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Abstract

In the Standard Model of elementary particle physics, electroweak symmetry
breaking is achieved by a Higgs scalar doublet with a negative (mass)?. The
Standard Model has the well known gauge hierarchy problem: quadratically di-
vergent quantum corrections drive the Higgs mass and thus the weak scale to the
scale of new physics. Thus, if the scale of new physics is say the Planck scale,
then correct electroweak symmetry breaking requires a fine tuning between the
bare Higgs mass and the quantum corrections.

Supersymmetry, a symmetry between fermions and bosons, solves ‘the gauge
hierarchy problem of the Standard Model: the quadratically divergent corrections
to the Higgs mass cancel between fermions and bosons. The remaining corrections
to the Higgs mass are proportional to the supersymmetry breaking masses for
the supersymmetric partners (the sparticles) of the Standard Model particles.
The large top quark Yukawa coupling results in a negative Higgs (mass)?. Thus,
electroweak symmetry breaking occurs naturally at the correct scale if the masses
of the sparticles are close to the weak scale.

Inv this thesis, we argue that the supersymmetric Standard Model, while avoid-
ing the fine tuning in electroweak symmetry breaking, requires unnaturalness/fine
tuning in some (other) sector of the theory. For example, Baryon and Lepton num-

ber violating operators are allowed which lead to proton decay and flavor changing




~

neutral cufr;nt_:sz. We study some of the constraints from the latter in this th\esis.
We have to impose an R-parity for the theory to be both natural and .viable.

In the absence of flavor symmetries, the supersymmetry breakiﬁg masses for
the squarks and sleptons lead to too large flavor changing neutral currents. We
show that two of the solutions to this problem, gauge mediation of supersymmetry
breaking and making the scalars of the first two generations heavier than a few
.TeV, reintroduce fine tuning in electroweak symmetry breaking. We also construct
a model of low energy gauge mediation with a non-minimal messenger sector which
improves the fine tuning and also generates required Higgs mass terms. We show

that this model can be derived from a Grand Unified Theory despite the non-

minimal spectrum.
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Chapter 1

Introduction

A -Standard Model (SM) [1, 2] of elementary particle physics has developed
over the last twenty five years or so. It describes the interactions of the ele-
mentary particles using gauge theories. The elementary particles are the matter
fermions (spin half particles) called the quarks and the leptons, and the gauge
bosons (spin one particles) which are the carriers of the interactions. There are
three generations, with identical quantum numbers, of quarks and leptons: up (u)
and down (d) quarks, electron (e) and it’s neutrino (v) (the leptons) in the first
generation, charm (c) and strange (s) quarks, muon (1) and it’s neutrino in the
second, and top (t) and bottom (b) quarks, tau (7) lepton and it’s neutrino in
the third. The W, B (the hypercharge gauge boson) and the gluon (g) are the
gauge bosons. There is also one Higgs scalar. The particle content of the SM is
summarized in Table 1.1.

The gauge theory of the interactions of the quarks, Quantum Chromodynamics
(QCD) {3}, is based on the gauge group SU(3). where the. “¢” stands for “color”
which is the charge under QCD in analogy to electric charge. The interaction is
mediated by eight massless gauge bosons called gluons. This theory is asymptot-

ically free, i.e., it has the property that it’s gauge coupling becomes weak at high
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extension (the sparticles). The fermions are left-handed Weyl spinors. So, e°
stands for the left-handed positron which is the antiparticle of the right-handed
electron. i = 1,2, 3 denotes the generation, for example, u; is the top (t) quark
and e is the anti-muon (f&). The electric charge is given by @ = T3 + Y, where

T3 is the third component of the SU(2),, isospin and Y is the hypercharge.




energies (much larger than ~ 1 GeV) and becomes strong at energies below ~ 1
GeV. Thus, at low energies the theory confines, i.e., the strong interactions bind
the quarks into color singlet states called hadrons, for example the préton and the
pion. So, we observe only these bound states of quarks and not the elementary
quarks. However, when the proton is probed at high energies (large momentum
transfers) or when the quarks are produced in high energy collisions, the quarks
should behave as if they do not feel the strong interactions. This is indeed con-
firmed in a large number of experiments at high energies (see, for example, review
of QCD in [4]).

The weak and electromagnetic interactions of quarks and leptons are unified
into the electroweak theory based on the gauge group SU(2), x U(1)y [1]. This
theory has four gauge bosons. This electroweak symmetry is broken to the U(1) of
electromagnetism (Quantum Electrodynamics, QED). Three of the gauge bosons
(called the W and Z gauge bosons) get a mass in this process whereas the photon
(the carrier of electromagnetism) is massless. The theory predicts the relations
between the W and Z masses and couplings of ql;arks and leptons to these gauge
bosons.! The stringent tests of these predictions at the electron-positron collider
at CERN (LEP) and at the proton-antiproton collider at Fermilab (up to energies
of a few 100 GeV) have been highly successful.

One of the central issues of particle physics today is the mechanism of Elec-

troweak Symmetry Breaking (EWSB), i.e., how is SU(2), x U(l)y broken to

1'We assume that the mechanism for the symmetry breaking has a custodial SU(2) symmetry.




U(1)er? In the SM, this is achieved by the Higgs scalar, H, which is a doublet of

SU(2),,. The Higgs scalar has the following potential:
Viriges = m? |HI> + X |H|*. (1.1)

If m? < 0, then at the minimum of the potential, the Higgs scalar acquires a

vacuum expectation value (vev):
H=(0), (1.2)

where v = \/jmT/(EX)_ Thus two of the generators of the SU(2),, gauge group
and also one combination of the third SU(2),, generator and U(1)y are broken.
The corresponding gauge bosons acquire masses given by ~ g, v and ~ m v
respectively and are the W and the Z. The Higgs vev and thus, if A ~ O(1), the
mass parameter m? has to be of the order of (100 GeV)? to give the experimentally
measured W and Z gauge boson masses. The other combination of the third
SU(2), generator and U(1)y is still a good symmetry and the corresponding
gauge boson is massless and is the photon (y). There is also a physical electrically
neutral Higgs scalar left after EWSB. This is the only particle of the SM which
has not been discovered.

To generate masses for the quarks and leptons, we add the following Yukawa
couplings (the quark and lepton SU(2),, doublets are denoted by ¢ and [ and i, j

are generation indices):

Lyukewa = NsHqus + N Hlqid$ + N Hlie5, (1.3)




where repeated indices are summed over. These couplings become mass terms for
the fermions when the Higgs develops a vev. There are 13 physical parameters in
the above Lagrangian: 6 masses for the quarks, 3 masses for the lebtons and 3
mixing angles and a phase in the quark sector. The 3 mixing angles and the phase
appear at the W vertex involving the quarks and constitute the 3 X 3 matrix called
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [5]. These 13 parameters can be,
a priori, arbitrary and are fixed only by measurements of the quark and lepton
masses and the mixings (the latter using decays of quarks through a virtual W).
In the SM, processes involving conversion of one flavor of quark into another flavor
with the same electric charge, for example, conversion of a strange quark into a
down quark resulting in mixing between the K-meson and it’s antiparticle, do not
occur at tree level, but occur at one loop due to the mixings. The experimental
observations of these flavor changing neutral currents (FCNC’s) are consistent with
the mixing angles (as measured using decays of quarks). Since there is no right-
handed neutrino in the SM, we cannot write a Dirac mass term for the neutrino
and at the renormalizable level, we cannot write a Majorana mass term since we
do nth have a SU(2),, triplet Higgs. So, neutrinos are massless in the SM. ? This
results in conservation laws for the individual lepton numbers, i.e., electron, muon
and tau numbers. Thus, the FCNC decay, p — e y is forbidden in the SM and
the experimental limits on such processes are indeed extremely small [4].

The SM, thus, seems to describe the observed properties of the elementary

2There is some evidence for non-zero neutrino masses, but it is not conclusive.




particles remarkably well, up to energies ~ few 100 GeV. Of course, the Higgs
scalar remains to be found. But, the SM has some aesthetically unappealing
features which we now discuss. |

The SM particle content and gauge group naturally raise the questions: Why
are there three gauge groups (with different strengths for the couplings) and three
generations of quarks and leptons with the particular quantum numbers? At-
tempts have been made to simplify this structure by building Grand Unified The-
ories (GUT’s). The gauge coupling strengths depend on the energy/momentum
scale at which they are probed (this was already mentioned for QCD above). In
the GUT’s it is postulated that these three couplings are equal at some very high
energy scale called the GUT scale so that at that energy scale the three gauge
groups can be embedded into one gauge group with one coupling constant. The
GUT gauge group gets broken at that scale to the SM gauge groups resulting in
different evolutions for the three gauge couplings below the GUT scale. Also, in
the GUT’s, the quarks and leptons can be unified into the same representation
of the gauge group. In the simplest GUT, based on the SU(5) gauge group [6],
the d° and the lepton doublet ({) form an anti-fundamental (5) under the gauge
group. The Higgs doublets are in a 5 representation of SU(5) and so have SU(3),
triplet partners which are required to be heavy since they mediate proton decay
[6]. When the three coupling constants were measured in the late 1970’s, and
evolved Withv the SM particle content to high energies, they appeared to meet at

an energy scale of ~ 10 GeV [7]. But, the more accurate measurements in the




1990’s show that this convergence is not perfect [8].

The 13 parameters of the Yukawa Lagrangian of Eqn.(1.3) exhibit hierarchies
or patterns, for example the ratio of the mass of the heaviest (top) (iuark and the
lightest lepton (electron) is about 10~6. One would like to have a more fundamen-
tal theory of these Yukawa couplings which can explain these hierarchies in terms
of fewer parameters. A GUT can make some progress in this direction by relating
the quark masses to the lepton masses since they are in the same representation
of the GUT group [6]. For example in many GUT’s we get the relation my = m;.

Perhaps the most severe “problem” of the SM is the gauge hierarchy prob-

2
, of

lem [9] which we now explain. It concerns the Higgs mass parameter, m
Eqn.(1.1). There are two issues here. The first issue is the origin of this mass
parameter. As mentioned above, m? ~ (100 GeV)>. We would like to have one |
“fundamental” mass scale in our theory and “derive” all other mass scales from
this scale. Particle physicists like to think that this scale should be the Planck
scale, Mp; ~ 10'® GeV, which is the scale at which the gravitational interactions
have to be quantized. There is one other scale in the SM besides the Higgs mass
parameter. It is the strong interaction scale of QCD denoted by Agep. Naively,
this is the scale at which the SU(3). coupling constant becomes strong binding

quarks into hadrons. Thus, this scale can be related to the Planck scale and the

SU(3). coupling constant at the Planck scale by the logarithmic Renormalization
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Figure 1.1: The Feynman diagrams which give quadratically divergent contribu-

tions to the Higgs mass in the SM.

Group (RG) evolution of the gauge coupling as follows:

A Mpex ——87f——— 1.4
QCD PLEXD gz(Mm) . (')

This relation is valid, strictly speaking, at one loop. Thus, if g(Mp;)<1, there is a
natural explanation for the hierarchy Agcp/Mp;. We would like to have a similar
explanation for the hierarchy m/Mp;.

The second issue is whether the mass scale m is stable to quantum corrections.

8




In the SM, the Feynman diagrams in Fig.1.1 give quadratically divergent contri-
butions to m2,bsince the corresponding integrals over the loop momentum % are
~ [ d*k/(k? —m?). The corrections due to the top quark in the loop are important
due to the large Yukawa coupling of the top qﬁark. Thus, the renormalized Higgs

mass parameter is given by:

1
mgen. ~ mgare + EEA27 (15)

for all dimensionless couplings of order one. A is the cut-off for the quadratically
divergent integral. We know that the SM cannot describe quantum gravity. Thus,
we certainly expect some new physics (string theory?) at Mp;. There could, of
course, be some new physics at lower energy scales as well, for example the GUT
scale. In some such extension to the SM; it turns out that the scale A is the scale
of new physics. Thus, in the SM, the Higgs mass gets driven due to quantum
corrections all the way to some high energy scale of new physics (see Eqn.(1.5)).

2
We need m,,,

~ (100 GeV)? so that EWSB occurs correctly. We can achieve
this by a cancellation between m},,, and the quantum corrections, which is of the
order of one part in A2/(100 GeV)?. For A = Mpy, this is enormous. Thus, in the
SM, the bare Higgs mass parameter has to be fine tuned to give the correct W
and Z masses. Such a problem does not occur for dimensionless couplings, since
the quantum corrections are proportional to the logarithm of the cut-off or for
fermion masses which are protected by chiral symmetries.

Supersymmetry (SUSY) [10] provides a solution to the gauge hierarchy prob-




lem of the SM. SUSY is a symmetry between fermions and bosons, i.e., a La-
grangian is supersymmetric if it is invariant under a (specific) transformation
between fermions and bosons. In particular, the fermion and the bc;son in a rép-
resentation of the SUSY algebra have the same interactions. So, to make the SM
supersymmetric, we add to the SM particle content fermionic (spin half) partners
of the gauge bosons called “gauginos” (for example the partner of the gluon is the
gluino) and scalar (spin zero) partners of the quarks and leptons called “squarks”
and “sleptons”, respectively (for example selectron is the partner of the electron).
Similarly, the fermionic partners of the Higgs scalars are called Higgsinos. We
have to add another Higgsino doublet (and a Higgs scalar doublet) to cancel the
SU(2)%, x U(1)y anomaly. We denote the superpartners by a tilde over the cor-
responding SM particle. The supersymmetric SM (SSM} has the particle content
shown in Table 1.1. The irreducible representation of the SUSY algebra containing
a matter fermion and it’s scalar partner is called a chiral superfield. We denote the
components of a chiral superfield by lower case letters and the superfields by upper
case letters except for the Higgs (and in some cases for other fields which acquire a
vev) for which both the superfield and components are denoted by upper case let-
ters.®> The Yukawa couplings for the fermions can be written in a supersymmetric

way in terms of a “superpotential”:

W = X HLQuUS + M HoQiDS + Ny HyLi§ + pH, Hy, (1.6)

3The chiral superfields appear in the “Kihier” potential and the “superpotential” (to be

defined later) and the component fields appear in the Lagrangian.
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where @ and L are the quark and lepton SU(2),, doublets. The y term is a mass
term for the Higgs doublets. The superpotential gives the following terms in the
Lagrangian:

2
oW oW
+ thi?/)j“g@‘a‘&); + h.c.
o=

$=g 2,3

ow
£ = Z'an"

i

(where ¢ and 9 are scalar and fermionic components of ®). (1.7)

Thus, to get a term in the Lagrangian with fermions from a term of the superpo-
tential, we pick fermions from two of the chiral superfields and scalars from the
rest (if any). This gives the Yukawa couplings of Eqn.(1.3). We get the following
terms in the scalar potential from the first term of Eqn.(1.7):

i+ .. (1.8)

V = p2(|H ) + | Hal?) + 22 | Ha) (1@ +

SUSY requires that the hermitian conjugates of the chiral superfields (anti-
chiral superfields) cannot appear in the superpotential. Thus, we cannot use H,
in Eqn.(1.6) to give mass to the down quarks. This is another reason for adding
the second Higgs doublet. For the same reason, the u term is the only gauge
invariant mass term for the Higgs chiral superfields and we cannot write down
a term in the supefpotential which will give a quartic Higgs scalar term in the
Lagrangian.

In addition to the terms from the ébove superpotential, there are kinetic terms
for gauge fields (which can also be derived from a superpotential) and kinetic terms
for matter fields which can be written in a supersymmetric and gauge invariant
way in terms of a “K&hler” potential: 3" ®Te¥ ® (where V is the gauge multiplet).
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The Kahler potential and the gauge superpotential generate two kinds of terms
in the SSM (in the supersymmetric limit) which are relevant for us. The first
one is a coupling between a matter fermion, a gaugino and the scal.aLr partner of
the fermion, for example, a quark-squark-gluino coupling, i.e., g§'§. The second
term is called the D-term which gives a quartic coupling between the scalars
proportional to the gauge coupling squared: ¥, g2/2 (2¢, d)TT"q&)z for each gauge
group, where 7T° is a generator of the gauge group. This gives, in particular, a
quartic term for the Higgs scalars.

We now discuss how SUSY solves the gauge hierarchy problem. In a supersym-
metric theory, there is a cancellation between fermions and bosons in the quantum
corrections since a Feynman diagram with an internal fermion has an opposite sign
relative to the one with an internal boson. Thus, there is a non-renormalization
theorem in a supersymmetric theory Wh‘iCh says that the superpotential terms are
not renormalized {11]. This means that the mass term for the Higgs, the u term,
does not receive any corrections in the supersymmetric limit. In other words, due
to supersymmetry, the chiral symmetry protecting the Higgsino mass also protects
the Higgs scalar mass. The quantum corrections due to the Feynman diagrams of
Fig.1.1 are exactly cancelled by their supersymmetric analogs, Fig.1.2. 1t is cru-
cial for this cancellation that the quartic interaction of the Higgs scalars is given
by the gauge coupling since it is due to the D-terms mentioned above, i.e., the
quartic coupling A ~ g2 in the SSM.

We know that SUSY cannot be an exact symmetry of nature since we have
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Figure 1.2: The Feynman diagrams in SSM which cancel the quadratic divergences

of the SM contributions to the Higgs mass.

not observed a selectron degenerate with the electron. So, we add SUSY breaking
terms to the Lagrangian which give a large mass to the unobserved superpartners

(gauginos, sleptons and squarks) and the Higgs scalars:

Lsusybreaking = Y My d1¢; + BuH, Hy + XA: MMM, (1.9)

4
where ¢; denotes a scalar and A2 a gaugino of the gauge group A4 and By isa SUSY
breaking mass term for the Higgs scalars.* Since SUSY is broken, i.e., fermions
and their partnef bosons no longer have the same mass, the cancellation between
fermions and bosons in the quantum corrections to the Higgs masses is no longer

exact. The quadratically divergent corrections to the Higgs masses still cancel

“These terms, along with the trilinear scalar terms, A¢;¢; ¢, break SUSY softly, i.e., do not

reintroduce quadratic divergences.
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(between the diagrams of Fig.1.1 and Fig.1.2), but the logarithmically divergent
corrections do not and are proportional to the SUSY breaking masses. This gives:

2

A g°
Wpran, ~ Wpere  (~ o + 10 M7)logh, (110)

where the first one loop correction on the right is due top squarks and the second
is due to gauginos. Here, A is the scale at which the SUSY breaking masses are
generated. Even if it is the Planck scale, the logarithm is O(10). It turns out
that for a large paft of the parameter space, the Higgs (mass)? renormalized at
the weak scale is negative due to the stop contribution (J; is larger than g) and
is of the order of the stop (mass)? [12, 13]. The down type Higgs (mass)? is also

negative if the bottom Yukawa coupling is large. The Higgs scalar potential is:

Viiges = (my, + p?) | Ho” + (m%{d + 1) [Hd|2

2
_BNHUH4+%Z—(|Hu|2—|Hd12)2 (D — terms),  (L.11)

where g% = g2 + ¢>. Using this potential, we can show that the negative Higgs
(mass)? results, for a large part of the parameter space, in a vev for both the Higgs

doublets, breaking electroweak symmetry. In particular, the Z mass is:

2 2 2
o g, tan” §—my,

1m2-— -+
pMz = ~H 1—-tan?8 ’

(1.12)

where tan 3 = v, /v is the ratio of vevs for the two Higgs scalars. Thus, to get the
correct Z mass, we need the u term and the renormalized Higgs masses (and in turn
the stop mass) to be of the order of the weak scale. If the stop mass is larger, say
 greater than ~ 1 TeV, it drives the Higgs (mass)? to too large (negative)'values,
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~ (500) GeV2. We can still get the correct Z mass (~ 100 GeV) by choosing
the u term to éancel the negative Higgs (mass)?. But, this requires a fine tuning,
naively of 1 part in (500 GeV)?/(100 GeV)? ~ 25 (for large tan 3). Thﬁs, EWSB is
natural in the SSM due to the large top quark Yukawa coupling provided the stop
masses are less than about 1 TeV [14, 15]. This solves the second part of the gauge
hierarbhy problem: in the SSM, the weak scale is naturally stabilized at the scale
of the superpartner masses. Thus in the SSM, the first part of the gauge hierarchy
problem, ¢.e., what is the origin of the weak scale, can be rephrased as: what is the
origin of these soft mass terms, ¢.e., how is SUSY broken? As mentioned before, we
do not want to put in the soft masses by hand, but rather derive them from a more
fundamental scale, for example the Planck scale. If SUSY is broken spontaneously
in the SSM with no extra gauge group and no higher dimensional terms in the
Kahler potential, then, at tree level, there is a colored scalar lighter than the up
or down quarks [16]. So, the superpartners have to acquire mass through radiative
corrections or non-renormalizable terms in the Kahler potential. For these effects
to dominate over the tree level renormalizable effects, a “modular” structure is
necessary, i.e., we need a “new” sector where SUSY is broken spontaneously and
then communicated to the SSM by some “messenger” interactions.

There are two problems here: how is SUSY broken in the new sector at the
right scale and what are the messengers? There are models in which a dynamical
superpotential is generated by non-perturbé,tive effects which breaks SUSY [17].

The SUSY breaking scale is related to the Planck scale by dimensional transmu-
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tation and thus can be naturally smaller than the Planck scale (as in QCD). Two
possibilities have been discussed in the literature for the messengers. One is grav-
ity which couples to both the sectors [18]. In a supergravity (SUGRA) theory,
there are non-renormalizable couplings between the two sectors which generate
soft SUSY breaking operators in the SSM once SUSY is broken in the “hidden”
sector. The other messengers are the SM gauge interactions [19]. Thus, dynamical
SUSY breaking with superpartners at ~ 100 GeV—1 TeV can explain the gauge
hierarchy: SUSY stabilzes the weak scale at the scale of the superpartner masses
which in turn can be derived from the more “fundamental” Planck scale. Also,
with the superpartners at the weak scale, the gauge coupling unification works
well in a supersymmetric GUT [8].

If SUSY solves the fine tuning problem of the Higgs mass,- i.e., EWSB is
natural in the SSM, does it introduce any other fine tuning or unnaturalness?
This is the central issue of this thesis. We show that consistency of the SSM
with phenomenology (experimental observations) requires that, unless we impose
additional symmetries, we have to introduce somé degree of fine tuning or unnat-
uralness in some sector of the theory (in some cases, reintroduce fine tuning in
EWSB). The phenomenological constraints on the SSM that we study all result
(in one way or another) from requiring consistency with FCNC'’s.

