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New parallel SGILD modeling and inversion

Ganquan Xie, Jianhua Li, and Ernest Majer

Earth Sciences Division, Lawrence Berkeley National Laboratory

Abstract

In this paper, A new parallel modeling and inversion algorithm using a Stochastic
Global Integral and Local Differential equation (SGILD) is presented. We derived
new acoustic integral equations and differential equation for statistical moments
of the parameters and field. The new statistical moments integral equation on the
boundary and local differential equations in domain will be used together to obtain
mean wave field and its moments in the modeling. The new moments global Jacobian
volume integral equation and the local Jacobian differential equations in domain
will be used together to update the mean parameters and their moments in the
inversion. A new parallel multiple hierarchy substructure direct algorithm or direct-
iteration hybrid algorithm will be used to solve the sparse matrices and one smaller
full matrix from domain to the boundary, in parallel. The SGILD modeling and
imaging algorithm has many advantages over the conventional imaging approaches.
The SGILD algorithm can be used for the stochastic acoustic, electromagnetic, and
flow modeling and inversion.

Key words: SGILD; modeling and imaging; stochastic; moments integral and
differential equation

1 Introduction

Seismic, electromagnetic, and hydrology modeling and inversion are important
for the prediction of oil, gas, coal, and geothermal energy reservoirs in geo-
physical exploration. Many imaging works in the geophysical research areas
are used the determinstic frame. The deterministic inversion approaches are
used to obtain the ensemble mean of the random target parameters. Because
the data is incomplete and contaminated by noise, it is reasonable to study
inverse and forward problem in the probability frame and to use stochastic
approaches [1]. There are two ways to study the stochastic inversion, one is
Markov chain Monte Carlo (MCMC) approach, other way is to recover the
statistics moments of the parameters and fields using posterior probability
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optimization and annealing regularizing. Each approach has its own advan-
tages and limitations.

In this paper, we developed a new parallel SGILD modeling and inversion
using a stochastic global integral and local differential decomposition. The
parameters and data are assumed to be random variables. We derived a new
acoustic integral and differential equation system about the statistical mo-
ments of the mean, covariance, and standard deviation. A parallel SGILD
algorithm is used to solve the moments integral and differential equations.
The second order correction term can be used to improve the resolution of the
mean impedance imaging. The parameter covariance and standard deviations
can be used to estimate the uncertainty and construct a confidence interval
for the acoustic velocity.

The new SGILD inversion method consists of five parts: (1) The domain is
decomposed into subdomain SI and subdomain SII. (2) A new statistical mo-
ments global acoustic integral equation on the boundary and local differential
equations in domain will be used together to obtain mean wave field and mo-
ment fields in the modeling step. (3) The new moments global Jacobian volume
integral equation in SI and the local Jacobian differential equations in SII will
be used together to update the mean velocity parameters and their moments
from the random field data in the inversion step. (4) The subdomain SII can
naturally be decomposed into 4™ smaller sub-cubic-domains; the sparse ma-
trix in each sub-cubic- domain can be inverted separately, in parallel. (5) A
new parallel multiple hierarchy substructure direct and direct-iteration hybrid
algorithms will be used to solve the smaller full matrix in SI from domain to
the boundary, recursively and in parallel.

