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Abs t r ac t  

Laser  f l a s h  p h o t o l y s i s  experiments have l e d  t o  a  new mechanism 

f o r  t h e  u l t r a v i o l e t  p h o t o l y s i s  of aqueous t ryptophan ( T r p ) ,  i n d o l e  ( Ind )  

and c e r t a i n  i ndo le  d e r i v a t i v e s .  E x c i t a t i o n  a t  265 nm l e a d s  t o  

photo ion iza t ion  v i a  a  p re - f luorescen t  s t a t e  wi th  thermal  a c t i v a t i o n .  

The i n t e r n a l  conversion t o  t h e  f l u o r e s c e n t  s t a t e  p a r a l l e l s  t h e  

popula t ion  of a  new in t e rmed ia t e ,  s t a t e  X ,  which may be photoionized 

a t  530 nm. S t a t e  X f o r  Trp i s  formed wi th  quantum y i e l d  > 0 . 4  a t  265 nm 

and i t s  l i f e t i m e  i s  - sec .  I t  may be r e s p o n s i b l e  f o r  monophotonic 

r e a c t i o n s  s e n s i t i z e d  by Trp i n  which f r e e  hydrated e l e c t r o n s  a r e  

no t  involved.  The a v a i l a b l e  d a t a  i n d i c a t e s  t h a t  t h e  format ion of 

s t a t e  X i s  favored by t h e  s i d e  cha in  and t h e  aqueous environment, 

suggest ing a  charge- t ransfe r  complex wi th  t h e  medium. 

A new formula is  proposed f o r  p r e d i c t i n g  enzyme i n a c t i v a t i o n  

quantum y i e l d s  from t h e  composition: 
- 

'in - rtrpf trpntrp + L y s  f n  cys  cys  

where r i s  t h e  f r a c t i o n  of e s s e n t i a l  r e s i d u e s ,  f  i s  t h e  f r a c t i o n a l  

l i g h t  absorp t ion ,  and Q i s  t h e  quantum y i e l d  f o r  d e s t r u c t i o n  of 

t h e  r e s i d u e  i n  t h e  enzyme. The p r e d i c t i o n s  a r e  i n  good agreement 

wi th  measurements on s i x  important  enzymes a t  254 nm and 280 nm, 

t ak ing  Q 
t r p  

= 0.05 a t  bo th  wavelengths (from i n i t i a l  pho to ion iza t ion  

y i e l d s )  and n = 0 . 2 0  a t  254 nm and 0.13 a t  280 nm (from c y s t i n e  
CYS 

d e s t r u c t i o n  i n  g l u t a t h i o n e ) .  The c o r r e l a t i o n  i n d i c a t e s  t h a t  d i r e c t  

p h o t o l y s i s  of e s s e n t i a l  t ryp tophanyl  and c y s t i n y l  r e s i d u e s  a r e  

t h e  key i n a c t i v a t i n g  processes  and t h a t  e l e c t r o n  o r  energy t r a n s f e r  a r e  

n o t  important  i n  t h e s e  enzymes. 

K i n e t i c s  models have been developed and t e s t e d  f o r  important  

s t a g e s  i n  t h e  p h o t o s e n s i t i z a t i o n  of DNA t o  n e a r - u l t r a v i o l e t  r a d i a t i o n  

by furocoumarin compounds c u r r e n t l y  used f o r  PWA therapy  (pso ra l en  

p l u s  W-A) of p s o r i a s i s  and o t h e r  human s k i n  d i s e a s e s .  Experiments 

on photobinding of psora len  (Ps) and 8-methoxygsoralen (8-MOP) t o  

c a l f  thymus DNA a r e  c o n s i s t e n t  wi th  t h e  assumption t h a t  equ i l i b r ium 

dark  complexing of t h e  furocoumarin t o  t h e  DNA i s  a precondi t ion  f o r  

t h e  formation of cova len t  monoadducts and c ros s - l i nks .  A new a n a l y s i s  



based on " l a r g e  t a r g e t "  d i f f u s i o n  k i n e t i c s  i n d i c a t e s  t h a t  s i n g l e t  

oxygen (02) genera ted  by t h e  unbound furocoumarin has a h igh  prob- 

a b i l i t y  f o r  reaching t h e  DNA sur face .  The y i e l d s  of photoadducts 

produced by t h e  dark-complexed component a r e  i n  good agreement wi th  

publ ished d a t a  f o r  photobinding Ps t o  c a l f  thymus DNA and photobinding 

8-MOP t o  y e a s t  c e l l  DNA -- i n  vivo.  The gene ra l  development a p p l i c a b l e  

t o  repair-competent  systems p r e d i c t s  s u r v i v a l  curves  f o r  - E. c o l i  - K - 1 2  

s t r a i n s  exposed t o  black l i g h t  i n  t h e  presence of 8-MOP . The a n a l y s i s  

l e a d s  t o  " r e p a i r - l e t h a l i t y "  parameters i n d i c a t i n g  t h a t  DNA polymerase 

I i s  involved i n  t h e  r e p a i r  of furocumarin monoadducts and t h a t  8-MOP 

monoadducts make a s i g n i f i c a n t  c o n t r i b u t i o n  t o  l e t h a l i t y  i n  t h e  

wi ld  t ype  s t r a i n  and a r e  t h e  dominant l e t h a l  l e s i o n s  i n  r epa i r -de f i c -  

i e n t  s t r a i n s ,  uvrB and recA . 
S i n g l e t  oxygen gene ra t ion  by furocoumarins has  been i n v e s t i g a t e d  

w i t h  liposomes and human e r y t h r o c y t e s  ( r b c ) .  R e s u l t s  ob ta ined  wi th  

3-carbethoxypsoralen (3-CPs), an exper imental  a l t e r n a t e  PWA sens i -  

t i z e r  claimed t o  be non-tumorigenic, show t h a t  3-CPs i n t e r a c t s  wi th  

liposome and rbc  membranes i n  t h e  dark.  Negative r e s u l t s  i n  c o n t r o l  

experiments wi th  8-MOP.suggest t h e  p o s s i b i l ' i t y  of membrane damage 

wi th  3-CPs t h a t  should be f u r t h e r  i n v e s t i g a t e d .    elated experiments 

on pho tosens i t i zed  i n a c t i v a t i o n  of lysozyme have shown t h a t  3-CPs 

does  no t  gene ra t e  0; . However it i s  much more r e a d i l y  photolyzed 

than  8-MOP under anaerobic  c o n d i t i o n s  l ead ing  t o  sho r t - l i ved  produc ts  

t h a t  induce i n a c t i v a t i o n  of t h e  enzyme. 

S t u d i e s  on photosers i t i za t ion  of egg l e c i t h i n  liposomes by 

methylene b lue  (MB) incorpora ted  i n  t h e  membrane have l e d  t o  t h e  

new r e s u l t  t h a t  membrane l y s i s  i s  a two-stage process .  The f i r s t  

s t a g e  induced by r ed  l i g h t  i r r a d i a t i o n  l e a d s  t o  membrane damage 

i n i t i a t e d  by 05 . Membrane l y s i s  t a k e s  p l a c e  i n  t h e  dark ,  second 

s t a g e  under t h e  a c t i o n  of mild hydrodynamic s t r e s s ,  such a s  slow g a s  

bubbl ing.Similar  r e s u l t s  were ob ta ined  wi th  MB i n  t h e  e x t e r n a l  

aqueous m e d i u m ,  sugqcsking t h a t  t h c  r o l c  of hydrodynamic stress 

should be reexamined i n  p r i o r  work on p h o t o s e n s i t i z a t i o n  of liposomes. 
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Res'earch Progress  

1. Primary Processes  i n  t h e  Photochemistry of P r o t e i n s  

The e f f e c t s  of u l t r a v i o l e t  r a d i a t i o n  on p r o t e i n s  o f f e r s  

one of t h e  most i n t e r e s t i n g  cha l l enges  i n  t h e  f i e l d  of photochem- 

i s t r y ,  wi th  important  imp l i ca t ions  f o r  UV r a d i a t i o n  damage i n  

b i o l o g i c a l  systems. The o v e r a l l  o b j e c t i v e  i s  t o  fo l low t h e  pathways 

of energy depos i t i on  and.chemica1 changes lead ing  t o  permanent 

p r o t e i n  damage. Most of t h e  emphasis has been given t o  enzymes, 

g lobu la r  p r o t e i n s  whose c a t a l y t i c  a c t i v i t y  depends on t h e  s p e c i f i c  

sequence of amino a c i d  r e s i d u e s  l ead ing  t o  an a c t i v e  conformation 

i n  t h e  a p p r o p r i a t e  ranges  of temperature  and pH - . P r o t e i n s  provide 

e x c e l l e n t  systems f o r  s tudying in t ra -molecu la r  energy and e l e c t r o n  

t r a n s f e r  p rocesses  under cond i t i ons  where d i f f u s i o n a l  r e a c t i o n s  of 

t h e  amino a c i d s  a r e  i n h i b i t e d .  Progress  has ' been  made on two a s p e c t s  

of t h i s  problem dur ing  t h e  prev ious  year .  A t  t h e  exper imental  l e v e l ,  

t h e  pre l iminary  r e s u l t s  on l a s e r  f l a s h  p h o t o l y s i s ' o f  aqueous t ryptophan 

and r e l a t e d  indo le  d e r i v a t i v e s  have been extended,  l ead ing  t o  a  

new mechanism of t ryptophan photochemistry.  I n  a d d i t i o n ,  a new 

phenomenological theory  of enzyme i n a c t i v a t i o n  quantum y i e l d s  was 

developed, wi th  p r e d i c t i o n s  i n  c l o s e  agreement t o  experiment f o r  

a  number of important  enzymes. 

A. Mul t i p l e  Pathways of  Tryptophan Photo ion iza t ion  Based on 

Laser F l a sh  Pho to lys i s  
I 

The p r i o r  Progress  Report (June 1980) r epo r t ed  t h e  s u r p r i s i n g  

observa t ion  t h a t  t h e  pho to ion iza t ion  of aqueous t ryp tophan ,  t y r o s i n e ,  

s e v e r a l  i n d o l e  d e r i v a t i v e s ,  and s e v e r a l  enzymes i s  enhanced many-fold 

when s t rong  530 nm r a d i a t i o n  i s  superimposed on t h e  e x c i t i n g  265 nm 

r a d i a t i o n .  Based on t h e  dependence of t h e  hydrated e l e c t r o n  (eaq) 

y i e l d s  on l a s e r  i n t e n s i t y  and tempera ture ,  it was proposed t h a t  

pho to ion iza t ion  of Trp(aq)  may occur v i a  a  thermal ly-ac t iva ted  

monophotonic pathway and a. h iphoton ic  pathway. Finnstrom e t  a l .  [l] 

repor t ed  a  s M a r  530 nm enhancement e f f e c t  f o r  Trp(aq)  and proposed 

t h a t  t h e  t he rma l ly -equ i l i b ra t ed ,  f i r s t  e x c i t e d  s i n g l e t  s t a t e  (S1) 

i s  t h e  in te rmediary  f o r  t h e  biphotonic  process .  However, w e  have 

shown t h a t  t h i s  cannot be c o r r e c t ,  because t h e  e- y i e l d  i s  not  
a4 



Figure  1. Scheme f o r  photo ion iza t ion  of aqueous t ryptophan.  