We begin with a “problem” one faces right away when one supersymmetrizes
the SM and adds all renormalizable terms consistent with SUSY and gauge invari-

ance. Requiring the Lagrangian to be gauge invariant does not uniquely determine
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the form of the superpotential. In addition to Eqn.(1.6) the following renormaliz-

able terms

)\ijkLiLjEz + /_\ijkLinDz + ;;kUchJcDg (1.13)

are allowed.® Unlike the interactions of Eqn.(1.6), these terms violate lepton
number (L) and baryon number (B). Thus, a priori, SSM has L and B violation
at the renormalizable level unlike the SM where no B or L violating 'Eerms,can be
written at the renormalizable level. These terms are usually forbidden by imposing
a discrete symmetry, R-parity, which is (—1)3B+L+2S on a component field Wi{th
baryon number B, lepton number L and spin S. If we do not impose R-parity,
what are the constraints on these R-parity violating couplings? If both lepton
and baryon number violating interactions are present, then limits on the proton
lifetime place stringent constraints on the products of most of these couplings (the
limits are ~ 1072%). So, it is usually assumed that if R-parity is violated, then
either lepton or baryon number violatihg interactions, but not bbth, are present,.
If either L;Q;Df or UfD$Dj terms are present, flavor changing neutral current
(FCNC) processes are induced. It has been assumed that if only one R-parity
violating (R, ) coupling with a particular flavor structure is non-zero, then these
flavor changing processes are avoided. In this single coupling scheme [21] then,
efforts at constraining R-parity violation have concentrated on flavor conserving

processes [22, 23, 24, 25, 26, 27].

SA term p;L;H, is also allowed. This may be rotated away through a redefinition of the L

and H fields [20].
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In chapter 2, we demonstrate that the single coupling scheme cannot be realized
in the quark mass basis. Despite the general values the couplings may have in the
weak basis, after electroweak symmetry breaking there is at least (;ne large R,
coupling and many other , couplings with different flavor structure. Therefore,
in the mass basis the R-parity breaking couplings cannot be diagonal in generation
spa,cé. Thus, flavor changing neutral current processes are always present in either
the charge 2/3 or the charge —1/3 quark sectors. We use these processes to place
constraints on R-parity breaking. We find constraints on the first and the second
generation couplings that are much stronger than existing limits. Thus, we show
that R-parity violation always leads to FCNC’s, even with the assumption that
there is (a priori) a “single” R-parity violating coupling (either L or B violating),
unless this “single” coupling is small. Thus, either we impose R-parity (or L and
B conservation) or introduce some degree of unnaturalness in the form of small
couplings in order not to be ruled out by phenomenology. If we introduce flavor
symmetries to explain the hierarchies in the Yukawa couplings, it is possible that
the same symmetries can also explain why the R-i)arity violating couplings are so
small. However, it turns out that, in general, the suppression is not sufficient to
evade the proton decay limits. The SSM with the particle content of Table 1.1 and
with R-parity is called the minimal supersymmetric Standard Model (MSSM).

The second problem we discuss is the SUSY flavor problem [16]. As mentioned
before, we have to add soft SUSY breaking masses for all squarks and sleptons.

If these mass matrices are generic in flavor space, i.e., they are not at all cor-

18




related with the fermion Yukawa couplings, we get large SUSY contributions to
the FCNC’s. To give a quantitative discussioﬁ, we need to define a basis for the
squark and slepton mass matrices. We first rotate the quarks/leptbns to their
mass basis by a unitary transformation, U. We do the same transformation on
the squarks/sleptons (thus, it is a superfield unitary transformation). In this ba-
sis for the quarks and squarks, the neutral gaugino vertices are flavor diagonal.
The squark/slepton mass matrix in this basis can be arbitrary since, a priori,
there is no relation between the squark/slepton and quark/lepton mass matrices
so that they need not be diagonalized by the same U. Thus, there are off-diagonal
(in flavor space) terms in the squark mass matrix in this basis and we get fla-
vor violation. For concreteness, we discuss the K — K mixing (see Fig.1.3). For
simplicity, consider the 2 x 2 mass matrices for the “léft” and “right” down and
strange squarks (which are the partners of the left and right handed quarks) and
neglect left-right mixing (which is likely to be suppressed by the small Yukawa
couplings). We denote the diagonal elements of the mass matrix by Mg and the
off-diagonal element, which converts a down squark to a strange squark, by A and
define § ~ A/M32. A posteriori, we know that & has to be small and so we work
to first order in 4. We have to diagonalize this squark mass matrix to get the
mixing angles and the mass eigenvalues. Then, ¢ is also roughly the product of
the squark mixing angle and the degeneracy (ratio of the difference in the mass
eigenvalues to the average mass eigenvalue). We then get contributions to K — K

mixing shown in Fig.1.3.
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Figure 1.3: Some of the SUSY contributions to the AS = 2 four fermion operator.
d(3) is the scalar partner of left-handed down (strange) quark and d°(3°) is the

scalar partner of the antiparticle of the right-handed down (strange) quark.
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In the first diagram the flavor violation comes from using (twice) the off diag-
onal element of the left squark mass matix, i.e., 6y; (there is a similar diagram
with insertion of two dgg’s) and in the second diagram both dgr and d.;, are used.

We can estimate the coefficient of the four fermion AS = 2 operator to be:

4
g 1
N 6;2 7 f(M;z, M3)&%, (1.14)

where the function f comes from the loop integral. Recall that the SM contribution
to this operator (which already gives a contribution to K — K mass difference

(Amg) close to the experimental value) is

gy 1 m?

1672 M2, M,

(1.15)

due to the Glashow-Iliopoulos-Maiani (GIM) suppression [2]. Thus with weak scale
values of Mg and M and 6 ~ O(1), the SUSY contribution is huge. Similarly,
there are contribution to yother FCNC'’s, for example u — ey. Recall that in the
SM, there is no contribution to this process. So, in order not to be ruled out by
FCNC'’s, the ¢’s have to be very small if the scalar masses are ~ 100 GeV- 1 TeV,
i.e., the squarks and sleptons of the first two generations have to be degenerate
to within ~ few GeV [28] if the mixing angles are ~ O(1).

The SUSY contribution to FCNC’s thus depends on how the soft masses are
generated. In SUGRA, unless one makes assumptions about the Kahler potential
| terms, the squark masses are arbitrary resulting in § ~ O(1). Thus with weak
scale values of the superpartner masses, we either fine tune the §’s to be small or
introduce approximate non-abelian or abelian flavor symmetries [29] to restrict the
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form of the scalar mass matrices so that the §’s are small. These flavor symmetries
can also simultaneously explain the Yukawa couplings. A related idea is squark-
quark mass matrix alignment [30] in which the quark and squark ﬁlass matices
are aligned so that the same unitary matrix diagonalises both of them, resulting
ind ~ 0.

Iﬁ the other mechanism for communicating SUSY breaking mentioned above,
i-e., gauge mediated SUSY breaking (GMSB), the scalars of the first two genera-
tions are naturally degenerate since they have the same gauge quantum numbers,
thus giving & ~ 0. This is an attractive feature of these models, since the FCNC
constraints are naturally avoided and no fine tuning between the masses of the
first two generation scalars is required. Since this lack of fine tuning is a com-
pelling argument in favor of these models, it is important to investigate whether
other sectors of these models are fine tuned. We will argue, in chapter 3, (and
this is also discussed in [31, 32, 33]) that the minimal model (to be defined in
chapter 3) of gauge mediated SUSY breaking with a low messenger scale requires
fine tuning to generate a correct vacuum (Z mass). Further, if a gauge-singlet and
extra vector-like quintets are introduced to generate the “u” and “Byu” terms, the
fine tuning required to correctly break the electroweak symmetry is more severe.
These fine tunings make it difficult to understand, within the context of these
models, how SUSY can provide some understanding of the origin of electroweak
symmetry breaking and the scale of the Z and W gauge boson masses. It turns

out that in models of gauge mediation with a high messenger scale the fine tuning
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is not much better than in the case of low messenger scale [34].

Typically, the models of gauge mediation have vector-like fields with SM quan-
tum numbers and with a non-supersymmetric spectrum. These fields c‘ommunicate
SUSY breaking to the SSM fields and are therefore called “messengers”. In the
minimal model of gauge mediation, the messengers form complete SU(5) repre-
sentations in order to preserve the gauge coupling unification. In chapter 3, we
construct a model of low energy gauge mediation with split 5+ 5)» messenger
fields that improves the fine tuning. This model has additional color triplets in
the low energy theory (necessary to maintain gauge coupling unification) which
get a mass of O(500) GeV from a coupling to a gauge-singlet. The same model
with the singlet coupled to the Higgs doublets generates the u term. The im-
provement in fine tuning is quantified in these models and the plenomenology is
discussed in detail. .We show how to derive these splibt messenger (5 + 5)’s from
a GUT using a known doublet-triplet splitting mechanism. A completg model,
including the doublet-triplet splitting of the usual Higgs multiplets, is presented
and some phenomenological constraints are discussed.

An obvious solution to the SUSY flavor problem, from Eqn.(1.14), is raising
the soft masses of the first two generation scalars to the tens of TeV range so that
even if § ~ O(1), the SUSY contribution to FCNC’s is small [35, 36, 37, 38, 39,
40, 41, 42]. Thus, the fine tuning of §’s is avoided. The phenomenological viability
and naturalness of this scenario is the subject of chapter 4. We assume that there

is some natural model to make these scalars heavy. We want to investigate if
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this leads to unnaturalness in some other sector. To suppress flavour changing
processes, the heavy scaiars must have masses between a few TeV and a hundred
TeV. The actual value depends on the degree of mass degeneracy and mixing
between the first two generation scalars.® As we discussed before, only the stop
masses flave to be smaller than about 1 TeV to get natural EWSB. However,
as discussed in reference [43], the masses of the heavy scalars cannot be made
arbitrarily large without breaking colour and charge. This is because the heavy
scalar masses contribute to the two loop Renormalization Group Equation (RGE)
for the soft masses of the light scalars, such that the stop soft (mass)? become
more negative in RG scaling to smaller energy scales. This negative contribution
is large if the scale at which supersymmetry breaking is communicated to the
visible sector is close to the GUT scale [43]. With the first two» generation soft
scalar masses =~ 10 TeV, the initial value 0{ the soft massés for the light stops
must be ~ few TeV to cancel this negative contribution [43] to obtain the correct
vaccum. This requires, hox}vever, an unnatural amount of fine tuning to correctly
break the electroweak symmetry [14, 15].

In chapter 4, we analyze these issues and include two new items: the effect of
the large top quark Yukawa coupling, A;, in the RG evolution, that drives the stop
soft (mass)® more negative, and QCD radiative corrections in the Amg constraint

[44]. This modifies the bound on the heavy scalar masses which is consistent with

60nce the amount of fine tuning (i.e., how small §) we are willing to tolerate is given, we can

estimate the M3z required from Eqn.(1.14).
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the measured value of Ampg. This, in turn, affects the minimum value of the initial
scalar masses that is required to keep the scalar (mass)? positive at the weak scale.

We note that the severe constraint obtained for the initial stop mésses assumes
that supersymmetry breaking occurs at a high scale. This leaves open the pos-
sibility that requiring positivity of the scalar (mass)? is not a strong constraint
if thé scale of supersymmetry breaking is not much larger than the mass scale of
the heavy scalars. In chapter 4 we investigate this possibility by computing the
finite parts of the same two loop diagrams responsible for the negative contribu-
tion to the light scalar RG equation, and use these results as an estimate of the
two loop contribution in an actual model of low energy supersymmetry breaking.
We find that in certain classes of models of this kind, requiring positivity of the
soft (mass)? may place strong necessary conditions that such models must satisfy

in order to be phenomenologically viable.
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Chapter 2

R-parity Violation in Flavor Changing Neutral

Current Processes

In a supersymmetric extension of the SM without R-parity, we show that even
with a “single” coupling scheme, i.e., with only “one” R-parity violating coupling
(either L or B violating) with a particular flavor structure being non-zero, the
flavor changing neutral current processes can be avoided only in either the charge
+2/3 or the charge —1/3 quark sector, but not both. We use the processes K — K
mixing, B — B mixing and K+ — ntvo (in the down sector) and D — D mixing
(in the up sector) to place constraints on R, couplings. The constraints on the
first and the second generation couplings are better than those existing in the
literature.

Flavor changing neutral current processes are more clearly seen by examining
the structure of the interactions in the quark mass basis. In this basis, the /—\i]—k

interactions of Eqn.1.13 are

ik (N7 (Viear)n D" — E*U7) D™, (2.1)

where

N

1] j\lanLmjD;}nk7 . (2‘2)
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and N is the neutrino chiral superfield. The superfields in Eqn.(2.1) have their
fermionic components in the mass basis so that the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [5] Vkar appears explicitly. The rotation matrices Uy and Dg

appearing in the previous equation are defined by

Ui = UL,-juTj, (23)
dr; = Dri;dg;, (2.4)

where ¢; (¢™) are quark fields in the weak (mass) basis. Henceforth, all the fields
will be in the mass basis and we drop the superscript m.
Unitarity of the rotation matrices implies that the couplings A}, and Aijk

satisfy

l)‘zﬂcl - zmnl . (25)

So any constraint on the £, couplings in the quark mass basis also places a bound

on the R, couplings in the weak basis.

In terms of component fields, the interactions, in Dirac notation, are

Nl (Viear) e (7, Al +dly dt, + (d Y (Wi )edy) — & diu], — it diel, — (dk)* (e} )oul),

(2.6)

where e denotes the electron and € it’s scalar partner and similarly for the other
particles.

The contributions of the R-parity violating interactions to low energy processes

involving no sparticles in the final state arise from using the /£, interactions an even

number of times. If two X' ’s or A" ’s with different flavor structure are non-zero,

27




flavor changing low energy processes can occin‘. These processes are considered in
references [20] and [45], respectively. Therefore, it is usually assumed that either
only one X with a particular flavor structure is non-zero, or that 'the R-parity
breaking couplings are diagonal in generation space. However, Eqn.(2.6) indicates
that this does not imply that there is only one set of interactions with a particular
flavor structure, or even that they are diagonal in flavor space. In fact, in this

14
ijk

case of one A, # 0, the CKM matrix generates couplings involving each of the
three down-type quarks. Thus, flavor violation occurs in the down quark sector,
though suppressed by the small values of the off-diagonal CKM elements. Below,
we use these processes to obtain constraints on R-parity breaking, assuming only
one A # 0.

It would seem that the flavor changing neutral current processes may be “ro-
tated” away by making a different physical assumption concerning which %, cou-

pling is non-zero. For example, while leaving the quark fields in the mass basis,

Eqn.(2.1) gives

Wa, = Au(Ni(Vim)uDi — EU;) Dy (2.7)
= (NguVrmi) (NiDy — Ei(Vigar,)Up) Df (2.8)
= Nij(NiD; — E(Vichs;)Up) D5, (2.9)
where
Nk = N (Viest)rms
= AimnDrmi Ding- (2.10)
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With the assumption that the A}, coefficients have values such that only one S\ijk
is non-zero, there is only one interaction of the form NyD;D¢ There is then no
longer any flavor violation in the down quark sector. In particula,r,. there are no
R, contributions to the processes discussed below. But now there are couplings
involving each of- the three up type quarks. So these interactions contribute to
FCNC in the up sector; for example, D°—D° mixing. We use D°—D° mixing to
place constraints on R-parity violation assuming only one S\.ijk # 0. Thus, there is
no basis in which FCNC can be avoided in both sectors.

It might be more natural to assume that there is only one large , coupling
in the weak basis, i.e., only one 5\,-]-,; # 0. In general, there will be a rotation in
both the up and the down quark sectors to go to the mass basis, i.e., Up, Df and
Dg are not equal to the identity matrix. Then, from Eqns.(2.2) and (2.10), we see
that there are many M’s and A’s even if one A is non-zero leading to FCNC’s in
both the sectors. It is possible that Dz and either Uy, or Dy are identity matrices,
but both D; and U, cannot be the identity matrix since their product is Vi .
So, with one A # 0, we get FCNC’s in at least one of (and in general both) up
and down quark sectors.

The conclusion that FCNC constraints always exist in either the charged —1/3
or charged 2/3 quark sectors follows solely from requiring consistency with elec-
troweak symmetry breaking, and is not specific to R—parity violation. For exam-
ple, a similar conclusion about leptoquark interactions, which are similar to R,

interactions, is reached in reference [46].
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Figure 2.1: R, contributions to K-K° mixing with one A},
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flow of propagating left handed fields.

2.1 K°-K° Mixing

With one X;; # 0, the interactions of Eqn.(2.6) involve down and strange
quarks. So, there are contributions to K°~K?° mixing through the box diagrams
shown in Fig.2.1. A constraint on the £, couplings is obtained by constraining the
sum of the £, and Standard Model contributions to the K; — Ks mass difference
to be less than the measured value.

Evaluating these diagrams at zero external momentum and neglecting the down

quark masses, the following effective Hamiltonian is generated

1
AS=2 _
My, — = 12872

4 1 1 -
)‘gjkl (’ng‘ + ;23“) ((VKM)J'Q(VKM);I)Q(dL"/“SL)Q, (2.11)

i drx
where m;, is the sneutrino mass and M. is the right-handed down squark mass.

!

As this operator is suppressed by the CKM angles, it is largest when A}, is non-

zero for j =1 or j = 2.

The Standard Model effective Hamiltonian is [47]

- G2 - .
A2 = Tam (Vo (View) )2 (5. ), (212)
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where the CKM suppressed top quark contribution, the up quark mass, QCD
radiative corrections, and long distance effects have been ignored.

The AS = 2 effective Hamiltonian is then

HAS=2 Hone + Hpg=? (2.13)

P

= Gk, my, mg,, View)(dir*sL)”. (2.14)

In the vacuum saturation approximation, this effective Hamiltonian contributes

an amount
— 2 by
(Am)y, = mg, — mgg = -?:meKBKReG(/\ijk, mg,, mtfmc) (2.15)

to the K; — Kg mass difference. With fx = 160MeV [48], Bx ~ 0.6 [49],
myg = 497 MeV [50], and |[(Am)..p| = 3.510 x 10712 MeV [50], and m, > 1.0GeV,

the constraint is

Lo

) 1 1yt
"\ijk' <0.11 (’zz—z + w—kz) s (2.16)
where z; = m;, /(100 GeV) and wy, = mg, /(100 GeV). This constraint applies for

j=1orj=2and for any 7 or k. The constraint for j = 3 is not interesting as the

CKM angles suppress the £, operator relative to the Standard Model operator.

2.2 BY-B° Mixing

The R, interactions also contribute to both B’~B° mixing and B%-B? mixing
through box diagrams similar to those given in the previous section. As B—B?

mixing is expected to be nearly maximal, it is not possible at present to place
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a constraint on any non-Standard Model effects that would add more mixing.
However, B~B° mixing has been observed [51] with a moderate z4 ~ 0.7 [50].
The effective Hamiltonian generated by these /£, processes is

7
i3k

1
Hr, = Togm2

af 1 1  \2/7 up 2
(;n"lg:' + mi'm) ((VKM)j3(VKM)j1) (dry*br)”. (2.17)

(1

This is largest when .., is non-zero.
g i3k

The dominant contribution to B%~B° mixing in the Standard Model is [52]

2,9
GEm;

o (Vien)ss(Viean)3,)"Gle) (A be)?, (2.18)

Hsm =

where z; = m?/m2,, and

— 11z + 22 3 322Inzx
4(z —1)? 2(1 — )3

Glz) = 2 (2.19)

For a top mass of 176 GeV, G(z;) = 0.54.

A constraint for A, is obtained by demanding that tl;e sum of the Stan-
dard Model> and R, contributions to the B; — Bg mass difference not exceed
the measured value. With fg = 200MeV [48], Bg ~ 1.2 [53], mp = 5279 MeV
[50], |(Am)ezpl = 3.3 X 107° MeV [50] and |Vians| > 0.004 [50], a conservative

constraint is

1 1\"%
| Nisie| < 1-1(25 + ;}-}:—2—) (2.20)

with Zi and wy, as previously defined. In this case the &, couplings are only weakly
constrained.

In addition to inducihg B%-B° mixing, these interactions also contribute to the
b — s + v amplitude. However, with reasonable values for squark and sneutrino

masses, the constraint is weak.
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Figure 2.2: R, contribution to K+ — w*vo with one A[; # 0.

2.3 Kt —atvp

The tree level Feynman diagram in Fig.2.2 generates an effective Hamiltonian
which contributes to the branching ratio for K+ — wn*vp. Using a Fierz rear-

rangement, a straightforward evaluation of this diagram gives

2
1 A;k * 3 i
Hp, = _Z—JTE;—I(VKMﬂVKMjQ(3L’Y“dL)(VLi’Y#VLi)‘ (2.21)

’ da
There is also a Standard Model contribution to this decay [52]. This is an
order of magnitude lower than the existing experimental limit. To obtain a bound
on the I, coupling, we shall assume that the &, | effects dominate the decay rate.

As the matrix element for this semi-leptonic decay factors into a leptonic and

a hadronic element, the isospin relation
{m* ()57 dIK* (K)) = vV2(r° (p) [57,u[K* (K)) (2.22)

can be used to relate I[K+ — ntvp] to T[KT — 7%ve*]. The effective Hamil-

tonian for the neutral pion decay channel arises from the spectator decay of the
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strange quark. It is

4GF ., _ _
Hesr = T; VimoBLr*u)(Privuers)- : (2.23)

So in the limit where the lepton masses can be neglected,

2 2 2

4 *

N lVKMﬂVKszl

4G Fm2 )
F1% g

K+ — 7r°ue+] B Vol (2:24)

F[K+ — 7T+Vz'l7i] _ (
This ratio is valid for 7 = 1,2 or 3, since in the massless neutrino and electron
approximation, the integrals over phase space in the numerator and denominator

cancel. So using BR[K*T — ntwvp] < 5.2 x 107° [54] (90%CL) and BR[K+ —

nOvet] = 0.0482 [50], the constraint is

m;
Fl < 0. — k. ) .
kal 0.012 (100 GV (90%CL) (2.25)

for j = 1 or j = 2. Using |Vkars| > 0.004 [50] and |Vigaes| > 0.03 [50], a

conservative upper bound for A, is

100 GeV

| Nigel < 0.52 (M) (90%CL). (2.26)

2.4 D'—D° Mixing

If there is only one :\,-]-k in the mass basis, then from Eqn.(2.9) it is clear that
flavor changing neutral current processes will occur in the charge +2/3 quark
sector. Rare processes such as D°-D° mixing, D° — ptpu~ and Dt — oHiti~, for
example, may be used to place tight constraints on 5\%. For illustrative purposes,

in this section we will consider D°—D? mixing.
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The interactions in Eqn.(2.9) generate box diagrams identical to those dis-
cussed in the previous sections if both the internal sneutrino (neutrino) propa-
gators are replaced with charged slepton (lepton) propagators and .the external
quarks lines are suitably corrected. Using the same approximations that were

made earlier, the &, effects generate the following effective Hamiltonian

1
He, = Togm

i |
m.. pl
i dri

: ( L ;n;—) ((Viea)2s (Viem)1;)* (v ur)?. (2:27)

With fp = 200 MeV [48], mp = 1864 MeV [50], and [(Am)eyp| < 1.32%x 10710 MeV

[50] (90%CL), the constraint on Aijfor j=1orj=2is

2 2\ —1
At < 0.16((M) + (M) ) (90%CL). (2.28)

miz mJRk
2.5 Summary

In this chapter we have argued that R-parity breaking interactions always
lead to flavor changing neutral current processes. It is possible that there is a
single R, coupling in the charge +2/3 quark sector. But requiring consistency
with electroweak symmetry breaking demands that 2, couplings involving all the
charge —1/3 quarks exist. That is, a single coupling scheme may only be possible
in either the charge 2/3 or the charge —1/3 quark sector, but not both. As a result,
flavor changing neutral current processes always exist in one of these sectors. We
have used K+ — n+vp, K°— K° mixing, B~ B° mixing and D°~ D° mixing
to constrain the [, couplings. If there is CKM-like mixing in the charged —1/3
quark sector, then the constraints are quite stringent; see Table 2.1. The tightest
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constraint is on ;jkl for = 1,2 and any 7 and k. This comes from the rare decay
K+ — ntvi. The constraints we obtain for the first two generation couplings are

more stringent than those presently existing in the literature.
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35k

Vi v

111 | 0.012¢ § 211 0.012* || 311 | 0.012¢

112} 0.012¢ §j 212 | 0.012* || 312 | 0.012¢

113 | 0.012% } 213 | 0.012* || 313 | 0.012°

121 0.012% || 221 0.012¢ j§ 321 | 0.012¢

122 | 0.012° || 222 0.012¢ § 322 | 0.012¢

123 ] 0.012* || 223 | 0.012® §j 323 | 0.012¢

131 }0.19° || 231 |0.19® | 331 |o0.19°

132 1 0.19° | 232 |0.19° || 332 |0.19

133 | 0.001° || 233 | 0.19° || 333 | 0.19°

Table 2.1: Constraints on ],\gjk from: (a) Kt — ntwvp (90%CL); (b) b — sup
(90%CL) [55]; (c) ve mass (90%CL) [23]. These constraints were obtained as-
suming C' K M-like mixing in the charged —1/3 quark sector. All limits are for

100 GeV sparticle masses.

37




Chapter 3

Improving the Fine Tuning in Models of Low
Energy Gauge Mediated Supersymmetry

Breaking

In this chapter, the fine tuning in models of low energy gauge mediated su-
~ persymmetry breaking required to obtain the correct Z mass is quantified. To
alleviate the fine tuning problem, a model with a non-minimal messenger sector is
presented. This chapter is organized as follows. In section 3.1, we briefly review
both the “messenger sector” in low energy gauge mediated SUSY breaking models
that communicates SUSY breaking to the Standard Model and the pattern of the
sfermion and gaugino masses that follows. Section 3.2 quantifies the fine tuning
in the minimal model using the Barbieri-Giudice criterion [14].

