TC ( I ) * * ( 2 . / 3 . ) / T C 2 3 

22 COHTIBOB 
T8I*0. 
TTAO-O. 
VTC»0. 
T T O O . 
DO 2 * I * 1 , I K O B P 
DO ?.3 J=»1 fBK08P 
» B I - ? B I » T E T A ( I ) • T E T A ( J ) M B T ( I , J ) 
TTI lJ-ITAtl+TBIA ( I ) *TETA (J ) *TA 0 ( 1 , 0 ) 

23 CO!iTIBIIB Jj 
TTC=»TTC*TSTA|JI) * T C ( I ) / / J 

TTC*TTC»TETA(I) « T C ( I ) 
2 4 CONTIBOB 

*TC»TTC»VBI 
TTC-TTC* STA 0 
CALL ITBRS(T,TTC,TCB,TBBIX,DTB) 
TCH8»?C8«'(fTC-«CB) •DTB 
TCH«T/TB8IX 

50 CALL HLIKSB(THHIX,ACERB,»B8IX) 
rnxx»fHii*vcan 
RBTOBB 
IBB 
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SUBROUTINE INTDAL (X, ARG, VAL, Y, NDIM, EPS, IER) 

Input Parameters: 
I, i 

Real X: The experimental liquid mole fraction where 

interpolation value is desired. 

VECTOR ARG: Dimension [NDIM] and contains the ordered, by 

magnitude of distance, collocation points. 

Vector VAL: Dimension [NDIM] and contains the corre-

sponding values of g for the ordered collo-

cation points in ARG. 

Real EPS: Given numerical value for testing results ob-

tained in program. 

Integer IER: An error code. \ 
i ( 

IER = 0 implies no error (convergent), 

I'ER = 1 , 3 . implies divergence and last 
0 iteration value used for result. 

Integer NDIM: States maximum number of collocation points. 
The Output Is: 

Real Y: The interpolated value of y pertaining to the 

given X experimental point, • 

INTDAL computes the y. = fCx.O value where x. is the experimental . I 1 1 
liquid mole fraction by four point Lagrange interpolation. The 

algorithm consists of interpolation using an increasing number of 

interpolation points, ( i .e . collocation points). 

INTDAL employs- the following algorithm: 

A: Test whether or not in the range and dimension of 

the "matrix. 
i • ; 
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B: Compute new approximation of y at the given x experi-

mental value. 

C: Test approximation of new and old. 

I f / y new - y old/ < EPS, go to E. 

I f / y new - y old/ > EPS, go to D. 

D: Recompute approximation of y with increased number 

of collocation points. Go to C. 

E: Test for divergence; STOP. 

LIST OF EQUATIONS 

Lagrange interpolation equation for y = f(x) where xQ is the 

given mole fraction where value is desired: 

. , . _ f
kCx)k.Cx-xk+1) - W x ^ H x - X f c ) 

W x V l - xk - x k + 1 , 

f(x) is approximated by iterations of increasing number of col-

location points included, fk+-| (xk+-|). 
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SUBBOOTIIB IBTDAt <X,1RG,TA1.# f , I D I f l , BPS, IBB) 
DIBKBSIOB ABC (9DIH) , ViL (BDI3) 
DOOBLB PBBCISIOB A B G A t , X , t , B 
OOUBLB PBSCISXOB DABS 
DOUBIB PBECISIOI BPS 
I B B - 2 
D B 1 T 2 - 0 . 
I F ( I D I B - I ) 9 , 7 , 1 

1 DO 6 J—2,BDIH 
DBLT1-DBLT2 
I B B D - J - 1 
DO 2 1 - 1 , I B I D 
B - A B Q ( I ) - A B G | J ) 
I F ( B ) 2 , 1 3 , 2 

2 T A I . ( J ) = . ( T A L ( I ) * ( X - A f l G ( J n - » » t ( J ) • ( X - A B G ( I ) ) ) 
DSLT2-DABS(VAL(J) -TAL(XBBD)) 
I P ( J - 2 ) 6 , 6 , 3 

3 I F (DBLZ2-BPS) 1 0 , 1 0 , 4 
4 I P ( J - 8 ) 6 , 5 , 5 
5 I P ( D B t T 2 - D B l T l » 6 , 1 1 , 1 1 
6 COBTIRUB 
7 J - B 0 I 8 
S I-VAi.(iI> 
9 BETUBI 
10 I B B - 0 

so TO a 
11 I B B - 1 
12 J - X 2 I D 

GO TO 8 
13 188—3 

GO TO 12 
BBO , 

'vV 
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SUBROUTINE INTP (X, Z, F, WORK, IROW, ICOL, ARG, VAL, NDIM) 

Input Parameters: 

Real X: The experimental liquid mole fraction where 

interpolation value is desired. 

Real Z: Dimension [IROW] and contains the set of col-

locations points, (i.e. x - i = 1, IROW). 

Real F: Dimension [IROW] and contains the corra-

sponding values of y at each collocation point, 

( i .e . y. = f (x..)). 

Integer IROW: Denotes the number of elements given in a 

column vector, states size, ( i .e . dimensipn). 

Inter ICOL: States number of column vectors used in inter-

polation. 

Integer NDIM: States maximum number of collocation points to 

be used in the interpolation algorithm. 

The Output Is: 

Real Vector 

ARG: Dimension [IROW] and contains the values af 

the collocation points in increasing order of 

magnitude of distance from X experimental. 

Real Vector 

VAL: Dimension [IROW] and contains the values of 

y corresponding to the collocation points 

ordered in ARG. ' . 

INTP orders the collocation vectors according to distance from 
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the X experimental point and places the values in ARG. and VAL,.. 

INTP employs the following algorithm: 

A: Test whether desired point is within the range. 

I f number of rows L.E., then quit. 

I f number of rows G.T., then use last value. 

B: Work,. = |aX,.|. 
Find and set B = maximum value of |aX^|. 

C: Find value I I corresponding to the minimum distance 

value of X . j to the minimum distance value of X,. 
to the X experimental value. 

D: Put values corresponding to the minimum into ART 

and VAL vectors. 

E: Eliminate "test for al l previous va-Tues set in ARG. 

and VAL vectors. 

F: Return to B to test remaining collocation points. 
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SUBBOOTIBB I B T P ( Z . Z , F , I O B E , i B O « , I C O L , I B S , TAL, RDIR) 
OIBEHSIOM Z(RDIH),P{1IDIB),BORK(BDIB),ARG(RDIR),TAL(BOIB) 
DOOBLB PRECISIOB DABS 
DOUBLE PBECISIOB Z,P,Z,VOBK,ARG,VAL,B,DELTA 
IP (IBOB) 1 1 , 1 1 , 1 

1 B=RDIH 
I P ( B - I B O B ) 3 , 3 , 2 

2 B-IBOB 
3 B-O.DO 

DO 5 I » 1 , I B O B 
DELTA-DABS ( I ( I ) - I ) 
IP(DELTA-B) 5 , 5 , 4 * 

4 B-OBLTA 
5 HOBK (I)-DELTA 

B = B * 1 . D O 
DO 10 J * 1 , 1 
DBLTA-B 
DO 7 I - 1 , I B O B 
IP (BOB! ( I ) -.DELTA) 6 , 7 , 7 

6 I l - I 
DBLTA-BOBK(I) 

7 CQMTIBUE 
A R G ( J ) - Z ( I I ) 
IP (ICOL-1) 8 , 9 , 8 

8 T A L ( 2 * J - 1 ) - P ( I I ) 
I I I - I I * I B O B 
TAL(2*J) - f ( I I I ) 
GO TO 10 

9 V A L ( J ) - P ( X I ) 
10 BOBK ( I I ) " B 
11 B I T M I 

BID 
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SUBROUTINE INTRP (.ND, NT, X, ROD, FA, XINTP) 

Input Parameters: 

Integer ND, 

NT: As in JCOBI. 

Real X: The abscissa x where y(x) is desired. 

Vector ROD, 

FA: Dimension [NT] and contains the zero roots of 

theJacobi polynomial plus the f i rs t deriva-

tive of theJacobi polynomial at the zero 

roots. 

The Output Is: 

Vector XINTP: Dimension [NT] and contains the interpolation 

weights L^Cx) used for the approximation of 

y(x). 

INTRP finds the interpolation weights for a given x by a four 

point Lagrange interpolation and then places them in vector 

XINTP. This can be done for any x value within the limits of the 

given root and FA. 

INTRP employs the following alforithm: 

A: Generate the polynomial PNj(xA)-

B: Evaluate the Lagrangian interpolation coefficients. 

LIST OF EQUATIONS 

Let x^ = x the abscissa point where y is desired, 

x.. the zero roots of the Jacobi polynomial. 

L. the i ^ degree of a Lagrange interpolation polynomial. 
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( I ) denotes f i rs t derivative. 

Once values of y at the roots are known (y. ) , the value of 

y at any point within the domain may then be computed by: 

y(xA] = £ XINTP(i).y(i) 
a i=1 



-90-

S9BBOOTXBB IBTBP{BD , ) , X , B O D , F A , I I I T P ) 
c 
C SUBROUTINE IBTBP DBTEBBIHBS TBE 8EIGHTS XINTP USED IN TAB 
C LAGBAIGIAN IBIBBPOLAIIOH 
C 

DOOBtB PRBCISXOR X, T.POL,BOD (ND) , FA (ND) , IIHTP (N D) 
POL-1. 
DO 5 1 - 1 , 1 
I-X-ROD(X) 
XII TP ( I ) - 0 . 
IF ( I . B Q . O . ) X I N T P ( I ) - 1 . 

5 POL—POL*I 
IF (POL. B Q . 0 . | GO TO 10 
DO 7 1 - 1 , 1 

7 XINTP ( I ) - POL/FA ( I ) / (X-flOD ( I ) ) 
10 BBTOBB 

BID 
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SUBROUTINE IPOINT (J, NUMPT, ARRAYP, 

SSCALE, BSCALE, POINT, SYMBOL) 

Vector 

BSCALE: 

Input Parameters: 

Vector 

SSCALE: An array containing the minimum value from the 

prominent ordinate scale reading of each 

data set. 

An array containing the maximum value from 

the prominant ordinate scale readings of 

each data set. 

Vector 

ARRAYP: An array containing the ordinate values for 

the given data set to be plotted. 

Tnteger J: A number which indicates the desired data 

set to be plotted. 

Vector NUMPT: An array containing the number of data points 

in each data set. 

Vector 

SYMBOL: An array containing the symbols designated 

for a l l data sets. 

The Output is: 

Vector POINT: An array containing the given symbol for the 

data set of interest and the symbol is located 

in the appropriate position in the 101 charac-

ter long array. 
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IPOINT computes the right location for the symbol in its 101 

character long array, POINT. I t then places the designated 

symbol for the given data set into that position and returns 

to PLOT for plotting. 
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SUBBOOTINE IPOIBT(J,BO HPT,ABBATP,SSCALE,BSCALB,POINT,STABO LI 
DKHENSION SUHET ( 10) ,ABBATP(10),SSCALE(10) ,BSCALE(10) 
IRTEGEB O.POIIT (101)rSTBBOL<10),BLANK 
DATA L/'L'/fO/'O'/,BLANK/' • / 
DO 1 K=»1,101 
POINT(K)- BLANK 

1 COBTIIOB 
DO 6 1*1, 10 
IP (J.GT.NUBPT(I)) GO TO 6 
TA XIS3IPII (100.0*(A BBATP(I) -SSCALE(I) ) /(BSCALE(I) -SSCALB(I| | »0.5| 
TAXIS=XAZIS«1 
IP (TAXIS-101) 3,3,2 

2 POINT(101)*0 
GO TO 6 

3 IP (TAXIS—1) 4,5,5 
4 POINT (1)-L 

GO TO 6 
5 P0IHT(IAII3)»STnB0L(I) 
6 CONTINOB 

BBTOBB 
END 
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SUBROUTINE ITERE (T, TCT, TCM, TRMIX, DTR) ... 
•Iff, 

The temperature of the system. 

The true mixture cr i t ical temperature. 

The pseudocritical temperature of the mixture. 

The reduced temperature for the mixture. 

A deviation function expressed in terms of 

the reduced temperature TRMIX. 

ITERE used an iterative procedure in the computing of TRMIX byj 

using the equations (4-10.7) and (4-10.9) from The Properties of 

Gases and Liquids, 3rd edition. Also, i f fai lure to converge to 

a value results, a printout is obtained with the best approxi-

mation of TRMIX used. 

ITERE employs the following algorithm: 

A: In i t ia l approximation to TRMIX. 

B: Set iteration counter. 

C: Compute value of DTR. 

D: Test TRMIX old with new approximation. 

I f TRMIX (old) - (new) <_ 10"8, go to E. 

I f TRMIX (old) - (new) > 10' 8 , go to B. 

E: Compute DTR with new approximation and return. 

LIST OF EQUATIONS 

(4-1Q.7) T' = T + (TrX - T )•DTR v ' cm cm cT cm 

r oi amc uci 3 . 

Real T: 

Real TCT: 

Real TCM: 

The Output Is: 

Real TRMIX: 

Real DTR: 
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(4-10.9) DTR = f(T^m) = EXP {T"m - 1)(2901.010) 

- 5738.92 7rm + 2849.85 + ^ 104147 } 
tm 
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J 

SUBB08TIBB ITE8E(T,TCT,TCB,TBHIX,DTB) 
C 
C SUBHOOTIBB XTBBS / I IDS IBB HIXTOHE REDUCED TEBPEHATOBB OSIHG 
C REGULAFALS 
C 

DOOBLB PBECISIOB TB1,T82 ,TB3,TBTBO,TRH,TRD,DTRD,F1,P2 ,F3 
DOOBLE PBECISXOB DIBS,DEEP 

2 0 0 POBBAT(180 , • ITEB8 FAILS TO COBVERGE IB 50 ITEBATIOH5') 
«Bfl=*6 
T B 1 - 0 . 9 
TR 2 - 1 . 0 
TBTBO-T/TCT 
TBH-T/TCH 
T3B-TB8/TBTBU-1 . 
F1=»(TB8/TB1-1 . ) -TBP*DBZP<-6. 0 1 9 0 00) 
F 2 - T B B - 1 . - T B B 
I T E B - 0 

5 ITEH-ITKRM 
IF ( ITEB-50) 6 , 6 , 4 9 

6 TB3-TH2-F2* ( T 8 2 - T H 1 ) / ( P 2 - P 1 ) 
DTBD—DEIP((TB3-1.D 0 0 ) • ( 2 . 9 0 1 0 I D 0 3 - 5 . 7 3 8 9 2 D 0 3 » T B 3 * 2 . 8 4 9 9 5 D 03 

1 * T B 3 * » 2 + 1 . 7 4 1 2 7 D 0 0 / ( 1 . 0 1 D 0 0 - T B 3 ) ) ) 
F 3 - ( T H 8 / T B 3 - 1 . ) - T B H • D T B D 
I F ( D A B S ( T B 3 - T B 2 ) . L T . 1 . D - 0 8 ) GO TO 5 0 
IF(DABS(TB3-TB1) . L T . 1 . D - 0 8 ) GO TO 50 
I F ( F 2 * P 3 ) 2 5 , 5 0 , 2 3 

23 T H 2 T B 3 
F 2 - F 3 
BO TO S 

2 5 TH1-TB3 
P 1 - P 3 
GO TO 5 

49 B B I T 8 ( 1 8 8 , 2 0 0 ) 
50 COBTXBOB 

TBBIX-TB3 
DTB-DTRD 
EETOM 
SIB 
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SUBROUTINE JCOBI (ND, N, NO, N1, AL, BE, FA, FB, FC, ROOT) 

Input Parameters: 

Integer ND: The dimension of vectors FA, FB, FC, and ROOT. 

Integer N: The number of interior interpolation points. 

Integer NO, 

N1: Tells'whether the end points are included. 

I f NO, N1 = 0, endpoints excluded. 

I f NO, N1 = 1, endpoints included. 

Real AL, BE: The values of a and B which denotes the particu-

lar Jacobi polynomial used. 

The Output Is: 

Vector Root: Dimension [NT] and contains the zero roots to 

the given Jacobi polynomial. 

Vector FA, 

FB, FC: Dimension [NT] and contains the f i r s t , second 

and third derivatives at the zero roots of the 

given Jacobi polynomial. 

JCOBI f i rs t calculates the coefficient for the recursion formula. 
o 

Then the zeros of the polynomial are found by a Newton method with 

root suppression. Finally, the deriviatves of the Jacobi poly-

nomial are evaluated at the zeros. 

JCOBI employs the following algorithm: 
Evaluation of coefficients in recursion formulas. 

Store coefficients in FA and FB. 

Determination of roots by Newton method with 
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SUBIOUTIIB ITBBE(T,TCT,TCa ,I8BIX,DTR) 
C 
C SUBBOOTIIB ITERS 71IDS TBB NIXTUBE REDUCED TEBPEBATURB USING 
C BEGULAFALS 
C 

DOUBLE PBECISIOB TBt ,T82 ,TB3,TBTB0,TRR,T8D, D T B D , F 1 , P 2 , F 3 
DOUBLE PBECISIOB DABS,DBXP 

2 0 0 FOPHAT(1 HQ,' ITEBB FAILS TO CON VERGE I I 50 ITBBATIOHS ') 
IRB-6 
TB1-0- 9 
T B 2 - 1 . 0 
TRTRO-T/TCT 
TBH-T/TCH 
TBfl-TBH/TBTBU-1. 
F 1 = ( T B B / T B l - 1 . ) - T B | * D B I P < - 6 . 019D 00) 
F 2 - T R B - 1 . - T B I 
ITEB-0 

5 ITEH-ITBBM 
IF ( ITBB-50) 6 , 6 , 4 9 

6 T*3»TB2-F2» | T B 2 - T B 1 ) / ( F 2 - F 1 ) 
DTBD=»DBXP((TB3-1.D 0 0 ) * ( 2 . 9 0 1 0 1 D 0 3 - 5 . 7 3 8 9 2 0 0 3 » T B 3 * 2 . 8 4 9 9 5 D 03 

1 * T R 3 * « 2 t 1 . 7 4 1 2 7 D 0 0 / ( 1 . 0 1 D 0 0 - T B 3 ) ) ) 
F3-<TBB/TB3-1 . ) -TBH•DTBD 
IF ( D A B S ( T B 3 - T B 2 ) . L T . 1 . D - 0 8 ) 8 0 TO 50 
IF (DABS(TB3—TBI) .LT.1 .D-08) CO TO 50 
IF (F2»P3) 2 5 , 5 0 , 2 3 

23 TB2-TB3 
F 2 - F 3 
GO TO S 

2 5 TB1-TB3 
F 1 - F 3 
GO TO 5 
BB'XTB (NBB« 2 0 0 ) 

50 COITXBUB 
TBBII -TB3 
DTB-DTBD 
RETOBI 
BIB 
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SUBROUTINE JCOBI (ND, N, NO, N1, AL, BE, FA, FB, FC, ROOT) 

Input Parameters: 

Integer ND: The dimension of vectors FA, FB, FC, and ROOT. 

Integer N: The number of interior interpolation points. 

Integer NO, 

N1: Tells whether the end points are included. 

I f NO, N1 = 0, endpoints excluded. 

I f NO, N1 = 1, endpoints included. 

Real AL, BE: The values of a and B which denotes the particu-

lar Jacobi polynomial used. 

The Output Is: 

Vector Root: Dimension [NT] and contains the zero roots to 

the given Jacobi polynomial. 

Vector FA, 

FB, FC: Dimension [NT] and contains the f i r s t , second 

and third derivatives at the zero roots of the 

given Jacobi polynomial. 

JCOBI f i rs t calculates the coefficient for the recursion formula. 

Then the zeros of the polynomial are found by a Newton method with 

root suppression. Finally, the deriviatves of the Jacobi poly-

nomial are evaluated at the zeros. 

JCOBI employs the following algorithm: 

Evaluation of coefficients in recursion formulas. 

Store coefficients in FA and FB. 

Determination of roots by Newton method with 
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suppression of previously determined roots. 

D: Add interpolation points at end points. 

E: Evaluate the derivatives of polynomial and 

store in FA, FB, and FC. 

LIST OF EQUATIONS 

The Coefficients of Recursion Formula: 

n - B + 1 91 ~ a + B + 2' 9N 
2 r 2 

= 1/2[1 - a " B 

C2N + a + B + I ) 2 - l' 

h = 0 h = (N - U(N + a - 1)(N + B - 1)(N + a + B - 1) 
N (2N + a + B - 1)(2N + a + B - 2)2(2N + a + B-

Root Determination: 

p j = ^ - OjJ'j-1 - HJPj-2 

P / P ( 1 > «(x) = N / K N 

1 "
 ir»/?» t p r ~ x T f 

where PQ = 1 

P 0 ) = Q 

p „ p t n 
- i 

Newton Iteration: 
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x ( i ) _ x ( i - 1 ) x^d-Di 
K+l K+l ~ fiLXK+l J 

where x j^j = x k + e a n d e i s a fixed value, e.g. 10"^. 

Derivatives: 

P ^ ( x . ) - (x. - tfP^M 

p f ( x - ) = ( X . - XjJP^C^I + 2Pj.tCx,) 

P<3 )(x.) = (x. - x j ) ^ | ( x i ) + 3 P ^ ( x . ) 

Starting with P ^ V - j ) = 1. p } 2 ^ ) = p j 3 ^ ) = 0 

are the zero root approximations, 

is the interval in which zero x̂  is located. 

(1). (2), (3) are indexes of the node tell ing what degree 

derivative is taken. 

i , j are subscripts which denote the particular independent 

variable used in interpolation routine. 
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SUBBOBTIRB JCOBI (*D,», 1 0 , « 1 , L L , B a , H , P 8 R PC,SOOT) 
C 
C SUBROUTIRB JCOBI CALCULATES TRB BOOTS OP THE JCOBI POLTHOHIAL 
C 

DOOB1B PRECIS10B AL,BB,PA ( R D ) ,PB ( R D ) „ P C ( I D ) , B O O T ( R D ) , I , I , B , K B , 
1AC,AD,AP,ID,XB,IP,XD1,XR1 
DOUBLE PBKCISIOL DABS 
AB-AL+BS 
AD-BS-AL 
AP-BB*AJ. 
PA (1)- (AD / lAB+2.) •1)/2. 
PB(1)-0. 
DO 10 1-2,1 
K*2*1-2 
Z-AB+TT 
PA(I)*(AB/Z*AD/ (Z*2.)•1.)/2. 
K-I-1 
IP (I. RE. 2) 00 TO 11 
PB(I)- (AB»AP»R)/Z/Z/|Z»1.) 
GO TO 10 

11 Z-Z*Z 
I-K* (AB* K) 

PB(I)-T/Z/(Z-T.) 
10 COMTIMOB X-0. 

DO 20 I—1,R 
26 ID-0. 

XD1-0. 
X I - 1 . 
XII-0. 
DO 30 J— 1 ,1 
xp-(ra (J|-x) » X B - P B ( J ) « X D 
XP1- IPA(J)-X)» X B 1-PB(J) •XDL-XH 
I D - I B 
I D W I L L 
XR-XP 

30 xri»xpi 
T-1. 
Z-XR/XB1 
IP(I.EQ.1) CO TO 21 
DO 23 J-2,I 

23 I—I-Z/(I-BOOT(J—1) ) 
21 Z-Z/I 

x-x-z 
IP(DABS(Z).GT.1D-9) GO TO 26 
ROOT (I) - X 
X - I » 0 . 0 0 0 S 

2 0 c o r n m 
RT—10*11•R 
I P ( W - » E . 1) 00 TO 35 
DO 4T 1—1,1 

41 BOOT (•• 2-1)-ROOT (1*1-1) 
BOOT(1)-0. 

3S I P D I . B Q . 1) ROOT (IT)-1. 
DO 40 1 - 1 , I T 
X-BOOT(X) 
PA(I)-1. 
PB(I)-0. 
PC (I)-0. 
DO 40 J » 1 , l f 
IP(J.BQ.X) GO TO 40 
T*X—BOOT(J) 
PC ( I ) « T * F C ( I ) » 3 - *PB ( I ) 
PB ( I ) * T * r B (X) « 2 . t P M I ) 
PA(I)-I*PA(I) 

40 CORTXHUB 
BBTOBI 
BIB 
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SUBROUTINE LEFIT (X, Y, N, K) 

Input Parameters: 

Real X: 

Reay Y: 

Integer N: 

Integer K: 

The Output Is: 

By a common statement 

COMMON/LEG/AA 

Vector AA: Dimension [K + 1] and contains the coefficients. 

to the f i t t ing function which represents the 

deviation from ideality, (i.e. Raoult's Law). 

LEFIT f i t s P-X data to a curve using Legendre polynomials and calls 

for GAUSL, a Gaussian elimination mehtod, to solve * X = B where 

X" is the vector M . At 0.02 = &X discrete intervals the pressure 

of the system is evaluated by the f i t t ing function. 

LEFIT employs the following algorithm: 

A: Calculate S(I) (deviation of Raoult's Law) at 

data points. 

B: Formulate curve (deviation of Raoult's Law) with 

S(I) as a weighting function. 

The experimental mole fraction of component 

one in the liquid phase. 

The experimental pressure of system at a given 

XEXP. 

The dimension of vectors X and Y, ( i .e . number 

of data points). 

The degree of the Legendre polynomial used for 

f ' - t ing the P-X data. 
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Formulate matrix with unknown coefficients. 

Invert matrix (solve for M) (call to GAUSL). 

Compute system pressure at 0.02 discrete jumps. 

LIST OF EQUATIONS 

Deviation Function: 

S(i) = Psys - P f t - (1 - x) - Ps
2

atx 

Weighting Function: 

Fitting Function: 

x('l - x) 

C(.I) • i s ( j ) x 0 - /x)P.(x) 
^ u 

where P.(x) = i degree Legendre polynomial 
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bUBNOUTINE LB PIT (I, Y, N , K) 
C 
C SUBROUTINE LB PIT PITS INDIVIDUAL POIHTS ON A CURVE UHEBE i IS THE 
C INDEPENDENT VARIABLE AND Y IS THE DEPENDENT 7 ABIABLE USIH3 A PUN-
C CTIOM CONTAINING LEGENDBE POLYNOMIALS AS THE PITTING FUNCtlON. 
C 

DOUBLE PBBCISION 12,13 
DOUBLE PRECISION PP 
DOUBLE PRECISION 11 
DOUBLE PRECISION DPLOAT 
DOUBLE PBECISION C(21) ,B<25,25) ,AA(21) ,PPP(S1) 
DOUBLE PRECISION X (25) , * (25) ,S (25) 
DOUBLE PRECISION POLES 
DIMENSION NUHPT(10) ,PTITLB(29),ISCALE(10,11) ,ISCALE(300), !• 

1 ANSA* (10,300) 
COHHON/LBU/AA 
COMMON PTITLB 

500 FOUHAT (10 (8F10.1,/) ) 
501 FUBUAT(1H0,«INTBHPOLATSD PRESSUBE-VALUES FOB X IN TUB INTERVAL 

1 BETWEEN 0.0 AND 1.0 . VALUES POB DISCBBTE JUMPS OP 0.02 IN I ' , / , 
2' A LEGENDUE POLIMOSIAL OF DEGBEE ',I2,» IS USED AS PITTING PUNCTI 
30N *) 
BNH=6 
KP 1=K*1 
DO 1 I31,KP1 

1 C(I)=0. 
DO 2 1=1,KPl 
DO I Ja1,KP1 

2 B(I,J)=0. 
DO 3 1=1,N 

j s (i) = r (i)-i (i)« (1,-x (i) (N) »x (i) 
DO it IB= 1,KP1 
DO 4 J-1,N 
Xi=X(J) 

l» C (IB) =C (IB) *S (J) »X I J) • (1.-X (J) ) • POLEG (X3, IB) 
DO 5 NA=1,KP1 
DO 5 L=» 1 ,KP1 
DO 5 K A= 1, N 
X2-X(KA) 

5 B(NA, L)=B(HA,L)• X(KA)«*2.•(1.-X(KA))*«2.*POLEG(X2,NA) •POLEG(12,L) 
DO 6 I=»1,KP1 
KP2=K«2 

6 U(I,KP2)=C (X) 
CALL (iAUSL(25,25,KP1,1,8) 
DO 7 I»1,KP1 

7 AA (I) «B( I,KP2) 
DO 8 IA=I,51 
X 1 = 2.O-02*DFLOAT(IA— 1) 
CALL PCAL(I(1) ,I(N) ,I1,PP,KP1) 

8 PPP(IA)=PP 
DO 99 I"1,51 

99 ABRAI(1,I)»PPP(I) 
HBITE(HHB,501) K 
RRITE(N«R,500) (PPP (I),1=1,51) 
CALL SCALE(XSCALB,rSCALS,X,I,H,ARRAT,NUnPT,2) 
CALL PLOT(ABRAI,H0BPT.PTITLE,ISCALE,XSCALE,1) 
RETURN 
BBD 
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J' 

! SUBROUTINE MCVOL 

. . This subroutine will be supplied on request. I t provides i 
the specific volume of the liquid phase uti l izing the information 

contained in Reference 10. 
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SUBROUTINE MLMGN (TR, ACEN, VR) 

Input Parameters: 

Real TR: The reduced temperature of the mixture, ( i .e . 

TRMIX). 

Real ACEN: The acentric factor for each pure component. 

The Output Is: 

Real VR: The reduced liquid mixture molar volume. 

MLMGN uses the correlations of Lyckman, Eckert, Chueh and Prausnitz 

for calculating the liquid density of the mixture. The coefficients 1: 
for the (v ir ia l ) reduced volume equation, page 64 in The Properties 

of Gases and Liquids, 3rd edition, are given in the table along 

with the equation (3-15.21) for and [3-15.20) for VRMIX. 

LIST OF EQUATIONS 

V r ( j ) = a j + Vr + cjT2r + d jT?+Ti+ f i ' l n ( 1-V 
6 i 

r 

= A generalized reduced molar volume function for saturated 

1iquid. 
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SOBBOOTIBB FLLBGI(TR,ACEI,TR) 
c 
C SUBBOUTIBB BL8GB CALCULATES THE REDUCED L I Q U I D BIZTDBB 8 0 L A R 
C TOLD BE U S I N G THE LYCXRANB ECKEBT CHDEH CORRELATION 
C 

D I B B B S I O B T B B ( 3 ) , T R R ( 3 ) , T ( 3 ) 
D I H E H S I O B A ( 3 ) , B ( 3 ) , C ( 3 ) , 0 ( 3 ) , F ( 3 ) , B ( 3 ) 
DATA A , B , C , D , E , F / 0 . 1 1 9 1 7 , 0 . 9 8 * 6 5 , - 0 . 5 5 3 1 1 , 0 . 0 0 9 5 1 3 1 . 6 0 3 7 8 , 

1 - 0 . 1 5 7 9 3 , 0 . 2 1 0 9 1 , 1 . 8 2 « 8 « , - 1 . 0 1 6 0 1 , - 0 . 0 6 9 2 2 , - 0 . 6 1 4 3 2 , 0 . 3 0 0 9 5 
2 0 , . 0 7 4 8 0 , - 0 . 3 4 5 4 6 , 0 . 4 6 7 9 5 , - 0 . 0 8 4 4 7 6 , 0 . 0 8 7 0 3 7 , - 0 . 2 3 9 9 3 8 / 

T R B ( 3 ) - T B 
I F ( T B - 0 . 9 9 5 ) 2 0 9 , 2 0 9 , 2 1 1 

2 0 9 1 = 3 
GO TO 2 1 0 

2 1 1 T B B ( 1 ) * 0 . 9 9 5 
T B B ( 2 ) - 1 . 0 
1=1 

2 1 0 T B B ( I ) - 0 . 
DO 2 1 3 J » 1 , 3 
T ( J ) ' A ( J ) * B ( J ) • T B B ( I ) » C ( J ) * T B H ( I ) • * 2 » D ( J ) * T B B ( I ) » * 3 » B ( J ) / 

1 T B B ( I ) * F ( J ) * A L O G ( 1 . — T B B ( I ) ) 
2 1 3 COBTIBOB 

TBB ( I ) - T ( 1 ) +T ( 2 ) • A C E B + F ( 3 ) * A C 8 R * * 2 
I F ( 2 - 1 ) 2 1 6 , 2 1 5 , 2 1 4 

2 1 * T B B ( 2 ) * 1 . 
2 1 5 T B B ( 3 ) - T I B ( 1 ) • ( T B R ( 1 ) - T R R ( 2 | ) / ( T R B ( 1 ) - T B B ( 2 ) ) * ( T B B ( 3 ) - T B B ( 1 ) ) 
2 1 6 T B - T B B < 3 ) 

BITOBJ 
EBD 
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SUBROUTINE PCAL (P2S, PIS, X, PP, K) 

Input Parameters: 

Real PIS, 1 

P2S: 

Real X: 

Integer K: 

The Output Is: 

Real PP: 

PCAL evaluates the pressure of the system at a given composition 

by use of Raoult's Law added to the computed deviations. The 

deviation function is computed by the coefficients of AA and 

the appropriate Legendre polynmials. 

PCAL employs the following algorithm: 

A: Generates deviation function by Legendre poly-

nomial & M coefficients. 

B: Computes pressure by addition of Raoult's Law and 

deviation function. 

LIST OF EQUATIONS 

Deviation Function: 

ALEG = r>A(; i )P.(x) . 
T=1 ' 

The pure components' vapor pressures. 

The mole fraction of component one in liquid 

phase in which the pressure of system is 

desired. 

The degree of the Legendre polynomial used 

for f i t t ing curve. 

The pressure of the system at the given mole 

fraction X. 
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Raoult's Law: 

PRL = x ( R f t - P | a t ) + p | a t 

System Pressure: 

where x(l - x) is the chosen weight function. 

Psys = PP = PRL + x ( 1 " x ) A L E G 

P = P(ideal) + P(deviation) 

= P*atx + P2
sat(l-x) + ALE6« x(l 
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SUHHOUTINE ? C A L ( P 2 S , P 1 S , X , P P , K ) 
c • • 
C SUBROUTINE PCAL CALCULATES TUB PRESSURE OF 1 BIHAR* ' V i i ^ U R E 
C HUEilgi COHPUMENT 1 HAS THE HOLE FRACTIOH I . , 
c ••,", • 

DOUBLE P R E C I S I O N POLEII 
DOUBLE P R E C I S I O N AA ( 2 1 ) ,PP,ALEG,I 
DOUBLE P R E C I S I O N P 1 S . P 2 S 
COHHOM/LEG/AA 
ALKG—0. 
DO 1 I L = 1 , K 

1 ALEG=ALSG»AA ( I L ) « P O L E G ( X . I L ) 
P P = P 2 S » ( 1 . - X J * P 1 S * X * ( T . - X J • X*ALEG 
RETUHN ' J 
END 
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SUBROUTINE PCALA (P2S, X, PP, K) 

Input Parameters: 

Real P2S: The pure component two's vapor pressure. 

Real X: The normalized value for the mole fraction of 

component one in the liquid phase. 

Integer K: The degree of the Legendre polynomial used 

for f i t t ing the curve. 

The Output Is: 

PCALA evaluates the pressure of the system at a given composition 

by use of the computed deviation function. The deviation function 

is computed by the coefficients of AA and the appropriate Legendre 

polynomials. Since the Legendre polynomials range from zero to 

onê  the mole fractions used must also be normalized. 

PCALA employs the following algorithm: 

A: Generates deviation function by Legendre 

polynomials and M coefficients. 

B: Computes pressure from f i t t ing function at the 

desired norm!alized mole fraction. 

LIST OF EQUAITONS 

Real PP: The pressure of the system at the given mole 

fraction X. 

Deviation Function: 

Psvs = P 2 ^ ] * x ) + x ( * L E G ) 
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where x is the chosen weighting function. 
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SBBBOBTIIB PCALA(P2S , I ,PP/R) 
C 
C SOBBOUTIltB PCALA CALCULAT83 TAB PBBSSOBB OF A BIBABI BIXTOBE 
C BBBBB COBPOBBIT 1 BAS TBS NOLB FBACTIOS X. 
C 

DQtfBLK P3BCISIOB POLSO 
DOtJBLB PBBCISIOH AA ( 2 1 ) , P P . A L E G , X 
DOtJBLB PBBCISIOB P 1 3 , P 2 S 
c o a a o n / L B a / A A 
ALBG-O. 
DO 1 I L * 1 , K 

1 ALBG»ALBG*AA (XL)«POL8S(X*IL) 
P P > P 2 S * ( 1 . - I ) • X M L B O 
BBT0B8 
BID 
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SUBROUTINE PLOT (ARRAY, NUMPT, YTITLE, YSCALE, XSCALE, XMARK) 

Input Parameters: 

MATRIX ARRAY: A matrix containing ordinate values for up to 

ten data sets which are to be plotted. 

Vector NUMPT: An array containing the number of data points 

in each data set. 

Vector 

YTITLE: An array containing the t i t l e for the plot 

(up to 116 characters). 

MATRIX 

YSCALE: A matrix containing the prominant ordinate 

markings for the plot. 

Real XMARK: The number of divisions between prominate ab-

cissa markings. 

PLOT wil l plot up to ten sets of data consisting of 300 data points 

each on a single graph. I t plots the prominent ordinate markings 

for each data set and plots the prominant abcissa markings for the 

graph. Each particular data set is assigned a letter in order to 

distinguish i t from the others. The ordinate values are also 

identified by the same assigned letter . 
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SUBROUTINE PLOT ( t l l l t , NUMPT, YTITLE, YSCALE,XSCALE, XHARK) 
IHTEliKB SYHBOL(IO) , POIIIT(IOI) , XHARK 
DIMENSION ABB AX (10, 300) , NUHPT(IO) , YTITLK (29) , YSCAL E( 1 0, t It <, 

1 SSCALE(10),BSCALE(1 J) ,ARtfAYP(10) ,XSCALE(300) 
DATA SYMBOL/1 A• . • B ' . ' C ' . ' D ^ ' E ' . ' P ' . ' G ' . ' H ' . ' I ' . ' J ' / 
NH-5 
NW=6 
''BITE (MM,500) YTITLE 

5uU" YORHAT ( ' I ' / / / I X , 2 9 A H / / / ) 
DO 1 1=1 , 10 
IP (NUHPT(I).LE.O) GO TO 1 
U8ITB (N 11,5 10) SYBBOL (I),(YSCALE(I,J) , J= 1, 11) ,S YHBOL(I) 

510 PORHAT (5X,A1,1X, 11P10. 2, U , A1) 
1 CONTINUE 

UBITB (NB,520) 
520 PORHAT (51,11 ( 9 X , ' I , ) / 1 3 X , 103('Xa)) 

NSA1fB=NUHPT<1) 
DO 2 1=1,10 
IP (NUHPT (I) .GT.HSAVE) NSA?E=HUHPT (I) 
SSCALE(I)=1 SCALE(I, 1) 
BSCALE(I)=YSCALE(I,11) 

2 CONTINUE 
HAUK-XBABK-1 
DO <t J = 1, NSAViT 
DO 3 1=1,10 
ABRAYP(I)=ABBAY(I,J) 

3 CONTINUE 
CALL IPOINT(J,NUHPT,ABBAYP,SSCALE,BSCAIE,POINT,SYHBOL) 
UNITE (NU,530) POINT 

5J0 FORMAT ( 1 3 X X * , 101A 1,•X«) 
HAHK=BAKK+1 
IP (HARK.LT» XHARK) GO TO 4 
HARK=0 
KBITS (U H,540) ISCALB (J/XNARKU) 

540 FORHAT ( • , F 9 . 2 , 1 X , « — » , 1 0 3 X , « — • ) 
4 CONTINUE 

HRITE (N H,550) 
550 FORHAT ( 13X, 103 (' X* ) /SX, 11 (9X, ' I ' )) 

WRITE (UU,5fi0) 
560 FORMAT ( • ! • ) 

RETURN 
END 
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SUBROUTINE PLTRE (.XCOF, COF, M, ROOTR, ROOTI, IER) 

Input Parameters: 

Vector XCOF: Dimension [m+1] and contains the m plus one 

coefficients to the (v i r ia l ) equation of state. 

Vector COF: The working vector of dimension [m+1] 

Integer M: The order of the polynomial to be solved for 

roots. 

The Output Is: 

Vector ROOTR: Dimension [m] and contains the real roots to 

the polynomial. 

Vector ROOTI: Dimension [m] and contains the corresponding 

imaginary roots to the polynomial. 

Integer IER: Error code where 

IER = 0 no error, 

IER = 1 m less than one, 

IER = 2 m greater than 36, 

IER = 3 unable to determine root with 500 

iterations on 5 staring values, 

IER = 4 high order coefficient is zero. 

PLTRE computes the real and complex roots of a real polynomial of 

degree 'm'. The subroutine uses a Newton-Raphson iterative 

technique for computing a new approximation and then tests the 

result in the original polynomial. 

PLTRE employs the following algorithm: 

A: Zero in i t ia l value of counter. 
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B: Increment in i t ia l values and counter. 

C: Set X and Y to current value. 

D: Evaluate the polynomial and the derivatives. 

E: Step up counter value. 

F: Check number of iterations taken. 

I f .GT. 500, return. 

I f .LE. 500, go to C. 

G: Place roots in vectors R00TR and ROOTI. 

LIST OF EQUATIONS 

Given Polynomial: 

In i t ia l Values: 

X = 1 ,Y„ = 0 where n = o o o 
Recursion Formulas: 

let Z = X - 1Y Zn = (.X + iY) 
implies n 

Xn = X 'Xn-l " Y"Yi n-1 

+ Y - X 

N 

Newton-Raphson Method: 

where DET = (-§)2+ 
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Next Iteration: 

X' = X + AX 

Y' = Y + AY 

« 
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s o B a o a t r i B n i i B ( i c o P , c o f , K , ROOTB.IOOTI.ITBRJ 
c 
C SUBBOUTIIE PLTBB CALCULATES THE BOOT3 OP A B* Tfl DEGREE POL I BO Nt AL 
C THB SDBBOOtlBB I S A STABOARD IBB SSP BOOTIHB 
C 

DOOBLE PIBCISXOR XO.TO, X . T . X P S , TPB,UX, OT, V , TT , X T , l l , X T 2 , T T 2 , SU115 Q, 
1PX.0r.TEBP,ALPBA 

DOOBLB PBECISIOB XCOP(fc),COP (4),BOOTH(3) ,BOOTX(3) 
DOOBLE PRBCISIOa DABS 
I P I T - 0 
a-it 
ITEB-0 
I F ( I C O F ( R M ) ) 1 0 , 2 5 , 1 0 

10 IP (R) 1 5 , 1 5 , 3 2 
C SBT BBBOB CODE TO 1 

15 ITBB-1 
20 RETOBR 

C SBT EBBOB COOS TO 4 
2 5 ITBB-4 

GO TO 20 
C SBT BBBOB CODB TO 2 

3 0 ITEB-2 
GO TO 20 

3 2 I P ( 1 - 3 6 ) 3 5 , 3 5 , 3 0 
35 RX-R 

RXX-R*1 
R2-1 
SJ1-8*1 
DO 40 L - 1 , K J 1 
8 T - K J 1 - L H 

40 COP(BT|-XCOr<ii) 
C SBT XBITIAL »ALOES 

45 X 0 - 0 . 0 0 5 0 0 1 0 1 
TO—0.01000101 

C ZBBO H I T I A t TALOB COQBTBB 
18- 0 

50 X-IO 
C IHCBBBBBT INITIAL TALOES AHO COUBTEB 

X O — 1 0 . 0 * 1 0 
T O — 1 0 . 0 * 1 

C SBT XASD t TO COIBBBT VALUE 
X-IO 
T-TO 
xa—-IB* i 
GO TO 59 

5 5 I F I T - 1 
IPB-X 
TPB—I 

C i m n n POLXWBIAL ARB DERIVATIVES 
5 9 I C T - A 
6 0 0X1-0.0 

or-ftwo 
v-o.o 
IT—0.0 
X T - 1 . 0 
0«COF(B»1) 
I P ( 0 ) 6 5 , 1 3 0 , 6 5 

6 5 DO 7 0 X - 1 , a 
L - B - I * 1 
TBBP-COP(L) 
XT2«X»XT-r»TT 
IT2-X»TT»I»'XT 
0-0»TBBP*XT2 
V-V»TBBP*TT2 
P I - 1 
0X-0X»?I*XI*TEaP 
0T-0X-FX*IT*TBBP 
XT-XT2 

7 0 TT-TT2 
SBBSO-OX*OX»OI«0Y 
IP(SRBSQ) 7 5 , 1 1 0 , 7 9 
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75 D X - ( T * 0 T - U » 0 X ) / S 0 H S Q 
X-X»DX 
D I — ( 0 » 0 I * V » O I ) / S O B S Q 
I - T t D T 

78 I F ( D A B S ( D I ) » D A 8 S ( D X ) - 1 . 0 D - 0 5 ) 1 0 0 , 9 0 , 8 0 
C STEP ITEBBATIOB COOHTEB 

80 I C T - I C T * 1 
IF ( I C T - 5 0 0 ) 6 0 , 8 5 , 8 5 

85 I F ( I F I T ) 1 0 0 , 9 0 , 1 0 0 
90 I F ( I B - 5 ) 5 0 , 9 5 , 9 5 

C SET 8BBOB COOK TO 3 
95 I T B B - 3 

GO TO 20 
100 00 105 1,NXX 

H T - B J 1 - L O 
TEHP-XCOP(HT) 
XCOF (HT) -COF (L) 

105 COP (L) =T EBP 
ITEHP-B 
M-NX 
HX-ITEHP 
I F ( I F I T ) 1 2 0 , 5 5 , 1 2 0 

110 I F ( I F I T ) 1 1 5 , 5 0 , 1 1 5 
115 X=«XPH 

I -TPB 
120 I F I T - 0 
122 IF ( D A B S ( T ) - 1 . 0 D - 0 4 * D A B S (X)) 135 , 1 2 5 , 1 2 5 
125 ALPHA-X*X 

SMSQ-X.*X»T»I 
1-8-2 
GO TO 1 * 0 

130 X - 0 . 0 
BX-RX-1 
BXX»RXX-1 

135 T - 0 . 0 
SUHSQ-O.0 
ALPHA-I 
R-H-1 

140 COP(2) —COP(2) • ALPHA*COP(1) 
I F ( B - E Q . O ) 0 0 TO 155 

145 DO 150 L—2,I 
150 COP(I.+ 1) -COF{L»1) •ALPHA•COF (L) -SOHSQ*COP(L- 1) 
155 BOOTI(B2)—I 

BOOTH(H2)-X 
B2-R2+1 
IF(SUHSQ) 1 6 0 , 1 6 5 , 1 6 0 

160 I— r 
SUHSQ-0 .0 
GO TO 155 

165 I F ( B ) 2 0 , 2 0 , 4 S 
BID 
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SUBROUTINE PNRPV (NKOMP, X, AL, BL, R, T, V, VPART) 

Input Parameters: 

Integer i! 