Monophotonic i o n i z a t i o n  e x c i t e d  a t  265 nrn (I,,)' * 
t a k e s  p l ace  v i a  p re - f luorescen t  s t a t e  S1 . Blphotonic 

i o n i z a t i o n  a t  530 nm (Ix) a t  530 nm t a k e s  p l ace  

v i a  s t a t e  X. 



a f f e c t e d  by t h e  presence of h igh bromide ion  concen t r a t i ons ,  whi le  

t h e  f l uo re sence  i s  s t r o n g l y  quenched (Table 1).  This  d a t a  provides  

evidence t h a t  n e i t h e r  monophotonicnor biphotonic  i o n i z a t i o n  of 

Trp(aq)  t a k e s  p l ace  v i a  S1 o r  t h e  lowest  t r i p l e t  s t a t e  ( T )  . These 

f i n d i n g s  a r e  c o n s i s t e n t  wi th  o t h e r  r e s u l t s  i n d i c a t i n g  t h a t  t h e  

monophotonic i o n i z a t i o n  of Trp(aq)  t a k e s  p l ace  i n  a  p re - f luo re scen t  

s ta te [2-41 .  However, excluding S1 and T a s  t h e  biphotonic  i o n i z a t i o n  

i n t e r m e d i a r i e s ,  a  major ques t ion  a r i s e s  a s  t o  t h e  n a t u r e  of  t h e  

s t a t e  involved.  

The k i n e t i c s  model based on t h e  above c o n s i d e r a t i o n s  i s  shown 

i n  Fig .1 ,  where s t a t e  X i s  theurknown biphotonic  i o n i z a t i o n  s t a t e .  

The quantum y i e l d  f o r  popula t ion  of s t a t e  X (a:) can be es t imated  

from t h e  quasi -s teady s t a t e  approximation f o r  l a s e r  f l a s h  p h o t o l y s i s  

cond i t i ons ,  assuming t h a t  i t s  l i f e t i m e  ( T ~ )  i s  much s h o r t e r  than  

t h e  l a s e r  pu l se  du ra t ion  of 17 ns. I n  t h i s  c a s e ,  t h e  eZq concen t r a t i on  

dur ing  t h e  laser  pu l se  i s  given by: 

- 
'e - E ~ ~ [ @ ;  + ~ / ( 1  + Y ) I  (1 

where E i s  t h e  265 nm pu l se  energy,  @: i s  t h e  monophotonic uv 
i o n i z a t i o n  quantum y i e l d ,  and Y i s  an i n t e n s i t y  parameter f o r  combined, 

265 nm and 530 nm e x c i t a t i o n  de f ined  a s :  Y E a T I , where a and 
X X X  X 

T~ 
a r e  t h e  o p t i c a l  abso rp t ion  c ros s - sec t ion  (530 nm) and l i f e t i m e  

of s t a t e  X and Ix i s  t h e  530 nm i n t e n s i t y  (quanta  cm-*). The r a t i o  

of Ce f o r  530 nm p l u s  265 nm e x c i t a t i o n  t o  Ce f o r  265 n m  e x c i t a t i o n  

g i v e s  t h e  enhancement f a c t o r  ( K  ) a s :  
e 

Since (@; + + @; + mi) = 1, where @; i s  t h e  i n t e r sys t em c r o s s i n g  

e f f i c i e n c y  f o r  T r p ( a q ) ,  (es t imated  a s  0.3 from Table 2 ) ,  and @; 

i s  t h e  f l uo re scence  e f f i c i e n c y  ( 0 . 1 4 ) ,  Eq.(2)  l e a d s  t o  t h e  lower l i m i t  

on @: and t h e  upper l i m i t  on @; . The d a t a  f o r  T rp (aq )  gave 
- - 

Ke = 3.7t0 .5  a t  2 5 O ~  ( 8  runs )  and t h e r e f o r e ,  > 0 . 4 1  and < 0.15. 

The high va lue  of @: corresponds t o  t h e  e f f i c i e n t  popula t ion  

of s t a t e  X even f o r  monophotonic (low i n t e n s i t y )  e x c i t a t i o n .  The 

minimum l i f e t i m e  f o r  d e t e c t i o n  under our l a s e r  cond i t i ons  

i s  about  0.5 n s  . The s t r u c t u r e  of s t a t e  X i s  unknown. I t  may correspond 

t o  t h e  cha rge - t r ans fe r  complex proposed by Truong [5] from luminescence 

and abso rp t ion  mea,surements of t ryptophan a t  h igh  s a l t  concen t r a t i on .  



TABLE I 

Effect of Bromide Ion on Aqueous 
Tryptophan and Indole Photoinization 

System 

4Oow Trp 1.0 1.0 3.7k0.5 

400w Trp+0.5 M ~ r -  0.24 1.2 3.620.6 

400W Trp+3.0 M Br- 0.11 0.9 3.620.6 

300vM Ind 1 , O  1.0 1.520.3 

300m Ind+l.5 M Br- 0.27 0.9 1.4.0.3 

a' Fluorescence efficiency excited at 265 nm r e l a t ive  t o  
aqueous tryptophan o r  indole as unity. 

b, 265 nm excitation, nitrogen saturation, 50 ns delay, 
re la t ive  t o  no bromide ion present. 

TABLE I1 

Transient Product Yields From 
Flash Photolysis of Aqueous Tryptophan 

Transient 265 nm3 265+530 nmjc Enhancement 
species ) 

a) 100 ns delay NI-saturation; based on ~ ( e -  ) = 
14400 ~ ' c m - ~  a t  630 nm [E.M. Fieldenand aq 
E.J. Hart, Trans, Faraday Soc. 6 3 ,  2975 (196711 + 

b ,  100 ns delay, N2Gsaturation; based on ~ ( T r p  ) = 
2600 PfLcm- at 580 nm [L.I. Grossweher and 

, ,J.F. Bugher, J. Phys. Chem. Pl, 93 (1977)l 

3300 ns delay, N2Gsaturation; based on E ( R ~ * )  = 
. 1800 T'cm-' a t  510 nm [Ibid.] ' 

d, 100 ns delay, N20-saturation; based on ~ 0 T r p )  = 
3600 K'cm" fo r  indole(aq) a t  440 nm [R. Santus, 
private. communication] 

?t 
product' y ie lds  in micromolar 



~ l t h o u g h  pho to ion iza t ion  i s  t h e  dominant i n i t i a l  photochemical 

r e a c t i o n  of T r p ( a q ) ,  important  p rocesses  have been i d e n t i f i e d  

i n  which f r e e  e- i s  no t  involved,  e.g.  t h e  pho tosens i t i zed  
aq 

s p l i t t i n g  of thymine dimers i n  DNA 161. These r e a c t i o n s  a r e  promoted 

by molecular  complexes of Trp pep t ides  wi th  DNA and may involve  X 

a s  t h e  Trp e l e c t r o n - t r a n s f e r  s t a t e .  

The r e l a t i v e  so lva t ea  e l e c t r o n  y i e l d s  i n  water-e thanol  s o l -  

u t i o n s  a r e  shown i n  Fig .2 ,  where t h e  v a l u e s  f o r  265 nm e x c i t a t i o n  

a lone  have been reduced by 0.6 t o  account f o r  t h e  absorp t ion  of 

t h e  green f i l t e r  used i n  these 'measurements (Corning C.S. No. 7-54). 

The apparen t  enhancement f a c t o r  f o r  100% e thano l  i s  1:5 . However, 

i f  photo ion iza t ion  a t  265 nm were e n t i r e l y  b iphoton ic ,  t hen  t h e  

f i l t e r  would reduce t h e  e l e c t r o n  y i e l d  by 1/0.36 = 2.8 , compared t o  

t h e  measured va lue  of  1.5/.6 = 2.5 . (The 530 nm e x c i t a t i o n  would 

have no e f f e c t  i n  t h i s  ca se . )  Therefore ,  t h e  p o s s i b i l i t y  of on ly  

biphotonic  i o n i z a t i o n  of t ryptophan i n  e thano l  cannot be excluded.  

This p o s s i b i l i t y  i s  supported by d a t a  showing n e g l i g i b l e  e l e c t r o n  

enhancement i n  r a i s i n g  t h e  temperature  from 20°c t o  70°c and an 

approximate square  dependence of t h e  y i e l d  on l a s e r  i n t e n s i t y .  These 

r e s u l t s  i n d i c a t e  t h a t  t h e  formation of s t a t e  X i s  h igh ly  so lven t  

dependent, wi th  a  low y i e l d  i n  e thano l  compared t o  water .  

The va lue  < 0.15 deduced from t h e  above a n a l y s i s  may be 

compared with  publ ished va lues  of i n i t i a l  e- y i e l d s  f o r  Trp(aq)  
aq 

of 0 . 0 4  t o  0 .10  a t  265 nm (summarized i n  171).  I t  may be concluded 

t h a t  r e l a t i v e l y  l i t t l e  eZq decay t a k e s  p l a c e  from t h e  t i m e  of mono- 

photonic i o n i z a t i o n  i n  t h e  p re - f luo re scen t  s t a t e  u n t i l  about  10 ns .  

The es t imated  product  y i e l d s  i n  Table 2  , based on Fig.2 of t h e  

preceding Progress  Report and independent va lues  of t h e  e x t i n c t i o n  
+ c o e f f i c i e n t s ,  show t h a t  eEq and r a d i c a l  c a t i o n  (Trp ) y i e l d s  a t  100 n s  

a r e  equ iva l en t  and t h e  same a s  t h e  n e u t r a l  r a d i c a l  ( T r p * )  y i e l d  a t  

3.3 p s .  These r e s u l t s  provide a d d i t i o n a l  evidence f o r  a  r e l a t i v e l y  

slow recombination of e- and ~ r ~ +  a s  proposed i n  our  p r i o r  work (8-10~ 
aq  

S imi l a r  monophotonic and biphotonic  i o n i z a t i o n  pathways have 

been i d e n t i f i e d  wi th  aqueous indo le  and indo le  d e r i v a t i v e s ,  wi th  

a  t r e n d  towards h igher  va lues  of Xe wi th  i n c r e a s i n g  l e n g t h  of t h e  

s i d e  cha in :  i ndo le  (1.5) , 3-methylindole ( 1 . 6 )  , indole-3-ethanol (3 .5)  , 
indole-3-acet ic  a c i d  (2.8) , indole-3-propionic a c i d  (3.0) , t ryp tamine  ( 2 . 1 )  , 
t r yp tophan(3 .7 ) .  Q u i t e  high va lues  of Ke have been ob ta ined  wi th  

9 
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Figure  2 .  Solvated e l e c t r o n  y i e l d  from 4 0 0  .yM 

t ryptophan i n  water-ethanol s o l u t i o n s .  

