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ABSTRACT

In this paper a hybrid, finite element - boundary element method which can be used to
solve for particle advection-diffusion in infinite domains with variable advective fields is
presented. In previous work either boundary element, finite element, or difference
methods have been used to solve for particle motion in advective-diffusive domains. These
methods have a number of limitations. Due to the complexity of computing spatially
dependent Green's functions, the boundary element method is limited to domains
containing only constant advective fields, and due to their inherent formulation, finite
element and finite difference methods are limited to only domains of finite spatial extent.
Thus, finite element and finite difference methods are limited to finite space problems for
which the boundary element method is not, and the boundary element method is limited to
constant advection field problems for which finite element and finite difference methods
are not. In this paper it is proposed to split a domain into two sub-domains, and for each of
these sub domains, apply the appropriate solution method; thereby, producing a method
for the total infinite space, variable advective field domain.
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Notation

®; - concentration of a species i

?/ - mass-averaged velocity of the
medium

o - diffusivity of the medium

p - average density of the medium

p; - density of species i in the medium

.9
Vi - particle velocity of the species i
I" - surface of control volume

7 - normal vector
W - bases function

Qrpy - interior domain where FEM is

applicable

Q BEM - €Xterior domain where BEM is

applicable

I';, - surface of obstacles

T',,. - surface shared by Qrr;, and

QBEM

N,, - number of nodes on I';,

N,, -numberof nodesonT',,,

th .
¢i,- -] 0; value at nodes in Qrp,,
®;, - vector of ¢; valueson T';,

®,,, - vector of ¢; valuesonI",,

a@ln . .
gl vector of normal derivatives of
¢i on I_‘in
aq)out . .
3 - vector of normal derivatives of
n
q)i on Iﬁout

A,B,C - FEM matrices

G - Green’s function

7o and 7 - points in Qppy,
M,D,G - BEM matrices

Yy - velocity potential

ul - velocity of wind at infinity
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1. INTRODUCTION
Numerical methods are used to analyze the advection and diffusion of particles in complex
domains. Although a number of numerical methods for advection-diffusion analysis pres-
ently exist, most are applicable to problems with domains of infinite spatial extent and
constant advective fields or to problems with domains of finite spatial extent and variable
advective fields, but few are applicable to problems with domain of both infinite spatial
extent and variable advective fields. In this paper, a method will be presented which can be
used to solve for a sub set of advective-diffusion problems with infinite spatial domains

and variable advective fields.

Although much has been written on the numerical solution of advection-diffusion prob-
lems, the infinite space problem with non constant advective fields is still immature. Qiu et
al [1] used a Boundary Element Method (BEM) for solving an infinite space advection-
diffusion problem with very high Peclet number. However, in their analysis, they used the
Green’s function associated with a constant advective field; therefore, their analysis was
only valid for problems with constant field characteristics. Similar in form to advection-
diffusion, convection-diffusion problems have been studied extensively in the thermal sci-
ences. Li and Evans [2] used an exponential variable transformation to construct a varia-
tional principle which lead to a symmetric banded finite element stiffness matrix. As with
Qiu et al, they assumed the convective field was constant; therefore their solution is lim-
ited. Moreover, since they use a Finite Element Method (FEM), they were limited to finite
spatial domains. Taigbenu and Liggett [3] used the non convective Green’s function in an
integral approach to model convective domains. This required a domain integration which

when discretized leads to fully dense large domain matrices. Their method could model




convection-diffusion with non constant convective fields; however, it was valid only for

domains of finite spatial extent.

Liggett [4] gives a very good discussion of the applicability of the BEM and the extent to
which it can be used for advection-diffusion problems. The main points discussed
included the fact that the BEM, when it can be applied, is much easier to use than either
finite differences or finite elements. The method is inexpensive in terms of human effort
(set-up time) and computer run-time. Another main point was that the BEM can handle
free surfaces more easily than domain methods; however, it was noted that finite element

and finite difference methods can be applied to a larger set of applications.