NKOMP: The number of components in the mixture. 

Vector X: Mole fractions in liquid phase for the 

NKOMP components. 

Real AL, BL: The mixture parameters for the liquid phase 

(no physical- significance) which pertain 

to the constants AS B in the Peng-Robinson 

equation of state. 

Real R: The universal gas constant. 

Real T: The temperature of the system. 

Real V: The liquid molar volume of the mixture. 

The Output Is: 

Vector 

VPART: The partial molar volume of each component in 

the mixture. 

PNPRV calculates the partial molar volume of each component in 

the mixture, given the mixture constants and the molar volume 

of the mixture. 

LIST OF EQUATIONS 

The Mixture Constants for the Peng-Robinson Equation: 

NKOMP NKOMP 
AMIX = JZ2 Z I3x ,X .AL. . 

HFl j ^ f 1 J 
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NKOMP m x^L. 
i=l 

(1) 

Peng Robinson Equation: 

P = RT AMIX 
V-BMIX V(V + BMIX) + BMIX (V-BMIX) 

_ V where Ŷ  = — (specific volume) 

The Thermodynamic Partial Molar Volume Using the Triple Product: 

l a i y T , V, n.(i7k) 
\ = & T ' " ~7|PT 3 

K l9V ;T, n.(al l i ) 
(2) 

Doing the suggested operations of equation (2) on Equation 

(1) yields: 

S1-S2-S3 

where 

v,- = i S4-S5 

SI = 
RT(1 + BL./(V - BMIX)) 

V - BMIX 

FACT = V(V + BMIX) + BMIX(V - BMIX) 

S2 = 2/FACT 

AMIX(BL.)(V - BMIX) 
S S - C E x j A , ; , ) - — 

\J 

FACT 

S4 = RT 
(V - BMIX)' 

S5 = 2AMIX (_V - BMIX) 
' FACT2 If 
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SUBBOUTINE PNBPT(HKOHP,X,AL,BL,R,T,T,VPART) 
C 
C SUBROUTINE PBRPV CAI.CQl.XtSS THE PARTIAL HOLAR TOLUHE 03IN3 
C THE PENS-ROBINSON EQUATION OP STATE. 
C 

DIMENSION AL ( 2 , 2 ) , B L ( 2 ) ,VPABT(2) .SON (2) , 1 ( 2 ) 
AHIX-O. 
BHIX=»0. 
DO 10 I*1,NKOHP 
BBIX—BBIX+X ( I ) * B L ( I ) 
DO 10 J="1, HKOHP 
AHIX*AHIX*X ( I ) * X ( J ) » » L ( I , J ) 

10 CONTINUE 
DO 2 0 I»1,MKOBP V 
SUB ( I ) = 0 . 
DO 2 0 J—1,NKOHP 
SOB ( I ) - S O B ( I ) »Z (J) * » L ( J , I ) 

20 CONTINUE 
DO 5 0 1 - 1 , HKOHP 
PACT-V*(T4BBIX)•BHIX*(T-BBIX) 
S 1=R»T» ( 1 . » B L ( I ) / (V-BHIX) ) / ( V-BHIX) 
5 2 - 2 . / P A C T 
53-SUH ( I ) - ( A H I X » B L ( I ) * (T-Bf l lZ) /PACT) 
S 4 = R » T / ( ( T - B B I X ) * * 2 ) 
S 5 - 2 . 0 « A a i X « (T*BHIX) / (PACT*»2) 
TP ABT ( I ) - (S 1 - S 2 * S 3 ) / ( S 4 - S 5 ) 
•BITE ( 6 , *) B L ( I ) , S U H ( I ) 

SO CONTINUE 
BBTOBB 
BHD 

U 
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DOUBLE PRECISION FUNCTION POLEG (X, K) 

Input Parameters: 

Real X: Mole fraction of component one in liquid 

phase where value stands for either experimental 

or internal collocation point. 

Integer K: The degree of the Legendre polynomial used for 

f i t t ing the P-X curve. 

The Output Is: The Legendre polynomials, specifically the K 

degree. 

POLEG is a statement function which contains the recursion formula 

for the Legendre polynomials. 

" LIST OF EQUATIONS 

POLEG = Pk(x) 

NOTE: POLEG evaluates the Legendre polynomial over the domain 

[0,1] rather than over the domain [ -1 , +1] thus 0 

P^x) = 1 

P2(x) = 2x - 1 

and as a result of this variable transformation the recursion 

formula is changed. 

Recursion Formula: 

p f N _ (2m - 3)(2x - D p , . (m - 2) (x) 
H m U j m - 1 - m - r x ; (m - 1) Fm d 

legendre Polynomials are Orthogonal in [ - 1 , + 1] 

P 0 ( . x ) = 1 

P, (x) = x 
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P2(x) = l /2(3x2 - 1) 

P3(x) = l/2(5x3-3x) 

r n M . O l L L : !<L^Upn.2(x) 

We need to evaluate these polynomials in the Domain [0,1] 

thus a transformation is called for. 

Let Z = l / 2 ( * + 1) 

thus x = - 1 ,0 , + 1 

Z = 0, 1/2, + 1 

or . . . expressing x in terms of Z, x = 2Z - 1 and 

P0(Z) - 1 

P^z) = 2Z - 1 

P2(Z) = 1/2(3(2Z - I ) 2 - 1) 

Pn(z) = ( 2 n " 1 } ( ? z - i)Pn_-,(z) - i n - z J i p n _ 2 ( Z ) 

Renumbering (starting with m = n + 1 because FORTRAN doesn't 

use zero subscripts, 

p m = - 3H"2Z - "*) p (Z) !m - 2)p m KmUJ m - 1 V l U ; (m - l ) P m - 2 U j 
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DOOBLS PRECISIOB MBCTtOt POLEG (X,K) 
C 
C FUBCTIOB POLBO COBIAIllS THE RECURSION OF THE LEGERORE 
C POL7BOBXAL. 
C 

DOOBLB PBECISIOB At (21) 
DOUBLE PBECISIOB X ',. 
DOOBLE PRECIS 10B DFLGAT 
AL(1)»1.> 
AL ( 2 ) - 2 . * X - 1 . 
DO 1 LG~1,K 
LGB1=LS-1 

1 A L ( L I S ) * ( D P L O A T ( 2 * 1 0 8 1 - 1 ) • ( 2 . * X - 1 . ) • A L ( L S - I ) - D P L O A T ( L G f l 1 - II • AL 
1 (LG-2)) /DFLOAT(LGHl) 

POLEO-AL(K) 
BETOBB 
BSD 
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SUBROUTINE PRFUG (Y, P, T, V, R, FUGCE, AP, BP, NKOMP) 

Input Parameters: 

Vector T: Mole fractions in gas phase for the NKOMP 

components. 

Integer 

NKOMP: The number of components in the mixture. 

Real P, T: The pressure and temperature of the system. 

Real V: The molar volume of mixture in the gas phase. 

Real R: The universal gas constant. 

Real AP, BP: The mixture parameters for the gas phase 

( no physical significance) which pertain to 

the constants A & B in the Peng-Robinson equation 

of state. 

The Output Is: 

Vector FUGCE: Dimension [NKOMP] and contains the fugacity 

coefficients for each component in the mixture. 

PRFUG calculates the fugacity coefficients for each component by 

using the Peng-Robinson equation of state, given the mixture 

constants and molar volume of the mixture. 

LIST OF EQUATIONS 

The Mixture Constants for Peng Robinson Equation: 

NKOMP NKOMP 
A = Z J C ^ - i A P i i i=l i=l 1 J 1J 

NKOMP 
B = I I J y . B P . , 

i=l 1 1J 
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The Fugacity Coefficients: 
. + 7 - pV Let Z = w 

A* rt o 2 R T 

R* - I E B ~ W 

51 = ln(Z - B*) 

52 = ._. 
2(2'5)B* 

C-J - 1 n fZ + 2.414B*% 
~ , r nZ - 0.414B*; 

S4 = Z - 1 
B 

NKOMP 

2.OAK. BP. 

Filn = 1n$i = BP.-S4 - SI - S2-S3 ( A - -g 1 ) 

FUGCE ( i ) = EXP(FILN) = $( i ) 
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SOBBOOTIRE PBFCG(T,P,T,T,a,FUGCE,AP,BP,NKOBP) 
C SUBBCHITIBB PBFUG CALCULATES THE PUGACITT COEFFICIENTS 
C OSHG TUB PBRG-BOBISSOB EQUATION OF STATE. 

DIBENSION AK(5) 
OIHBBSION F 0 G C E ( 2 ) , 1 ( 2 ) , A P ( 2 , 2 ) , B P ( 2 ) 
A = 0 . 0 
B - 0 . 0 
DO 10 I>1 ,RK0f lP 
DO B J»1,HKOBP 

9 A»A«-T(I) * t ( J ) * A P ( I , J ) 
B - B » T ( I ) •BP | I ) 

10 CONTINUE 
AO= (A«P) / ( (B**2J • ( T • * 2 ) ) 
BO»(B«P) / ( B « T ) 
Z = P « * / ( B * T ) 
Sl-ALOG(Z-BO) 
S 2 » A O / ( 2 . 0 * ( 2 . 0 * * 9 « 5 ) •BO) 
S3-ALOG( ( Z « 2 . » 1 I | » B O ) / ( Z - O . » 1 »»BO) ) 
S U = « ( Z - 1 . ) / B 
DO 20 I s 1 , B R O U P 
AK(I) = 0 . 0 

20 CONTINUE 
DO 30 I*1,MKOHP 
DO 2 5 J=»1,NKOHP 

25 AS (I) XAK ( I ) +1 (J) *AP ( J , I ) 
F I L N - B P ( I ) » S 4 - S 1 - S 2 « ( ( 2 . 0 * A K ( I ) / A ) - (BP ( I ) /B) | »S3 
FUGCB (I ) =E1P(FILN) 

30 CONTIBUE 
BBTUBB 
END 



-129-

SUBROUTINE PRRON (NKOMP, R, AP, BP, TCT, 

TC, ANY, TAU, ACEN, VC, PC, T, LJC) 

Input Parameters: 

Integer 

NKOMP: The number of components in the mixture. 

Real R: The universal gas constant. 

Real TC, PC, 

VC: The pure component's crit ical temperature, 

pressure and volume. 

Real DEL: Dimension [NKOMP] and is the i - j interaction 

parameter used for the Peng-Robinson 

equation of state. 

Real ANY, TAU 

FAK: The binary interaction paramters. 

Real ACEN: The acentric factor for each component. 

Real ZC: The critical compressibility factor for each 

component. 
The Output is: 

Real TCT: The pseudocritical constant which has no 

physical significance except to characterize 

bimolecular interactions betwen unlike mole-

cules. 

Real AP, BP: The mixture parameter constants for the Peng-

Robinson equation of state. 

PRRON reads in the i - j interaction parameter calculated by PROGRAM 

4 and computes the mixture parameters to be used in the Peng-

Robinson equation of state. This subroutine uses the 'mixing 
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rules' suggested by Peng and Robinson. 

PRRON employs the following algorithm: 

A: Read in al l pure component parameters. 

B: Read in the i - j interaction parameter, DEL. 

C: Compute TCT, AP, and BP. 

LIST OF EQUATIONS 

Reduced Temperature: 

T . = T 
r 1 Tci 

The Pseudoparameter: 

TCT = Tci j = t-Tci I c j ) 1 / 2 0 - FAK^) 

The Mixture Constants for the Peng-Robinson Equation of State 

AKK = 0.3744 + 1.54226-u - 0.26992cu2 

ALF '= (1 + AKK' (.1 - TR0 , 5 ) )2 

.45724 R2T2. 
AC = - C1 

Pci 

Ai = AC-ALF 

AP = (1 - DEL. . ) - A . ' 5 - A . ' 5 where DEL.. = C.. 
I J I J IJ 'J 

0.778 RT 



-131-

SQBBOatI1E P t B O l ( N K O B P , 1 , A P , B P , T C T , T C , A i t , T A B , A C E N , V C , P C , 
t T,LJC) 
SUBROUTINE PBBOR BEADS THE PURE COMPONENTS PA RAHETERS'AND 
CALCULATES TBE RIXTDRE PABAflBTERS USED IB THE PENG-HOBIHS3N 
EQUATION AND LICKHANR-ECKERT-CBUEH CORRELATION. 
DIBENSION ZC(5) , PAR (5 , 5) , DEL ( 5 , 5 ) , AP ( 2 , 2) , BP ( 2) ,TC 12) , 

1 A ( 5 ) , T C T ( 2 . 2 ) , A » r ( 2 . 2 ) , T A 0 ( 2 , 2 ) ,ACBN(2| , VC(2) , P C ( 2 | 
100 PORHAT(SSI2.5) 
101 POBHAT(1UO,•PC-?C-T C-ZC-AC E N • , H I , 5 E 1 2 . 5 ) 
104 FORMAT(5P10-5) 
105 70BMAT (1H0,•PAK-NY-TAU-DBL') 
1 0 6 FOBHAT(1 BO,5P10 . 5) 

NBD-5 
RBB-6 
BEAD(NRD, 100) (PC(I ) , V C ( I ) , T C ( I ) , Z C ( I ) ,ACEN(I) , I » 1 , N K 0 H P ) 
WRITE (HUB,101) (PC ( I ) ,TC ( I ) , T C ( I ) , Z C ( I ) ,ACEN(I) , I -1 ,NK0I1P) 
NKOfll-NKONP-1 ' 
BRITB(NHB,105) 
DO 4 I - 1 , N K O B l 
I P 1 - 1 * 1 
88AD(NBD,104) ( P A K ( I . J ) ,J=IP1,NKOHP) 
BBAD(NBD, 104) (ANT (I , J) , J—IP1 ,NKOBP) 
BEAD (NRD, 104) ( T A U ( I , J ) , J = I P 1 , NKOBP) 
BEAD (RRD , 104) (DEL ( I . J ) , J - I P 1 ,NKOBP) 
H8ITE(NB8, 106) ( P A K ( I , J ) ,J - IP1 ,NKOHP) 
HBITE (NHR,106) ( A R T ( I , J ) , J - I P 1 , N K O H P ) 
S R I T E ( » « B , 106) ( T A O ( I , J ) , J = I P 1, RKOHP) 
H B I T E ( N 8 B , 1 0 6 ) ( D E L ( I , J ) , J-IP1,NKOBP) 

4 CONTINUE 
DO 6 I=>1,8KOBP 
FAK ( I , I ) - 0 . 0 
A N T ( I , I ) - 0 . 0 
D E L ( I , I ) - 0 . 0 
TAO ( 1 , 1 ) - 0 . 0 
DO 6 J-1 ,NKOBP 
F A K ( J , I ) -FAK ( I , J ) 
ANT ( J , I ) - A N T ( I , J ) 
D E L ( J , I ) - D B L ( I , J ) 
T A U ( J . I ) -TAU ( I , J ) 

6 CONTINUE 
DO 15 1-1,NKOBP 
DO 15 J-1,NKOBP 
TCT ( I , J) -SUBT (TC (I ) *TC (J) ) « ( 1 . -FAK ( 1 , 3 ) ) 

15 COMTIROE 
DO 30 I— 1 .NKOBP 
T B » T / T C ( I ) 
IKK—0..3744*1.54226*ACER ( I )—(ACER(I )»*2) > 0 . 2 6 9 9 2 
A L F - ( 1 . * A K K * ( 1 . - ( T B * * 0 . 5 ) ) ) * * 2 
A C = 0 . 4 5 7 2 4 * ( ( R * * 2 ) * ( T C ( I ) * « 2 ) ) / P C ( I ) 
A(I ) -AG»ALF 
BP ( I ) * 0 . 0 7 7 8 0 * R » T C ( 1 ) / P C ( I ) 

30 CONTIN08 
DO 40 I -1 ,NKOBP 
DO 40 J - 1 , NKOBP 
AP (I ,J)=> ( 1 . - D E L ( I , J ) ) * ( A { 1 ) * * 0 . 5 ) • (A(J) • • 0 . 5 ) 

40 CONTINUE 
BBTUBN 
END 
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SUBROUTINE PRVOL (NKOMP, V, Z, X, Y, P, T, AP, BP, R, ITYP) 

Input Parameters.: 

Integer 

NKOMP: Number of components in mixture. 

Real X, Y: The mole fractions of each component in liquid 

and gas phase. 

Real P, T: The pressure and temperature of the system. 

Real AP, BP: The mixture parameters used in the Peng-

Robinson equation of state. ' 

The universal gas constant. Real R: 

Integer 

ITYP: 

The Output Is: 

Real Z: 

Real V: 

A command variable. 

I f ITYP = 1, evaluate liquid molar volume. 

I f ITYP = -1 , evaluate vapor molar volume. 

The compressibility factor for the given mix-

ture. 

The molar volume (liquid or vapor), for the 

given mixture. 

PRVOL generates the mixture constants for the Peng-Robinson equation 

of state using the mixture parameters read into the subroutine. 

Once the mixture constants are placed into the vir ial equation 

form of the Peng-Robinson equation, this cubic equation, in 

terms of Z, is solved for the roots by a standard IBM SSP 

SUBROUTINE. The roots are then tested in order to find the correct 
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I 
one. The volume is then computed using the root (Z) in PV = ZRT. 

PRVOL employs the following algorithm: 

A: Compute mixture constants A and B. 

B: Evaluate the leading coefficients to the vir ia l 

equation. 

C: Solve for the roots of vir ial equation. 

D: Test roots for the correct value. 

E: Compute molar volume with given root (Z). 

LIST OF EQUATIONS 

For Vapor Phase Volume: 

NKOMP NKOMP 
n i 
i=i d--

NKOMP 

A= ^ & W ^ M 

B = T Z 1 y.-BP, i 1 1J 

For Liquid Phase Volume: 

.NKOMP NKOMP 

i=l d=l 

NKOMP 
B = J Z 2 x.BP., 

i=l 1 l J 

(Vir ial ) Peng-Robinson Equation of State: 

Z3 - (1 - K)Z2 + (Q - 3K2 - 2K)Z - (QK - K2 - K3) = 0 

where Q = and K = 
R T 

Molar Volume: 
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3UBR0UTINK PBVOL ( H K O H P , V , 2 , X , Y , P , T . A P , B P , B . I T Y P ) 
C SU BKOUTIHE PBVOL SOLVES THE PENG—ROBINSON EQUATION AHD 
C CALCULATES THE HOLAB VOLUME-
C I P I T Y P . H Q . 1 THEN THE L I Q U I D PHASE MOLAR VOLUME I S CALCULATED 
C I P I T Y P . E Q . - 1 THEN TH£ VAPOB PHASE MOLAR VOLUME I S CALCULATED 

DOUBLE P R E C I S I O N COF ( 4 ) , BOOTH ( J ) ,HOOTI ( 3 ) .ROD ( 3 ) , C ( 4 ) 
DOUBLE P R E C I S I O N DABS 
DIHEHSION X ( 2 ) , Y ( 2 ) , A P ( 2 , 2 ) , B P ( 2 ) 
A = 0 . 0 
B = 0 . 0 
I F ( I T Y P ) 3 0 0 , 3 0 0 , 2 0 0 

2 0 0 DO 2 1 0 1 = 1 , N K O H P 
DO 2 0 S J = 1 , H K O B B 

2 0 5 A = A * X ( I ) » X ( J ) * A P ( I , J ) 
& = B » X ( I ) • B P ( I ) 

2 1 0 CONTINUE 
GO TO 2 

J 0 0 DO J 10 1 = 1 , N K O H P 
DO 3 0 5 J = 1 ,NKOMP 

3 0 5 A = A » Y ( I ) « Y ( J ) » A P ( I , J ) 
B = B * Y ( I ) * B P ( I ) 

3 1 0 CONTINUE 
2 Q= ( A * P ) / ( ( R * * 2 ) * ( T * * 2 ) ) 

Z U = ( B * P ) / ( R * T ) 
C ( 1 ) = - ( U * Z 0 — Z 0 * * 2 — 2 0 * * 3 . 0) 
C ( 2 ) = Q - J . * Z O « * 2 - 2 . * X 0 
C ( 3 ) = - ( 1 . - Z O ) 
C ( 4 ) = 1 . 0 
CALL P L T B E ( C , C O P , 3 , R O O T B , R O O T I , I T E R ) 
NH=0 
DO 5 K = 1 , 3 
I P ( D A B S ( H O O T I ( K ) / B O O T S ( K ) ) - 1 . D - 0 4 ) 3 , 3 , 5 

3 I P ( B O O T H ( K ) ) 5 , 5 , 4 
4 NB=NB+1 

ROD(NTT)=ROOTB(K) 
5 CONTINUE 

I P ( I T Y P ) 1 0 , 1 0 , 5 0 
1 0 A H A X S U O D ( 1 ) 

I P ( N H - I ) 2 5 , 2 5 , 2 0 
2 0 DO 2 3 1 = 2 , N B 

I F (AHAX-BOD ( I ) ) 2 2 . 2 2 , 2 3 
2 2 AMAX=ROD(I) 
2 3 CONTINUE 
2 5 Z=AHAX 

GO TO 1 0 0 
5 0 A M I N = B O D | 1 ) 

I P ( N B - 1 ) 7 5 , 7 5 , 6 0 
6 0 DO 7 0 J » 2 , N R 

I F ( A H I N - B O D ( J ) ) 7 0 , 7 0 , 6 5 
6 5 A H I N - B O D ( J ) 
7 0 COBTIBOB 
7 5 Z ^ A A U 

100 V « * * i * < t / » 
BBTBBI 

. BHD 
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SUBROUTINE RDKPV (NKOMP, X, AL, BL, R, T, V, VPART) 

Input Parameters: 

Integer 

NKOMP: 

Vector X: 

The number of components in the mixture. 

Mole fractions in liquid phase far the NKOMP 

components. 

Real AL, BL: The mixture parameters for the liquid phase 

(no physical significance) which pertain to 

the constants AS B in the Red!ich-Kwong 

equation of state. 

The universal gas constant. 

The temperature of the system. 

The liquid molar volume of the mixture. 

Real R 

Real T 

Real V 

The Output Is: 

Vector 

VPART: The partial molar volume of each component 

in the mixture. 

RDKPV calculates the partial molar volume of each component in 

the mixture given the mixture constants and the molar volume of 

the mixture. 

LIST OF EQUATIONS 

The Mixture Constants for the Redlich-Kwong Equation: 

NKOMP NKOMP 
AMI* = 7 3 E ^ x . X . A L . , 

T^l j -1 1 J 10 
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NKOMP 
BMIX = Y 2 *,-BL. rrrT i i 1=1 

Red!ich-Kwong Equation of State: 

P = v - T ^ b — — 5 — 0 ) 

where V̂  = ^ (specific volume) 

and B = BMIX, A = AMIX 

The Thermodynamic Partial Molar Volume using the Triple Product: 

vk lank
;P, T, n-OYk) = 

3P 
" ' S T T ' T , v , n H ( i f ! k ) 
- g r 3 <2> 

^aVJT, n i (all 1) 

Doing the suggested operation of Equation (2) on Equation (1) 

yields: 
- _ (ST - S2/S3) 

where 

V i (S4 - S5/S6) 

RT(1 + BL./(V - B)) 
SI = — 1 ~ V - B 

NKOMP A(BL.) 
S2 - 2 r p ^ i i - r n r 

J 

S3 = V(V + B)T'5 

S4 = - J I 
(V - B)2 

S5 = A(2V + B) 
r 5 
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S6 = V2(V + B)2 

r , 
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SOBBOBTXBK 8 0 K P T ( B K 0 8 P , I , A L , B L , B , T , V , T P A B T ) 
C 
C SUBBOOTIBB B D I P T CALCOLATBS THE PARTIAL BOLAB YOLUHE 0 S I H 3 THE 
C BBDLICH-KHOHO BQUAtXOH OP S T A T E . 
C 

D l f l E H S I O B A L ( 2 , 2 ) , B L ( 2 ) , f PART ( 2 ) , S 0 I 1 ( 2 ) , 1 ( 2 ) 
AHIX«0. 
B B I I = » 0 . 
DO tO I - 1 , HK08P 
B H I X - B B I X * X ( I ) * B L ( X ) 
DO 1 0 J * 1 , B K O B P 
A H I I = A H I X * I ( I ) » X ( J ) * A L ( I , J ) 

1 0 COHTIBOB 
DO 2 0 I - 1 , > K O 0 P 
SOB ( X ) > 0 . 
DO 2 0 J * 1 , M K O H P 
s o n ( x ) * s o a ( I ) « 2 . * x ( J ) * A L ( J , I ) 

2 0 COHTXBOB 
DO 5 0 I * 1 , B R O B P 
S 1 » B » T * ( 1 . +BL ( I ) / ( T — B f l I X ) ) / ( T - B B I I ) 
S 2 = S O B ( I ) - A H I I » D L ( I ) / (V4-BHIX) 
S 3 - ? * C T » B H I X ) * S Q 8 T ( T ) 
S « « a » T / ( T - B B I X ) **2 
S 5 = A H X X » ( 2 . * T * B H I X ) / S Q B T ( T ) 
S 6 « ¥ * * 2 * ( V + B 8 I I ) * * 2 
VPABT(X) - ( S 1 - S 2 / S 3 ) / ( S < l - S 5 / S 6 ) 

5 0 COHTXMOB 
SETVBB 
EBO 
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SUBROUTINE RKFUG (Y, P, T, V, R, FUGCE, AG, BG, NKOMP) 
Input Parameters: 

Vector 7: Mole fractions in gas phase forthe NKOMP 

components. 

Integer 

NKOMP: The number of components in the mixture. 

Real P, T: The pressure and temperature of the 

system. 

Real V: The molar volume of mixture in the gas 

phase. 

Real R: The universal gas constant. 

Real AG, BG: The mixture parameters for the gas phase 

(no physical significance) which pertain to 

the constants A & B in the Redlich-Kwong 

equation of state. 

The Output Is: 

Vector FUGCE: Dimension [NKOMP] and contains the fugacity 

coefficients for each component in the mixture. 

RKFUG calculates the fugacity coefficients for each component by 

using the Redlich-Kwong equation of state, given the mixture 

constants and molar volume of mixture. 

LIST OF EQUATIONS 

The Mixture Constants for Redl ich-Kwong Equation:. 

NKOMP NKOMf 
A = H Z I H I y - y j - A G . , 

i=l J=1 1 0 1 J 
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NKOMP 
= I I I y - B G . 

i=l 1 1 

AK,. = ^ y jAG id 

NKOMP 

J=1 

where 1=1, NKOMP 

The Fugacity Coefficients: 

51 = lnC^j) 

52 - l n ( i - f i ) 

1 5 S3 = BRT 

ca = A S2 - B 
^ S3HT V + B 

S5 = ln(j^) 

FILN = ln$ i = SI + 

2AK. 

- + S4-B. - S5 

FUGCE(i) = EXP(FILN) 
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SUBBOOTXBB B « P O G ( T , P , T , T , I , F O G C B , A G , B S , « I C O N P ) 
C 
C S U B B O U T I B S BEFOG CALCULATES THE FTJGACITT C O E F F I C I E N T S 0 S I H 3 THE 
C B E D L I C U - I 8 0 B G EQOATIOB OF S T A T E 
C 

D I B B B S I O B A K ( 5 ) 
D I B E V S I O H FQGCE ( 2 ) , T ( 2 ) ,AG ( 2 . 2 ) , B G ( 2 ) 
A - 0 . 
B"0. 
DO 1 0 E - 1 . I K O B P 
DO 8 J - 1 . I X O 0 P 

a A - A » X ( I ) » T ( J ) * A A ( I , j ) 
B - B » Y ( I ) »BG ( I ) 

1 0 C O I T I B O E • 
S 1 * A L O G ( T / ( T - B ) ) 
S 2 » A L O G ( ( ? • B ) / T ) 
S 3 - B * T * * 1 . S * B 
S » « A / ( S 3 » B ) * ( S 2 - B / ( T » B ) ) 
S 5 « A L O G ( P * V ( B * T ) ) 
DO 2 0 I * 1 , B K O H P 
A K ( I ) - 0 . 

2 0 C O B T I B O B 
DO 3 0 I S 1 . H K O H P 
DO 2 5 J - 1 . B K O H P 

2 5 AK ( I ) - A K ( I ) ( J ) *AG ( J » I ) 
F I L 1 — S 1 * B G ( I ) / (T—B) - 2 . * A K ( I ) / S 3 * S 2 » S « * B G ( I ) - S 5 
F U G C B ( I | — S I P ( F I L M ) 

3 0 COBTIBOE 
BBTOBB 
B B S 
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SUBROUTINE RKKON (NKOMP, R, AL, AG, BL, BG, 

TCT, TC, ANY, TAU, ACEN, VC, PC, T, LJC) 

Input Parameters: 

Integer 

NKOMP: 

Real R: 

Real OMAL, 

OMAG, OMBAL, 

OMB G: 

Number of components in mixture. 

The universal gas constant. 

Real TC , PC, 

VC: 

Real ANY, 

TAU, FAK: 

Real ACEN: 

Real ZC: 

Real T: 

Ineger LJC: 

The Output Is: 

Real TCT: 

The pure component liquid and gas phase 

constants for the Redlich-Kwong equation of 

state. 

The pure component's crit ical temperature, 

pressure, and volume. 

The binary interaction parameters. 

The acentric factor for each component. 

The crit ical compressibility factor for each 

component. 

The temperature of the system. 

A counter. 

The pseudocritical constant which has no 

physical significance except to characterize 

bimolecular interactions between unlike 

molecules. 
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Real AL, AG, BL, 

BG: The mixture parameter constants for the Redlich-

Kwong equation of state. 

RKKON reads in the pure component parameters and calculates the 

mixture parameters to be used in the Redlich-Kwong equation of 

state. This subroutine uses the 'mixing rules' suggested by 

Prausnitz. 

RKKON employs the following algorithm: 

Read in al l pure component parameters. 

Compute reduced temperature {Tp>. 

I f / Tr <0.93/ go to E. 

I f / Tr >_ 0.93/ go to D. 

Reevaluate pure component parameters. 

Compute l Q . y P c i j , Vcij- where 

Compute mixtue parameters where i^J. 

Compute mixtue parameters where i=J. 

LIST OF EQUATIONS 

Reduced Temperature: 

T Tr = T ci 

The Pseudoparameters: 

T C T = T c i j • (-Tci T c jJ 1 / Z ( 1 - FAK1 j l 

vcv = V c i . = i / 8 ( y V 3 + V ^ 3 ) 3 

z c z = Z 
z . + • Z -

- C I CJ 
ci j 
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P C P * P c i j * Z c i C C i : l 

The Mixture Constants for Redlich-Kwong Equation of State: 

where ijM 

K=L and G 

where i= j 

0k t2.5 
n A ci i AK = A. • = fl

p
 C1J 

1 J ci j 

AK = A., = C 
i i P . ci 

n .̂RT . 
BK = B C1 

Pci 
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SOBBOBTIRB BKKOR(HKOHP,ft,AL,AG,BL,BG,TCT,TC,ANT,TAU,ACBN,»C,PC, 
1T,LJC) 

C 
C , SUBROUTINE BRROR READS THB PDBB CORPOREMTS PARAHETERS AND CALCOLA-
C TBS THE 8IXTORE PARABBTERS USED IN TBB REDLICH KHONG EQUATION. 
C 

DIHBNSION ZC(5) ,OHAl (5),OHBL (5) ONAG (5) ,OHBG(S) , P A K ( 5 , 5 ) 
DIHENSION A L ( 2 , 2 ) , A G ( 2 , 2 ) , B L ( 2 ) ,BG(2) , T C ( 2 ) , T C T ( 2 , 2 | , A N T ( 2 , 2 | , 

1 T A U ( 2 , 2 ) , ACER (2) ,TC (2) , PC (2) 
100 POBHAT(SE12.5) 
101 POBHAT (1 HO, •PC-TC-TC-ZC-ACEB , , < >X,5B12 .5) 
102 POBHAT(IHO.'OBAL-OHBL-OHAG-OHBG « , 4 X , 4 S 1 2 . 5 ) 
103 POBHAT(4B12.5) 
104 PORHAT(5P10.5) 
105 POBHAT(1H0,•PAK-HT-TAU*) 
106 POBHAT ( I 8 0 , 5 P 1 0 « 5 ) 

H B D « 5 
NBH-6 
IP (LJC. RE. 1) GO TO 8 
READ (BSD, 100) (PC (IJ ,TC (XJ , TC ( I ) ,ZC (I ) , ACEN ( I ) , I=» 1, NKOBP) 
HBAD(NBD,103) (OHAL ( I ) ,OHBL(I) ,OH AG (I ) , OHBG ( I ) , I s 1,NKOHP) 
URITE(NHR,101) ( P C ( I ) , T C ( I ) , T C ( I ) , Z C ( I ) , A C E R ( I ) ,1-1,NKOHP) 
BBITB(HHB,102) (OHAL ( I ) , OHBL (I) , OHAG ( I ) ,OHBG ( I ) ,I-1,HKOHPI 
NKOH1-HKOHP-1 
HRITE(HBR,105) 
DO 4 1= 1 , HKOH 1 
XP 1 - 1 * 1 
BBAD(RBD,104) ( P A K ( I , J ) , J - I P 1 , N K O H P ) 
READ(NBD, 104) (ART ( I , J) , J - I P I , NKOHP) 
BBAD(NPD,104) ( T A O ( I , J ) , J - I P 1 , H K O H P ) 
•BITE (NNB, 106) (PAR ( I , J ) , J - X P 1 , NKOHP) 
HBITE(NNR,106) ( A N I ( I , J ) , J — t P I , H K O H P ) 
S B I T S ( H R B , 1 0 6 ) ( T A O ( I , J ) , J » I P I , R K O H P ) 

4 CONTINUB 
DO 6 I - 1 , N K 0 8 P 
PAR ( 1 , 1 ) - 0 . 0 
A N T ( 1 , 1 ) - 0 . 0 
TAU ( 1 , 1 ) - 0 . 0 
DO 6 J—I,HKOHP 
P t K ( J , I ) - P A K ( I , J ) 
A N T ( J , I ) » A B I ( I , J ) 
T A O ( J r I ) - T A O ( I , J ) 

6 COHTIBOB 
8 DO 13 I-1,NKOHP 

T B - T / T C < I ) 
I P ( T B - O . 9 3 ) 1 3 , 1 3 , 1 0 

10 OHB-(0HB6(X) fOBBL(I ) ) / 2 . 
B»08B*B*TC ( I ) / P C ( I ) 
0 » A - P C ( 1 ) * V C ( I ) * ' ( * £ ( £ ) • • B ' ) / ( B » T C ( I ) ) « » 2 » ( R O T C ( I ) / (TC ( I ) - B ) - PC (I ) > 
I P ( T B - 1 . ) 1 1 , 1 2 , 1 2 

11 DTB»tXP ( ( T B - 1 . ) * ( 2 9 0 1 . 0 1 - 5 7 3 9 2 * T B » 2 8 * 9 . 8 5 * T B » * 2* 1 . 7 4 1 2 7 / ( 1 . 0 1 -
1**1)) 

OHAL ( I ) -OHAL(I) * (OHA—ORAL(t) ) «DTR 
OHBL ( I ) * 0 8 B L ( I ) • (OHB-OBBL(t) ) *OTR 
OHAG(I)>08AG(X)• (OBA-OBA6(I) )•DTH 
OHBG(X)-OHBG(I)•(OHB-OBBG(I) )*DTB 
GO TO 13 

12 O R A L ( I ) - 0 8 1 
0 H 8 L ( I ) « 0 B B 
OHAG (I ) -OHA 
OHBG(I)-OHB 

13 COBTXBOB 
DO 1 5 I»1,RKOHP 
DO 15 J»1,BKOHP 
TCT ( I , J ) -SQBT (TC ( I ) «TC (J) ) * ( 1- -FAK ( I , J> ) 
I P ( I - J ) 1 4 , 1 3 , 1 5 

14 T C T » ( ( T C ( I ) • • 0 . 3 3 3 3 3 3 3 4 T C ( J ) » « 0 . 3 3 3 3 3 3 ) * * 3 ) / 8 . 0 
ZCZ- (ZC ( I ) • ZC (J) ) / 2 - 0 
PC P-(ZCZ «B* TCT ( I , J ) ) / T C T 
A L ( 1 , J ) * ( ( O R A L ( I ) + O B A L ( J ) ) / 2 . ) • B * * 2 * T C T ( I , J ) * * 2 » 5 / P C P 
A L ( J , I ) - A L < X , J) 
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AG ( I , J ) » ((OflJkG(I) • O H » Q ( J ) ) / 2 - ) » S » * 2 » T C T ( 1 , 0 ) * » 2 . 5 /PCP 
AO (J,XJ»AG ( I , J) 

15 COHTXMOB 
o o 2 0 t - i # s x a a p 
AL ( I , I ) - (ORAL ( I ) *B**2*TC(I ) • » 2 . 5 ) / P C ( I J 
AG (I . I ) 3 (OB AG ( I ) • B*«'2«TC(I) * * 2 . 5 ) / P C ( £ ) 
BL ( I ) - (OflQL ( I ) *H*TC (I ) I /PC ( I ) 
BG ( I ) » (CBBG (X) «B*TC (X) ) /PC (X) 

2 0 COBTXBOB 
BETOBB 
BHD 
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SUBROUTINE RKVOL (NKOMP, V, Z, X, Y, 

P, T, AL, AG, BL, BG, R, ITYP) 

Input Parameters: 

Integer 

NKOMP: Number of components in mixture. 

Real X, Y: The mole fractions of each component in the 

liquid and gas phase. 

Real P, T: The pressure and temperature of the system. 

Real Al, AG, 

BL, BG: The mixture parameters used in the Redlich-

Kwong equation of state. 

Real R: The universal gas constant. 

Integer ITYP: A command variable. 

I f ITYP = 1, evaluate liquid molar volume. 

I f ITYP = -1 , evaluate vapor molar volume. 

The Output Is: 

Real Z: The compressibility factor for the given 

mixture. 

Real V: The molar volume (liquid or vapor) for the 

given mixture. 

RKVOL generates the mixture constants for the Redlich-Kwong 

equation of state using the mixture parameters read into the 

subroutine. Once the mixture constants are placed into the 

vir ial equation form of the Redlich-Kwong equation, this cubic 

equation, in terms of Z, is solved for the roots by a standard 

IBM SSP SUBROUTINE. The roots are then tested in order to find 
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the correct one. The volume is then computed using the 

root (Z) in PV = ZRT. 

RKVOL employs the following algorithm: 

A: Compute mixture constants A and B. 

B: Evaluate the leading coefficients to the vir ial 

equation. 

C: Solve for the roots of vir ial equation. 

D: Test roots for the correct value. 

E: Compute molar volume with given root (Z). 

LIST OF EQUATIONS 

For Vapor Phase Volume: 

NKOMP NKOMP 
A= X 3 H Z y . - y , ' AG.. 

i=l J=1 1 J 1 J 

NKOMP 
B » JZZ y,- BG. 

i=l 1 1 

For Liquid Phase Volume: 

NKOMP NKOMP 
A = I T ! m x i x j * A L -

i=l J=1 1 J 11 

NKOMP 
B = T Z x,BL, 

i^T 1 1 

(Virial) Redlich-Kwong Equation of State: 

Z3 - Z2 + (Q - 1 - K)- K- Z - Q- K2 = 0 

a 
where Q = =r-=-

BRT ' 

and K = -ĵ -
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Molar Volume: 

(Virial) Redlich-Kwong Equation of State from Program: 

z3 _ z2 + /—A 1 _ PB} PB z . A (PIM = 

BRT1'5 RT RT B R T 1 - 5 ^ 

73 72 4- / AP PB p V x . _ AP2B _ L - L ^ O O R D T " >> O L L 

r2 t2.5 RT p2-p2 r3J3.5 u 

l e t A* • ^ a n d B* = I T 

Then Z3 - Z2 + (A* - B* - B*2)Z - A*B* = 0 

This is equation (3 - 5.6) page 38 Properties of Gases and Liquids; 

Reid, Prausnitz, and Sherwood; Third Edition McGraw Hi l l . 

The original Redlich-Kwong Equation: 

RT A P = 
V _ B r 5 V ( V + B ) 

p = R T 1 , 5 ( V 2 - VB) - AV + AB 
r 5 v ( v 2 - B 2 ) 

P T ' 5 V 3 - P T , 5 B 2 V = R T 1 , 5 V 2 + B R T 1 , 5 V - AV + AB 

P T " 5 V 3 - R T K 5 V 2 + (A - P T " 5 B 2 - B R T 1 , 5 ) V - AB = 0 

Now let PV = ZRT V N = 

where N = 1, 2, 3 

P r 5 ( l R I ) 3 - r t 1 - 5 ^ ) 2 

+ (A - P T ' 5 B 2 - B R T 1 ' 5 ) ^ - AB = 0 

R 3 T 3 , 5
 73 R 3 T 3 ' 5

 72 
2 L ? L 

P̂  PL 
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+ M - B 2 R T U B R 2 T 2 - 5 
)Z - AB = 0 

Z 2 + ( A P B P B 2 P 2 

p2j2m5 R T R 2 T 2 

ABP 
r3 t3.5 = 0 

le t A* = AP 
r2 t2.5 and B* = ^ 

. \ Z3 - Z2 + (A* - B* - B*2)Z - A*B* = 0 

This is the same equation derived at by equation in the program. 
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SUBBOOTIBS BKVOL(NKOflP,Y,Z (X,T, P , T , A L , A G , BL, B G , 9 , I T I P ) 
C 
C SUBBOUTIN B BKVOL SOLVES TBE BEDLICH-KBONG EQUATION AND CALCULATES 
C THE HOLAB VOLOBE. 
C i r ITTP - B Q . 1 THEN THE LIQUID PHASE BOLAB VOLUHB IS CALCULATED 
C IP ITTP „KQ. - 1 THEN THE VAPOB PRASE HOLAB VOLUME IS CALCULATED 
C 

DOUBLB PBBCISIOB COP ( 4 ) , BOOTS (3) , BOOT I (3) , BOD (3) , C (4) 
DOUBLE PBBCISION DABS 
DIBENSIOB X ( 2 | ,T (2 ) , A L ( 2 . 2 ) , AG ( 2 , 2 ) , B L ( 2 ) , B G ( 2 ) 
A - 0 . 
B= fl-
I P (ITTP) 3 0 0 , 3 0 0 , 2 0 " 

200 DO 210 I«1 ,>KOBP ' / 
DO 2 0 5 J— 1,BKOBP 

2 0 5 A = A » X ( I ) * I ( J ) * A L ( I , J ) 
B - B + X ( I ) * B L ( I ) 

2 1 0 CONTIRUB 
GO TO 2 

3 0 0 DO 310 I»1,RKOBP 
DO 3 0 5 J -1 ,BKORP 

3 0 5 A * A » T ( I ) » T ( J ) * A G ( I , J ) ! • 
3 - B » T ( I ) * B G ( I ) 

310 CONTINUE 
2 Q - A / ( B » B « I * * 1 - S ) 

Z 0 » P * B / ( B « T ) 
C ( 1 ) — Q « Z 0 * « 2 
C ( 2 ) » ( 0 - 1 . - I 0 ) « x 0 
C ( 3 ) » - 1 . 
C { 4 ) « 1 . 
CALL PLTBB(C,COP,3,BOOTS,BOOTI,ITER) 
NB-0 
DO 5 K - 1 , 3 
IP (DAB'S (BOOTI (B) /BOOTH (R) ) - 1 . D-0 4) 3 , 3 , 5 

3 17(ROOTB^(K) ) 5 , 5 , 4 
4 RB-NBM 

BOD (NB) -ROOTB (X) 
5 COBTINOB x 

I P ( I T T P ) 1 0 , 1 0 , 5 0 > 
10 ABAX*BOD{1) 

I P ( R H - I ) 2 5 , 2 5 , 2 0 
2 0 DO 23 1 - 2 , B R 

I F (ABAX-BOD(I)) 2 2 , 2 2 , 2 3 
2 2 ABAX-BOD(I) 
23 COBTIBUB 
2 5 Z-ABAX 

GO TO 100 
5 0 ABIN-ROD (1) 

I F ( » B - 1 ) 7 5 , 7 5 , 6 0 
6 0 DO 7 9 J - 2 . N R 

I P (ABIB-R@B (J ) ) 7 0 , 7 1 * 6 5 
6 5 AB'XB*M>B (J ) 
7 0 COBTIROB 
7 5 X-ABIB 
100 V - S « S * T / P 

BBTUBfl 
EBB 

(v 
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SUBR0UT1NE ROMB (NMAX, C, B, T, JMAX, NRC) 

Input Parameters: 

Integer NMAX: Viewed as the number of times the in i t ia l 

integration interval [C, B] is to be 

halved to produce subintervals of length 

h, ( i .e . h = (B - C)/2NMAX). 

Real B, C: The upper and lower limits of integration,-

respectively. 

Integer OMAX: Viewed as the number of times the in i t ia l pair 

of adjacent elements in the sequence Tg, T^, 

. . . Tnmax are extrapolated to converge to 

the true integral value. 

Integer NRC: The size of the matrix of elements in the 
** 

Romberg sequences. 

The Output Is: 

Matrix T: Dimension [NRCa NRC] and contains the Romberg 

tableau for the given integral. 