(A) e x c i t e d  265 nm + 530 nm 

(b) exci.t.e.d 2 6 5  nm ( co r r ec t ed  by 0.6 f i l t e r  
f a c t o r )  



enzymes, which i s  t h e  sub jec t  of c u r r e n t  research .  

B. Enzyme I n a c t i v a t i o n  Quantum Yields  

Many a t t empt s  have been made t o  p r e d i c t  t h e  quantum y i e l d s  

of enzyme i n a c t i v a t i o n  by u l t r a v i o l e t  r a d i a t i o n  based on t h e  

o v e r a l l  composition. The model of McLaren [ l l ]  r ep re sen t s . ' one  l i m i t i n g  

ca se ,  where each absorbing r e s i d u e  c o n t r i b u t e s  ta t h e  i n a c t i v a t i o n  

quantum y i e l d  ( a .  ) accoding t o  i t s  e x t i n c t i o n  c o e f f i c i e n t  and t h e  
I n  

quantum y i e l d  f o r  d e s t r u c t i o n  of t h e  corresponding amino a c i d  

i n  aqueous s o l u t i o n .  A d i f f e r e n t  approach i s  t h a t  of Dose [12 ] ,  i n  

which on ly  t h e  e s s e n t i a l  r e s i d u e s  a r e . c o n s i d e r e d  and energy t r a n s f e r  

from aromat ic  r e s i d u e s  t o  e s s e n t i a l  c y s t i n e  r e s i d u e s  i s  included.  

Both of t h e s e  models provide good p r e d i c t i o n s  f o r  a  number of enzymes 

a t  254 nm i r r a d i a t i o n .  They precede our  f l a s h  p h o t o l y s i s  s t u d i e s  

showing t h a t  pho to ion iza t ion  of t ryp tophanyl  and tyro.s iny1 r e s i d u e s  

i s  t h e  p r i n c i p a l  i n i t i a l  a c t  i n  p r o t e i n s ,  where t h e  photoe lec t rons  

a r e  s t a b i l i z e d  a s  e i q  'and may a l s o  be t r a n s f e r r e d  t o  d i su l f i .de  b r idges  

w i th in  t h e  molecule [13]. It has  been found t h a t  q u i t e  good va lues  

of Qin 
can be p red ic t ed  a t  254 nm and 280 nm by assuming t h a t  d i r e c t  

photod is rup t ion  of e s s e n t i a l  t ryp tophanyl  and c y s t i n y l  r e s i d u e s  a r e  

t h e  most important  i n a c t i v a t i n g  processes .  The working r e l a t i o n  is :  

- 
' in - rtrpftrpqtrp + LYs f cys  rl cy s  

where r i s  t h e  f r a c t i o n . o f  e s s e n t i a l  r e s i d u e s  of  t h e  given type ,  

f  i s  t h e  f r a c t i o n a l  abso rp t ion  by a l l  r e s i d u e s  of t h a t  t ype  i n  

t h e  enzyme, and n i s  t h e  quantum y i e l d  f o r  d e s t r u c t i o n  of t h e  r e s i d u e  

i n  t h e  enzyme , The r e s u l t s  f o r  s i x  important  enzymes a r e  given 

i n  Table 1II.The va lue  q 
t r p  

= 0.05 was used f o r  a l l  enzymes a t  2 5 4  nm 

and 280 nm, based on f l a s h  p h o t o l y s i s  d a t a  ob ta ined  i n  t h i s  l a b o r a t o r y  

(TableIV).(Measurements of permanent t ryptophan d e s t r u c t i o n  i n  p r o t e i n s  

a l s o  l ead  t o  q 
t r p  

= 0.05+0.03 [ i 4 ]  . ) The va lue  of q 
CYS 

was taken 

a s  0 .20  a t  254 nm and 0.13 a t  280 nm, based on exper imental  quantum 

y i e l d s  f o r  d e s t r u c t i o n  of g l u t a t h i o n e  [ I s ] .  The va lues  of f  
t r P  

and 

f  were c a l c u l a t e d  from t h e  corresponding amino ac id  e x t i n c t i o n  
C Y S  

c o e f f i c i e n t s ,  and t h e  r va lues  a r e  based on biochemical d a t a  and 

p u l s e  r a d i o l y s i s  rad ica l -an ion  probe methods, e.g. t h e  review of 



TABLE III 

Calculation of Enzyme Inactivation Quantum Yields 
Based on Essential  Cystyl and Tryptophyl Residues 

carboxypep- 1/6 0/1 0.005 0 .005~  
t idase A 

sub t i l i s in  0/1 - 0.000 0, OOTe 
Carlsberg 

ribonuclease - 2/4 0.029 0. 030f 0.004 0 . 0 0 7 ~  

* essent ia l  residues/total residues 

a' D. Shugar, Biochim. Biophys. Acta g, 302 (1952). 

b' K. Dose, Photochem. Photobiol. 5, 423 (1967). 

K. Dose and S. Risi, B i d .  15 43 (1972). 
-3 

R. Pi- and B.L. Vallee, Biochemistry 5, 2269 (1967). 

e, A.D. McLaren and 0. Hidalgo-Salvatierra, Photochem. ~ho tob io l .  2, 349 (1964). f' T.K. Rathinasamy and L.G. Augenstein, Biophys. J. 8 1275 (1968). -9 

g, L.I. Grossweher and Y. Usui, Photochem. Photobiol. 13 195 (1971). -3 

h, W.A. Volkert and C.A. GhFron, B i d .  17, 9 (1973). - 



TABLE IV 

carbo~ypep~  
tidase A * 

subt.i l isin 
Novo 

subtil isin* 
BPN 

Initial Product Yields k o m  265 nm Laser Flash Photolysis 

# transient product quantum yield based on absorbtion by enzyme 

** electron balance 

a' J.F. Baugher, L.I. Grossweiner and J.Y. Lee, Photochem. Photobiol. 5, 305 (1977). 

b' W.A. Volkert and C.A. Ghimn, Did.  - 17, 9 (1973). 

J.F. Baugher and L.I. Grossweher, Did .  - 28, 175 (1978). 
* 

Unreported resul t s  . 



Grossweiner 114 I . The good agreement i n  a l l  c a s e s  except  s u b t i l i s i n  

Car l sberg ,  which con ta ins  no c y s t i n e  and a  s i n g l e ,  non-essen t ia l  

t ryptophan,  i n d i c a t e s  t h a t  energy and e l e c t r o n  t r a n s f e r  a r e  no t  

important  i n  t h e  u l t r a v i o l e t  i n a c t i v a t i o n  of t h e  enzymes i n  Table 111, 

However, it i s  n o t  necessary t h a t  t ryptophan r e s i d u e s  a r e  d i r e c t l y  

involved i n  s u b s t r a t e  binding o r  t h e  c a t a l y t i c  r e a c t i o n s .  The photo- 

l y s i s  of a  t ryptophanyl  r e s i d u e  ad j acen t  t o  a  key r e s i d u e  a l s o  can 

induce pho to inac t iva t ion .  For example, Trp 199 i n  t r y p s i n  i s  ad jacen t  

t o  e s s e n t i a l  S e r  198, t h e  s i d e  cha in  of Trp 177 i n  papain i s  i n  

c o n t a c t  w i th  H i s  159 of  t h e  a c t i v e  s i t e ,  and Trp 73 i n  carboxpept idase  

A i s  ad j acen t  t o  Glu 72, a  l i gand  of t h e  e s s e n t i a l  z inc  atom. In  

lysozyme, Trp 6 2 ,  Trp 63 and Trp 108 a r e  p a r t  of t h e  a c t i v e  s i t e  

c r e v i c e ,  and i n  r ibonuc lease  A t h e  e s s e n t i a l  Cys r e s i d u e s  can 

account f o r  pho to inac t iva t ion .  Table Ivsummarizes our  a v a i l a b l e  

d a t a  on i n i t i a l  y i e l d s  a s  ob ta ined  by laser f l a s h  pho to lys i s .  In  t h e s e  

6 enzymes, t h e  y i e l d s  of e- and t h e  d i s u l f i d e  b r idge  e l e c t r o n  - aq 
adduct  ( R S S R -  ) account f o r  t h e  e l e c t r o n s  e j e c t e d  from t ryp tophanyl  

and/or t y r o s i n y l  r e s i d u e s  a t  1 0 0  n s  t ime de lay .  I n  view of t h e  good - 
c o r r e l a t i o n s  f o r  @ i n  it does n o t  appear t h a t  e- o r  R S S R -  make 

aq 
a s i g n i f i c a n t  c o n t r i b u t i o n  t o  u l t r a v i o l e t  i n a c t i v a t i o n  of t h e s e  enzymes. 



2 .  Primary Mechanisms i n  P h o t o s e n s i t i z a t i o n  by Furocoumarins 

The r e s e a r c h  on furocoumarin photochemistry i n  t h i s  l a b o r a t o r y  

i s  d i r e c t e d  towards i d e n t i f y i n g  t h e  r e l a t i o n s h i p  of t h e  i n i t i a l  

r e a c t i o n s  t o  t h e  b i o l o g i c a l  endpoin ts  observed i n  furocoumarin 

p h o t o s e n s i t i z a t i o n  a t  t h e  c e l l u l a r  l e v e l .  N e w  r e s u l t s  on two a s p e c t s  

of t h e  problem were ob ta ined  dur ing  t h e  p a s t  year .  An i n v e s t i g a t i o n  of 

psora len  and 8-methoxypsoralen photobinding t o  c a l f  thymus DNA 

has l e d  t o  new informat ion about t h e  r o l e  of p r e - i r r a d i a t i o n ,  dark  

complexing on t h e  p h o t o s e n s i t i z a t i o n  mechanism. The mathematical  

a n a l y s i s  based on " l a r g e  t a r g e t "  r e a c t i o n  k i n e t i c s  makes it p o s s i b l e  

t o  e v a l u a t e  t h e  p o s s i b l e  r e a c t i o n s  of t h e  furocoumarin e x c i t e d  s i n g l e t  

s t a t e  and t h e  t r i p l e t  s t a t e  wi th  DNA and t o  e s t i m a t e  t h e  e x t e n t  

of s i n g l e t  oxygen i n t e r a c t i o n s .  These f i n d i n g s  a r e  r e l e v a n t  t o  t h e  

p o s s i b i l i t y  t h a t  s i n g l e t  oxygen i n i t i a t e s  mutat ions  i n  microorganisms 

exposed t o  W-A (320-400 nm) i n  t h e  presence of furocoumarins,  

and i t s  involvement i n  t h e  tumorigenic act ivi ty  of  furocoumarins i n  

l a b o r a t o r y  animals and humans. A second s tudy  was made on membrane 

damage a s soc i a t ed  wi th  furocoumarin p h o t o s e n s i t i z a t i o n ,  emphasizing 

an exper imental  drug employed f o r  t o p i c a l  photochemotherapy of 

p s o r i a s i s ,  3-carbethoxypsoralen,  which i s  claimed t o  be a s  e f f e c t i v e  

a s  8-methoxypsoralen wi thout  t h e  r i s k  of  inducing cutaneous carcinomas. 