In the minimal model, the messenger fields form complete SU(5) representa-
tions. Section 3.3 describes a toy model with split (5 + 5) messenger represen-
tations that improves the fine tuning. To maintain gauge coupling unification,
additional color triplets are added to the low energy theory. They acquire a mass
of O(500) GeV by a coupling to a gauge singlet. The fine tuning in this model is

improved to ~ 40%. The sparticle phenomenology of this model is also discussed.
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In section 3.4, we discuss a version of the toy model where the above mentioned
singlet generatés the u and p2 terms. This is identical to the Next-to-Minimal
Supersymmetric Standard Model (NMSSM) [56] with a particular paftern for the
soft SUSY breaking operators that follows from gauge mediated‘ SUSY breaking
and our solution to the fine tuning problem. We show that this model is tuned to
~ 20%, even if LEP does not discover SUSY/light Higgs. We also show that the
NMSSM with one complete messenger (5 + 5) (and extra vector-like quintets) is
fine tuned to ~ 2%.

- We discuss, in section 3.5, how it is possible to make our toy model compatible
with a Grand Unified Theory (GUT) [6] based upon the gauge group SU(5) x
SU(5). The doublet-triplet splitting mechanism of Barbieri, Dvali and Strumia
[57] is used to split both the messenger representations and the Higgs multiplets. In
section 3.6, we present a model in which all operators consistent with symmetries
are present and demonstrate that the low energy theory is the model of section
3.4. In this model R-parity (R,) is the unbroken subgroup of a Z, global discrete
symmetry that is required to solve the doublet—triplet splitting problem. Our
model has some metastable particles which might cause a cosmological problem.
In appendix A, we give the expressions for the Barbieri-Giudice parameters (for

the fine tuning) for the MSSM and the NMSSM.

3.1 Messenger Sector

In the models of low energy gauge mediated SUSY breaking [31, 58] (henceforth
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called LEGM models), SUSY breaking occurs dynamically in a “hidden” sector of
the theory at a scale Ay, that is generated through dimensional transmutation.
SUSY breaking is communicated to the Standard Model fields in two étages. First,
a non-anomalous U(1) global symmetry of the hidden sector is weakly gauged.
This U(1)x gauge interaction communicates SUSY breaking from the original
SUSY breaking sector to a messenger sector at a scale Amess ~ @xAgyn/(47)
as follows. The particle content in the messenger sector consists of fields @,
®_ charged under this U(1)x, a gauge singlet field S, and vector-like fields that
carry Standard Model quantum numbers (henceforth called messenger quarks and
leptons). In the minimal LEGM model, there is one set of vector-like fields, g, I,
and ¢, | that together form a (5 +5) of SU(5).! This is a suffucient condition
to maintain unification of the SM gauge couplings. The éuperpotential in the

minimal model is
Winess = Ao®,®_S + %,\Ss3 + AgSqq + NS (3.1)
The scalar potential is
V=3 |E* +milo,[* +milo_[. (3-2)
B

In the models of [31, 58], the @, ®_ fields communicate (at two loops) with the

hidden sector fields through the U(1) gauge interactions. Then, SUSY breaking in

!In this chapter, to avoid confusion with the SSM fields, we use the notation ¢ and { for the
messenger superfields and their fermionic components (with tildes for scalar components), and

O and L for the squark and slepton SU (2),, doublets of the SSM.
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the original sector generates a negative value ~ — (axAgn)’ /(47)? for the mass
parameters m2, m? of the ¢, and ¢_ fields. This drives vevs of O (Amess) for the
scalar components of both &, and ®_, and also for the scalar and F—component
of S if the couplings As, gx and Ap satisfy the inequalities derived in [32, 59].2
Generating a vev for both the scalar and F-component of S is crucial, since this
generates a non-supersymmetric spectrum for the vector-like fields ¢ and [. The
spectrum of each vector-like messenger field consists of two complex scalars with
masses M? + B and two Weyl fermions with mass M where M = AS, B = \Fg
and A is the coupling of the vector-like fields to S. Since we do not want the
SM to be broken at this stage, M2 — B >0. In the second stage, the messenger
fields are integrated out. As these messenger fields have SM gauge interactions,
SM gauginos acquire masses at one loop and the sfermions and Higgs acquire soft
scalar masses at two loops [19]. The gaugino masses at the scale at which the

messenger fields are integrated out, A,,.,s =~ M are [58]

Fg

Mg = 3_9_(_27’:_2{3;)/\3[]3}, Y Ng(m)fi (m) : (3-3)

The sum in Eqn.(3.3) is over messenger fields (m) with normalization
Tr(T°T®) = N§(m)6® where the T’s are the generators of the gaugé group G in
the representation R, fi(z) = 1+0(z), and Asysy = B/M = Fs/S = xApess With

xz = B/M?. If all the dimensionless couplings in the superpotential are ~ O(1),

2This point in field space is a local minimum. There is a deeper minimum where SM is broken
[32, 59]. To avoid this problem, we can, for example, add another singlet to the messenger sector

[32]. This does not change our conclusions about the fine tuning.
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then z cannot be much smaller than one. Heﬁceforth, we will set Agpsy = Apess-
The exact one loop calculation [60] of the gaugino mass shows that fi(r) < 1.3
for z < 1. The soft scalar masses at Apess are [58] |
2

me = 2Wysy T NE(mICR(e) (2=} 1 (B5). 69
where C§(s;) is the Casimir of the representation of the scalar i in the gauge group
G and fo(z) = 14 O(x). The exact two loop calculation [60] which determines f;
shows that for z <0.8 (0.9), f» differs from one by less than 1%(5%). Henceforth

we shall use fi{z) =1 and fo(z) = 1. In the minimal LEGM model

Amess
MG’(Amess) - 'aG(Tﬂ_—)'Amess’ (35)

M (Amess) = 2AZ%,,, X ' (3.6)

TNESS

( o (aa(g;:ess))? LG (az(i;ness))Q L (al(AZ:s)yy) |

where Q = T3, +Y and ¢ is the SU(5) normalized hypercharge coupling. Further,
C3; = 4/3 and C> = 3/4 for colored triplets and electroweak doublets respectively.
The spectrum in the models is determined by only a few unknown parameters.

As Eqns.(3.3) and (3.4) indicate, the SUSY breaking mass parameters for the

Higgs, sfermions and gauginos are
Mg, Mg :mi,mH,.,MW :méR,Mé ~ Q3 Qo ! (. (37)

The scale of Ap,ess is chosen to be ~ 100 TeV so that the lightest of these particles
escapes detection. It follows that the intrinsic scale of supersymmetry breaking,
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Agyn, is ~ 10000 TeV. The goldstino decay of the lightest standard model super-
partner then occurs outside the detector [61]. The phenomenology of the minimal

LEGM model is discussed in detail in [61].

3.2 Fine Tuning in the Minimal LEGM

A desirable feature of gauge mediated SUSY breaking is the natural suppression
of FCNC processes since the scalars with the same gauge quantum numbers are
degenerate [19]. But, the minimal LEGM model introduces a fine tuning in the
Higgs sector unless the messenger scale is low. This has been previously discussed
in [31, 32] and quantified more recently in [33]. We outline the discussion in order
to introduce éome notation.

The superpotential for the MSSM is
W = pH,Hy + Wyupawe- (3.8)
The scalar potential is
V = 3| H,|? + p3|Hy® — (5 H Hy + h.c.)+D-terms + Vi_jo0p, (3.9)

where Vi_jy0p is the one loop effective potential. The vev of H, (H,), denoted by

vy (va), is responsible for giving mass to the up (down)-type quarks, p2 = m3; +u°,

ps = my, + p® and p3, * my , my are the SUSY breaking mass terms for the

312 is often written as By.
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Higgs fields. * Extremizing this potential determines, with tan 8 = v, /vy,

1 o _ B —pjtan®p

13 ’
sin2f3 = 2 —, 3.11
b uy+ N% ( )

where ﬁ?‘ = U7 + 20Vi_toop/Ov}. For large tan 8, m%/2 ~ —(m%_ + p?). This
indicates that if [m}_| is large relative to m%, the y® term must cancel this large
number to reproduce the correct value for m%. This introduces a fine tuning in
the Higgs potential, that is naively of the order m3/(2|m% |). We shall show that
this occurs in the minimal LEGM model.

In the minimal LEGM model, a specification of the messenger particle con-
tent and the messenger scale A,,ss fixes the sfermion and gaugino spectrum
‘at that scale. For example, the soft scalar masses for the Higgs fields are
= 2{Amess) Amess/{(47). Renormalization Group (RG) evolution from A, to
the electroweak scale reduces m%_ due to the large top quark Yukawa coupling,
A¢, and the squark soft masses. The one loop Renormalization Group Equation
(RGE) for m}, is (neglecting gaugino and the -trilinear scalar term (H,Qsis)

contributions )

dmy, (1) 3N
dt 8x2?

(Mg, (8) + mi (1) + m3_ (1)), (3.12)

which gives

2
Amess

3A
o2 22 2 2 Dmess
)) = my, o e (my, o + Mg o + ng,o) In( e ), (3.13)

mg

mi;, (t & In(

mess

4The scale dependence of the parameters appearing in the potential is implicit.
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where the subscript 0 denotes the masses at the scale Apes. On the right-hand
side of Eqn.(3.i3) the RG scaling of m%s and mj; has been neglected. Since the
logarithm |t| ®In{Amess/m;) is small, it is naively expected that m%,u will not be
driven negative enough and will not trigger electroweak symmetry breaking. How-
ever since the squarks are ~ 500 GeV (1 TeV) for a messenger scale Apess = 50
TeV 7(100 TeV), the radiative corrections from virtual top squarks are large since
the squarks are heavy. A numerical solution of the one loop RGE (including gaug-
ino and the trilinear scalar term (H,Q3@S) contributions) determines —mjy, =(275
GeV)? ((550 GeV)?) for Apess =50 TeV (100 TeV) and setting A; = 1. Therefore,
m%/(2|m}, |) ~0.06 (0.01), an indication of the fine tuning required.

To reduce the fine tuning in the Higgs sector, it is necessary to reduce |m%,|;
ideally so that m}_ =~ —0.5m%. The large value of [m} | at the weak scale is a
consequence of the large hierarchy in the soft scalar masses at the messenger scale:
mi, <my, <K m"’~3,ﬁ§ . Models of sections 3.3, 3.4 and 3.6 attempt to reduce the
ratio mz3 /m%lu at the messenger scale and hence improve the fine tuning in the
Higgs sector.

The fine tuning may be quantified by applying one of the criteria of [14, 15].
The value O* of a physical observable O will depend on the fundamental param-
eters ()\;) of the theory. The fundamental parameters of the theory are to be
distinguished from the free parameters of the theory which parameterize the so-
lutions to O(\;) = O*. If the value O* is unusually sensitive to the underlying

parameters (A;) of the theory, then a small change in ); produces a large change

45




in the value of O. The Barbieri-Giudice function

AF 80

c(0,N) = 09N

(3.14)
0=0*

quantifies this sensitivity [14]. This particular value of O is fine tuned if the
sensitivity to \; is larger at O = O* than at other values of O [15]. If there are
values of O for which the sensitivity to A; is small, then it is probably sufficient
to use ¢{O, A;) as the measure of fine tuning.

To determine c(m%, );), we performed the following. The sparticle spectrum in
the minimal LEGM model is determined by the fqur parameters Apegs, 13, pt, and
tan 3. 3 The scale Ay, fixes the boundary condition for the soft scalar masses,
and an implicit dependence on tan 3 from );, Ay and A, arises in RG scaling® from
BRG = Amess to the weak scale, that is chosen to be % = m? +1(m2+m2). The
extremization conditions of the scalar potential (Eqns.(3.10) and (3.11)) together
with mz and m; leave two free parameters that we choose to be A, and tan 3
(see appendix for the expressions for the fine tuning functions).

A numerical analysis yields the value of c(m%, u?) that is displayed in Fig.3.1
in the (tan B, Apess) plane.

We note that ¢(m?%, 1) is large throughout most of the parameter space, except
for the region where tan 3 & 5 and the messenger scale is low. A strong constraint
on a lower limit for Ap,.ss comes from the right-handed selectron mass. Contours

me, = 75 GeV (~ the LEP limit from the run at /s &~ 170 GeV [62]) and 85 GeV

SWe allow for an arbitrary p at Amess-
SThe RG scaling of \; was neglected.




(Tev)

90
80
70

60

50

40

eV,

alfowed

80 40

70

60

50

40

Figure 3.1: Contours of ¢(m%; u?) =(10, 15, 20, 25, 40, 60) for a MSSM with a
messenger particle content of one (5 + 5). In Figs.(a) and (¢} sgn(p) = —1 and in
Figs.(b) and (d) sgn(p) = +1. The constraints considered are: (I) mz, =75 GeV ,
(II) mgo +myg = 160 GeV, (III) me, =85 GeV, and (IV) myo + msg = 180 GeV.

A central value of my,, =175 GeV is assumed.
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(~ the ultimate LEP2 limit [63]) are also plotted. The (approximate) limit on the
neutralino masses from the LEP run at /s ~ 170 GeV, m,9 +m,o = 160 GeV and
the ultimate LEP2 limit, m,o + m,g ~ 180 GeV are also shown in f‘igs.3.1a and
3.1c for sgn(p) = —1 and Figs.3.1b and 3.1d for sgn(p) = +1. The constraints
from the present and the ultimate LEP2 limits on the chargino mass are weaker
than vor comparable to those from the selectron and the neutralino masses and
are therefore not shown. If mz were much larger, then ¢ ~ 1. For example, with
mz = 275 GeV (550 GeV) and Agpess= 50 (100) TeV, c(m%; u?) varies between
land 5for 1.4 < tanf < 2, and is = 1 for tan8 > 2. This suggests that the
interpretation that a large value for ¢(m?%; u?) implies that myz is fine tuned is
probably correct.

From Fig.3.1 we conclude that in the minimal LEGM model a fine tuning of
approximately 7% in the Higgs potential is required to produce the correct value
for mz. Further, for this fine tuning the parameters of the model are restricted to
the region tan 8 2 5 and A, = 45 TeV, corresponding to m;, ~ 85 GeV. We
have also checked that adding more complete (5»+ 5)’s does not reduce the fine

tuning.

3.3 A Toy Model to Reduce Fine Tuning

3.3.1 Model

In this section the particle content and couplings in the messenger sector that
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are suffucient to reduce |m%}_ | is discussed. The aim is to reduce mza /m%, at the
scale A, cqs-

The idea is to increase the number of messenger leptons (SUA(2) d;)ublets)
relative to the number of messenger quarks (SU(3) triplets). This reduces both
m?és /m%. and 77”%3 /mZ, at the scale Apes, (see Eqn.(3.4)). This leads to a smaller
value of [m3};_| in the RG scaling (see Eqn.(3.13)) and the scale Apess can be lowered
since mg, is larger. For example, with three doublets and one triplet at a scale
Amess = 30 TeV, so that mg, ~ 85 GeV, we find |[m}, (mg,)| =~ (100GeV)? for

A+ = 1. This may be achieved by the following superpotential in the messenger

sector

. — — 1
W = /\qISqlq‘l <+ A115l1l1 + /\lzslglg + /\13Sl3l3 -+ 5/\553

1
FAsSP_D, + ngN3 + A Ngo@o + Ay N3 G, (3.15)

where N is a gauge singlet. The two pairs of triplets ¢», @ and g3, §3 are required at
low energies to maintain gauge coupling unification. In this model the additional
leptons Iy, I and Is, I3 couple to the singlet S, whereas the additional quarks couple
to a different singlet NV that does not couple to the messenger fields &, ®_. This
can be enforced by discrete symmetries (we discuss such a model in section 3.6).
Further, we assume the discrete charges also forbid any couplings between N and
S at the renormalizable level (this is true of the model in section 3.6) so that

SUSY breaking is communicated first to S and to NV only at a higher loop level.
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3.3.2 Mass Spectrum

Before quantifying the fine tuning in this model, the mass spectrum of the
additional states is briefly discussed. While these fields form complete represen-
tations of SU(5), they are not degenerate in mass. The vev and F-component
of the singlet S gives a mass A,ss to the messenger lepton multiplets if the
F-term splitting between the scalars is neglected. As the squarks in ¢; + ¢;
(1=2,3) do not couple to S, they acquire a soft scalar mass from the same two
loop diagrams that are responsible for the masses of the MSSM squarks, yielding
mg = 3(Amess) ASUgy/(\/é’/r). The fermions in ¢ + § also acquire mass at this
scale since, if either Ay, or Ay, ~ O(1), a negative value for m% (the soft scalar
(mass)? of N) is generated from the A¢Vqq coupling at one loop and thus a vev for
N ~ myg is generated. The result is my/m, ~ V67 [ at3(Amess } (Amess/ Asusy) = 85.

The mass splitting in the extra fields introduces a threshold correction to
sin? @y, if it is assumed that the gauge couplings unify at some high scale
Mgur ~10'% GeV. We estimate that the splitting shifts the prediction for
sin”§w by an amount = —7x 107*In(m,;/m,)n, where n is the number of split
(5+5).7 In this case n =2 and m;/m, ~ 85, so Ssin’fy ~ —6 x 1073, If
as(Mz) and aen(Mz) are used as input, then using the two loop RG equations

sin? @y (MS) = 0.233 £ O(107%) is predicted in a minimal SUSY-GUT [8]. The

"The complete (5 + 8), i.e., l1,11 and g1,q1, that couples to S is also split because N; # X,
at the messenger scale due to RG scaling from Mgyr to Apess- This splitting is small and

neglected.




error is a combination of weak scale SUSY and GUT threshold corrections [8].
The central vaiue of the theoretical prediction is a few percent higher than the
measured value of sin® 6y (MS) = 0.231 £ 0.0003 [4]. The split extra fields shift
the prediction of sinfy to ~ 0.227 £ O(10~%) which is a few percent lower than
the experimental value. In sections 3.5 and 3.6 we show that this spectrum is
derivéble from a SU(5) x SU(5) GUT in which the GUT threshold corrections to
sin? §y could Be ~ O(1073) — O(107?) [64]. It is possible that the combination
of these GUT threshold corrections and the split extra field threshold corrections

make the prediction of sin® @ more consistent with the observed value.

3.3.3 Fine Tuming

To quantify the fine tuning in these class of models the analysis of section 3.2 is
applied. In our RG analysis the RG scaling of A, the effect of the extra vector-like
triplets on the RG scaling of the gauge couplings, and weak scale SUSY threshold
corrections were neglected. We have checked a posteriori that this approximation
is consistent. As in section 3.2, the two free parémeters are chosen to be A,
and tan 3. Contours of constant c(m%, u?) are presented in Fig.3.2.

We show contours of myo+m,9 = 160 GeV, and m;, = 75 GeV in Fig. 3.2a for
sgn{u) = —1 and in Fig.3.2b for sgn(u) = +1. These are roughly the limits from
the LEP run at /s ~ 170 GeV [62]). The (approximate) ultimate LEP2 reaches
(63]: my0 +mye = 180 GeV and mg, = 85 GeV are shown in Fig.3.2c for sgn(p) =

—1 and Fig.3.2d for sgn(p) = +1. Since p?*(~ (100 GeV)?) is much smaller in these
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Figure 3.2: Contours of ¢(m%; p?) =(1, 2, 3, 5, 7, 10) for a MSSM with a messenger
particle content of three (I +/)’s and one (g +q). In Figs.(a) and (c) sgn(u) = -1
and in Figs.(b) and (d) sgn{u) = +1. The constraints considered are: (I) mz, =75
GeV , (II) mgo +mgg = 160 GeV, (ITT) mg, =85 GV, and (IV) mgo -+ mgg = 180

GeV. A central value of my,, =175 GeV is assumed.
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models than in the minimal LEGM model, the neutralinos (x? and x3) are lighter
so that the neutralino masses provide a stronger constraint on A, than does
the slepton mass limit. The chargino constraints are comparable to tﬁe neutralino
constraints and are thus not shown. It is clear that there are areas of parameter
space in which the fine tuning is improved to ~ 40% (see Fig.3.2).

While this model improves the fine tuning required of the p parameter, it would
be unsatisfactory if further fine tunings were required in other sectors of the model,
for example, the sensitivity of m% to p2, Apess and ; and the sensitivity of m; to
12, 12, Apmess and A;. We have checked that all these are less than or comparable
to ¢(m%; u?). We now discuss the other fine tunings in detail.

For large tan 8, the sensitivity of mZZ to u2, c(m%;u3) < 1/tan? B, and is
therefore smaller than c(m%; 4?). Our numerical analysis shows that for all tan 8
c(mZ; u3) S e(m; 1?).

In the one loop approximation m%Iu and m% , at the weak scale are propor-

tional to A2

ress Since all the soft masses scale with Ay, and there is only a

weak logarithmic dependence on Aj,ess through the gauge couplings. We have
checked numerically that (A2,,,./m% )}(Om%, JOA2,..) ~ 1. Then, c(m%; AZ,,,) =
c(m%; my,) + c(mZz;my,). We find that c(m%; A2,,,,) ~ c(m%; u2)+i over most of
the parameter space.