ROMB calculates the in i t ia l values by repeated halving of the 

subintervals used in the estimation of the given integral using 

the composite trapezoidal rule. Provided that f (x) has a 

continuous and bounded second derivative on the interval (C,B), 

the sequence of elements generated by the general recursion re-

lation wil l converge to thetrue integral value of f f (x )dx . 
c 

The Richardson extrapolation technique is then applied to each 
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pair of adjacent elements in the sequence to produce another 

sequence of estimates. The entire results are then placed in 

matrix T. 

ROMB employs the following algorithm: 

A: Compute in i t ia l estimates. 

B: Repeat part A by repeated halving. 

C: Calculate entire sequence of elements by recursion 

formula. 

D: Compute each value of f(x) by a four point Lagrangian 

interpolation method. 

E: Complete the matrix T by the Richardson extrapolation 

technique. 
LIST OF EQUATIONS 

The Integral: 

ff(.x)dx 
c 

The Composite Trapezoidal Rule: 

^ f(x)dx = ^ t J f C c l + JfCB) + S f ( c + - t e - ^ l ) ] 

where n is the number of applications, B and C, the integration 

limits. 

The General Recursion Relation: 

where n = 1, NMAX, NMAX = N. 
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The Richardson Extrapolation Technique: 

T = n+1; j -1 'n, j -1 
n j 4J-1 _ -, 

where j = l , JMAX. 
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SU EtBOUTi MB BOHB (NH AX, C, B, r, J I1A X , NHC) 
DOUBLE PkECISION XI NT ( 25) ,Sk (25) , G (25) ,GGINT (25 b) ,SSINT (256) 
DOUULK PBECISION FA (25),BOD(25),BATO(256) ,C,B ,T(NBC,NBC) 
DOUBLE PBECISIOH XX.LGAU1,LGAH2,PB.CC(25,25),P(25) 
COnHON/DIV/CC.SA,P,G„BOD,N,NP1,NT 
CONBON/UEG/PA 
T(1,1) = (C»B)/2 .0 
DO 2 NN= 1,UHAX 
T (NN»1,1)=0.0 
FB= 1/2.0*»NN 
IBAX=2«*NN-1 
XX=0.0 
DO 989 1*1,IflAX 
KX=XX+FB 
CALL IHTHP(25,NT,XI ,BOD,FA,XINT) 
SS INT (I) >0. 0 
GUINT (I) =0. 0 
DO 95 J=1,HT 
G la INT (I) =UGINT(I) •IINT (J) *G(J) 
SSINT(I) ^SSINT (I) tXINT ( J)*SA (J) 

95 CONTINUE 
LUAN 1=GGINT (I) • (1.-XX) *SSINT (I) 
LGAfl2=GGINT(I)-XX*SSINT (I) 

989 BATO(I)=LGABI-LGAH2 
DO 1 K=1,IBAX,2 

1 T(NN»1,l)=T(NN»1,1)«BATO(K) 
2 T (NN»1,U =T (NN,1)/2.0»T(HN*1,1)/2.a»«NN 

DO 3 J=2, JflAX 
«XflJP2=MHAX-J + 2 
P 0 n a j | = 4 . 0 » « ( j - 1 ) 
DO 3 NNS 1,NXBJP2 

3 T (NN,J)= (POBBJ1*T (NN+ 1, J—1) - T(NN,J-1) ) / (FOBflJ 1 -1 .0 ) 
BETUBN 
END 
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SUBROUIINE HOHB (NHAX,C,B,T, JHAX,NBC,XC,II) 
DOUBLE PBECISIOB SA ( 25) ,ROD ( 25) , P (25) , G (25) , A <25, 25) , 

1 NO BK(25),STORL,BATO(256) , G I H , S A I R , T (HRC,*RC), 
2 XEXP(25),LGAH1,LGAH2,ARG(25) ,TAL(25 | ,XL(2 ) , 
J PL(25) .DPDXX (25) ,DELTA,GINN,SAINN,XC,H,FR,IX, 
4 X2,PX,DDX 

DlflBMSIOB TC ( 2) ,TCT ( 2 , 2 ) ,ACEN(2) ,TAO(2 ,2 ) , ART ( 2 , 2 ) , I C (2) , 
1 TPORE(2) 
COMHOH/DIV/A,SA,P,G,BOD,IT,BP1,R 
COHHOH/BEG/HORK,ARG,TAL,PSAT2,KP1,TPURE,ACEN, TCT, TC, TT, 

1 TAO,ART 
COBBOB/BEG 1/DELTA,!EXP 
H - X E X P ( I I ) - X C 
I ( l | t ) - ( C « B ) * 9 / 2 . 0 
DO 2 NN=1,NHAX 
T ( N N + 1 , 1 ) = 0 . 0 
FR=H/2 .0**BH 
IHAX=2»«NH-1 
xx=xc 
CALL IRTRP{XX,ROD,G,RORK,RT,1,ARG,TAL, HT) 
CALL IRTDAL ( X X , A R G , T A L , 6 I R , H T , 1 . D - 0 6 . I E R ) 
GIHN=GIN 
CALL IHTRP(XX,HOD,SA,BORK,NT,1,ARG,TAL.NT) 
CALL IRTDAL (XX,ARG,TAL,SAIH,RT, 1 . D - 0 6 . I E R ) 
SAIMH=SAIH 
X2=XX/DELTA 
CALL PCALA(PSAT2,X2,PX,KP1) 
CALL DPXA(PSAT2,KP1,DDI,X2) 
PL (I ) =FX 
DPDXX ( I ) =DDX 
XL (1) = XX 
XL (2) =1.—XL (1) 
CALL GNTOL(2,XL,TC,ACBH,TCT,TT.TAU.ANt ,TC,V) 
VHIXL=V 
TEL=VHIXL-XL(1) * » P 0 H E ( 1 ) - X L ( 2 ) «VPURE(2) 
STKORL=¥8L*DPDXX ( I ) / ( R « T T ) 
LGAH1=GINH» (1 .0-XI)• (SAIHN—5TK0RL) 
LGAH2=GIHN-II*(SAIHH-STKOHL) 

989 RATO(I)=LGAH1-LGAH2 
DO 1 K=1,IHAX , 2 

1 T (HNM , I) =T (HN* 1, 1) »RATO(K) 
2 T ( H H * 1 , 1 ) = T (HH, 1 ) / 2 . 0 » T ( H H » 1 , 1 ) / 2 . 0 » « H H 

DO 3 J=2 ,J (1 AX 
MXHJP2=NHAX-J»2 
FORHJ1 = 4 . 0 « * ( J - 1 ) 
DO 3 NN=1,HXHJP2 

3 T(HH,J)=(F0RHP1*T(HH*1 , J—1) - T ( H H , J - 1 ) ) / (FORHJ 1 - 1 . 0) 
RETURN 
EH D 



I 
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SUBROUTINE SCALE (XSCALE, YSCALE, X, Y, N, ARRAY, NUMPT, NZ) 

Input Parameters: 

Vector X, Y: Arrays containing the pairs of data points for 

the abcissa and ordinate, respectively. 

Integer N: The number of pairs of data points to be 

plotted. 

Integer NZ: A number which designates where in ARRAY the 

results are placed. 

The Output Is: 

Vector 

XSCALE: An array containing the prominant abcissa 

markings for the plot. 

A matrix containing the prominant ordinate 

markings for the plot. 

A matrix containing the array of ordinate 

values in the NZ column. 

An array containing the number of data points 

in each data set. 

MATRIX 

YSCALE: 

MATRIX 

ARRAY: 

Vector 

NUMPT: 

SCALE generates the ordinate and abcissca scales used for plotting 

the pairs of data points. SCALE can only handle one set of 

data points, per calling; therefore, multiple curves on a single 

graph will require a call statement for SCALE for each desired 

curve plot on the single graph. 
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SUBROOTIBE SCALB(XSCALB,ISC ALB,X#T,R,ARBAT,BOHPT, RZ| 
DOUBLE PBECISIOB X < 2 5 » , T ( 2 5 ) 
DIBEBSIOH X S C A L E ( 3 0 0 ) , T S C A L B ( 1 0 , 1 1 ) , B 0 B P T ( 1 0 » , A B R A T ( 1 0 , 3 0 3 ) 
X S C A L E ( 1 ) - 0 . 0 
T B I R - I ( B ) 
IHAX—T(1) 
DO 9 1 = 1 , 8 
I P (TBIN— X ( I ) ) 9 , 9 , 1 1 

11 IHIR-T ( I ) 
9 CORTIRQB 

DO 19 I s 1 , H 
I P ( I H A X - I ( I ) ) 1 7 , 1 9 , 1 9 

17 i a A X - I ( I ) 
19 CORTIMOB 

I R I N - T a i B - ( T R I R * 0 . 0 5 ) 
TRAX-TaAX*(IBAX*0.05) 
SPA 3 ( IBAX-TBIH) / 1 0 « 0 
DO 2 J - 1 , 2 
ISCALE (J , 1) —IBIR 
DO 2 1 - 2 , 1 1 
IB 1 - 1 - 1 

2 I S C A L B ( J , I ) — ( S C A L E ( J , I B 1 ) + S P A 
DO 3 1 - 2 , 5 1 
IB 1 - 1 - 1 

3 XSCALE(I)-XSCALE (IB 1 ) + 0 . 0 2 
DO 4 1 - 1 , 10 

4 NOflPT(I) - 0 
N U R P T ( 1 ) - 5 0 
NUBPT(NZ)-50 
DO 6 1 - 1 , 5 1 

6 A R B A I ( N Z , I ) - 0 . 0 
DO 5 I—1,R 
B - X ( I ) H > . 0 1 
A = B * 5 1 . 0 
J - A 

5 A B B A I ( H Z , J ) - I ( I ) 
RBTOBH 
BID 



PROGRAM 1 

(low pressure systems) 
(symmetric convention) 

PROGRAM 1 requires the following sections 
of subroutines (see Table 1): 

1) MAIN SECTION 



-160-

C PHOGRAH CTLG1 CALCULATES VAPOR PHASE HOLEPRACTIONS FOR SYSTEMS 
C UNDER LOH PRESSURE USING THE CONTENTION FOR NORMALIZATION 3P 
C ACTIVITT COEFFICIENTS 
C 

DOUBLE PRECISIOH A ( 2 5 , 25) ,SA (25) , P (25) ,G (25) , ROD ( 2 5 ) 
DOUBLE PBECISIOH P P , G E ( 2 5 ) 
DOUBLE PRECISION I E I P ( 2 5 ) , P B X P ( 2 5 ) 
DOUBLB PRECISION F A ( 2 5 ) , F B ( 2 5 ) , F C ( 2 5 ) , 7 1 ( 2 5 ) , X I N T ( 2 5 ) , T I Z ( 2 5 ) , 

1 I 2 C ( 2 5 ) , T E X P ( 2 5 ) , P 1 S , P 2 S , A L F A , B E T A , X I , P I , X , GAH1,GAH2, SUSY, PINT, 
2YINT1,YIHT2,DY,SQ,BA1( 25) , « A 2 ( 2 5 ) ,ViA3(25) ,NA4 (25) , DELT, DELTA, 
3DELYS 

DOUBLE PBECISIOH AA(21) 
DOUBLE PBECISIOH DEXP,DABS,DSQRT,DFLOAT 
DOUBLE PRECISIOB PCA(25) .DP,SSQ,DELP,DBLPS,DELPA 
DOUBLE PBECISIOB G I N T ( 2 5 ) , S A I N T ( 2 5 ) 
DOUBLB PBECISIOH T L ( 2 5 ) 
DOUBLE PBECISIOB GAHC1 (25),GAHC2 ( 2 5 ) , T 1 C C ( 2 5 ) , I 2 C C ( 2 5 ) , S 0 H T C 
DOUBLB P8ECIS10B D D E L P , H A T ( 2 0 , 2 0 ) , C , B 
DIMENSION TEXT ( 1 2 ) 
DIHEHSIOH HUHHT ( 1 0 ) , P T I T L E ( 2 9 ) , T G C A L B ( 1 0 , 1 1 ) , XGCALB(300| , 

1 A A R A T ( 1 0 , 3 0 0 ) , G T I T L E ( 2 9 ) 
COHHOH/DIV/A,SA,P,G,ROD,HT,HP1,N 
COHHON/BBG/FA 
COHHON/LBG/AA 
COHHOB PTITLE 
DATA ALPA.BBTA/O.D 0 0 , 0 . 0 0 0 / 
DATA NO,H 1 / 1 , 1 / 

501 FOBHAT(1 HI,•CONSISTENCY TEST USIHG ORTHOGONAL COLLOCATION - NU1BER 
1 OF INTBBNAL P O I N T S ' , 1 5 , / ) 

5 0 2 PORHAT(1H0,'COLLOCATION P O I N T S ' , / , 1 X , 1 0 F 1 0 . 6) 
504 FORHAT (1 HO, * X ' , 1 1 X , * P » , 9 X , ' GE/RT • , 3X, • GOOT • , 7X, • GAHU 1 • , 6 X, 

1 ' G A f l H A 2 ' , 8 X , ' I 1 ' , 1 0 X , ' T 2 ' , 7 X , ' S U H C O R ' , 3 X , ' G E J/HOLE') 
532 FORBAT(1H1,'CONSISTENCY TBST BY REPEATED HALTING OP TRAPEZOIDAL 

1 BOLE WITH ROHBERG INTEGRATION, ARBA=«,E15.6) 
505 FOBHAT(1 OP12 .6 ) 
5 0 6 FORHAT(1HO,'NUHBER OF BIHART DATAPOINTS ' , I 2 / / 1 X , ' S A T O R A T I O N 

1 VAPOR PRESSURE OP COBPONENT 1 AHD 2 ' . 2 F 1 2 . 4 . ' ATH. ' . / / I X , ' 
2TEHPEBATORE' ,F12 .4 , • DEG. K . • ) 

507 FORHAT(1X,12P10.4) 
508 FORHAT(12) 
509 FORHAT (1 HO, * X • , 8 X , • P« , 10X , • Y1 • , 7X , • Y 1 EXP" , 6X , • DT.« ,8X , « T2' , 

1BX,'SUHT',I>X, ' PCAL' , 8X , ' DP') 
510 FOHHAT(1 HO,' SDH OP SQUARES OP DELTA t ' , F 1 6 . 1 0 , / / 1 X , ' VARIATION 

1 OF DELTA Y * , F 1 0 . 4 , » A RTHHETIC HEAN OP DELTA I ' , F 1 0 . « , / / I X, ' 
2 CALCULATED EXCLUDING GIVEN END POINTS') 

511 FOBHAT ( P 8 . 3 , 2 F B . 4 , F 8 . 3 , 8 F 6 . 4) 
5 1 2 FOBHAT(1H0,'THE POLYNOMIAL USED IN THE ORTHOGONAL COLLOCATION 

1PHOCEDUBE HAS ALFA = ' , F 1 0 . « , ' A N D BETA = ' , P 1 0 . 4 ) 
513 FOBHAT ( 4 1 2 ) 
556 FORttA>T(29A4) 
514 F O M A T ( 1 H 0 , ' XEXP TEXP P5IP*) 
515 FORI9AT (1 HO, 'CALCITiATlD VALUES OP I I * ) 
516 POBHAT(1 HO,•SOLOTTOB AT THE DATA POINTS') 
517 FOBHAI(3I1) 
518 FORHAT(1 HI,'BXPEBIHEBTAL RESULTS AND CALCULATED QUANTITIES FOR 

1THE BIBABI SISTEB 1 2 A 4 , / , 1 2 0 ( 1 H « ) ) 
519 PORH'AT(12A4) 
520 FOBHAT(2I2) 
5 2 1 FORHAT(1 BO,* SOH OP SQUAB8S OF DELTA P « , F 1 6 . 1 0 , / / 1 X , • TARIATION 

1 OP DBLTA P • , F 1 0 . 4 , ' ABITHHETIC HEAN OF DELTA P • , F 1 0 . 4 , / / I X , 
2 ' 12 IT HHETIC HEAR OF DBLTA P / P ' , F 1 4 . 6 , / / 1 X , • CALCULATED EXCLUDING 
3 GIVEN BBD DATAPOINTS') 

5 2 2 FOBBAT(3P10.5) 
523 POBHAT(1 HO,'SOLDTIOH AT THB COLLOCATION POINTS*) 

HBD-5 
HNR-6 

6 0 0 BBAD(BBD,513) NJOB,BROHP,HSTP1,NSTP2 
IF(NJOB.EQ.O) STOP 
READ(NBD,519) TEXT 
HEAD(BHD,556)PTITLE 
READ(NRD,556)GTITLX 
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DO 5 0 0 L J C = 1 , N J O B 
BEAD ( N R D , 5 2 0 ) K.NWAX 
BEAD ( N R D , 5 0 8 ) NBPTS 
RBAD (HBD, 5 1 7 ) N 1 1 , R 2 , N 3 
DO 5 I - 1 , N B P T S 
R E A D ( M B D , 5 1 1) P E X P ( I ) , D O , D U B , T L ( I ) , X E X P ( I ) , D U B B , D O « H I , D L L , R B X P ( I ) , 

1DHU,DHFLU,DFLFLUT 
T - T L ( I ) 
CONTINUE 

H3 

c N11 ) 
c N2 ) I D E N T I F I C A T I O N PABANETEBS 
c R3) 
c P T 
c 
c N 11 N2 
c • 

c 1 ATB C C / H O L 
c 2 BAR GRFL/CC 
c 3 P S I A C O P T / L B . BOL 
c 4 IRCU.FLG L B / C U F T 
c 5 CB.HG C U P T / L B 
c 6 a a . HG Z 
c 

K 
P 
C 
R 

DO 9 7 8 3 I = 1 , B B P T S 
GO I O ( 9 9 9 2 , 9 9 9 3 , 9 9 9 4 , 9 9 9 5 , 9 9 9 6 , 9 9 9 9 6 ) , H 1 1 

9 9 9 3 P B I P ( I ) = P E X P ( I ) / 1 . 0 1 3 2 5 
GO TO 9 9 9 2 

9 9 9 4 PEXP ( I ) = PEXP ( I ) / 1 4 . 6 9 6 
GO TO 9 9 9 2 

9 9 9 5 PB'XP ( I ) » P E I P ( I ) ' 0 . 0 3 3 4 2 1 1 
GO TO 9 9 9 2 

9 9 9 6 P E X P ( I ) » P E X P ( I ) / 7 6 . 
GOTO 9 9 9 2 

9 9 9 9 6 P B I P ( I ) - P E X P ( I ) / 7 6 0 . 
9 9 9 2 GO TO ( 9 9 9 7 , 9 9 9 0 . 9 9 9 9 , 9 9 9 9 0 ) , H 3 
9 9 9 8 T = » ( T L ( I ) + 4 5 9 . 6 7 ) / I . 8 

GO TO 9 9 9 7 
9 9 9 9 T - T X . ( I ) > 2 7 3 . 1 5 

GO TO 9 9 9 7 
9 9 9 9 0 T = T L ( I ) / 1 . 8 

9 9 9 7 CONTINUE 
9 7 8 3 CONTINUE 

KP1-K+1 
P 1 S - P B X P ( H B P T S ) 
P 2 S = P E X P ( 1 ) 
NFILTE ( N H S , 5 1 8 ) T E X T 
H B I T B ( M « B , 5 1 2 ) ALFA,BETA 
H K I T E ( H V B , 5 0 6 ) R B P T S , P I S , P 2 S , T 
CALL L B F I T ( X E X P , P E X P , R B P T S , K ) 
WRITE ( H U B , 5 1 4 ) 
DO 8 1 = 1 , N B P T S 
H B I T E ( N R B , 5 2 2 ) X E X P ( I ) , T B X P ( I ) , P B X P ( T ) 

8 CONTINOE 
DO 4 0 0 B — H S T P 1 , R S T P 2 

C 
C GENERATION OP COLLOCATION CONSTANTS 
C 

U B I T E ( N H B , 5 0 1 ) N 
RT=N»B0*-N 1 
CALL J C O B I ( 2 5 , B , R O , N 1 , A L F A , B E T A , F A , F B , F C , R O D ) 
VBITB ( N B B , 5 0 2 ) (ROD ( I ) , 1 — 1 , N T ) 
NP 1 - B * 1 

, DO 10 1 - 1 , N T 
X1-800 (I) 
CALL P C A L ( P 2 S , P 1 S , X 1 , P P , K P 1 ) 
P ( I ) - P P 
CALL D F O P B ( 2 5 , N , N 0 , N 1 , 1 , 1 , F A , F B , F C , R O D , ? 1 ) 
DO 1 0 J = 1 , N T 
A ( I , J ) = » F 1 ( J ) 

10 COHTIBOB 
C 
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C INTIAL VALUES OF G 
C 

G ( 1 ) = 0 . 
G(NT)=0 . 
DO 20 1 = 2 , N P 1 
G |X) =BOD ( I ) * ( 1 . —BOD (I) ) 

2 0 CONTINUE 
CALL G I B B S ( P 1 S , P 2 S ) 

• BBITB(HUB,523) 
K I T E (B'VB,504) 
DO B1 I - t . N T 
X-BOD(I) 
GA9C1 ( I ) -DEXP (G (I) • ( 1 . - X ) *SA ( I ) ) 
GABC2(I) = D E X P ( G ( I ) - X » S » ( I ) ) 
I1CC(I)-GAHC1 ( I ) * X * P 1 S / P ( I ) 
T2CC ( U - G A B C 2 ( I ) • ( 1 . - X ) • P 2 S / P ( I ) 
S U N X C - T I C C ( I ) • I 2 C C ( I ) 
I1CC ( I ) 1CC ( I ) /SOB IC 
T 2 C C ( I ) * I 2 C C ( I ) / S O N tC 
G E ( I ) * G ( I ) * T * 8 « 3 1 4 4 
B H I T E ( B N B , 5 0 5 ) X . P ( I ) , G | I ) ,SA (I) ,GAHC1(I) ,GAHC2(I) , I ICC (I ) , 12ZZ ( I ) 

1 , S 0 8 I C , G E ( I ) 
91 CONTINUE 

C=DLOG (G ABC 1 ( 1 ) /GAlRC2( 1) ) 
B» DLOG(G ABC 1(BT)/GABC2 (BT)) 
BHITE(BBH.516) 
BBITE(NBB,504) 

C 
C LAGBABGIAB IBTEBPOLATIOH 
C 

DO 80 I - 1 , 8 4 P T S 
X - X E I P ( I ) 
CALX. I H T B P ( 2 5 , N T , I , B O D , F A , I I N T ) 
S A I N T ( I ) > 0 . 
G I N T ( I ) « 0 . 
DO 2 5 J » 1 , B T 
GINT ( I ) -GINT ( I ) »XIHT (J) *G (J) 
SAINT(I) - S A I N T ( I ) +SA(J) •XIBT (J) 

2 5 CONTIBOB 
GAB1-DBIP ( G I B T ( I ) • ( 1 . - X} *SAIRT(I) ) 
G4H2.-DBXP (GIRT ( I ) - I * S A I N T ( I ) ) 
I1C(X)»GAB1*X*P1S/PEXP(I ) 
I 2 C ( I ) -GAB2* ( 1 . - X ) • P 2 S / P E X P ( I ) 
s u n r - r i c ( i ) • t 2 c ( i ) 
i i c ( i ) = r i c ( i ) / s o n i 
i 2 c ( i ) = r 2 c ( i ) / s u n i 
GE ( I ) - G I R T ( I ) * T * 8 . 3 1 4 4 
H B I T B ( N » B , 5 0 5 ) X . P E X P ( I ) , G I N T ( I ) , S A I N T ( I ) , G A f l 1 . G A n 2 , I M C ( I I , I 2 C ( I ) , 

1 S U B I , G B ( I ) 
80 CONTINUE 

CALL SCALE(XGCALE,TGCALE,XEXP,GE,NBPTS,AABAT,NUHNT,1) 
CALL PLOT(AABAT,NOBRT,GTITLE,TGCALE, XGCALE, 1) 
CALL BORB(NnAX,C,B,RAT,NKAX,20) 
BBITB(HUB,532) NAT(1,NBAS) 
HBITE(HBB,515) 
RBITB(BVB,509) 
SQ*>0<. 
DEtr-0.. 
ssa-ov 
DBLP-O. 
DDELP-O. 
DO 100 I * 1 , B B P T S 
X-XBXP'(I) 
PINT=PBXP(I) 
CALL P C A L ( P 2 S , P I S , X , P P „ R P 1 ) 
P C A ( I ) - P P 
D P - P C A ( I ) - P E X P ( I ) 
S U N I = I 1 C ( I ) • ! 2C ( I ) 
D I - I 1 C ( I ) - I E X P ( I ) 
HBITB(NV 8 , 5 0 7 ) X , P I N T , I I C ( I ) , I E X P ( I ) , D T , T 2 C ( I ) , S U R T , P C A ( I ) , D P 
SQ»SQ*OT*DI 
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DBIRL—DBLI+DABS (DT) 
S S U = S S Q » D P » D P 
D E L P = D E I P + D A B S ( D P ) 
D D E L P = D U E L P + D A B S ( D P ) / P E X P ( I ) 

100 CONTINUE 
DELIS-DSQBT (SQ/<DFLOAT(NBPTS-3) ) ) 
DBLIA=DBLI/(DFLOAT(NBPTS-2)) 
DELPS-DSQBT (SSQ/ (DFLOAT(NBFTS-3))) 
DBLPA-DELP/(DFLOAT(BBPTS-2)) 
DDELP—DDELP/(DFLOAT (B—2) ) 
WBITB(NBB,510) SO,DELIS,DELIA 
NBITE(N«B,521)SSQ.DELPS,DELPA tDDELP 

« 0 0 CONTIHUE 
500 COBTINUB 

>' GO TO 6 0 0 
END 



PROGRAM 2 (P-R) 

(high pressure systems) 
(symmetric convention) 

(Peng-Robinson Equation of State) 

PROGRAM 2 (P-R) requires the following 
sections of subroutines (see Table 1): 

i f MAIN SECTION 

2) SUBSECTION ONE. 
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C PROSBAB CTLG2 CALCOLATES TIPOB PHASE BOLEFBACTIONS FOR STSTE.IS 
C UK DEB HIGH PBESSUBB USING THE STHHETRIC CONTENTION FOR NORflALI-
C SATION OF ACTIVITY COEFFICIBNTS 
C 

DOUBLE PBECISIOR PA ( 2 5 ) , F B ( 2 5 ) , PC(25)#* 1(25) , I 1 C ( 2 5 ) , T 2 C ( 2 5) 
1 XINT (25) ,GAR1 (25) ,GAH2<25) ,S0BTC(25) ,FPP1 (25) , P P P 2 ( 2 5 ) , F I 1 (25) , 
2 P I 2 ( 2 5 ) , I A N C ( 2 5 ) , F P 1 < 2 5 ) , P P 2 ( 2 5 ) , D P D X ( 2 5 ) , T B I 1 ( 2 5 ) , V E ( 2 5 ) , S T K O R ( 2 5 
3) 

DOUBLE PRECISION A ( 2 5 , 2 5 ) , S A ( 2 5 ) , P ( 2 5 ) , G ( 2 5 ) „ BOD(25) , GE(25) 
DOUBLE PRECISION XEXP (25) , IEXP(2 5) , PEXP (25) , DEL* (25) , R A 1 (2 5) , 

1 H A 2 ( 2 5 ) , B A 3 ( 2 5 ) , S A 4 ( 2 5 ) 
DOUBLE PRECISION PCA(25),DP,SSQ,DELP,DELPS,DELPA 

' • , DOUBLE PRECISION ALFA,BBTA,X1,PX,DDX,SQ,XB,PI NT,11NT1,1INT2^SUNT, 
1BI,DELTP!JELIS,DELIA 

DOUBLB PBECISIOB A A ( 2 1 ) , P P 
• DOUBLE PBECISIOB PS(2) , H A T ( 2 0 , 2 0 ) , C , 8 

DOUBLE PRECISION DBIP,DABS,DSQBT,DFLOAT 
DOUBLE PRECISION FPP1L (25) , FPP2L (25) ,.PI 1L (25) , F I 2 L (25) , FP1 L (25) , 

1FP2L (25) ,VBIXL(25) , TEL (25) ,STKOBL ( 2 5 ) , PL (25) ,GINT(25) , S A I N T ( 2 5 | , 
2GAH1L(25) ,GAB2L(25) ,1T1CL(25) , T2CL (25)-, SUB ICL (25) ,DPDXL(25) 

DOUBLE PBECISION TL(25) 
DOUBLE PRECISION DDBLP 
DIMENSION A P ( 2 , 2 ) , B P ( 2 ) , T ( 2 ) , X ( 2 ) , F U G C B ( 2 ) , F U G S ( 2 ) , 

1T0L(2) 
DIBENSION TCT ( 2 , 2 ) , T C ( 2 ) ,ANI ( 2 , 2 ) ,TAU(2 ,2 ) ,ACEH(2) ,TC(2 ) ,PC(2) 
DINBBSION TEXT(12) 
DIBENSIOR X L ( 2 ) , T L ( 2 ) 
DIBBBSIOB RORBT(10),PTITLB(2 9 ) ,TGCALB(1G,11) , XGCAL3(30)) , 

1 A A B A r ( 1 0 , 3 0 0 ) , G T I T L S ( 2 9 ) ' 
COBBOB/DIVA,SA,P ,6 ,BOD.N,NP1 ,NT 
COBBON/LEG/AA 
COBHON/BEG/FA 
COBBOR PTITLE ^ 
DATA R / 8 2 . 0 5 6 7 / 
DATA ALFA,BETA/0.D 0 0 , 0 . D 0 0 / 
DATA N O , B 1 / 1 , 1 / 

501 FORBAT(1H1,'CONSISTENCI TBSTS USING OBTHOGORAL COLLOCATION -
1 BOBBER OF IRTEBRAL POINTS' ,15) 

502 FOBBAT(1HO,'COLLOCATION P O I N T S ' , / , 1 1 , 1 0 F 1 0 . 6 ) 
504 FORBAT(1 BO,' X » , 9 X , » p » , 7 X , ' G E / H T ' , 6 X , ' G O O T • , 5 X , • G A R B A 1 ' , 4 X , 

PGABH-&2* , 6 X , M 1 * . 8 X » » T 2 , , 5 X , 'SUB COR«,2X,'GE J/MOLE') 
505 F0RBM(1B0,'BOBBER OF BIBABI POINTS' , 15 , 5X, ' AT THE ISOTHEBB', 

1F10.:?,5X,'TEBPEBATURB IN DBG K') 
506 F O R a A S ( 1 H 0 , ' T ' , F 1 0 . 4 , 4 1 , « P S » , 2 F 1 0 . 4 , 4 X , ' V O L ' , 2 F 1 0 . 4 , 4 X , / / , I X , 

1* FISAT' , 2 P 1 0 . 4 , 4 X , ' F R B E S A T * , 2 F 1 0 . 4 , / ) 
507 FORBAT ( 1 X , 1 1 F 1 0 . 4 , F 1 0 . 4 ) 
508 FORBAT(I2) 
556 FORNAT(29A4) 
509 FOB»A*(1aO-,' X • , 8 X , ' P* , 1 0 X , ' I 1 " , 7 X , ' T 1 B X P ' , 6 X , ' D T ' , 8 1 , ' H Z * , 

17X, •jpsai ' , 6 1 , 'PCAL* ,7X , ' DP*) 
510 FOBfrAff'(1B«-,' SUA OF SQSA4ES OF DBLTA T ' , F 1 6 . 7 , / / , ' VARIANCE OF 

1DBOJTA f ' t M M , ' ABITBBBTIC BEAR OP DBLTA T « , P 1 0 . 1 , / / , ' 
2CALCULATBD EXCLUDING GITEN ERD POINTS') 

511 PORBAT(5X2) 
512 F O B B A T ( F 8 . 3 , 2 F 8 . 4 , F 8 . 3 , 8 F 6 . 4 ) 
513 FORBAT(1 BO,0ITERATION NURBEB GREATER THAN 1 0 0 ' ) 
514 FOBBAX(1H0, 1 X , ' 10BB-BB OF ITBBATIORS IR G ' , 2 5 ) 
515 PORB AT'(1 BO,' TBS POLIBOBIAL. USED IB TBE ORTHOGORAL COLLOCATION 

1PROCBDUBB I S OF' TBB TTPB ALFA » ' , F 1 0 . 4 „ « BETA - « , F 1 0 . 4 , / / ) 
516 FOBBAT(1B0,' I< F0GCE1 FUGCE2 TBIX TE 

1DPDX COBB TO GOOT') 
517 F 0 B 8 A T ( 1 H 0 , ' XBXP IBXP PEXP*) 
519 FORBAT(1BO,'SOLOTIOR AT TAB DATAPOINTS') 
519 FORaAT(1H0,'CALCULATED VALUES OP T1 •) 
520 FOBR AT (3X1) 
521 FOBBAT(12A4) 
522 POBBAT(1B1,'BXPEBIHEBTAL RESULTS AND CALCULATED QUANTITIES FOR 

1TBB BXBABX STSTBB ' , 1 2 A 4 , / 1 2 0 ( 1 H * | ) 
523 FORNAX(212) 
524 FOBBAT (1 BO, ' SOB OPSQOARES OF DELTA P ' , F 1 6 . 7 , / / , ' VARIANCE OP 

1 DELTA P « , F 1 0 . 4 , « ABITHBBTIC BBAB OP DBLTA P » , F 1 0 . 4 , / / , 
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c 
c 
c 

2» ARITHMETIC HEAR OF DELTA P / P • , P 1 4 . 6 , / / 1 X , • CALCULATED EICLUDIR 
3G GITEH BHD POINTS*) 

525 FORHAT(3P10.5) 
530 POBHAT(1 HO,'SOLUTION AT THE COLLOCATION POINTS') 
532 PORHAT (1H1,'CONSISTENCT TEST Bt BEPEATED HALTING OP TRAPEZOIDAL 

1 R0i»B HITH ROHBEBG INTEGRATION, AREA- ' . E 1 5 . 6 ) 

LOGICAL tlHIT BOHBERS 

N8D=5 
NNR-6 

600 READ(HBO, 511)BJOB,N KOHP,NSTP1,NSTP2 
IP(HJOB.BQ-O) STOP 
BEAD (NRO,521) TEXT 
READ(HBO,556)PTIXLE 
READ(NRD,556)GTITLE 
DO 500 LJC=1,HJOB 
READ (BHD , 5 2 3 ) It, NHAX 
READ(NBD,508) NBPTS 
READ(HBD,520) N11 ,H2,H3 
BRITE(HH B , 5 2 2 ) TEXT 
BRITE(NUR,515) ALPA,BETA 
DO 5 1=1,NBPTS 
READ(NBD,512) P E X P ( I ) , D 0 , D U H , T L ( I ) , XEXP(I) ,DUHH,DUHHT,DH,IEXP(I) 

1,DH0,DHHU,DHBUI 
• T S T L ( I ) 

5 CONTINUE 
CALL PHROH(NKOHP,R,AP,BP,TCT,TC,ANt,TAO,ACEN,VC,PC,T,LJC) 

SEE TABLB BELOS 

C 
C Nil ) 
c H2 ) IDBBTIFXCAT10B PARA HBT BBS, SEE 
c B3 ) 
C P V T 
c 811 N2 H3 
c 
c 1 ATB CC/HOL R 
c 2 BAB GBH/CC P 
c 3 PSIA CO FT/LB. HOL C 
c 4 IBCH.HC LB/COPT R 
c 5 CH.HG COPT/LB 
c 6 HH.HG X 
c 

DO 9783 I«1 ,BBPTS 
GO TO ( 9 9 5 2 , 9 9 9 3 , 9 9 9 4 , 9 9 9 5 , 9 9 9 6 , 9 9 9 9 6 ) , N 1 1 

9 9 9 3 P B X P ( X ) - P E X P ( I ) / I ^ O 1 3 2 5 
GO TO 9 9 9 2 

9994 P E X P ( I ) = P E X P ( I ) / 1 4 . 6 9 6 
GO TO 9 9 9 2 

9995 P B X P ( X ) = P E X P ( I ) * 0 . 0 3 3 4 2 1 1 
GO TO 9 9 9 2 

9996 P B X P ( I ) - P B X P ( I ) / 7 6 . 
GO TO 9 9 9 2 

99996 P E X P ( X ) s P E X P ( I ) / 7 6 0 . 
9992 GO TO ( 9 9 9 7 , 9 9 9 8 , 9 9 9 9 , 9 9 9 9 0 ) ,B3 
9998 T - ( T L ( I ) + 4 5 9 . 6 7 ) / 1 . 8 

GO TO 9 9 9 7 
9 9 9 9 T ~ T L ( j ( ) + 2 7 3 . 1 5 

GO TO 9 9 9 7 
9 9 9 9 0 T=»TL(X) / I .8 

9 9 9 7 COHTINUE 
9 7 8 3 COBTIfOB 

KP1»KM 
PS(1)-PBXP(NBPTS) 
PS (2) = PBXP(1) 
9RITB(NWH,505) NBPTS.T 
CALL LEPIT(XBXP,PEXP,NBPTS,K) 
BRI TE(H VR, 5 17) 
DO 8 1=1,NBPTS 
BRITS(BSB,525)XEXP(I ) ,XEXP(I ) ,PEXP(I) 

8 CONTINUt 
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C CALCULATION OP PURE C0HPOR2BT PROPERTIES 
C 

DO to Is1,HKOI!P 
J = H R K o n P - I 
P S A T - P S ( I ) 
T ( I ) = 1 . 0 
T ( J ) - 0 . 
CALL P R T O L ( B K O B P , T , X , X , T , P S A T , T , A P , 3 ? , R , - 1 ) 
CALL PRPOG(T,PSAT,T ,T ,B ,FUGCS,AP,BP,RKOBP) 
I(I)>9. 
FUGS ( I ) - F U G C E ( I ) *PS ( I ) 

10 CORTXHUB 
X ( 1) = 1 . • 
X(2)-0.0 
CALL GRTOL (BKOHP, X« TC,ACER,TCT,T,TAU,ART,TC,T) 
T O L ( 1 > - » 
X ( 1 ) = 0 . 0 
X < 2 ) » 1 . 0 
CALL G H T O L ( H R O R P , X , T C , A C E R , T C T , T , T A 0 , A R T , T C , T ) 
V O L ( 2 ) - » 

11 COBTISUE 
DO 4 0 0 R»BSTP 1 ,RSTP2 

C 
C GEHESATIOR OP COLLOCATIOR COHSTANTS 
C 

WRITE(NBA,501) H 
R T - N » R 0 » » 1 
CALL JCOBI ( 2 5 , I , R 0 , R 1 , A L F A , BBTA,FA,FB,FC,BOD) 
K B I T S ( H 8 8 , 5 0 2 ) ( B O D ( I ) , 1 - 1 , R T ) 
DO 14 1 = 1 , B T 
CALL D F O P R ( 2 5 , » , R 0 , R 1 , I , 1 , F A , F B , F C , B O D , T1) 
DO 14 J = 1 , B T 
A ( I , J ) = I 1 ( J ) 

14 CORTIBUE 
H P 1 - R * 1 
F I I ( R T ) — F U G S ( 1 ) / P S ( 1 ) 
F I 2 ( 1 ) - F U G S ( 2 ) / P S ( 2 ) 
WHITE ( H S R , 5 0 6 ) T , PS ( 1) , P S ( 2 ) ,TOL (1) , T 0 L ( 2 ) , P 1 1 (BT) , F I 2 ( 1 ) , 

1 PUGS ( 1 ) , FUGS ( 2 ) 
C 
C THEBHODTRAHIC PBOPEBTIES AT THE COLLOCATIOR POIHTS 
C 

DO 2 2 I - 1 , R T 
XI-ROD ( I ) 
CALL PCAL (PS ( 2 ) , P S ( 1) , X1 , P P , KP1) 
CALL DPX(PS ( 2 ) , P S ( 1 ) , K P 1 , D D X , X 1 ) 
P ( I ) - P P 
DPDX(I)*DDX 
X (1)-X1 
X ( 2 ) - 1 . - X ( 1 ) 
CALL GRVOL(HKOHP,X,TC,ACEH,TCT,T,TAU,AHT,TC,V) 
V H I X ( I ) = T 
VE ( I ) - T B I X ( I ) - X ( 1 ) « V O L ( 1 ) - X ( 2 ) * T O L ( 2 ) 
STKOB(I)=TE (I)*DPDX ( I ) / ( B * T ) 
F P I ( I ) — P U G S ( 1 ) * D E X P ( T O L ( 1 ) / ( B*T) * (P ( I ) - P S ( 1) ) ) 
PP2 ( I ) -PUGS (2) *DBXP (VOL ( 2 ) / (B*T) • ( P ( I ) - P S (2) ) ) 
TAUC ( I ) - 0 . 5 

2 2 CORTXIKIB 
C 
C THBBOBTBABIC PBOPBBTIBS A* TBB DATA POXBTS 
C 

DO 2 2 7 I - 1 , R B P T S 
X1—XBXP (X) 
CALL PCAL (PS ( 2 ) , P S ( 1 ) , I 1 , P P , K P 1 ) 
CALL D P X ( P S ( 2 ) , P S ( 1 ) , X P 1 , D D X , X 1 ) 
PL ( I ) - P P 
DPDXL(I) -DDX 
XL (1) - 1 1 
XL (2 ) - 1 . -XL (1 ) 
CALL GBTOL(B«OBP,XL,TC,ACER,TCT,T,TAU,ART,TC,T) 
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V X L ( I ) - V B I X L ( I ) - X L ( 1 ) »V0L(1) -XL (2) "VOL (2) 
STKOBL(X)=V BL ( I ) * D P D X L ( I ) / ( B » T ) 
P P I L ( I ) = PDGS(1) •DEXP (TOL (1) / (R*T) * (PL ( I ) - P S (1) ) ) 
PP2L (I ) = POGS (2) »DEXP ( T O L ( 2 ) / (R*T) * (PL ( I ) - P S (2) ) ) 

2 2 7 CONTINUE 
C 
C INITIAL VALUES OP G ART) PI 
C 

DO 2 6 I « 1 , H T 
G(X) =ROD ( I ) • (1.—ROD (X) ) 
PI1 ( I ) « 1 . 
PI2(I) = 1. 

2 6 CONTINUE 
DO 2 6 1 1 - 1 , R B P T S 
PX1L(I) - 1 . 0 
P X 2 L ( I ) - 1 . 0 

2 6 1 CONTINUE 
C 
C START XTEBATIOR 
C 

RI=0 
28 DO 30 1 = 1 , B T 

PPP1 < I ) « P P 1 ( I ) / P I 1 ( I ) 
P P P 2 ( X ) - P P 2 ( X J / P X 2 ( I ) 

30 COITIHUB 
DO 301 X=1,RBPTS 
PPP1L (X) - P P 1 L (I) / P I 1L ( I ) 
FPP2L(I ) =PP2L (I ) /PX2L (X) 

3 0 1 CONTINUE 
CALL GIBSH(PPP1,PPP2,STKOR, ITER) 

I F ( N I . G T . 2 0 ) GO TO 100 
I P ( I T E R - 1 0 0 ) 3 3 , 3 2 , 3 2 

32 HHITB(NHR,513) 
GO TO 4 0 0 

33 « B I T K N H B , 5 1 4 ) ITER 
DO 50 I - 1 , RT 
6 A H 1 ( I ) = D E X P ( a ( I ) • ( 1 . - B O D ( I ) ) * ( S A ( I ) - S T K O R ( X ) ) ) 
GAR2(I) -DBXP ( 0 ( X ) - B O D ( X ) * ( S A ( I ) - S T K O B ( I ) ) ) 
r l C ( I ) = G A H l ( X ) * R O D ( I ) * P P P 1 ( I ) / P ( I ) 
T2C(X)=GAH2 ( I ) • J 1 . - B O D ( I ) > *PPP2 ( I ) / P ( I ) 
SO (1IC ( I ) = I 1 C ( I ) M 2 C ( I ) 

50 CONTIRUB 
C-DLOG(GAfll<1)/GAM2 ( 1 ) ) 
B-DLOG (G AH1 (BT)/GAB2 (HT) ) 

C 
C LAGBARGB IRTEBPOLRTXOR 
C 

DO 4 1 1 I=" 1, HBPTS 
GXHT ( I ) = 0 . 
S A I N T ( I ) - 0 . 
XH-IEXP(X) 
CALL INT RP(25 ,NT,XR,ROD,PA,IINT) 
DO 4 1 2 J - 1 , H T 
GXNT ( I ) - G I R T ( I ) *XINT(J) • G ( J ) 
SAINT ( I ) - S A I N T ( I ) +XINT (J) «SA (J) 

4 1 2 CONTIROB 
GAH1L ( I ) -DBXP (GIRT ( I ) • ( 1 . - X H ) * (S AIRT ( I ) -STKOBL ( I ) ) ) 
GAH2L(I) —DEXP (GIHT(I) —XR*(SAINT(I)-STKOHL(I) ) ) 
11CL(I ) -GAH1L ( I ) * X E X t ( I ) * P P P 1 L ( I ) / P L ( I ) 
T2CL ( I ) -GAB2L (X) * ( l . - X E X P ( I ) ) *PPP2L ( I ) / P L (Z) 
SUHTCL(I) = 1 1 C L ( I ) • I 2 C L ( I ) 
I 1 C L ( I ) - I 1 C L ( I ) / S O B I C L ( I ) 
I 2 C L ( X ) » t 2 C L ( I ) / S U B I C L ( I ) 
IL (1) - I 1 C L ( I ) 
TL (2) - I 2 C L ( I ) 
P R - P L ( I ) 
CALL PRVOL(RKOHP,V,Z ,XL,TL,PB,T ,AP,BP,R, -1 ) 
CALL PRPUG(IL,PB,T,V,R,PUGCE,AP,BP,HKOHP) 
PX1L(I)-PUGCK (1) 
PI2LIX)-POSCB (2) 
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411 CONTINUE 

TEST FOB VABIATION IN T1CAL 

DO 60 1=1 ,NT 
I F ( D A B S ( I 1 C ( I ) - I A N C ( I ) ) - 1 . D - 0 5 ) 6 0 , 6 5 , 6 5 

60 CONTINUB 
SO TO 80 

: NEB VALUES OF FUGACITI COEFFICIENTS 

6 5 DO 68 1=1 ,NT 
IANC ( I ) = I 1 C (I) 
Y ( 1 ) = Y 1 C ( I ) 
Y ( 2 ) = I 2 C ( I ) 
PB=P (I) 
CALL P R V O l ( N I O H P , T , Z , X , Y , P R , T , A P , B P , B , - 1 ) 
CALL PBFOG(T,PB,T,V,B,FUGCE,AP,BP,NKORP) 
F11 ( I ) = FUGCE (1) 
F I 2 ( I ) =F0GCE (2) 

68 CONTINUE 
GO TO 28 

90 CONTINUE 
BBITE(Ntf8 ,530) 
BRITE(NtfB,50Q) 
DO 4117 1=1,NT 
GE ( I ) = G ( I ) * T * 8 . 3 1 4 4 
KBITE (RUB,507) BOD ( I ) , P ( I ) , G ( I ) , S A (I ) , GAH 1 ( I ) , GAH2 ( I ) , T 1C (I ( , 

1T2C(I) , 5 0 H t C ( I ) , G E ( I ) 
4117 CONTINUB 

BRITB(NBB,516) 
DO 4116 1=1,NT 
B R I T E ( N B R , 5 0 7 ) R O D ( I ) , F I 1 ( I ) , F I 2 ( I ) . 7 8 1 1 ( 1 ) , V E ( I ) , D P D Z ( I ) , 3 T K 0 H ( I ) 

4116 CONTINUE 
WRITE ( 8 8 8 , 5 1 8 ) . 
if RITE (NNB, 50 4) 
DO 85 1=1,NBPTS 
GE ( I ) = G I N T ( I ) * T » 8 . 3 1 4 4 
B R I T E ( N N B , 5 " 7 ) X B Z P ( I ) , P L ( I ) , G I R T ( I ) , S A I R T ( I ) , G A 8 1 L (I) , G A N 2 L ( I ) , 

1 Y 1 C L ( I ) , Y 2 C L ( I ) , S U H X C L ( Z ) , G E ( I ) 
85 CONTINUE 

CALL SCALE(XGCALB,YGCALB,IBXP,GB,HRPTS,AAHAI, NOBHT, 1| 
CALL PLOT(AAB AT,NUB BT,GTITLE,YGCALE,XGCALE,1) 
CALL BOBB(NBAX,C,B,HAT,BRAX, 20) 
BRITE (NHB,532) BAT(1,RRAI) 
BRITE (NMR,516) 
DO 86 1=1,NBPTS 
tfBITE(BUR,507)XEXP(X),FI1L(I),FI2L(I) ,VRIXL ( I ) , VEL(I) , DPOCL(I) , 

« ' I f f i l ' jll! 