The iteration of conventional nonlinear inversion includes two parts: (I) a
finite element or finite difference scheme for differential equations with an ab-
sorption condition was used to obtain the seismic wave and EM field in the
modeling step; (II) a discrete integral equation or its optimization was used
to update the seismic velocity and electric conductivity in the inverse step.
The limitations of the conventional nonlinear inversion are: (1) determinstic
description of parameters will cause a disastrous ill posed inversion; (2) the in-
accurate reflection error of the absorption boundary condition in part I enters
the inversion domain as numerical noise, in particularly, the ill-posed property
of the inversion will enhance the numerical noise that will cause divergence
and low resolution; (3) the discrete integral equation in part II produces an ill-
posed larger full matrix which is difficult or impossible to invert and to store;
(4) the conjugate gradient (CQG) iterations will become very slow due to the
repeated calculation of the 3D Greens functions and the many complicated 3D
integral terms. Moreover, since the ill-posed nonlinear optimization has many
local minimum points, the CG iteration easily falls into a local minimum and
gets a wrong or low resolution imaging.
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The new SGILD parallel modeling and nonlinear inversion algorithm is de-
signed to overcome the shortcomings of the conventional inversion. The advan-
tages of the SGILD algorithm are: (1) Supposing the parameters and measured
data are random variable, the new statistical moments acoustic and magnetic
integral and differential equation will be together used to assess the poste-
rior probability using Bayes theorem; (2) It uses new exact moments global
boundary integral equations and local differential equations in the domain that
reduces the numerical boundary noises and improves accuracy of the modeling
and inversion; (3) Using a new moment global integral and local differential
decomposition in inversion that decompose the ill-posed full matrix into 4
small sparse matrices and a smaller full matrix, greatly improved the ill-posed
condition, and reduced computation time and storage requirements; (4) The
SGILD is a high performance parallel multiple hierarchy algorithm with paral-
lel efficiency of 90 %; (5) it minimized data communication between processors
that is suitable for the MPP T3E; (6) The moments of the parameters can
be used to construct a confidence interval of the parameter. (7) the SGILD
parallel algorithm can be widely useful to solve stochastic elliptic, parabolic,
and hyperbolic modeling and inversion. The algorithm can be used for elastic
wave, electromagnetic, and flow modeling and inversion, that will be a ben-
efit for developing a new coupled GEO-HYDRO imaging. The new coupled
stochastic modeling and high resolution imaging software will be useful for
the prediction of oil, gas, coal, and geothermal energy reservoirs in geophysi-
cal exploration. This paper is constructed as follows: In section 1 we describe
the stochastic acoustic equation and derive new moment Galerkin equations
and boundary integral equations for forward modeling. The stochastic acoustic
equations for nonlinear inversion are described in section 2, we derive the new
moment volume integral equation and variation Garlerkin equations, translate
the posterior probability optimization into a stochastic nonlinear regularizing
optimization, and describe a Gauss-Newton annealing iteration. In section 4
we present the new parallel SGILD modeling and inversion algorithm using
the global integral and local differential equations. Applications are described
in section 5. Finally, we describe conclusions in section 6.

2 Stochastic acoustic equation for forward modeling

2.1 Stochastic differential equation

0 ( Ou 0 ( Ou 0 [ Ou 2 _
F (0'5:;) + Em (aa—y> + 5 (05—2-) + wu = S(r,rs) (1)

where o is the acoustic impedance, u is an acoustic wave function, w is the
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angular frequency, S is a source term. Suppose that the o is a random variable,
the w and S are deterministic variables, the acoustic wave, u, is a random
variable. Substituting the perturbation expanding formula,

=<0 > +0,,
u=u +utugt---, (2)

into (1), we have the following forward moment Galerkin equations

auo 2 _
Q/ <> 2gds - Q/ <o > VugVdQ. +w Q/ uoddS), = Q/ S¢d, ,(3)

and
FMG(< g >,Cuo,Ca,u0) ¢) = 07
FMG(< o>, Cu, Cud, Ug, ¢) = 07
FMG (<0 >,<us>,1,Cu0,8) =0, (4)
where

3Cs (r R) Buo

FMG(< 0 >,Cuy,Cy, o, 8) = / <o> dds + j Co 5 pds

.
- / < 0> V0 (', R)VEd, + w? / Coo $dS, — / C,VuOVgédQe, (5)
Qe Q

< ¢ > is the mean of the acoustic impedance, < uy >= ug, < u; >= 0,
< o5 >= 0, the head covariance C, (r,R) =< o4(r)os(R) >, Cu (r,R) =
ur(r)ui(R) > , Cuo (1, R) =< uy(r)os(R) > is the cross covariance between
the acoustic impedance and wave field, Cow = {Cus}2=r, ¢ is a basic testing
function, 2. is a compact support set of the basic testing function ¢.