In the one loop approximation, m% (%) is

: 322
my, () = my, o+ (M o+ Mae o + m% o) (et — 1). (3.16)
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Then, using ¢ = In(Apess/mp,) = In(v6r/as) =~ 4.5 and A\, = 1, ¢(m%; ),) is (see

appendix)

4 6m? (¢) mZ
2. ~ Hy ~ Qs
cmzi M) ~ 25 =53 ~ 0 5 GevE:

(3.17)

This result measurés the sensitivity of m% to the value of \; at the electroweak
scale. While this sensitivity is large, it does not reflect the fact that A\, (Mp;) is
the fundamental parameter of the theory, rather than Ai(myeqr). We find by both
numerical and analytic computations that, for this model with three (5 + 5)’s in

addition to the MSSM particle content, dA\(Muyear) = 0.1 X8 A:(Mp;), and therefore

2

2. ~ Qs
elmz A(Me1)) ~ 5050 Gevye:

(3.18)

For a scale of Apess = 50 TeV (mg, &~ 600 GeV), c(m%; \(Mp;)) is comparable
to c¢(m%; u?) which is =~ 4 to 5. At a lower messenger scale, Apess ~ 35 TeV,
corresponding to squark masses of ~ 450 GeV, the sensitivity of m% to A(Mp;)
is & 2.8. This is comparable to c(m%; u?) evaluated at the same scale.
We now discuss the sensitivity of m; to the fundamental parameters. Since,
-1k

2 2. i02 332
m; = 3v°sin® BA;, we get

cos® B dtan 3
sin3 O\

1
c(m; Ai) = O + §c(m§; M) + M. (3.19)

Numerically we find that the last term in ¢(my; A;) is small compared to c(m%; ;)
and thus over most of parameter space c(my; A} = sc(m%; ;). As before, the
sensitivity of m; to the value of \; at the GUT /Planck scale is much smaller than

the sensitivity to the value of A\; at the weak scale.
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mél,z mﬁ'l:,z

687 616 612 319 125

md.f mi‘z er méf

mQ Mye
656 546

Table 3.1: Soft scalar masses in GeV for messenger particle content of three (I+1)’s

and one ¢ + ¢ and a scale A,z = 50 TeV.

3.3.4 Sparticle Spectrum

The sparticle spectrum is now briefly discussed tb highlight deviations from
the mass relations predicted in the minimal LEGM model. For example, with
three doublets and one triplet at a scale of A = 50 TeV, the soft scalar masses
(in GeV) at a renormalization scale p%g; = m? + %(még +mi) = (630 GeV)?, for
A: = 1, are shown in Table 3.1. |

Two observations that are generic to this type of model are: (i) By construc-
tion, the spread in the soft scalar masses is less than in the minimal LEGM model.

(ii) The gaugino masses do not satisfy the one loop SUSY-GUT relation M;/c; =

Q

constant. In this case, for example, Ms/a3 : My/ap ~ 1:3 and Ms/az : My /oy
5:11 to one loop.

We have also found that for tan 3 2 3, the Next Lightest Supersymmetric
Particle (NLSP) is one of the neutralinos, whereas for tan 8 < 3, the NLSP is the
right-handed stau. Further, for these small values of tan 3, the three right-handed
sleptons are degenerate within =~ 200 MeV.
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3.4 NMSSM

In section 3.2, the p term and the SUSY breaking mass u? were put in by
hand. There it was found that these parameters had to be fine tuned in order to
correctly reproduce the observed Z mass. The extent to which this is a “problem”
may only be evaluated within a specific model that generates both the p and u?
terms.

For this reason, in this section a possible way to generate both the y term and
©2 term in a manner that requires a minimal modification to the model of either
section 3.1 or section 3.3 is discussed. The easiest way to generate these mass terms
is to introduce a singlet N and add the interaction N H,Hy to the superpotential
(the NMSSM) [56]. The vev of the scalar component of N generates p and the
vev of the F-component of N generates p3.

We note that for the “toy model” solution to the fine tuning problem (section
3.3), the introduction of the singlet occurs at no additional cost. Recall that in
that model it was necessary to introduce a singlet IV, distinct from S, such that
the vev of NV gives mass to the extra light vector-like triplets, ¢;, ¢ (i = 2,3)
(see Eqn.(3.15)). Further, discrete symmetries (see section 3.6) are imposed to
isolate N from SUSY breaking in the messenger sector. This last requirement is
necessary to solve the fine tuning problem: if both the scalar and F-component of
N acquired a vev at the same scale as S, then the extra triplets that couple to NV

would also act as messenger fields. In this case the messenger fields would form
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complete (5 + 5)’s and the fine tuning problem would be reintroduced. With N
isolated from t.he messenger sector at tree level, a vev for V at the electroweak
scale is naturally generated, as discussed in section 3.3.

We also comment on the necessity and origin of these extra triplets. Recall
that in the toy model of section 3.3 these triplets were required to maintain the
SUSY—GUT prediction for sin? 8. Further, we shall also see that they are required
in order to generate a large enough —m?% (the soft scalar (mass)? of the singlet
N). Finally, in the GUT model of section 3.6, the lightness of these triplets (as
compared to the missing doublets) is the consequence of a doublet-triplet splitting
mechanism.

The superpotential in the electroweak symmetry breaking sector is

W = /\TNN?’ + A,Nq7 — Ay NH, H,, (3.20)

which is similar to an NMSSM except for the coupling of N to the triplets. The
superpotential in the messenger sector is given by Eqn.(3.15).

The scalar potential is 8

V. = M |FP+m|NP? +my, |Ha? + mi, |Hy|* + D-terms

2

—(AgNH,Hy + h.c.) + Vi_joop- (3.21)

The extremization conditions for the vevs of the real components of N, H, and

8In models of gauge mediated SUSY breaking, Ag=0 at tree level and a non-zero value of

Apg is generated at one loop. The trilinear scalar term Ay /N? is generated at two loops and is

neglected.




Hy, denoted by vy, v, and vy respectively (with v = 4/v2 + v2 = 250 GeV), are

2 1
UN(ﬁZ?V + )\3{2_ + )\?V’U?V - /\H)\N'qud) - —~AH’Uu'I)d = 0, (322)
2 V2
I, i} — @3 tan® B
l = 2
3"z tan2B—1 ’ (3.23)
T
sin28 = 2—m——, 3.24
i3+ i (324
with
1
y o= -2-,\%1;12\,, (3.25)
2 1o 1 2 1
Mg = *'2‘/\3%% + 5/\H)\NUN + AHE”N: (3.26)
‘ Vi_
% S 2?.50%02; i = (u,d, N). (3.27)
5

We now comment on the expected size of the Yukawa couplings A,, Ay and
Ax. We must use the RGE’s to evolve these couplings from their values at Mgyt
or Mp to the weak scale. The quarks and the Higgs doublets receive wavefunction
renormalization from SU(3) and SU(2) gauge interactions respectively, whereas
the singlet N does not receive any wavefunction renormalization from gauge in-
teractions at one loop. So, the couplings at the weak scale are in the order:
Ag ~ O(1) > Ag > Ay if they all are O(1) at the GUT/Planck scale.

We remark that without the N¢q coupling, it is difficult to drive a vev for N

as we now show below. The one loop RGE for m?; is

dm2,  6)2 2)2 3\2
dtN A~ —gﬁ’-m?\,(t)-l—g#zi(m?{u(t)+m§id(t)+m?v(t))+-8-7r—g(m§(t)+m§-(t)). (3.28)
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Since N is a gauge-singlet, m% = 0 at Ass. Further, if A; = 0, an estimate for
m% at the weak scale is then

2

2)\ A €88
my ~ —-#(qumo +my, o) In ( JHd ) , (3.29)

i.e., Ay drives m% negative. The extremization condition for vy, Eqn.(3.22), and

using Eqns.(3.24) and (3.26) (neglecting Ag) shows that

2 2 2)2 2 1)2 2 2 2 Amess
mN + AH‘E‘ ~ AH ‘“2‘ - éﬁ(m}lu’o + de,O) ln mH (3.30)
d

has to be negative for N to acquire a vev. This implies that m%, and m%, at Apess
have to be greater than ~ (350 GeV)? which implies that a fine tuning of a few
percent is required in the electroweak symmetry breaking sector. With A, ~ O(1),

however, there is an additional negative contribution to m% given approximately

by
3N2

Ap, ,
—g;r_Q(mq,o)2 + m%,o) In (—esi) . (3.31)

mg

This contribution dominates the one in Eqn.(3.29) since A, > Ay and the squarks
- §, q have soft masses larger than the Higgs. Thus, with A, # 0, m% + A\%40?/2 is
naturally negative.

Fixing mz and m;, we have the following parameters : Apess, Ags Amr, An, tan 3,
and vy. Three of the parameters are fixed by the three extremization conditions,
leaving three free parameters that for convenience are chosen to be Ap,ess, tan 8 >0,
and Ayz. The signs of the vevs are fixed to be positive by requiring a stable vacuum

and no spontaneous CP violation. The three extremization equations determine
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the following relations

2 o 1. . 9 1
AN = W};(M—I—Z)\Hmn?ﬁv ———\EAH'UN), ' (3.32)
oy = ‘/%#‘ (3.33)
H
A = AnA —1—sin2ﬁv2—)\2 W — S22 v2+———1——AHsin2,6—1i (3.34)
N N H2 NYN T 57 H 2\/5 UN’
where
1 2 tanQ,B—fh2
2 2 H,, H,
= —z 35
M gzt 1—tan?g8 ' (3:35)
2u; = sin2B(2u® + Wy, +my,). (3.36)

The superpotential term N H,H, couples the RGE’s for m%,, m%, and m%. Thus
the values of these masses at the electroweak scale are, in general, complicated
functions of the Yukawa parameters A, Ay, Ay and A,. In our case, two of these
Yukawa parameters (A, and Ay) are determined by the extremization equations
and a closed form expression for the derived quantities cannot be found. To
simplify the analysis, we neglect the dependence of mff{u and m% L, on Ay induced
in RG scaling from Apes, to the weak scale. Then m}; and mj; depend only on
Ajness and tan 3 and thus closed form solutions for Ay, vy and % can be obtained
using the above equations. Once % at the weak scale is obtained, the value of
Mg is obtained by using an approximate analytic solution. An exact numerical

solution of the RGE’s then shows that the above approximation is consistent.

3.4.1 Fine Tuning and Phenomenology

The fine tuning functions we consider below are ¢(O; Ag), c(O; Ax), c(O; Ay,

60




c(0; Ag) and ¢(O; Apess) where O is either m% or m,. The expressions for the fine
tuning functions and other details are given in the appendix. In our RG analysis
the approximations discussed in subsection 3.3.3 and above were uséd and found
to be consistent. Fine tuning contours of c(m%; Ay) are displayed in Figs.3.3a and
Fig.3.3b for Ay = 0.1 and Figs.3.3c and 3.3d for Ay = 0.5. We have found by
numerical computations that the other fine tuning functions are either smaller or
comparable to ¢(m%; Ag). °

We now discuss the existing phenomenological constraints on our model and
also the ultimate constraints if LEP2 does not discover SUSY /light Higgs(h).
These are shown in Fiés.3.3a., 3.3c and Figs.3.3b, 3.3d respectively. We consider
the processes e*e™ — Zh, ete~— (h-+pseudoscalar), ete™— xTx ™, ete = x¥x3,
and ete™ — égé}, observable at LEP. Since this model also has a light pseudoscalar,
we also consider upsilon decays T— (v + pseudoscalar). We find that the model
is phenomenologically viable and requires a ~ 20% tuning even if no new particles
’are discovered at LEP2.

We begin with the constraints on the scalar and pseudoscalar spectra of this

model. There are three neutral scalars, two neutral pseudoscalars and one complex

charged scalar. We first consider the mass spectrum of the pseudoscalars. At the

%In computing these functions the weak scale value of the couplings Ay and Ay has
been used. But since Ay and Ay do not have a fixed point behavior, we have found that
/\H(MGUT)/AH(mZ) BAH(mz)/a/\H(MGUT) ~ 1 so that, for example, C(mzz;/\H(MGUT)) ~

e(m%; A (mz)).

61




(TeV) : @ (TeV) (b)
allowed

55f :, ; 55
50
45
40
35
30

25

A tanf
(TeV)

45

490

35

30

25

tanp , tanp
Figure 3.3: Contours of ¢(m%; Ag) for the NMSSM of section 3.4 and a messenger

particle content of three (I4-1)’s and one (¢+@). In Figs.(a) and (b), c(m%; Ax)=(4,
5, 6, 10, 15) and Ay =0.1. In Figs.(c) and (d), c(m%; Ag) =(3, 4, 5, 10, 15, 20) and
Ar=0.5. The constraints considered are: 5(I) my +m, = mz, (II) ms, =75 GeV,
(IIT) mgo + mgg = 160 GeV, (IV) my, = 92 GeV, (V) mg, =85 GeV, and (VI)
Mg +mge = 180 GeV. For Ay =0.5, the limit my;, & 70 GeV constrains tan 8 < 5
(independent of A,.ss) and is thus not shown. A central value of my,, =175 GeV

is assumed.
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boundary scale A, SUSY is softly broken in the visible sector only by the soft

scalar masses and the gaugino masses. Further, the superpotential of Eqn.(3.20)
has an R-symmetry. Therefore, at the tree level, i.e., with Ay =6, the scalar
potential of the visible sector (Eqn.(3.21)) has a global symmetry. This symmetry
is spontaneously broken by the vevs of N®| HE and HF (the superscript R denotes
the real component of fields), so that one physical pseudoscalar is massless at tree

level. Tt is

1
B \/va + v2sin’ 283

a (vNNI + vsin 28 cos BH! + vsin 28sin ﬁHé) ,  (3.37)

where the superscripts I denote the imaginary components of the fields. The

second pseudoscalar,

I I
Am-2yry He | Ha

, 3.38
Uy vsinf8  wvcosf (3.38)

acquires a mass
1
my = —2—/\H/\N’u12v(tan B+ cot 8) + ApAnv?sin 23 (3.39)

through the |Fy|? term in the scalar potential.
The pseudoscalar a acquires a mass once an Ag-term is generated, at one loop,
through interactions with the gauginos. Including only the wino contribution in

the one loop RGE, Ay is given by

~ Qg (Amess) Amess ) :
AH ~ 6 AT MQ/\H In ( Mg 2
M,

280GeV) GeV, (3.40)
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where M, is the wino mass at the weak scale. Neglecting the mass mixing be-
tween the two pseudoscalars, the mass of the pseudo-Nambu-Goldstone boson is

computed to be

9
m: = —=Aunv,vg/(vR + v?sin®23)

V2

U
(40)? (gf’l-) -2-8(’)”—(;"’6-\—,sin25( — 250592 2) (GeV)2.(3.41)
' sin’ 26 + (3550w

If the mass of a is less than 7.2 GeV, it could be detected in the decay T — a +1y

Q

[4]. Comparing the ratio of decay width for T — a+ v to T — p~ + ut [4, 65],

the limit
in?
— flanf —— <043 (3.42)
v (5558ey)? +sin® 28 |
is found.

Further constraints on the spectra are obtained from collider searches. The
non-detection of Z — scalar + a at LEP implies that the combined mass of the
lightest Higgs scalar and a must exceed ~ 92 GeV. Also, the process ete™ —Zh
may be observable at LEP2. For Ay = 0.1, the cpnstraint mp +me 2 92 GeV is
stronger than my, 2 70 GeV which is the limit from LEP at /s = 170 GeV [62].
The contour of my, +m, = 92 GeV is shown in Fig.3.3a. In Fig.3.3b, we show the
contour of mh.:—- 92 GeV (~ the ultimate LEP2 reach [66]). For Az = 0.5, we find
that the constraint my, 2 70 GeV is stronger than my +m, < 92 GeV and restricts
tan 3 < 5 independent of Apess. The contour my = 92 GeV is shown in Fig.3.3d.
We note that the allowed parameter space is not significantly constrained. We

find that these limits make the constraint of Eqn.(3.42) redundant. The left-right
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mixing between the two top squarks was neglected in computing the top squark
radiative corrections to the Higgs masses.
The pseudo-Nambu-Goldstone boson a might be produced along with the light-

est scalar h at LEP. The (tree-level) cross section in units of R = 87/s nb is

+,- s? 2 R me ’
(7(6 € -—)ha)%O.l5WA U(l,—,'—) y (3.43)

where g/ cos 8w is the Z(a0h — hda) coupling, and

v(z,y,2) = \ﬁx —y—2)2—4dyz. f h=cyNB + e, HE + ¢;HE, then

cos B e, —sin B ¢q

V(o508ay)? +sin® 26

We have numerically checked the parameter space allowed by m;, < 70 GeV and

= sin 23 (3.44)

Ag <0.5 and have found the production cross section for k a to be less than both
the current limit set by DELPHI [67] and a (possible) exclusion limit of 30 fb [66]
at /s &~ 192 GeV. The production cross-section for h A is larger than for h a
and A is therefore in principle easier to detect. However, for the parameter space
allowed by m, = 70 GeV, numerical calculations show that my4 & 125 GeV, so
that this channel is not kinematically accessible.

The charged Higgs mass is
mys = my, +my, +miy, + 24 (3.45)
which is greater than about 200 GeV in this model since m};, 2 (200 GeV)? for
Amess = 35 TeV andr as p® ~ —mj .
The neutralinos and charginos may be observable at LEP2 at /s ~ 192 GeV if

my+ S 95 GeV and M0 + M0 < 180 GeV. These two constraints are comparable,
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and thus only one of these is displayed in Figs.3.3b and 3.3d, for Ay = 0.1 and
Ay = 0.5 repectively. Also, contours of myo + myo = 160 GeV (~ the LEP
kinematic limit at /s &= 170 GeV) are shown in Figs.3.3a and 3.30.’ Contours of
85 GeV (~ the ultimate LEP2 limit) and 75 GeV (~ the LEP limit from /s &~ 170
GeV) for the right-handed selectron mass further constrain the parameter space.

The results presented in all the figures are for a central value of m;=175 GeV.
We have varied the top quark mass by 10 GeV about the central value of m;= 175
GeV and have found that both the fine tuning measures and the LEP2 constraints
(the Higgs mass and the neutralino masses) vary by ~ 30 %, but the qualitaﬁve
features are unchanged.

We see from Fig.3.3 that there is parameter space allowed by the present limits
in which the tuning is & 30 %. Even if no new particles are discovered at LEP2,
the tuning required for some region is ~ 20%.

It is also interesting to compare the fine tuning measures with those found in
the minimalb LEGM model (one messenger (5+ 5)) with an extra singlet N to
generate the u and p? terms.’ In Fig.3.4 the fine tuning contours for ¢(m%; Ay)
are presented for Ag=0.1.

Contours of mg, = 75 GeV and m,o + m,g = 160 GeV are also shown in
Fig.3.4a. For Ay = 0.1, the constraint m, + m, 2 92 GeV is stronger than

the limit my < 70 GeV and is shown in the Fig.3.4a. In Fig.3.4b, we show the

10We assume that the model contains some mechanism to generate —m% ~ (100GeV)? —

(200GeV)?; for example, the singlet is coupled to an extra (5 + 5).
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Figure 3.4: Contours of ¢(m%;Ag) =(50, 80, 100, 150, 200) for the NMSSM
of section 3.4 with Ay =0.1 and a messenger particle content of one (5+ 5).
The constraints considered are: (I) my + m, = myz, (II) mg, =75 GeV, (III)
mge+mge =160 GeV, (IV) my, =92 GeV, (V) mq, =85 GeV, and (VI) myg+myg =

180 GeV. A central value of my,, =175 GeV is assumed.
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(approximate) ultimate LEP2 limits, i.e., mj, = 92 GeV, myo + mye = 180 GeV
and mg, = 85 GeV. Of these constraints, the bound on the lightest Higgs mass
(either mp + my R 92 GeV or my, R 92 GeV) provides a strong IOWGI; limit on the
messenger scale. We see that in the parameter space allowed by present limits the
fine tuning is < 2% and if LEP2 does not discover new particles, the fine tuning
will be £ 1%. The coupling Ay is constrained to be not significantly larger than
0.1 if the constraint my, +m, < 92 GeV (or my, 2 92 GeV) is imposed and if the

fine tuning is required to be no worse than 1%.

3.5 Models Derived from a GUT

In this section, we discuss how the toy model of section 3.3 could be dérived
from a GUT model.

In the toy model of section 3.3, the singlets N and S do not separately couple
to complete SU(5) representations (see Eqn.(3.15)). If the extra fields introduced
to solve the fine tuning problem were originally part of (5 + 5) multiplets, then
the missing triplets (missing doublets) necessarily couple to the singlet S(N). The
triplets must be heavy in order to suppress their contribution to the soft SUSY
breaking mass parameters. If we assume the only other mass scale is Mgyr,
they must acquire a mass at Mgyr. This is just the usual problem of splitting a

(5 +5) [6]. For example, if the superpotential in the messenger sector contains

68




four (5 + 5)’s,
W = MS5151n + A2S5519510 + A3S5i3513 + )\435q5q, ‘ (3.46)

then the SU(3) triplets in the (5; + 5;)’s and the SU(2) doublet in (5, + 5,)
must be heavy at Mgyr so that in the low energy theory there are three doublets
and one triplet coupling to S. This problem can be solved using the method
of Barbieri, Dvali and Strumia [57] that solves the usual Higgs doublet-triplet
splitting problem. The mechanism in this model is attractive since it is possible
to make either the doublets or triplets of a quintet heavy at the GUT scale. We
next describe their model.
The gauge group is SU(5) x SU(5)’, with the particle content £(24, 1),

¥'(1,24),®(5,5) and $(5,5) and the superpotential can be written as

W = &5 (Msd3o5 +AT305 + NT'5.05)82 +
1 1
+=-MsTr(X?%) + §M21Tr(2'2) +

2

%AETrZ3 + %)\ngrZ':". (3.47)

A supersymmetric minimum of the scalar potential satisfies the F' - flatness con-

ditions

0 = Fg=(Mgbys}+AS305 + N5 63)87

0 = Fp= %Mgzg +-;- (,\@ﬁ,@g’ - ,\%55%(&5@)) +Ag(X2 - -;-TrEZ),

) 4 1 = ' ’ =
0 = Fy= %Mg,z:;fi +5 (vagaf - A'%(Sg,Tr(CD@)) + A (22 - %TrE’Q).

(3.48)
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With the ansatz
S = vy diag(2, 2,2, -3, —3), &' = vy diag(2, 2,2, -3, -3), (3.49)
the F3 = 0 condition is
diag[Ms, M3, Ms, My, My] - diagfvs, vs, v3, v2, v2] = 0, (3.50)

where M3 = Mg + 2Avs + 2N vy and Mo = Mg — 3Avs — 3N vy and the second
matrix is the vev of ®. To satisfy this condition, there is a discrete choice for the
pattern of vev of ® : i) v # 0and M3 = 0 or ii) vp # 0and M, = 0. Substituting
either i) or ii) in the Fy and Fy conditions then determines vs (or v2). With two
sets of fields, ®;,®, with v3 # 0 and ®,, $, with vy # 0, we have the following

pattern of symmetry breaking

SU(B) x SUB) "5 (SU(3) x SU(2) x U(1)) x (SU(3) x SU(2) x U(1))’ |

v3,V2
2y

SM (the diagonal subgroup). (3.51)

If the scales of the two stages of symmetry breaking are about equal, i.e. vg, vsy, ~
v3,v2 ~ Mgyr, then the SM gauge couplings unify at the scale Mgyz. 2

The particular structure of the vevs of ®; and ®5 can be used to split repre-

sentations as follows.

