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We give a classification and overview of the confining N = 1 supersymmetric gauge
theories. For simplicity we consider only theories based on simple gauge groups and
no tree-level superpotential. Classification of these theories can be done according
to whether or not there is a superpotential generated for the confined degrees of
freedom. The theories with the superpotential include s-confining theories and
also theories where the gauge fields participate in the confining spectrum, while
theories with no superpotential include theories with a quantum deformed moduli
space and theories with an affine moduli space.

1 Introduction

In this talk, we give an overview of the confining V = 1 supersymmetric gauge
theories. Before jumping into the details of the classification of such models,
one has to answer the question of what we mean by a confining theory. The
definition we will be using throughout this talk is the following: we call e theory
confining, if there is a low-energy description purely in terms of composite
gauge singlets {that is, the low-energy effective theory is a Wess-Zumino model
for the gauge singlet fields, there are no massless gauge degrees of freedom in
the IR theory). This broad definition of confinement does not automatically
imply that there would be an area law for the Wilson loop, or a linear potential
between external test charges. The reason is that in some cases (when there
are massless dynamical fields in a faithful representation of the gauge group),
the external charges can be screened, and instead of a linear potential there
will be no potential at all. In this case there is no phase boundary between the
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Higgs and the confining phases, and there is no invariant distinction between
these two phases. This is what will actually happen in most of the examples
reviewed below. Keeping this broad definition of confinement in mind, we are
ready to discuss the classification of these models.

For simplicity, we will consider only theories based on simple gauge groups
and no tree-level superpotential. Then the confining theories can be classified
into two broad categories, according to whether or not there is a superpotential
generated for the composite fields. These two categories can be further refined:
for the case of theories with a confining superpotential, one can distinguish be-
tween theories where the composites contain only chiral superfields (these are
the s-confining theories), or theories where the gauge field W, also participates
in forming the composites. In the case of theories with no superpotential, one
can distinguish between theories where there are classical constraints relating
the composites and theories where there are no such constraints. These cat-
egories will be discussed in detail below. A final category which we will not
discuss in detail is when the low-energy effective theory is empty, that is there
is a mass gap, and no massless chiral superfields are present. This is the case
for example for N = 1 pure Yang-Mills theories. However, we expect such the-
ories to be very rare for the following reason. If there is an exact continuous
global symmetry present in the theory, then it is either spontaneously broken
or not. If it is spontaneously broken, we expect massless Goldstone-bosons,
if it is not broken, then the 't Hooft anomaly matching conditions have to be
satisfied, implying the presence of massless fermions. Thus we expect that only
theories like pure N = 1 Yang-Mills, with no continuous global symmetries to
exhibit such behavior. Finally, a warning: the four categories to be explained
below contain all confining theories known up today. However, it is possible,
that there might be a lot more confining theories around, which might not fit
into the above classification scheme.

2 Theories with a Non-vanishing Confining Superpotential
2.1 The S-confining Theories

S-confining theories are defined as follows!:

- there is a non-vanishing superpotential for the confined degrees of freedom
(non-singular at the origin)

- the composites involve only chiral superfields

- the description in terms of gauge invariant composites is valid everywhere
on the moduli space.
The first example of an s-confining theory has been found by Seiberg?. We will
use this example (SU{N) theory with F = N + 1 flavors) to explain the most
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important properties of such theories. The field content and global symmetries
of the theory, together with the confining spectrum is given below.

SU(N)SU(N +1) SUNN+ V)Y U(1)g U(l)g

Q O O 1 T

Q O 1 0 -1 w3

M =(QQ) 0 0O 0 5
B=(QY) o1 N o

The confining superpotential is
1 _
W(det M - BMB) (1)

There is ample of evidence that this is indeed the correct low-energy description
of the original SU(N) theory 2. First of all, the confined degrees of freedom
M, B and B satisfy the 't Hooft anomaly matching conditions. Second, the
classical limit is correctly reproduced by the superpotential, since the equations
of motion result exactly in the classical constraints of the theory. Finally,
integrating out flavors results in the correct descriptions of the theories with
less flavors. Subsequently, several other s-confining theories have been found®4.
The natural question to ask is how to find all other s-confining theories. We
will answer this question below.

The most severe constraint on s-confining theories comes from the require-
ment that there is a non-vanishing confining superpotential. Global symmetries
fix this superpotential to be of the form?!