The r e s u l t s  of t h i s  work show t h a t  s i n g l e t  oxygen gene ra t ion  by 

"3-CPs" i s  s i g n i f i c a n t l y  lower t han  "8-MOP", bu t  t h e r e  i s  a higher  

r i s k  of membrane damage. 

A. K ine t i c s  of  Furocournarin P h o t o s e n s i t i z a t i o n  I n  V i t r o  

The weak dark  binding of furocoumarins t o  po lynucfeo t ides  

i s  a major f a c t o r  i n  t h e i r  p h o t o s e n s i t i z a t i o n  mechanisms. I t  has  

been assumed t h a t  t h e  cova len t  furocoumarin-DNA photoaddi t ion  products  

a re ' fo rmed from t h e  dark-complexed component, which i s  q u i t e  smal l  

f o r  many furocoumarins inc lud ing  psora len  (Ps)  , 8-methoxypsoralen (8-MOP) , 
and 3-carbethoxypsoralen (3-CPs) because of t h e i r  low water  s o l u b i l i t i e s .  

E'or example, t h e  es t imated  f r ac t i on  of DNA-coiiiplexed 8-MOP i n  a 
y e a s t  c e l l  suspension (5 x 1 0 '  m l - I )  t r e a t e d  wi th  50 pM 8-MOP i s  0.3% 

[ 1 6 ] .  Measurements of 8-MOP binding t o  c a l f  thymus DNA were r epo r t ed  

i n  t h e  p r i o r  Progress  Report (June,1980) i n  which t h e  dependence of 



18 
INCIDENT DOSE, 10 QUANTA. MC' , 

Figure 3. Formation of psoralen 4',5'-monoadducts for 1 mM calf thymus DNA as measured by - 
395 nm fluorescence after hydrolysis. 
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Figure  4 .  Formation of psora len  (upper) and 8-methoxypsoralen ( lower)  

c r o s s - l i n k s  f o r  0 . 1  rnM c a l f  thymus DNA a s  assayed by - 
hyperchromicity a f t e r  thermal  dena tu ra t ion .  
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t h e  c ross - l ink ing  f luence  (365 nm) on binding was measured f o r  

so lu . t ions  con ta in ing  22 ~ . I M  8-MOP and d i f f e r i n g  c a l f  thymus DNA 

concen t r a t i ons .  The r e s u l t s  showed t h a t  t h e  f l uence  r equ i r ed  f o r  

about one c ros s - l i nk  per  DNA molecule was cons t an t  t o  w i th in  210% 

f o r  a  20-fold change i n  t h e  nuc l eo t ide  concen t r a t i on  and about  

30% higher  i n  a i r  compared t o  argon s a t u r a t i o n .  The weak concentra-  

t i o n  dependence i s  c o n s i s t e n t  wi th  t h e  assumption t h a t  dark  complexing 

i s  a  pre-condi t ion f o r  photobinding,  because t h e  dose r equ i r ed  f o r  

c ross - l ink ing  should depend on l/r4 .where r i s  t h e  f r a c t i o n  of DNA 

binding s i t e s  occupied by 8-MOP i n  t h e  dark.  However, t h i s  q u a n t i t y . i s  

q u i t e  i n s e n s i t i v e  t o  t h e  r a t i o  of t o t a l  8-MOP t o  t o t a l  nuc l eo t ides ,  

apparen t ly  expla in ing  t h e  exper imental  r e s u l t .  

These s t u d i e s  were continued dur ing  t h e  p a s t  yea r ,  where 

t h e  formation of 8-MOP c r o s s - l i n k s  and PS monoadducts and c r o s s - l i n k s  

on 365 nm f luence  w e r e  measured f o r  d i f f e r e n t  i n i t i a l  fur.ocoumarin 

and nuc leo t ide  concent ra t ions .  Typical  d a t a  f o r  t h e  growth of P s  

4',5'-monoadducts a r e  shown i n  Fig .3 ,  based on a  f luorescence  assay  

technique [171. The growth of PS and 8-MOP c ros s - l i nks  was assayed 

wi th  t h e  thermal  dena tu ra t ion  method [18] ,  i n  which t h e  number of 

c r o s s - l i n k s  pe r  DNA molecule i s  r e l a t e d  t o  hyperchromicity changes 

when t h e  DNA i s  hea ted  t o  850C and cooled;  t y p i c a l  d a t a  a r e  shown 

i n  Fig.4 . The summary of t h e  8-MOP c ros s - l i nk ing  d a t a  i n  Table V 

confirms t h a t  t h e  f l uence  r equ i r ed  f o r  50% r e n a t u r a t i o n  and dena tu ra t ion  

( D S 0 )  i s  independent of r-$ t o  w i th in  +15% s tandard  d e v i a t i o n  ( S D )  

f o r  a  20-fold change i n  t h e  n u c l e o t i d e s  concen t r a t i on  and a  4-fold 

change i n  t h e  t o t a l  8-MOP concent ra t ion .  S imi l a r  r e s u l t s  were found 

f o r  P s  c ros s - l i nks ;  Table V I ,  Col . ( .7) .  S imi l a r  cons ide ra t ions  i n d i c a t e  

t h a t  t h e  P s  monoadduct y i e l d  should depend on t h e  i n i t i a l  amount of 

complexed P s  (Cb) , 'which w a s  v a l i d  t o  530% SD; Table V I ,  Col (5)  . 
However, cons&ra t ions  of t h e  k i n e t i c s  shows t h a t  t h e  i m p l i c a t i o n s  

of t h e  d a t a  f o r  t h e  photobinding model may be ambiguous. I f  d a r k  

complexing i s  a pre-condi t ion f o r  photobinding,  t hen  t h e  dependence 

of t h e  f l u o r e ~ a e n c e  e f f i c i e n c y  ( a f t e r  hyd ro lys i s  of  t h e  DNA) of 

t h e  monoadducts (Ifl) on f luence  ( D )  should follow: 

as  found i n  Table V I ,  Co l . (7 ) .  However, i f  monoadduct forr ia t ion 



Table V. Photobinding of 8-methoxypsoralen' to calf thymus DNA. 

* concentration of nucleotides (pM) - 
# concentration of 8-methoxypsoralen (ug) 

+ 365 nm fluence for h/h, = 0.5 (units of 10 -I8 x photons ~ m - ~ )  



Table VI. Photobinding of psoralen to calf thymus DNA. 

* concentration of nucleotides (pM) - 
# concentration of psoralen (pg 

t initial build-up of monoadduct fluorescence (arb) 

** 365 nm fluence for h/h = 0.5 (units of 10 -18 x photons ~ m - ~ )  
m 



involves  t h e  homogenous r e a c t i o n s  of e x c i t e d  furocoumarin~molecules  

wi th  DNA, then  t h e  r e l a t i o n s h i p  is:  

where Co is  t h e  t o t a l  furocoumarin concent ra t ion  and CN i s  t h e  t o t a l  

nuc l eo t ides  concent ra t ion .  The d a t a  a r e  i n  equa l ly  good agreement 

wi th  t h i s  r e l a t i o n s h i p ;  Table V I ,  Co1.(6).  S i m i l a r l y ,  t h e  pre-dark 

complexing model f o r  c ros s - l i nk  formation l e a d s  t o :  

n  -. r~~ 
C 

(6)  

where n  i s  t h e  number of c ros s - l i nks  pe r  DNA molecule, and t h e  
C 

homogeneous model g ives :  

I n  Table V it i s  seen t h a t  Eq. (6)  and Eq. (7 )  a r e  i n  equa l ly  good 

agreement w i th  experiment; Co1.(7) and Co1. (8) ,  r e s p e c t i v e l y .  

The ambiguity l i e s  i n  t h e  m u l t i p l e  binding formula used t A ' e s t i m a t e  

t h e  dark-complexed components [19] , which can be expressed a s :  

where n  i s  t h e  number of equ iva l en t  binding s i t e s  pe r  nuc l eo t ide ,  

Kb i s  t h e  i n t r i n s i c  binding cons t an t ,  and f b  i s  t h e  complexed f r a c t i o n  

of furocoumarin. The r i g h t  s i d e  o f ' t h i s  express ion  does no t  depend 

a t  a l l  on CN and changes very  slowly wi th  Co f o r  weak binding,  l ead ing  

t o  good c o r r e l a t i o n s  f o r  e i t h e r  model. 

I n  view of  t h e  f a i l u r e  of convent iona l  k i n e t i c s  t o  r e s o l v e  

t h e  key i s s u e  a s  t o  t h e  r o l e  of f r e e  and complex furocoumarin i n  

photobinding,  a new theo ry  has  been developed based on " l a r g e  

t a r g e t "  d i f f u s i o n  k i n e t i c s .  This  approach w a s  p rev ious ly  employed 

i n  connection wi th  t h e  a t t a c k  of sho r t - l i ved  s p e c i e s  generated 

by ion iz ing  r a d i a t i o n  o r  photochemical r a d i a t i o n s  i n  t h e  medium ex- 

t e r n a l  t o  l a r g e  t a r g e t s  [ 2 0 , 2 1 ] .  The p r e s e n t  a p p l i c a t i o n  a l lows  

f o r  d i r e c t  r e a c t i o n s  of t h e  dark-complexed s p e c i e s  wi th  t h e  DNA 

t a r g e t  p l u s  d i f f u s i v e  r e a c t i o n s  induced by t h e  i n t e rmed ia t e s  generated 

by t h e  f r e e  furocoumarin i n  t h e  e x t e r n a l  medium.The number of 

i n t e r a c t i o n s  wi th  t h e  DNA s u r f a c e  by e x t e r n a l l y  generated s p e c i e s  

can be expressed a s :  



where n* i s  t h e  number of s u r f a c e  encounte rs  a f t e r  absorbed 

f luence  D*, @* i s  t h e  quantum e f f i c i e n c y  f o r  gene ra t ing  t h e  

r e a c t i v e  in te rmedia te ,  n* i s  t h e  p r o b a b i l i t y  t h a t  an encounter 

l e a d s  t o  t h e  observed event ,  and v* i s  t h e  " r e a c t i o n  volume", 

which can be p i c t u r e d  a s  t h e  volume of medium surrounding t h e  

DNA i n  which a generated s p e c i e s  has 0.5 chance of reaching 

t h e  DNA s u r f a c e  dur ing  i t s  l i f e t i m e .  For double-stranded DNA 

v* can be approximated by: 

where R i s  t h e  DNA r a d i u s  (1 x l o - '  cm), L i s  t h e  extended DNA 

l e n g t h  [L-3.4 x l o - '  (MW) DNA/700] , and p ( r m ) .  i s  t h e  mean d i f f u s i o n  

range of t h e  r e a c t i v e  i n t e rmed ia t e  [22 ] .  The number of monoadducts 

from t h e  complexed furocoumarin f o r  t h e  same dose can be expressed 

a s :  

"rn = @ n D  m b abs  / 6 . 0 2 3 ~ 1 0 ~ ' ~ ~  (11 1. 

where Qm i s  t h e  quantum y i e l d  f o r  monoadduct formation based 

on l ' ight  absorp t ion  by t h e  complexed furocoumarin, n i s  t h e  b 
o r i g i n a l  number of dark-cornplexed furocoumarin molecules pe r  

DNA molecule and nm i s  t h e  number of monoadducts pe r  DNA molecule. 