I j l N l ^ i ^ n i . i M ' i ' . Kt'lj 

-r icltf tfaaijjiJ 
MtfitcMEfitali l ir 
BRITE(NBi j 5 0 7 ) k R ; P I h T , I 1 C L ( I ) , T E X P ( X ) , D Y , I 2 C L ( I ) ,SUHY,PCA(I) ,DP 
SQ=3Q*DI»*2 
DBLI=DBLX«DABS(DT) 
SSQ=SSQ*0P*DP 
DELP=DBLP*0ABS(DP) 
DOELP=DQSLP»DABS(DP)/PEXP(I) 
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i o o CORTIHUE 
D E L I S * D S Q R T ( S Q / ( D F L O A T ( R B P T S - 3 ) ) ) 
D E L T A - D E L I / ( D F L O A T ( H B P T S - 2 ) ) 
D B L P S - D S Q R T ( S S Q / ( D F L O A T ( N 8 P T S - 3 ) ) ) 
D E L P A - D E L P / ( D F L O A T ( N B P T S - 2 ) ) 
D D E L P - D D E L P / ( F L O A T ( H - 2 ) ) 
W R I T E ( * « B , 5 1 0 J S Q , D E L I S , D E L I A 
W R I T E ( R B R , 5 2 4 ) S S Q , D E L P S , D E L P A , D D E L P 

4 0 0 CONTINUE 
5 0 0 CONTIRUE 

SO TO 6 0 0 
END 



PROGRAM 2 ( R - K ) 

(high Pressure systems) 
(symmetric convention) 

(Soave-Redlich-Kwong Equation of State) 

PROGRAM 2 (R-K) requires the following 
sections of subroutines (see Table 1): 

1) MAIN SECTION, 

2) SUB5ECTI0N TWO. 
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C PRUGIiAtt CTLG2 CALCULATES VAPOR PHASE «0LEPKACTIONS FOB SYSTEMS 
C UNDtU HIGH PRESSURE USING l'HE SYHHKTRIC CONVENTION FOB NOU.IALl-
C SAl'ION UP ACTIVITY COEFFICIENTS 
C 

DOUBLE PRECISION FA (251,FB(25),FC(25) ,V1{25),Y1C(25) ,Y2C(25) , 
1 XIN'i' (25) ,UAM1 (25) . G AJ12 (25) .SUHYC (25) ,FPf 1 (25) ,PPk»2(25) ,FI1 (25) . 
2FI2 (25) , Y ANC (25) ,FP1 (2 5) ,FP2 (25) .UPDX (25) , VfU X (25) , VE (25) , STKOR (2 5 
J) 

DOUBLE PRECISION A ( 25. 25) ,SA (25) . P (25) , G (25) , HOD (25) , GE (2 5) 
DOUBLE PBtiCISIOB XEXP (25) ,YEXP(25) , PEXP (25) . DELX (25) . VA 1 (25) . 

1WA2 (25) , WA3 (2 5) , MA4(25) 
DOUBLE PRECISION PCA (25).DP,SSQ,GELP, DELPS, DELPA 
DOUBLE PBEC IS ION ALFA,UET A,X1,PX«DDX,SQ,Xa,PINT,Y.LNrl,YINr2,5U;iY, 

1DY.DELY.DELYS.DELIA 
DOUBLE P HECISION AA(21),PP 
DOUBLE PKECISION PS(2),NAT(20,20),C,B 
DOUBLE P ft EC IS 10 N DEXP,DABS,DSQBT,DPLOAT 
DOUBLE PMEC 15ION FPP1L (25) , PPP2L (25) , FI1L (25) , FI2L (25) , FP 1 L (25) , 

IFP2L (25) , VHIXL (25) , VEL (25) ,STKOHL(25) ,PL(25) . GINT(25| ,SAINT(25| , 
2GAN1L(25),GAH2L(25),Y1CL(25),Y2CL(25),SUHYCL(25),DPDXL(2S| 

DOUBLE PRECISION TL(25) 
DOUBLE PRECISION DDELP 
DinENSIUN AL(2,2) ,BL(2),AG(2,2) ,BG(2),Y(2) ,X(2).FUGCE (2).FUGS (2), 

1 VOL (2) 
DIMENSION TCT (2,2) , TC ( 2) .ANY (2, 2) ,TAU (2 , 2) ,ACEN(2) ,VC(2) ,PC(2) 
DIMENSION TEXT (12) 
DIMENSION XL (2) , YL(2) 
DIMENSION NUIH1T (10) ,PTITHi(2 9),YGCALE(10, 11),XGCALE(300), 

1 AABAY (10,300),GTITLE(29) 
COMBON/DIV/A,SA,P,G,HOD,N.UP 1,NT 
COBflON/LEG/AA 
COHtlON/B EG/FA 
COHttON PTITLE 
DATA 8/8 2.0 567/ 
DATA &LPA,BETA/0.D 00.0.D 00 / 
DATA N0.N1/1,1/ 

iOI POURAT (181, 'CONSISTENCY TESTS USING ORTHOGONAL COLLOCATION -
1 UUttbEH OF INTERNAL POINTS',15) ' 

502 FOKHAT(1H0,'COLLOCATION POINTS',/,IX,10F10.6) 
504 FOttHAT(1UO.1 X",9X,'p«,7X, ' GE/BT' ,6X.'SOOT',5X, 'GAHBA 1',4X, 

1'GAMMA2' ,bX, , Y1' ,8X, 'Y2' ,5X, 'SUN COR',2X,'GE J/NOLE") 
505 FORMAC(1 HO,'NUMBEH OF BIHAR* POL NTS *,I5,5X,'AT THE ISOTHERM *, 

1P10. 2, 5X, ' TEilPEBA'IURE IN DBG K') 
506 FORHAT(1H0,'T',F10.4,4 X r 'PS',2F10.4,41,'VOL',2F10. 4 , 4 X , / / , I X , 

1•PISAT',2F10.4,4X,'FBEESAT',2P10.U,/) 
507 FOHHAT(1X,11F10.4,F10.4) 
508 F0HHAT,'I2) 
55t> FORNAX(29A4) 
509 FOUaAT(1liO, ' *• ,8X,«P' , TOX, «Y1« ,7X , « Y 1 EX P' , 6 X,' D Y' . 8X , ' Y2' , 

17X,'SUMY',6 X,* PCAL',7X,'DP') 
510 PORBA® (1H0, ' SUB OF SQUABBS OF DBLTA Y ' , P 1 6 . 7 , / / , ' VARIANCE OF 

10BLTA T ' , F 1 0 . 4 , ' ARITBBBTIC REAR OP DELTA Y ' , P I 0 . i , / V . ' 
2CALCULATED EXCLUDING GIVEN END POINTS') 

511 FORHAT (512) 
512 FORMAT (F8.3 ,2F8.4 ,F8.3 ,8F6.4) 
513 FORBAT(1 HO,'ITERATION RUBBER GREATER THAN 100') 
514 FORBAT(1H0,IX,"RUBBER OF ITERATIONS IN G',I5) 
515 FOBHAT(1 HO,* THE POLYNONIAL USED IN THE ORTHOGONAL COLLOCATION , 

1PBOCEDUBE IS 0? THE TIPE ALFA = ' . F 1 0 . 4 , ' BETA = ' . F 1 0 . 4 . / / I 
516 FOBBAT(1H0,' X PUGCE1 FUGCE2 VHIX VE 

1DPDX COBB TO GOOT') 
517 FORBAT(1 HO,' XEXP IEXP PEXP') 
518 FOBS AT(1 HO,'SOLUTION AT THE D6TAP0INTS') 
519 FOBBAT(1H0,'CALCULATED VALUES OF Y1 ') 
520 FOBBAT(311) 
521 FORBAT(12A4) 1 

522 POSBAT(1H1,*EXPEBIBENTAL RESULTS AND CALCULATED QUANTITIES FOR 
1THE BINARY SISTEB ' , 12A4,/120 ( 1H«) ) '/ 

523 FORBAT(212) 
524 PORBAT(1B0, ' SUB OF SQUARES OP DELTA P ' , F 1 6 . 7 , / / , ' VARIANCE OF 

1 DELTA P ' , F 1 0 . 4 , ' ARITHHETIC BEAN OF DELTA P » , F 1 0 . 4 , / / , 
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c 
c 
c 

2 ' ARITHH ETIC (IEAN OF DELTA P/P ' , F 1 4 . 6 , / / 1 X, ' CALCULATED EXCLUMN 
3G GIYEN END POINTS') 

525 FORH AT (J F10. 5) 
530 FORHAT(1HO, "SOLUTION AT THE COLLOCATION POINTS') 
532 FORMAT(1 HI,'CONSISTENCY TEST BT REPEATED HALVING OF TRAPEZOIDAL 

1 RULE BITH ROHBERG INTEGRATION, AREA= ' , 8 1 5 . 6 ) 

LOGICAL UNIT NUHBERS 

NH0 = 5 
NWB=6 

600 BEAD (NRD,51 1)NJOB.NKOHP,NSTP1,NSTP2 
IF (HJOB.EQ.0) STOP 
READ(NRD,521) TEXT 
READ(N RD,556)PTITLE 
READ (NRD,556)GTITLE 
DO 500 LJC=1,NJOB 
READ (NBD ,523) K.NHAX 
READ(NRD,508) NBPTS 
READ (N6Q,520) N11,N2,N3 
BRITE(NUB,522) TEXT 
URITE(NUB«51S) ALFA,BETA 
DO 5 1=1,NBPTS 
READ (NRD ,512) PEXP (I) , DO, DU H,TL ( I) , XEXP(I) , DUHfl, DOHH X , DH , T EXP (I) 

i,DHu,Dnnu,Dnnuv 
T=TL (I) 

5 CONTINUE 
CALL RKKON (BKOH'P..R.AL, AG, BL, BG,TCT,TC, ANT ,TA0 , ACER , VC, PC, T , LJ"t 

C 
c N1 1 ) 
c N2 ) IDENTIFICATION PRRAHETER5, SEE 
c N3 ) 
c P V T 
c N 11 N2 N3 
c 
c 1 ATH CC/HOL K 
c 2 BAR GBH/CC F 
c 3 PSIA CUFT/LB.HOL C 
c 4 INCH.HG LB/CUFT R 
c 5 CH.HG C0FT/LB 
c 6 HH.HG Z 
c 

DO 9783 1=1,NBPTS 
GO TO (9992,9993,9994,9995,9996,99996) ,N11 

9993 PEXP(I)*PEXP ( I ) / 1 . 0 1 3 2 5 
GO TO 9992 

9994 PEXP(I)=PEXP(I)/1«.696 
GO TO 9992 

9995 PEXP (I) =PEXP (I) *0.0334211 
GO TO 9992 

9996 PEXP(I)=PEXP(I)/76. 
GO TO 9992 

99996 PEXP(1)=PEXP ( I ) / 7 6 0 . 
9992 GO TO (9997,9998,9999,99990) ,N3 
9998 T= (TL(I )*459 .67) /1 .8 

GO TO 9997 
9999 T*TL(I) »273. 15 

GO TO 9997 
99990 T=TL(I)/1.8 

^997 CONTINUE 
9783 CO HTINUE 

KP 1=K+1 
PS (1)=PEXP (NBPTS) 
PS (2) =PEXP (1) 
BRITE(HUH,505) NBPTS,T 
CALL LEPIT(XEXP,PEXP,NBPTS, K) 
BRITS(N HB,517) 
DO 8 1=1,HBPTS 
HRITE(N>D,525)XEXP(I) ,IEXP(I),PEXP(I) 

8 CONTINUE 
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•I 

c 
C CALCULATION OP PURE COHPONEHT PROPERTIES 
C 

DO TO 1= 1, N KO HP 
J= 1 • NKOH P—I 
PSAT=PS(l) 
I (I) =1.0 
Y(J)=0. 
CALL BKVOL(NKOI1P.V,Z,X,Y.PSAT,T. AL,AG, BL, UG.R,-1) 
CALL RKPOG(I,PSAT,T,V,B,PUGCB,AG,BG,HRONP) 
Y(I)=0. 
FUG S (I) =PUGCE (I) *PS (I) 
X(I)=1. 
X(J)=0. 
CALL GNV OL(NKOHP,X,VC,ACEN,TCT,T,TAU,ANT,TC,V) 
VOL(I) = V 
X(I)=0. 

10 CONTINUE 
DO 400 N — NSTP1, "ISTP 2 

C 
C GENERATION OP COLLOCATION CONSTANTS 
C 

WRITE (NUB,501) N i, 
NT=N»NO* HI 
CALL JCOBI (25,N,NQf,N1,ALFA, BETA, FA,FB,FC,ROD| 
WRITE(NBB,502) (BOD(I),1=1,NT) 
DO 14 1=1,NT 
CALL DFOPR(25,N,NO,HI,I,1,FA,FB,FC,ROD,V1) 
DO 14 J= 1 ,HT 
A(I,J)=V1 (J) 

14 CONTINUE 
NP1-NM 
FI1 (NT) -FUGS (1) /PS (1) 
PI2(1)-FUGS (2) /PS(2) 
WBITE (NUB,506) T.PS(1) ,PS(2) ,VOL(1) ,VOL(2) ,PI1(NT) ,FI2(1) , 

1 FUGS (1) , PUGS (2) 
C 
C THEBHODYNAHIC PROPERTIES AT THE COLLOCATION POINTS 
C 

DO 22 1=1,NT 
XI=ROD(I) 
CALX. PCAL (PS(2) ,PS(1) ,X1,PP,KP1) 
CALL DPX (PS (2) ,PS(1) ,KP1,DDX,X1) 
P(I) -PP 
DPDX (I) — DDX 
X(1)=X1 
X(2)=1.-X(1) 
CALL GNVOL(NKOHP,X,VC,ACEN,TCT,T,TAU,ANY,TCcV) 
v n i x ( i ) - v 
VE (I)=VHIX (I)—X (1) * VOL (1) — X ( 2) *VOL (2) 
STKOR(I)=VE(I)*DPDX(I)/(B*T) 
PP1 (I) =PUGS (1) •DEXP (VOL (1) / (R*T) * (P (I) -PS (1) ) ) 
FP2(I)-FUGS (2)*DEXP(VOL(2)/(R*T) • (P(I)-PS(2) ) ) 
IANC (I) —0.5 

22 CONTINUB 
C 
C THEBODIIIABIC PROPERTIES AT THE DATA POINTS 
C 

DO 227 1 - 1 .NBPTS 
X1~XaXP(I) 
CALL. PCAL (PS (2) ,PS(1) , XI, PP, KP1) 
CALL DPX(PS (2),PS(1),KP1,DDX,X1) 
PL (I) -PP 
DPDXL(I) —DDX 
XL ( 1 ) = X 1 
XL (2) - 1.—XL (1) 
CALL GNVOL(NKOflP,XL,VC,ACEN,TCT,T.TAU, ANI.TC, V) 
VHIXL (I) -V 
VEL (I) - VBIXL (I) -XL (1)*VOL(1) -XL (2) *VOL (2) 
STKOBL(I)-VSL (I)*DPDXL (I | /(R*T) 
PP 1L (I) — PUGS ( 1) *DEXP(VOL(1)/(R»T) »(PL(I) -PS (1) ) ) 
PP2L (I)-PUGS (2) •DEXP (VOL (2) / (B»T) • (PL (I) -PS (2)) ) 
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227 CONTINUE 
C 
C I N I T I A L VALUES OP G AND P I 
C 

DO 2 6 1 = 1 , N T 
G ( I ) = B O D ( I ) * ( 1 . - B O D ( I ) ) 
P 1 1 ( I ) = 1 . 
F I 2 ( I ) = 1 . 

2 6 CONTINUE 
DO 2 6 1 1 = 1 , N B P T S 
P I 1L ( I ) = 1 . 0 
P I 2 L ( I ) = 1 . 0 

2 6 1 CONTINUE 
C' 
C STABT ITEBATION 
C 

NY=0 
2 8 DO 3 0 1 = 1 , N T 

P P P 1 < I ) = P P 1 { I ) / P I 1 ( I ) 
F P P 2 ( I ) = P P 2 ( I ) / P I 2 ( I ) 

3 0 CONTINUE 
DO 301 1=1,NBPTS 
P P P 1 L ( I ) = P P 1 L ( I ) / P I II. ( I ) 
F P P 2 L ( I ) = F P 2 L ( 1 ) / F I 2 L ( I ) 

3 0 1 CONTINUE 
CALL G I B S H ( F P P 1 , F P P 2 , S T K O R , I T E R ) 
NI = NT + 1 
I F ( N T . G T . 2 0 ) GO TO 1 0 0 
I ? ( I T E H - 1 0 0 ) 3 3 , 3 2 , 3 2 } 

3 2 B U I T E ( H H B . S 1 3 ) lj 
GO TO 1 0 0 

3 3 H R I T E ( N U B , 5 1 1 ) I T E R 
DO 5 0 1 = 1 , N T 
GAM 1 ( I ) = D E X P ( G ( I ) + ( 1 . - R O D ( I ) ) * (S A ( T ) - 5 T K O R ( I ) ) ) 
GAN2 ( I ) = D E X P (G ( I ) —ROD ( I ) * (SA ( I ) - S T K O R ( I ) ) ) 
11C ( I ) =GAM1 ( I ) ' R O D ( I ) •FPP1 ( I ) / P ( I ) 
T2C ( I ) =GAH2 ( I ) • ( 1 . - R O D ( I ) ) » F P P 2 (I),X"T-< I ) 
S U B I C ( I ) = I 1 C ( I ) * X 2 C ( I ) Y Y \Y 

5 0 CONTINUE \ \ 
C=LLOG (GAB1 ( 1 ) / G A B 2 ( 1 ) ) \ \ 
B= DLOG (GAH'L (NT) /GAM 2 (NT) ) V , 

C '' ; ^ 
C LAGRANGE INTERPOLATION 
C 

DO 1 1 1 1 = 1 , N B P T S 
G I N T ( I ) = 0 . 
S A I N T ( I ) = 0 . 
X « = X E X P ( I ) 
CALL I N T R P ( 2 5 , N T , X R , R O D , F A , X I N T ) 
DO 1 1 2 J = 1 , NT 
G I N T ( I ) = G I N T ( I ) + X I N T ( J ) ( J ) 
S A I N T ( C ) = S A I N T ( I ) • X I B T ( 0 ) * S A ( J ) 

1 1 2 CONTINUE 
G A M 1 L ( I ) = D E X P (GINT ( I ) • ( 1 . - X R ) * ( S AINT ( I ) - S T K O R L ( I ) ) ) 
G A H 2 L ( I ) = DEXP ( G I N T ( I ) - X R « ( S A I N T ( I ) - S T K O R L ( I ) ) ) 
T1CL(I)-GAM1L(I)*XEXP(I)*FPPIL(I)/PL(I) 
T 2 C L < I ) = G A H 2 L ( I ) • ( L - - X E X P ( I ) ) * F P P 2 L ( I | / P L ( I ) 
SUHICJL ( I ) = 1 1 C L ( I ) + V 2 C L ( I ) 
I I C L ( X ) = 1 1 C L ( I ) / S U M TCL ( I ) 
T2CL ( I ) = X 2 C L ( I ) /SUM ICL ( I ) 
I L ( 1) =X I C L ( I ) 
I L ( 2 ) = T2CL ( I ) 
P R = P L ( I ) 
CALL R K V O L ( H K O H P , V , 2 , X L , T L , P R , T , A L , A G , B L , B G , R , - 1 ) 
CALL R K F U G ( I L , P B , T , V , R , F U G C E , A G , B G , N K O H P ) 
F I 1 L ( I ) = F U G C E ( 1 ) 
F I 2 L ( I ) = F U G C E ( 2 ) 

1 1 1 CONTINUE 
C 
C T E S T FOR VARIATION I N T1CAL 
C 
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DO 60 1=1,NT 
IF(DABS(T1C(I)-TANC(I))-1.D-05) 60 ,65 ,65 

60 CONTINUE 
GO TO 80 ' 

C 
C NEW VALUES OF FUGACITT COEFFICIENTS 
C 

65 DO 68 1=1,NT 
IANC (I) = XtC (I) 
Y(1)=Y1C(I) 
I(2)=Y2C(I) 
PH=P (I) 
CALL RKVOL(NKOHP,V,Z,X,?,PR,T,AL,AG,BL,BG,R,-1) 
CALL RKFUG(I,PR,T,V,R,FUGCE,AG,BG,NKOHP) 
FI1 (I) =FUGCE( 1) r 
FI2(I)=FUGCE (2) 

68 CONTINUE 
GO TO 28 

80 COHTINUB 
WRITE(NWB,530) 
WRITB(NWB,504) 
DO 4117 1=1,HT 
GE (I)=G(I)#1*8.3144 
WRITE(NWR,507) ROD(I) ,P(I) ,G(I) ,SA(I) ,GAH1 (I) ,GAH2(I) ,11 C(I> , 

1 T2C (I) ,SUMIC(I) ,GE(I) 
4 117 CONTINUE 

WHIXE(NWB,516) 
DO 4116 1=1,HT 
WRITE(NW8,507)ROD(I) ,PI1 (I) , FI2 (I) , VHIX (I) , VE (I) ,DPDI(I) ,STK0R( II 

4116 CONTINUE 
WRITE(NUR,518) 
WRITE(NHS,504) , 
DO 85 1=1,NBPTS 
GE(I )=GINT(I )«T*8 . 3144 
WRITE(NWB, 507) XEXP ( I ) , PL (I) , GIHT (I) , SAINT (I) ,GAH1L(I) ,GAH2L (X) , 

1YICL (I) , I2CL (I) ,SUH YCL (I) , GE (I) 
35 CONTINUE 

CALL SCALE(XGCALE,YGCALE,XEXP,GE,HBPTS,AARAY,NUHHT,1) 
CALL PLOT(AABAX,NUHHT,GTITLE,YGCALE, XGCALE,1) 
CALL ROHB(NHAX,C,B,HAT,NHAX,20) 
WRITE(NWR,532) HAT(1,NHAX) 
URITE(NWB,516) 
DO 86 1=1,NBPTS 
WRITE(NWR,507)XEXP(I),FI1L(I),FI2L(I) ,VHIXL(I),TEL(I) ,DPDXL(I) , 

1STKOBL(I) 
36 CONTINUE 

WRITE(HNH,519) 
WRITE(HUB,509) 
SQ=0. 
DELI=0. 
SSQ=0. 
DELP=0. 
DDELP=0. 
DO 100 1=1,NBPTS 
XR = XEXP (I) 
CALL PCAL(PS(2),PS( 1),XB,PP,KP1) 
PCA(I)=PP 
DP=PCA(I)—PEXP(I) 
PIHT=PEXP(I) 
S0HY=YICL(I)•T2CL (I) 
DI=I1CL(I)-IEXP(I) 
WRITE(NWR,507)XR,PINT,T1CL(I) , YEXP(I) ,DY,T2CL (I) ,SUMY,PCA(I) ,BP 
SQ=SQ»DY**2 
DELI=DBLY+DABS(DY) 
SSQ=SSU+DP*DP 
D£LP=DELP+ DABS(DP) 
DDELP=DDELP*DABS (DP)/PEXP(I) 

100 CONTINUE 
DELYS=DSQRT(SQ/(DFLOAT(NBPTS-3) ) ) 
DBLYA=DELY/ (DFLOAT (NBPTS—2) ) 
DELPS=DSQRT(SSU/(DFLOAT(NBPTS-3) ) ) 
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DELPA-DBLP/ (DFLOAT(NBPTS-2) ) 
DDELP=DDELP/(FLOAT(N-2) ) 
WHITE (NUB,510) SQ.DELTS,DELIA 
WRITE(NHR,52U) 5SQ,DELPS,DELPA,DDELP 

U00 CONTINUE 
500 CONTINUE 

GO TO 600 
END 
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PROGRAM 3 (P-R) 

(high pressure systems) 
(asymmetric convention) 

(Peng-Robinson Equation of State) 

PROGRAM 3 (P-R) requires the following 
sections of subroutines (see Table 1): 

1) MAIN SECTION 

2) SUBSECTION ONE. 
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C PBOGRAN CTLG3 CALCULATES VAP08 PHASE HOLEFBACTtONS FOR Bit ART 
C SISTEBS UNDER HIGH PRESSURE USING THE AStHHET RIC CONVENTION FD3 
C HORNALIZATIOJI OF ACTIVITY COEFFICIENTS. 
C 

DOUBLB PBECISION A(25,25),SA (25) ,P (25) ,G(25),ROD(25) 
DOOBLB PBECISION FA(25),FB(25),FC(25) , V1(25),XINT(25),r1C(25) , 

1T2C(25),FD(25),GAB1 (25),GAH2 (25) .SUHTC(25) ,R30T(25),FPP1(25) , 
2FPP2(25) ,FI1 (25) ,FI2(25) ,tANC(25) ,FP1 (25) ,FP2 (2 5) ,DPDX{25) , 
3THII(25) ,VE(25) ,STK08(25)„FB (25),FF(25) ,XEXP(25),IEXP (25) , 
4 PEXP (25) , DELI (25),»A1 (25) ,BA2(2 5) ,WA3(25) , BAH (25) 

DODBLB PBECISION ALFA, BETA, X I , PI , 0 , DELTA, X1, P X,DDX rt\BNHT, X B , 5Q, 
1DELI,DBLIA,01,TINT1,IINT2,DELTS 
DOUBLE PBECISION XDOT(25),X2,X4 
DOUBLB PRECISION AA(21),PP 
DOUBLB PBECISION PC A (2 5) , DP, SSQ , DELP, i) ELP A , DE LPS 
DOUBLB PBECISIOB DABS,DBXP,DFLOAT,DSQBT 
DOUBLE PRECISION TL(25) 
DOUBLB PBECISION PL(25),DPDXL(25),VSIXL(25) ,V EL(25),STKOHL(25), 

1FP1L (25) ,FP2L(25) ,FI1L (25) ,FI2L(25) ,GAB1L(25) ,GAfl2L(25) ,T1CL(25) , 
2I2CL(25),SUHICL(25) 

DOUBLE PRECISION GINT(25),SAINT(25) 
DOUBLE PRECISION FPP1L(25) ,FPP2L (25) 
DOUBLE PBECISIOB SHOOT(25) 
DOUBLE PBECISIOB UORK( 25) ,GI N, SA IN 
DOUBLE PBECISIOB BAT (20 ,20 ) ,C ,8 (25 ) ,UNSI , IC 
DOUBLB PBBCISIOH ARG (25),VAL (25) 
DOUBLB PBECXSIOM HILL(50),01LLRT 
DOUBLB PBECISIOB DDELP 
DIMENSION TEXT(12),ZC(5) 
DIMENSION XL (2),TL(2) 
DIBEMSION VPOBE (2) , VPART (2) ,TCT(2,2) ,TC(2) , AH T (2, 2) , T AU (2, 2) , 

1 ACEN(2) , VC (2) ,PC(2) , AP (2,2) , BP(2) ,T (2) , X(2) ,FUGCB 
2 (2) , FUGS (2) , VOL (2) 

COHHON/DIV/A,SA,P,G,ROD,N,NT 
COHHON/SEG/ZC 
CORHON/BBG/BOBK,ABG,VAL,PSAT 2,RP 1,VPORE,ACEN, TCT,VC,T,TAU, 

1 AST 
CONBOM/LBG/AA 
COHflON/BEG1/DELTA,XEXP 
DATA ALFA,DETA/0.D 0 0 , 0 . 0 0 0 / 
DATA R/82 .0567 / 
DATA HO,B 1 / 1 , V 

501 F0RHAT(1H1,'CONSISTENCT TEST USING ORTHOGONAL COLLOCATION -
1NUHSEB OF INTERNAL POINTS',15) 

502 FOBHAT (1H0, 'COLLOCATION POINTS'/, IX, 10F.10. 6) 
504 FOBHAT (1UO,' X',10X,'P',7X,'GE/RT',5X,'GOOT',6X, ' GAKtlA 1' ,4X, 

1 'GA«HA2' ,5X, , I1 ' ,ax , ' t2 ' ,bX, 'SUH CORR',«X,'GE J/tlOLE') 
505 FORMAT (1 HO, ' N UN8BR OF BINART POI NTS' ,15 , 5X , ' AT THE ISOTHERH' ,P1 0 

1.2,51,'TBHPEBATUBE IN DBG K* ) 
506 FORMAT (1BO, 'T* ,F10. 4 ,4X, ' PS' ,PlO. 4,4X, ' VOL' , 2 F I 0 . 4 , 4 X , / / , 1 x , 

1' FISA-T',2F10. 4 ,4X, ' FREBSAT' , 2F10.4) 
507 FORMAT(1I,11P10.4,FT4.4) 
500 FOBHAT (12) 
509 FOBHAT(1H0,' X' , 8X.' P« ,10X, 'T1«,7X,•I1EXP' ,5X,•DI' .OX,' T2« , 

18X,'SUBT',6X,'PCAL' ,7X,'DP») 
510 FOBHAT (1H0,» SUB OF SQUARES OF DELTA T » , F 1 6 . 7 , / / , ' VARIANCE OF 

1DBLTA T * , P 1 0 . 4 , ' ARITHMETIC BEAN OF DELTA T ' , F 1 0 . 4 , / / , • 
1CALCULATED EXCLUDING GIVEN END POINTS') 

511 FORHAT(512} 
512 !T0aBAT(F8.3,2F8.4 ,F8 .3 ,8F6 . 4) 
513 FOBHAT(1 BO,'ITERATION N0H8ER GREATER THAN 100*) 
514 FORMAT(1UO,1X,'RUBBER or ITERATIONS IN G' , I5 ) 
515 FORHAT (iHO,' THE POLYNOMIAL USBD IN THE ORTHOGONAL COLLOCATION 

1 PROCEDURE IS OF THE TTPB ALPA - ' , F 1 0 . 4 , ' BETA » ' , F 1 3 . 4 , / / ' ) 
516 FOBHAT(1UQ, 'HBBBT LAV CONSTANT BT LAGSANGIAN EXTRAPOLATION', 

1F10.4) 
517 FORHAT(1H0,• XBXP TEXP PEXP') -
518 FOBHAT (1H0,'SOLUTION AT THE DATA POINTS') 
519 FORMAT(1 HO,'CALCULATED VALUES OF T1«) 
520 FORMAT (311) 
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5 2 1 FORMAT(1 HO,* X FUGCF 1 FUGCF2 VHIX VE 
1DPDX COBB TO GOOT') 

5 2 2 FORMAT(12) 
5 2 J FORMAT(12A4) 
5 2 4 FORMAT(1H1,'EIPBRIHENTAL RESULTS AHD CALCULATED QUANTITIES FDR 

1THE BIHA&t SISTEfl ' , 1 2 A 4 , / , 1 2 0 ( 1 H « ) ) 
5 2 5 FORHAT(1 HO, ' SUB OF SQUARES OF DELTA P ' , F 1 6 . 7 , / / , « VARIANCE 

10F DELTA P « , F 1 0 . 4 , « ARITHMETIC HEAN OF DELTA P ' . F 1 0 . 4 , 
2 / / , • ARITHMETIC REAR OF DBLTA P / P ' , F 1 4 . 6 , / / 1 1 , ' CALCULATED 
3EXCLUDIHG GIVER END POINTS') 

5 2 6 FORHAT(3P10 .5 ) 
5 2 7 PORHAT(1 HO,* SOLUTION AT THE COLLOCATIOH POINTS') 
5 3 2 FOBHAT(1H1,'CONSISTERCI TEST BT REPEATED BALVIHG OF TRAPZDIDAL 

1RULE WITH ROHBERG INTEGRATION') 
5 3 3 FORMAT(1H),151, 'CONSTANT- » , E 1 5 . 6 ) 

C 
C LOGICAL UNIT NUMBEBS 
C 

HR0=5 
HWR-6 

6 0 0 READ(NRD,511)NJOB,NKOHP,NSTP1,NSTP2 
I ? ( N J O B - E Q . 0 ) STOP 
READ(NRD,523) TEIT 
DO 5 0 0 L J C - 1 , N J O B 
READ ( H A D , 5 2 2 ) K 
BEAD (NRD, 5 0 8 ) NBPTS 
R E A D ( H R D , 5 2 0 ) N 1 1 , R 2 , R 3 
B R I T S ( N U B , 5 2 4 ) TEIT 

' WRITE(NHB,515) ALFA,BETA , 
DO 5 I - 1 , N B P T S 
R E A D ( N B D , 5 1 2 ) P B X P ( I ) , D O , D O R , T L ( I ) , X E X P ( I ) ,DUHH,DOHHt,DH,TBXP(tl , 

1DHU,DHHD,DHH0T 
. T « T L ( I ) 

5 CONTINUE 
CALL PBBOB(HKOHP,B,AP,BP,TCT,TC,AST,TAU,ACEN,VC,PC,T, LJC) 
O B I T S ( 6 , * ) A P , B P 

C 
C Hi 1 ) 
C H2 ) IDEBTIFICATIOH PARAMETERS, SEE 
C N3 ) 
C P V T 
c N i l N2 N3 
c 
c 1 ATB CC/HOL K 
C 2 BAB GRH/CC F 
c 3 PISA CUFT/LB.HOL C 
c 4 INCH.HG LB/CUFT R 
c 5 CH.HG C0FT/L8 
c 6 MM- HG Z 
G 

DO 9 7 8 3 I = 1 , B B P T S 
GO TO ( 9 9 9 2 , 9 9 9 3 , 9 9 9 4 , 9 9 9 5 , 9 9 9 6 , 9 9 9 9 6 ) , N11 

9 9 9 3 P B X P ( I ) - P E X P ( X ) / I . 0 1 3 2 5 
GO TO 9 9 9 2 

9 9 9 4 PBXP ( I ) -PEXP ( I ) / 1 4 . 6 9 6 
GO TO 9 9 9 2 

9 9 9 5 PBXP ( I ) - P E X P ( I ) • 0 . 0 3 3 4 2 1 1 
GO TO 9 9 9 2 

9 9 9 6 P B X P ( I ) - P E X P ( I ) / 7 6 . 0 
GO TO 9 9 9 2 

9 9 9 9 6 PEXP(X)-PEXP ( I ) / 7 6 0 . 
9 9 9 2 GO TO ( 9 9 9 7 , 9 9 9 8 , 9 9 9 9 , 9 9 9 9 0 ) , R 3 
9 9 9 8 T » ( T L ( I ) » 4 5 9 . 6 7 ) / 1 . 8 

GO TO 9 9 9 7 
9 9 9 9 T - T L ( I ) * 2 7 3 . I S 

SO TO 9 9 9 7 
9 9 9 9 0 T - T L ( I ) / I . 8 

9 9 9 7 COBTIHUE 
9 7 8 3 CONTIBOE 

C 
C BOBBISATXOR FACTOR 
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c 
DELTA-XEXP(NBPTS) 
KP 1 
VRITE(H9B,505) NBPTS,T 
DO 250 1 -1 ,NBPTS 

250 XDOT(I)= XEXP(I)/DELTA 
CALL A LPIT(XDOT,PEX P,NBPTS, K) 
U R I T E ( N T F H , 5 1 7 ) 
DO 8 1 - 1 , N B P T S 
VRITE(NIB,526) XEXP (I) , XEXP ( I ) , PEXP (I ) 

8 CONTINUE 
PSAT2-PBXP (1) 

C 
C CALCULATION OF PUBB COBPONENT PROPERTIES AND INITIAL GUESS OF 
C HENBIS CONSTANT 
C 

X ( 1 ) - 0 . 
X (2) - 1 . 
I ( 1 ) - 0 . 
I ( 2 ) - 1 . 
CALL GNVOL(NKOBP,X,VC,ACER,TCT,T,TAU,ANT,TC,V) 
VOL (2) -V 
CALL PRVOL(NKOBP,V,Z ,X, I ,PSAT2,T ,AP,BP,R, -1 ) 
CALL PRFUG(I,PSAT2,T,V,R,FUGCB,A P,BP,NKOHP) 
FUGS(2)-FUGCE (2)»PSAT2 
X ( 1 ) » O _ 0 5 
X ( 2 ) » 1 . - X ( 1 ) 
11=1(1) 
CALL PCALA (PSAT2, XI , P I , KP1) 
P I B - P I 
CALL PBVOL(NKOBP,VL,Z.X,T,PIB,T, AP,BP,R, 1) 
CALL PNRPT (NKOBP,X,AP,BP,B,T,VL,VPABT) 
BBXTS(6,»)VL.VPABT 
1 ( 2 ) - X ( 2 ) • F U G S ( 2 ) / P I 
I ( 1 ) = 1 . - I ( 2 ) 
CALL PBVOL(NKOBP,VG,Z,I ,T,PIB,T, A P , B P , H , - 1 ) 
CALL PBFUG(I,PIE,T,VG,B.FUGCE,AP,BP,NKOHP) 
F U G S ( 1 ) - ( P I - X ( 2 ) * F U G S (2)/FUGCE(2) *DEXP(VOL(2) • ( P I - P S A T 2 ) / ( 8 » T ) ) ) • 

1 FUGCE (1) /XI*DEXP (-TPART (1) • (PX-PSAT2) / (B*T) ) 
F I 2 (1) —FUGS ( 2 ) / P S A T 2 
F P P 1 ( 1 ) - 0 . 
FPP2(1 ) -PSAT2 
X ( 1) - 0 . 
X ( 2 ) - 1 . - X ( 1 ) 
CALL GBVOL(BRQBP,X,VC,ACEN,TCT,T,TAU,ANT,TC,V) 
CALL PR8PV(NKOaP,X,AP,BP,B,T,V,VPART) 
WRITE(6,*)V,VPABT 
VPUBE(I) - VP ABT ( 1) 
VPUBB(2) -V 
WRITB(NVR,506) T,PSAT2,VPUBE (1) ,VPUBB(2) , F U G C E ( 1 ) , F I 2 ( 1 | ,FUGS(1> , 

1 FUGS (2) 
DO 400 N-NSTP1,NSTP2 

C 
C GENERATION OF COLLOCATION CONSTANTS 
C 

RRITE(BBB,501) H 
NT-B+N-0+N1 
CA.LJ. J C O B I ( 2 5 , B , N O , HI, ALFA,BETA,FA,FB.FC, ROOT) 
URXTZ(BBB,502) (BOOT (X) ,X>1 ,NT) 
DO 12 X - 1 . B T 
CALL DPOPR ( 2 5 , N , N O , H I , I , 1 , P A , F B , F C . R O O T , V 1) 
DO 12 J - 1 . B T 
A ( I , J ) « V 1 ( J ) 

12 COBTIIOB 
DO 19 1 - 1 , N T 
BOD ( I ) - D E L T A + B O O T ( I ) • • . S 

19 COBTIROB 
C 
C TBBBBOOTNARIC PROPERTIES AT THB COLLOCATION POINTS 
C 

DO 22 I - 1 , B T 
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4 0 0 1 CONTINUE 
DO 40 1=1,111 
GAH1 ( I ) = DEXP (G ( I ) * ( 1 . —ROD (I ) ) • (S A (I)-STKOR ( I ) ) ) 
GAH2 (I)=DEXP(G ( I ) - R O D ( I ) * (SA (I) -STKOR ( I ) ) ) 
X1C(I)=G AH1 ( I ) • H O D ( I ) * P P P 1 ( I ) / P ( I ) 
I2C (X) =GAH2 (X) • (1 .-ROD ( I ) ) • FPP2 ( I ) / P ( I ) 
s i / H r c ( i » = r i c ( i i *rx ( i ) 

40 COHTIMOB 
C 
C LAGRAHUE INTERPOLATION 
C 

DO 411 1=1,MBPTS 
XR=XEXP(X) 
CALL JNTP(XH,ROD,G,HORK,HT, 1>ARG, VAL, NT) 
CALL INTDAL (XR, ARG, VAL,GIN, NT, 1 .D-Q6 . IER) 
GINT(I)=GIN 

411 CORTZHOB 
DO 4 1 2 I - 1 , H B P T S 
XR=XEXP(I) 
CALL INTP(XB,ROD,SA,UORK,NT, 1, ABG , VAL, NT) 
CALL INTDAL(XB,ARG,VAL,SAIN,NT,1 .D-06 , IER) 
SAIHT(I )=SAIH 

4 1 2 CONTINUE 
DO 401 1=1,NBPTS 
GAH1L(I) =DEXP ( G I N T ( I ) • ( 1 . 0 - X E X P ( I ) ) • ( S A INT(I) -STKOHL(I) ) ) 
GAH2L(I) =DEXP ( G I H T ( I ) - T E X P ( I ) • ( S A I N T ( I ) -STKORL(I) ) ) 
I1CL(I )=GAf l IL ( I ) • X E X P ( I ) « P P P 1 L ( I ) / P L ( I ) 
T2CL ( I ) =GAH2L ( I ) * (1 . -XEXP (I ) ) "FPP2L (I ) / P L (I ) 
SUHTCL(I) =T ICL ( I ) + t 2 C L ( I ) 
r i CL ( i ) = r ICL ( i ) /SOH ICL (x) 
I2CL(I> = r 2 C L ( I ) / S D H I C L ( I ) 
B ( I ) =DLOG (GAH1L(I) /GAH2L(I) ) 

401 COHTIHUB 
C=DLQG(GAH1L ( 2 ) / G A H 2 L ( 2 ) ) 

C 
C TEST POB VABXATXOB XB T1CAL 
C 

DO 6 0 1 = 1 , N T 
I P (DABS(I1C ( X ) - T A B C ( I ) ) - 5 . D - O S ) 6 0 , 6 5 , 6 5 

60 COHTIHUB 
GO TO 80 

C 
C NEB VALUES OP THE PDGACITT COEFFICIENTS 
C 

65 DO 6 8 1 = 1 , N T 
IANC ( I ) = I1C (X) 
1 ( 1 ) - T I C ( I ) 
T(2) -T2C ( I ) 
PR=P(I ) 
CALL PRVOL(NKOHP,V,Z,X,X,PR,T,AP,BP, R , - 1 ) 
CALL PBFUG(I,PH,T,V,R,FOGCE,AP,BP,NKOHP) 
F I 1 (I) =FUGCE(1) 
P I 2 ( I ) =PU3CE (2) 

6 8 CONTX8UE 
DO 6 8 1 5 1 - 1 , N B P T S 
XL ( 1) =XEXP (X) 
XL(2) = 1 . - X L ( 1 ) 
I L ( 1 ) = I 1 C L ( I ) 
IL ( 2 ) - T 2 C L ( I ) 
P B - P L ( I ) 
CALL P B V O L ( H K O H P , V , Z , X L , I L , P R , T , A P , B P , R , - 1 ) 
CALL PRPUG(IL,PR,T,V,R,FUGCE,AP,BP.NKOHP) 
P I I L ( I ) =FUGCE (1) 
P I 2 L ( I ) =FUGCE (2) 

6 8 1 5 COBTIIUB 
C 
C CALCULATION OP B2BBI173 CONSTANT 
C 

DO 70 1 - 2 , N T 
PD ( I ) = 1 I C ( I ) * P I 1 (X) * P ( I ) / B O D ( I ) 

70 COBTIHUB 



-183-

NHENR-NHBNR*1 
IF(N&ENa-2) 2 8 , 2 8 , 7 2 
CALL JCOBI ( 2 S , N , 0 , 0 , A L F A , B E T A , F E , F B , F C , F F ) 
HENRX-O. 
XR-O. 
CALL INT B P ( 2 5 , N , X R , F F , F E , X I N T ) 
DO 74 1 - 1 , 8 
J - I + 1 
HEHBI-HERBI+XIRT ( I ) • F D (J) 
CONTINUE 
BILL (HI) -HENRI 
I F ( N T . L T . 7 ) GO TO 8 7 3 
HENRI-(BILL (HI) »HILL(RT-1) »BILL(NT-2) H I L L (NT-3J + WILL (NT-1) ) / 5 . 
BILLRT-O.UO1*HENRI 
IF (DABS(HENBI-RILL (HT)) .LE.RILLBT) GO TO 80 
FUGS(1)=HENBI 
DO 7 5 1 = 1 , N T 
FP 1 ( I ) - F O G S (1)»DEKP (TPART (1) / (B«T) • (P ( I ) - P S A T 2) ) 
CONTINUE 
WBITB(NBB,516) 8ENBI 
IF ( N T . G T . 5 0 ) GO TO 80 
DO 681 1 - 1 , R B P T S 
FP1L ( I ) = FUGS ( 1) »DEXP (T PART(1) / ( R*T) • ( P L ( I ) -PSAT2) ) 
CONTINUE 
GO TO 28 
CONTINUE 

PBIBTS THE BESOLTS 

HRITS(NBH,527) 
WBITE(N»R,504) 
DO 8 5 5 7 1 - 1 , N T 
GE-G ( I ) * T * 8 . 3 1 4 4 
WRITE (NHR,507) ROD ( I ) , P ( I ) ,G ( I) , S A ( I ) ,GAR1 ( I ) , GAH2 ( I ) , T 1 C ( t ) , 

1 T 2 C ( I ) , S UHTC ( I ) , G E 
8 5 5 7 CONTINUE 

WBITE(NWB,521) 
DO 8 6 6 7 1=1 ,NT 
« B I T B ( N W B , 5 0 7 ) B 0 D ( I ) , F I 1 ( I ) , F I 2 ( I ) . V H I X ( I ) ,VE ( I ) ,OPOX ( I ) , 

1STKOR(I) 
8 6 6 7 CONTINUE 

WBITS(NBB,518) 
N B I T B ( N>8 , 5 0 4 ) 
DO 8 5 1 - 1 , N B P T S 
G B - G I N T ( I ) * T * 8 . 3 1 4 4 
W 8 I T B ( H B 8 , 5 0 7 ) X E X P ( I ) , P L ( I ) , G I H T ( I ) . S A I N T { I ) ,GAH1L(I | ,GAH2L(Il , 

I T I C L ( I ) , I 2 C L ( I ) ,SOBTCL(I ) ,GE 
85 CONTINUE 

BBITE(NNR,521) 
DO 8 6 I - 1,NBPTS 
« R I T B ( N 1 I H , S 0 7 ) X E I P ( I ) , F I 1 L ( I ) , F I 2 L ( I ) , V B I X L ( I ) , V E L ( I ) ,DPDXL(I) , 

1STKOBL(I) 
86 CONTINUE 

RBITB(NWB,S32) 
I C - I E X P ( 2 ) 
DO 57 I - 3 , R B P T S 
U N S T - 8 ( I ) 
CALL B O B B ( 6 , C , U N S I , H A T , 6 , 2 0 , X C , I ) 
WRITE(NBB,533) B A T ( 1 . 6 ) 

57 CONTINUE 
B R I T S ( B B S , 5 1 9 ) 
R R I T E ( N I B , 5 0 9 ) 
S Q - 0 . 
DELI—0. 
S S Q - 0 . 
DELP-0. 
DOELP-Q. 
DO 100 I - 1,NBPTS 
ZB-XBXF ( I ) /DELTA 
X 4 - I E X P ( I ) / D E L T A 
CALL PCALA(PSAT2,X4,PP,KP1) 

72 

74 

873 

7 5 

681 

80 
C 
c 
c 
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. PCA(I)=PP 
DP=PCA(I ) -PBXP(I ) 
S U B Y * I 1 C L ( I ) * Y 2 C L ( I ] 
or= l f1CL{I) -TEXP (I ) 
MBITE(MBB,507)XEXP(I) , P E X P ( I ) , T I C L ( I J . T E X P ( I ) , D T , T 2 C L ( I ) , 5 U H Y , 

1 PCA (X) ,DP 
SQ=SQ*DT*»2 
DELI»DELY»DABS(DI) 
SSQ=SSQ*DP»DP 
DELP=DELP»DABS(DP) 
DDELP3DDBLP+DABS(DP) / P E X P ( I ) 

100 CONTINUE 
DELYS=DSQRT(SQ/(DFLOAT(NBPTS-2) ) ) 
DELIA-DELT/ (DFLOAT(NBPTS-1) ) 
DELPS=DSQRT(SSQ/(DFLOAT(NBPTS-2) ) ) 
0ELPA= DELP/ (DFLOAT(NBPTS-1) ) 
DDELP* DDELP/(FLOAT(N—2) ) 
HRITE(NBB,510) SQ,DELIS,DELYA 
RRITE(NtlR,525) SSQ, DELPS, DEL PA, DDELP 

400 CONTINUE 
500 CONTINUE 

GO TO 6 0 0 
END 



PROGRAM 4 

(Peng-Robinson interaction parameter) 

PROGRAM 4 requires the following sections 
of subroutines (see Table 1): 

1) MAIN SECTION, 

2) SUBSECTION TWO. 
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PBOGBAB CTLG3 CALCULATES VlPOR PHASE HOLBFHACTIONS FOB B i t ART 
SYSTEilS UNDEB HIGH PflESSUBE OSIHG THE ASTBHETRIC CONVENTION FDR 
HORH ALIZATIOH OF ACTITITT COEFFICIENTS. 