[ SR
Zi ni=G

W o A3 { i{i} 2)
4 Awi ’
2

where ®; are the underlying chiral superfields (not the composites), y; is the
Dynkin index with respect to the gauge group of the i chiral superfield given
by TrT4TE = pidap, where the T7s are the generators of the gauge group in
the i** representation, and G is the Dynkin index of the adjoint. For example
in the case of Seiberg’s example SU(N) with N + 1 flavors &; = Q;,Q; (i is
the flavorindexi=1,...,N+1), u; = 1, G = 2N, thus the superpotential has
the form QNH1QN+1/A2N-1 which can be written in terms of the confined
degrees of freedom either as det M or BM B.

Examining the form of (2) one can observe, that the confining superpoten-
tial is singular at the origin unless the overall exponent is an integer, implying
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the index constraint

Zﬂi_G=20r1' (3)

This is a very severe constraint on the matter content of a given theory. In
fact, it restricts the candidates for s-confining theories to a finite set. This
set of theories for the case of SU(N) groups is given in Table 1. In order
to find out which of those theories listed in Table 1 are actually s-confining,
we note one more necessary condition the s-confining theories have to satisfy:
an s-confining theory flows only to s-confining theories. The reason behind
this is simple. An s-confining theory is described by a set of gauge invariant
operators. Going along a flat direction in this language just means giving
VEV’s to some gauge invariant fields, thus the resulting theory also has to
be describable in terms of a theory of gauge invariants. Using this eondition
one can go ahead and check the various flows of the candidate theories listed
in Table 1. The theories where a flow results in a non-s-confining theory can
be excluded. For the remaining examples one can explicitly find the confined
spectrum and show that the consistency conditions are all satisfied. This way
one can find all s-confining theories based on simple groups. The results for
SU(N) theories are listed in Table 1. Here we give just one more simple s-
confining example, which is based on SU(5) with three antisymmetric tensors
and three antifundamentals. The detailed description of the remaining SU(N)
theories together with the theories based on other groups can be found in!.

SUG)|SUB) SUB) U(L) U(L)r
AlHlo 1 1 o
gl o]l 1 o -3 2

AQ? o O -5 12
A3Q H o o 2
A5 m 1 5 0

Wagn = =5 [ (A)ASQ)(AT”) + (4°0)]

2.2 Composites Contain W,

This category does not have its own name, since there is only one known
example®. This example is based on an SO(N) theory with N — 3 vectors.
Intriligator and Seiberg argued, that there is a branch on which the theory
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Table 1: All SU theories satisfying Ei ps — G = 2. This lst is finite because the indices
of higher index tensor representations grow very rapidly with the size of the gauge group.
We give the gauge group in the first column, and the field content in the second column. In
the third column, we indicate which theories are s-confining. For the theories which do not
s-confine we give the flows to non s-confining theories or indicate that there is a Coulomb

branch on the moduli space.

SUN) | (N+1)y@O+0) s-confining

SU(N) B +N O+40 s-confining

su(y | H+H+3@+0) | s-confining

SU(N) | Adj +O0+0 Coulomb branch
SU@4) | Adj +H Coulomb branch
SU@) | 3H+2@+D0) SU(2): 801

SU4) | 4H4+0O+0O SU(2): I+40
SUM4) |5 Coulomb branch
SU(5) | 3(H+D) s-confining

SU(s) | 2+20+40 s-confining

su) | 2@+B Sp(4): 3H+20
sus) | 2H+H+20+0] su@: sH+20+D)
SuU(6) | 2H+50+0 s-confining

sue) | 2H+H+20 su(4): sH+2@+5)
SU(6) + 4@ +D0) s-confining

su@) |H+H+s0+o | sue): 2H+H+20+0
sue) |H+H+H Sp(6): H+H+o
sue) | 2H+0O0+0 sue): 2H+H)
SU(ny | 2(H+30) s-confining

SU(T) +40+20 sue): H+H+30+0
su@ |H+B+o Sp6): +H+0




confines with the following spectrum:

SO(N)|SUN ~3) Ul)a Zaw—s
Q O O

M= Q)
b=(WZQN~4)

The confining superpotential is given by
W = Mb>.

There are lots of checks that this spectrum is indeed correct ¢, including
integrating out a flavor from the theory with # = N — 2 and obtain this
branch, continuous and discrete anomaly matching, and integrating out one
more flavor. However, this is the only known example of this kind, and it
would be very interesting to find more confining theories of this sort.