S u b s t i t u t i n g  Eq. ( 1 0 )  i n  Eq. (9 )  , with  nb = (Cb/CN [ (MW) DNA/350] ) , 
g i v e s  t h e  r a t i o  o f n *  t o  nm: 

Equation (12) shows t h a t  t h e  r a t i o  o f  e x t e r n a l  h i t s  t o  monoadducts 

i s  independent of t h e  DNA molecular  weight and changes w i t h  

t h e  r e l a t i v e  furocoumarin and DNA concen t r a t i ons  through a r a t i o  

t h a t  i s  almost  cons t an t  [ s e e  Eq. ( 8 )  1 and r e a d i l y  c a l c u l a t e d .  

The va lue  of p can be taken a s  (D*r*lC where D* i s  t h e  

d i f f u s i o n  cons t an t  of t h e  r e a c t i v e  i n t e rmed ia t e  and T*  i s  i t s  

decay o r  scavenging l i f e t i m e .  For t h e  r e a c t i o n  of  8-MOP wi th  

c a l f  thymus DNA, Qrn = 0.007 and (CoCN/Cb) = 500 [16] .  W e  a r e  now 

i n  a p o s i t i o n  t o  e v a l u a t e  Eq.(12) f o r  t h e  i n t e rmed ia t e s  of i n t e r e s t :  



( a )  8-MOP e x c i t e d  s i n g l e t  s t a t e :  

Taking D* = 5 x  cm2s-' (from S t o k e ' s  law) and T*  = 2 n s  

[23] g i v e s  p = 1 x  1 0 - ~ c m  and n e g l i g i b l e  va lues  

(b)  8-MOP t r i p l e t  s t a t e :  

For a i r - s a t u r a t i o n ,  p - 4 x  cm based on k(T+O,)= 
L 

1 x  1 0 '  M-Is - '  [23]. The in t e r sys t em c ros s ing  y i e l d  

g i v e s  a *  = 0.14 [241 and n*/nm < 4 0  , which i s  t h e  

upper l i m i t  f o r  q* = 1 and a  1 0  pg m l - '  8-MOP s o l u t i o n .  

( c )  S i n g l e t  oxygen: 

For T* = 2 x s and D* = . 3  x  cm2s-1 , p - 8  x  10-6cm 

and n*/nm < 80 f o r  q* = 1 and @* < 0.14. 

The above r e s u l t s  show t h a t  s i n g l e t  oxygen and 8-MOP t r i p l e t  s t a t e s  

generated i n  t h e  e x t e r n a l  medium by f r e e  8-MOP can make a  s i g n i f -  

i c a n t  c o n t r i b u t i o n  t o  DNA damage. The l a t t e r  can be r u l e d  ou t  

f o r  8-MOP t r i p l e t  s t a t e s  (but  no t  f o r  P s  t r i p l e t  s t a t e s )  because 

of t h e  low r e a c t i v i t y  measured wi th  l a s e r  f l a s h  p h o t o l y s i s  [25].  

The DNA damage induced by s i n g l e t  oxygen i n  furocoumarin photo- 

s e n s i t i z a t i o n  may be of cons ide rab le  b i o l o g i c a l  importance and 

w i l l  be i n v e s t i g a t e d  i n  f u r t h e r  work. 

B. S i n g l e t  Oxygen Generat ion  by 8  -Methoxypsora'l'en' 'and 

3-Carbethoxypsoralen . 

The gene ra t ion  of s i n g l e t  oxygen (Of) was demonstrated 

i n  t h i s  l abo ra to ry  f o r  8-MOP [23] ,  and subsequent ly  confirmed 

and extended t o  o t h e r  furocoumarins ,[26,27] inc lud ing  Ps ,  

5-methoxypsoralen (bergapten,  5-MOP) and a n g e l i c i n .  Since 0; 

has  been shown t o  be mutagenic i n  y e a s t  c e l l s  [28] ,  t h e r e  has  

been specu la t ion  t h a t  0; may be involved i n  t h e  tumorigenic a c t i o n  

of PWA therapy  (psora len  p l u s  W-A) of p s o r i a s i s  wi th  8-MOP [29].  

(The mutagenic a c t i o n  of8-MOP may a l s o  be induced by error-prone 

r e p a i r  of t h e  8-MOP/DNA c ros s - l i nks ,  bu t  t h e  known r e a c t i v i t y  

of 0; with  DNA, membranes and p r o t e i n s  p rov ides  an a l t e r n a t i v e  

mechanism.) I n  1978, succes s fu l  t o p i c a l  phototherapy of p s o r i a s i s  

was r epo r t ed  f o r  3-CPs, a  d e r i v a t i v e  t h a t  does  no t  form DNA 
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Figure 5. '~hotosensitized liposome damage by 1 6 0 ~ ~  - 8-methoxypsoralen; 

oxygen-saturated, (310-390 nin). 



Figure 6. Photosensitization of liposomes by 8-methoxypsoralen in 

different liposomes,phases; oxygen-saturated, (310-390 mm). 
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c r o s s - l i n k s  i n  y e a s t  a t  365 nm L.301. It  i s  claimed t h a t  3-CPs. 

i s  no t  tumorigenic i n  mice [30] ,  i n  c o n t r a s t  t o  t h e  well-known 

tumorigenic a c t i v i t y  of 8-MOP p l u s  W-A i n  l abo ra to ry  animals ,  

e . g . ,  Ley e t  a l .  [311. I n  view of t h e  c l i n i c a l  importance of 

8-MOP and 3-CPS a s  PWA s e n s i t i z e r s ,  w e  undertook a  s tudy  on 

a s p e c t s  of t h e i r  p h o t o s e n s i t i z a t i o n  mechanisms. 

Based on our p r i o r  work ut i l iz ing egg l e c i t h i n  liposomes 

a s  probes f o r  0; (Progress  Report ,  June 1980) ,  measurements 

were made of liposome l y s i s  induced by t h e  exposure t o  W-A 

i n  t h e  presence of 8-MOP and 3-CPs. Typical  r e s u l t s  i n  Fig.5 

f o r  160 pM 8-MOP i r r a d i a t e d  wi th  a  200-W h.p. Hg a r c  through - 
a Corning C.S.No.7-39 f i l t e r  (310-390 nm) show t h e  p r o t e c t i o n  

by a z i d e  ion and enhanced l y s i s  i n  D 2 0  c h a r a c t e r i s t i c  of 0; 

p a r t i c i p a t i o n .  The r e l a t i v e l y  slow l y s i s  r a t e  compared t o  methylene 

b lue  s e n s i t i z a t i o n  (Progess Report ,  June 1980) i s  c h a r a c t e r i s t i c  

of t h e  low 0; y i e l d  from 8-MOP [26].  The r e s u l t s  i n  Fig.6 show 

t h a t  l y s i s  i s  more e f f i c i e n t  f o r  8-MOP i n  t h e  e x t e r n a l  medium 

than  f o r  t h e  same concent ra t ion  entrapped wi th in  t h e  liposome 

o r  incorpora ted  i n  t h e  liposome membrane. The equ iva l en t  exper i -  

ments wi th  3-CPs were unsuccess fu l  because of t h e  dark  i n t e r a c t i o n s  

of 3-CPs with,  t h e  l i p i d  membrane. A s  r epo r t ed  i n  t h e  p r i o r  

Progress  Report,  it was found t h a t  3-CPs e x e r t s  a  d e t e r g e n t  a c t i o n  

on egg l e c i t h i n  liposomes lead ing  t o  da rk  l y s i s  under mild bubbling 

i n  t h e  dark.  The i n h i b i t i o n  of t h e  dark  l y s i s  i n  . the  presence of 

9 : l  water-ethanol w a s  explained by s t a b i l i z a t i o n  of t h e  3-CPs 

i n  t h e  aqueous phase. 

The ques t ion  bf  0* gene ra t ion  by 3-CPs was i n v e s t i g a t e d  us ing  2 
t h e  i n a c t i v a t i o n  of hen lysozyme a s  an a l t e r n a t i v e  probe [231. 

The r e s u l t s  i n  Fig.7 show t h a t  t h e  i n a c t i v a t i o n  r a t e  i s  much 

f a s t e r  under argon s a t u r a t i o n  (curve B) t han  wi th  oxygen s a t u r a t i o n  

(curve C )  . I n  c o n t r a s t ,  f o r  8-MOP p h o t o s e n s i t i z a t i o n ,  t h e  i n a c t -  

i v a t i o n  r a t e  i n  argon and D20 (curve D )  i s  slower t han  f o r  O2 

s a t u r a t i o n  (curve E )  a s  expected f o r  O* involvement. However, f o r  2 
3-CPs t h e  dependence of t h e  i n a c t i v a t i o n  r a t e  ( T g 7 )  on lysozyme 

i s  c h a r a c t e r i s t i c  of t h e  k i n e t i c s  where t h e  i n a c t i v a t i n g  agent  

i s  generated i n  t h e  e x t e r n a l  medium , Fig.8 [14].  It  i s  most l i k e l y  



Irradiation Time (rnin) 
Figu re  7. P h o t o s e n s i t i z a t i o n  of t h e  i n a c t i v a t i o n  o f  hen lysozyme. 

A .  da rk ,  02-bubbled w i th  40 pM - 3-CPs; B. i r r a d i a t e d ,  argon- 
. .  I .  

bubbled w i th  40 V M  - 3-CPs; C. i r r a d i a t e d ,  02-bubbled w i t h  

40 pM 3-CPs; D. i r r a d i a t e d ,  argon-bubbled w i th  37 pM 8-MOP; - - 
E. i r r a d i a t e d ,  02-bubbled w i th  37 pM - 8-MOP. 



bysomyme, phn 
Figure  8 .  Dependence of lysozyme i n a c t i v a t i o n  r a t e  (Tg7) on enzyme 

concent ra t ion  f o r  i n a c t i v a t i o n  by 40 pM 3-CPs; - 
argon-bubbled,. . (310-390) nm. 



t h a t  r e a c t i v e  f r e e  r a d i c a l s  a r e  t h e  major i n a c t i v a t i n g  agent  

f o r  3-CPs, c o n s i s t e n t  w i th  , the  r a p i d  p h o t o l y t i c  decomposition 

of 3-CPs when exposed t o  365 nm r ad i a t i on [32 ,33 ] .  I n  any case ,  

t h e  product ion of 0; by 3-CPs must be much smal le r  than  f o r  8-MOP 

i n  o rde r  t o  account f o r  t h e  p r o t e c t i v e  e f f e c t  of oxygen. 