2.2 Stochastic boundary integral equation

Au(r) = Bus (r) + f aG—‘b("-i) (r)ds — faag?(;,,(r',r)ds,(s)
a4 a1

where G (r',r) is background Green’s function, us (r) is incident wave, A
and B are coefficients. Upon substituting (2) into (6), we have the following
forward moment integral equations on the boundary:
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Aug (r) = Buy (r) + }{ abg—Gb—(T,—’L)

Ny

- § <o a“"(’")G (r',7) ds, (7
an_

up (r') ds

and

FMI(< o0>,Cu0,Cq,ug,¢) =0,
FMI(< o >,C,,Cyus,uo,9) =0,
FMI(<0>,<u;>,1,C, ) =0, (8)

where

FMI (< 0 >,Cu,02,u0,8) = ACy, (1, R) — }( WC’W( ,R) ds
04
0Cys (', R) , Jug(r) ,
+aj <o > G, () ds +aj Co =206, (', ) s, (9)

We use the Galerkin finite element method to discretize the forward moment
Galerkin equations (3) and (4), and the collocation finite element method to
discretize the boundary integral equations (7) and (8),see [2] [4]. The discrete
equations (3) and (7), (4) and (8) will be coupled as a complete equation
system. The SGILD modeling algorithm will be used to solve the equations
from the domain to the boundary, in parallel [3] [4].

3 Stochastic acoustic equations for nonlinear inversion

In this section, we describe the new stochastic acoustic volume integral equa-
tions and differential equations for nonlinear inversion.

3.1 Stochastic acoustic volume integral equation

ug(r) = us () + / (0 — 03)V Gy (r,r) Vau (r) dr, (10)
Vs

Because the measured data u, and the acoustic impedance, o, are assumed
to be random variables, the equation (10) becomes a stochastic first type
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nonlinear integral equation. Using the perturbation method we have

duq(r) = / §aV Gy (r,r) Vu(r)dr. (11)
Ve

Substituting the expanding formulas,

Sug(r) =< bua(r) > +dugs(r),
U =< U > +u,,
and
60’= 50’0+50’1+50’2+ ..... N (12)

into equation (11), we have the perturbation first type moments volume inte-
gral equations for inversion,

< fuqg(r) >= jéo’DVG’b (r,rYV<u>(r)dr, (13)

and

IMI(< u >, CSuda C&m, Cm 600) = 0’
IMI(( u >, Cé’a&ud, Céa, 056u960'0) = 0’
IMI(<u >,0,< 602 >,1,Cs04) =0, (14)

where

IMI(< u >, Ca‘“a’ C&aua C’U’ 600) = Csud
—/CgauVGb (r,r)V<u>(r)dr+ /500VGb (r,r)VCy(r)dr, (15)
Vs Vs

IMI means the inverse moment integral equation, < ¢; >= 0, < u, >= 0,
Csuy =< 6ua(r)6uy(R) >, Coou =< b01(r)u; (R) >, Cu =< u, (r)us (R) >,
C&a&ud =< 50’1(7‘)6?1,1 (§R) >, C&a =< 60'1 (7') boy (-SR) >, C&ru = {Cb'au}R=ra

they can be calculated in order of Cssyy Csosu,, and Cs,.
3.2 A posterior probability optimization

Because equations (13) and (14) are ill posed, they can not be solved directly.
We translate the inversion to the following posterior probability optimization
problem,

P (o|d) = max. (16)
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Let
1 -1 ((—A(&—a),&_a).’.(&_B)Z )
PO=Zwe K ar
(o) \/2—7‘_%6 an
"!u-ulmz
P(d‘a) = ‘\/2——11/0—6_% Via (18)
7 Vg
By Bayes theorem,
___P(d|o) P (o)
Pl =75 (o) P (o) dm’ (19)

the optimization (16) is equvalent to the following stochastic nonlinear opti-
mization of the random variable o,