DOOBLB PBECISIOH A ( 2 5 , 2 5 ) , S A ( 2 5 ) , P ( 2 5 ) , G ( 2 5 ) ,ROD(25) 
DOUBLB PBECISIOB FA ( 2 5 ) , F B ( 2 5 ) , P C ( 2 5 ) , T 1 ( 2 5 ) , X I H T ( 2 5 ) , Z 1 C ( 2 5 ) , 

1Y2C(25) , F D ( 2 5 ) , GAB1 (25) ,GAH2 ( 2 5 ) , S U B I C ( 2 5 ) , HOOT ( 2 5 ) , PPP 1 ( 2 5 ) , 
2PPP2 (25) , P I 1 (25) , F I 2 ( 2 5 ) ,TARC(25) ,FP1 ( 2 5 ) , F P 2 (2 5) , D P D I ( 2 5 ) , 
3 VHIX ( 2 5 ) , V E ( 2 5 ) ,STKOR(2S) , F B ( 2 5 ) , F P ( 2 5 ) ,XEXP(25) , IEXP (25) , 
4PEXP ( 2 5 | , 0 8 1 1 (?.S) , B A 1 ( 2 5 ) , 8 * 2 ( 2 5 ) , I A 3 ( 2 5 ) ,WA4 (25) 

DOOBLB PBECISIUB ALPA,BETA,XI;PI ,D,DELTA,X1,PX,DDX,HERBY,XB ,SQ, 
1 DELI,DHLYA,DY,YINT1, I I B T 2 , D B M S 

DOUBLB PBECISIOB X D O T ( 2 5 ) , ? 2 , X 4 
DOUBLX PBECISIOB A A ( 2 1 ) , P P 
DOUBLE PRECISIOR PCA ( 2 5 ) , 0 P , S S Q , D E L P , D E L P A , D B L P S 
DOUBLB PBECISZOB DABS,DBXP,DFLOAT,DSQBT 
DOUBLB PBECISIOH TL{25) 
DOUBLE PBECISIOB PL ( 2 5 ) , D P D X L ( 2 S ) , V 8 I X L ( 2 5 ) , TEL(25) ,STKORL(25) , 

1 F P 1 L ( 2 5 > , F P 2 L ( 2 5 ) , F I 1 L ( 2 5 ) , P I 2 L ( 2 5 ) , 6 A H 1 L ( 2 5 ) , S A H 2 L < 2 5 ) , 7 1 C L ( 2 5 ) 
2I2CL ( 2 5 ) ,SOHTCL (25) 

DOOBLB PBECISIOB G I B T ( 2 5 ) ,SAI8T ( 2 5 ) 
DOUBLB PBECISIOH FPP1L (25) , P P P 2 L (25) 
DOUBLB PBECISIOB SHOOT(25) 
DOOBLB PRECISION BORR(25) ,GIN,SAIN 
DOUBLE PBECISIOB ABG ( 2 5 ) , V A L ( 2 5 ) 
DOUBLB PBBCISIOH B I L L ( 5 0 ) , f I L L R t 
DOOBLB PBECISIOH DDBLP 
DIHBH5IOH TEIT ( 1 2 ) 
DIHEHSIOB XL (2) , I L ( 2 ) 
DIHENSIOH VPURE(2) ,7PABT(2) , T C T ( 2 , 2 ) , T C ( 2 ) , A H 7 ( 2 , 2 ) , 7 A 0 ( 2 , 2 ) , 

1ACEH(2) , VC (2 ) , PC (2) , AL ( 2 , 2 ) , BL(2) , AG ( 2 , 2) , BG (2 ) , T (2) , X (2) , FUGCE 
2 ( 2 ) , FOGS (2) , VOL (2 ) 

COHHOH/DIV/A,SA.P,G,ROD,H,NT 
COHHOB/LEG/AA 
DATA ALFA,BBTA/0-0 0 0 , 0 - D 0 0 / 
DATA 8 / 8 2 . 0 5 6 7 / 
DATA BO, B 1 / 1 , 1 / 

501 FOBHAT(181,*CONSISTEBCT TEST USING OBTHOGOHAL COLLOCATION -
1BUHBBB OP INTERNAL P O I N T S ' , 1 5 ) 

502 PORBA;T(180, 'COLLOCATION P O I H T S ' / , IX, 1 0 F 1 0 . 6 ) 
504 FOBHAT(1 DO, ' X » , 1 0 X , • P * , 7 X , « G E / B T * , 5 X , • G O O T • , 6 1 , • G A H H A 1 • , 4 X , 

1 ' G A 8 H A 2 • , 5 I , , T 1 ' , 3 I , ' T 2 , , 6 X , ' S 0 H C O B B ' , 4 X , 'GB J/HOLE*) 
5 0 5 POBHAT(1 HO,*BaBBBB OP BIBABT P O I N T S ' , 1 5 , 5 X , • A T THE ISOTHERH',F10 

1 .2 ,5X, 'TEHPERATURB IH DBG K* ) 
5 0 6 P O B H A T ( 1 8 0 , * T ' , F 1 0 . 4 , 4 X , * P S * , F 1 0 . 4 , 4 X , • V O L ' , 2 F 1 0 . 4 , 4 1 , / / , 1 X , 

1* P I S A T ' , 2 P 1 0 . 4 , 4 X , * F R E E S A T * , 2 F 1 0 . 4 ) 
5 0 7 P O B H A T ( 1 X , 1 1 F 1 0 . 4 , P 1 4 . 4 ) 
5 H F » R M T ( I 2 ) 
5 0 9 n i U T ( 1 H , * X * , 8 - I , « P * , 1 0 X , ' T 1 ' , 7 X , ' T 1 E X P ' , 5 X , ' D T * , 8 X , ' T 2 ' , 

i a X , ' 9 * H > , « X , * P € A & ' , 7 X , * W ) 
5 1 8 1 W I M H M , ' S H OT S«»^B>3 OF DELTA I * , P 1 S . 7 , / / , * VARIANCE 0 

1 DELTA I * , P 1 8 . » , * ARITMSTTC B7? 3 OP DKLIA I « , P 1 0 . 4 , / / , ' 
1CALCULATED EXCLUDING GIVEN END POINTS'J 

5 1 1 POBBAT(512) 
5 1 2 P O B H A T ( P 8 . 3 , 2 P 8 . 4 , F 8 . 3 , 8 * 6 * 4 ) 
5 1 3 P 0 B 8 B T ( l B 0 4 * X T B B A t I 0 l N08BEI GREATER THAN 100*) 
514 P 0 f i f l A S ( i a 0 , 1 1 , ' B O H B E B OP ITERATIONS IH G * , I 5 ) 
5 1 5 P O B H A « ( 1 a « ( ' TBB POLTROBXAL OSBD IB TBB OBTHOGOBAL COLLOCATION 

1PROCBDOBB 1 3 OP THE TIPB A LP 6 » S P I O . * , ' BETA =» * , P 1 0 . 4 , / / ) 
5 1 6 POBBAT(1 BO*'ttBNBT LIB COBSTAHT BI LA6BABSIAR BXTKAFOLATION', 

1 P 1 0 . 4 ) 
5 1 7 FORHAT(180»i XBXP « X P PBXP*) 
5 1 8 FORBAT(1HO,'SOL0TXOB AT THE DATA POINTS*) 
5 1 9 FOHHAT(180,'CALCULATED VALOBs OP t l * ) 
5 2 0 POBHAT(311) 
521 POBHAT(1BO, • X POGCP1 FUGCF2 VBIX VE 

1DPDX COB* TO GOOT*) 
5 2 2 FOBBAT(I2) 
5 2 3 POBBAT(12A4) 
5 2 4 FORHAF(1H1,'EXPEBIBERTAL BSS0LT3 ABO CALCULATED QUANTITIES FOB 



-187-

525 

526 
527 

c 
c 
c 

600 

c 
c 
c 
c 

1TBS Bill AIX STSTBB • , 12A4,/,120( 1H«)) 
FORBAT|1B0,« SOB or SQUARES or DBLTA P. «,F16.7,//,« VARIANCE 

1or DELTA P *,F10.4,« ABITHBBTIC BEAR Of DELTA P «,P10.4, 
2 / / , ' ABITKBBTIC SEAR OP DBLTA P/P • ,F 14.6,//IX,• CALCOLATED 
3BXCL0DISG GIVE* EBO POINTS') 
I0BBAT(3F10.5) 
FORBAT(1 BO,•30LDTI0B AT THB COLLOCATIOH POINTS1) 
LOGICAL ONIT ROBBBBS 
8 B D - 5 
NVB-6 
READ(BRD,511)NJOB,«ROnP,NSTP1,NSTP2 
IP(NJOB.EQ.0) STOP 
READ(NBO,523) TEXT 
DO 500 LJC— 1, HJOB 
BEAD(BBD,522)K 
READ (NRD,508) BBPTS 
READ(NRO,520)N11,N2,N3 
KBITS(RHB,524) TEXT 
WRITE(NVB,515) ALFA,BETA 
DO 5 1-1, NBPTS 
BBAD(NRD,512) PBXP(X) ,D0, DUN, TL (I) ,XEXP(I) ,DUN N, DUN [<T, DH , TBXP (II , 

1DBU,DBNU,DNBUT 
T—TL (I) 
CONTINUE 
CALL RKKON(BKOBP,R,AL,AG,BL,BG,TCT,TC,ANT,TAU,ACER,VC,PC,r.LJCl 
111 ) 
8 2 ) i » M « r i c a « o i H f t A a z r s t s , sss TABLS BSLOB 
• 3 ) C P V t 

C 811 82 » 
c 
c 1 ATB CC/ROL K 
C 2 BAB GHN/CC r 
c 3 PIS A COPT/LB.aot c 
c 4 INCH.BG LB/COPT R 
c 5 CB.BO COM/LB 
c 6 BB. HQ z 
c 

DO 9793 t * i ,RBPTS 
GO TO (9992 ,9993,9994,9995, 9996,99996) 

9993 PBXP(I)- PEIP(I)/1.01325 
GO TO 9992 \ 

9 9 9 4 

9 9 9 5 

9 9 9 6 

9 9 9 9 6 
9 9 9 2 
9 9 9 8 

9 9 9 9 

9 9 9 9 0 
9 9 9 7 
9 7 8 3 

C 
C 
C 

250 

P B X P ( D - P E X ^ N / L * . 6 9 6 
GO TO 9 9 9 2 
P B X P ( T ) - P B X P ( I ) • 0 . 0 3 3 4 2 1 1 
GO TO 9 9 9 2 
P B X P ( I ) - PEXP (X) / 7 6 » 0 
GO TO 9 9 9 2 
P K X P ( X ) - P E X P ( X ) / 7 6 0 . 
GO TO ( 9 9 9 7 * 9 9 9 8 , 9 9 9 9 , 9 9 9 9 0 ) , 8 3 
T - ( T L ( I ) + 4 5 9 . 6 7 ) / I * 8 
GO TO 9 9 9 7 
T » T L ( I ) * S 7 3 . 1 5 
GO TO 9 9 9 7 
T - T L ( I ) / I . 9 
COSTEHOS 
C O B T I B C K 

8 0 B B I 3 A T I O S F I C T O B 

D B L T A - Z E X P ( R B P T S ) 
KP1-KM 
B B I T S ( R B I , 5 0 5 ) R B P T S , T 
DO 2 5 0 X - 1 , BBPTS 
XDOT ( I ) - XBXP (X) /DBIAVI 
CALL A L F I T ( I D O T , P E X P , B B P T S , K ) 
R B I T B ( H B R , 5 1 7 ) 
DO S 1 - 1 , R B P T S 
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tfRITl(BSB,526) XBXP(I),TBXP(I),PEXP(I) 
S COBTINBS 

PSAT2-PBXP(1) 
c 
C CALCULATION OP POBB CO0PONENT PBOPEBTIES ADD INITIAL GUESS OF 
C BCBRTS CONSTANT 
c 

i ( i ) -e. 
X(2)-1. 
T O ) ^ 
X€-2}-1. 
CALL GBTOL(RftOBP,X,TC,ACEW,TCT,T,TAOFANT,TC,V) 
TOL(2)»T 
CALL BKTOL(RKORP,T,Z,X,I,PSAT2,T,AL,AS,BL,BG,H,-t) 
CALL BEFOG (I , PSAT2, T,T,B,FUGCE, AG,BG,NKOBP) 
FflGS(2) -PUGCB (2) *PS AT2 
I(1)-0.05 
X(2)-1.-X(1) 
XI-X(1) 
CALL PCALA(PSAT2,XI,PI,KP1) 
PIE-PI 
CALL tKtOt(MOflP,?L,Z,I,i,PXB,f ,At,AG, BL,BG, B,1) 
CALL BDKPT (NKOBP,X, AL, Bt,,B,T, TL, TPABT) 
I(2)«X (2)*PBGS(2)/PX 
T(1)-1.-I(2) 
CALL 8ETOL(SKOBP,fG,Z,X,I,PI8,T,AL,AG,BL,BG.B,-1) 
CALL BKFOG(Y,PIB,T,TG,B,POGCB,AG,BG,8KOBP) 
FtfGS(1)-(PI-I(2) *rtJGS(2)/F03CE(2) *DEIP(TOL(2) «(PI-PSAT2)/(R*T) I ) • 

1 r OGC B(11/XI *0 BXP (-T P ABT (11 • ( PI-PS AT 2) / (B*T) ) 
F£2(1)—POOSj2)/PSAT2 
PPP1(1)-0. 
PPP2(1) -PSAT2 
I(1)-0. 
X(2)«t.-X(1) 
CALL 6IT0L(BIC0flP',X« *C, ACES,TCT,T,TAO,ANT,TC,T) 
CALL BDKPV (HKOflP,X,AL,BL,R,T,T,TPART) 
TPOBB(I)-TPABT (1) 
TP0BB(2)-T 
VRITE(BI8,506) T,PSAT2,TPORE (1),TP0BB(2) ,FUGCE(1),FI2(11 ,PUGS(1), 

1PUGS(2) 
DO %00 B—NSTP 1,BSTP2 

C 
C GENERATION OP COLLOCASXOB CONSTANTS 
C 

•SITE (BBB-, 501) B 
BT-B«-R0»R1 
CALL JCOBI(25,B,BO,Ml,ALFA,BETA,PA,PB,FC, SOOT) 
NBITB(SBB,502) (BOOT(I),1-1,NT) 
DO 12 X-1, BT 
CALL DFOPB(25,B,B0,N1,1,1,PA,PB,FC,BOOT,T1) 
DO 12 J* 1, BT 
A(I,J)-T1 (J) 

12 COBTXNOB 
DO 19 1-1,HT 
BOD(I)-DELTA*BOOT(I)**.5 

19 COBSXSHE 
C 
C TIMHMFBASIC PMPBBTXBS AT THE COLLOCATION POINTS C 

N' 23 £»1 fn 
X1-ROD(I) 
X2»SOOT (I) »»i 5 
CALL PCALA (PSAT2»X2,PI»KP1) 
CALL DPXA (PSAT2,RP1,D0X,X2) 
P(X)-PX 
DPDX (I) -DDX 
X(1)-X1 
X(2)-1.-I(1) 
CALL GBTOL(BKOBP,X,TC,ACEB,TCT,T,TA0,A RT,TC,T) 
TRIX(I)-T 
TS (I) -TRXX (X) -X (1) MPORB(I) -1(2) *TP0BB (2) 
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STKOR(I ) - V E ( I ) * D P D I ( I ) / (R«T) 
F P 1 ( I ) » P 0 6 S ( 1 ) * D R X P (VPABT(1) / ( B » T ) * ( P ( t ) -PS AT 2) | 
P P 2 ( I ) =POGS(2)»DBXP (VOL ( 2 ) / ( R * T ) • ( P ( I ) - P S A T 2 ) ) 
IARC ( I ) = 0 . 5 

22 COHTIRUB 
c 
C THERBODIHAHIC PROPERTIES AT THE DATA POIHTS 
C 

DO 227 I " 1 , HBPTS 
X 1 = X E X P ( I ) 
I 2 - I E X P ( I ) / D E L T A 
CALL P C A L A ( P S A T 2 , X 2 , P X , K P l ) 
CALL D P X A ( P S A T 2 . K P 1 , D D I . X 2 ) 
P L ( I ) = P I 
D P D I L ( I ) = D D I 
I L ( 1 ) = X 1 
X L ( 2 ) - 1 . - X L ( 1 ) 
CALL S8VOL(»KOHP,XL ,7C ,ACER,TCT .T ,TAO,AHT .TC , V) 
V H I X L ( I ) - V 
V E L ( I ) = V H I I L ( I ) - I L ( 1 ) • TP0RB (1) - X L (2) •VP0RE(2 | 
STKOBL ( I ) = V E L ( I ) *DPDXL ( I ) / ( B « T ) 
PP I L ( I ) "FtJGS( 1) *DEXP (VPART ( 1 ) / ( B » T ) • ( P L OI) -PS AT2) ) 
F P 2 L ( I | "PTJGS ( 2 ) •DEXP (VOL (2) / (B*T) • ( P L ( I ) -PSAT2) ) 

227 COHTIHOB 
C 
c i b i t i a l v a l o e s o r g e / b t ahd p i 
C 

DO 26 1 = 1 , H T 
G(I)«0. 
F I 1 ( I ) = 1 . 
F I 2 ( I ) = 1 . 

26 COHTIHOB 
BHEHB-O 
a 1*0 
F P P 2 L ( 1 ) = P S A T 2 
DO 261 I = 1 , R B P T S 
FX 1L (X) * 1 . 
F I 2 L ( I ) = 1 . 

2 6 1 CO•T IERS 
C 
C START I T S R A T I 0 9 
C 

28 DO 30 1 * 2 , B t 
P P P 1 ( I ) » P P 1 ( I ) / P I 1 ( I ) 
FPP2 ( I ) » r P 2 ( I ) / P I 2 ( I ) 

30 CORTIBOH 
DO 3 0 1 1 * 2 , B B P T S 
PPP 11.(1) »PP I t ( I ) / P I 1 t ( I ) 
F P P 2 L ( I ) - P P 2 1 ( I ) / P X 2 L ( I ) 

301 CORTIROB 
BT»HI*1 
CALL GIBS A (FPP1,FPP2,3TIOR,DEI>TA . ITER) 
I F ( I T E R - 1 0 0 J 3 3 * 3 2 , 3 2 

3 2 HB. ITB(BVB,513) 
DO 3 3 7 7 I « 1 , H T 
S A ( I ) = 0 . 1 
G(I)=0-01 

3377 C O R K ROB 
GO TO 4 0 0 1 

33 V I X T B ( B 8 B . 5 1 « ) ITEB 
• 0 0 1 COHTIBUE 

DO 4 0 1 = 1 , B T 
GAB 1 ( I ) -DEXP (G(X) • ( U - E O D ( I ) J * ( S A ( I ) -3TKOB (X) ) ) 
G A H 2 ( I ) » D E X P ( G ( X ) - R O D ( X ) * ( S A ( I ) - S T K O R ( I ) ) ) 
I 1 C ( I ) » O A H 1 ( I ) « B O D ( I ) • F P P 1 ( I ) / P ( I J 
I 2 C ( I ) - G A B 2 ( I ) • ( 1 . - R O D ( I ) ) * P P P 2 ( I ) / P ( I ) 
saaic(i)*Tic(i) »!2C(i) 

40 CORTIHOH 
C 
C LACIAHCB IRTEBPOLATIOB 
C 
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DO 411 1 * 1 , B B P T 3 , 
I B - I E X P ( I ) 
CALL IHTP(XB,BOD,G,BOHK,RT ,1 ,ARG,TAL ,HT) 
CALL INTDAL ( X R . A H G , T A L . G I H , H T , 1 . 0 - 0 6 , I E R ) 
G I H T ( I ) - G I H 

411 COHTXHOE 
DO 412 1 - 1 , R B P T S 
I R = X E X P ( I ) 
CALL t R T P ( X B , H 0 D , 5 A , H 0 R K , H T , 1 , A B G . T A L , H T J 
CALL XHTDAL ( X B , A B G , T A L , 5 A I B , R T , 1 . D - 0 6 . I E R } 
S A I H T ( I ) = S A I H 

412 CORTIROE 
DO 401 I - 1 , R B P T S 
G A B 1 L ( I ) - D E X P ( G I H T ( I ) • ( 1 . 0 - X E X P ( X ) ) * ( S A X H T ( I | - S T K O R L ( I I I I 
GAH2L(X) —DEXP (GXRT ( I ) - X E X P ( I ) * ( S A I N T ( I ) - S T R O R L ( I ) ) ) 
I I C L ( X ) » « A H I L (X)«XEXP ( I ) » F P P 1 L ( I ) / P L ( I ) 
T2CL (X) • • A H 2 1 (X) • ( 1 . - I U P (X) ) *P»P2L(X) / P L ( t ) 
S t l f C L ( I ) >T fCL ( I ) •JJJCL (X) 
11CL ( I ) « I ICL ( I J / I N ICL (X) 
T 2 C L ( I ) - I 2 C L ( X ) / S O H T C L ( X ) 

401 COBTXRGB 
C 
C TEST POB VAfelATIOB XB T1CAL 
C 

DO 60 X s 1 , B T 
I F ( D A 8 3 ( I i e ( I ) - J A B C ( I ) ) - S . D - 0 5 ) 6 0 , 6 5 , 6 5 

60 C 0 R * I 8 0 B 
GO TO 8 0 i ) 

C \ / ' 
C RBI VA&OBS OP TBB POGACITt C0EPPICISHT3 
C 

65 DO 68 X - 1 , R T 
T&BC ( I ) * > I 1 C (X) 
i ( i»-ric { 1) 

; T(2»-r2C(i) 
;pb»P(I) 
CALL aKTOl(HKOHP,T,X,X,X,PB,T,AL,AG,BL,BG,R,-1) 
CALL BRPOG(T,PB,T,f,R, POGCB,AG,BG,HKOHP) 
PX1 (I)-PBGC8(1) 
PI2(I)»F0GCE(2) 

60 COHTXMB 
00 6 8 1 5 I » 1 , B B P T S 
X L ( 1 l - X E X P ( I ) 
X L ( 2 ) - 1 . - X L { 1 ) 
T L ( 1 ) - r l C L ( X ) 
1 L ( 2 ) * T 2 C L ( X ) 
P a - P L ( t ) 
CALL RKVOL(MOSP,Y« t , X L , f L , P R , f , AL,AG,BL, 5 G , R , - 1 ) 
CALL RKPOG(IL»PR,T,T,R,POGCB,AG,BG,HKOHP) 
FX 1L (X ) —POGCE (1) y 
P I 2 L ( X ) - P O a C E ( 2 ) 

6815 COBTXBOB 
C - ' 
C CiLCOLATIOR OP 8EHEBI3 CORSTAHT 
C 

DO 70 X 3 2 , H T 
P D ( X ) - I 1 C ( I ) * P X 1 ( I ) > P ( X ) / B O O ( i ) 

7 0 CORffXVOB 
HHE»R»»HEHB*1 
I P ( » f f B B B - 2 ) 2 0 , 2 8 , 7 2 

7 2 CALL JCOBI ( 2 5 , H , 0 , 0 , A L F A , 8 E T A , P E . F B , F C , PP) / 
HEHBT—0. / / 
XB»Oi / 
CALL X B T R P ( 2 5 , H / X R , P F , P B , X I B T ) 
DO 74 X » 1 , R 7 

J » X * 1 v 
B i n I - M BBf s-EXBT (X) * PB (J ) ' 

74 COBTXOTB '/ / 
H ILL ( H I ) ' H I N T ' 
I P ( » V . L 2 » 7 ) 6 0 TO 8 7 3 B B B B I » ( B I L L (BT) • • X L L ( R l - l ) «BXU,' (BY-2) » t I L L ( R I - 3 ) • H I L L (BT-4 ) ) / 5 . 
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•ii.LIR-0.oe I * H I H I T 
I F ( D A B S ( H E R B Y — B I L L ( I T ) } . L B . F I L L R Y ) SO TO 3 0 

8 7 3 P 0 6 S ( 1 ) - B B R R Y 
DO 7 5 I - 1 » H I 
FP 1 ( I ) —FOGS ( 1 ) *DEXP (VP ART ( 1 ) / ( B * T ) * ( P ( I ) - P S A T 2 ) ) 

7 5 C O I T I H U B 
B R I T B ( B B S , 5 1 6 ) BBHBI 
X F ( B Y . G T . 5 0 ) GO TO 8 0 
DO 6 8 1 1 - 1 , R B P T S . 
F P 1 L ( I ) - F O G S ( 1) *DBXP (V PABT ( 1 ) / ( S * T ) • ( P L ( I ) - P S A T 2 ) ) 

6 8 1 C 0 R T I 8 0 B 
GO TO 2 8 

8 0 COBTIBUB 
C 
C P B I B T S TBB BBSOLTS 
C 

B R I T S ( B B S , 5 2 7 ) 
B B I T E ( B B B , 5 0 4 ) 
DO 8 5 5 7 1 = 1 , S T 
GB-G ( I ) * T * 8 . 3 1 9 Q 
« R I T B ( H B B , 5 0 7 ) B O D ( I ) , P ( I ) , G ( I ) , S A ( I ) ,GAB 1 ( I ) , GAB2 ( I ) , I 1 C ( I ) , 

1T2C (I) .soared) ,GB 
8 5 5 7 COBTXHOB 

B B I T B ( « 9 a , 5 2 1 ) 
DO 8 6 6 7 1 - 1 , H T 
B R I T B ( S B B , 5 0 7 ) B O D ( I ) , F I 1 ( X ) , F I 2 ( I ) , T B I X ( I ) , V E ( I ) , D P D I ( I ) . 

1 S T K O R ( I ) 
8 6 6 7 COITIROK 

B B I T B ( N B B , 5 1 8 ) 
B R I T E ( R ' B B ' , 5 0 4 ) 
DO 8 5 X — 1 , R B P T S 
G B - 6 X B T ( X ) * T * 8 . 3 1 4 4 
R 8 I T B { H V R . 5 0 7 ) IEXP ( I ) , P L ( I ) , G I S T ( I ) , S A I H T ( I ) , G A H 1 L ( I ) , 5 A H 2 L ( I ) 

I I I C L ( I ) , I 2 C L ( I ) , S 0 B Y C L ( I ) , G E 
8 5 C08XXBOB 

B R I T B ( B V R , 5 2 1 ) 
DO 8 6 1 - 1 , R B P T S 
» B I T E ( B « B , 5 0 7 ) X E X P ( X ) , P I 1 L ( I ) , F I 2 L ( I ) , T B I X L ( I ) , V E L ( I ) , D P O X L ( I ) 

1 S T K O S L ( X ) 
8 6 CORTXROB 

• B X T B ( 8 ' U B , 5 1 9 ) 
B B I T E ( B V B ' , 5 0 9 ) 
sg«0. 
OU.T-O. 
SSfk-Bv 
M&P**. > 
DO 1 9 0 I » 1 , M P T S 
Xa-XEXP(I)/DELTA 
X 4 - X E X P ( I ) / D E L T A 
CALL PCALA ( P S A T 2 , X 4 , P P , K P 1 ) 
PCA(I ) -PP 
D P - P C A ( X ) - P 8 X P ( X ) 
S O S t — I 1 C L ( I ) • Y2CL(X) 
D I - I 1 C L ( I ) - FSXP ( I ) 
> R I T B ( H B B , 5 0 7 ) X E X P ( I ) , P E X P ( I ) , I I C L ( I ) , Y B X P ( I ) , D T , I 2 C L ( D ,suar, 

I P C A ( I ) , D P 
S G » S Q F D T * * 2 
DBLI-DSLY*-D AB3 ( D I ) 
S S Q - S S Q » D P * D P 
D E L P - D B L P » D A B S ( D P ) ' 
D D B L P — D D B L P T D A B S ( D P ) / P B X P ( I ) '• 

1 0 0 COBTIBOS 
DELIS—DSQST ( S Q / ( D F L O A T ( 8 B P T S — 2 ) ) ) 
D E L I A - D E L I / ( D F L O A T ( R B P T S - 1 ) ) 
D B L P S - D S Q B T ( S S Q / ( D F L O A T ( B B P T S - 2 ) ) ) 
D E L P A - D B L ? / ( D F L O A I ( R B P T S - 1 ) ) 
D D E L P * D D S L P / ( F L 0 A T ( B - 2 ) J 
V R I T B ( R B 8 , 5 1 0 ) 3 Q , B E L T S , D I L I A 

. B B I T 8 ( B V R , S 2 3 ) S S Q , D B L P S , D B L P A , D D 8 L P 
4 0 0 C O R T I E S I 
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5 0 0 COBTIRUR 
SO TO 6 0 0 
BHD 



PROGRAM 3 (R-K) 

(high pressure systems) 
(asymmetric convention) 

(Soave-Redlich-Kwong Equation of State) 

PROGRAM 3 (R-K) requires the following 
sections of subroutines (see Table 1): 

1) MAIN SECTION, 

2) SUBSECTION TWO. 

>f 
I! 
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c 
C PR0(IRAM4 E S T I H A T E S THE B I N A B I INTERACTION PAR AH ETBR FOB THE 
C PEBG-BOBIHSOH EQUATION OF S T A T E . 
C 

DIMENSION X E X P ( 2 5 ) , T E X P ( 2 5 ) , P E X P ( 2 5 ) , P U G C E L ( 2 ) , F U G C E V ( 2 1 , 
1 AP ( 2 , 2 ) , B P ( 2 ) , DEL ( 1 0 0 0 ) , T C ( 2 ) , P C ( 2 ) ,ACEN ( 2 ) , A (21 , 
2 SUA ( 2 5 ) , T E X T ( 1 2 ) , C ( 2 , 2 ) , T L ( 2 5 ) , 1 ( 2 ) , 1 ( 2 ) , C C ( 2 5 ) , 
3 SUHHN ( 2 5 ) 

DATA B / 8 2 . 0 5 6 7 / 
5 1 2 F O B H A T ( 4 F 1 0 . 4 ) 
5 2 1 F O R H A T ( 1 2 A U ) 
6 5 5 FOBBAT ( 2 . 8 1 2 . 5 ) 
6 4 4 FORMAT ( 1 8 1 , * C ( I , J ) D E V I A T I O N ' ) 
5 0 8 F O B B A T ( 2 X 2 ) 
6 6 6 F O B B A T ( 1 H 1 , 3 X , ' X ( 1 ) ' , 5 X , ' Y ( 1 ) ' , 6 X , « K E X P 1 ' , 5 1 , ' K E X P 2 ' , 5 1 , 

1 ' K C A L 1 * , 5 X , * K C A L 2 * , 5 X , ' S U H ' ) 
5 2 2 F O B H A T ( 1 H 1 , ' E X P B R I B E R T A L RESULTS AND CALCULATIOND CONSTANTS 

IFOR TAB B I N AB X SISTEFI ' , 1 2 A 4 , / 1 2 0 ( 1 H » ) ) 
100 F O B B A T ( J B 1 2 . S ) 
1 0 1 F O B B A T ( 1 H 0 , ' P C - T C - A C E B * , 4 X , 3 E 1 2 . 5 ) 
6 0 1 F O R R A T ( 1 H O , ' T B E INTERACTION PARAMETER VALUE USED I N THE 

1 FOLLOWING T B S T , C ( I , J ) - ' , 8 1 0 . 3 ) 
6 0 2 F O R B A T ( 7 B 1 0 . 3 ) 
6 0 3 F O R B A T ( 1 B 1 , ' T H E SOB OP D E V I A T I O N S FOB ALL DATA POINTS ARE, 

1 S U B - ' , E 1 0 . 3 ) 
N B D - 5 
NUB > 6 
READ ( N R D , 5 2 1) TEXT 
R E A D ( B S D , 5 0 8 ) R B P T S , N K O H P 
H B I T B ( N R B , 5 2 2 ) TEXT 
DO 5 I =>1, NBPTS 
B E A O ( N B D , 5 1 2 ) P E X P ( I ) , T L ( I ) , X E X P ( I ) , T E X P ( I ) 
T - T L ( I ) 

5 CONTINUE 
R E A D ( R R D , 1 0 0 ) (PC ( I ) , T C ( I ) , A C E N ( I ) , 1 - 1 , N K O B P ) 
• R I T E ( N H R , 1 0 1 ) (PC ( I ) , T C ( I ) , A C E N ( I ) , I - 1 , B K 0 H P ) 
D B L ( 1 ) - 0 . 0 
DO 1 1 - 2 , 1 0 0 
D B L ( I ) - D E L ( X - 1 ) > 0 . 0 0 1 

1 CONTINUE 
DO 2 0 0 K - 1 , 1 0 0 
C ( 1 , 2 ) - 0 . 1 0 0 » D E L ( K ) 
DO 6 I - 1 , N K O B P 
C ( I , I ) - 0 . 0 
DO 6 J - 1 , N K O H P 
C ( J , I ) =C ( I , J ) 

6 CONTINUE 
DO 3 0 1 - 1 , N K O H P 
T H - T / T C ( I ) 
A K K - 0 . 3 7 4 4 + 1 . 5 4 2 2 6 * ACEN ( I ) - 0 . 2 6 9 9 2 * ( A C E N ( I ) • • 2) 
A L F - ( 1 A K K * ( 1 . - ( T B » * 0 . 5 ) ) ) • • 2 
A C - 0 . 4 5 7 2 4 * ( ( B » * 2 ) * (TC ( I ) » * 2 ) ) / P C ( I ) 
A ( I ) - A C * ALF 
BP ( I ) = 0 . 0 7 7 8 0 * B * T C ( I ) / P C ( I ) 

3 0 CONTINUE 
DO 4 0 1 - 1 , N K O H P 
DO 4 0 J - 1 , N K O B P 
A P ( I , J ) - ( 1 . - C ( I , J ) ) * ( A ( X ) * * 0 . 5 ) * ( A ( J ) • • 0 . 5 ) 

4 0 CONTINUE 
U B I T S ( 8 V B , 6 0 1 ) C ( 1 , 2 ) 
V R I T E ( H W R , 6 6 6 ) 
DO 9 9 L - 1 , NBPTS 
X ( 1 ) - X 8 X P ( L ) 
X ( 2 ) — 1 . - 1 ( 1 ) 
1 ( 1 ) - T E X P ( L ) 
r (2) - i . - i (D 
P - P E X P ( L ) 

C 
C CALCULATION OP THE L I Q U I D HOLAB VOLUME AND F U G A C I T I 
C COEFFICX B B T . 
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CALL P R T O L ( ) I K O « P , T L , Z , I , R , P , T , A P # B P , R , 1) 
CALL P R F U G ( X , P , T , T L , B , F U G C E L , A P , B P , NKOHP) 

C 
C CALCULATION OF THB VAPOUB NOLAR VOLUME AND FUGACITT 
C C O E F F I C I E N T . 
C 

CALL P R T O L ( H K O H P , ? T , Z « I , T , P , T F A P , B F , 8 , - 1 ) 
CALL P B P U G ( T » P , T , ? T , R , F U G C B V , A P , B P , N K O R P ) 

C 
C CALCULATION OF HININUH SUM OF ABSOLUTE DEVIATIONS OF 
C EQUILIBRIUM R A T I O S . 
C 

RE I P 1= I ( 1 ) / Z ( 1 ) 
R E X P 2 » T ( 2 ) / X ( 2 ) 
8 C A L 1 3 F U G C E L ( 1 ) / F U G C E T ( 1 ) 
RCAL2= F U G C E L ( 2 ) / F U G C E T ( 2 ) 
DHCAL1=ABS(RCAL1—REXP1) 
D R C A L 2 E A B S ( B C A L 2 - R E X P 2 ) 
S U N ( L ) = D H C A L 1 * D R C A L 2 
SUHH=SUH (L) 

C 
C PRINTS RESULTS 
C 

W R I T E ( H B R , 6 0 2 ) X ( 1 ) , Y ( 1 ) , R E X P 1 , R E X P 2 , R C A L 1 , R C A L 2 , SUHN 
9 1 CONTINUE 

S U H H - 0 . 0 
DO 9 1 = 1 , N B P T S 
SUHH'SOHB+SUH ( I ) 

9 CONTINUE , 
W R I T S < N » H , 6 0 3 ) SU8H 
S O I H ( I ) »SOBH 
CC (K) =C ( 1 , 2 ) 

2 0 0 CONTINUB 
W R I T E ( N R R I 6 4 9 ) 
DO 2 5 1 = 1 , 1 0 0 
8 B I T B ( N U B , 6 5 5 ) C C ( I ) , S U H H H ( I ) 

2 5 CONTINUB 
STOP 
END 



APPENDIX B 

SAMPLE INPUT AND OUTPUT 

-196-



-197-

Results of Run # 1 for the 

C 0 9 - C « H c System at 1 0 ° C . 

See Table 1 for the Values of the 

Pertinent Variables Used. 

The formated input is as follows: 

12 3 3 CARBON DIOXIDE<1>-ETHAHE<2> 
INTERPOLATED AND EXPERIMENTAL PRESSURE-VALUES<ATM) VS. MOLE FRACTIONS GIBBS EXCESS FREE ENERGY<J/HOLE) VS. MOLE FRACTIONS 

2 6 15 111 
29.700 0.0 0.0 31.610 0.033 0.061 36.700 0.12B 0.198 40,15 0.234 0.315 42.52 0.311 0,̂ 584 45.57 0,421 0.480 
47.88 0.542 0.578 49. 10 0,655 - 0. 666 49.31 0.711 0.71 1 49,29 0.730 0.727 48.60 0.833 0,015 49.9" 0,073 0,052 46.79 0.928 0.909 45. 78 0.961 0.947 44,34 203.150 1.0 1.0 0 0 0 0 

The formated output is as follows: 



EXPERIMENTAL RESULIS AND CALCULATED QUANTITIES FOR THE BINARY 5YSIEM CARBON DIOXIDE (» 1 -t IIIAHE< 3 > 

THE POLYNOMIAL USED IN THE ORTHOGONAL COLLOCAlION 
NUMBER OF BINARY DATAPOINTS <5 
SATURATION VAPOR PRESSURE OK COMPONENT 1 AND 2 

PROCEDURE HAS ALFA - 0 . AND BETA 

44.3400 29.7000 AIM. 
TEMPERATURE 283.1499 DEU. K. 

INTERPOLATED PRESSURE-VALUES FOR X 
A LEGENDRE POLYNOMIAL OF DEGREE 2 

IN THE INTERVAL BETWEEN 0.0 AND 
IS USED AS FIT TINli FUNCTION 

29.7000 
37.6961 
42.9642 
46.632? 
40.9405 
49.2354 
45.9758 

JO.9091 
3B.4721 
43.4960 
47.0006 
49.1105 
49.0637 
45.2069 

32.0500 
39.2096 
44.0068 
47.3476 
49.2400 
4B.8336 
44.3400 

33.I269 
39.911J 
44.4951 
47.6733 
49.3504 
48.5408 

34.1444 
40.5797 
44.9627 
47.9767 
49.4151 
4B.1811 

35.1062 
41.2173 
45.4100 
48.2564 
49.4392 
47. 7497 

36.0165 
41.6260 
45.B374 
40.5116 
49.4195 
47.2417 

1.0 . VALUES FUR DISCRETE JUMPS OK 0.02 IN X 
36.B7B6 
42-4077 
46.2450 
48.7402 
49.3520 
46-6522 
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XEXP YEXP PEXP 
0 . 0. 29. 70000 
0 . 03300 0. 06100 31. 61000 
0. 1 2000 0 . 19800 36. 70000 
0. 23400 0 . 31500 40. 15000 9. 31100 0. 3B400 42. 52000 0. 42100 0. 4B0O0 45. ,57000 
0. 54200 0 . 57800 47. 8B0O0 0. 65500 0. 66660 49. 10000 0. 71100 0 . 71100 49. 31000 0. 73000 0. 72700 49. 29000 
0 . 83300 0 . 81500 4B. 60000 
0 . B7300 0 . B52O0 4B. 99000 
e . 92000 0. 90800 46. 79000 
9. 96100 0. 94700 45. 78000 
i . 00000 1. 00000 44. 34000 CONSISTENCY TEST USIHB ORTHOGONAL COLLOCATION - NUMBER OF INTERNAL POINTS 

COLLOCATION POINTS 
0. 0.112702 0,500000 O.BI 

ITERATION NR 4 
SOLUTION AT THE COLLOCATIOH POINTS 

X P OE/RT 0. 29.700000 0, 0.112702 35.690064 0.07421B 0.500000 47.000552 0.223343 0.887298' 4B.032193 0.115674 1.000000 44.340000 0. 
SOLUTION AT 1HE BA1AP01MTS 

X P GE/RT 0. 29.700000 0. 0.033000 31.610000 0.023135 
0.128000 36.700000 0.0832613 0.234000 40.150000 0.139356 0.311000 42.520000 0.172610 0.421000 45.570000 0.208030 0.542000 47.BBOOOO 0.227311 0.655000 49.100000 0.222656 
0.711000 49.310000 0.210194 0.730000 49.290000 0.204245 0.833000 4B.600000 0.154039 
0.B73000 4B.990000 0.126950 0.9280OO 46.790000 0.079574 0.961000 45.780000. 0.04570B 1.000000 44.340000 0. 