In conclusion, while problems with either finite domains with variable advective fields or
infinite domains with constant advective fields have been studied extensively, problems
with infinite space domains and variable advective fields have been relatively untouched.
In the following sections, we present a method which allows for the modeling of particle
motion in infinite space domains with variable advective fields produced by complex
obstacle boundaries. In this presentation, it is assumed that the total domain can be parti-
tioned into two sub domains: one sub domain is infinite and contains a constant advective
field and the other sub domain is finite and contains a variable advective field. The sub
domain with the variable advective fields is modeled using the FEM, and the sub domain

with constant advective fields is modeled using the BEM.




2. DERIVATION OF EQUATION OF MOTibN
In this section we derive the differential equation of motion for particle advection and dif-
fusion in an incompressible medium. This derivation is obtained by using Fick's Law of
diffusion and conservation of mass. In later sections, this equation of motion will be

approximated using a FEM and BEM.

net flux of species i .2
through the surface = “j” - p;Vidl'
of Q T

control volume

accumulation of _ a_p_g 4o
| species i in Q o ot

surface of
— control volume T

Figure 1. Mass conservation of species i through the control volume €2

Consider the control volume in Figure 1. A fluid medium carries a distribution of diffusive

particle species though this volume. Let ¢; be the concentration of a species i in the

.9
medium, V be the mass-averaged velocity of the medium, o be the diffusivity of the

medium, p be the average density of the medium, and p; be the density of the species i in

the medium. From Fick’s Law of diffusion, the particle velocity of the species i, ‘75 , is the




. 2 . .
sum of two components--the advection component, V', and the diffusion component,

-%qu),. [5]. This can be stated analytically as

i

V; = 3—§0¢V¢i (1)

i
Notice that if the species concentration, ¢,, is uniform, then the species simply moves at

>
the mass averaged velocity, V. On the other hand, if ¢; is not uniform, then the species

. . 2 ; L2 2. , crrn ge
has a velocity relative to V where the relative velocity, Vi— V, is in the "downhill” direc-

tion of the concentration field.

A differential advection-diffusion equation of motion for ¢, can be determine by using (1)

and by imposing mass conservation. Assuming no internal particle production, from the

conservation of mass,

accumulation of  _ met flux of species i through
species { in £ the surface of Q.

In analytical terms, the accumulation of species i in  is

oD.

Pii0 3)

ot
Q

where p; = ¢;p. Moreover, letting I' be the surface of Q and 7 the outward unit normal

vector, then the net flux though T is given by

> >
._jﬁ cp;Vidll = -—j.V ~(p;Vi)dQ. 4
r Q

Combining (4) and (1), and noting that V - ‘_} = 0 for an incompressible medium,

> >
—J;‘%.inidI‘ = —j(V-Vpi—pocV?'q)i)dQ (5)
r Q




Combining (2), (3), and (5) gives

%‘;_i = V- Vo, +av3, ©)

which is the governing partial differential equation of motion for incompressible advec-

tion-diffusion.

- >
Notice that if V' were a variable, (6) would be a non-linear equation. However, if V is a

known quantity then (6) reduces to a linear problem for ¢,. Therefore, in this paper, to

avoid the complexity of non-linear analysis, the solution for ¢, will be decomposed into

. P . .
two steps. In the first step, the mean wind velocity, V, is calculated assuming potential

%
flow (this does not require any knowledge of ¢, ), and in the second step, the solution V is

substituted into (6) and ¢, is calculated. Since calculation of the first step is usually

straight forward, the rest of this paper will be focused toward the calculation of the second

step.

In general, (6) cannot be solved for in closed form; therefore, numerical methods must be
used. To solve (6) using a FEM or BEM, it must be placed into a weak formulation. A

steady state weak formulation of (6) for a trial function W is

[W(av?,-V-Vo)de = 0. 7
Q

In the following section, a FEM and BEM approximation will be formulated using (7).