IC ;/uz':d)ll2 + ((—A G 6),{7[/; )+ (5—5)2) — min,

(20)

where P (ol|d) is the posterior probability, P (¢) is the prior probability on
the acoustic velocity, P (d|o) is data probability based on the acoustic veloc-
ity model, A is the Laplacian operator, & is the mean value of the random
velocity that will be measured by core analysis or direct observation, & is the
fitting distribution based on o, u4 is the measured data with noises, V,, is
the standard deviation of ug, v, , i1s normalized deviation, V, is the standard
deviation of o, and V; is normalized deviation. Because there is incomplete
information of V,, which is measured in a few logging well or on the surface,
we introduce a regularizing parameter a and translate (20) into the following
stochastic nonlinear regularizing optimization,

(s~ w)l* + & ((~A (6~ 5),6 — ) + (5 — 5)°) = min, (21)

the regularizing parameter is relative to the confidence interval of the random
velocity set.

3.3 Gauss-Newton iteration with annealing process

We use the modified annealing Gauss-Newton iterative method[5] to solve the
optimization problem (21). The iteration scheme is as follows,

[97S - aA] 60 =
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-7 [ud — up — / (0 —03) VGy (r,r) Vudr| + ala, (22)
Vs

Upon substituting (12) into (22), we have

[%T% - aA] S0 =

T [< ug > —ub-/(< o> —ap) VG (r',r)V <u>dr
Ve
—aA <o >, (23)

[gTi‘s - aA] Crou = 7 [C'sud - /50’0VGb (', r)VCudr'| — aAC,,,
Ve

[QTS - aA} C&, = ST [C&,sud - / QSO'OVGb (7",7‘) VC&,udT, —_ aAC'a,
Vs

[87S - al| < b0, >= -7 [ / VG, (r',7) (VCsou) dr’] . (24)
Vs

where

S= [ VG (r',r)V < u> pedr'. (25)

=

After obtaining < do¢ >, < 603 >, Cspu, and Cjs,, we can update < do >,<
o >,Csy , and C, using the follwing formula,

< bo >=<bog > + < boa >,
<0 >n41)=< 0 > +A < b0 >,
(Cffu)n-i-l = (Cou)n + 60"“7
(Ca)n+1 = (Co')'n, + 500" (26)

Substituting < ¢ > and C, into (3) and (7), (4) and (8), we can calculate
< ug >, Cusy Chu, ug, and < u >. The circle is Gauss-Newton regularizing
iteration. The parameter A depends on the random annealing process [5] and
the increment of 6C,, The regularizing parameter is belong to [0, o] which de-
pends on the standard deviation and covariance of the data and discrete error.
The optimum regularizing parameter can be chosen by discrepancy principle
[4] and [8], The %, in (25) is a picewise constant base function.
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3.4 Stochastic acoustic variation differential equation

The collocation finite element method is used to discretize the first type volume
integral equation (23) and (24) and obtained full matrix equations. The high
cost of computation time and storage is a serious limitation of the discrete
integral equations of (23) and (24). A new parallel SGILD algorithm will be

developed to overcoming this shortcoming in the next section.

Using SGILD algorithm, we don’t need to solve the complete discrete volume
integral equations on the whole domain, but only on a subdomain SI. In the
subdomain S11, we solve the following moment Galerkin differential equations,

/ 6006

2 bds — / 500V < u >VdQl.

o0,
=_/<a 65<u>¢d
on
982e
+ [ <o> V6 <u>vgd. - [ updt, | (27)

and

IMG (< u >,6C04,8C,,Cyy Cou, 6§ < u >,600,< 0 >,4) =0,
IMG(<u>,6C,,6Cyy,Co,Couy6 < u>,600,<0>,4)=0,

IMG (< u>,< 50’2 >, 0, é&aua C’aé’u’ 1, 1,0, ¢) = 07 (28)

where

IMG (< u>,0C;4,0Cy,CuyCoyy 6 < u >,600,< 0 >,¢) =
/ 60,,,6 < >¢d.s . / 6C,uV < u >VdQ

Q.