'298 1.000000 

GOOT GAMMA 1 GAMMA2 0. .719253 2 .052900 1 .000000 0. ,599444 1 .833274 1 .0066B2 0. , 133B01 1 .336753 1 .169243 -0, ,B13525 1 .024279 2 .310o16 -1, ,254457 1 .000000 3 .505934 

BOOT GAMHA1 GAI4HA2 0. , 719253 2 .052900 1 .000000 0. .6B3067 1 .901118 1 .000594 
0, ,503725 1 .B08100 1 .0085BB 0. ,473086 1 .652604 1 .02BB76 
0. .388902 1 .553595 1 .053027 0. .250900 1 .423759 1 .10782/ 0 .063667 1 .292619 1 .2I28B6 

-0 ,15B309 1 .1829B3 1 .305890 
-0 .2B9206 1 .134952 1 .515690 -0 ,337283 1 . 1198.52 1 .569035 -0, .632200 1 .050495 1 .976765 -0. , 763924 1 ,030304 2 .2)1900 -0. ,962295 1 .010.542 2 . 64476B -1. ,091 462 1 .003146 2 .987998 -1. ,25445 7 1 .000000 3 .505934 

3 

FSI O O 
Y1 Y2 SUM COR UE , J'HOLE 

0. 1. OOOOOO 1.OOOOOO 0 
0. 2566BB 0. 743312 t.OOOOOO 174 . 725167 
0. 630542 0. 369458 1.000000 525 . /VB306 
0. 830979 0. 161021 1.000000 272 .323367 
1 . OOOOOO 0. t.000000 0 

VI Y2 SHU COR BE , J-'MUI.E 
0. 1 . OOOOOO 1.OOOOOO 0. 
0. 091631 0. 900369 1 .00(1015 54 .464/17 
0. 2U2054 0. 7179.JA 0.991355 196. .031345 
0. 422013 0. 577107 1.010058 32 B .0 74U09 
0. .490549 0. 501451 1.010632 406 . .(Bi)',',"; 
0. 5B24H2 0. 417518 1.0012/4 40V . 74 7995 
0. ,653125 0. 346875 0.993379 535 .610276 
0. ,70/552 0 . 292448 0 .9IUIV54 524 . 1B0V16 
0. 733.553 0. 266647 0.909452 494 .043509 
0 . 742323 0 . 257677 0.9V0648 4130 .03722/ 
0 . 79p;>no 0 . 201720 1.000099 364, .'•24 7 79 
0 . 62/007 0 . 172993 0.9H4 44 7 29B. .Oi'M77 
0 . 000751 0 . 119/49 1.009374 1B7 .5340.51 
0 . 925096 0. 0 74904 1.009301 10/ .60 7303 
1.000000 0. 1.OOOOOO 0 



01MH EXCESI FREE EIILkay<.l/H4M.E> VS. Hill E FRAUIlUllf 

0. I 54.24 I t!2.4U I 1611.12 I 224.VA I 2HI .20 1 JJ/.4J 1 44V.91 1 506.15 I 562.J» A I 
e.92 — «A «.04 — II A ft-.-».6A — >A • — 
».0U — "A » 
•.to —«A • - -
».»2 —»A • .14 M A 
».(6 — •A » — 

0. IB — »A * -

• .28 — »A b — 
• .22 — •A • • -
•-24 ft A ft— 

• .26 - «A ft -

B.28 ~«A ft - -

0. JO — •A ft — 

e. 32 ft A • 
». J4 — «A ft — 

• .34 — "A ft — 

».JB — «A • • --
».40 - "A ft- -

• .42 A ft — 

0.44 --"A ft — 

• .46 — »A ft — 

--•A ft- -

• .50 — •A ft — 

• .52 — •A ft — 

».S4 — •A ft — 
— ft A ft — 

• .50 — »A ft — 

8.60 — «A ft — 

«.&2 --•A M — 
0.44 — «A • ft--

• .66 — • A ft.— 
• •AS — »A • 
9.70 —"A ft. -
6. 12 — « A ft-— 

0.74 • A ft — 

0. 16 —-«A 
0.7B ~»A ft--

0. (ID -• »A • -

0.B2 — »A ft -

».U4 — H A ft — ft.BA • ft A ft — • .SB - -»A 
6.'JO — ll A ft- -
8.V2 - HA e.v4 — ft A II --
0.V6 - «A » -».yn - - - ft A ft - -

1.00 — «A 

1 I I 1 I 1 1 1 I 1 I 
isiENcy iti'i *V BEPEAItl) HALVING Of IfcAHLltltDAI. hllLE Ullll RUHhEftU |NIEI;NAIIIIH, AKFA- O.'.AIIOIAP 16 • 

I 
ro 
o 



CALCULATED VALUES OF VI 
X P VI V1EXP Pi V2 

0. 29. 7000 0 , 0. 0. 1. 0000 
0, 0330 31 . 6100 0 . .0916 0.0610 0. 0306 0. 9004 
0. 1 200 36. 7000 0. .2021 0.1980 0. 0041 0. 71 79 
0. 2340 40. 1500 0 .4228 0.3150 0. 1070 0. 5772 
0. 3110 42. 5200 0 .4985 0.3040 0. 1145 0. 5015 
0. 4210 45. 5700 0 .5B25 0.4000 0. 1025 0. 4175 
0. 5420 47. •800 0 .6531 0.5700 0. 0751 0. ,3469 
0. 6550 49. 1000 0 .7076 0.6660 0. 0416 0. 2924 
e . 7110 49. 3100 0 .7334 0.7110 0. 0224 0. 2666 
0. 7300 49. 2900 0 .7423 0.7270 0 . 0153 0. 2577 
0. 0330 40. 6000 0 .7983 0.8150 - 0 . 0167 0. 2017 
0. 0730 40. 9900 0 .6270 0.0520 - 0 . 0250 0. 1 730 
0. 9200 46. 7900 0 10003 0.9000 - 0 . 0277 0, 1197 
o . 9610 45. 7000 0 .9251 0.9470 - 0 . 0219 0. 0749 
t. 0000 44. 3400 1 .0000 1.0000 0 . 0 . 

SUM OF SQUARES OF DELIA V 0.0535097231 

VARIATION OF DELIA V G.06t8 ARIHHET1C HEAN OF DELIA Y 
CALCULATED EXCLUDING GIVEN END POINTS 

SUM OF SQUARES UF DELTA P .'>.7169254500 
VARIAIIOH OF DELTA P 0.2767 ARITHMETIC HEAN UF DELTA P 
ARJIHHEJJC HE AH l)F DELIA P/P 0.061535 

CALCULATED EXCLUDING OIVEN END DATAPUIHIS 
STOP 
TIHE 1.5 SECS 

SUMY PCAL 
<• .0000 29. 7000 
1 .0000 31. 6582 
1 .0000 36. 3669 
1 .0000 ' <0. 3B;'5 
1 .0000 42. 7160 
1 .0000 45. 4310 
1 .0000 47. 7047 
1 . 0000 49. 0710 
1 .0000 49. ,3908 
1 .0000 49. 4324 
1 .0000 48. V210 
1 . 0000 40. 3149 
1 .0000 47. 0160 
1 .0000 45. 9396 
1 .0000 44. 3400 

DP 
0 . 
0.0402 
0.3331 
0.2325 
0.1960 
-0.1302 
0.1753 
0.0290 
0.0909 
0.1424 
0.3210 
0.6751 
0 . 2 2 6 0 
0.1596 
O. 
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Resu1ts of Run # 2 for the 

C 0 2 ~ C 2 H 6 S y s t e m a t 1 0 ° C -

See Table 1 fcr the Values of the n 
Pertinent Variables Used. 

The formated input is as follows: 

CARBON DIOXIDEd>-ETHANE<2> 
INTERPOLATED AN» EXPERIMENTAL PRESSURE-VALUEJ<ATM> VS. HOLE FRACTIONS 
GIBBS EXCESS FREE ENERGY<J/MOLE) US. MOLE FRACTIOUS 
2 6 15 

111 29.700 0,0 0.0 31.610 0,033 0.061 36.700 0.128 9,1̂ 8 40.15 0.234 0.315 42.52 0.311 0.384 45.57 0.421 0.480 47.38 0.542 0.578 49.1 0 0.655 0.666 49.31 0,711 0.711 49.2? 0.730 0. 727 48.60 0.833 0.815 48.99 0.873 0.852 46.79 0.928 0.908 45.78 0.961 0.947 44.34 283.150 1.0 1.0 72.907 94.182 304.167 0. 274 0.225 48.196 141.584 305.444 0 .285 0.105 0.4184 0.0794 0.4470 0. 0911 0.4347 0.0827 0,4340 0. 0880 0. 130 < 

-40.292 -27.?68 
O O O O 

The formated output is as follows: 



EXPERIHEI<I'AL RESULTS AND CALCULATED flUAMTITIES FOR THE DINAR/ SYSIFM CARBON DJOX IDE (1 t -E IIIANE < 2) IHKKUHDKKHMKkVIOII'KKKIt 
BETA - 0 . THE POLYNOMIAL USED IM THE ORTHOOONAL COLLOCATIOH PROCEDURE IS OF IHE TYPE ALFA » O. 

PC-VC-TC-ZC-ACEM 0.72907EM>2 0.941B2EM)2 0.30417E+03 O.274OOE400 0.22500E+00 
PC-yC-TC-ZC-ftCEM 0.30544E+03 O.'ASOOEtW 
OMAL-OHPL-OMAG-OMBG 0.41840E+00 0.79400E-01 O.4470OE+0O 0.91100E-O1 
OMAL-OMBL-UHAO-OMPO 0.43470E+00 O.B270OE-01 0.43400E+00 O.8BOO0E-01 

I 
FAK-NY-TAU ro O 

04 1 3000 _ - / "f" 
-40.29201 
-27.76B01 

NUMBER OF BINARY POINTS 15 AT THE ISOTHERM 283,15 TFMPfftATIIfiE IH DEO K 

INTERPOLATED PRESSURE-VALUES FDR X IN THE IN I EftVAL BETWEEN 0.0 AND 1.0 
A LEGENDRE POLYNOMIAL OF DEGREE 2 IS USED AS FITTINO FUNCTION 

VALUES TDK DlVCRErt JUMPS OF 0.02 JN X 

29.7000 
37.6961 
42.9642 
46.6329 
48.9405 
49.2354 
45.9758 

30.9091 
38.4721 
43.4968 
47.0006 
49.11 05 
49.0637 
45.2069 

32.0500 
39.2096 
44.0066 
47.3476 
49.2480 
4B.B336 
44.3400 

33.1269 
39.9113 
44.4951 
47.6733 
49.3504 
4B.5 408 

34.1444 
40.5797 
44.9627 
47.9767 
49.4151 
48.1811 

35.1062 
41 .2173 
45.4100 
40.2566 49.4392 
47.7497 

36.0165 
41.8240 
45.03/4 
40.5116 
49.4195 
47.2417 

36.0786 
42.4077 
46.2.450 
40.7402 
49.3528 
46.6522 



INIERPOLAIEV AND EXPERIMENTAL PRtJSURE-VAI.UEilAIH) UX. HLUE FRALIKIMi 

A ?B.a t 39 .57 32 .93 35 .20 37 .64 4».0® 42.35 47.OA 4'>.42 5 t . I d 
» 2 8 . 2 t 39 .57 32 .93 35.2B 37 .44 40 .00 42.J5 44.71 4/.OA 49.42 .78 

I 1 1 I I I 1 I I I I 
• . 0 2 — " L A 
• .04 — • A B 
• . 0 6 —«L A 
• . 0 0 — " L A 
• . 1 0 — " L A 
• .12 ~ « L A 
• .14 - - » A ® 
• .16 —»L A 
• . 1 0 —«L A 
• . 2 0 —»L A 
• . 2 2 —»L A 

: • . 2 4 —» Af> 
• . 2 6 —«L A 
• - 2 B —«L A 
• . 3 9 —>L A 
• •32 — » AB 
• .34 •—«L - A 
• .34 ~ « L A 
• >3B —»L ' A 
• . 4 0 —»L A 
• .42 — » « A I" 
• . 4 4 —«L A 
» . 4 i —»l . A 
• - 4 9 —»L A 
• • 5 0 —»L A 
• . 3 2 - - « l . A 
• . 5 4 —«L A 
• . 5 6 — * P 
• •SB - - « L A 
• . 6 0 —«L A 
• . 6 2 —»L A 
• . 6 4 —«L A 
• -66 — » AP 
• . 4 0 —«L A 
• • 7 0 —«L A 
• .72 — » P 
» .74 PA 
» . 76 —»L ft 

79 - -»L A 
• .BO —«L A 
• . 6 2 —«L A 
• .(>4 HA 
• .04 ~ « l . A 
0.0B —« l A 
9.99 ••• AH 
• . 9 2 —«L A 
• .94 —» * A 
9.9 6 —ni. A 
9.90 —« H 
1 .00 - » L ' A 

1 I I 1 I I 1 I I I • 



XEXH YEXH pfcxr 0. 0. 29. 70000 
0. 03300 0. 06100 31. 61000 
0. 1 2000 0. 19000 36. 70000 
0. 23400 0. 31500 40. 15000 
0. 31 100 a. 30400 42. 52000 
0. 42100 0. 40000 45. 57000 0. 54200 0. 5/U00 47. .UOOOO 
0. .65500 0. .66600 49. 10000 
0. , /I 100 0. , 71100 49. 31000 
0. , 73000 0. 72700 49. 29000 
0. U3JOO 0. HI 500 40. 60000 
0. U7.S00 0. 05200 40. 99000 
0. 92000 0. 90000 46. 79000 
0. 96100 0. 94700 45. 713000 
1. 00000 1. 00000 44. 34000 CUHSISIENCY TESTS USING OK I HOI NUHBhk OF 1NIEKNAL HU1NTS 

niLLOlTAflOH POINTS 
0. O.112702 0.500000 0.00/290 1.000000 

ro 0 01 I 
I 203.14VV T'S 44.3400 29.7000 

FISA1 0.7390 0.7400 FREESAT 

VOL 51.5144 51.9454 

32.0043 21.9/69 

MOrtKtft OK 
HI HIKER UK 

NUHbfcK (IF 

NIW1HER OF 
NUIIbfcK OK 

HI IM&LK UK 
.'JIUUifck OF 

I ITUiiTIUHi' 
II ERA I IONS 
I IERAT10NS 
I IEKA1IUNS 

t lEKAriUHS 

HERAT IONS 
IIEKA1IUNS 

IN G 4 

IH li 4 
IN IJ 2 

IN G 1 
IN U 1 
IH 0 I 

IH G I 



S0LU1IUM Al IKE CULLUCAIJON PU1HTS 

X 

0.1127 0.5000 
0.6873 1.0000 

X 
0 . 
0.1127 
0.5000 
0.B873 1.0000 

SOLUTION AT 

X 
0 . 
0.0330 0.1200 
0.2310 
0.3110 
0.4210 
0.5420 
0.6550 
0.7110 
0.7300 
0.0330 
0.0730 
0.9200 0.9610 1.0000 

P 
29.7000 
35.6901 
47.0006 
40.0322 
44.3400 

FUGCEI 
0.9942 
0.9169 
0.7663 
0.7212 
0.7398 

P 
29.7000 
31.6502 
36.3669 
40.3U25 
42.7160 
45.431B 
47.7047 
49.0710 
49.3908 
4y.4324 
4U.9210 
40.3149 
47.0160 
45 .9376 
44.3400 

GE/kl 
0. 
0.0736 
0.1032 
0.0B66 
0 . 

FUGCE2 
0.7400 
0.6920 
0.6507 
0.7320 
0.8031 

GE'KT 
0 . 
0.02-50 o.oma 
0.1291 
0.1537 
0.1761 
0.1839 
0.1740 0.1620 
0.156B 0.1160 
0.0952 
0.0594 
0.0.540 
0 . 

GOUT 
0.7622 
0.5515 
0.0421 

-0.6190 
-0.9300 

VhJX 
51.9454 
7B.2404 
76.9900 
59.1942 
51.5144 

Goor 
0.7622 
0.6954 
©-S264 
0.3 700 
0.2/04 
0.1377 
-0-0109 
- 0 . 1 6 0 / 
-0.25B / 
-0.2915 
- 0 . 4 9 3 4 
-0.5045 
-0.7231 
-0.B144 
-0.9300 

GAHMA1 
2.1430 
1 .67/8 
1.2148 
1.0178 1.0000 
VE 

0 . 
26.3436 
25.2690 
7.6312 
0. 

UAHMA1 
2.1430 1 .0(36/ 
\ . 
1.4675 
1.3746 
1.2733 
1.1069 
1.1199 
1.0904 
1.OU10 
1.0360 1.0221 
1.00 70 
1.0024 1.0000 

MIL DAJAf'OlH I S 

GAHHA2 Yl Y2 SUH CUR GE J/MOlfc' 
1.0000 0. 1 . 0000 1 . .0000 0 . 
1.0173 0.1860 0 . ,0140 1 .0000 173.2095 
I.1B75 0.5565 0 . 4435 1 . 0 0 0 0 431.3075 
1-B771 0.8622 0. 1378 1 . .0000 203.9515 
2.5365 1.0000 0 . 1 .0000 0. 

DPOX CORK TO 0001 
>2.2426 0 . 
15.1602 0.0512 
7.B740 0.0194 
M.0627 -0.0069 
I5.B9BB 0. 

GAHHA2 VI Y2 sun CUR GE J/MOLE 
1.0000 0 . 1. .0000 1 .0000 0. 
1.0032 0.0640 0 . .9352 1 .0004 56.5094 
1 . 0 2 0 9 O. '.1055 0 . 7 9 4 5 0 . 9 9 9 9 1 9 2 . 6 1 9 2 
1.0527 0.3220 0.6772 0 .9995 303.0911 
1.0027 0.3962 0 . , 6 0 3 0 0 . 9 9 9 0 361 . 0014 
1.1371 0.4920 0. . 5 0 8 0 1 .0001 414.5262 
1-219B 0.5096 0. .4104 0 . 9 9 9 0 432.0707 
1.3354 0 . 6 7 5 9 0 . .3241 0 . 9 9 0 9 409.5 71 7 
1.4159 0 .71 BO 0 . , 2B20 0 . 9 9 0 5 301.4967 
1 . 4 4 0 2 0 . 7 3 2 4 0. . 2 6 7 6 0 . 9 9 0 5 3 6 9 . 1 V 4 2 
1 . 6 0 7 1 0.BI36 0, . 1U64 0 .9990 274.0969 
I.U213 0.04QB 0. . 1 5 1 2 0 .9997 224.2037 
2.0641 0.9042 0. . 0 9 5 8 1 . 0 0 0 8 1 3 9 . 7 2 5 1 
2 . 2 5 3 B 0.9437 0. .0563 1 .0011 BO.043 7 
2.5365 1.0000 0. 1 . 0 0 0 0 0 . 



M U M EXCEH FREE ENEH(W<J/WH.E) VS. HOLE FRACTIONS 

0. I 
e. .02 — • A 
0. .04 M 
e. .06 —«A 

,00 —»A 
.10 — " A 
.12 - - • A 

o. .14 
e. .16 —«A 
9 . I B — • A 
0. .20 —«A 
0. . 22 —»A 
0. .24 — ft 

0. .26 — •A 
o .20 — " A 
0. .30 —«A 
0. 32 — H 
0, .34 - - « A 
0C .36 —«A 
0. .30 —«A 
0. .40 — »A 
0. .42 • - M 
0. 44 — «A 
0. ,46 —ft A 
0 . 40 ~ » A 
0 . .50 ~ « A 
0. 5? — " A 
0 . 54 — «A 
0. . 5 * ft 
0, ,58 — •A 
0. .60 — «A 
0. .62 — •A 
0. .64 — DA 
0. .66 - - f t 

0. .60 — •A 
0. .70 — "A 
e. .72 
0. 74 — N 
0. .76 —'"A 
o. ,78 — »A 
9. 80 — «A 
0 . 8 2 — »A 
0. .84 ft 
0, ,86 ~ » A 
0. ,88 ~ «A 
0. .90 - - f t 
0. .92 - - » A 
0. ,94 - - ft 

0. ,9t — »A 
0. 10 — ft 

1. 00 ~ » A 

4 5 . 4 5 I 9 0 . 9 0 I 134.35 I 1BI.81 I 227 .26 I 272 .71 I 319 .16 I 3 6 3 . 6 1 I 4 0 ' . 0 6 I 4 5 4 . M I 

I 
ro O CO 
I 

I I I I I I I 1 
c m u m E M c v l E n b y r e p e a i e d i i a l u i n o t w i k a p i . ^ d i d a i . i n n y unit r u h p i r u i n i f i w a i i i u i , w t . 0.| f .4." ' i0l> IA 



X FUGCE1 FUGCE2 VHIX VE DPDX 
1 . 0 . 9942 0.7400 51.9454 0 . 62. 2426 
0 . 0330 0 . 9680 0.7229 78.1300 26. 1989 56. 538B 
0 . 1200 0 . ,9004 0.6074 78.2603 26. 3/01 43. 3328 
0 . 2340 0 . .0570 0.6640 70.3553 26. ,5100 33. 1004 
0 . 3110 0 . ,8258 0.6546 78.3403 26. 5290 27. 7586 
0 . 4210 0. ,7004 0.6493 77.9410 26. 1771 21. 0157 
0 . 5420 0. 7560 0.6531 76.14B2 24. 4364 15. 6230 
0 . 6550 0 . 7339 0.6656 72.4531 20. 7901 0. 1008 
0. 7110 0 . 7263 0.6757 69.0545 10. 211j6 3. 1432 
0 . 7300 0 . 7243 0.6799 60.0637 17. 2329 1 . 2100 
0 . 8330 0 . ,7192 0.7097 62.7372 11. ,1509 - 1 1 . 9539 
0 . 0730 0 . .7203 0.7255 60.1391 8 . ,5 700 -10. 5003 
0 . 0 2 0 0 0 . .7254 0.7529 56.4664 4. ,9210 -29. 0450 
0 . 9610 0 . ,7307 0.7734 54.2136 2. .6025 -36. 3155 
1 . 0 0 0 0 0 . ,7398 0.8031 51.5144 0. -45. 0980 

CALCULATED VALUES OF Y» 

X P Y1 Y1 EXP DY Y2 
0. 29. 7000 0. 0. 0. 1 . 0000 
0. 0330 31 . 6100 0. 0648 0.0610 0. ,0030 0. 9352 
0. 1200 36. 7000 0. 2055 0.1980 0. 00 75 0. 7945 
0. 2340 40. 1500 0. 3228 0.3150 0. 0070 0. 6772 
0. 3110 42. 5200 0. 3962 0.3840 0. 0122 0. 6030 
». 4210 45. 5700 0. 4920 0.4000 0. 0120 0. 5080 
A. 5420 47. 8000 0. 5896 0.5780 0. .0416 0. •4104 
0. 6550 49. ,1000 0. 6 759 0.6660 0. .0099 0. 3241 
0. 7110 49. ,3100 0. 7180 0.7110 0. .00 70 0. 2020 ft. ,7300 49. ft. .7324 0.7270 0 .0054 0. ,26 76 
0. 0330 48. .6000 0. B136 0.0150 -0, .0014 0. , 1 864 
0. 8730 40. ,?900 0. 0400 0.0520 -0 .0032 0. 1512 
0. 9280 4 6. ,7900 0. 9042 0.9000 -0 .0030 0. 0958 
0. 9610 45. ,7600 0. ,9437 0.9470 -0 .0033 0. ,0563 
1. 0000 44. .3400 1. ,0000 1.0000 0 0. 

SUH OF SQUARES OF DELTA Y 0.0007 76(1 

VARIANCE OF DELTA Y 0.00110 AKIIHHEliC MEAN Or DFL f A Y 

CALCULATED EXCLUDING GIVEN END POINIS 

SUH OF SQUARES OF DELTA P 0.9109255 

VARIANCE OF DELIA P 0.2767 ARIIHMEIIC MLAN UF DLL IA 

ARITHMETIC MEAN OF DELTA P/P 0.061535 
CALCULATED EXCLUDING GIVEN LND PUINIS 

SIOP 
IIME 3.0 SEl'S 

CURR TO BOOT 
0 . 
0.0630 
0.04*>2 
0.0370 
0.0317 
0.0246 
0.0164 
0.0073 
0.0025 
0.0009 
0.0057 
0.0060 
0.0062 
0.0042 
0 . 

SUMY PCAL DP 
t .0000 29. 7000 0. 
1 .0000 31. 6502 0. 0482 
1 . 0000 36. 3669 -0. 3331 
1 .0000 40. 3025 0. 2325 
1 .0000 42. 7168 0. 1968 
1 .0000 45. 4318 -0. 1 302 
1 .0000 47. 704 7 -0. 1 753 
1 .0000 4 V , 0 710 -0. 0290 
1 .0000 4 9 . JV08 0. OUOU 
1 .0000 49. 4 3 2 4 0. , 1 4 2 4 
1 .0000 4 8 . 9210 0 . ,3210 
1 .0000 4 0 . 3149 -0. ,6751 
1 .0000 4 7 . 0160 0 . , 2260 
1 . 0 0 0 0 4 5 . .<>&•>& 0 . ,1596 
1 . 0 0 0 0 4 4 . 3400 0 . 

0.0060 

0 . 2 1 2 2 
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Results of Run # 3 for the 

C02"C2H6 Sy s t e m a t 1 0 ° c -

See Table 1 for the Values of the 

Pertinent Variables Used. 

The formated input is as follows: 

CARBON DIOXIDEI1)-ETHAME<2) 
INTERPOLATED AND EXPERIMENTAL PRESSURE-VALUES(ATM) VS. MOLE FRACTIONS 
GIBBS EXCESS FREE ENERGY<J/MOLE) VS. MOLE FRACTIONS 
2 6 
15 
111 

2 9 . 7 0 9 0 . 0 0 . 0 
3 1 . 6 1 0 0 . 0 3 3 0 . 0 6 1 
3 6 . 7 0 9 0 . 1 2 8 0 . 1 9 0 
4 0 . 1 5 0 . 2 3 4 0 . 3 1 5 
4 2 . 5 2 0 . 3 1 1 0 . 3 8 4 
4 5 . 5 7 0 . 4 2 1 0 . 4 8 0 
4 7 . 8 8 0 . 5 4 2 0 . 5 7 8 
4 9 . 1 0 0 . 6 5 5 0 . 6 6 6 
4 9 . 3 1 0 . 7 1 1 0 . 7 1 1 
4 9 . 2 9 0 . 7 3 0 0 . 7 2 7 
4 B . 6 0 0 . 8 3 3 0 . 8 1 5 
4 8 . 9 9 0 . 8 7 3 0 . 0 5 2 
4 6 , 7 9 0 . 9 2 8 0 . 9 0 9 

4 5 . 7 8 0 . 9 6 1 0 . 9 4 7 
4 4 . 3 4 2 8 3 . 1 5 0 1 . 0 1 . 0 
7 2 . 9 0 7 9 4 . 1 0 2 3 0 4 . 1 6 7 0 . 2 7 4 0 . 2 2 5 
4 8 . 1 9 6 1 4 1 . 5 B 4 3 0 5 . 4 4 4 0 . 2 8 5 0 . 1 0 5 

0 . 1 3 0 
-40.292 
- 2 7 . 7 6 8 
0 . 1 4 7 9 
0 0 0 9 

The formated output is as follows: 



EXPERIMENTAL RESULTS AND CALCULATED UUANTITIES FOR THE BINARY SYSTEM CARBON D1UXIDF. < 1 > E THAME< 2 ) »KKKft»MKNM«MMMIIIt»K»NllNlt«MN»lllt»NN*KM*»aNN*»MM»NKItNtt*̂  
THE POLYHOHIAL USED IH THE ORTHOGONAL COLLOCATION PROCEDURE IS OF THE TYPE ALFA - 0. BE IA - 0. 

PC-VC-TC-ZC-ACEN 0.72907E+02 0.V4182E+O2 0-30417E+03 0.274O0E+0O O.225O0EI0O 
PC-yc-rC-ZC-ACEH O.4B196E+02 O.14150EV03 0.30544E*03 Q.285&0EVQG 0.105OOE<OO 
FAK-NY-TAD-DEL 

0.13000 
-40.29201 
-27.76001 
O.14700 

NUHBER OF BINARY POINTS 15 AT HIE ISOTHERM 203.15 TEMPERATURE IH KEG K 
INTERPOLATED PRESSURE-VALUES FOR X IH THE IN IEHVA1. BETWEEN 0.0 AND 1.0 . VALUES FOR IUSCHEIE JUMPS Of 0.02 IN X 
LEGEHDRE POLYNOMIAL OF DEGREE 
29.7000 30.9091 32.0500 
37.6961 38.4721 39.2096 
42.9642 43.4960 44.0068 
46.6329 47.0006 47.3476 
40.9405 49.1105 49.2480 
49.2354 49.0637 4B.8336 
45.9758 45.2069 44.3400 

2 IS USED AS FIT TINll FUNCTION 
33.1269 
39.9113 
44.4951 
47.6733 
49.3504 
48.5408 

34.1444 
40.5797 
44.9627 
47.9767 
49.4151 
4B.1811 

35.1062 
41.2173 
45.4100 
48.2566 
49.4392 
47.7497 

36.0165 41.6260 
45.B374 
4B.5116 
49.4195 
47.2417 

36.0786 
42.40/7 
46.2450 
48.7402 
49.>528 
46.6522 



INTERPOLATED AND EXPERIMENTAL PREtfUftE-tMLUEX4ATHt VS. HOLE FRACTIONS 

A 2 8 . 2 1 3 0 . 5 7 3 2 . 9 3 3 5 . 2 8 37 .64 49 .30 42 .35 44 .71 47 .06 4? .42 5».7P A 
> 28 .21 3 0 . 5 7 3 2 . 9 3 35 .28 37 .64 40 .00 42.35 44 .71 47 .06 49 .<2 51 . 70 P 

I I I I 1 I I I I 1 1 

• . 0 2 —«L A ft — 

• . 0 4 — • A » « — 
• . 0 6 —PL A ft -

• . OB —>L A « --
—PL A M 
—PL A ft 

» .«4 —a A f 
l . l i — « l A o.te —*L A 
• .26 —PL A ft--

• . 2 2 —»L A ft- -

• .24 — « AB ft-

• .26 —PL A ». -
• . 2 0 —PL A ft — 

• . 3 3 —PL A ft — 

• • 3 2 — p AO ft — 

• . 3 4 —PL • - - A « - -

f . 3 6 —PL A • — 
• . 3 8 —PL ' A ft — 

• .40 —PL A ft--

• . 42 — p A 0 « — 
• .44 —PL A 
• .46 —PL A ft - -
• -4B —PL A « 
• .50 —PL A ft - -

• .52 — PL A • - -
• .54 — "L A ft- -

• . 56 — p 0 •i-
• -5B — »L A 
• . 6 0 — PL A ft • 

• .62 —PL A 
• .64 —PL A 
• .66 — p AP ft — 
0.6B — PL . - - A 
0 . 7 0 — PL A • 
• .72 — p P 
• . 7 4 — p !<A • -
» . 76 — PL A ft-

• .78 —PL A » -
e.Ba —PL A 
• .82 —PL A ft — 

0 . 8 4 — P PA • • -
• .86 --PL A ft — 

• .88 — p | A ft .. e.?o — p A P 
0 . 7 2 —PL A • 
• .94 —p n A « - -

0 . 9 6 — PL A 
• .78 — p H • -
1 ,00 — PL A 

I I I 1 I I 1 I I I I 



'.I H -•>• l'L<iP 
0 . 0 . L'V .70000 
0 . 03300 0 . 06100 31. .61000 
0 . 1 2 0 0 0 0 . 19000 36 .70000 
0 . 23400 0.31500 40. .15000 
0 . 31100 0 . 30400 42 . VJOOO 
0 . 42100 0 . 4UOO0 4L • IWOOO 
0. 541:00 0 . S 7000 47 .00000 
0 . ,6:̂ 500 0. , 66600 4 V .10000 
0. /II 00 0. 71 100 4V .J1000 
0 . 73000 0. /li A\i> 4V. . 2'.'000 
0 . 03300 0. 01500 40. . 60000 
0 . 07300 0 . B.»200 40. ,99000 
0 . 92000 0 . 90000 46. ,79000 
0 . 96100 0 . 94700 4b. . 711000 
1. 0 0 0 0 0 1. 0 0 0 0 0 44. .34000 

CUNSISIfcNCY IE SIS IISiNO OR II101 NU/IKEK UK IMTLIiHAL PUlNIS 

LUl LOCAIION POINTS 
0. O.112702 0.500000 O.HO/JVO 1.000000 

I 
ro 

CO i 
) 20.5.149V PS 44.3400 29./000 

Kli'Af 0.725i 0.722V KKtfci'AI 

VOL 51.5144 51.V454 

32.1733 21.4697 

MOHULR OF 1 ILKA I IONS IN 0 

NUMBER OF 1 ILKA I JONS IN U 

N1IMULR OF IlLKAIIUIJS IN G 

MUHULR OF J ILKA HONS III U 

HUlU'CU 01-

NMMIILR Of 

HUHUIU UK 

11LKAI10HS 

i ILKAMUNS 

iIfcRAIIOMS 

IN U 1 

IN li 1 

IN 0 I 



ABLimOH AI lllb CULL OCA II UN POINTS 

X P OE'KI lilUJI GAHflAI 
0. 29. . 7000 0. 0-7182 .0507 0. 112/ 35. .6901 0.0680 0.49B4 1 .5916 
0. 5000 47. ,0006 0.1627 0.0331 1 . 1040 0. 8073 40. .0322 0.07B2 -0.5513 1 .01 /0 
1. 0000 44. ,3400 0. -0.B5O5 1. .0000 

X FUGCE 1 FIJGCE2 VHIX VE 0. 0. .9400 0.7229 51.9454 0 
0. , 11 27 0. .8034 0.6710 711.2404 .3436 
0. 5000 0. .7464 0.6110 76.99011 25 .2690 
0. ,0073 0. .7054 0.6761 59.1942 7 .6312 
1. OO00 0. . 7256 0.73/0 51.5144 0 

JHUN Al the DATAPOJNTS 

X P GE/HT gout GAHHA1 
0. 29. .7000 0. 0.7182 2 . 0507 
0. . 0330 31 . ,65a2 0.0225 0.6473 1 . 7902 
0. 1200 36. .3669 0.0/54 0.4 730 1 .5605 
0. ,2340 40. .3025 0.11/I 0.3205 1 .3961 
0. 31 10 42. .7160 0.1302 O.2209 1 .3153 
0. 4210 45. ,4310 0.1569 0.1134 1 .2317 
0. 5420 47. 7047 0.1632 -0.0112 1 . 1624 
0. 6550 49. ,0/10 0.1546 -0.144B 1 . 1076 
0. 71 10 49. .3900 0.1444 -0.22.J0 1 .002 4 0. 7300 49. .4324 0.1399 -0.2519 1 .0742 
0. 0330 40. ,9210 0.1049 -0.4344 1 .0339 
0. 0730 40. 3149 0.0059 -0.5190 1 .0210 
0. 9200 47. .0160 0.053B -0.6500 1 . 0075 
0. 9610 45 , .9396 0.0309 -0.73/6 1 . 0023 
1 . 0000 44. .3400 0. -0.0505 1 . OOOO 

GAI1I1A2 ¥ 1 V2 illr 1 LOI< Ok .l/HOI E 
1.0000 0. 1. 0000 1. oooo 0. 
1.0177 0.1/96 0. 0204 1. 0000 160. . 0206 
1.160 7 0.5465 0. 4535 1. 0000 3B3. ,0925 
1.7529 • 0.0639 0. 1361 1. 0000 1B4. , 1525 
2.3409 1.0000 0. 1 -0000 0. 
m > x COKtt III 0001 
.2.2426 0. 
15.1602 0-0512 
7.0740 0.0194 
!1.0627 -O.0O69 
I5.B9BB 0. 

GAHHA2 Y1 Y2 SUH LOU lit . I/HOLE 
1.0000 0- 1. 0000 1 . 0000 0 
1.0033 0.0633 0. 936/ 1 . 0007 53 . 0022 
1.0214 O.I982 0. B018 0. 9990 177 .51 13 
1.0523 0.3105 0. 6095 0. 9991 2 75, .7516 
1.0799 0.3024 0. 6176 0. 9992 325, . 3563 
1.1270 0.4794 0. 5206 0. 9990 369. .4414 
1.1950 0.5013 0. 4107 1 . 0000 304. .1070 
1.2095 0.6 724 0. 3276 0. 9996 364. .0118 
1.3562 0.7165 O. 2035 0. 9'J93 339. .0/30 
1.3032 0.7315 0. 26B5 0. 9992 329. . 2557 
1.5072 0.0150 0. 1B50 0. 9993 246. .9861 
1.7040 0.11505 0. 14V5 0. 991'0 202. . 1 633 
1.9100 0.9056 0. 0944 1. 0006 126. .6769 
2.0070 0.9446 0. 0554 1. OOOB 72 . B23 / 
2.3409 1.0000 0. 1. OOOO 0 



•IB*S EXCESS FREE CHEHOX J/HOtE> VI. HOLE FRACIIWM 

40.J4 U0.4U r.'I.OJ l i l . J* JUt./U 242.114 '.'UJ.-IU J.'L'./J J63.04 40J.40A 
1 I i I i I I I 1 i 

0 . 0 ' J kA 
l>.i>4 • A 
ti.Ot -fcA 
U.OU --kA 
a.10 --kA 
• - • 2 — kA 
0.14 - . h 
0.16 —kA 
O.tU —kA 
O.JO kA 
».aa -
0.24 
0.24 —kA " 
0 .20 —kA 
O.JO - kA 
0.J2 - -k 
0 . J 4 —kA * 
o . a i - -kA 
O . J b —kA 
0 . 4 0 - - M 
S.42 —» 
0 . 4 4 —kA 
0.46 —kA 
0 . 4 U — kA 
0.50 —«A 
0 .S2 - - k A 
0.S4 —kA 
• .!>6 — k 
O.bB --kA 
0.40 - kA 
0.62 — »A 
0 . 4 4 -kA 
0.66 - k 
0 .4U —kA A 
0.70 —kA 
0 . /2 —k 
O . M — k ft l». —kA A 
O./B —kA 
O.UO --»A 
O.H'J - kA 
8 . B 4 - - » 
0.U6 - -kA A 

O . U U —kA 
0.VO - k 
0.V2 • .A * 
0.V4 - k A 
0.V6 -kA 
0.VH - k A 
t .00 

I I 1 I 1 I I I 1 1 
mill'lilt HIV ItSI UK KErfcAIEI) IIALVIMb UF IhAft/UIIIAI Hill t UF III KUHbtKU IHItUHAI IUH. AMfcA- -»./IU4UUUI4 

1 



X FUCjI.L 1 FUUIE2 VIIIX VE DPOK CONK III 
0. 0.94U0 0. ,722V 51 .9 4b 4 0. 62.2426 0. 
0. .03.50 0.9262 0. . 7050 70 .1300 26.1909 56.5.500 0.0630 
0. ,1200 0.0763 0. .6611.7 70 .2603 26.3/01 43.3320 0.0492 
0. .2340 0.0317 0. .6371 70 . .5553 26.5100 33.1004 0.0370 
0. 3) 10 0,0034 0 . 6239 70 -.5403 26.5290 27.7506 0.0317 
0. 4210 0.(600 0. .6137 <1 .9410 26.17/1 21 .0157 0.0246 
0. 5420 0.7364 0. 61 25 76. .1402 24.4364 1 b. 6231) 0.0164 
0. 6550 0. 7151 0. 6207 72. 4b31 20.7901 0.1000 0.00/3 
0. 71 10 0.7000 0, , 6205 6V .0545 10.2156 3.1432 0.0025 
0. 73IM< 0-/062 0. 6319 60, . 06.57 17.232V 1.2100 0-0o09 
0. 0330 0.7025 0. 6569 62. .73 72 11.1509 -It.9b39 -0.0057 
0. 0 730 0. 7043 0. , 6706 60 .1391 0.5700 -10.5003 -0.0060 
0. 9200 0. /102 0. ,6941 56. .4664 4.9210 -29.0450 -0.0062 
0. 9610 0.7161 0. .71 17 54. .2136 2.6025 -36.3155 -0.00-12 
1. 0000 0.7256 0. .7370 51 .5144 0. -45.0900 0. 

CALLIM Alfc'D VALUES OF VI 

X P Y1 VI EXP DY Y2 A'UHY PCAL DP 
0. 29.7000 0. 0. 0. 1 . 0000 1 .0000 29. . 7000 0. 
0. .0330 31 .6100 0. ,0633 0 .0610 0. 0023 0. 9367 1 .0000 31 . . 6502 0. ! 0402 
0. ,1200 36 . 7000 0. 1902 0. .1900 0. 0002 0. 0010 1 . 0000 36. ,3669 -0. . 33il 
0. ,2340 40 .1500 0. 3105 0, .3150 -0. 0045 0. 6095 1 . 0000 40. ,3025 0. ,2325 
0. 31 10 42 .5200 0. 3024 0. .3040 -0. 0016 0. 61 16 1 .0000 42. .7160 0. 1960 
0. ,4210 4b .5/00 0. 4794 0. .4000 -0. 0006 0. 5206 1 .0000 45, .4310 -0. .13U2 
0. 5420 47 . 0000 0. 5013 0. .5700 0. 0033 0. 4107 1 . 0000 47. ,7047 -0. 1/53 
0. 6550 49, .1000 0. 6724 0. .6660 0. 0064 0. 3276 1 . 0000 49. .0710 -0. ,0290 
0. 71 10 49. .3100 0. 7165 0. ,7)10 0. 0055 0. 2035 1 .0000 49. . 3900 0. .0000 
0. 7300 49. . 2V00 0. 7315 0. .7270 0. 0045 0. 2605 1 .0000 49. 4324 0. 1424 
0. 0330 4H, .6000 0. 0150 0. .0150 0. 0000 0. 1050 1 ,0000 40. ,9210 0 . ,3210 
0. 0/30 40. .9900 0 . 0505 0. .0520 - 0 . 0015 0 . 1 495 1 .0000 40. 3149 -0. 6751 
0. 9200 46 . 7900 0 . 9056 0. .9000 - 0 , 0024 0. 0944 1 ,0000 47. ,0160 0 . 2260 
0. 96 10 45 . /UOO 0 . 9446 a. .9470 - 0 . 0024 0 . 0554 1 .0000 45. ,9396 0. ,1596 
1. 0000 44 .3400 1. 0000 i. .0000 0. 0. 1 .0000 44. ,3400 0. 

iUH OF i'UIIAFit S UF CELT A Y 8.300144 / 

VAKLANCL OF DELIA Y 0.0035 AkITllMk'TIC HCAM OF DELIA Y 0.0027 

LALCUt All:D EXin liniJIG UIVLN END POINIA" 

XUH o r i'ltlli'iUEi' IIF DELTA P 0 .9109255 

VAK1AHCE 1)1- DfcLlA P 0.276/ A m i H H U I C NEAN 01- DLLTA P 0.2122 

AKI KINETIC rtfcAN («• HELTA f/f 0 .061535 

CALIULAILD EXUIODIMO UIVfcN END PUiNIS 
ilOP 
I1HL 3.0 AECS 
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Results of Run # 4 for the 

CO -̂C^Hg Systems at 10°C. 

See Table 1 for the Values of the 

Pertinent Variables Used. 

The formated input is as follows: 

1 4. <J 
CARBON £> [OXIDEf 1 )-ETHANE<2> 
INiem-OLArED AND EXPERIMENTAL PRESSURE-VALUES!ATM) VS. HOLE FRACTIONS 
GIBBS EXCESS FREE ENERGY< J/HOLE> VS. MOLE FRACTIONS 
2 o 

tit 
29.700 0.0 0.0 
31 . o 1 0 0.033 0.061 
36.700 0.129 0.198 40.15 0.234 0.315 
42.52 0.31 1 G. 304 
45.57 0.421 0. 480 
47.38 0.542 0.578 
49. 10 0.655 O. 666 
49.31 0.71 1 0.711 
49.29 0. 730 0.727 
48.60 0.833 0.315 
48.99 0.873 0.852 46.79 0.928 0.908 
45.78 0.961 0.947 
44.34 283.150 1.0 1.0 
<2.90? 94.192 304.167 0.274 0.225 
48.196 141.584 305.444 0.285 0.105 
0.130 
-40.2^2 
-27.768 0.0000 0 0 0 0 

The formated output is as follows: 



EXPERIMENTAL RESULTS AMD CALCULATED QUANTITIES FOR IHE BINARY SYSTEM CARBON DIOXIDE(1 I-ErilANE<2> 
' » « > * N * f t K k « * » « * * » » k N * » * R * « « K « » k » * « » * t t « K » M K M N » K N M » * H K K N N « « M M » K R K * * « * K « « M 

THE POLYNOMIAL USED IH THE ORTHOGONAL COLLOCATION PROCEDURE IS OF HIE TYPE ALFA - 0. BETA » 0. 

PC-VC-TC-2C-ACEN 

PC-VC-TC-ZC-ACEH 

FAK-NY-TAU-DEL 

0.13000 

-40.29201 

-27.76001 

0.72907E+02 0.94182E+02 0.30417E<03 0.27400E<00 0.22500E«00 

0.4B196E+02 0.1415BE+03 0.30544E+03 O.2850OE+00 0.10500E*00 

0 . 