HThe two possible solutions to the F-flatness conditions are () = vy diag(2,2,2, -3, —3) and

() = vs diag(1,1,1,1, —4).
12Gee [57) and [64] for models which give this structure of vevs for the @ fields without using

the adjoints.
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Consider the Higgs doublet-triplet splitting problem. With the particle content

54(5,1), 5,(5,1) and X(1,5), X(1,5) and the superpotential
W =53 X¥ 8%, +52X,8,%, (3.52)

the SU(3) triplets in 54, 55 and X, X acquire a mass of order Mgy whereas the
doublets in 55, 55, and X, X are massless. We want only one pair of doublets in
the low energy theory (in addition to the usual matter fields). The doublets in X,
X can be made heavy by a bare mass term Mgyr X X. Then the doublets in 5k, B
are the standal;d Higgs doublets. But if all terms consistent with symmetries are
allowed in the superpotential, then allowing Mgy7®,®:1, MgyrX X, 5, X®; and
5, X ®, implies that a bare mass term for 5,5, is allowed. Of course, we can by hand
put in a p term 15,5, of the order of the weak scale as in section 3.3. However, it
is theoretically more desirable to relate all electroweak mass scales to the original
SUSY breaking scale. So, we would like to relate the u term to the SUSY breaking
scale. We showed in section 3.4 that the NMSSM is phenomenologically viable
and “un-fine tuned” in these models.

The vev structure of ®;, &, can be used to make the doublets in a (5 + 5)
heavy. Again, we get two pairs of light triplets and one of these pairs can be given
a mass at the GUT scale.

We can use this mechanism of making either doublets or triplets in a (5 + 5)

heavy to show how the model of section 3.3 is derivable from a GUT. The model

with three messenger doublets and one triplet is obtained from a GUT with the
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following superpotential

W = 8554 855+ 5X, X, +
5.X,®, + 5, X, +
5,Xq®2 + 5,X, P2 +
Moyr Xp Xn + 58 Xp®1 + 53 Xn®1 + 1545

+N® 4+ N5.5, + NX, X,. | (3.53)

Here, some of the “extra” triplets and doublets resulting from splitting (5 + 5)’s
are massless at the GUT scale. For example, the “extra” light doublets are used
as the additional messenger leptons. After inserting the vevs and integrating out
the heavy states, this corresponds to the superpotential in Eqn.(3.15) W-ith the

transcription:

55 — q,@+h,h
5,50 —= ol
X, X = Il
5¢:9¢ — G,

Xo Xy = 0,3 (3.54)

We conclude this section with a remark about light singlets in SUSY-GUT’s
with low energy gauge mediated SUSY breaking. In a SUSY GUT with a singlet
N coupled to the Higgs multiplets, there is a potential problem of destabilising
the Mmyear/ Mgyt hierarchy, if the singlet is light and if the Higgs triplets have
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a SUSY invariant mass of O(Mgyr) [68]. In the LEGM models, a B-type mass
for the Higgs tlriplets and doublets is generated at one loop with gauginos and
Higgsinos in the loop, and with SUSY breaking coming from the gaugino mass.
Since SUSY breaking (the gaugino mass and the soft scalar masses) becomes soft
above the messenger scale, Apess ~ 100 TeV, the B-type mass term generated
for the Higgs triplets is suppressed, i.e., it is O({a/4m) MaA2,,,./Mcur). Similarly
the soft (mass)? for the Higgs triplets are O(m2_ A2 /M, r). Sinée the triplets
couple to the singlet N, the soft scalar mass and B-term generate at one loop a
linear term for the scalar and F-component of N respectively. These tadpoles are
harmless since the SUSY breaking masses for the triplets are so small. This is
to be contrasted with supergravity theories, where the B-term~ O(myear McuT)

and the soft mass ~ O(my,eqr) for the triplet Higgs generate a mass for the Higgs

doublet that is at least ~ O(v/Muyear Maur/(47)).

3.6 One complete Model

The model is based on the gauge group Gio. = SU(5) x SU(5) and the global
symmetry group Gy, = Z3 % Z; X Zy. The global symmetry acts universally on the
three generations of the SM. The particle content and their Gy, x Gg,o quantum
numbers are given in Table 3.2.

The most general renormalizable superpotential that is consistent with these
symmetries is

W=W +Wo+W5+W,+ W5+ W+ Wy, " (3.55)
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Zs 11 a a a?
Z5 b 1 1 b?
Zy e c c? ¢
v |z 3 ® P B |
Gloc (24’ 1) (17 24) (5’ 5) (57 .:‘—';) (ga 5) (5a 5)
Z3 1 1 1 1 1 1
(! 1 1 1 1 1
| Zy || 1 1 1 1 c c?

Zs || a® 1 1 1 a?
7, |1 |1 1 ® b
Zy c? c? 1 1 1

v OoNX, | Xy, | Xn |X» |X

Gloc (175) (1’5) (1,5) (1’5) (175) (1:5)
Zs || a 1 a 2 a?
VAS b? b b 1 1 b2
24 1 1 1 1 1
U IISIN|N|®,|D.
Zsllajl |a |a
Zif1le | B |1 |1
Zg 111 |1 1 1

Table 3.2: SU(5) x SU(5)' x Z3 x Z x Z4 quantum numbers for the fields of the
model discussed in section 3.6. The generators of Z3 x Z} x Z,; are labeled by

(a,b,c). The three SM generations are labeled by the index 3.
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where,

W1 = %MZTI'ZQ + %)\ETI'EI; +

1

5 MsTrE? + é/\g:TrZ’3

+<D2(Mq>2 + Aq>22 + /\:322’)62

+®&1(Ma, + Ao, T + X, 2) Py, (3.56)
W = M XX, (3.57)
Ws = ABp®1Xn 4+ A5p®1. Xk + A5 @1 X + A5 @1 X, (3.58)
Wy = A5,0:X, + As5,8.X,, (3.59)

= = 5 - 1
Ws = AgSH5; + /\7S5q5q + AeSXp X; + A SX X}, + 5)\353, (360)

= 1 - _

Ws = —AubpdalN + é—/\NN3 + A NXX
+AoN' X Xy + M N' X, X + %/\N'N’?’, (3.61)
Wr = AD5;10;5, + AJ[10;10;55. (3.62)

The origin of each of the W;’s appearing in the superpotential is easy to under-
stand. In computing the F'=0 equations at the GUT scale, the only non-trivial
contributions come from fields appearing in W1, since all other W;’s are bilinear in
fields that do not acquire vevs at the GUT scale. The function of W; is to generate
the vevs &, &' ~ diag [2, 2,2, -3, —3], ® = &, ~ diag [0,0,0,1,1] and 7 = &; ~
diag[1,1,1,0,0]. These vevs are necessary to break Gi,. =SU(3):xSU(2)xU(1)y
(this was explained in section 3.5). The role of W3 and W) is to generate the nec-
essary splitting within the many (5 +5)’s of Gy, that is necessary to solve the
usual doublet-triplet splitting problem, as well as to solve the fine tuning problem
that is discussed in sections 3.2, 3.3 and 3.4. The messeng‘er sector is given by
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Ws. It will shortly be demonstrated that at low energies this sector contains three
vector-like doublets and one vector-like triplet. The couplings in Wy and W; at
low energies contain the electroweak symmetry breaking sector of the ‘NMSSM, the
Yukawa couplings of the SM fields, and the two light vector-like triplets necessary
to maintain the few percent prediction for sin? @y as well as to generate a vev for
N.

We now show that the low energy theory of this model is the model that is
discussed in section 3.4.

Inserting the vevs for ®; and ®, into W; and from W,, the following mass

matrix for the colored triplet chiral multiplets is obtained:

5
0 Ave, O 0 0 X"
kY h
I Y 0 0 0 0
(Gay Ko B, Xp) | 0 5, (3.63)
0 0 0 /\2'0@1 0 X
0 0 /—\QUQI 0 M1 Xf

and all other masses are zero. There are a total of four vector-like colored triplet
fields that are massive at Mgyr. These are the»triplet components of (54, X.),
(51, X1), (51, Xi) and (X, Ty), where Ty is that linear combination of triplets in
S and X that marries the triplet component of X;. The orthogonal combination
to Ty, Ty, is massless at this scale. The massless triplets at Mgyr are (5¢,5,),
(Xq, X'q) and (X, Ty), for a total of three vector-like triplets. By inspection of W,
the only light triplets that couple to S at a renormalizable level are 5, and 5,

which was desirable in order to solve the fine tuning problem. Further, since X

contains a component of 77, the couplings of the other light triplets to the singlets
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N and N' are
Wess = AMoN'X Xy + AN X Ty + ANTLX, (3.64)

where A\, = :\q cose/, A1 = A cose’ and o is the mixing angle between the
triplets in 5; and X, i.e., Ty, = cos&’X — sino/5;. The A NT; 1 X coupling is also
desirable to generate acceptable p and yZ terms (see section 3.4).

In sections 3.3 and 3.4 it was also demonstrated that with a total of three
messenger doublets the fine tuning required in electroweak symmetry breaking
could be alleviated. By inserting the vev for ®, into W, and from W), the doublet

mass matrix is given as

M, 0 0 X
(Xla 5(17 Xq) 0 0 /\3'Uq>2 5q (365)
0 5\3’().,1)2 0 Xq ’

and all other masses are zero. At Mgyr the heavy doublets are (X, X), (Sq,Xq)
and (54, X,), leaving the four vector-like doublets in (54, 55), (51, 5,), (X, X;) and
(X, Xpn) massless at this scale. Of these four pairs, (5,,55) are the usual Higgs
doublets and the other three pairs couple to S (see Ws).

The (renormalizable) superpotential at scales below Mgy is then
_ 1 _
W = AN@ge+ ‘3'/\NN3 + MoV @30
1
+AuN'Gads ~ AgNH,Ha+ 3 Ay N"®
+/\63Z1l1 + /\75@1Q1 + )\852212

- 1
+AoSlsls + g/\sss + Wr, (3-66)
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where the ﬁelds have been relabeled to make, in an obvious notation, their SU{(3) x
SU(2) x U(1) quantum numbers apparent.

We conclude this section with comments about both the choiée of Zy as a
discrete symmetry and about non-renormalizable operators in our model.

The usual R-parity violating operators 10sx5535snm are not allowed by the
discrete symmetries, even at the non-renormalizable level. In fact, R-parity is a
good symmetry of the effective theory below Mgy7. By inspection, the fields that
acquire vevs at Mgy are either irllvariant under Z4 or have a Z4 charge of 2 (for
example, ®;), so that a Z, symmetry is left unbroken. In fact, the vevs of the
other fields S, N, N’ and the Higgs doublets do not break this Z, either. By
inspecting the Z4 charges of the SM fields, we see that the unbroken Z, is none
other than the usual R-parity. So at Mgy, the discrete symmetry Z, is broken to
R,. We also note that the Z; symmetry is sufficient to maintain, to all orders in
1/Mp,; operators, the vev structure of ®; and &, i.e., to forbid unwanted couplings
between ®; and P, that might destabilize the ve§ structure [64]. This pattern of
vevs was essential to solve the doublet-triplet spiitting problem. It is interesting
that both R-parity and requiring a viable solution to the doublet-triplet splitting
problem can be accommodated by the same Z; symmetry.

The non-SM matter fields (:.e., the messenger 5’s and X’s and the light triplets)
have the opposite charge to the SM matter fields under the unbroken Z,. Thus,
there is no mixing between the SM and the non-SM matter fields.

Dangerous proton decay operators are forbidden in this model by the discrete
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symmetries. Some higher dimension operators that lead to proton decay are al-
lowed, but are éufﬁciently suppressed. We discuss these below.

Renormalizable operators such as 105310545, and 10555254 ére forbidden
by the Z3 symmetries. This is necessary to avoid a large proton decay rate.
A dimension-6 proton decay operator is obtained by integrating out the colored
triplet scalar components of 5, or 5,. Since the colored scalars in 5; and 5,
have a mass ~O(50 TeV), the presence of these operators would have led to an
unacceptably large proton decay rate.

The operators 10s2;105210s2558/Mp; and 1053,1052,10s3/55r
(®®/M32,)*/Mp;, which give dimension-5 proton decay operators, are also forbid-
den by the two Z3 symmetries. The allowed non-renormalizable operators that
generate dimension-5 proton decay operators are suffuciently suppressed. The
operator 105ar105a 1052553 N'/(Mp)?, for example, is allowed by the discrete
symmetries, but the proton decay rate is safe since vy ~ 1 TeV.

The operators 10;5,®,(X or X,)/Mp; could, in principle, also lead to a large
proton decay rate. Setting ®; to its vev, the superpotentia,l couplings, for example,
Xijf(Uf DSX (3)+Q;iL; X (3)) are generated §vith A;; suppressed only by ve, /Mp;. In
this model the colored triplet (scalar) components of X and X, have;‘a mass mg ~
500 GeV, giving a potentially large proton decay rate. But, in this mode] these
operators are forbidden by the discrete symmetries. The operator 10;5;®, X5/ M3,
is allowed giving a four SM fermion proton deca& operator with coefficient ~

(ve, vs/Mp,)?/m2 ~ 1073GeV~>. This is smaller than the coefficient generated
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by exchange of the heavy gauge bosons of mass Mgyr, which is ~ g2/ MZ,r ~
1/2 x 10732GeV~? and so this operator leads to proton decay at a tolerable rate.

With our set of discrete symmetries, some of the messenger sfates and the
light color triplets are stable at the renormalizable level. Non-renormalizable op-
erators lead to decay lifetime for some of these particles of more than about 100
seconds. This is a problem from the viewpoint of cosmology, since these particles
decay after Big-Bang Nucleosynthesis (BBN). With a non-universal choice of dis-
crete symmetries, it might be possible to make these particles decay before BBN
through either small renormalizable couplings to the third generation (so that
the constraints from proton decay and FCNC are avoided) or non-renormalizable

operators. This is, however, beyond the scope of this chapter.

3.7 Conclusions

We have quantified the fine tuning required in models of low energy gauge-
mediated SUSY breaking to obtain the correct Z mass. We showed that the
minimal model requires a fine tuning of order ~ 7% if LEP2 does not discover
a right-handed slepton. We discussed how models with more messenger doublets
than triplets can improve the fine tuning. In particular, a model with a messenger
field particle content of three (I +1)’s and only one (g + ) was tuned to ~ 40%.
We found that it was necessary to introduce an extra singlet to give mass to
some color triplets (close to the weak scale) which are required to maintain gauge

coupling unification. We also discussed how the vev and F-component of this
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singlet could be used to generate the y and By terms. We found that for some
region of the parameter space this model requires ~ 25% tuning and have shown
that limits from LEP do not constrain the parameter space. This is in contrast to
an NMSSM Qith extra vector-like quintets and with one (5 + 5) messenger field,
for which we found that a fine tuning of ~ 1% is required and that limits from
LEP do significantly constrain the parameter space.

We further discussed how the model with split messenger field representations
could be the low energy theory of a SU(5) x SU(5) GUT. A mechanism similar to
the one used to solve the usual Higgs doublet-triplet splitting problem was used
to split the messenger field representations. All operators consistent with gauge
and discrete symmetries were allowed. In this model R-parity is the unbroken
subgroup of one of the discrete symmetry groups. Non-renormalizable operators

involving non-SM fields lead to proton decay, but at a safe level.




Chapter 4

Supersymmetry Breaking and the
Supersymmetric Flavour Problem: An Analysis

of Decoupling the First Two Generation Scalars

The supersymmetric contributions to the Flavor Changing Neutral Current
processes may be suppressed by decoupling the scalars of the first and second
generations. It is known, however, that the heavy scalars drive the stop: (mass)?
negative through the two loop Renormalization Group evolution. To avoid nega-
tive stop (mass)? at the weak scale, the boundary value of the stop mass has to
be large leading to fine tuning in EWSB. This tension is studied in detail in this
chapter.

The chapter is organised as follows. In section 4.1, an overview of the ingre-
dients of our analysis is presented. Some philosophy and notation are discussed.
Section 4.1.1 discusses the constraints on the masses and mixings of the first two
generation scalars obtained from Amyg after including QCD corrections. It is
found, in particular, that a mixing among both left-handed and right-handed first
two generation squarks of the order of the Cabibbo angle ()), i.e., ~ 0.22 requires

them to be heavier than 40 TeV. Section 4.1.2 discusses the logic of our RG anal-
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ysis, and some formulae are presented. This analysis is independent of the Amg
analysis. Sections 4.2 and 4.3 apply this machinery to the cases of low energy and
high energy supersymmetry breaking, respectively.

Section 4.2 deals with the case in which the scale at which SUSY breaking is
communicated to the SM sparticles is close to the mass of the heavy scalars. We
use the finite parts of the two loop diagrams to estimate the negative contribution
of the heavy scalars. We find that a mixing among both left-handed and right-
handed first two generation squarks of the order of A, i.e., ~ 0.22, implies that
the boundary value of the stop masses has to greater than ~ 2 TeV to keep the
stop (mass)? positive at the weak scale. This results in a fine tuning of naively
1% in electroweak symmetry breaking [14]. We also discuss the cases where there
is O(1) mixing among only the right or left squarks of the first two generations,
and find that requiring positivity of the slepton (mass)? implies a constraint on
the stop masses of ~ 1 TeV if gauge mediated boundary conditions are used to
relate the two masses. This is comparable to the direct constraint on the initial
stop masses.

In section 4.3, we consider the case where the SUSY breaking masses for the
SM sparticles»are generated at a high scale (~ 10'® GeV). In this case, the neg-
ative contribution of the heavy scalars is RG log enhanced. We consider various
boundary conditions for the stop and Higgs masses and find that with a degener-
acy between the first two generation squarks of the order of the Cabibbo angle,

the boundary value of the stop mass needs to be larger than ~ 7 TeV. This gives a
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fine tuning of naively 0.02% [14]. For O(1) mixing between the left (right) squarks
only, the minimum initial value of the stop mass is ~ 4(2) TeV. We conclude
in section 4.4. In appendix B, we discuss the computation of the t.wo loop dia-
grams which give the negative contribution of the heavy scalars to the light scalar

(mass)Z.

4.1 Preliminaries

The chiral particle content of the Minimal Supersymmetric Standard Model
(MSSM) contains 3 generations of 5 + 10 representations of SU(5). The super-
symmetry must be softly broken to not be excluded by experiment. Thus the
theory must also be supplemented by some ‘bare’ soft supersymmetry breaking
parameters, as well as a physical cutoff, Mgysy. The ‘bare’ soft supersymmetry
breaking parameters are then the coefficients appearing in the Lagrangian, defined
with a cutoff Mgygy. It will be assumed for simplicity that the bare soft masses,
mf;,o, the bare gaugino masses M 4, and a bare trilinear term for the stops, A;A;g,
are all generated close to this scale. The MSSM is then a good effective theory at
energies below the scale Mgi;gy, but above the mass of the heaviest superpartner.

The physical observables at low energies will depend on these parameters. If
an unnatural degree of cancellation is required between the bare parameters of
the theory to produce a measured observable, the theory may be considered to be
fine tuned. Of course, it is possible that a more fundamental theory may resolve

in a natural manner the apparent fine tuning. The gauge-hierarchy problem is a
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well-known example of this. The Higgs boson mass of the SM is fine tuned if the
SM is valid at energies above a few TeV. This fine tuning is removed if at energies
close to the weak scale the SM is replaced by a more fundamental theory that is
supersymmetric as discussed in chapter 1.

One quantification of the fine tuning of an observable O with respect to a bare

parameter )\ is given by Barbieri and Giudice [14] to be

X O

It is argued that this only measures the sensitivity of O to Ay, and care should be
taken when interpreting whether a large value of ¢ necessarily implies that O is
fine tuned [15]. It is not the intent of this chapter to quantify fine tuning; rather,
an estimate of the fine tuning is sufficient and Eqn.(4.1) will be used. In this
chapter the value of O is considered extremely unnatural if c(O; Ao) > 100.

The theoretical prediction for Amy (within the MSSM) and its measured value
are an example of such a fine tuning: Why should the masses of the first two gener-
ation scalars be degenerate to withiﬁ 1 GeV, when their masses are O(500 GeV)?
Phrased differently, the first two generation scalars must be extremely degenerate
for the MSSM to not be excluded by the measured value of Amg. An important
direction in supersymmetry model building is aimed at attempting to explain the
origin of this degeneracy.

One proposed solution to avoid this fine tuning is to decouple the first two

generation scalars since they are the ones most stringently constrained by the
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flavor violating processes [35, 3‘6, 37, 38, 39, 40, 41, 42]. In this scenario, some
of the first two generation scalars have masses Mg > mjz. To introduce some
notation, ns (n10) will denote the number of 5 (10) scalars of the MSSM particle
content that are very heavy. ! We will refer to these scalars as “heavy” scalars
and the other scalars as “light”scalars. Thus at energy scales £ < Mg the particle
content is that of the MSSM, minus the ns 5 and n,o 10 scalars. In the literature
this is often referred to as ‘The More Minimal Supersymmetric Standard Model’
[38].

There are, however, other possible and equally valid sources of fine tunings.
The measured value of the Z mass is such an example [14]. The minimum of the
renormalized Higgs potential determines the value of the Z mass which is already
known from experiment. The vev of the Higgs field is, in turn, a function of the

bare parameters of the theory. The relation used here, valid at the tree level, is

i (i) — m, () tan? 8
tan® 3 —1

1
§m§ = —u’ + (4.2)

It is clear from this equation that requiring correct electroweak symmetry breaking
relates the value of the soft Higgs masses at the weak scale, m3; (uc) and m¥;, (ue),
to the supersymmetric Higgs mass . A numerical computation determines the
dependence of m% (uc) and mi, (4c) on the bare parameters My, m;f”o and Ms.
In the MSSM, the cancellation required between the bare parameters of the theory

so that it is not excluded by the Z mass increases as the scale of supersymmetry

1t is assumed that the heavy scalars form complete SU(5) multiplets to avoid a large Fayet-

Hiiopoulus D~ term at the one loop level [38, 42].
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breaking is increased. The bare mass of the gluino and stops, and the first two
generation squarks must typically be less than a few TeV and ten TeV, respectively,
so that successful electroweak symmetry breaking is not fine tuned a;t more than
the one per cent level [14, 15, 42].

These two potential fine tuning problems - the supersymmetric flavor problem
and that of electroweak symmetry breaking - are not completely independent, for
they both relate to the size of supersymmetry breaking [42, 43]|. Thus the consis-
tency of any theoretical framework that attempts to resolve one fine tuning issue
can be tested by 'requiring that it not reintroduce any comparable fine tunings in
other sectors of the theory. This is the situation for the case under consideration

here. Raising the masses of the first two generation scalars can resolve the super-

symmetric flavor problem. As discussed in [42], this results in a fine tuning of mz

through the two loop dependence of m%iu (ug) on Mg. There is, however, another
source of fine tuning of mz due to the heavy scalars: these large massés require
that the ‘bare masses of the light scalars, in particular the stop, be typically larger
than a few TeV to keep the soft (mass)? positive at the weak scale [43]. This large
value for the bare stop mass prefers a large value for vev of the Higgs field, thus
introducing a fine tuning in the electroweak sector. Further, this fine tuning is
typically not less than the original fine tuning in the flavor sector. This is the

central issue of this chapter.