+/500

/ 550V C,V $dQ)

/< o> VEC,VdQ

06 <u>
+ | Copu———-"¢ds — [ C,,VE < u >Ve¢dQ, (29)
m{ 5 /

(). is a compact support set of the basic testing function ¢, Chou = {Csou}r=r,
Cosu = {Cosu}w=r. The moment Galerkin equations (27) and (28) are built
on the subdomain SII. The Galerkin finite element method is used to discrete
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(27) and (28) and to obtain the sparse matrix. The global volume integral
equation (23) and local Galerkin equation (27) will be used to assemble a
SGILD decomposition algorithm. Same SGILD algorithm is suitable for (24)
and (28).

4 Parallel SGILD modeling and inversion algorithm

In the preceding sections, we have described two systems, integral equation
system and differential equation system, for the stochastic acoustic modeling
and inversion. A question is why do we need two systems for the modeling
and inversion? A new parallel stochastic global integral and local differential
decomposition algorithm, SGILD, for the modeling and inversion is presented
in this section.

4.1 The conventional nonlinear inversion using the Gauss-Newton iteration

In the conventional nonlinear inversion using the Gauss-Newton iteration, the
algorithm process is that (1) For giving coeflicient parameter, using finite el-
ement or finite difference scheme to solve acoustic differential equation with
an artificial absorption boundary condition to obtain the wave filed. (2) Solv-
ing a discrete norm equation of the regularizing optimization of the first type
integral equation to update the velocity. (3) The step (1) and (2) constructed
the Gauss-Newton iteration for the conventional nonlinear inversion. The reg-
ularizing Gauss-Newton nonlinear inversion is a robust approach, but the lim-
itations are: (1) Along the iterations, the inaccurate reflection error of the
absorption boundary condition in the forward modeling enters the inversion
domain as numerical noise that will cause low resolution; (2) the discrete inte-
gral equation in the inversion produces an ill-posed larger full matrix which is
difficult or impossible to invert and store. A new SGILD modeling and inver-
sion algorithm is developed to overcome these limitations of the conventional
nonlinear inversion.

4.2 New SGILD modeling and nonlinear inversion

For simplicity, we used a rectangular mesh for modeling and inversion. The
unknown wave field and its moments are defined on the set of the nodes for
modeling. The unknown velocity parameters and their moments are defined
on the set of the cells for inversion. The new SGILD modeling and inversion
method consists of three steps: First, in Figure 1, the domain is decomposed

10
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into a subdomain ST with white cells[ Tand a subdomain SIT with dark cells l
. This decomposition is called a cells-decomposition. The cells-decomposition
should satisfy the following requirements: (1) the subdomain SI should include
the boundary of the domain; (2) the subdomain ST should be a logical bound-
ary of the subdomain SII; (3) the subdomain SIJ can be decomposed into
2P x 27 x 2" subdomains for 3D problem or 27 x 2¢ subdomains for 2D problem,
the p, g, r are integer. The cells-decomposition induced a nodes-decomposition
of the whole nodes of the domain, NST and NSII. The subdomain NS/ is the
set of the boundary nodes = and internal nodes o, i.e., the set of the nodes on
the SI. The subdomain NSIT is the set of the internal circle nodes o , i.e., the
set of the inside nodes of STI. Second, suppose that the acoustic impedance
mean < o > and the covariances are obtained by the previous iterative step,
the discrete acoustic integral equation (7) and (8) on the boundary nodes and
the discrete acoustic Galerkin differential equations (3) and (4) on the inter-
nal nodes of domain will be coupled to construct a complete equation system
for the discrete moments of the acoustic wave field. The nodes-decomposition
and multi-level parallel direct or direct-iteration hybrid methods can be used
for solving the modeling equations. Third, after obtaining the wave field and
its moments, the global discrete Jacobian volume integral equations (23-25)
on cells of ST and the local discrete Jacobian differential equations (27-28) on
cells of SI1 will be coupled to construct a complete equation system for updat-
ing the velocity. The cells-decomposition can be used for solving the equation
system for updating parameters and their moments. The second step and
third step are used to construct a loop of the parallel SGILD Gauss-Newton
iteration. If the residual of the misfit between the model field moments and
the measured field moments less than the giving tolerance then the iteration
will be stop, otherwise the iteration should be running continuously. In the
parallel program, the shared data, the shared do loops, and message passing
interface (MPI) are used for communication and distribution of subdomain
field data and matrix data on a massively parallel computer. In this parallel
program, distribution of the jobs in the parallel processing is uniform and the
parallel arrangement is done appropriately. The new global integral and lo-
cal differential parallel inversion has been tested in the multiple processor of
the Special Parallel Processing (SPP) in the CRAY-A.NERSC.GOV and the
Massively Parallel computer T3D. The parallel effective rate is 80% to 96%.
The detailed description of the new parallel SGILD modeling and inversion al-
gorithm is presented in a Lawrence Berkeley National Laboratory technology
reports [3] [4].