3. DISCRETIZATION OF THE EQUATION OF MOTION

In this section the equation of motion will be discretized using a FEM and BEM. In many

problems, obstacles reside in a bounded, finite domain of limited extent, and at distances

removed from these obstacles, the mean velocity, 1—}, is practically constant. As will be
shown, a BEM can be used to model particle motion at locations removed from these
obstacles, and a FEM can be used to model particle motion at locations in the vicinity of
these obstacles. In the following subsections, a FEM and BEM are used to produce
approximations to a weak form of the equation of motion (equation 7). These approxima-
tions are valid for limited sub domains. To model the total domain, the two approxima-

tions are then coupled at their domain interfaces.

3.1 A FEM approximation of the equation of motion

Consider the simple domain shown in Figure 2.

Figure 2. A schematic of a hybrid FEM/BEM domain




In this domain Qyp,, is an interior, finite sub domain with a variable advective field that

can be modeled by using FEM, and Qg is an exterior, infinite sub domain with a con-

stant advective field that can be modeled by using BEM. Let N denote the number of
nodes in Qrpp» <I>=(¢i1, ...(piN)T be a vector containing the values of ¢; at node loca-
tions, I';, denote the surface of the obstacles in Qgg,,, and I, denote the exterior sur-

face that bounds Qpz,,. Let N;, be the number of nodes on the inner surface, T';,, and

in?

N,,, be the number of nodes on the outer surface, I',,. Let ®; be the vector of nodal

od,
@ ., be the vector of nodal values of ¢p,on I" —-;—m be the vector

out? a

valuesof ¢,on I',,, @,

out
and “

of normal derivatives of ¢,on T, , 5,

be the vector of normal derivatives of ¢;on

r

out”

a®0ut
on

oD,
,and —aiz—"' can be obtained by a Galerkin approach. Replac-

A relation between P,

ing Win (7) with a finite element basis function w ., where j=1,....N, we obtain

js

[ (@wV?4,-w,;V - V0,)dQpgy = 0. ®)

QFEM

Applying the first form of Green's theorem to the first term of (8) gives

o0
- [ (Vo Vw)dQppy + (ocwj;i)dl“in+
Qi T, "

n

f (ocwjgi:li)dl“in— [ w,V-V6)dQpgy = 0 ©)
T

out FEM




Letting

N
0= D 0w, (10)
j=1
taking the summation outside the integrals and performing the resulting integrations for

each j, one arrives at a matrix equation of the form

AdD Ba——q)"”’ Caq)"" =0 11
*(an)“‘(‘aﬂ-' (5

Equation 11 is a FEM formulation for modeling steady state advection and diffusion in the

bounded domain, Q.. This formulation is not limited to a constant V field since A is a

function of X_} , but is limited to finite space domains and small Peclet numbers. Since high
wind velocities are not of concem in this paper, the limitation due to the Peclet number is
not of relevance; however, the limitation due to the infinite spatial domain is of relevance
and is overcome by coupling this solution to a BEM formulation. In the next subsections,

this formulation and its coupling to equation 11 will be discussed.

3.2. A BEM approximation of the equation of motion

The steady state equation of motion can also be expressed in integral equation form, and
from this form, a BEM can be used to produce a discrete approximation. The integral rep-
resentation is derived from (7) and the Green’s function, G. For constant advective fields,
this Green’s function can be easily computed; however, for variable advection, calculation
of the Green’s function becomes complex. Therefore, the BEM is seldom used to model
particle motion in non constant advective domains. In this paper, the BEM is used to

model particle motion in only the constant advection portion of the total domain.

4




Replacing the basis function Win (7) with the Green’s function G, the weak form becomes

S5
[ (aGV?¢;- GV -V6)dQppy = 0. (12)
QBEM
Applying the divergence theorem and the second form of Green’s theorem to (12) gives

| (0,9°G+0,V -VG)aQppy = [ (2 (-0GV6,+a6,VG+,GV))dT,,,. (13)

QBEM rout

Since, by definition of the Green’s function, G, satisfies

(XVZG + 6 -VG = —8(?‘0-— ) (14)

where #, and 7 are points in Qpz,,, (13) becomes

co(Pp)0(g) = [ 7+ (aGVo~00,VG—4,GV)dT,,, (15)
T

out

where ¢, is determined by the surface solid angle at 7.