4.1.1 Amyg Constraints




At the one loop level the exchange of gluinos and squarks generates a AS = 2
operator (see Fig.1.3). In the limit M3 << Mg (where Mj is the gluino mass) that
we are interested in, the AS = 2 effective Lagrangian at the scale ‘Ms obtained
by integrating out the squarks is

o4 (M -
Lesy = ;Tj\izl (0101 + C1O1 + C4O4 + C505 + h.c.) . (4.3)

Terms that are O(MZ/M32) are subdominant and are neglected. We expand the
exact result in powers of 0. rr = Sz rCL,RNL.R(TT — T3)L,R/My, 1 g, Where My
is the average mass of the scalars, and where 7 g is the phase and s  is the 1 —2
element of the W}, p matrix that appears at the gluino-squark-quark vertex.? This
approximation underestimates the magnitude of the exact result, so our analysis

is conservative [43]. The coefficients C; to leading order in ., dgr, are

Cl = - 225%[4 3

C4 == 245gL5dRR7

Cs —406% 8% . (4.4)

The coefficient €} is obtained from C; with the replacement 6%, — §%,. The

operators O; are

01 = divusredr ¥ sLps
Oy = d%sp.d%srp,
Oy = CZ%SL,bCZ% SRa (4.5)

2In this chapter only 1-2 generation mixing is considered. Direct L — R mass mixing is also

neglected.
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and O; is obtained from O with the replacement L — R. The Wilson coefficients,
C; —Cs, are RG scaled from the scale of the squarks, Mg, to 900 MeV using the
anomalous dimensions of the operators, O; — Os. The anomalous'dimension of
O, is well known [69] and is udC,/dy = asCl\/w. We have computed the other
anomalous dimensions and our result agrees with that of [44] (see this reference
for a more general analysis of QCD corrections to the SUSY contributions to
K — K mixing). These authors , however, choose to RG scale to .4, defined
by as(preq)=1. The validity of the pertubation expansion is questionable at this
scale; we choose instead to RG scale to 900 MeV, where (900 MeV) ~ 0.4. The

result is

Cl(ﬂhad) mCl(MS),
Ci(tthad) = #1Ci{(Ms),
1
Ca(tthaa) k4Cy(Ms) + 5("@4 — ks5)Cs(Ms),

Cs(ﬂhad) = Hscs(Ms),

(i) (5) () ()

I




The effective Lagrangian at the hadronic scale is then

_ o5(Ms)
e/ 216 M2

8
462 64 (5(454 + 5r5) Oy — 40&5(95) + h.c.) . (4.8)

(—22(6?1’)2/‘6101 and 22(5%3)2&31@1

The SUSY contribution to the K — K mass difference is
AmK,SUSY = 2Re < KlﬁeffIR > (4.9)

" The relevant matrix elements (with bag factors set to 1) are

1

< K|(91‘[{ > = ngflz{,
- _ 1 1 mg 2 9
<K|OJK > = (24+4(ms+md) )meK’
<K|Os|K > = 3+i(L)2 M f2 (4.10)
° — \8 " 12 \my +myg KK ‘

in the vacuum insertion approximation. We Gse [4] mx = 497 MeV, fx = 160
MeV, ms; = 150 MeV , (Amg)ezp = 3.5 x 10712 MeV, and o,(Mz) = 0.118.
This gives a,(my) = 0.21, az(m.) = 0.29 and «,(900 MeV) = 0.38 using the
one loop RG evolution. A minimum value for‘ Mg is gotten, once values for
(ns, n10, 8¢ 1, 6% ) are specified, by requiring Amg sysyS(Amg)ep- In the case
that both dgr # 0 and 677 # 0, we assume that both the left-handed and right-
handed squarks are heavy, so that {(ns,n10) = (2,2). In this case we require that
only the dominant contribution to Amg, which is ~ 6¢,6%,, equals the measured
value of Amg. If dgr # 0 and 6., = 0, we assume that only the right-handed
squarks are heavy, and thus (ns, nio) = (2,0). }Similarly, if 5,1, # 0 and dgpp =0
then (ns,nyp) = (0,2). Limits are given in Tables 4.1 and 4.2 for some choices
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VRe(@,687) | (n5,m10) = (2,2) | (ns,m0) = (2,2)
QCD incl. no QCD

1 182 TeV 66 TeV

0.22 40 TeV 15 TeV

0.1 18 TeV 7.3 TeV

0.04 7.3 TeV 3.1 TeV

Table 4.1: Minimum values for heavy scalar masses Mg obtained from the mea-
sured value of Amg assuming MZ/MZ < 1. The limits labeled ‘QCD incl.” include

QCD corrections as discussed in the text. Those labeled as ‘no QCD’ do not.

of these parameters. These results agree with reference [44] for the same choice
of input parameters. For comparison, the limits gotten by neglecting the QCD
corrections are also presented in Tables 4.1 and 4.2. We consider 6, (6%5) = (i)
1, (i) 0.22, (i) 0.1‘, and (#v) 0.04. These correspond to: () no mixing and no de-
generacy; (¢7) mixing of the order of the Cabibbo angle (1), i.e., ~ 0.22; (i) O())
mixing and ~ 0.5 degeneracy; and (iv) O()) miiing and O()\) degeneracy. We
expect only cases (z), (ii) and (i%i) to be relevant if the supersymmetric flavor
problem is resolved by decoupling the first two generation scalars. From Table
4.2 we note that for (ns,n19) = (2,0), Mg must be larger than ~ 30 TeV if it is
assumed there is no small mixing or degeneracy (6% = 1) between the first two
generation scalars.

The limits gotten from the measured rate of C'P violation are now briefly

91




Re(0%z) (0%, = 0) | (15, n10) = (2,0) | (ns,n10) = (2,0)
QCD incl. no QCD

1 30 TeV | 38 TeV

0.22 7.2 TeV 8.9 TeV

0.1 3.4 TeV 4.1 TeV

0.04 1.4 TeV 1.7 TeV

Table 4.2: Minimum values for heavy scalar masses Mg obtained from the mea-
sured value of Amg assuming Mz /M2 < 1. The limits labeled as ‘QCD incl.’
include QCD corrections as discussed in the text. Those labeled as ‘no QCD’ do
not. The limits for (ns,n10) = (0,2) obtained by 6%, <> 6%y are similar and not

shown.

discussed. Recall that the CP violating parameter ¢ is approximately

[Im < K|[Less|K > |
\/§AmK

l€] (4.11)

and its measured value is || ~ || =2.3x1073 [4]. In this cése, the small value
of € implies either that the phases appearing in the soft scalar mass matrix are
extremely tiny, or that the masses of the heavy scalars are larger than the limits
given in Tables 4.1 and 4.2. In the case where the phases are O(1),

Im < K|Lq;f|K >~ Re < K|L¢;|K > and thus the stronger constraint on Mg
is obtained from ¢ and not Amg, for the same choice of input parameters. In
particular, the constraint from CP violation increases the minimum allowed value
of Ms by a factor of 1 /\/Q—E ~12.5. This significantly increases the minimum

value of the initial light scalar masses that is allowed by the positivity requirement.
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4.1.2 RGE analysis

The {/alues of the soft masses at the weak scale are determined by the RG
evolution. In the DR scheme [70, 71, 72], the RG equations for the light scalar
masses, including the gaugino, the trilinear term - A, A, H,,g3u§ and A contributions
at the one loop level and the heavy scalar contribution at the two loop level [73],

are

2 4 .
mi(t=Inyu) = - S aa(t)CLMA(E) + oz 3" CLok () (nsmE + 3niomi,)
A A

o 2V (0) (3s(0) — Sealt) - S5 (1)

dt

x(n5m§ - nmmfo)

m&:ﬁgt) (i, (8) + mig (8) +mi, (£) + Au(1)°) (4.12)

withp = (3,2,1) for fi = H,, 1, respectively, and zero otherwise. For simplicity
it is assumed that M, /a4 o are all equal at Mgysy. The initial value of the gluino
mass, Msp, is then chosen to be the independent parameter. To avoid a large
Fayet-Illiopoulus D-term at the one loop level, we assume that the heavy scalars
form complete SU(5) representations [38, 42]. There is still the contribution,
in the above RGE, of the Fayet-llliopoulus D-term due to the light scalars ~
01/(4m) Y; ¥; Yy}, We do not include it for two reasons. The first is that this
contribution depends on the soft masses of all the light scalars which is clearly
very model dependent. Also, we have checked that, if all light scalar masses at
the boundary are roughly the same, this contribution changes the constraints on
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the initial scalar masses by at most only a few percent, for example, it changes
the coefficient of m%’o in the nurr{erical solutions, Eqns.(4.16), (4.17), (4.19) and
(4.20), by a few percent. We use SU(5) normalisation for the U (1)}/ coupling
constant and Q = T3 + Y. Finally, C% is the quadratic Caismir for the gauge
group G4 that is 4/3 and 3/4 for the fundamental representations of SU(3) and
SU(2), and 3/5 Y;? for the U(1)y group. The cases (ns, n10)= (I) (2,2), (II) (2,0),
(IIT) (0,2) are considered. The results for the case (3,0) is obtained, to a good
approximation, from Case (II) by a simple scaling, and it is not discussed any
further.

Inspection of Eqn.(4.12) reveals that in RG scaling from a high scale to a
smaller scale the two loop gauge contribution of the heavy scalars to the soft
(mass)? is negative, and that of the gauginos is positive. The presence of the large
A: Yukawa coupling in the RGE drives the value of the stop soft (mass)® even
more negative. This effect increases the bound on the initial value for the stop
soft masses and is included in our analysis.

In the MSSM there is an extra parameter, ian [, which is the ratio of the
vacuum expecations values of the Higgs fields that couple to the up-type and
down-type quarks respectively. Electroweak symmetry breaking then determines
the top quark mass to be m; = \;/v/2vsin 8 with v ~ 247 GeV. In our analysis we
consider the regime of small to moderate tan 3, so that all Yukawa couplings other
than A, are neglected in the RG evolution. In this approximation the numerical

results for f; # & or # are independent of tan 8. In our numerical analysis we
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considered tan $=2.2. We have also checked the results for tan 3=10, and have
found that they differ by less than 10% percent.

In the case of low energy supersymmetry breaking, the scale Msugy is not
much larger than the mass scale of the heavy scalars. Then the logarithm
~In(Mgysy/Ms) that appears in the solution to the previous RG equations is
only O(1). In this case the finite parts of the two loop diagrams may:not be negli-
gible and should be included in our analysis. We use these finite parts to estimate
the size of the two loop heavy scalar contribution in an actual model.

The full two loop expression for the soft scalar mass at a renormalization scale
pr is mby(pr) = M3 (uR) + Mg (BR), where mi— (uiz) is the solution to the
RG equation in DR scheme, and M%inite (L) are the finite parts of the one and
two loop diagrams, also computed in DR’ scheme. Tge finite parts of the two
loop diagrams are computed in appendix B and the details are given therein. The
answer is (assuming all heavy scalars are degenerate with common mass Mg)

2

i) = (e (M) ()

3 1

51672

X (6 - %'R’z + 2(In{4r) — ) — 41n (-1475))
1

x (Ges(im) = Saa(um) — Tsen(m)) M, (+13)

x{ns + 3nyo) Cy M2 — o (pr)(ns — n1g)Y;

where the gaugino and fermion masses are neglected. Since we use the DR scheme
to compute the finite parts of the soft scalar masses, the limits we obtain on the

initial masses are only valid, strictly speaking, in this scheme. This is especially
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relevant for the case of low scale SUSY breaking. So while these finite parts
should be viewed as semi-quantitative, they should suffice for a discussion of the
fine tuning that results from the limit on the bare stop mass. For thé case of high
scale SUSY breaking, the RG logarithm is large and so the finite parts are not
that important.

Our numerical analysis for either low energy or high energy supersymmetry
breaking is described as follows.

The RG equations are evolved from the scale Msysy to the scale at which the
heavy scalars are decoupled. This scale is denoted by us and should be O(Mj).
The RG scaling of the heavy scalars is neglected. At this scale the finite parts
of the two loop diagrams are added to m}i(us). We note that since the two loop
information included in our RG analysis is the leading O(M2) effect, it is sufficient
to only use tree level matching at the scale ug. Since the heavy scalars are not
included in the effective theory below Mg and do not contribute to the gauge
coupling beta functions, the numerical results contain an implicit dependence on
the number of heavy scalars. This results in a Qalue for az(us) that is smaller
than the case in which all sparticles are at ~ 1 TeV. This tends to weaken the
constraint, and so it is included in our analysis.®> The soft masses are then evolved
using the one loop RGE to the mass scale at which the gluinos are decoupled.

This scale is fixed to be ug=1 TeV.

3This is the origin of a small numerical discrepancy of ~ 10% between our results and the

analysis of [43] in the approximation A; = 0.
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A constraint on the initial value of the soft masses is obtained by requiring
that at the weak scale the physical scalar (mass)? are positive. The experimental
limit is ~ 70 GeV for charged or colored scalars [74]. The physi(':al mass of a
scalar is equal to the sum of the DR soft scalar mass, the electroweak D—term,
the supersymmetric contribution, and the finite one loop and two loop contri-
butions. The finite one loop contributions are proportional to the: gaugino and
other light scalar masses, and are smaller than the corresponding RG logarithm
that is summed in mQD—R, (ur). So we neglect these finite one loop parts. Further,
the electroweak D—terms are less than 70 GeV. For the scalars other than the
stops, the supersymmetric contribution is negligible. In what follows then, we
will require that m% (ug) > 0 (including the finite two loop parts)* for scalars
other than the stops. The discussion with the stops is complicated by both the
large supersymmetric contribution, m2, to the physical mass and by the L — R
mixing between the gauge eigenstates. This mixing results in a state with (mass)?
less than min{m? + m7, mZ + m?), so it is a conservative assumption to require
that for both gauge eigenstates the value of m§i>+ m? is larger than the experi-
mental limit. This implies that m? Z(70 GeV)*—(175 GeV)? = —(160 GeV)?. In
what follows we require instead that mi_ > 0. This results in an error that is
(160GeV)2/2m;5’ » =~ 26 GeV if the constraint obtained by neglecting m; is ~ 1

TeV. For the parameter range of interest it will be shown that the limit on the

4As mentioned earlier, in the case of high scale SUSY breaking, the finite two loop parts are

also smaller than the RG logarithm and thus are not so important.
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initial squark masses is ~ 1 TeV, so this approximation is consistent.

We then combine the above two analyses as follows. The Amg constraints of
section 4.1.1 determine a minimum value for Mg once some theoretiéal preference
for the d’s is given. Either a natural value for the 4’s is predicted by some model,
or the J’s are arbitrary and chosen solely by naturalness considerations. Namely,
in the latter case the fine tuning to suppress Amg is roughly 2/§. Further, a
model may also predict the ratio M;/Mg. Otherwise, Eqns.(4.1) and (4.2) may
be used as a rough guide to determine an upper value for Mj, based upon nat-
uralness considerations of the Z mass. Without such a limitation, the positivity
requirements are completely irrelevant if the bare gluino mass is suffuciently large;
but then the Z mass is fine tuned. Using these values of M3 and Mg, the RGE
analysis gives a minimum value for the initial stop masses which is consistent with
Amg and positivity of the soft (mass)?. This translates into some fine tuning of

the Z mass, which is then roughly quantified by Eqns.(4.1) and (4.2).

4.2 Low Energy Supersymmetry Breaking

In this section we investigate the positivity requirement within a framework
that satisifes both of the following: (i) supersymmetry breaking is communicated
to the visible sector at low energies; and (ii) multi-TeV scale soft masses, Mg, are
generated for some of the first two generation scalars.. This differs from the usual

low energy supersymmetry breaking scenario in that we assume M2 > m%_ In

0

the absence of a specific model, however, it is difficult to obtain from the posi-
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tivity criterion robust constraints on the scalar spéctra for the following reasons.
"At the scale Mgygy it is expeéted that, in addition to the heavy scalars of the
MSSM, there are particles that may have SM quantum numbers and -sﬁpersymme—
try breaking mass parameters. All these extra states contribute to the soft scalar
masses of the light particles. The sign of this contribution depends on, among
other things, whether the soft (mass)? for these additional particles is positive or
negative - clearly very model dependent. The total two loop contribution to the
light scalar masses is thus a sum of a model dependent part and a model indepen-
dent part. By considering only the model independent contribution we have only
isolated one particular contribution to the total value of the soft scalar masses near
the supersymmetry breaking scale. We will, however, use these results to estimate
the typical size of the finite parts in an actual model. That is, if in an actual
model the sign of the finite parts is negative and its size is of the same magnitude
as in Eqn.(4.13), the constraint in that model is idéntical to the constraint that
we obtain. The constraint for other values for the finite parts is then obtained
from our results by a simple scaling.

Before discussing the numerical results, the size of the finite contributions are
estimated in order to illustrate the problem. Substituting Mg ~ 25 TeV, a3(25

TeV) ~ 0.07 and a;(25 TeV) ~ 0.018 into Eqn.(4.13) gives

Ms \?
5777% ~ -—(410 GeV)Q(ns + 37’&10) (25 TGV) (414)
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for squarks, and

. M 2
5% ~ — ((n5 + 3n10) (70 GeV)? + (ns — n10)(100 GeV)?) ( o v) (4.15)

for the right-handed selectron. The negative contribution.is large if Mg ~ 25 TeV.
For example, if ns = n19 = 2 then ém% ~ —(200 GeV)? and ém? ~ —(1.2 TeV)>.
If n5 = 2, nyp = 0, then dmg = —(170 GeV)? and dm? ~ —(580 GeV)?.

In this low energy supersymmetry breaking scenario, it is expected that
Msysy ~ Mg. In our numerical analysis we will set Mgygy = pg since the
actual messenger scale is not known. The scale ps is chosen to be 50 TeV. At the
scale pg =50 TeV the pgs-independent parts of Eqn.(4.13) are added to the initial
value of the soft scalar masses. The soft masses are then evolved using the RG
equations (not including the two loop contribution) to the scale pg= 1TeV.

First we discuss the constraints the positivity requirement implies for fi # 1L

2

or tr. In this case m % is renormalised by M3y, MZ and mfc o We find

m%(ug) = mk o+ (0.243C; + 0.0168C3 + 0.00156Y;) M3,
. ) 1
—(0.468C% + 0.095C% + 0.01731/,.2)5(715 + 3ny0) x 1073 M2

—0.0174(ns — ny)Y; x 1073M2, (4.16)

where the strongest dependence on (ns,m10) has been isolated. The numerical
coefficients in Eqn.(4.16) also depend on (ns,n19) and the numbers presented in
Eqn.(4.16) are for (ns,n1o) = (2,0). This sensitivity is, however, only a few percent

between the three cases under consideration here.5 Requiring positivity of the soft

5This dependence is included in Fig.4.1.
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scalar (mass)? directly constrains m}ho /M3 and M3, /M 2,

The positivity requirement m% (rg) > 0 for fi # t or & is given in Fig.4.1
for different values of ns and my. That is, in Fig.4.1 the minimﬁm value of
mj, o/Ms required to keep the soft (mass)? positive at the scale pg is plotted
versus Mso/Ms. We conclude from these figures that the positivity criterion is
weakest for ns=2 and ny=0. Thié is expected since in this case the heavy particle
content is the smallest. We note that even in this ‘most minimal’ scenario the
negative contributions to the (mass)? are rathef large. In particular, we infer
from Fig.4.1 that for ns = 2,np = 0 and Mg ~ 25 TeV, dmZ ~ —(190 GeV)?
for M3, as large as 1 TeV. In this case it is the two loop contribution from the
hypercharge D-term that is responsible for the large negative (mass)?. In the case
(ns,n10)=(2,2), we obtain from Fig.4.1 that for Mg ~ 25 TeV, dm2. ~ —(200
GeV)? and dmZ, = —(1.2 TeV)? for M, as large as 1 TeV.

We now apply the positivity requirement to the stop sector. In this case it is not
possible to directly constrain the boundary values of the stops for the following
simple reason. There are only two positivity coristraints, whereas the values of
m(ue) and mi, (ug) are functions of the three soft scalar masses mZ,, mZ. | and
m%,uyo. To obtain a limit some theoretical assumptions must be made to relate the
three initial soft scalar masses.

The numerical solutions to the RG equations for tan f=2.2 and (ns,ny) =

(2,0) are:

mi(ug) = —0.0303A7 + 0.00997A,Ms g + 0.322M3
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Figure 4.1: Limits for mj, ,/Ms from the requirement that the (mass)? are positive

at the weak scale, for low energy supersymmetry breaking. The regions below the

curves are excluded. For the case (2,0), the limits for the other squarks are very

similar to that for § and are therefore not shown.
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—0.0399(m%;, o + mZ o) + 0.960mZ — 0.00064c, M3,
m:(ue) = —0L0606At2’+ 0.0199A4; M3 + 0.2906 M3,
0.920m2, ; — 0.0797(m%, o + m,) — 0.000495cx M2,
m%. (ug) = —0.090942 + 0.02994,Ms o — 0.0298 M2,

+0.880m;, o — 0.119(m, + mZ ;) + 0.0000748cx MZ. (4.17)

The numerical coefficients other than that of Mg do not vary more than a few per-
cent between the different values for (ns,n19). For Mg, we find that (cr,cr,cx)
is (1,1,1), (3.6,3.8,4.5), (2.8,3,3.65), for (ns,n10) = (2,0),(2,2) and (0,2), re-
spectively. We find from Eqns.(4.1) and (4.2) that to keep m% fine tuned ?at less
than 1% (¢ < 100) in each of the bare parameters, we must have: u< 500 GeV,
M;53.7 TeV; m;0<1.8 TeV; and Mg<A4T TeV for (ns,nyp) = (2,2). Finally, for
other values of these parameters the fine tuning increases as ¢ = 100 x m?/mg,
where 7y is the value of m that gives ¢ = 100.

To constrain the initial values of the stop masses we will only consider gauge
mediated supersymmetry breaking (GMSB) mass relations between the stop and
Higgs boundary masses. From Eqn.(4.17) we see that to naturally break elec-
troweak symmetry a small hierarchy m%,:,o > m%Iu,D is required. This is naturally
provided by gauge mediated boundary conditions.® The relations between the soft

scalar masses when supersymmetry breaking is communicated to the visible sector

In fact, low energy gauge mediated supersymmetry breaking provides “too much” elec-

troweak symmetry breaking [75].

103




by gauge messengers are {19

2
; as(M USY

3
2 ==5NC m ..
4 ; 403 (Msysy) + 2 (Msysy)/5 ©°

(4.18)

Substituting these relations into Eqn.(4.17) and assuming A;y =0 determines
m}(pe) and mZ(ue) as a function of Mzg, MZ and m%’c,o. In Fig.4.2 we have
plotted the minimum value of mg 3/Ms; ¢ required to maintain both m?(ug) > 0
and mZ (ug) > 0.