3 Theories with a Vanishing Confining Superpotential

There are two broad classes of known confining theories with vanishing super-
potential. One class includes the famous theories with a quantum deformed
moduli space, while the other class contains the theories with an “affine moduli
space” of vacua. These can be distinguished by noting, that in the first case
there are non-trivial classical constraints among the basic composite invariants,
while in the second case there are none.

3.1 Theories with Constraints: Quantum Deformed Moduli Space

The first example of a theory with a quantum modified constraint has been
discovered by Seiberg?. The example is SUSY QCD with the number of colors
equal to the number of flavors, SU(N) with F = N. The field content and
global symmetries of the theory, together with the confining spectrum is given
below.

SU(N)|SU(N) SU(N) U(1)s Ul)r

Q @] O 1 1

Q a 1 -1

O

M =(QQ) o o 0
1
1

B = (Q") 1 N
B=(Q") 1 -N

The composites M, B and B satisfy the classical constraint det A/ ——_BB =0.
In the infrared, quantum effects modify this constraint to det M — BB = A2V,
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Table 2: The SU theories satisfying the index constraint Zi u; = G. The first column gives
the gauge group, the second column the field content and the third column gives the phase of
the low-energy theory. QDMS stands for confining with a quantum deformed moduli space,
and i and c distinguish between the cases where the constraint which is quantum modified
is invariant or covariant under the global symmetries of the theory?. Note, that all theories
satisfying Zi p#i = G are either confining with a quantum modified constraint or in the

Coulomb phase. The theories in the Coulomb phase have been discussed in Ref.12.

SU(N) NO+0) -QDMS
SUNYH+ W -10O+30 i-QDMS
sum| H+H+20+0) | i-QpMs
SU(N) Adj Coulomb phase
su@y| sH+@+D ¢-QDMS
SU(4) 4H Coulomb phase
su)| 2H+0+30 i-QDMS
su)| 2H+H+O c-QDMS
SU(6) 2+ 40 i-QDMS
SU(6) +3@+0) i-QDMS
SU(6) +H+20 c-QDMS
SU(6) 2 Coulomb phase
SU(7) ﬂ + 40+ 20 c-QDMS

Again there is a lot of evidence that this is indeed what happens. The ’t
Hooft anomaly matching conditions are not satisfied at the origin, but they
are satisfied at any point on the quantum deformed moduli space (from which
the origin is excluded). Integrating out one flavor reproduces the well-known
Affleck-Dine-Seiberg superpotential 7, and higgsing the gauge group will also
give a consistent result. Later more theories with a quantum modified con-
straint have been identified 3-%-5.

One can again try to find all theories that similarly have a quantum modi-
fied constraint. In these theories a classical constraint of the form " (II; X;) = 0
(where X; are gauge invariant operators) is modified quantum mechanically to
> (M X;) = APII;X;. Here, the X; are some other combination of the gauge
invariant operators, including the possibility that the quantum modification is
just AP. The power p must necessarily be positive to reproduce the correct
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classical limit. Such a modification of the classical constraint is only possible
in theories where ) y; — G = 0. To show this, consider assigning R-charge zero
to every chiral superfield. This R-symmetry is anomalous and the anomaly has
to be compensated by assigning R-charge 3 u; — G to the scale of the gauge

group raised to the power of its one loop # function coefficient ABG=3m)/2,
Since the constraints have to respect this R-symmetry one immediately sees
that A can only appear in a constraint if it has vanishing R-charge. There-
fore, we conclude that only theories with > ¢; — G = 0 may exhibit quantum
deformed moduli spaces. We can find all theories satisfying > yu; — G = 0 by
simply leaving out a flavor from the matter contents listed in Table 1. The
resulting theories are displayed in Table 2. The theories based on SU groups
of Table 1 have been examined in detail by Grinstein and Nolte®, and those
based on other groups by Grinstein and Nolte !® and Cho!!. Again, based on
the flows one can exclude all theories from Table 1 which do not flow to a con-
fining theory. In the remaining examples one can find the quantum modified
constraint either by integrating out one flavor from an s-confining theory, or if
the theory with one more flavor is not s-confining, then one has to consider the
flows along various flat directions in order to find what the quantum modified
constraint is. It has been found in %10 that there are two types of theories
with a quantum modified constraint. One possibility is that the constraint is
invariant under all global symmetries, then the quantum modified constraint
has the form I1;X; = AP, and the origin is excluded from the moduli space by
the quantum modification. The other possibility is that the constraint carries
a non-vanishing global charge, and thus the quantum modification must be
field dependent, of the form II; X; = APX,, where X; is a single composite
field. In this case, the origin of the moduli space is not excluded, and the
't Hooft anomaly matching conditions have to be satisfied after the field X;
is eliminated from the spectrum. Below, we present an example where the
quantum modified constraint is covariant under the global symmetries. The
example is based on an SU(4) gauge theory with matter in 3{4+[1+[J. The
theory with an additional flavor is not s-confining. The confining spectrum is
given in the table below.