The dark  l y s i s  of liposomes by 3-CPs has  important  implica- 

t i o n s  f o r  t h e  c l i n i c a l  u se  of t h i s  drug. The r e s u l t s  i n  Fig.9 

show t h a t  t h e  dark  l y s i s  r a t e  w i th  argon bubbling i n c r e a s e s  

w i th  i nc reas ing  3-CPs concen t r a t i on ,  wi th  an apparen t  t h r e sho ld  

between 22  pM - and 45 pM - . The liposome experiments were extended 

t o  whole human e r y t h r o c y t e s  Crbc) i n  o rde r  t o  exp lo re  t h e  e f f e c t s  

w i th  b i o l o g i c a l  membranes. Two d i f f e r e n t  i n t e r a c t i o n s  of 3-CPs 

w i t h  rbc  were observed, each of s i g n i f i c a n t l y  h igher  magni tude. than 

wi th  8-MOP. A s h o r t  exposure of rbc  t o  3-CPs i n  . the  da rk  induced 

r a p i d  l y s i s ,  a s  determined by t h e  r e l e a s e  of hemoglobin,Fig.lO. 

(The exper imental  d e t a i l s  a r e  summarized i n  [33] and t h e  d o c t o r a l  

d i s s e r t a t i o n  of R.Muller-Runkel, IIT, May 1981.) However, t h e  

normal l y s i s  a f te r long- t ime  incuba t ion  i n  t h e  da rk  was i i l 'h ibi ted 

by 3-CPs, Fig.11. This  i n h i b i t i o n  was t h e  same when t h e  rbc  

were i n ' t h e  presence of 3-CPs f o r  t h e  f u l l  incuba t ion  per iod  and 

when they  were exposed t o  3-CPs f o r  2 h r s  followed by washing. 

S ince  r b c  l y s i s  is of t h e  ' "co l lo id  osmotic" t ype  1341, t h e  two 

s t a g e s  may involve  f i r s t  t h e  d e t e r g e n t  e f f e c t  on t h e  l i p i d ,  

p a r a l l e l i n g  t h e  liposomes, fol lowed by a  p r o t e i n  i n t e r a c t i o n  l ead ing  

t o  decreased f l u i d i t y .  I n  any c a s e ,  t h e r e  i s  l i t t l e  doubt t h a t  

3-CPs e n t e r s  t h e  r b c  membrane and induces  a l t e r a t i o n s  no t  p r e s e n t  

i n  t h e  c a s e  of 8-MOP t o  a  s i g n i f i c a n t  e x t e n t .  
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Figure  9. Lysis of liposomes in the dark by 3-CPs; 

argon-bubbled. 
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Figure 10. Dark release of hemoglobin from erythrocytes induced 

by 245 pM - 3-CPs in saline-phosphate buffer/ethanol 
1:10 (vol/vol) at 37OC and 200 pM %-MOP (control). 
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F i g u r e  1.1. E f f e c t  of  3-CPs ( 2 5 0  yM) on s t a b i l i t y  of  e r y t h r o c y t e s  towards  - 
i n c u b a t i o n  i n  s a l i n e  a t  370C. 



C. K i n e t i c s  of Furocoumarin Photoseh'si t i 'zat ion of DNA' 'ih Vivo 

A new mathematical  model f o r  furocoumarin photosen ' s i t i za t ion  

of DNA was descr ibed  i n  t h e  p r i o r  Progress  Report ,  a p p l i c a b l e  

t o  l i g h t  sources  of a r b i t r a r y  s p e c t r a l  i n t e n s i t y  d i s t r i b u t i o n  

and t o  systems of d i f f e r i n g  r e p a i r  competence. This model has  been 

r e f i n e d  and app l i ed  t o  s e v e r a l  p h o t o s e n s i t i z a t i o n  systems w i t h  

encouraging r e s u l t s .  The key assumptions of t h e  a n a l y s i s  a r e :  

( a )  Photobinding involves  only  t h e  dark-complexed furocumarin 

molecu les , the  e f f i c i e n c y  of which can be es t imated  from 

i n  v i t r o  measurements' of dark  complexing c o n s t a n t s  and - 
photobinding quantum e f f i c i e n c i e s .  

(b)  The 3,4- and 4',5'-monoadducts formed from c ros s - l i nk ing  

furocoumarins, such as P s  and 8-MOP, have a c e r t a i n  p r o b a b i l i t y  

f o r  convers ion t o  c ros s - l i nks  depending t h e  binding si tes,  

t h e  s p e c i f i c  furocoumarin and DNA s t r u c t u r e s ,  and t h e  

i n c i d e n t  spectrum. 

(c)  The photoadduct y i e l d s  f o r  a given b i o l o g i c a l  system 

p r i o r  t o  r e p a i r  do no t  depend on t h e  r e p a i r  genotype of t h e  

s p e c i f i c  s t r a i n .  

The mathematical  a n a l y s i s  fo l lows  t h e  p r i o r  Progress  Report except '  

t h a t  d i f f e r e n t i a l  rate  equa t ions  a r e  solved f o r  two types  of 

3,4-monoadducts: t h o s e  t h a t  can be conver ted t o  c r o s s - l i n k s  and 

those  t h a t  cannot be converted t o  c r o s s - l i n k s  because of t h e  binding 

si tes,  and s i m i l a r l y  f o r  t h e  4',5'-monoadducts. The complete s o l u t i o n  

f o r  t h e  numbers o f . s p e c i e s  pe r  DNA molecule ( n . )  a f t e r  s ca l ed  i n c i d e n t  
3 

dose n '  8 . m :  



where t h e  s u b s c r i p t s  r e f e r t o  complexedfurocoumarin ( f )  , 4 ' , 5  ' -mono- 

adducts  c o n v e r t i b l e  and n o t  c o n v e r t i b l e  t o  c ros s - l i nks  ( a t a t ) ,  

s i m i l a r l y  f o r  3,4-monoadducts (b  , b '  ) , and c r o s s - l i n k s  ( c )  . The o t h e r  

parameters a r e  t h e  i n i t i a l  f r a c t i o n  of 4',5'-monoadducts ( 6 1 ,  t h e  

c o n v e r t i b l e  monoadduct f r a c t i o n s  (ga,gb) , two terms r e l a t i n g  t o  

t o  t h e  r a t e  of c ros s - l i nk  format ion r e l a t i v e  t o  monoadduct formation 

( A , B )  , and t h e  s ca l ed  dose: D '  o @ @ D l  where of ,is t h e  furocoumarin f  m 
absorp t ion  cross-sec ' t io .n(or  mean c ros s - sec t ion  f o r  broad band e x c i t a -  

t i o n ) ,  Qrn is  t h e  quantum e f f i c i e n c y  f o r  monoadduct format ion from 

t h e  complexed furocoumarin, and D i s  t h e  i n c i d e n t  f l uence  (see Progess  

Report June 1980 and r e f .  [ l 6 ]  f o r  d e t a i l s .  ) ' 

A pre l iminary  tes t  of t h e  a n a l y s i s  was made f o r  publ ished da t a [35 ]  

on Ps  photoadduct formation wi th  c a l f  thymus DNA f o r  365 nrn r a d i a t i o n ,  

us ing  key parameters r epo r t ed  by t h e  au tho r s :  D / t  = 2.9 x  1 0 1 6  

photons/cm-s , E(Ps) = 960 ~ - ' cm- ' ,  6 ( 4 ' , 5 ' )  = 2010 M-'cm-', and 

f b  = 0.31 (dark-complexed P s ) .  The p o i n t s  i n  Fig.12 show t h e  format ion 

of monoadducts and c r o s s - l i n k s  and t h e  l i n e s  w e r e  c a l c u l a t e d  from 

E q s . ( l 3 )  based on q u a l i t a t i v e  f i t t i n g  parameters  determined by 

t h e  au thors .  The p r e s e n t  q u a n t i t a t i v e  f i t  i n d i c a t e s  t h a t  t h e  i n i t i a l  

f r a c t i o n  of 4',5'-m0n0adducts was 0.39, t h a t  54% of t h e  4',5'-mono- 

adducts  were c o n v e r t i b l e  t o  c r o s s - l i n k s  ( t h e  3,4-monoadducts do n o t  

absorb a t  365 nm), and t h a t  t h e  quantum y i e l d s  f o r  monoadduct 

formation and c ros s - l i nk  formation were 0 . 0 1 9  and 0.45, r e s p e c t i v e l y .  

The h igh  e f f i c i e n c y  f o r  conver t ing  4',5'-monoadducts i s  an import- 

a n t  conclusion of t h i s  a n a l y s i s .  

A more s t r i n g e n t  t e s t  w a s  made f o r  photoadduct format ion i n  DNA 

e x t r a c t e d  from Saccharomyae~ o e r c v i c i a c  (5  x l ~ ' c e l l s / m l )  a f t e r  

exposure t o  18.9 k ~ / m ~  f luence  a t  365 nm i n  t h e  presence of 50 pM - 
8-MOP [32].  The d a t a  showed t h a t  0.0023 pg of 8-MOP were photobound 

t o  1 pg of e x t r a c t e d  DNA. Taking 5  x 1 0 - l ~ ~  of DNA p e r  c e l l  (from 

t h e  a u t h o r s )  and published binding c o n s t a n t s  f o r  8-MOP and c a l f  

thymus DNA [ 361 l e a d s  t o  f b  = 0.0033 and t h e  photobinding quantum 

y i e l d  Qm = 0.008. I n  comparison, - i n  v i t r o  binding of 8-MOP t o  c a l f  

thymus DNA, c o r r e c t e d  f o r  t h e  dark  complexed f r a c t i o n s ,  gave 

@m = 0.007 a t  365 nm [37] ,  i n  e x c e l l e n t  agreement. These r e s u l t s  

provide s t rong  suppor t  f o r  t h e  assumption t h a t  on ly  t h e  dark-complexed 

8-MOP i s  photobound t o  DNA i n  vivo.  -- 
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Time, min. 

Figure 12. Fit of kinetics model to published data [35] for 

photobinding 54 pM psoralen to 3 rnM'calf thymus DNA - - 
at 365 nm; A. 3,4-monoadducts; B. 4',5'-monoadducts; 

C. crosc-links. 



Another t es t  w a s  made f o r  i n  v ivo  p h o t o s e n s i t i z a t i o n  where -- 
s t r a i n s  of  E.  c o l i  K-12 were exposed t o  f l u o r e s c e n t  BL (black l i g h t )  - - 
lamps i n  t h e  presence of 1 0  vg/ml 8-MOP [38]. The t h e o r e t i c a l  sur-  

v i v a l  curve assuming t h a t  a l l  f o u r  t ypes  of monoadducts have equa l  

l e t h a l i t y  and t h a t  each non-repaired l e s i o n  c o n t r i b u t e s  independent ly  

t o  l e t h a l i t y  i s  of t h e  form: 

where ng i s  t h e  i n i t i a l  number of dark-complexed 8-MOP molecules 

per  DNA molecule ( c a l c u l a t e d  a s  2 x  l o 5 ) ,  f m  and f c  a r e  t h e  

p r o b a b i l i t i e s  t h a t  monoadducts and c r o s s - l i n k s ,  r e s p e c t i v e l y ,  a r e  

no t  r epa i r ed  and induce l e t h a l i t y ,  and D '  (def ined  above) was 

c a l c u l a t e d  t ak ing  Qm = 0.007 and of = 5.7 x  1 0 - I  cm2 was c a l c u l a t e d  

by numerical  i n t e g r a t i o n  of t h e  8-MOP absorp t ion  over  t h e  lamp 

spectrum (see p r i o r  Progress  Report and [ 4 0 ] ) .  I t  w a s  assumed t h a t  

A ' E C S ~ ~ A  and n; w e r e  t h e  same f o r  a l l  s t r a i n s  and t h e  s u r v i v a l  d a t a  a 
w e r e  f i t t e d  t o  Eq.(14) w i t h  A '  = 1.2 and t h e  va lues  of fm  and f c  

i n  Table  V I I .  (The a c t u a l  f i t  i s  shown i n  F ig .1  of r e f . [ l 6 ] ) .  