11
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5 Applications

The SGILD algorithm can be used for the electromagnetic and flow modeling
and inversion, see [6] and [7]. In [6], new magnetic boundary and volume
integral equations for the moments of the resistivity, permittivity, and the
magnetic field are derived[6] [7]. A 2.5D SGILD electromagnetic code is tested
primarily using a synthetic and field data. The mean resistivity imaging and
standard deviations are presented. In Figure 2, 16 frequencies, 6 electric line
sources on the surface and 20 receivers in the vertical logging well are used to
make synthetic data with Gaussian noise, the maximum standard deviation
of the data is 5%. The high resolution imaging of the mean resistivity is
obtained. The total maximum standard deviation (TSTD) of the resistivity is
11.8%, The local standard deviation (LSTD) of the resistivity of the target in
left top corner (read) is 6%, The other local standard deviation of resistivity
in right lower corner (blue) is 18.6%, that is because the read block is in the
coverage area of the data site. The 2D mesh is 128x128, 64 x 30.5 CPU minites
in T3E and 58 iterations are used to obtained these moments imaging. The
optimization mean regularizing is 0.687456x1075. Other resistivity imaging
from practical field data in the geothermal exploration is presented in [6]. The
field data configuration includes 16 frequencies, 6 electric line sources on the
surface and 20 receivers in the vertical logging well. The maximum standard
deviation of the field data is 21%. A reasonable mean resistivity imaging is
obtained. The maximum standard deviation of the resistivity is 31.8%, The
local standard deviation of resistivity near the borehole area is 19%, which is
less than standard deviation of the field data. The second order mean term
is effective to improve the resolution of the mean resistivity imaging. The 2D
mesh is 256x256, optimization mean regularizing is 0.329342107!, the 64 x 3.8
CPU hours in T3E and 96 iterations were used to these moments imaging. The
parallel rate of the primary SGILD code is 70% ~ 90%. The SGILD acoustic
velocity imaging and data configuration is presented in [6] and SGLID flow
permeability inversion is presented in [7].

6 Conclusions

The primary tests shown that the SGILD modeling and inversion is a high
resolution , robust stable, and high performance parallel imaging algorithm.
There are obvious improvements of resolution of imaging from the field data.
Actually, most of the conventional deterministic inversion approaches were
only used to obtain the zero order mean of the target parameters, but no
second order correction term and the standard deviation term. The SGILD
algorithm can be used to obtain the improved ensemble mean parameter with
second correction term, cross covarience between the parameter and field, and

12
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standard deviations of the parameters and field. These moments can be used
to estimate the uncertainty and construct a confidence interval. The compu-
tational costs and storage of the stochastic modeling and inversion is 3 ~ 4
times the deterministic inversion. The big cost can not be accepted in the
workstation. The high performance SGILD algorithm overcomes the limita-
tions. There are two ways to study the stochastic inversion, one is Markov
chain Monte Carlo (MCMC) approach, other way is to recover the statistics
moments of the parameters and fields using posterior probability optimiza-
tion and annealing regularizing. Each approach has its own advantages and
limitations. The moment equation approach to the single phase fluid forward
modeling was presented by [9]. An advanced version of the SGILD algorithm
will be developed to have the advantages both MCMC and MDE approaches.
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Figure 1. Domain decomposition for SGILD modeling and inversion

Parallel 2.5D SGILD mean resistivity imaging
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Figure 2. 2.5D electromagnetic SGILD resistivity imaging
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