Another interesting constraint on these class of models is found if it is assumed
that the initial masses of all the light scalars are related at the supersymmetry
breaking scale by some gauge mediated supersymmetry breaking relations, as in
Eqn.(4.18). This ensures the degeneracy, as required by the flavor changing con-
straints, of any light scalars of the first two generations. This is required if, for
example, one of ns or nyg are zero. Then in our previous limits on my o for f, £
or #°, constraints on the initial value of mz are obtained by relating m Fo b0 Mg
using Eqn.(4.18). In this case the slepton masses provide the strongest constraint
and they are also shown in Fig.4.2. This result may be understood from the fol-
lowing considerations. The two loop hypercharge D-term contribution to the soft
mass is ~ Y;(ns — nig)aiasM, g and this has two interesting consequences. The
first is that for ns # nqg, the resulting 672 is always negative for one of é¢ or [.
Thus in this case there is always a constraint on mtgc once gauge mediated bound-
ary conditions are assumed. That this negative contribution is large is seen as

follows. The combined tree level mass and two loop contribution to the selectron
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mass is approximately m  — ka3 M§ where k is a numerical factor. Substi-
tuting the gauge mediated relation m , ~ of/aimZ ,, the combined selectron
mass is of /a3(mZ , — k(os/a1)ojM3). Since the combined mass of the stop is

~ mZ, ) — k'a3 M3, the limit for mZ, ) obtained from the positivity requirement for

mZ is comparable to or larger than the constraint obtained from requiring that

m%c remains positive. For example, with ng = 2, njg = 0 and Mg ~ 25 TeV, the
right-handed slepton constraint requires that mg o ~ 1.1 TeV. For nyg=2, ns=0
and Ms ~ 25 TeV, { is driven negative and implies that Mgeg ~ 1 Te\V. From
Fig.4.2 we find that these results are comparable to the direct constraint on mg o
obtained by requiring that color is not broken.

The positivity analysis only constrains my, o/ Mg for a fixed value of M3o/Ms.
To directly limit the initial scalar masses some additional information is needed.
This is provided by the measured value of Amik. If some mixing and degeneracy
between the first two generation scalars is assumed, parameterized by (drr,drr),
a minimum value for Mg is obtained by requiring that the supersymmetric contri-
bution to Amg does not exceed the measured value. We use the results given in
section 4.1 to calculate this minimum value. This result together with the positiv-
ity analysis then determines a minimum value for mz o for a given initial gluino
mass Mszo. The RG analysis is repeated with pygs = MS, rather than us=>50 TeV.
We only present the results found by assuming GMSB mass relations between
the scalars. These results are shown in Fig.4.3. The mass limits for other f; are

easily obtained from the information provided in Fig.4.1 and Table 4.2 and are
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not shown. From Fig.4.3 we find that for (ns,n19) = (2,2) and a large range of
Mo, mz o mus£ be larger than 7 TeV for v/3,.0rr = 1, and larger than 2 TeV for
Vo..0rg = 0.22. This results in c(m%, m%,o) of 1500 and 100, respectively. In this
case both the squark and selectron limits for M o are comparable. The limits for
other choices for \/6..0rr are obtained from Fig.4.3 by a simple scaling, since to
a good approximation Amg ~ 5L;533/M§. For the cases (ns,n10) = (2,0) and
(0,2), the corresponding limits are much weaker. In the case (ns,n19) = (2,0),
for example, only for dgg ~ 1 does the constraint that the selectron (mass)? > 0
require that mg o ~1 TeV. The limits for a smaller value of ¢ are not shown.

We conclude with some comments about how these results change if CP vio-
lation is present in these theories with O(1) phases. Recall from section 4.1 that
for the same choice of input parameters, the limit on Mg and hence, if the gluino
mass is small, the limiﬁ on the initial stop mass increases by about a factor of
12. This may be interpreted in one of two ways. Firstly, this constrains those
models that were relatively unconstrained by the Amy limit. We concentrate on
the models with n; = 2 and n;g = 0, since this case is the most weakly constrained
by the combined Amyg and positivity analysis. The conclusions for other models
will be qualitatively the same. We find from Fig.4.3 the limit mg, >1 TeV 7 is
true only if dgr ~ O(1). Smaller values of dgr do not require large initial stop
masses. From the CP violation constraint, however, smaller values for dzpz are

now constrained. For example, if dgr ~ 0.1 and O(1) phases are present, then

"For GMSB relations only. The direct constraint on the stop masses is slightly weaker.
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mz o >1 TeV is required. Secondly, the strong constraint from € could partially or
completely compensate a weakened constraint from the positivity analysis. This
could occur, for example, if in an actual model the negative two lc;op contribu-
tion to the stop (mass)? for the same initial input parameters is smaller than the
estimate used here. For example, if the estimate of the two loop contribution in
an actual model decreases by a factor of ~ (12.5)? and O(1) phases are present,
the limit in this case from € for the same ¢ is identical to the values presented in

Fig.4.3.

4.3 High Scale Supersymmetry Breaking

In this section, we consider the case in which SUSY breaking i; communicated
to the MSSM fields at a high energy scale, that is taken to be Mgyr = 2 x 106
GeV. In this case, the negative contribution of the heavy scalar soft masses to
the soft (mass)? of the light scalars is enhanced by ~ In(Mgyz/50 TeV), since the
heavy scalar soft masses contribute to the RGE ﬁfom Mgy to mass of the heavy
scalars. It is clear that as the scale of SUSY breaking is lowered the negative
contribution of the heavy scalar soft masses reduces.

This scenario was investigated in reference [43], and we briefly discuss the
difference between that analysis and the results presented here. In the analysis of
reference [43], the authors made the conservative choice of neglecting ); in the RG
evolution. The large value of A; can change the analysis, and it is included here.

We find that for some pattern of initial stop and up-type Higgs scalar masses, for
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example, universal scalar masses, this effect increases the constraint on th_e stop
masses by almost a factor of two. This results in an increase of a factor of ~ 3 —4
in the amount of fine tuning required to obtain the correct Z mass; Further, in
combining the positivity analysis with the constraints from the Amyg analysis,
the QCD corrections to the Flavour Changing Neutral Current (FCNC) operators
have been included, as discussed in section 4.1. In the case (ns5,7n10) = (2,2),
this effect alone increases the limit on Mg and hence the limit on the stop mass
by a factor of ~ 2 — 3. The combination of these two elements implies that the
positivity constraints can be quite severe.

We proceed as follows. First, we solve the RGE’s from Mgyt to us where the
heavy scalars are decoupled. At this scale, we add the finite parts of the two loop
diagrams. Next, we RG scale (without the heavy scalar terms in the RGE’s) from
s to ug using these new boundary conditions. Except where stated otherwise,
the scales g and ug are fixed to be 50 TeV and 1 TeV, respectively.

For f; # 1, i we find,
m}(ug) = m}  + (2.84C5 + 0.639C3 + 0.159Y") M5,
. : 1
—(4.38C% + 1.92C% + 0.6221/2.2)5(715 + 3n1g) X 1073 M2
—0.829(ns — nyp)Y; x 1073 M2. (4.19)
These results agree with reference [43] for the same choice of input parameters.

As in the previous section, the numerical coefficients in Eqn.(4.19) depend on

(ns, 1) through the gauge coupling evolution, and the numbers in Eqn.(4.19) are
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for (ns,n10) = (2,0). 8 In Fig.4.4 we plot the values of mg, /Ms that determine
mf,—i(ug) =0 as. a function of M3/Ms, for fi=1, &, ug, ci‘z? and é¢. We emphasize
that the results presented in Fig.4.4 are independent of any furthef limits that
FCNC or fine tuning considerations may imply, and are thus useful constraints on
any model building attempts.

For the stops, the numerical solutions to the RGE’s for tan 8 = 2.2 are

mi(pe) = —0.021A7 + 0.0684, Mz + 3.52M;3
—0.142(m, o + mi o) + 0.858m% — ¢10.00567 M3,

mi(ug) = —0.042A% +0.1374, Mz + 2.35M2,
—0.283(m, o + mi,) + 0.716m3. ; — cg0.00259M3,

my, (ne) = —0.063A7 +0.2064,M;5 — 1.73M3,

—0.425(m}, + mZ o) + 0.574mj;, o + cg0.00218M3, (4.20)

where (cz, cr,cr) = (1,1,1), (3.9,4.7,4.5), (3,4,3.6) for (ns,n1) = (2,0), (2,2)
and (0, 2), respectively. The mixed two loop contribution to the RG evolution is
x (ns — nyp) and is not negligible. Thus there is no simple relation between the
¢’s for different values of n; and njo. From Eqgns.(4.2) and (4.1) we find that to
keep m% fine tuned at less than 1% (¢ < 100) in each of the bare parameters,
we must have: usS 500 GeV; M;<500 GeV; my, (1 TeV; and Ms<7 TeV for
(ns,n10) = (2, 2). The fine tuning of the Z mass with respect to the heavy scalars

is discussed in [42]. Finally, for other values of these parameters the fine tuning

8The numerical results presented in Fig.4.4 include this dependence.
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increases as ¢ = 100 x m2/m2, where 1y is the value of m that gives ¢ = 100.

As in section 4.2, some relations between mZ,, mZ. ; and mj;, o are needed to
obtain a constraint from Eqn.(4.20), using m#(ue) > 0 and m%c(ué) > 0. We
discuss both model dependent and model independent constraints on the initial
values of the stop masses. The outline of the rest of this section is as follows.
First, we assume universal boundary conditions. These results are; presented in
Fig.4.5. Model independent constraints are obtained by the following. We assume
that m} o = 0 and choose A;p to maximize the value of the stop masses at
the weak scale. These results are presented in Fig.4.6. We further argue that
these constraints represent minimum constraints as long as m%,u,o > 0. To obtain
another set of model independent constraints, we use the electroweak symmetry
breaking relation to eliminate m";{u,o in favor of u. Then we present the positivity
limits for different values of fi/Mg, where ji* = p? + $m%, and assume that
m3;, o = 0 to minimize the value of 1.% These limits are model independent and are
presented in Fig.4.7, for the case ns = n;g = 2. We then combine these analyses
with the limits on Mg obtained from Amy. Webonclude with some discussion
about the anomalous D—term solutions to the flavor problem.

We first consider universal boundary conditions for the stop and Higgs masses.

2 2

That is, we assume that m%o = Mg, = Mg, 0 = 3. In Fig.4.5 we plot for

9Strictly speaking, this last assumption is unnecessary. Only the combination % = ji® —
m¥, of tan® 8 appears in our analysis. Thus for m¥, o # O our results are unchanged if the

replacement fi — fiy is made.
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tan 8 = 2.2 the minimum value of 1hg/Mjs required to maintain m?(ug) > 0 and
mZ (ug) > 0. This value of tan § corresponds to A(Mgyr) = 0.88, in the case
that (ns,n10) = (2,0). For comparison, the results gotten assuminé At = 0 may
be found in reference [43]. For ns = njo = 2 we note from Fig.4.5 that if Mg = 20
TeV and the gaugino masses are small, the limit on the stop mass is mz o > 6 TeV.
This limit is weakened to 5.6 TeV if M3 300 GeV is allowed‘. Even in this case,
this large initial stop mass requires a fine tuning that is ¢ ~ (5.6 TeV)2/m% ~
3700, i.e., a fine tuning of ~ 1073 is needed to obtain the correct Z mass.

We now assume m%, ; = 0 and choose the initial value of 4, to mazimize the
value of mf (ug). The values of m?; and mZ. | are chosen such that m?(ug) > 0
and mtgc (2e) > 0. We note that in this case the constraint is weaker because the
As contribution to the RG evolution of the stop (mass)? is less negative. These
results are plotted in Fig.4.6.

We discuss this case in some more detail and argue that the minimum value
of my, o obtained in this way will be valid for all m%lu > 0 and all A;y. Eliminate
the Ao term by choosing A;y = kM3 such that ‘the A; contributions to m%i (1a)
is maximized. Other choices for A,y require larger values for m%,-,o to maintain
mi (#¢) = 0. The value of k is determined by the following. A general expression

for the value of the soft masses of the stops at the weak scale is
mtg(ug) = ——aAf,D + bA oMo + cM?io 4+ e, (4.21)
mi(ug) = —2aAl o + 2bA 0 Mso +dMig+ - -, (4.22)
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with a, ¢ and d positive. The maximum value of mi () is obtained by choosing

Aio = bM;34/2a. The value of the stops masses at this choice of 4,4 are
2 0.,
m;i(pe) = (¢ + Zc_z)M3’° +ee, (4.23)

b?
mi (ug) = (d + 24_a)M32’0 SRR (4.24)

An inspection of Eqn.(4.20) gives & = 0.068 and a = 0.021 for tan # = 2.2. In this
case the ‘best’ value for Ay is Afo ~ 1.6M3y. It then follows that the quantity
b%/4a = 0.055 is a small correction to the coefficient of the gaugino contribution
in Eqn.(4.20). Thus the difference between the minimum initial stop masses for
Ao = 0 and A= Afo is small. Next assume that m%,mg = 0. Requiring both
mZ(pug) = 0 and mZ () = 0 determines a minimum value for mZ, and ms. o
Now since the mj_, contribution to both the the stop soft (mass)? is negative
(see Eqn.(4.20)), the minimﬁm values for m%,-,o found by the preceeding procedure
are also minimum values if we now allow any m}_, > 0.

We conclude that for all A;¢ and all m};_, > 0, the limits presented in Fig.4.6
represent lower limits on the initial stop masses if We require that the soft (mass)?
remain positive at the weak scale. Further, the limits in this case are quite strong.
For example, from Fig.4.6 we find that if Mg ~ 20 TeV and Mg ~ 200 GeV
(so that Mj/Mg ~1072), then the initial stop masses must be greater than 3.5
TeV in the case that (ns,n10) = (2, 2) The results are stronger in a more realistic
scenario, i.e., with m3; , > 0. If, for example, m3;_ , ~ m%c’o/Q the constraints are

larger by only a few percent. In the case that m};, o = m} ; = m},, presented in
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Fig.4.5, however, the constraint on the initial #© mass increases by almost a factor
6f two. |

To obtain constraints on the initial stop masses we have thus far ﬁad to assume
some relation between m},  and mZ, , for example, mj;, o = 0 or m};, o = mZ ;.
Perhaps a better approach is to use the EWSB relation, Eqn.(4.2), to eliminate
m%, o in favor of 4s?. This has the advantage of being model independent. It is also
a useful reorganization of independent parameters since the amount of fine tuning
required to obtain the correct Z mass increases as p is increased. To obtain some
limits we choose m%, = 0 '° to minimize the value of ;%, and require that m}_,
is positive. The minimum value of m; /Mg and m;,/Mg for different choices
of ji/Ms are gotten by solving mZ (ug) = 0 and m(ue) = 0. These results are
presented in Fig.4.7. In this Figure the positivity constraints terminate at that
value of M3o which gives m%_ , =0.

As discussed above, reducing the value of m%,mo decreases the positivity limit
on my, 5. Consequently the fine tuning of mz with respect to mg, , is also reduced.
But using Eqns.(4.20) and (4.2), it can be seen that decreasing m3, , while keeping
mZ (pe) = 0 and m2(ug) = 0 results in a larger p, thus increasing the fine tuning
with respect to . This can also be seen from Fig.4.7. We find, for example,
that if M30/Ms ~ 0.01, the small value ji/Ms = 0.01 requires mg, o/Ms ~ 0.25.

For Mg = 10 TeV, this corresponds to p ~ 100 GeV and my o > 2.5 TeV. A

further inspection of Fig.4.7 shows that for the same value of M;,/Mg, a value

10This assumption is unnecessary. See the previous footnote.
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of mzo/Ms = 0.17 is allowed (by reducing m};_,) only if ji/Ms is increased to
0.14. This corresponds to u = 1.4 TeV for Ms = 10 TeV; this implies that
e(m%; ) ~ 930. We find that the limit on the initial stop masses 4can only be
decreased at the expense of increasing p.

Finally, the limits become weaker if m%{,,,o < 0. This possibility is theoretically
unattfactive on two accounts. Firstly, a nice feature of supersymmetric extensions
to the SM is that the dynamics of the model, through the presence of the large
top quark Yukawa coupling, naturally leads to the breaking of the electroweak
symmetry [12]. This is lost if electroweak symmetry breaking is already present
at the tree level. Secondly, the fine tuning required to obtain the correct Z mass
is increased. From Fig.4.7 we infer that while reducing mj; o below zero does
reduce the limit on the initial stop masses, the value of y increases beyond the
values quoted in the previous paragraph, thus futher increasing the fine tuning of
the Z mass. This scenario is not discussed any further. ¢

We now combine the positivity analysis of this section with the results of
section 4.1 to place lower limits on the soft scalar masses. For given values of

0rL,0rR, a minimum value of Mg, Mg nn, is found using the results of section 4.1.

This is combined with the positivity analysis in Fig.4.6, to produce the results

2
te0°

shown in Fig.4.8. We also show other limits gotten by assuming m%,u’o =m
These results are presented in Fig.4.9. In Fig.4.10 we also present the stop mass
limits for different values of u, and restrict to m%,mo >0 and v/0rr0rr = 0.04. In

all cases the heavy scalars were decoupled at Mg i, rather than 50 TeV, and so
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the positivity analysis was repeated. The value of A;y was chosen to maximize
the value of the stop masses at the weak scale. For completeness, the results for
the cases (ns,n10) = (2,0) and (0,2) and m¥, o = 0 are presented.in Fig.4.11.
We repeat that the minimum allowable values for the stop masses consistent with
m}, o > 0, gotten by setting m}_ ; = 0, are given in Figs.4.8 and 4.11.

We next briefly discuss some consequences of this numerical analysis. We
concentrate on the case ny = nyg = 2, since this is the relevant case to consider
if the supersymmetric flavor problem is solved by decoupling the heavy scalars.
Other choices for n5 and n;g require additional physics to explain the required
degeneracy or alignment of any light non-third generation scalars. From Figs.4.8
and 4.9 we find that for v8,.0rr = 0.22 and M;zp < 1 TeV, my, o >7 TeV is
required. If instead we restrict both ¢(m%; M3) and ¢(m%; MZ,) to be less than
100, then we must have Mg< 7 TeV and M55 500 GeV. To not be excluded
by Amg, we further require that v/3,.0gr < 0.04 which leads to a fine tuning of
one part in ~ 2/§ | i.e., ~ 50. An inspection of Figs.4.8 and 4.9 implies that for
ViorLLrr ~ 0.04, mgo must be larger than 0.9—1.3 TeV, depending on the value
of m%,u,o. Alternatively, if we also restrict ¢ < 500 GeV, then from Fig.4.10 we
find that mg, o > 800 GeV. Thus ¢(m%; mi,ﬂ) = 64 — 170. This fine t;ining can be
reduced only by increasing the c(m?%)’s for the other parameters to more than 100
(or by increasing thé fine tuning of § to more than one part in 50). We conclude
that unless v/0rrdy. is naturally small, decoupling the heavy scalars does not

provide a natural solution to the flavor problem.
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To conclude this section we discuss the constraint this analysis implies for
those models which generate a split mass spectrum between the third and the first
two generations through the D-term contributions of an anomaloué U(1) gauge
symmetry [37, 40, 41]. These models can “explain” the hierarchy of the Yukawa
couplings. In the model of set D of [40], the two 5’s of the first two generations
are at 7 TeV and 6.1 TeV and the two 10’s are at 6.1 and 4.9 TeV, respectively,
so that Amp is suppressed. These values must be increased by a factor of 2.5 to
correct for the QCD enhancement of the SUSY contribution to Amg, as discussed
in section 4.1. To obtain a conservative bound on the initial stop masses from the
positivity requirement, we first assume that all the heavy scalars have a common
mass Mg = 2.5 x 5TeV= 12.5 TeV. (It would have been 5 TeV without the QCD
correction.) Then assuming a weak scale value of the gluino mass which is less
than 1.5 TeV (so that c(m%, M3,) is less than 100) and setting m%,_ , = 0 (mZ o),
we find from Fig.4.6 (4.5) that m;y > 2.0 (3.4) TeV is required. This leads to
e(m%; mio) > 400 (1100). To obtain a better bound, we repeat our analysis using
nsm2+3niomiy = ((7 TeV)2+(6.1 TeV)?+3x (61 TeV)2+3x (4.9 TeV)?) x (2.5)%.
It is possible to do this since only this combination appears in the RG analysis
for (ns,n10) = (2,2). We find (assuming m%}_, = 0 and the gluino mass at
the weak scale is less than 1.5 TeV) that mg,o R 3 TeV. In the model of [41],
dgrr =~ 011 = 0.01. To obtain a limit on the initial stop masses, we use the bound
obtained from either Figs.4.8 or 4.9 for égr = 11 = 0.04, and divide the limit

by a factor of 4. By inspecting these Figures we find that this model is only
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weakly constrained, even if mj;, o ~ m} . We now discuss the limits in this model
when O(1) CP violating phases are present. To obtain the minimum value of
Mg in this case, we should multiply the minimum value of Mg obtained from the
Amy constraint for dy;, = drp = 0.04 by 12.5/4; dividing by 4 gives the result
for 6.z = drr = 0.01 and multiplying by 12.5 gives the constraint on Mg from
€. Tile result is Ms< 23 TeV. Next, we assume that Mjzg is less than 600 GeV,
so that the value of the gluino mass at the weak scale is less than ~ 1.5 TeV.
This gives M30/Mg < 0.026. Using these values of M;4 and Mé, an inspection
of Figs.4.5 and 4.6 implies that m;, must be larger than 3.9 TeV to 6.7 TeV,
depending on the value of m};, ,. This gives c(m7;mf ) > 1600. In the model
of [37], M30/Ms =~ 0.01 and m;,/Ms = 0.1. Inspecting Figs.4.5 and 4.6 we find
that these values are excluded for (ns,n1p) = (2,2) and (0,2). The case (2,0) is
marginally allowed. The model of [37] with (ns,n16) = (2,2) and Ay = 0 was also

excluded by the analysis of reference [43].

4.4 Conclusions

In this chapter we have studied whether the SUSY flavor problem can be solved
by making the scalars of the first and second genetations heavy, with masses Mg
(zzfew TeV), without destabilising the weak scale. If the scale, Msysy, at which
SUSY breaking is mediated to the SM scalars is close to the GUT scale, then
the heavy scalars drive the light scalar (in particular the stop) (mass)? negative

through two loop RG evolution. In order to keep the (mass)? at the weak scale

127




positive, the initial value of the stop (and other light scalar) soft masses, my ,,
must typically be & 1 TeV, leading to fine tuning in EWSB. We included two
new effects in this analysis: the effect of A\; in the RGE’s which mé,kes the stop
(mass)? at the weak scale more negative and hence makes the constraint on the
initial value stronger, and the QCD corrections to the SUSY box diagrams which
contribute to K — K mixing.