The r e s u l t s  show t h a t  monoadducts a r e  i n h e r e n t l y  much l e s s  l e t h a l  

than  c ros s - l i nks  i n  a l l  fou r  s t r a i n s .  However, t h e  c o n t r i b u t i o n  of  

monoadducts t o  l e t h a l i t y  is  s i g n i f i c a n t  i n  t h e  wi ld  type  and polA - 
s t r a i n s  and they  a r e  t h e  dominant l e t h a l  l e s i o n s  i n  t h e  more 

s e n s i t i v e  uvrB and recA s t r a i n s .  The h igher  monoadduct l e t h a l i t y  - - 
i n  t h e  polA s t r a i n  compared t o  wi ld  t ype  was a t t r i b u t e d  t o t h e  -- 

. involvement of DNA polymerase I i n  t h e  r e p a i r  of furocoumarin 

monoadducts [38] ,  which i s  r e f l e c t e d a l s o  i n  t h e  h igh  polA s e n s i t i v i t y  

of E.  c o l i  K-12 t o  black l i g h t  p l u s  monoadduct forming furocoumarins - - 
such a s  a n g e l i c i n  and 3-CPs [381. The g e n e r a l l y  high monoadduct 

c o n t r i b u t i o n  t o  l e t h a l i t y  i s  a  new r e s u l t  of  re levance  t o  PWA 

therapy  wi th  3-CPs and i n  t h e  i n t e r p r e t a t i o n  of comparative d a t a  

on l e t h a l i t y  and muta t ions  induced by 8-MOP, and a n g e l i c i n  o r  3-CPs. 



Table VII 

Application of kinetics model to published data [38] 
for the photoinactivation of E. coli K-12 by black light - - 
in the presence of 46 pM .8-methoxypsoralen. - 

Strain 
D37 # fm C Lm/L # #  

* f * *  

wild type 1.30 0.00035 0.06 0.47 

polA - 0.85 0.0007 0.06 0.78 

uvrB - 0.20 0.004 0.06 0.88 

recA - 0.15 0.005 1.0 0.88 

# Inactivating f luence k~/rn'~ 

* Monoadduct lethality parameter 
** Cross-link lethality parameter 

# #  Monoadduct fraction of lethal lesions 



3. Photosens i t i zed  Lys i s  of Li'po's'omes-Hydrodynamic E f f e c t s  

I n  t y p i c a l  s t u d i e s  on p h o t o s e n s i t i z a t i o n  of l iposomal damage, 

t h e  liposomes a r e  exposed t o  v i s i b l e  r a d i a t i o n  i n  t h e  presence 

of t h e  s e n s i t i z e r ,  which may be incorpora ted  i n  t h e  liposome mem- 

brane o r  d i s s o l v s 3  i n  t h e  aqueous medium. Resu l t s  have been r epo r t ed  

f o r  v a r i o u s  t ypes  of s e n s i t i z e r s  inc lud ing  n a t u r a l  and s y n t h e t i c  

pigments, e .g.  t h e  review of Grossweiner [39]. The phys i ca l  s t a t e  

of the l iposomes .dur ing  photodynamic t r ea tmen t  has  v a r i e d  w i t h .  

t h e  p a r t i c u l a r  i n v e s t i g a t i o n  inc lud ing  s t i l l  suspensions  [40 ] ,  

s t i r r i n g  [41] and slow bubbling wi th  oxygen [42,43] . Recent work 

i n  t h i s  l abo ra to ry  has  shown t h a t  hydrodynamic e f f e c t s  p l ay  a 

major r o l e  i n  pho tosens i t i zed  liposome damage, t o  t h e  e x t e n t  t h a t  

t h i s  f a c t o r  must be considered a s  a c o n t r o l l e d  v a r i a b l e  of prime 

importance t o  t h e  p h o t o l y s i s  mechanism. A l l  experiments r epo r t ed  

he re  were made wi th  egg l e c i t h i n  liposomes inco rpo ra t ing  methylene 

b lue  i n  t h e  membrane. The liposomes were prepared by adding methy- 

l e n e  b lue  hydrochlor ide  (MB) t o  a chloroform s o l u t i o n  of t h e  l i p i d  

(Sigma Chemical L-a-phosphatidylcholine), evapora t ing  t o  d ryness  

under n i t r o g e n ,  adding 2 m l  of pH - 7.0 phosphate b u f f e r ,  swel l ing  

2 hours  a t  10°C,  and washing a t  l e a s t  s i x  t imes  by c e n t r i f u g i n g  

a t  15,000G and resus'pending i n  t h e  bu f f e r .  The amount of MB incorp- 

o r a t e d  i n  t h e  liposome membrane w a s  es t imated  from t h e  d i f f e r e n c e  

between t h e  o r i g i n a l  amount and t h e  MB i n  t h e . s u p e r n a t a n t s .  

The i r r a d i a t i o n s  were c a r r i e d  o u t  i n  thermostated Pyrex c u v e t t e s  

exposed t o  a 200-W Hg-Xe a r c  through a Corning C.S.No. 2-63 f i l t e r  

(X>600 nm) and a water  f i l t e r  t o  remove i n f r a r e d .  The i n c i d e n t  

f l uence  w a s  117 mw/cm2. Liposome l y s i s  was measured by t h e  t u r b i d i t r y  

changes a t  720 nm. 

The l y s i s  r a t e  under cont inuous O2 bubbling a t  2 5 ' ~  f o r  d i f f e r e n t  

MB concen t r a t i ons  i n  t h e  membrane i s  shown by t h e  d a t a  i n  Fig.13. 

(The lowest  MB concen t r a t i on  r equ i r ed  4S0c f o r  adequate r a t e  of 

l y s i s . )  Addi t iona l  r e s u l t s  showing t h e  i n c r e a s e  of l y s i s  r a t e  

w i th  temperature  a r e  shown i n  Fig.14. These d a t a  a r e  t y p i c a l  of 

p r i o r  work and do no t  show t h e  major r o l e  of t h e  hydrodynamic f o r c e s .  

However, t h e  r e s u l t s  i n  Fig.15 w e r e  ob ta ined  by i r r a d i a t i n g  f o r  

d i f f e r e n t  pe r iods  of t ime,  followed by da rk  bubbling w i t h  O2 a t  2S0c.  



Figure  13. Lysis  of egg l e c i t h i n  l i posomesby  continuous red  l i g h t  i r r a d i a t i o n  

wi th  oxygen bubbling. The methylene b lue  concent ra t ion  (w/w%) i n  t h e  

membrane i s - g i v e n  nex t  t o ' e a c h  curve.  A l l  2 5 O ~  except  0 .05% a t  45O~.  
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Figu re  1 4 .  Tempsrature dependence of l iposome l y s i s  f o r  con t inuous  r e d  

l i g h t  i r r a d i a t i o n  and oxygen bubbling.  Egg l e c i t h i n  l iposomes 

w i t h  0 .5% methylene b lue  i n  t h e  membrane. 



I n  t h i s  c a s e  t h e r e  was s i g n i f i c a n t  l y s i s  i n  t h e  da rk ,  followed 

by s a t u r a t i o n  a t  a l e v e l  determined by t h e  f luence .  A s i m i l a r  

r e s u l t  i s  shown f o r  liposomes i r r a d i a t e d  i n ' t h e  presence of MB 

i n  t h e  e x t e r n a l  aqueous phase i n s t e a d  of i n  t h e  membrane.(The MB 

concen t r a t i on  was approximately t h e  same a s  t h e  suspension of 

1.5% MB l iposomes.)  The r e s u l t s  demonstra te  t h a t  a s i g n i f i c a n t  

p a r t  of t h e  damage involves  hydrodynamic f o r c e s  t h a t  a r e  photo- 

s e n s i t i z e d  by MB. The r e s u l t s  i n  Fig.16 provide a d d i t i o n a l  in format ion  

about t h e  photochemical s t age .  The p r o t e c t i o n  by 0 . 1 M  - a z i d e  ion  

and 0 . 1 M  - DABCO and t h e  enhanced l y s i s  r a t e  i n  D20 a r e  i n d i c a t i v e  

of .  0; involvement. Bubbling wi th  N2 l e d  t o  a l e s s e r  degree  of 

p r o t e c t i o n ,  sugges t ing  t h e  presence of O2 i n  t h e  membrane no t  

removed by p r i o r  N2 bubbling.  However, t h e  l y s i s  r a t e  induced 

by bubbling w a s  almost  t h e  same f o r  O2 and N2 . The d a t a  i n  Fig.17 

show t h a t  t h e  dark  l y s i s  r a t e  a f t e r  a s h o r t  i r r a d i a t i o n  wi th  O2 

s a t u r a t i o n  was approximately t h e  same f o r  subsequent bubbling 

wi th  N2 and O2 . Furthermore, t h e  dark  l y s i s  r a t e  was f a s t e r  f o r t h e  

h igher  bubbling r a t e  and changed from t h e  lower r a t e  t o  t h e  

h igher  when t h e  bubbling r a t e  w a s  increased  dur ing  t h e  dark  s t a g e .  

These f i n d i n g s  provide c l e a r  evidence t h a t  MB p h o t o s e n s i t i z e s  

t h e  liposome membrane t o  subsequent h y d r o s t a t i c  damage and t h a t  

0; i s  a major f a c t o r  i n  t h e  p h o t o l y t i c  s t a g e  of t h e  process .  

A k i n e t i c s  model f o r  t h e  p h o t o l y s i s  p rocess  has  been developed 

by assuming t h a t  p h o t o s e n s i t i z a t i o n  l e a d s  t o  damaged b u t  i n t a c t  

liposomes t h a t  a r e  subsequent ly  lysed  by h y d r o s t a t i c  i n t e r a c t i o n .  

The . a n a l y s i s  can be s i m p l i f i e d  by assuming t h a t  n e g l i g i b l e  

l y s i s  t a k e s  p l ace  dur ing  t h e  s h o r t  i r r a d i a t i o n  pe r iod ,  i n  which 

c a s e  t h e  number of damaged liposomes a t  t h e  end of t h e  i r r a d i a t i o n  

per iod  (ta) i s  given by: 

-a1 t 
N ; = N o ( l - e  o a )  

where In is t h e  i n c i d e n t  f l uence  r a t e ,  No i s  t h e  i n i t i a l  number - 
of liposomes, and a i s  p ropor t iona l  t o  t h e  temperature ,  t h e  O2 

concen t r a t i on ,  and t h e  MB concen t r a t i on  i n  tfie liposome membrane. 