9
When V is not a constant or is not a very simple function of spatial location, the closed

2 .
form solution to (14) is difficult to calculate; however, when V is constant, the closed

form solution for G is well known (see Qiu et al [1]) and is given by

—U
R 1 52—(R+(x—x0))
G(7,Fy) = ImaRk ¢ (16)
where
REI?‘O—?‘*[, {a7n

2 5 .
V = ui,and u 1s a constant.

Equation 15 is an integral representation of the equation of motion. Since (14) is difficult

2. . . .. .
to solve for when V is not a constant, this equation of motion is seldom (if ever) used to
model problems with non constant advective fields. Nevertheless, since it contains only a

surface integration, it can easily be used to model infinite space problems.

9



The surface integral in (15) can be approximated using the BEM. Using shape functions on

T',,; that are compatible with the shape functions in (8), one can arrive at a matrix equation

of the form
- a(I)out
CO(Dout - Mq)ouz+G al’l - (18)
From (18), we have
-1 aq)out
®, =D = (cOI—M) G( - ) (19)

3.3. Coupling of the FEM and BEM equations

The coupled N + N, equations, (11) and (19), can be solved simultaneously to yield the

q)om I . . aq)in led : ;
= - In particular with | —= | known, the coupled matrix equation to

variables ® and
on

be solved is

{A B 4(85 - |(52) 20)

D —(cod -M)™

Equation (20) is mostly sparse with O(N) non zero entries except for the relatively small
dense sub-matrix in the lower right associated with the BEM. It can be solved with an itera-

tive method such as the generalized minimum residual method [6] or with a direct sparse

solver. For most problems, solving (20) is not difficult since N + N, is usually small.

out

10
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4. NUMERICAL RESULTS
Fluid flow about obstacles produces non constant advective fields; however, in many prob-
lems, when no obstacles are present, the advective field is or almost is constant. As
described in Section 3, advection-diffusion in finite space domains with non constant
advective fields can be modeled using FEM while the advection-diffusion in infinite
domains with constant advective fields can be modeled using BEM. Therefore, near obsta-
cles a FEM is used to model particle motion and away from obstacles a BEM method is
used. In this section results using this hybrid FEM-BEM of solution are presented. When
an exact solution exists, it will be presented with these results for the purpose of quantify-

ing numerical error.

Three problems will be presented in this section. In the first problem, a point source dif-
fuses particles into an infinite domain in the presence of constant wind. A closed form
solution exists for this problem; therefore, a comparison between the exact and numerical
solutions can be made. In the second problem, the point source is replaced with a source of
spherical geometry, and in the third problem, the FEM-BEM is used to model particle

motion around a set of realistic complex obstacles.

4.1. Numerical solution for a constant advective field

The first problem is shown in Figure 3. A constant flux of particles flow from a point
source in an infinite domain. Within the domain a constant wind is blowing. Therefore, the
advective field is constant. The solution to this problem is well known [7] and therefore,

provides a method to verify the FEM-BEM solution.

11




particle source

»
V = —_—————
y — 4 _,/\:
X _/_ B AN A
advective field particle trajectory

Figure 3. Problem 1 geometry: Particles diffuse from a
point source in a domain with a constant advective field
Figure 2 is an illustration of the mesh used to solve this problem. Due to the difficulty of

applying a Dirac Delta function to model the point source in the FEM domain, the center

oD,

portion of the mesh has been removed and the forcing term —— was calculated from the

on

exact solution and applied on I';,. The value of ¢; could then be predicted at points in

90

270

Figure 4. Problem 1 results: A comparison of the FEM/BEM

solution to the exact solution, o - FEM/BEM solution, -- exact
solution

12
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Qppy and Qppy,.