NUMBER OF BINARY POIHTS 15 AT THE ISOTHERM 283.15 TEMPERATURE IN DEO K 

IHIERPOLATED PRESSURE-VALUES FOR X IH THE INTERVAL 
A LEUENDRE POLYNOMIAL OF DEGREE 2 IS USED AS FITTING FUNCTION 

BETWEEN 0.0 AND 1.0 . VALUES FDR DISCKEIE JUMPS OF 0.02 IH X 
29.7000 
37.6961 
42.9642 
46.6329 
40.9405 
49.2354 
45.9 758 

30.9091 
3B.472I 
43.496B 
47.0006 
49.1105 
49.0637 
45.2069 

32.0500 
39.2096 
44.0068 
47.3476 
49.2400 
48.8336 
44.3400 

33.1269 
39.9H3 
44.4951 
47.6733 
49.3504 
40.5408 

34.1444, 
40.5797 
44.9627 
47.9767 
49.4151 
4B.1B11 

35.1062 
41 .2173 
45.4100 
4B.25bb 
49.4392 
47.7497 

36.0165 
41.8260 
45.8374 
4B.5M6 
49.4195 
47.2417 

36.8786 
42.4077 
46.2450 
4B.7402 
49.3520 
46.6522 



lHIERI'l)t_AIEP AND EXPERIMENTAL PRESSURE'VAI.UEK ATH) Wi . HOLE FftACIIIJMS 

A 20 .21 3 0 . 3 7 3 2 . 9 3 3 5 . 2 8 37 -44 49 .09 42.35 44 71 4 / . o f - r ' . r j PI . /B • 2B.21 39 .37 3 2 . 9 3 35 .2B 3 7 . 4 4 48 .00 42 . J5 41 71 47 .04 4V.42 M . 7B 
1 1 I 1 1 1 1 I I I 

— «L A « 
« . « 4 M . A » .— 
9.06 —«L A » 
• .OB — »L A • - -

~ » L A 
• .12 —»L A 
• .14 M A • 
9.i6 —»L A N 
• . I B — " L A 
• -20 — «L A N -
6 . 2 3 —«L A 
• .24 H AB 
9.26 - - « L A 
• •20 - - « L A 
0 . 3 0 - • « L A 
• .32 H AB H 
• .34 —«L • • - - • A u. ~ 

• - J 4 •—"L " A 
• -3B —«L ' A N - -

• . 4 0 — »L A • - -

• . 4 2 — • A B m-
• .44 ~ » L A H 
• -44 — » l A 
• . 4B — »L ft 
« . 5 » —«L A H 
• .32 —»L t A 
9.54 —«L A * -
9.716 » II m- -

9.50 — »L A 
9.60 ~ « L A H 

9.6 2 —»l . A M 

9.64 — »L A » -
9.66 — II AH 
9.6B — ML A 
9-10 , - « L A . -
• . 1 2 , H E> 
• .74 . » HA 
9.76 — «L A M- . 

B.7B A 
9.B6 A 
9.6 2 — » L A 
9.B4 .— M BA » -
9.B6 — «L A 
0 . 0 0 — .1 A 
0 . 7 0 •• H A » II 
0.9 2 — »L A »• -

0 .94 l< A M - -

9.96 A 
9.9B f • * 
1 .00 — » L A M 

I I I I I I 1 I I 



o . 
o. o:uoo 0.12U00 
0.23400 
0. 31 100 
0.42 li'O 
8,54200 

0. IS 100 
o . / j o o o 

0.U/.500 
0 . 9 2 0 0 0 
0.96100 1.00000 cuHi'isiL/jr.y 

YL'XH 
06100 1V000 
3 I 500 
30 400 
40OOO 
vuoo 

66600 
71100 

U1500 
05200 
90000 
94700 00000 

HKXH 
•JV. /OOOO 
31.61000 
36.700U0 
40.15000 
42.52000 
45.5/000 
47.00OOO 
49.10000 
49.31000 
49.29000 
48.6(8000 
48.9V000 
46.79000 
45.70000 
44.34000 

l i - UA'iHG ORIHOUUHAL CUl LUCATJUH - HUMBfcfi UK 1HILRMAL POINTS 

lOILOCAIiON POliilS 
0. 0.112/02 0.500000 a.U8?2^» J.000000 

I 
ro 
ro O 

J 

I 203.1499 PA" 

K Ji'A I 0./256 

44.3400 29.7000 VOL 51.5144 51.9454 

0.7229 FUfcfcA'AI 32.1/33 21.4691 

unman 01 1 1 l:KA I 1IMS IH a 5 

JIDIIKLK or I ILRAriOHi" IH 0 5 

miHKLk o r IILKAI 10HA' IH 6 3 

nom«l:r oi- IIK:KAI i ONS 1H G 1 
NIJhkLK 01 I 1 ERA!JONS IH G 1 
MMUbK OF 1 IEKAI I0HA" IN 0 1 



SOLUTION AT THE COLLOCATION POINTS 
X P GE./RT GOOT GAMMA1 GAMMA2 

0. 29, .7000 0. 0 .9591 2.6093 1.0000 
0.1127 35, .6901 0.0600 0 .1979 1.2103 1.0452 
0.5000 47. . 0006 0.0103 -0 .0079 1.0047 1.0325 
0.8373 48. ,0322 0.0583 -0 . 1052 1.0389 1.2418 
1.0000 44. ,3400 0. -0 .9275 1.0000 2.5201 
X FUGrEI FUGCE2 VMIX l»E DPDX 

0. 0, .8302 0.7229 51 .9454 0. 62.2426 
0.1127 0. .8009 0.6645 70 .2404 26.3436 45.1682 
0.5000 0. .6951 0.4880 76 .9900 25.2690 17.0740 
0.8873 0, ,7031 0.5688 59 .1942 7.6312 -21.0627 
f.0000 0. , 7256 0.6141 51 .5144 0. -45.0900 

JTIOM AT THE 1>A IAPOIN TS 

X P GE/RT GUM GAMMA1 f)AMHA2 
0. 29. . 7000 0. 0 2.6093 1.0000 
0.0330 31 , ,6502 0.0270 0 ,6864 1 .0 759 1.0065 
0.1200 36. . 3669 0.0632 0 1 .1 421 1.0544 
0.2340 40. ,3825 0.0508 -0 .1630 0.9094 1.1116 
0.31 10 42. ,7168 0.0436 -0 .2117 0.0033 1.1267 
0.4210 45. 4318 0.0230 -0 .1263 0.9304 1.0912 
0.5420 47, ,7047 0.0194 0 .0501 1.0393 0.9960 
0.6550 49. .0710 0.0344 0 . 109.S 1.1021 O.^iOb 
0.7110 49. .3900 0.0455 0 .2017 1.1006 O.90H3 
0.7300 49, , 4324 0.0493 0 . 1942 1 .10611 0.9123 
0.0330 40. .9210 0.0624 0 .0192 1.0600 1 .042'V 
0.8730 48. ,3149 0.0605 -0 .1220 1.0460 1 .175?. 
0.9200 47. .0160 0.0 466 -0 . 3999 1.0104 1.5090 
0.9610 45, .9396 0.0299 - t t . 61 69 1.0060 1.056/ 
1.0000 44. .3400 0. -0 .92/5 1.0000 2.5201 

Y1 
0 . 

O- 49 76 
0.0054 
1.0000 

Y2 
I .0060 
0.0509 
0.5024 
0.1146 
0 . 

SUM COk 
1.0'JOO 
1.0000 1.0000 I.0000 1.0000 

OF. J/MULE 
0 . 

143.0241 
43.1620 
13 7.2620 

0 . 

CORR TO 0001 
0 . 
0.0512 
0.0194 
•0.G069 
0 . 

Yl Y2 
0. 1 . 0000 
0. .0/30 0. 9270 
0 . , 15/0 0. 0 12 2 
0. . 2006 0. 799 4 
0. ,2620 0. >.< 72 
0. .50/11 0. 6122 
0, .5575 0. 44:'": 
0. , 7012 0 . 2900 
0, 0. 2436 
0. .7 726 0. 22 7 4 
0. ,0410 0. 1 502 
0.0771 0 . 1 229 
0. ,9)19 0. 00111 
0. .9416 0. O'ifl 4 
1 . . 0000 0. 

IIM ( OK OF J.-MHI E 
1 . 0000 0. 
1 .0152 63 . 62l>9 
0 . ?'>-• r 1 40. . H*'01 
1 ,04i 3 130. . 38 (U 
1 .032.5 1 02. .7110 
1 . . 00 76 i(rj .9001 
1 . . 00 1 9 •ir. . 67.90 
1 . . 02.V. no. .003.' 
1 , 03 /O 107 • 191V 
1 .0110 iw., .0 701 
1 , ,05.5V 1 46. .9 304 
0 . 99 7 7 1 42 .4202 
1 . 0>T"-9 109, . 6 i.V 

1 . 0003 /(), . 1343 
1 . (>000 0. 



U I B « f EXCESS FREE ENEROriJ/MH.E* VS. HULE FRALIWHS 

0. I 
.02 —»A 

• .04 — » 

» .04 — " A 
.OB —»A 
,10 — »A 
.12 — «A 
.14 — m 
.14 — "A 
. I B — HA 
.20 — HA 
.22 — •A 
.34 — . 

.26 — • A 
,28 — «A 

ft. .30 — »A 
.32 M 

» , J4 — «A 
.34 — «A 
, 3B - -»A 
,40 — "A 
.42 — » 

0 . .44 — •A 
e. ,46 — »A 

.46 — HA 
a . .50 — •A 

,52 — •A 
34 - - • A 

• . 3 4 — « 

SB — •A 
,40 — •A 
,42 — *A 
,44 - ( A 
,64 — f 

0 . 6B —«A 
,70 — " A 
72 — • 

74 — ? 
.74 —«A 

0 . 70 — •A 
«. BO --•"A 
0. . B2 — «A 
o. H4 - , 

B4 — »A 
0 . P0 —-"A 
t>. 00 K 

9J ~ «A 
94 — II 
•>6 — • A 
90 — » 

i . ,00 - - • A 

1 5 . 4 3 1 3 1 . 2 7 1 4 4 . 9 0 I 4 2 . 5 i I 7B.17 I 9-S.BP I 10?.43 I l 140. «l I 

I 
ro 
ro 
ro 

i I i I i I i i i i 
COHSIS fENL-r, 1 F I 1 B» REPEATED MAI V I Nil UT IRAPHUIDAI. RI>Lt U l l l l niWIMKII INITIUtAI I I IH, Aid A~ ( 1 . 4 1 ' v / s n 



X 
0 . 
0.0330 
0.I2U0 
0.2340 
0.3110 
0.4210 
0.5420 
0.6550 
0.7110 
0.7300 
0.0330 
0.0 730 
0."'2U0 
0.'>610 
I.0000 

CA1.CIH AI ED 
X 

0. 
0.0330 
0.1200 
0.2340 
0.3110 
0.4210 
0.5420 
0.6550 
0.71 10 
0.7300 
0.0330 
0.0 730 
0.9200 
0.9610 
1.0000 

HHiL'fc 1 
0.0302 
0.0260 
0.0006 
0. 7990 
0.7590 
0.7170 
0.6052 
0.6664 
0.6620 
0.6613 
0.6667 
0.7015 
0.7092 
0.7157 
0.7256 

VAl UfcS OK 

29.7000 
31.6100 
36.7000 
40.1500 
42.5200 
45.5700 
47.0000 
49.1000 
49.3100 
49.2900 
40.6000 
40.9900 
46.7900 
45.7000 
44.3400 

KIJUI 1-2 
0.7229 
0.7044 
0.6570 
0.5530 
0.5279 
0.5014 
0.4025 
0.4734 
0.4721 
0.4722 
0.4705 
0.5642 
0.5026 
0.5955 
0.6141 

¥1 
0 . 
0.0730 
0.15 70 
0.2006 
0.262U 
0.30/0 
0.5575 
0.7012 
0.7564 
0.7726 
0.0410.. 
0.0771 
0.9119 
0.9416 
1.0000 

V/11 X 
51 .9454 
70.1300 
70.2603 
70.3553 
70.3403 
77.9410 
76.1402 
72.4531 
69.0545 
60.0637 
62.7372 
60.1391 
56.4664 
54.2136 
51 .5144 

VL 
0 . 

26.Ivuy 
26.3/01 
'26. MOil 
26.5290 
26.1771 
24. 43/>4 
20 . 7V01 
10.2156 
17.23.'9 
11.1509 
0.5700 
4.9210 
2.6025 
0. 

DI'DX 
62.2426 
56.5.100 
43.3320 
33.1004 
27. 75U6 
21.0157 
15.6230 0.1000 
3.1432 
1.21OU 

-11 .9539 
-10.5003 
- 29.0450 
-36.3155 
-45.09U0 

YlfcXP DY Y2 
0. 0. 1 . 0000 
0. 0610 0. .0120 0. 92/0 
0. 1900 - 0 . .0402 0. 0422 
0. 3150 -0. . 1144 0 . 7994 
0. 3040 - 0 , ,1212 0. 7372 
0. 4IJ00 -0 . . 0922 0 . 612 k 
0. 5700 - 0 . . 0205 0 . 4425 
0. ,6660 0. . 0352 0. 2900 
0 . 7110 0. , 0454 0. 2436 
0 . 7270 0. .0456 0 . 2274 
0. 0150 0. .0260 0 . 1502 
0. B520 0. .0251 0. 1229 
0. 9000 0. ,003V 0 . 0001 
0. ,9470 -0, .0054 0 . 0504 
1. 0000 0. 0. 

SUH OF SQUARES OF DEI. IA V 0.0452195 
VARIANCE OF DELIA V 0.0614 AhllllMtUC MEAN 01- DEI TA 
LALLIILAILD EXCLUDING GIVEN DID POINIS 

SUH HI .VOUAKfcS UK DLL IA P 0.9109255 
VAN 1 ANI'E OK DLL IA I' 0.2767 AKilllflblli: Hb'AH OK DLL I 
AKllHHLlii; HLAH OF DELIA P/P 0.061535 

IV.IIUIAltD EXCLUDING GIVEN END POINIS 
SKIP 
llHfc 3.0 SLl-S 

1UKK III liUIH 
0 . 
0.0630 
0.0492 
0.03/0 
0.0317 
0.0246 
0.0164 
0.0073 
0.0025 
0.0009 
0.005/ 
0.0060 
0.0062 
0.0042 
0 . 

suiir 
1.0000 
1.0000 
1 .0000 
1.0000 
1.0000 
I.0000 
1.0000 
1.0000 
1.0000 
1 . 0 0 0 0 
1.0000 
1.0000 
1 . 0 0 0 0 
1.0000 
1.0000 

PCAL 
29.7000 
31.6502 
36.3669 
40.3025 
42. 7160 
45.4310 
47.7047 
49.0710 
49.3900 
49.4324 
40.9210 
40.3149 
47.0160 
45.9396 
44.3400 

DP 
0 . 
0.0402 
-0.3331 
0.2325 
0.1960 
•0.1302 
-0.1753 
-0.0290 
0.0000 
0.1424 
0.3210 
-0.6751 
0.2260 
0.1596 
0 . 

0.0452 
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Results of Run # 1 for the 

CH4-C3H8 System at -17°C. 

See Table 1 for the Values of the 

Pertinent Variables Used. 

The formated input is as follows: 

1 2 2 2 
HETHAME <1)-PROPAHE(2 > 1 15 
111 

fi® 0-034 0.56 0.08? 0.767 0.142 0.832 
®-'97 0-041 0.24? ^•f 9-303 o.gga 

t7-6. 0 - 3 5 7 »-0?« 54.4 0.41 0.992 61-2 9.464 0.89, 68/0 0.518 0.889 74-9 0.572 0.882 01-7 256.40 0.636 0.869 00-5 256.40 0.719 0.845 '3.9 256.40 0.80 
45'4 190.6 0.208 0.000 41 203.0 369.9 ©,281 0.1-52 
0.00618 -1 10.3206 79,0164 -0.05 
0 0 0 0 

o.eo 

The formated output is as follows: 



EXPERIMENTAL RESULTS AND CALCULATED QUANTITIES FOR THE DINAR* SVSTEH Mb THANE< 1 > -I'ROI'ANF < 2) 

THE POLYNOMIAL USED IN THE ORTH0OOMAL COLLOCATION PROCEDURE IS OF THE TYPE AT FA DEI A 

PC-VC-TC-ZC-ACEM 
PC-OC-TC-ZC-ACEN 
FAK-NY-TAU-DEL 

0.00610 
-t10.32060 

79.01640 
-0.05000 

NUMBER OF BINARY POINTS 

0. 45400E+O2 0.99000E+02 0.19060EI03 0.2BBOOENQO 0.B00OGE--G2 

0.44900E+02 0.20300E103 O.36900E+O3 O.20IOOE«0O 0.152OOE400 

15 

XEXP YEXP PEXP 
0. 0. 1.00000 
ft. 03400 0. 56000 6.B0000 
0.08900 0. 76700 13.60000 
0.14200 0, B3200 20.40000 
0.19700 0. 86100 27.20000 
0.24900 0. 8BOOO 34.00000 
0.30300 O. BBOOO 40.80000 
0.35700 0. 89000 47.60000 
0.41000 0. 89200 54.40000 
0.46400 0. 89100 61.20000 
0.51B00 0. 8L«00 68.00000 
0.57200 0. B0200 74.90000 
0.63600 0. 86900 01 .70000 
0.71BOO 0. B4500 8B.50000 
O.BO000 0. 80000 93.90000 

T 256,3999 PS 1.8000 
FISAT 0. 9769 0 .9555 1 

AT THE ISOTHERM 256.40 TEMPERA1URE IN DEO K 
I 

IV) 
ro 
tn i 

VOL 79.6212 01.5029 

FREESAT 104.3365 1.7200 
CONSISTENCY TEST USING ORTHOGONAL COLLOCATIOH - NUMBER 11F INIERNAI. I'llINIA' 

COLLOCATION POINTS 
0. 0.211325 0.7BB675 I.000000 

NUMBER OF ITERATIONS IN G 4 

NUMBER UF I I ERA IIIJHS IN G 4 



NUMBER UF DERATIONS IN G 2 

HENRY LAM CONSTANI BY LAGRANGIAH EXTUAPOLAI ION 1I2.614U 

NUMBER OF ITERAIIUHS IN G 3 

HENRY LAU CONS1ANI BY LAUKANG1AN IX IHAPO! AI ION 112.5300 

NUMBER OF ITERATIONS IH 0 1 

HENRY LAU CONSTANT BY LAGHANGIAN EXTRAPOLATION II2.19H 

NUMBER OF DERATIONS IH 0 1 

HENRY LAU CONSTAHT BY LAGRANOIAH EXTRAPOLATION 112.5517 

NUMBER OF ITERATIONS IN 0 1 

SOLUTION AT THE COLLOCATIOH POINTS 

X P GE/RT GOOI GAMMA1 GAMMA2 VI Y2 SUM CORR OIL J/MOLE 
0. i.eooo 0. 0. 1.0000 1.0000 0. 1 . . 0000 1.0000 0. 
0. 3670 49.6207 -0.0544 -"0.3442 0.7702 1.0617 0.9249 0. . 0755 1.0004 -115. ,9619 
0. 7105 87.4697 -0.2915 -1.1474 0.5391 1.6637 0.9069 0. .0933 1.0001 -621 . .4653 
0. 0000 96.2919 -0.4086 -1.4745 0.4955 2.1507 0.9024 0. .0977 1.0001 -070. , 9880 

X FUGCF1 FUGCF2 MMJ.X VE dpdx CORR 10 POUT 
0. 1.0093 0.9555 81.5029 0. 112.1372 0. 
0. 3670 0.8412 0.3706 73.4460 -7.364B 95.9141 -0.0336 
0. 7105 0.7519 0.1411 74.8246 -5.3413 80.7967 -0.0205 
0. 0000 0.7347 0.1127 78.216B -1.7807 76.8467 -0.0065 

SOLUTION AT THE JDATA POINTS 

X P GE/RT GOOT UAHHA1 GAHKA2 VI Y2 SUM CIJKR GE .i/MllL 
0. 1 . .8000 0. 0. 1 . ,0000 1.0000 0. 1 .0000 1 . 0000 0, 
0. 0340 6. .5340 -0.0027 -0. 0194 0. 9B29 0.9979 0. .6665 0.3335 0. ,BrJ44 -5. . 6503 
0. 0090 14. .0569 -0.006B • -0. 0543 0. ,9546 0.9970 b.0293 0.171 7 0, ,9013 -14. , 5062 
0. f 420 21 . . 14U4 -0.0114 -0. 0932 0. ,9256 0.9995 0. , B765 0.1235 0. 9;'.56 • 24 
0. ,1970 28. . 343B -0.0176 -0. ,1403 0. ,09.34 1.0050 0. ,9001 0.0999 0. ,9476 -37 .4765 
0. ,2490 34. .9933 -0.0254 -0. 1923 0. ,8606 1.0161 0. ,9124 0.0B76 0. , 9680 -54. . 15H2 
0. 3030 41 . .7407 -0.0364 -0. .2552 0. ,8243 1.0324 0. ,9199 0.0B01 0. ,9 US 4 -77. , 5227 
e. ,3570 48 .3274 -0.0510 -0. , 3283 0. .7860 1.0559 0. .9240 0.0760 0. 9903 -100. , 6777 
0. ,4100 54. .6357 -0.0696 -0. 41 12 0. ,74/1 1.OHO3 0. ,9257 0.0743 1. 0066 - 1 40 , .4313 
0. ,4640 60 .9037 -0.0938 -0. 5003 0. .7069 1.1336 0. . 9257 0.0743 1. 0106 -199. .9142 
0. 5180 67 .0109 -0.1239 -0. 6194 0. ,666 7 1.1955 0. 9240 0.0760 1. 0109 -264. 1243 
0. 5720 72. .9574 -0.160B -0. 7456 0. , 62 76 1.2B02 0. ,920 7 0.0793 1. 0004 -342. , 71 75 
0. 6360 79. .7968 -0.2143 -0. 9166 0. 5B33 1.4236 0. 91 45 0.0055 1. 0031 - 456. ,7668 
0. 7100 BB. .2290 -0.3003 -1. 172B 0. ,5350 1.6947 0. , 9060 0.0940 0. 9999 640, .2236 
0. ,8000 96. .2919 -9.40B6 -1. ,4745 0. . 491)5 2.1507 0. .9023 0.09/7 i . 0001 -B70, , 9000 



CONSISIENCY TEST BY REHEATED HALVING 01 IRAP2U1DAI I ONS TAN 1- 0 . 112612D -11 
CUIIS1 All 1 = 0 . ,3025190- 11 
LOMSIANI- 0. .934151D 11 
CONS 1 AN1" 0 . 10500 ID-10 
CUNS1ANT- 0 . 34 1 004D--10 
CONS FAN P" 0 . 954794D--10 CONSTANT- 0 . I50644D -09 
CUHSTANT- e. 230371 D-09 
CUNSTANT- 0 . 343502D--09 CONSTANT- 0 . 538061D--09 
CONSTANT- 0 . B9B596D-09 CONSTANT- 0 . 145673D--00 

CALCULATED VALUES UF Y1 

X P Y1 Y1EXP DY Y2 0. 1. 8000 0. 0. O 1. .0000 0. 0340 6. 0000 0. ,6665 0.5600 0 .1065 0. . 3335 6. 0090 13. 6000 0. ,8203 0.7670 0. .0613 0. .1717 O. 1420 20. 4000 0. B765 0.8320 0. . 0445 0. .1235 0. 1970 27. 2000 0. 9001 0.0610 0. .0391 0. ,0999 0. 2490 34. 0000 0. ,9124 0.0000 0. .0324 0. , 00 76 0. 3030 40. 0000 0. 9199 0.8000 0 .0319 0. .0001 0. 3570 47. 6000 0. ,9240 0.8900 0. .0340 0. .0760 0. 4100 54. 4000 0. 9257 0.8920 O. .0337 0. .0743 0. 4640 61 . 2000 0. ,9257 0.0910 0. .0347 0, ,0743 0. 5100 60. 0000 0. ,9240 0.B890 0 .0350 0. .0 760 0. 5720 74. 9000 0. 9207 0.0020 0 • 01O7 0 .0793 0. 6360 01 . 7000 0. ,9145 0.0690 0 .0455 0. .0055 0. 71 B0 SB. 5000 0. ,9060 0,0450 0. .0610 0. .0940 0. 0000 93. 9000 0. 9023 0.0000 0. . 1023 0. .0977 

X FUOL'FI FUGCF2 
0. 1 . 0093 0. 9555 
0. 0340 0. 9032 0.0665 
0. 00 VO 0. 9544 0. 7531 
0. 1 420 0. 9290 0. 6592 
0. 19 70 0. 9060 0. 5739 0. 2 490 0. 0040 0. 5031 
0. 3030 0. UM2 0. 4384 
0. 3570 0. 04 40 0. 3013 
0. 4100 0. 8271 0. 331? 
0. 4640 0. 0103 0. 2074 
0. 5100 0. 7940 0. 2479 
0. 5 720 0. 7000 0. 2128 
0. 6360 0 . 7663 0 . 1761 
0. .7100 0. 7505 0 . ,1301 
a . nooo 0 . 734 7 0 . . 1127 

VMIX VE DPDX 
61 .5029 0. 112. 1 372 
00 .6193 -0. 0197 110. 63 73 79 .2315 -•2. , 1 039 100. ,2111 77 .9509 -3. 2040 105. 0/31 
76 .6921 -4. 4401 103. ,4469 
75 .5019 -5. , 452 4 101 . ,1530 
74 .5306 6. .4021 90 . 7/09 73 .6105 -7. ,2206 96, . 3000 
72 .0741 7. , 05 73 94. . or.oo 
72. .3549 -0. 2 749 91 . , 660 7 
12 .1 714 -B, , 3567 07. ,2066 72. .5131 -7. .9135 06. ,9015 
74 .1970 -6. , 1003 04.0013 74 .9000 . 1 710 00 .464(1 78 .21 6U -1 . . /BO 7 76 .0467 

it KIINNR HI; INK ORAI ION 

SUHY PCAL DP 1 .0000 1. .0000 -0. . 0000 
1 .0000 6. .5340 -0. ,2660 1 .0000 14. . 056' 0. 4569 
1 .0000 21 . .1404 0. 7101 1 .0000 26. ,3430 1 . ,1430 1 .0000 34. ,9933 0. ,99.53 1 .0000 41. ,740 7 0. 9407 1 .0000 40. .3274 0. , 72 74 1 .0000 54. . 6357 0. ,2357 1 .0000 60. .9037 -0. .2963 1 .oooo 67. .0109 -0. .9091 1 . oooo 72 . 95 74 -1 . . '426 
1 .0000 79 .7960 -1 . .90.52 1 .0000 80. . 2290 -0. 2 702 1 .0000 96. ,2919 2. 3WI9 

R.URR 11) ISUOL 
0 . 
0.0043 0.0100 -0.0163 

-0.0210 0 .0262 - 0.0301 -0.0331 0.0351 0.0361 -0.0355 -0.032/ 0.0244 
-0.0193 
-O.0065 



SUM OF SQUARES' OF DELTA ¥ 0.043<565 

VARIANCE OF DELTA V 0.0576 ARIIHMEIIC HEAN OF DELTA Y 0.0500 
CALCULAIED EXCLUDING GIVEN END POINTS I 

SUH OF SQUARES OF DELTA P -18.6602577 £ 
a 

VARIANCE OF DELTA P 1.2045 ARITHMETIC HEAN OF DELTA P 0.9504 1 

ARITHMETIC MEAN OF DELTA P/P 0.3204B3 
CALCULATED EXCLUDING OIVEN END POINTS 

STOP 
TIME 2.9 SECS 
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Results of Run # 2 for the 

CH4-C3Hg System at -17°C. 

See Table 1 for the Values of the 

Pertinent Variables Used. 

The formated input is as follows: 

1 2 2 2 
METHANE<1)-PR0PANE<2) 1 
) 5 
1 1 1 
1.8 0.0 O.O 
6.8 0.034 0.56 
13.6 0.089 0.767 
20.4 0.142 0.832 
27.2 0.197 0,861 
34.0 0.249 0.880 
40.8 0.303 0,888 
47.6 0.357 0.890 
54.4 0.41 0.892 
61 .2 0.464 0.091 
68.0 0.518 0.8B9 
74.9 0.572 0.802 
81 .7 256.40 0.63& 0.869 
88.5 256.40 0.718 0.845 
93.9 256.40 0.80 0.00 
45.4 9O.0 190.6 0. 288 0. 008 
41 .9 203.0 369.8 0. 281 0. . 152 
0.00618 
-110.3206 
79.0164 
0.01 
0 0 0 0 

The formated output is as follows: 



EXPEKMENIAl. lU i'M li' AN1> lYiLLIIl AIL1> OMAN I I I ILi' I (IK llll: lltHAKV AVi'lk'h MI:IIIAHI:(1> l'l<lll'ANI (111 

lilt POLYMIJIilAl IJitlV IN lllh" UKIIIOOONAl- L'lILLOCAI lUri PROCEDURE li' OF IIIE IYPE AI.FA - 0. DLIA » 0. 

PC-VC-IC-2C-ACEN 0. 45400L" 101' 0.99000Ei02 0.19060F<03 O.2UOOOE»0O 0.U0000E-02 

PC-VC-TC-ZC-ACEN O.4190OEtO2 0.20300Ei03 O,3690OL'i03 0.2O1OOk'<0O 0.152O0fc'tO0 

FAK-NY-IAU-DEL 

0.00/, 10 
-110.32060 

79.01640 

0.01000 
NUMBER OF BINARY PUINIS 15 A f HIE li'OlliERH 256.40 lEHPERATUHE ill DEO K 

XE.XF; YEXP PEXP 
0. 0. 1 .00000 
0. ,03400 0. 56000 6 .80000 
0. .00900 0. 76700 13 .60000 
0. 1 4200 0, 83200 20 .40000 
0. , 1 9 700 0. 86100 27 .20000 
0. ,24900 0. BBOOO 34 .00000 
0. , 30300 0. 80000 40 .80000 
0. , 35700 0. B9000 47 .60000 
0. .41000 0. B9200 54 .40000 
0. .46400 0. 09100 61 .20000 
0. 51000 0. 88900 68 .00000 
0. ,5 7200 0. 00200 74 .90000 
0. 6.5600 0. 06900 81 .70000 
0. ,71800 0. 34500 BO .50000 
0.00000 0. ooooo 93 .90000 

fO 
•a 

n Pi' 1.1 uooo U01. B J. 5936 B 1.5029 

Fli'AI 0.9V74 0.9555 FlU'b'i'Af 104.5793 1. 7200 LOMiJi'lL-WCY TEA"I UA1NG ORTHOGONAL COLLOCATION - NUMBER OF INTERNAL POINTS 
L'OLl OL'A I ION PIIJNIS 

O. 0.211325 0.700675 1.000000 

NIIHUtK UF XIX-RAIIUNA' IN 0 4 
NUMl'fck OF 11 ERA 11 ONI' IN li 4 



NUHDtK Oh ITERATIONS IN 0 2 
HENRY LAU CONS I AHT BY LAGUANUIAI* EXTKAPULAIJUM IIJ. 1255 

NUMBER OI: HERAT IONS IN G 3 

IlkNhY LAM CONSIANI" Bl" LAOHANlii AM LXIHAPOLAI JON 113.0136 
WMBfcU 01 I I l l<AI J UNA" IN 0 2 
HENRY LAU CUNSTANI BY LAGRANGIAN EXIRAPOLAIION 113.0150 
NUHBER OF ITERATIONS IN 0 1 
HENRY LAU CONSTANT BY LAGRANOIAM EXTRAPOLATION 113.021V 
NUHBER OF ITERATIONS IN 0 1 

SOLUTION AT THE COLLOCATION POINTS 

X 
0. 
G.367B 
0.7105 9.8000 

P 
1.8000 

49.6207 
87.4697 
96.2919 

GE/RT 
0. 
-0.0572 
-0.2985 
-0.4158 

GOOT 
0 . 
-0.3583 
-1.1539 
-1.473B 

GAHHAt 1.0000 
0.7723 
0.5361 
0.4932 

I3AMMA2 1,0000 
1.0615 
1 .64 71 
2.1144 

X 
0. 
0.3678 
0.7105 
0.8000 

FUGCF1 
1.0119 
0.8405 
0.7442 
0.7243 

FU0CF2 
0.9555 
0.4041 
0.1B50 
0.1570 

VHIX 
91,5029 
73.4460 
74.0246 
7B.216B 

VE 
0. 
--B.6257 
-0.1636 
-4.9586 

PT'DX 
112.1372 
95.9141 
00.7967 
76.8467 

SOLUTION AT 
X 

0. 
0.0340 
0.0B90 
0.1420 
0.1970 
0.2490 
0.3030 
0.3570 
0.4100 
0.4640 
0.5180 
0.5 720 
0.6360 
0. 7100 0.0000 

THE DATA 
P 

1.6000 
6.5340 14.0569 

21.1484 
28.3438 
34.9933 
41.7407 
48,3274 
54.6357 
60.9037 
67.0109 
72.9574 
79.7968 
00.2290 
96.2919 

POINTS 
BE/RT 
0 . -0.0026 -0.0068 
-0.0117 
-0.0183 
-0.0267 
-0.03B3 
-0.0537 
-0.0731 
-0.0980 
-0.1289 
-0.1665 
-0.2207 
-0.3073 
-0.4158 

ooor 
0 . 

- 0 . 0 2 1 2 
-6.0589 
-0.1003 
-0.1497 
-0.2035 -0.2680 
-0.3422 
-0.4250 
-0.5230 
-0.6335 
-0.75B6 
-0.9273 
-1 .17BB 
-1.4738 

GAMI1A1 1.0000 
0.9820 
0,9522 
0.9221 
0.BBOB 
0.0553 
0.0106 
0.7002 
0.7414 
0.7014 
0.6617 
0.6230 
0.5795 
0.5320 
0.49.J2 

0AHHA2 I.0000 
0.99B0 
0.9973 
0.9998 
1.0062 
1.0164 
1.0326 
1.0559 
1. 0B77 
1.1322 
1.1929 
1 .2756 
1.4150 
1.6769 
2.1144 

Y1 Y2 
0. 1.0000 
0.930B 0.0693 
0.9294 0.0706 
0.9306 0.0694 

CORR TO GOUT 
0 . 
-0.0402 
-0.0314 
-0.0181 

SUM CORR GE J/HOLE 
1.0000 0. 
1.0000 -122.0302 
1.0000 -636.3591 
1.0000 -806.3599 

Yl Y2 SUM CORR GE J/Mill 
0. 1. .0000 1.0000 0. 
a. 6682 0.331B O.BV..0 . r . 4ir:.4 
o. ,0310 0. , 1690 0.9OI7 14 .5705 
0. . B79B 0. .1202 0.9736 -24, ,937.1 
o. ,9040 0. ,0960 0.9.) 74 -3H. ,91103 
0. ,9169 0, ,0031 0.96 76 56, .0541 
0. ,9250 0. ,0750 0.91^0 -HI ,664 7 
0. ,9300 0. , 0700 0.9980 -114 .4161 
o. 932B 0. , 0672 1.0064 -155, ,0139 
0. 9341 0, ,0659 1.0106 -200, , 980 7 
0 . 9343 0. 0657 1.0112 -27 1.0127 
0 . 9334 0. ,0666 1.0007 - 354. .0953 
0. ,9312 0. ,060(1 1.0033 -4 70, . 4395 
0. 9293 0. ,0707 o . v v v a 6r.5 , .2031 
0. ,9306 0. ,069 4 1 . 0000 -806, .3599 



X FU0CFI FU0CF2 VMIX VE 
0. 1.0119 0.9555 01.5029 0. 
0.0340 0.9041 0.B705 00.6193 -0. 9547 
0 . 0090 0.9547 0.7651 79.2315 -2. 4574 
0 . 1420 0.9299 0.6775 77.9509 •3. 8409 
0 . 1970 0.9059 0.5975 76.6921 5. 2226 
0. 2490 0.0047 0.5305 75.5019 -6. 4415 
0. 3030 0.0639 0.4689 74.5306 -7, 6050 
0. 3570 0.0443 0.4143 73.6105 •0. 6300 
0 . 4100 0.0263 0.3667 72.0741 -9. 4060 
0 . 4640 0.0090 0.3230 72.3549 -10. 1101 
0 . 5100 0.7929 0.2B50 72,1714 -10. 4144 
0. 5720 0.7700 0.2522 72.5131 -10. 105 7 
0. 6360 0.7617 0.2176 74.1970 -0. 63 40 
0. 71 BO 0.7425 0.1822 74.9000 -B. 02 40 
0, .9000 0.7243 0.1570 70.2160 -4. . 9.-.B6 

COIIS lilENCY 

CALCULATED 

TESI BY REPEATED 
COM?IAH I-
CONS IAN I = 
CONS IANT-
CONSTANT-
CUNSIANT-
CUNSTAN r-
COHSTAHT-
CUHSI AH I ™ 
CONSTANT-
CONSTANT-
COHSTAHT-
COHSTAHT-
CONSTANT-

IALUES OF VI 

HAIVIHO 01" I RAP/Ol DAL 
0.127O60D 1 I 
0.425I36D -11 
0.1022IOD-1O 
0.199571D 10 
0.36292ID 10 
0.61 741 7D-I0 
0.991893D-10 
0.1540 70D-O9 
0,2346390-09 
0.346942D-0? 
O.53069OD-O9 
0.B90960D-09 
0.143251P-09 

X P Y1 Y1EXP DY 
0. 1. ,0000 0. 0. 0. 
0. .0340 6, . BOOO 0. ! 6602 0. .5600 0. .1002 
0. ,0090 13. .6000 0. .0510 0. .7670 0. .0640 
0. ,1420 20. .4000 0. . B790 0 .0320 0 .0470 
0. .1970 27, ,2000 0. .9040 0. .0610 0. .0430 
0. .2490 34. ,0000 0. .9169 0. .0B00 0. .0369 
0. .3030 40. , 0000 0. .9250 0 .0000 0. .0370 
0. 35 70 47. ,6000 0 . 9300 0. , B900 0. ,0400 
0. 4100 54. ,4000 0 . ,9328 0. ,8920 0. ,0400 
0. 4640 61. ,2000 0, 9341 0. ,0910 0. 0431 
0, 5100 60. 0000 0 , 9343 0. 0090 O. 0453 
0, 5720 74. 9000 0 . 9334 0. B820 0 . 0514 
0, 6360 01 . 7000 0, 9312 0, ,8690 0. 0622 
0. 7100 00. ,5000 0 . 9293 0. .8450 0. ,0043 
0. 0000 93-,9000 0 . 9306 0, ,0000 0. ,1306 

DPDX 
112.1372 
110.63 73 100.2111 
105.0731 
103.4469 
101.1530 
9B.7709 
96.3000 
94.0500 
91.6607 
09.2066 
06.9045 
04.0013 
00.4640 
76.046 7 

CURR TO 000T 
0 . 
-0.0050 
- 0 . 0 1 2 6 
-0.0194 
-0.0257 
-0.0310 
-0.0357 
-0,0396 
-0.0424 
0.0441 
-0.0442 
-0.0421 
0,0345 
- 0.030 7 -0.0101 

Rill E Willi RUHDLRIi IN 11 OKA I J UN 

I\1 
CO 
ro i 

Y2 SUMY PCAL DP 
1 . , 0000 1 .0000 1 .8000 -0 .0000 
0. ,3310 1 . 0000 6 ,5340 -0. . 2660 
0, ,1690 1 .0000 14 , 0569 0. . 456'» 
0. .1202 1 .0000 21 - 1404 0.7404 
0. .0960 1 .0000 20 , 34.50 1. . 1 430 
0. .0031 1 .0000 34 .99.53 0. .9933 
0. . 0750 1 .0000 41 . 7407 0, .9407 
0. 0700 1 .0000 40 .32 74 0. . 7274 0. 0672 1 . 0000 54 . 635 7 0. ,235 7 
0. 0659 1 .0000 60. .9037 -0. 2963 0. 0657 1 .0000 67, .0109 -0. 9091 0. 0666 1 .0000 72. .9574 -1. 9426 
0. 06B8 1 .0000 79. .7968 1. ,9032 
0. 0707 1 .0000 80 .2290 -0. 2 702 
0. 0694 1 .0000 96 .2919 3919 



SUM OF SQUARES OF DELTA Y 0.0605322 

VARIANCE OF DELTA Y ; 0.0602 ARITHHEI1C MEAN OF DELIA Y 0.0596 

CAI.CULA I ED EXCLUDING OIVEK tNO f'OINIS 

SUM OF SQUARES OF DELTA P 18.6602577 

VARIANCE OF DELTA P 1.2045 ARITHMETIC MEAN OF DELTA P 0.9504 

ARITHMETIC HEAH OF DELTA P/P 0.320483 

CALCULATED EXCLUDING GIVEN END POINTS 
STOP 
IIHE 2 . 9 SECS 



I 
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Results of Run # 3 for the 

CH4"C3H8 S^s t e m a t -17°C. ' 

See Table 1 for the Values of the 

Pertinent Variables Used. 

The formated input is as follows: 

1 2 2 2 
METHANE < 1 >-PROPANE (2) 

1 
15 1 1 ( 
1.9 0.0 0.0 
6.3 0.034 0.56 
13.6 0.089 0.767 
2<V,4 0.142 0.B32 
27.2 0.197 0.661 
34.0 0.249 0.BB0 
40.9 0.303 o.Bee 
47,6 0.357 a-e^o 
54.4 0.41 0.892 
61 .2 0,464 9.891 
69. 0 0.518 0.809 
74.? 0.572 O.B02 
01 .7 256.40 0.636 0.069 
88,5 256.40 0.718 0.845 
•53,9 256.40 0.00 0.80 
45,4 99,0 190.6 0,280 0 . 000 
41 .? 203.0 369, S 0.201 0. ,152 
0.00618 
-110.3206 
79.01O4 
0.05 
0 0 0 0 

The formated output is as follows: 



EXPERIMENTAL RESULTS AND CALCULATED QUANTITIES FUR 

THE POLYMOHIAL USED IH THE ORTHOODHAL COLLOCATION 

THE BINARY SYSIIH HE IHAHC (1 )-PROPANE (2 > 

PROCEDURE IS UF THE TYPE ALFA - 0. 

NMVHMKNMKKMKHNMHMKK 

BETA O. 