SUMSUB) UML) UMW) U(W)g
AlH]lo o 1 o0
Q O 1 1 -3 0
Q [} 1 -1 =3 0
AZ o o 2 0
QA%Q O 0 -4 0

QQ 1 0 -6 0
A3Q? 1 2 -3 0
A3Q? 1 -2 =3 0

The quantum modified constraint is
SQQP (A7) +4(A)(QAPQY +B4(4°Q7)(4° Q)" = A*QQ)

Note that one can eliminate the field (QQ) from the theory by solving the
quantum modified constraint. The remaining fields match all anomalies of the
ultraviolet theory.

Finally, we note that there are no known confining theories, where classical
constraints among the basic invariants do exist, but none of them is quantum
modified. However, there is no argument why theories like that could not exist.

3.2 No Constraints Among Invariants: Affine Moduli Space

The first and perhaps most famous example of this class of theories is the
1SS model 13, which is an SU(2) gauge theory with one chiral superfield @ in
the spin 3/2 representation of the gauge group. Classically this theory has a
single independent gauge invariant Q*, which satisfies the 't Hooft anomaly
matching conditions. Therefore it is widely believed that this theory confines
without generating a confining superpotential. Theories which have at least a
branch on which they behave analogously have been later found in Refs. 5%,
The classification of such theories has been done by Dotti and Manohar. They
obtain a list of all theories where there is no constraint among the fundamental
composites (which they call theories with an affine moduli space), and on
these theories they explicitly check whether the ’t Hooft anomaly matching
conditions are satisfied or not. The resulting theories are given in Table 3.
The first six theories in Table 3 have a confining branch with no superpotential
generated in addition to a branch with a dynamically generated superpotential.
The seventh theory is the ISS model which as explained above presumably
only has a confining phase with no superpotential generated. The phase of
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Table 3: The theories which have no classical constraints among the basic invariants and
satisfy *t Hooft anomaly matching from Ref. 4. The first column gives the gauge group, the
second column the matter content. S stands for the spinor of the given SO group.

sveN) | H+H
SU(6)
Sp(2N),N > 2
SO(N),N > 5{(N =4)0
SO(12) 28
50(14) 5
SU(2) )
SU®) E
Sp(8) E
SO(N),N >5| [0
50(16) S

the last four theories is not very well established. The fact that the 't Hooft
anomaly matching conditions are satisfied would suggest that these theories
are confining just like the ISS model. However, a more careful analysis of the
different branches of these theories shows that it is unlikely that these theories
confine at the origin, instead they are likely to be in an interacting non-Abelian
Coulomb phase 5.

Finally, we note that Dotti and Manohar have also shown that the only
theories with no classical invariants at all (which are believed to break super-
symmetry dynamically) are the two well-known examples: SU(5) with 10 +5
and SO(10) with a single spinor.

4 Conclusions

There have been a lot of new results recently concerning the low-energy dy-
namics of N = 1 supersymmetric gauge theories. The simplest of these theories
are the confining ones, where the low-energy effective theory is simply a theory
of gauge singlets. The known confining theories can be classified according to
whether or not there is a superpotential generated for the confined degrees of
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freedom. The theories which do have a confining superpotential include the
s-confining theories and the theories where the composites involve the gauge
field W,. The class of theories where there is no superpotential for the con-
fined degrees of freedom contains the theories with a quantum deformed moduli
space and the theories with an affine quantum moduli space. Some of these
categories (s-confining, quantum deformed moduli space, affine moduli space)
have been exhaustively studied for the case of simple gauge group and no tree-
level superpotential. Others are not well understood, and perhaps there might
be completely new types of confining theories waiting to be discovered.
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