Some results of our analysis for Mgy sy = Mgyt can be summarized as follows.
We restrict thé gluino mass (at the weak scale) to be less than about 1.5 TeV, so
that the fine tuning of m% with respect to the bare gluino mass, Ms g, is not worse
than 1%. This requires that M;,<600 GeV. We also assume that m%,u,o =0
to maximize the value of the stop masses at the weak scale. We find that if
VOL10rr = 0.22 then Mg > 40 TeV is required to be consistent with Amg. With
these assumptions, this implies that for M3 less than 1 TeV, my, o > 6.5 TeV is -
needed to not break color and charge at the weak scale. Even for \/6;,0zr = 0.04,
we find that we need Mg & 7 TeV. This implies that mio > 1 TeV is required if
M; 4 < 500 GeV. This results in a fine tuning of 1%. For 677, = 1 and dgg = 0, we
find that Mg & 30 TeV and mg > 4 TeV. For §;;, = 0.22 and Sgg = 0, we find that
Mg X 7TeV and mio > 1 TeV (this holds for an initial gluino mass less than about
300 GeV). For 617 = 0 and dgr = 1, we find that Mg X 30 TeV and mz o > 2
TeV. The constraints are weaker for smaller values of §. In a realistic model, m%_,

might be comparable to mt23 and the constraints on m; in this case are stronger.

0

This is also discussed. We note that independent of the constraint from K — K
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mixing, our analysis can be used to check the phenomenological viability of any
model that haé heavy scalars. We also discuss the phenomenological viability of
the anomalous D—term solution, and find it to be problematic.

We then considered the possibility tﬁat Mgysy = Mg. In this case, there is no
RG log enhancement of the negative contribution of the heavy scalar masses to the
light écalar (mass)?. For this case, we computed the finite parts of the two loop
diagrams and used these results as estimates of the two loop contribution of the
heavy scalars to the light scalar soft (mass)?. We then combined these results with
the constraints from K — K mixing to obtain lower limits on the boundary values
of the stop mass. As an example, we assumed gauge mediated SUSY breaking
boundary conditions for the light scalars. If ns # nio then one of the selectron
masses, rather than the stop masses, provides the stronger constraint on my g
once gauge mediated boundary conditions are used to relate mec o and mj, to
my, 0. Some of our results can be summarized as follows. We restrict the gluino
mass at the weak scale to be less than about 3 TeV, again to avoid more than 2%
fine tuning of m% with respect to the gluino mass. For v/3..0zr = 0.22 we find
that mg, o > 1 TeV is required. The fine tuning of m% with respect to the stop
mass is ~ 3% in this case. For the cases dy;, = 0 and drgr = 1, and §;;, = 1 and
drr = 0 we find that m;, R 1 TeV. As before, the constraints on mg o for smaller
values of § are weaker than ~ 1 TeV. Again, we emphasize that the constraints
in an actual model of this low energy supersymmetry breaking scenario could be

different, and our results should be treated as estimates only. Finally, we also
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briefly discuss the CP violating constraints from ¢, and find that all these limits

increase by a factor of ~ 12 if O(1) phases are present.
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Chapter 5

Summary

In this thesis, we studied some fine tuning and naturalness issues in the su-
persymmetric Standard Model (SSM). SUSY solves the gauge hier;rchy problem
of the SM, if the superpartners of the SM particles are at the weak scale: the
Higgs (mass)? is stabilized at the scale of the SUSY breaking masses of the super-
partners and is negative due to the large top quark Yukawa coupling. Therefore,
electroweak symmetry breaking occurs naturally. However, we argued that con-
straints from phenomenology (the ones we discuss all come from FCNC'’s) require
that, unless we add some global symmetries to the SSM, there is some degree of
fine tuning/unnaturalness in some (other) sector of the SSM (in some cases, the
fine tuning of the weak scale is reintroduced).

We showed that supersymmetric R-parity breaking (R,) interactions always
result in Flavor Changing Neutral Current (FCNC) processes. Within a single
coupling scheme, these processes can be avoided in either the charge +2/3 or
the charge —1/3 quark sector, but not both. These processes Were;lsed to place
constraints on £, couplings. The constraints on the first and the second generation
couplings are better than those existing in the literature. Thus, we have to either

impose R-parity or tolerate some unnaturalness in the form of small values of the
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R-parity violating couplings.

Non-degenerate squarks and sleptons of especially the first two generations
lead to FCNC'’s; this is the SUSY flavor problem. If SUSY is mediat;ed by gravity
(supergravity theories), then we have to either fine tune the scalar masses to
give the required degeneracies or introduce flavor symmetries or quark-squark
alignment. Another way of communicating SUSY breaking to the‘sparticles is by
the SM gauge intercations. In this case, scalars with the same gauge quantum
numbers are degenerate leading to very small SUSY contributions to FCNC'’s.

However, the models of low energy gauge mediation predict a large hierarchy
in the scalar mass spectrum resulting in a large and negative value for the Higgs
soft (mass)? at the weak scale. This means that the y term has to be fine tuned
to give the correct Z mass. We found that if LEP2 does not discover SUSY, then
these models would lead to a 7% fine tuning. We constructed a model with a non-
minimal messenger sector (more messenger SU(2),, doublets than SU(3), triplets)
which reduced the fine tuning to ~ 40%. Our model has some extra vector-like
quarks {to maintain gauge coupling uniﬁcation)»which get a mass at the weak
scale from a coupling to a singlet. We used the same singlet to generate the pu
and By Higgs masses by coupling it to the Higgs doublets. This model requires
~ 25% fine tuning. We showed that these models with the split (5+ 5) messenger
fields can be derived from a SU(5) x SU(5) GUT using a doublet-triplet splitting
mechanism.

The SUSY flavor problem can also be solved by making the scalars of the first
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two generations heavy (with mass Mg Rfew TeV). A priori, this does not result
in any fine tuning in EWSB since only the stop mass has to be smaller than ~ 1
TeV to get the weak scale naturally. However, the heavy scalars dfive the light
scalar (in particular the stop) (mass)? negative through two loop Renormalization
Group Equations (RGE), if the scale at which SUSY breaking is mediated to the
sparticles (Msysy) is high (say the GUT scale). Thus, the boundary value of
the stop mass has to be large to avoid negative stop (mass)? at the weak scale,
in turn, leading to fine tuning in EWSB. Two new effects were included in our
analysis: the effect of the top quark Yukawa coupling in the RGE which makes
the constraint on the stop mass stronger since it makes the stop (mass)® more
negative, and the QCD corrections to the SUSY contributions to K — K mixing.
Even with a degeneracy between the squarks of the first two generations of the
order of the Cabibbo angle, i.e., ~ 0.22, these squarks must be heavier than ~ 40
TeV to suppress Amy. This implies, in the case of a high scale of supersymmetry
breaking, that the boundary value of the stop mass has to be greater than ~ 7
TeV to keep the stop (mass)? positive at the weak scale.

We also studied the case where Mgy gy is of the order of the mass of the heavy
scalars. We computed the finite parts of the samé two loop diagrams and used
these as estimates of the two loop contribution of the heavy scalar masses to the
stop (mass)?. It was found that for mixing between the squarks of the order of
the Cabibbo angle, the stop mass at the boundary needs to be larger than ~ 2

TeV to avoid negative stop (mass)? at the weak scale. Thus, for both cases, the
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large boundary value of the stop masses (= 1 TeV) reintroduces fine tuning in

electroweak symmetry breaking.
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Appendix A

Fine Tuning Functions

In this appendix the Barbieri-Giudice fine tuning parameters for both the
MSSM and NMSSM in a gauge mediated SUSY breaking scenario are presented.

In an MSSM with gauge mediated SUSY breaking, the fundamental parameters
of the theory (ln the visible sector) are: Apess, As, pt, and p2. Once electroweak
symmetry breaking occurs, the extrefnization conditions determine both m% and
tan 3 as a function of these parameters. To measure the sensitivity of m% to one
of the fundamental parameters );, we compute the variation in m% induced by a

small change in one of the );. The quantity

5m2 5)\2
m%Z Ec(mé;/\z’)x‘» (A.1)
where
Ai Om?
2')\,’ = = Z 2
c(mZ7 ) m% a/\z ’ (A )

measures this sensitivity [14]. In the case of gauge mediated SUSY breaking

models, there are four functions c¢(m%; \;) to be computed. They are:

2t tan? 3 + 1 4tan® B(i — ji5)
lmz i) = 17 (1 + oan? B~ 1 (2 — B+ 1) — m(tan? f = 1>)) |
(A3)
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tan? B +1 42 — ji3

2. 2 2
. = 4
c{mz; ) tan 6(tan2ﬁ -1 mi
4 ﬁ2 _ ﬁ2
-~y 1m2z 2 for large tan g, (A.4)

A} Omj Omy,

m% 0my, 0N

4, tan’f omy, ) 24&%—/2% tan’? B8+ 1
i3 + 3 (tan® B — 1)?

m2 " ttan2f— 1 OA?
for large tan 3. (A.5)

c(my; A) =

Q
|

This measures the sensitivity of m% to the electroweak scale value of Ay, A(Myeak)-
The Yukawa coupling A;(myeqr) is not, however, a fundamental parameter of the
theory. The fundamental parameter is the value of the coupling at the cutoff
A% = Mgyr or Mp; of the theory. We really should be computing the sensitivity
of m% to this value of A;. The measure of sensitivity is then correctly given by

A:(A9)

a)\t("nwea.k:)
/\t (mweak) '

c(mz; M(A°) = OA(A%)

C(m%; At("nweak)) (AG)

We remark that for the model discussed in the teﬁt with three I +1 and one ¢ +§
messenger fields, the numerical value of (A;(A%)/Xi(Muear))OA(Muear )/ A (AC) is
typically ~ 0.1 because A\(myear) is attracted to its infra-red fixed point. This
results in a smaller value for c(m%; \;) than is obtained in the absence of these

considerations.

2
mness?

With the assumption that m%_ and m% , scale with A we get

c(my; ML) = c(myimy,) + c(my;mi)
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2 t 2 1
= gk Al
my (tan® G —1)
dtan” B(miy, + m, )i} — i3)/m

(41 — #3)(tan® B + 1) — mZ(tan® B — 1) (A7)
The Barbieri-Giudice functions for m; are similarly computed. They are
c(my; p2) = -1-c(m2 s 2 + _ (A.8)
BT N I T tan? B )
1 u? 1
2 2. 2
p)== ; 2 .
1 A¢ 1 om%
. —14= 2. u .
c(my; Ay =14 2c(mz, Ae) + e’ f 1R O (A.10)
1 (i + i — 2u?)
A2 — Zo(m2: A2 _ 1+ M . .
c(mt’ mess) ZC(mZ’ mess) (1 _ tan2 ﬂ)(ﬂ% + /1%) (A 11)

Since mz and m; are measured, two of the four fundaﬁlental parameters may
be eliminated. This leaves two free parameters, which for conveinence are chosen
to be Apess and tan G.

In a NMSSM with gauge mediated SUSY breaking, the scalar potential for
N, H, and H; at the weak scale is specified by the following six parameters:
Ai = my, my, , my,, the NH, Hy coupling Mg, the scalar NH, H, coupling Ay, and
the N3 coupling, Ay. In minimal gauge mediated SUSY breaking, the trilinear soft
SUSY breaking term NH, H, is zero at tree level and is generated at one loop by
wino aﬁd bino exchange. In this case, A ();) = AgA();). Since the trilinear scalar
term N3 is generated at two loops, it is small and is neglected. The extremization
~ conditions which determine m% = g%v?/4 (v = m), tan 3 = v, /vg and vy as

a function of these parameters are given in section 3.4. Eqn.(3.22) can be written,
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using p = Agvn/V?2 as

mN—!—2:\\2 /\H)\sz sm2ﬁ+ Av? — AHv2/\Hsm2ﬁ 0. (A.12)
Eqgn.(3.23) is
Ly 2 2 tan 25 2 1 _
g9z + p MH. T tan? B g +m M, 7 “tan’f 0. (A.13)

Substituting v% from Eqn.(3.22) in Eqn.(3.26) and then using this expression for
#2 in Eqn.(3.24) gives

A 1 2 1v2)% sin 23

2 2 2y o H 2 2 2 H H

(my, +mp, +2u ) sin 2ﬂ+;\—; (mN + —2-/\Hv >+AH (*—:\? - ZT) =0.
(A.14)

The quantity ¢ = (A;/m%)(0m%/3);) measures the sensitivity of mz to these

parameters. This can be computed by differentiating Eqns.(A.12), (A.13) and

(A.14) with respect to these parameters to obtain, after some algebra, the following

set of linear equations:

(A+As)X =B+ By, (A.15)
where
1 1 pi-p3 _ 2tan
2 v2 (1—tan2[3)2
_ Ay (Mg —Ax sin28) 1Ay 1-tan?p
A = 2 1 ik els (A.16)
y2 /\3 sin2ﬁy2 1—tan? 8
97 (15 +13) W 13+ (1+tan? §)?
Ap
Ay, = ZH o (A17)
7
0 0 0
. 3 sin28 A% sin2g 42 tan2 -1 A}
29%.)(12\, 1623, p? (1+tan? 8)2 423, ’
_ My »%sin28 o7 (%Sin?ﬁﬁ — 5i) tan? f—1_ Ay o2
205 AN pd+4ud pA4ui N 16An  p? 22y (1+tan? 8)2 4An pi+us
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3N
XAH AN = .l__aﬁ

2

)(i = u7d,N))

with A; = m%, my, , m%,, Ag, A, and

2
B™ 4+ ByY

m2 my
B Hy +BAHu
my mi]d
B + B,
B

A

By®

B

AN
ByY

[ 0

1)\2

wl
-

2
\ _/\N 2(u1’+u§)

o2
(=)
0 )

in 2
\ 22(7“1""/—‘2 }
( ;a;‘z%:I )

0 ,

2 sin 2 )
U T ud)

A%, y25in?2
_A%Tjé

n Bites

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.25)

(A.26)




In deriving these equations Ax()\;) = AgA(\;) was assumed and dA/OAg was
neglected. Inverting these set of equations gives the c functions. We note that
these expressions for the various ¢ functions are valid for any NMSSM in which
the N3 scalar term is negligible and the NH,H, scalar term is proportional to
Az. In general, these 6 parameters might, in turn, depend on some fundamental

parameters, Ai. Then, the sensitivity to these fundamental parameters is:

my O\
A A\ Om3,

i
m ZJ: 8x; OX;
0A;

= Ze(my; M) —=L.
ZAjC( Z '])8)\,-

J

(A.27)

For example, in the NMSSM of section 3.4, the fundamental parameters are
Amessy Ai> AN, A and Ay (Ap is a function of /\H and Ay,.s). Fixing mz and
m, leaves 3 free parameters, which we choose to be A, Ay and tan 5. As ex-
plained in that section, the effect of Ay in the RG scaling of m%, and m¥ , Was
neglected, Whereas the sensitivity of m% to Ay could be non-negligible. Thus, we
have |

. Ay Om?2
E(mE; Anr) = e(m; Mar) + c(mly; my)—a-—X

(A.28)

We find, in our model, that ¢(m%;m%) is smaller than ¢(m%; Ag) by a factor of
~ 2. Also, using approximate analytic and also numerical solutions to the RG
equation for m%, we find that (A\g/m%)(0m%/0Ay) is S 0.1. Consequently, in

the analysis of section 3.4 the additional contribution to é(m%;Ag) due to the




dependence of m% on Ay was neglected. A similar conclusion is true for Ay. Also,

A Omy
m% OA;

&(m%; Ag) = c(mz;my) (A.29)

We find that (\,/m%)(0m%/8),) is = 1 so that &mZ;A,) is smaller than

é(m%; Ag) by a factor of 2.




Appendix B

Two Loop Calculation

In this appendix we discuss the two loop contribution of the heavy scalar soft
masses to the light scalar soft masses. These contributions can be divided into
two classes. In the first class, a vev for the hypercharge D-term is generated at
two loops. The Feynman diagrams for these contributions are given in Figure
B.1 and are clearly ~ aj0;. These diagrams are computed in a later portion
of this appendix. In the other class, the two 100p diagrams are ~ o?. These
have been computed by Poppitz and Trivedi [76]. So, we will not give details of
this computation which can be found in their paperv. However, our result for the
finite parts of these diagrams differs slightly from theirs and we discuss the reason
for the discrepancy. Wheﬁ one regulates the theory using dimensional reduction
[70, 71] (compactifying to D < 4 dimensions), the vector field decomposes into a D-
dimensional vector and 4— D scalars, called e-scalars, in the adjoint representation
of the gauge group. Thus the number of Bose and Fermi degrees of freedom in
the vector multiplet remain equal. The e-scalars receive, at one loop, a divergent

contribution to their mass, proportional to the supertrace of the mass matrix of

the matter fields. Neglecting the fermion masses, this contribution is

2
sm? = -—ZC:—F (-g +Indrx — f‘/) (ns + 3ny) M2. (B.1)
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In our notation D = 4 — ¢. Poppitz and Trivedi choose the counterterm to can-
cel this divergence in the M S scheme, t.e., the counterterm consists only of the
divergent part, proportional to 1/e. When this counterterm is inserfed in a one
loop e-scalar graph with SM fields (scalars) as the external lines, one obtains a
divergent contribution to the SM scalar soft masses (the 1/e of the counterterm is
cancelled after summing over the € adjoint scalars running in the loop). Poppitz
and Trivedi use a cut-off, Ayy, to regulate this graph, giving a contribution from

this graph that is:
2 i 1 (aa\?, a0 1o
m;=—2 (ns+ 3m0)Cats (7) MglnAyy, (B-2)
A

with no finite part. We, on the other hand, choose the e-scalar mass counterterm
in the M S scheme, i.e., proportional to 2/e —+Indn (where v & 0.58 is the Euler
constant) and use dimensional reduction to regulate the graph with the insertion

of the counterterm. This gives a contribution

) ;1 faaN? 5 (2 2
A
]

= - Z(TI{, + 37110)02" (aA
" 8

?)2 Mg (2/e—2y+2Indm).  (B.3)

In the first line the first factor of (2/e—++In4x) is from the counter-term insertion,
the second factor is the result of the loop integral, and the over-all factor of ¢
counts the number of e-scalars running in the loop. In the M S scheme, i.e., after
subtracting 2/e—y+Indx, we are left with a finite part! proportional to —y+In4x.

The remaining diagrams together give a finite result and we agree with Poppitz

!The same finite part is obtained in the MS scheme, regulated with DR’ .
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____________ T T

Figure B.1: Mixed two loop corrections to the scalar mass. Wavy lines, wavy
lines with a straight line through them, solid lines, and dashed lines denote gauge
boson, gaugino, fermion and scalar propagators, respectively. The double line

denotes the hypercharge D-term propagator.

and Trivedi on this computation. Our result for the finite part of the two loop

diagrams (neglecting the fermion masses) is

1 7r2 M2
: 5
™ finite(K) = r (ln(47r) Eairae 2—1In (—;—))

xS (—O—lf;r(ﬁ)—) (ns + 3n10)Cy M2, (B4

A
whereas the Poppitz-Trivedi result does not have the In{4n) —+ in the above result.
This result was used in Eqn.(4.13). The computation of the two loop hypercharge
D-term, which gives contribution to the soft scalar (mass)? proportional to oo
and ajas (i.e., the “mixed” two loop contributon) is discussed below in detail.

Two-loop hypercharge D-term

We compute the two loop diagrams of Figure B.1 in the Feynman gauge and
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set all fermion and gaugino masses to zero. It is convienent to calculate in this
gauge because Both the scalar self-energy and the Dy -term vertex corrections are
finite at one loop and thus require no counter-terms. We have also éomputed the
two loop diagrams in the Landau gauge and have found that the result agrees
with the calculation in the Feynman gauge. The calculation in the Landau gauge
requires counter-terms and is more involved, and hence the discussion is not in-
cluded. Finally, in the calculation a global SU(5) symmetry is assumed so that a
hypercharge D-term is not generated at one loop [38, 42].

The sum of the four Feynman diagrams in Figure B.1 is given in the Feynman

gauge by
= .3 ;
—illp s = i2g}Y; 3. i 3 64Ch (4N (mf) — dD(mi) + B(m))),  (B.5)
i A

where the sum is over the gauge and flavour states of the particles in the loops. If
the particles in the loop form complete 5 and 10 representations with a common

mass Mg, the sum simplifies to

o .3 4 3 1
_'LHD,f = 2-5 167r2a1Yf(n5 — nm) (-3-0{3 —_ Za@ —_ EOq)
x (41,(M5) ~ 41(M3) + I(M3)) (B.6)
The functions I, I, and I3 are
d°p  dPk 1 (2p—k)? 1
Li(m?) = : ‘
o) = [ oo | Gy T oo B0
dPp dPk 1 k2—k-p 1
2y
him?) = / (2m)P / @m)P (P2 —m2)2  k* (p—k)2’ (B.8)
dPk 1 qu 1
Li(m?) =
3(m ) / (QW)D (k2 — m2)2 / (271-)D q2 EpCE (B.Q)
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We now compute these functions.
Evaluating I
After a Feynman parameterization and performing a change of variables, I; =

Ji1 + Jo, where

1 &’k _,p* 1
Him?) =1 [ de1 - 2) (27r )P R = (2 — 21 = D))
(B.10)
and
1 y dPk 1
Jo(m?) = T(3) /0 dz(1 — z)(2z — / P / R e e By
(B.11)
After some algebra we find that
Ji(m?) = r—((ir%?—)(m )P 3-1-)—/921)—3(2 D/2,3 - D/2), (B.12)

J(m?) = F((i%fl(m%”* x (4B(3— D/2,2— D/2) ~4B(2— D/2,2 — D/2)

+ B(1-D/2,2—D/2)), | (B.13)

where B(p,q) = T'[p|T'[g]/T[p + ¢| is the usual Beta function.

Combining these two results gives

I(m?) = -I-‘((i;) D) (myo- = 23(3 _D/2,2- D/2). (B.14)
Evaluating I,
de 1 K2—k-p 1
b(m?) = / / D2 —m2)? k2 (p—k)?
= (47()D D)Y(m*P3B(D/2,1 ~ D/2).
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Evaluating I3

dPk 1 dPq 1

I3(m2) @m)P (k2 —=m2)? ) (27)P 2 ~ m?

= (@;;—@F(Q —_ D/2)(m2)D/2—2) ((47517/2 F(li/; 13/12) (m2)D/2_1)

(2~ D2 = (m)°™

1
———(T
@yt
We may now combine I3, I, and I3 to obtain

T(m?) = 4L(m?) —4,(m?) + I;(m?)

- (T(rixj < (4 (}D_—DQB(S - D/2,2- D/2) - B(D/21-D/2))

Writing D = 4 — ¢ and expanding in € gives

1 4 2
2y _ 2 2, 2
T(m®) = W (;—I— (6— 37 + 4(In(4n) —v) —4Inm ) m —!—O(e)) .

(B.15)
In the MS scheme the combination 2 (2/¢ + In(4r) — 7) is subtracted out. The

finite piece that remains is

_(1—6}13)_2- (6 - -§~7r +2(In{47) — v) — 41n m2> m?2. (B.16)

Thus in the MS scheme Eqn.(B.6) is

~ 3 1 4 3 1
— — y -— — — — — —
illp s z5 (16”2)0111/,« (3a3 4a2 12a1) {(ns — np)

X (6 ~ :3)—7(2 + 2(In(4x) — ) — 4In Mg) M2, (B.17)

which was used in Eqn.(4.13).
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