PC-VC-TC-ZC-ACEH 

PC-VC-TC-ZC-ACEH 

FAK-HY-TAU-DEL 

0.006)0 
-110.32060 

79.01640 

0.05000 

NUMBER OF BINARY POINTS 15 AT THE ISOTHERM 256.40 TEMPERATURE IH DEO K 

XEXP YEXP PEXP 
0 . 0. 1 . 00000 
0. ! 03400 0. 56000 6. 00000 
0. ,00900 0 . 76700 13. 60000 
0. ,14200 0 . 03200 20. 40000 
0 . ,19700 0. 06100 27. 20000 
0 . 24900 0. 0BOO0 34. 00000 
0. ,30300 0 . 00000 40. 80000 
0. ,35700 0 . 09000 47. 60000 
0. ,41000 0 . 09200 54. 40000 
0. ,46400 0 . B9100 61 . 20000 
0 . 51000 0 . 00900 60. 00000 
0. ,57200 0 . 0B200 74. 90000 
0, .63600 0, 86900 81 . 70000 
0. ,71000 0 . 045OO 00. 50000 
0. ,00000 0 . 00000 93. 90000 

0.45400E+02 0.99000E*02 0.I906OE403 O.2B0OOEtOO 0.00000E-02 

0.41900E+02 O.203O0E*O3 0.369B0EM>3 O.2B100E+0O O.152O0E«OO 

T 256.3999 PS 1.0000 VOL 06.2419 01.S029 

F1SAI 0.9777 0.9555 FRLESAT 104. 7392 1.7200 
CimSlSltNCY TEST USING ORTHOGONAL COLLOrAIION - NUMBER OF INILKNAL POINTS 

COLLOCATION PDINTS 
0. 0.211325 0.7006 75 1.000000 

NOMBER OF DERATIONS IN G 4 

NUMBER OF ITERAIIONS IH 0 4 



NUHBER OF HERAT IONS IN 0 2 
HENRY LAU CONSTANT BY LAORAHGIAH EXTRAPOLAI ION 113.4470 
NUHBER OF ITERATIONS IN G 3 

HENRY LAU CONS I AH I BY I.AGRANUIAN EKIRAPOLAI ION 11 3..<-.'64 
NUHBER OF ITERATIONS IN D 2 

HENRY LAU CONSTANT BY LAGRAHGIAH EXTRAPOLATION (13.3210 
NUMBER OF ITERATIONS IN 0 1 

HENRY LAU CONSTANT BY LAGRANOIAN EXTRAPOLATION 113.3107 
NUHBER OF ITERATIONS IH 0 1 

SOLUTION AT THE COLLOCATIOH POINTS 
X P GE/RT GOOT GAMMA1 GAHHA2 Y1 Y2 SUM CORR l<E J/MOLE 0. 1.8000 0. 0. 1.0000 1.0000 0. 1 . ,0000 1 . 0000 0, 0. 3670 49.6207 -0.0592 -0.3676 0.7605 1.0614 0.9345 0, ,0655 1 . (1000 -126. , 1 005 e. 7105 67.4697 -0.3038 -1.1635 0.5320 1.6411 0.9390 0. ,0610 1 . 0000 -64 7. 7395 e. 8000 96.2919 -0.4219 -1.4830 0.4900 2.1039 0.9414 0. . 0506 1 . 0000 -899. ,5103 
X FUGCF1 FUGCF2 UHIX UE DPDX fOKR 10 GOUT 0. 1.0137 0.9555 01.5029 0. 112.1372 0. 0. ,367B 0.0402 0.4275 73.4460 -9.7997 95.9(41 -0.0447 0. ,7105 0.7421 0.2133 74.8246 -10.0451 BO.7967 -0.0306 0. , 8000 0.7218 0.1B49 78.2166 -7.07 73 76.8467 -0.0250 

SOLUTION AT THE DATA POINTS 
X P GE/RT GDOT GAMMA1 GAMHA2 Y1 Y2 SUM fORR (!E .l/MOLE 0 1 BOOO 0. 0. 1.0000 1.0000 0 1 0000 1 0000 0 0 0340 6. 5340 -0.0026 -0.0226 0.9810 0.99B0 0 6693 0 3307 0 0750 -5 5271 0 0090 14. 0569 -0.0070 -0.0624 0.9501 0.9974 0 032 7 0 1673 0 .901 4 - 14 05 40 0.1420 21 1 484 -0.0120 -0.1055 0.9192 0.9999 0 BB1 9 0 11B1 0 .9231 -25 6409 0 1970 20. 3430 -0.0189 -0.1563 0.8854 1.0063 0 9065 0 0935 0 .9 460 -40 3016 0 2490 34. 9933 -0.0276 -0,2112 0.8516 1.0166 0 9197 0. 0B03 0 96 /I -50 8840 0 3030 41 7407 -0.0397 -0.2765 0.0147 1.0327 0 9283 0. 071 7 0 904 7 -04 5633 0. 3570 48. 3274 -0.O555 -0.3514 0.7763 1.055B 0 9337 0. 0663 0 99 79 -110 209.} 0 4100 54. 6357 -0.0754 -0.4355 0.7375 1.0074 0 9370 0. 0630 1 0065 -160 7264 0 4640 60. 9037 -0.1009 -0.5329 0.6977 1.1314 0 9390 0. 0610 1 0109 -215 0154 0. 51 BO 67. 0109 -0.1323 -0.6436 0.65B1 1.1915 0 9399 0. 0601 1 0115 -282 0125 0 5720 72. 9574 -0.1704 -0.76B7 0.6196 1.2733 0 9400 0 0600 1 0091 -37.3 2H15 0. 6360 79. 7968 -0.2253 -0.9372 0.5761 1.4114 0 ''392 0. 06 OB 1 0035 -400 2310 0 7100 BB. 2290 -0.3128 -1.1BB4 0.52OB 1.6 707 0 9390 0 0610 0 9997 666 7395 0 8000 96. 2919 -0.4219 -1.4830 0.4900 2.1039 0 9414 0 05 86 1 0000 099 5103 



X f UliCF t FU13CF2 
0. 1 . 0137 0. 9555 
0. 0340 0. 9046 0. 0731 
0. 0B9O 0. ,9550 0. 7731 
0. 1420 0. 9300 0. 6099 
0. 1970 0. 9059 0. ,6136 
0. ,2490 0. ,0046 0. ,5495 
0 .3030 0, ,063 7 0. ,4901 
0. 3570 0. ,0440 0. .4373 
0. , 41 00 0. ,0250 0. .3911 
0. ,4640 0. ,0004 0. .3493 
0. .5100 0. .7921 0. .3122 
0. .5 72.0 0. .7769 0 .2793 
0 .6360 0. . 7601 0 .2454 
0 . 7100 0 . 7403 0 .2105 
0. .0000 0. . 7218 0 .1849 

WIIX Vfc Pf'PX 
01 . 5029 0. 112. 13 72 
00 . 6193 1. 0440 110. 63 73 
79. 2315 -a . .6931 100. .2111 
77. .9509 • 4, , 2250 105. .0731 
76. 6921 -5 . ,7444 103. ,4469 
75. ,5019 -7 , , 1010 101 . ,1530 
74. .5306 -0 . .4002 90. . 7 709 
73. .6105 --9 . .5042 96. .3000 
72.0741 - 10. .5710 94. ,0500 
72. . 3549 - I t .347.9 91 . .6607 
72. .1 714 -11 .7062 09 .2066 
72 .5131 -11 . 7005 06 .9045 
74. . 1 970 10 .3191 PI . 01) 1 3 
74 .9000 9 .921.4 00 . 4640 
70 . 1 6 0 -7 .07 73 76 . 046 7 

CONSISTENCY IESI UY REPEAtEP HAlVlHlj Of IKAPZOlPAt. RULE Willi 
CONS' r AM 1 0. 1396690 • 1 1 
CONS IAN 1 =• 0. 459 7960 11 
CONS 1 AMI = 0 . 10090211 10 
CONS I AIM- 0. 2100 720- 10 
CONSIAN1- 0. 3 7 7905 P -10 
COHSTAHf- 0. 6374260- 10 
CUHi'lANI - 0. ,10I603H uy 
CONS IANr- 0. , 157046P--09 
CONSTANT- 0. 2300140- 09 
C0HSTAI1T- 0. .3506151)--09 
CONSTANI- 0. ,5425220-09 
CONSTANT- 0. 094536P--09 
CONSTANT - 0. 143531P-•08 

VALUES OF Y1 

X P Y1 
0. 1 . .0000 0, 
0. .0340 6. , 0000 0. .6693 
0. .0090 13. . 6000 0. , 8327 
0. ,1420 20. , 4000 0. ,8819 
0. ,1970 27. .2000 0. ,9065 
0. 2490 34. ,0000 0. 9197 
0. , 3030 40. , 0000 0. ,9203 
0. 3570 47. 6000 0. 9337 
0. ,4100 54. ,4000 0. .9370 
0. 4640 61 . .2000 0. ,9390 
0. ,5100 60. , 0000 0. ,9399 
0. ,5720 74. 9000 0. .9400 
0. 6360 01 , 7000 0. ,9392 
0. 7100 00. 5000 0. 9390 
0. ,0000 93. ,9000 0. .9414 

Y1EXP »Y Y2 
0 0. 1 . .0000 
O .5600 0. . 1093 0. 3307 
0 . 7670 0. . 065 7 0. 16 73 
O. .0320 0. ,0499 0. 1 101 
0 .0610 0. ,0455 0. 0935 
O. .8000 0. ,0397 0 . 0003 
0 .0000 0. 0403 0. 071 7 
0 . B900 0. , 0437 0. 0663 
0 .0920 0. ,0450 0. 0630 
0 .0910 0. , 04B0 0. 0610 
0 .0090 0. .0509 0. 0601 
0 .0020 0. . 0500 0. 0600 
0 .0690 0. ,0702 0. 0600 
© .0450 0. 0940 0 . 0610 
0 .0000 0. .1414 0. 0506 

PP 0.0000 
0.2660 0.4̂ 6? 
0.7404 
1.1430 0. 9933 
0.9407 
0 .72 74 
0 .235 7 
0 .296 3 
0.9091 1.7426 
i .y«.i2 
0 .2702 
2.3919 



SUH or SQUARES UF DELTA Y 0.0699474 

VARIANCE UF DELIA Y 0.0734 ARITHHEIIC HEAM OF DELIA Y 0.0644 
CALCULATED EXCLUDING GIVEN END POINTS , 

r o 
SUH UF SQUARES OF DELTA P 10.0602577 CO 
VARIANCE OF DELTA P 1,2045 ARITHHETIC HLAN OF DELTA P 0.9504 ' 

ARIfHHFTIC HEAN OF DELTA P/P 0.320403 

L'ALCULAIED EXCLUDING OIVEN END POINIS 
SIUP 
TIHE 2.9 SF.CS 
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Results of Run # 4 for the 

CH4-C3Hg System at -17°C. 

See Table 1 for the Values of the 

Pertinent Variables Used. 

The formated input is as follows: 

M€THAHE<1>-PROPANE<2) t 
15 
1 1 1 
1 .8 0.0 0.0 
6.8 0.034 0.56 
13.6 0.089 0. 767 
29.4 0.142 0.032 
27,2 0.197 0.061 
34.9 0.249 0.800 
40. a 0.303 0.000 
47.6 0.357 0.890 
54 , 4 0.41 0.892 
61 .2 0.464 0.891 
68.0 0.518 0.889 
74.9 0.572 0.002 
81 .7 256.40 0.636 0.069 
80.5 256.40 0.718 0.945 
93.9 256.40 0.80 0.80 
45 .4 99.0 190.6 0. 288 0.008 
41 .9 203.0 369.8 9. 201 0. 908 
0.4546 0.9872 0.4278 0. 0067 
<J. 41 36 O.O802 0.4380 0. 0889 
0.01113 
-110.3294 
79.0164 
0 0 9 0 

The formated output is as follows: 



EXPERIHEHTAL RESULTS AMD .CALCULATED QUANT I TIES FOR THE BINARY SYSTEM HE 1 MANE < 1 )-PROPANE < 21 

THE POLYNOMIAL USED IH THE ORIIIOOONAL COLLOCATION PROCEDURE IS UF 1HE TYPE ALFA - 0. BE IA - 0. 

PC-VC-TC-ZC-ACEM 

PC-VC-TC-ZC-ACEH 

OMAL-OHBL-OMAQ-OMBG 

OMAL-OMBL-OMAO-OMBG 

FAK-NY-TAO 

0.011(3 

-110.32060 

79.01640 

NUMBER OF BINARY POINTS 

6.454OOE+02 0.99O00E+02 0.»9066E*O3 0.2BBOOE»0O 0.80000E-02 

O.41900E+02 0.20300E*03 0.369B0E<03 O.2B100E+00 O.BOOOOE-02 

0.45460E+00 O.672OOE-01 0.42760E+O0 0.6670OE-O1 

0.4130OE+0O 0.60200E-01 0.43B00E+00 O.B0900E-O1 

15 

XEXP YEXP PEXP 
0 . 0. 1 .60000 
0 . 03400 0 . ,56000 6 .00000 
e. 08900 0. .76700 13 .60000 
0. .14260 0. .83200 20 .40000 
0. .19700 0. .06100 27 .20000 
0. 24900 0. .60000 34 .00000 
0. .30300 0 .0B3OO 40 ,60000 
0. ,35700 0. .09000 47 .60000 
0. ,41000 0, .89200 54 .40000 
0. ,46400 0. ,69100 61 .20000 
0. .51000 0. ,68900 68 .00000 
0. ,57200 0. .88200 74 .90000 
0. ,63600 • 0 .86900 81 .70000 
0. .71600 0. .64500 BB .50000 
0. .00000 0, , 60000 93 .90000 

256.3999 PS 1. 3000 

AT THE ISOTHERM 256.40 TEMPERATURE IN DEB K I 
ro 
0 1 

VOL 80.6475 83.5070 

FISAT 0.9811 0.9506 FftEESAI 105.0540 1.7255 
CONSISTENCY 1ES1 USING ORTHOGONAL COLLOCATION - NUMBER OF INTERNAL POJHIS 

COLLOCATIOH POINTS 
B. 0.211325 0.706675 1.OOOOOO 

NUHBER OF ITERATIONS IH U 4 



NUHBER OF 1FERA110HS IN 0 3 

HUHBER OF ITERATIONS IN 0 2 

HENRY LAU CONS J AMI BY I AGKAHGIAM EXIRAt'OLAI ION 1I5.79'.H 

HUMBER OF ITEKAIIONS IN 0 3 
HENRY LAU CONS I AN I BY LAGRANGIAN EX I RAP01.A1 JON 115.6550 
NUMBER OF KERATIONS IN G 2 

HENRY LAU CONSTANT BY LAGRANGIAN EXTRAPOLATION 115.6515 

NUHBER OF ITERATIONS IN 0 1 
HENRY LAU CONSTANT BY LAGRANGIAN EXTRAPOLATION 115.6502 
NUHBER OF ITERATIONS IN O 1 

SOLUTION AT THE COLLOCATIOH POINTS 
X 

0 . 
0.3670 
0.7105 
o.eooo 

p 1.0000 
49.6207 
07.4697 
96.2919 

GE/RT 
0 . 
-0.0549 
-0.2B25 
-0.3929 

GOOT 
0 . 
-0.3410 
-1.005B 
-1.3805 

GAMMA1 
1.0000 
0.7011 
0.5542 
0.5122 

GAMMA2 1.0000 
1.0585 
1.6043 
2.0300 

X 
0 . 
0.3678 
0.7105 O.BOOO 

SOLUTIOM Al 

FUGCF1 
1 .0118 
0.8607 
0.7716 
0.7527 

THE DATA 

FUGCF2 
0.9586 
0.4292 
0.2043 
0.1747 

POIHTS 

VHIX 
B3.507B 
74.3160 
75.5323 
79.1824 

VE 
0 . 
-8.1398 
-5.9434 
-2.0371 

DPDX 
112.1372 
95.9141 
80.7967 
76.646 7 

X 
0. 
0.0340 
0.0890 
0.1420 
0.1970 
0.2490 
0.3030 
0.3570 
0.4100 
0.4640 
0.5180 
0.5720 
0.6360 0.7100 0.8000 

P 
1.6000 
6.5340 

14.0569 
21.1404 
20.3433 
34.9933 
41.7407 
40.3274 
54.6357 
60.9037 
67.0109 
72.9574 
79.7968 
88.2296 
96.2919 

GE/RT 
0. 
-0.0025 
-0.0067 
-0.0114 
-0.O17B 
-0.025B 
-0.0369 
-0.0515 
-0.0699 
-0.0935 -0.1226 
-0.1581 
-0.2092 
-0.2908 
•0.3929 

GOOT 
0. 

- 0 . 0 2 1 6 
-0.0590 
-0.0991 
-0.1461 
-0.1967 
-0.2569 
-0.3260 
-0.403B 
-0.4943 
-0.5974 
-0.7143 
-0.B725 
-1.1093 
-1.3885 

GAMMA1 
1.0000 
0.9B14 
0.9517 
0.9224 
0.B907 
0.B592 
0.6246 
0.70B5 
0.7519 
0.7139 
0.6759 
0.6387 
0.5964 
0.5502 
0.5122 

GAMMA2 1.0000 
0.9981 
0.9975 1.0001 
1.0063 1.0161 
1.0314 
1.0532 
1.0030 
1.1246 1.1012 
1.2504 
1,3669 
1.6321 
2.0300 

Yl Y2 
0. 1.0000 
0.9344 0.0656 
0.9370 0.0630 
0.9392 0.0600 

CORR TO GOUT 
0 . 
-0.03 71 -0.0228 
-0.0074 

SUM CORK GE J/MOI.E 
1.0000 0. 
1.0000 -116.9726 1.0000 -602. 
1.0000 -03 7.5371 

Yl Y2 
0. 1.0000 
0.6739 0.3261 
0.0351 0.1649 
0.8933 0.1167 
0.9073 0.0927 
0.9202 0.0798 
0.9205 0.0715 
0.9337 0.0663 
0.936B 0.0632 
0.9385 0.0615 
0.9391 0.0609 
0.93BB 0.0612 
0.9376 0.0624 
0.9370 0.0630 
0.9392 0.0608 

SUM CORK GE J/ 
1 .0000 0 
0 .904 4 -5 36 7 7 
0 .9096 -14 2514 
0 vjvy -24 326 7 
0 .9508 -3 7 07B5 
0 .9695 -54 9935 
0 .9 017 7 -71) 6440 
0 .9900 -109 7522 
1 006 1 146 9/39 
1 .0103 -19? 2540 
1 0109 -761 42 75 
1 .0005 -336 9824 
1 .0031 -445 9023 
0 9 9 9 7 619 9305 
1 0000 •83 7 53 71 



X FUUCF1 FU0CF2 VHIX VE DPDX COHR 10 GOUT 
0 . 1.0110 0.9586 83.5078 0. 112. 13 72 0. 
0.0340 0.9868 0.8797 02.5042 -0. 9063 110. 6373 -0.0040 
0.0890 0.9614 0.7007 80.9270 -2, 3262 100. 2111 -0.0120 
0.1420 0.9390 0.6973 79.4690 -3, 6310 105. 0 731 -0,0183 
0.1970 0.9189 0.6202 78.0355 -4. 90BB 103, 4469 -0.0241 
0.2490 0.9001 0.5548 76.7600 -6. 02 76 101 , ,1530 -0.0290 
0.3030 0.0816 0.4939 75.5643 -7. 0760 90. 7709 -0.0332 
0.3570 0.0641 0.4393 74.5060 -7. 9007 96. 3000 -0.0366 
0.4100 0.0470 0.3913 73.6516 -8. 6035 94. 0500 -O.O3B0 
•.4640 0.0321 0.3476 73.0362 -9. 1444 91. 6607 -0,0390 
0.5180 0.8173 0.3006 72.7900 -9. 2354 09. 2066 -0.0392 
0.5720 0.8034 0.2739 73.1230 -8. 74B7 06. 9045 -0,0361 
0.6360 0.7802 0.2301 74.9201 -6, 7605 04. 0013 -0.0270 
0.7100 0.7700 0.2013 75. 7134 • 5. 7406 80. 4640 -0.0220 
0.0000 0.7527 0.1747 79.1024 -2. 0371 76, 0467 0.00/4 

EALCULA1ED VALUES OF Y1 

X P Y1 Y1FXP DY Y2 •SUMY I'l Al III 
0. 1. 0000 0. 0. 0. 1. .0000 1 . 0000 i.oooo -0. oooo 
0.0340 . 6„ 00.00 ... . . 0.6739 0.5600 0. 1139 0. ,3261 1 . 0000 6.5340 -0. 2660 
0.0090 13, 6000 0.8351 0.7670 0. ,0601 0. ,1649 1 .0000 14.0569 0. 4569 
0.1420 20. 4000 0.0033 0.0320 0. 0513 0. ,1167 1 .0000 21.1404 0. 7404 
0.1970 27. 2000 0.9073 9.B61Q 0. ,0463 0.0927 1 .0000 20.3430 1. 1438 
0.2490 34. 0000 0.9202 0.0000 0, 0402 0. ,0790 1 .0000 34.9933 0. 9933 
0.3030 40. 0000 0.9205 0.8080 0. 0405 0. 0715 1 .0000 41.7407 0. 9407 
0.3570 47. 6000 0.933/ 0.8900 0. 0437 0. ,0663 1 .0000 40.3274 0. 7274 0.4100 54. 4000 0.9360 0.8920 0. 0440 0. 0632 1 .0000 54,6357 0. 235 7 
0.4640 61, 2000 0.9305 0.8910 0. 0475 0. ,0615 1 .0000 60-903 7 -0. 2963 
0.5100 60. 0000 0.9391 0.8090 0. 0504 0. ,0609 1 .0000 67.0109 -0. 9B91 
0.5720 74. 9000 0.9380 0.8820 0. 0560 0. .0612 1 .0000 72.9574 -1, 9426 
0.6360 81. 7000 0.9376' 0.0690 0. 0606 0. ,0624 1 .0000 79.7960 -1. 9032 
0.7100 80. 5000 0.9370 0.8450 0. 0920 0. .0630 1 ,0000 BB.2298 -0, 2702 
0.0000 93. 9000 0,9392 0.6000 0. 1392. 0. ,0600 1 .0000 96.2919 2. 3919 

SUM OF SQUARES OF DELTA Y 0.0700068 

VARIANCE OF DELTA Y 0.0734 ARITHMETIC MEAN OF DELTA Y 0.0645 

CALCULATED EXCLUDING GIVEN END POINTS 

SUM OF SQUARES OF DELTA P 18.0602507 

VARIANCE OF DELTA P 1.2045 ARITHMETIC MEAH OF DELTA P 0.9504 

ARITHMETIC MEAH OF DELTA P/P 0.320403 

CALCULATED 
STOP 
TIME 2.5 SECS 

EXCLUDING GIVEN END POINTS 
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Results of Run # 5 for the 

CH4-C3Hg System at -17°C. 

See Table 1 for the Values of the 

Pertinent Variables Used. 

The formated input is as follows: 

0.0 
0.56 
0.767 
0.832 
0.861 
0 .800 
0.809 0.090 
0.892 
0.091 
0.BB9 0.8B2 
0.969 
0.845 
0.80 

0.008 > 
8.152 

1 2 3 3 
HE THANE(1)-PROPANE < 2) i 
15 111 
1 .8 0.0 6.8 0.034 13.6 0.089 20.4 0.142 27.2 0.197 34.0 0.249 40.9 0.303 47.6 0.357 54.4 0.41 61 .2 0.464 68.0 0.518 74.9 0-572 81 .7 256.40 0.636 98. 5 256.40 0.710 93,9 256.40 0.90 45. 4 99.0 190.6 i 
41 . 9 203.0 369.8 i 
0.00619 
-119.3206 
79.0164 
0.01 
0 0 0 G 

The formated output is as follows: 



EXPERIMENTAL RESULTS AND CALCULATED QUANT I TIES FOR THE BINARY SYSTEM HI IHAHE< t )-PROt'ANF < 2 > 

THE POLYNOMIAL USED IN THE ORTHOOONAL COLLOCATION PROCEDURE IS OF THE TYPE ALFA » 0. BETA - 0. 

PC-VC-TC-ZC-ACEN G.45400E+G2 G.990OGE+O2 G.19G6OE+03 O.2BBG0E»-00 0.BG0O0E-02 

PC-VC-TC-ZC-ACEN G.419GGE+G2 G.203G0E+G3 G.369B0E+03 G.2B1G0E+0O G.1520OEU»0 

FAK-NY-TAU-DEL 
O.006TO 

-110.32060 
79.01640 
0.01000 

NUMBER OF BINARY POINTS 15 AT THE ISOTHERM 256.40 TEMPERA IURE IN DEO K 

XEXP YEXP PEXP 
0. 0. 1. 80000 
0. 03400 G. 56000 6. 80000 
0. 08900 0. 76700 13. 60000 
0. 14200 0. 83200 20. 40000 
0. 19700 0. 86100 27. 20000 
0. 24900 0. 88000 34. 00000 
0. 30300 0. 88800 40. 80000 
0. .35700 0. B9000 47. 60000 
0. 41000 0. 89200 54. 40000 
0. .46400 0. B9100 61. 20000 
0. .51000 0. BB900 6B. 00000 
0. ,57200 G. B82O0 74. 90000 
0. .63600 0. B6900 Bt. 70000 
0. .71 BOO 0. 84500 B8. 50000 
0. .BOOO0 0. 80000 93. 90000 

T 256.3999 PS 1.8000 VOL B3.5936 81.5029 

FISAT 0.9774 0.9555 FREESAT 104.5793 1.7200 
CONSISTENCY TEST USING ORTHOGONAL COLLOCATION - NUMBER OF INTERNAL POINTS 3 

COLLOCATION POINTS 
0. 0.112702 0.500000 0.887298 1.000000 

NUMBER OF ITERATIONS IN G 4 
NUHBER OF ITERATIONS IH 0 4 



NUMBER OF IIEKATIONS IN U 2 

HENRY LAW CONSIAHT BY I AGFlAMUlAH EXIRAPOI Al ION 120.6/613 

NUMBER UF DERATIONS IH G 3 

HENRY LAW CUNSIANI BY LAGRANG1 AN EXIRAPOI AllUN I2O.4042 

HUHhfcH OF IILRAI1UNS 111 li 2 

HENRY LAW CONSTANT BY LAQRAMGIAN EXTRAPOLATION 120.4/00 

NUMBER OF DERATIONS IN C I 
HENRY LAW CONSTANT BY LAGRANGIAN EXTRAPOLATION 120.4550 

NUMBER OF ITERAriUHS IN 0 4 

SOLUTION AT THE COLLOCATION POINTS 

X 
0 . 
0.2606 
6.5657 
0.7536 
0.8000 

X 
0 . 
0.26B6 
0.5657 
0.7536 O.BOOO 

P I.8000 
37.45/0 
72.2703 
91.7727 
96.2919 

FUGCF1 
1,0119 
0.8769 
0.7802 
0.7347 
0.7246 

GE/RT 
0 . 

-0.0327 
-0.1920 
-0.3973 
-0.4650 

FUGCF2 
0.9555 
O.SOBO 
0.2535 
0.1694 
0.1562 

GOOT 
0 . 

-0.2727 
-0.8475 
-1.3717 
-4.5508 

VMIX 
81.5029 
75,1077 
72.4361 
76.2819 
7B.2168 

0AI1MAI 1,0000 0,8120 
0,5818 
0.4823 
0.4623 

VC 
0 . 

-6.8766 
-10.2194 
-6.7964 
-4.9586 

GAMMA2 1.0000 
1.0323 
1.3013 
1.0537 
2.1406 

DPDX 
112.1372 
100.2898 
B7.1031 
78.8948 
76.8467 

SOLUTION AT IIIE DATA POIHTS 

X 
0 . 
0.0340 
0.0890 
0.4420 
0.1970 
0.2490 
0-3030 
0.3570 
0.4100 
0.4640 
0.51B0 
0.5720 
0.6360 
0.7100 0.OOOO 

P 1 .8000 
6.5340 

14.0569 
21.14B4 
2B.343B 
34.9933 
41.7407 
48.3274 
54.6357 
60.9037 
67.0109 
72.9574 
79.7968 
8B.229B 
96.2919 

GE/RT 
0 . 0.0002 

-0.0019 
-0.0070 
-0.0157 
-0.0274 
-0.0434 
-0.0637 
-0,0003 -0.1106 
-0.154B 
-0,1974 
-0.2572 
-0.3504 
-0,4650 

GOOT 
0 , 
-0.0031 
-0.0339 
-0.0970 
-0.1599 
-0.2403 
-0.3319 
-0.4291 
-0.5204 
-0.6336 
-0.7439 -0.8617 
-1.0163 
-1.2514 
-1.5500 

GAMMAI 1.0000 
1 . 0 0 2 1 
0.9790 
0.9370 
O.003y 
0.0314 
0.7 709 
0.7304 
0.6072 
0.6475 
0.6114 
0.5700 
0,5409 
0.4992 
0.4623 

GAMMAS 1.0000 1.0002 
1.0000 
1.0026 1.0100 
1.0251 
1.0475 
1.0782 
1.1173 
1.1676 
1.230B 
1 .3119 
1.4438 
1.6923 
2.1406 

Y1 Y2 SUH t'DRR GE .(/HOLE 
0. 1 . 0000 1.0000 0 . 
0 . .9216 0.0703 0.9999 -69. 7.993 
0. .9303 0 . 0697 1.0000 409. 3806 
0, .9204 0 . 0716 1.0000 -047. 0510 
0. .9294 0 . 0706 1.0000 -991. 3016 

CORR TO DUOT 
v. 

-0. ,0320 
-0. ,0425 
-0. .0255 
- 0 . .0101 

Y1 Y2 SUH CURB OE .l/HIII E 
0. 1 . 0000 1.0000 0. 
0, .6067 0 . 3133 0.9480 0.500/ 

-0. .0437 0 . ,1563 0.9/39 -4. ,0014 
0. .0002 0. 1118 0.9715 -14. ,0060 
0. . 9009 0 . 0911 0.9991 -33. 4 451 
0. .9191 0 . 0009 1.0002 -5B. 34 72 
0, ,9250 0 . 0750 0.9909 -92. 4669 
0. . 9283 0. 0717 0.9974 -135. B246 
0 . ,9300 0 . 0700 0.9969 1BD. 7043 
0 . .9307 0 . 0693 0.9976 -252 . 0059 
0. .9307 0. 0693 0.9909 -329. 9.160 
0. .9302 0, 0698 1.0000 -420. 75/6 
0. .9290 0 . 0710 0.9999 -540. 2263 
0. .9205 0 . 0715 1.0006 - 74 7 . 02 49 
0. .9294 0 . 0706 1.0000 -991 . 3016 



X FUfiCFI FUCCF2 VMIX VE DPDX CORR 10 ooor 
0. 1. .0119 0. 9555 01 .5029 0. 112. .1372 0. 
0. 0340 0. ,9032 0. ,0720 00 .6193 -0, ,954 7 110, ,6373 -0, .0050 
0. .0090 0. .9541 0. 7677 79 .2315 ,4574 100. .2111 -0. .0126 
0. .1420 0. .9294 0. .6001 77 .9509 -J. ,8409 105, . B731 -0. ,0194 
9. ,1970 0. .9056 0. .5995 76 .6921 -5, ,2226 103, ,4469 -0 ,0257 
0. ,2490 0. ,0045 0. 5316 75 .5019 -6. 4415 101 . , 1530 -0. ,0,(10 
0. .3030 0 . 0639 0. ,4609 74 . 5306 -7, ,605B 9B. , 7 709 -0, ,0357 
0. . 3570 0. .0445 0. ,4132 73 .6105 -8, , 63BB 96. , 3008 -0. . 0396 
0. ,4106 0. .0266 0. 3640 72 .0741 -9, 4060 94. . 0500 -0. ,0424 
0. .4640 0. ,0095 0. 3213 72 . 3549 -10. 1 181 91 . ,660 7 -0. 0441 
<i. ,5100 0. .7935 0. 2032 72 . 1714 -10. ,4144 09. .2066 -0. ,0442 
0. .5/20 0 . 77115 0. 2490 72 .5131 -10. ,1115/ 06. . 90 45 -0 , . 0 4 21 
0. .6360 0. . 7621 0. 2160 74 .1970 -8. 6340 B4. ,01)13 -0, ,0345 
0 .7100 0 . 742 7 0, ,1016 74 .9000 -8, ,0240 BO. ,4640 -0 .030/ 

CONSISIEMCY TEST DY REHEATED 
COHSTAHT-
CONSTANT-
CONSTANT-
COMSTAHT-
CONSTAHT-
CONJTAMT-
COHSTAMT-
COHSTAMT-
COIISTAHT» 
COMSTAMT= 
COIWTAMR-
COMSTAM r -
COHSTANT-

HALVIMB UK IRAPZOIDAL 
0 . 3 0 2 4 7 4 D - 1 2 
0 . 3 0 9 2 3 1 D - H 
D.121691D-1© 
0.2962600-10 
0 . 5 9 3 1 9 9 D - 1 0 
0 . 1 0 2 5 6 4 D - 0 9 
0 . 1 5 9 7 0 6 D - 0 9 
0 . 2 3 4 9 6 9 D - 0 9 
0 . 3 3 1 0 0 6 D - 0 9 
0 . 4 5 4 2 1 9 D - 0 9 
0 . 6 5 1 6 9 7 D - 0 9 
O.1OO749D-O0 
0 .15BB15D-0B 

RULE Willi RUMPERO INILI.HAIIOH 

I ro 
CTl I 

CALCULATED VALUES OF YL 

X P Yl 
0. 1 . ,8000 0. 
0. 0340 6. ,8000 0. 6867 
0. ,0890 13. ,6000 0. ,8437 
0. ,1420 20. .4000 0. ,8BB2 
0. .1970 27. .2000 0. ,90B9 
0. ,2490 34. .0000 0. ,9191 
0. ,3030 40. , 8000 0. 9250 
0. ,3570 47. ,6000 0. 9283 
0. 4100 54. ,4000 0. 9300 
0. 4640 61. 2000 0. 9307 
0. 5180 68. 0000 0. 9307 
0. 5720 74. 9000 0. 9302 
0. 6360 01 . ,7000 0. 9290 
0. 71 BO 00. ,5000 0. 92B5 
0. 8000 93. ,9000 0. 9294 

Y1EXP DY Y2 
0. 0. 1. 0000 
0 .5600 0. ,1267 0. 3133 
0 .7670 0. .0767 0. 1563 
0 .B320 0. .0562 0. ,1116 
0 .8610 0 .04/9 0. .0911 
0 . BO00 0. .0391 0. ,0B09 
0 .13880 0. .0370 0 . 0750 
0 .6900 0. ,0303 0, 0717 
0 . 0920 0. ,0300 0 . 0700 
0. .0910 0. 0397 0. 0693 
0, , BB96 0 , ,0417 0 . 0693 
0. .8020 0 . 0402 0 . 0696 
0 , B690 0 . ,0600 0. 0710 
0 .8450 0. ,0635 0. 0715 
0 .0000 0 . ,1294 0 . 0706 

SUMY PCAL DP 
1 .0000 1 .6000 -0, .0000 
1 .0000 6 .5340 -0 . 2660 
1 .0000 14 .0569 0 .4569 
1 . 0000 21 . 1 484 0 .74B4 
1 .0000 26 • 343B 1 .1438 
1 .0000 34 .9933 0. .9933 
1 .0000 - 41 . 7407 0 .940/ 
1 . 0000 40 .3274 0 .72 74 
1 .0000 54 .6357 0. , 235 7 
1 .0000 60, .9037 -0, .2963 
1 .0000 6/ .0109 -0, ,9091 
1 .0000 72. .9574 -1. ,9426 
1 .0000 79 .7968 -1, . 9032 
1 .0000 68. . 2296 -0. ,2702 
1 .0000 96 .2919 2 • r39!9 



SUM OF SQUARES OF DELTA Y 0.0161260 
VARIANCE OF DELTA Y 0.0713 ARITHMETIC HEAN OF DELTA Y 0.0616 

CALCULATED EXCLUDING GIVEN END POINTS I 
ro 

SUM OF SQUARES OF DELTA P 10.0602577 ^ 

VARIANCE OF DELTA P 1.2045 ARITHMETIC MEAN OF DELIA P 0.9504 ' 

ARITHMETIC MEAN OF DELTA P/P 0.160241 
CALCULAIED EXCLUDING GIVEH END POINTS 
STOP 
TIHE 3.1 SECS 
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Results of Run # 6 for the 

CH4-C3H8 System at -17°C. 

See Table 1 for the Values of the 

Pertinent Variables Used. 

The formated input is as follows: 

1 2 4 4 
METHANE(1>-PR0PANE<2> 1 
15 111 
1.0 0.0 0.0 
6.0 0.034 0.56 
13.6 0.089 0.767 
20.4 0.142 0.032 
27,2 0.197 0.861 
34,0 0.249 O.B80 
40,0 0.303 0.000 
47,6 0.357 O.B90 
54,4 0.41 O.09C 
61.2 0.464 0.091 
68.0 0.518 0.009 
74.9 0.572 0.882 
81 .7 256, 40 0.636 0.069 
88-5 256. 40 0.710 0.845 93,9 256. 40 0.00 o.eo 
45.4 99,0 190. 6 0. .200 0. 000 
41 .9 293.0 369. 8 0. .281 0. 152 
0.00618 
- H O , 3206 
79.0164 
0.01 
0 9 9 0 

The formated output is as follows: 



EXPERIMENTAL RESULTS AND CALCULATED QUANTITIES FOR THE BINARY SYSTEH ME THANE<1 > PHOI ANF( 

THE POLYNOMIAL USED IN THE OR1HOQONAL COLLOCATION PROCEDURE IS OF I HE TYPE ALFA BT IA -

PC-VC-TC-ZC-ACEN 

PC-VC-IC-ZC-ACEN 

FAK-NY-TAU-DEL 

0.006T8 
-110.32060 

79 . 0 1 640 

0.01000 

NUHBER OF BINARY POINTS 

0.45400E+02 0.990OOE+O2 0.1906OE1O3 0.2BOOOE«OO 0.8000PE-02 

0.41900E+02 O.2O3OOEt03 0.36?B0E«03 0.20100E»00 O.I52O0E^OO 

15 

XEXP YEXP PEXP 
0. 0. 1 .80000 
0. 03400 0. 56000 6. .80000 
0. 00900 0. 76700 13 .60000 
0. 1 4200 0. 83200 20 .40000 
0. 19700 0. 86100 27 .20000 
0. 24900 0. 88000 34 .00000 
0. 30300 0. 88600 40 .80000 
0. 35700 0. 09000 47 .60000 
0. 41000 0. 89200 54 .40000 
0. 46400 0. 89100 61 .20000 
0. 51000 0. 8B900 68 .00000 
0. 57200 0-88200 74 .90000 
0. 63600 0. 86900 81 .70000 
0. 71000 0. 84500 88 .50000 
0. 80000 0. 80000 93 .90000 

T 256.3999 PS 1.8000 

A1 THE ISOTHERH 256.40 TEHPERATURE IN DEO h 

VOL 83.5936 81.5029 

FISAI 0.9774 0.9555 FKFESAT 104-57'JJ 1. 
CONSISTENCY TEST USING OKIHOUUNAL COLLOCATION -

7200 
NL'MBFR Of INTERNAL I'll THIS 

COLLOCATION POINTS 
0. 0.069432 0.330009 0.669991 0.930568 I.OOOOOO 

NUMBER OF ITERATIONS IN G 10 

IltRAIION NUMBER GKLAIbR I HAN 100 



ITEkAl ION NUMbER GRLA1ER I HAH 10G 
HENRY LAW I'UNSIANl BY LAURAHGI AM LX IRAPOI Al ll)H 125.3302 

NUMBLK UK IlfcRAIlUHS IH 0 2/ 

HENRY LAU COilSlAMI BY I AGHAHUIAH EXIHAI'OLAI iUM 12'..4000 

NUMBER llF 1IEKAIIUHS 111 li 5 

lit NX Y LAW CONS IAIII L<Y LAGRANGIAN tXlRAPOLAI IOH 

NUMBER OK HERAT IONS III G 7 

HEMRY LAW RONS I AH f BY LAGRAHGIAIl EXTRAPOLATION 123.9927 

HUHbEfi OF IIERA1 10145 111 G 4 

HENRY LAU CONSTANT BY l.AGKAHUI AM EXlHAPm.AIIOII 125.5156 

NUMBER OF ITERATIONS 111 li 2 

IILNRY LAW CONSTANT BY LAGKANGIAH EXTRAPUI.AI ION 125.2429 

NUMBER UK HERAT IONS IH G 2 

IIEHRY LAW CONS I ANT BY l.AGRAHGIAII EKTKAPOLAI11311 124.1647 

NUI1HLR UF IlERAriOHS IH 0 2 

S0LUI1UN AT THE COLI.OCAIION POINTS 

X 
0 . 0.2100 
0.4596 
0.6540 
0.7717 0.0000 

P 1.0000 
30.1229 
60.3957 
B1 .7654 
93.5541 
96.2919 

GE'RT 
0 .0100 -0.0122 
-0.1205 
-0.2927 
-0.4433 
-0.4069 

GOO I 
0 . 

-0.2203 
-0.669 7 -1.112B 
-1.4065 
-1.5997 

GAMMA1 1.0101 
0.0429 
0.6322 
0.5144 
0.4595 
0.4179 

GAHHA'J 1.0101 
1.0306 1.1010 
1.5116 
1.9077 
2.1700 

X 
0 . 0.2100 
0.4596 
0.6540 
0.771? 
O.UOOO 

KU0CF1 1.0126 
0.9000 0.0110 
0.75 70 
0.7314 
0.7253 

FUGCK2 
0.9555 
0.5000 
0.3239 0.2060 
0 .1621 
0.1542 

VHIX 
01 .5029 
76.3093 
72.3U66 
74.0509 
77.2143 
70.2160 

Vh 
0 . 

-5.5544 
-10.0/71 
-0.0130 
-5.9020 
-4.9506 

DPDX 
112.13/2 
102.0302 
91.0641 
03.2509 
70.0939 
76.0467 

Yl Y2 0. 1.0101 
0.9107 0,0094 
0.9295 0,0705 
0.9272 0.0720 
0.9262 0.0739 
0.9266 0.0734 

SUM CORR GE J'MOLE 
1.0101 21.3101 
1,0000 -26.0505 
1.0000 -256-0225 
1.0000 —623-9194 
1.0000 -944-9622 
1.0000-1037.9207 

CORR TO unoi 
0. 
-0.0271 
-0.0440 
-0.0349 
-0.0219 -O.Olbl 



illl.Ul IOH Ai lilt. DA IA POINIS 

X p GE-'RI GOUT GAHHA1 GAHHA2 Yl Y2 
0. 1. 0000 0. 0100 0. 1.0101 1.0101 0. 1. .0000 
0.0340 6. 5340 0. 0000 -0.0216 0.9920 1.0006 0.6093 0. ,310/ 
O.OB90 14. 0569 0. 0045 -O.O707 0.9520 1.0097 0.042B 0. ,15/2 
0.1420 21 , ,1404 -0. 0007 -0.1321 0.9072 1.0154 0.8066 0. . 1 134 
0,1970 20. 3430 -0. 0094 -0.2077 0.0559 1.0268 0.9073 0. .0927 
0,2490 34. 9933 -0. 0216 -0.2000 0.U060 1.0433 0.3729 0. .6271 
0.3030 •:i. 7407 -0. 0391 -0.37B4 0.7573 1.0669 0.4571 0. ,5429 
0.3570 40. 32 74 -0. 0619 -0.4745 0.7107 1 .09/9 0.6706 0. ,3294 
0.4100 54. 6357 -0. 0096 -0.5733 0.6605 1.1366 0.92B9 0. ,0711 
0.4640 60. 9037 -0. 1235 -0.6705 0.6291 1.1064 0.9296 0. ,0/04 
0.51 BO 67. 0109 -0. 1632 -0.7093 0.5931 1.2495 0.9295 0. ,0705 
0.5720 72. 9574 -0. 2092 -0.9078 0.5601 1.3312 0.9200 0. ,0712 
0.6360 /9. /96B "0. 2722 -1.0630 0.523B 1.4651 0.92/6 0. ,0/24 
0.7100 00. 2'JVb -0. 3606 -1.2906 O.403B 1.7109 0.92/0 0. ,0730 
tt.UOUO 96. 2919 4869 -1 .5997 0.44/9 2.1700 0.92/9 0. ,0721 

X HIUI.T 1 IULil>2 VMiX VE DPDX CIIRR III GOO I 
0. 1 . .01 19 0. vsss HI.5029 0. 112.1 3/2 0 . 
.. v>.A 40 0 .VSI.51 0. Ui>. 6 l''J • 0.95 4/ 1 10.63/3 0.0050 
0. • 1 .01 19 0. . V555 81.5029 0, 112.13/2 0. 
0.0340 0 .9031 0, .0722 80.6193 -0,9547 110.6373 -0.0050 
O.OB90 0 .9541 0 .76 75 79.2315 -2.4574 108.2111 -0.0126 
0.1420 0 .9295 0 .6796 77.9509 -3.0409 105.8731 -0.0194 
0.1970 0 .9057 0. • 59BB 76.6921 -5.2226 103.4469 -0.0257 
0.2490 2 .7163 0. .0867 75.5819 -6.4415 101.1530 -0.0310 
0,3030 2 .1502 0. . 07B5 74.5306 -7.605B 90.7709 -0.0357 
0,3570 1 .3502 0 .1143 73.6105 -8.6308 96.38BB -0.0396 
0.4100 0 .0267 0 .3641 72.B741 -9.4060 94.0508 -0.0424 
0.4640 0, .0096 0. .3205 72.3549 -10.1101 91.66B7 -0.0441 
0.5100 0 .7937 0 .2823 72.1714 -10.4144 09.2B66 -0.0442 
0,5720 0, .7788 0. .2488 72.5131 -10.1857 86.9045 -0.0421 
0.6360 0. .7624 0. .2149 74.1970 -B.634B B4.0013 -0.0345 
0,71 BO 0. . 7430 0. .1805 74.9B00 -B.O240 BO.4640 -0.0307 
0.0000 0 . 7250 0. .1551 70.216B .-4.9586 76.8467 -0.0181 

SDH L'UhH 1.0101 0.9630 
0.9779 
0.9911 
0.9909 
0.0046 
0.0259 
0.039ft -131 
1.0006 -190 
1.0000 -263 
0.9999 -347 
t.0000 -445 
0.9993 1.0006 

OE 21. 
16, 
9. 

-1. 
-20 . 
-46. 
-03. 

500. 
705 

I.0000-103/. 

J/HULE 
3101 
9020 
5454 
4947 
0110 
1010 
301b 
9060 
9033 
2114 
97BB 
0/40 
2664 
0569 
920/ 

CONSISTENCY TEST BY REPEATED HALVING OF TRAPZ01DAL RULE Willi ROMBERG INTEGRA!IIJN 
CONSTANT- 0 . 209162D -11 
C0HS1 AHT- 0. 840364D -11 
CONST AH I- 0. 222156D -10 
CONS 1 AN 1- 0 . 444B/3D -10 
CONSTANT* 0 . 792339D -10 
CONSTANT" 0. 127675D -09 
CONSTANT- 0 . 190337P -09 
CONSTAN T- 0 . 2719361) -09 
CONST ANT- 0. 375201D -09 
CONSTANT = 0. 506576D -09 
CONSTAN1- 0. 71500BD -09 
CONSTAN 1- 0 . 10B665D -08 
CONSTAIO- 0 . 169106D -08 



CALCULAIED VALUES OF Y1 

X P Y1 Y1EXP DY Y2 SUMY PCAL DP 
0. 1. 0000 0. 0. 0. 1. ,0000 1.0000 1,0000 -9.0000 
0. 0340 6. 0000 0. 6093 0.5600 0. 1 293 0. 3107 1.0000 6.5340 - 0.2660 
0. 0090 13. 6000 0. 0428 0.7670 0. 0750 0. 1572 1.0000 14.0569 0.4569 
0. 1420 20. 4000 0. 0066 0.0320 0. ,0546 0. ,1134 1.0000 21.1404 0.7484 
0. 1770 27. 2000 0. 9073 0.8610 0. 0463 0. 0927 1.0000 20.3430 1.1430 
0. 2490 34. 0000 0. 3729 0.0000 -0. ,5071 0. ,6271 1.0000 34.9933 0.9933 
0. 3030 40. 0000 0. 4571 0.0000 -0. ,4309 0. .5429 1.0000 41.7407 0.9407 
0: 3570 47. 6000 0. 6706 0.0900 -0. 2194 0. ,3294 1.0000 40.3274 0.7274 
0. 4100 54. 4000 0. 92B9 0.B92O 0. ,0369 0. ,0711 1,0000 54.6357 0.2357 
0. 4640 61. 2000 0. 9296 0,0910 0, .0386 0, ,0704 1.0000 7.0.903 7 - 0.2963 
0. 5100 60. 0000 0. 9295 0.0090 0. ,0405 0. ,0705 1.0000 67.0109 -0.9891 
0. 5720 74. 9000 0. 928B 0.0020 0. 0460 . 0. 0712 1.0000 72.9574 -1 .9426 
0. 6360 01. 7000 0. 9276 0.0690 0. 05136 0. 0724 1.0000 79.7968 ~1.9032 
0. 7100 08. 5000 0. 9270 0.0450 0. ,0820 0. , 0730 1 .0000 00.2290 • 0.2702 
0. 6000 ?3. 9000 0. 9279 0.0000 0, ,1279 0. ,0721 1.0000 96.2919 2.3919 

SUH UF SQUARES OF DELTA Y 0.5517500 

VARIANCE OF DELTA Y 0.2060 ARITHMETIC HEAH OF PCI IA Y 0.1353 

CALCULAIED EXCLUDING UIVEN END POIHIS 

SUM UF SQUARES OF DELTA P 10.0602577 

VARIANCE OF DELTA P 1.2045 ARIIHHL1IC MEAN OF DLL TA P 0.9504 

ARI1HMEIIC MEAN OF I'EL IA l>/p 0.106020 

CALCULAIED EXCLUDING GIVEN END POIHIS 
STOP 
TIML 4.7 SECS 