In Figure 4, the closed form and the numerical solution are compared. In this figure, the

value of ¢; is plotted for a=1 and various values of 8 where 8 is the angle and a is the

magnitude of a vector in the xy plane shown in Figure 3. In this example, a=1, and the

vector points to points in I';, . Figure 4 is a polar plot with radial distance equal to ¢, for

various O values. The maximum error shown in this plot between the FEM-BEM solu-

tion and the exact solution is 2%. Overall the FEM-BEM solution agreed very well with

the exact solution.

4.2. Numerical solution for a variable advective field

The second problem is shown in Figure 5. In this problem, particles flow from a spherical
source. The source not only emits particles but also alters the flow of wind in the domain.
Therefore, the advective field is not constant but varies near the source; however, far from

the source, the wind flow and therefore the advective field is almost constant.

particle trajectory

advective field

Figure 5. Problem 2 geometry: Particles diffuse from a spherical
source in a domain with a non constant advective field




An exact solution for the flow of wind around a spherical obstacle exists [8]. If v is the

mean velocity potential, then for this obstacle

ub3x
2a3

W = ux+

@

where b is the radius of the obstacle, a is the distance from the center of the obstacle,

?/ = Vy, and x = a-cosB as 0 and a are defined in Figure 5. The difference

between ui, the velocity at infinity, and the true velocity at any point in Qzp,, or Qppy,

3

b . . -
decays as — Where the biggest difference between these velocities occurs along the x-
a

axis. For the true velocity to be within 2% of ui , a=3b. In other words, for this prob-

lem, the finite element mesh must be about 2 obstacle radii thick or must have a radius 3

times that of the obstacle for the solution to be accurate.

The mesh used to model this problem is also illustrated in Figure 2. The boundary condi-

tions for a uniform particle flux were applied on I';,, and the resulting coupled equa-

od
tions (20) were used to solve for ® and a;'” . A polar plot of ¢, versus 6 on the circle

a = 1 is given in Figure 6 for two different mesh densities. As seen in this figure, for

these mesh densities, the solution has converged

14
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90

0.83048

0.62286 .

180

270

Figure 6. Problem 2 results: A plot of particle concentration
at locations in the xy plane for a 2750 and 3250 DOF mesh,
o - 2750 DOF mesh, + - 3250 DOF mesh

4.3. Numerical solution for realistic obstacles

A more realistic problem is illustrated in Figure 7. A set of buildings block the flow of
wind in an infinite space domain. In proximity to these buildings is a particle source distri-
bution. This distribution emits particles into the domain which both diffuse through the
wind and are carried by the wind around and over the buildings. The buildings are

assumed to be impervious to both the diffusion of the particles and to the flow of the wind.

15




buildings acting -
as obstacles

particle flux distribution

wind direction

Figure 7. Problem 3 geometry: Two buildings surrounded by an infinite half space

Using the FEM-BEM solution developed in this paper, this complex problem was
solved. First the flow field around the buildings was numerically determined using stan-
dard potential theory. Then the domain was divided into sub-domains with almost con-
stant and variable advective fields. The BEM method was applied to the constant
advective field sub-domain and the FEM was applied to the variable advective field sub-
domain. The two solutions were then coupled and a total advective-diffusion solution

was solved for. A resultant particle concentration plot is shown in Figure 8.

16




buildings acting
as obstacles

particle advection-diffusion x

wind direction

Figure 8. Problem 3 results: Particles diffuse in a variable advective field
around buildings.

5. CONCLUSIONS

In this paper, a hybrid finite element - boundary element method (FEM-BEM) of solution
was presented for a set of advection-diffusion problems. For many problems, the advective
field is variable close to obstacles in the domain, but at distances removed from those
obstacles, the field is almost constant. By placing finite element meshes around obstacles
where the advective field varies and by using the BEM at locations removed from these
obstacles, one can solve a set of advective-diffusion problems which are seldom addressed

in the present literature.
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