The d i f f e r e n t i a l  equa t ion  f o r  t h e  convers ion of damaged liposomes 

is: 



Figu re  15. Liposome l y s i s  by oxygen bubbling a f t e r  r e d  l i g h t  i r r a d i a t i o n  

f o r  t h e  t i m e  i n d i c a t e d  nex t  t o  each  curve  (minu tes ) .  Egg l e c i t h i n  

l iposomes w i t h  0.5% methylene b lue  i n  t h e  membrane a t  2 5 O ~ .  
' 

The methylene b lue  was i n  t h e  e x t e r n a l  medium i n  t h e  run  EXT which 

was . in t h e  da rk  a f t e r  70 min. . . 
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Figu re  16 .  Lys i s  of egg l e c i t h i n  1 iposomes.wi th  0.5% methylene b lue  i n  t h e  

membrane w i t h  con t inuous  r e d  l i g h t  i r r a d i a t i o n  and oxygen bubbling.  

A. w i t h  0 .1  M - DABCO ; B. w i t h  0.1 M - a z i d e  ; C. N2 s a t u r a t i o n  ; 

D. O2 s a t u r a t i o n  ; E. i n  D 2 0  : a l l  2 5 O ~ .  I ...,. 



Figu re  1 7 .  E f f e c t  of bubbling r a t e  and g a s  on l y s i s  of  egg l e c i t h i n , l i p o s o m e s  

w i t h  0.5% methylene b l u e  i n  t h e  membrane. The v e r t i c a l  dashed l i n e  

i n d i c a t e s  t h e  end of  t h e  i r r a d i a t i o n  pe r i od  w i th  0 2  bubbling.  

A. 0, A bubbl ing a t  12 ml/min; B. O2 bubbling a t  25 ml/min. 

C. Changed from 12 ml/min t o  25 ml/min bubbl ing r a t e  a t  140 min: 
. . 

0 o2 bubbled ; @ N 2  bubbled.. A l l  250C. 



where N" i s  t h e  number of lysed  liposomes and B i s  p ropor t iona l  

t o  t h e  bubbling r a t e  ( o r  o t h e r  hydrodynamic damage). However, 

f o r  t h e  p r e s e n t  assumptions t h e  l o s s  o f . t h e  damaged liposomes 

by l y s i s  a t  t>ta i s  given by: 

l ead ing  t o :  

The surv iv ing  number of i n t a c t  liposomes i s  N -Nv 
0 

, .corresponding 

t o  t h e  su rv iv ing  f r a c t i o n :  

According t o  Eq .  (1'9) , a  p l o t  of Loge [ (s-Ssat) / (1-sSat) 1 (t-ta) 
should be l i n e a r ,  and a l l  d a t a  f o r  t h e  same temperature  and 

bubbling r a t e  should f a l l  on t h e  same l i n e .  Here, 'sat i s  t h e  
s u r v i v a l  a f t e r  extended bubbling and ta is  t h e  i r r a d i a t i o n  t ime 

p r i o r  t o  da rk  bubbling.  The a p p l i c a t i o n  t o  t h e  d a t a  of Fig.15 

is  shown i n  Fig.18, where ta ranged from 5 t o  3 0  min. The good 
- - 

s t r a i g h t  l i n e  i s  c o n s i s t e n t  wi th  t h e  key assumption of t h e  model, 

t h a t  t h e  e x t e n t  of  dark  l y s i s  i s  l i m i t e d  by t h e  i r r a d i a t i o n  f luence .  

Another conc lus ion  from Eq. ( 1 9 )  is  t h e  r e l a t i o n s h i p :  

The v a l i d i t y  of Eq.  ( f 8 )  is  shown by t h e  upper r i g h t  c u t  i n  Fig.18. 

The c a s e  of cont inuous i r r a d i a t i o n  and bubbling (e. g. F i g .  1.4 1 

i s  more complicated a n a l y t i c a l l y .  A s  above, d e f i n i n g  N ,  N ' ,  and N" 

a s  t h e  numbers of o r i g i n a l .  l iposomes,  photochemically damaged bu t  

i n t a c t  l iposomes,  and 1,ys'ed liposomes, r e s p e c t i v e l y ,  t h e  l o s s  of 

o r i g i n a l  liposomes i s  given by: 

where IN is t h e  r a t e  of l i g h t  absorp t ion  by t h e  o r i g i n a l  liposomes. 

I f  IN = ( N / N o ) I o  ( i .e.  t h e  N and N '  t ypes  have equa l  a b s o r p t i o n s ) ,  

t h e  s o l u t i o n  t o  E q .  ( 21) i s  : 



Figure  18. P l o t  of F igu re  15 d a t a  according t o  Equation ( 1 9 ) .  

ta va lues :  @I 5 mint 0 1 0  min, 2 0  min, 30 min. 

Upper Right P l o t  of Equation ( 2 0 ) .  



The r a t e  of formation and l o s s  of t h e  t ype  N '  l iposomes i s  . 

given by: 

dN1/dt = a ( I ~ / N ~ ) N ~  - BN8 (23 

wi th  t h e  s o l u t i o n :  t 
- B t l  d t '  

N' (t) = a 1  N e 
0 0 

0  

S u b s t i t u t i n g  Eq. ( 2 4 )  i n  Eq. (16) and s impl i fy ing  g ives :  
t 

An a l t e r n a t i v e  form of Eq.(25) convenient  f o r  computation is:  

S ( X )  = e--[eA + A E i  (-A) - A E i  (-Ax)] 
00 

(.26 

where x n ( l + a I  t )  , A E B/aIo and -Ei(.-y) Z , / (e- t / t )d t  
0 

Y 

Theore t i ca l  p l o t s  of S  v s  ( a I o t )  f o r  d i f f e r e n t  va lues  of A a s  

c a l c u l a t e d  wi th  an HP-85 microcomputer a r e  shown i n  Fig.19. 

The va lue  of A i s  determined by t h e  r e l a t i v e  r a t e  of l y s i s  by 

h y d r o s t a t i c  a c t i o n  compared t o  t h e  damaging e f f e c t  of t h e  l i g h t .  

The t h e o r e t i c a l  p l o t  f o r  A = 0.3 has  t h e  same gene ra l  dependence 

on time a s  Fig.13 (1.5% MB) and Fig.15 (30 min i r r a d i a t i o n ) ,  

w l l e ~ l  t h e  photochemical f l uence  w a s  high.  A more d e t a i l e d  f i t t i n g  

Eq.(26) t o  d a t a  i s  being cont inued i n  c u r r e n t  work. 



Figure  19. Theore t i ca l  liposome l y s i s  curves  f o r  

continuous i r r a d i a t i o n .  and bubbling 

according t o  Equat.i.on ( 2  6 )  . The numbcr 

next  t o  each curve  i s  t h e  parameter B / c t I o  . 



References 
.- ~ -- . . 

1. B.Finnstrom,F.Tfibel and L.Linqvist, Chem.Phys.Lett. - 71, 312(1980), 

2. D.V:Bent and E.Hayon, J.Am.Chem.Soc, - 97, 2612(.1975). 

3. R.Klein, I.Tatischeff,M.Bazin and R.Santus, to be published. 

4. ' J.C.Mialocq,E.Amouyal,A.Bernas and D.Grant, to be published. 

5. T.B.Truong, J.Phys.Chem. - 84, 960(1980). 

6. M.Charlier and C.Helene, Photochem..Photobiol. - 21, 31(1975). 

7. L. I.Grossweiner,A.M.Brendzel and A.Blurn,. Chemical Physics .00 -1. 000 (.I981 

8. F.D.Bryant,R.Santus and L.I.Grossweiner, J.Phys..Chem: .79, - 2711(1975). 
9. J.F.Baugher and L.I.Grossweiner, J.Phys.Chem. - 81, 1349 (1977). 

10. J.Y.Lee,J.F.Baugher and L.I.Grossweiner, Photochem.Photobiol. - 29, 
867 (.1979). 

11. A.D.McLaren and R.A.Luse, Science - 134, 836 (1961). 

12. K.Dose, Photochem.Photobio1. 6, 437 (1967). 
. - 

13. L.I.Grossweiner,A.G.Kaluskar and J.F.Baugher, Int.J.~adiat.~iol. 
29,1(1976). - 

14. L.I.Grossweiner, Curr.Topics Radiat.Res.Quart. - 11;141(1976). 

15. T.K.Rathinasamy and L.G.Augenstein, Bi0phys.J. - 8, 1275(1968). 

17. F.DalllAcqua,S.Caffieri and G-.Rodighiero, Photochem.Photobio1. 
27, 77 (1978). - 

18. F.DalllAcqua,S,Marciani,l.Ciavatta and G.Rodighiero, Z,Naturforsch. 
26b, 561 (1971). - 

19. I.M.Klotz,F.M.Walker and R.B.Pivan, J.Am.Chem.Soc. - 68, 1486U9461. 

20. D.Becker,J.L.Redpath and L.I.Grossweiner, Radiat.Res.73, - 51(1978). 
21. L.I.Grossweiner, Photochem.Photobio1. - 26, 309(1977). 

22. F.Hutchinson and ;T.Arena, Radiat-Res. - 13, 137(1960). 

23. W.Poppe and L.I.Grossweiner, Photochem.Photobio1. - 22, 217C1975). 

24. R.V.Bensasson,E.J.Land and C.Salets, Photochem.Photobiol:'27, - 
273 (1978). 

25. P.C.Beaumont et al.,Biochim.Biophys.Acta - 608, 259(19801. 

26. S.Cannistraro and A.Van de Vorst, ~iochim.Biophys.Acta - 476, 166(1977). 

27. N.J.de Mol and G.M.J.Beijersbergen van Henogouwen, Photochem. 
Photobiol. - 30, 331 (1979) . 

28. T.Ito, Photochem.Photobiol. - 28, 493(1978). 

29. R.S.Stern et al., N.Eng.J.Med. - 300, 809(1979). 

30. L.Dubertret et al., Brt.J.Dermato1. 101, 379C1978). - 



R.D.Ley,D.D.Grube and R.J.M.Fry, Photochem.Photobiol. - 25, 
265 (1977). 

D.Averbeck,E.Moustacchi and E. Bisagni, Biochim.Biophys.Acta 
'5'18, - 464 (1978). 
R.Muller-Runkel and L.I.Grossweiner, Photochem.Photobiol."33, - 
399. (1981) . 
A.S.Fleischer,L.C.Harber,J.S.Cook and R.L.Baer, J.Invest.Dermato1. 
'46, - 505 (1966). 
F.Dall1'Acqua, S.Marciani Magno, F. Zambion and G.Rodighiero, 
Photochem.Photobiol.' - 29, 489(1979). 

F.DalllAcqua, M.Terbojevich, S.Marciani, D.Vedaldi and M.Recher, 
Chem.Biol.Interact.' - 21, 103(1978). 

G.Rodighiero et al.,Biochim.Biophys.Acta - 217, 40(1970). 

L.I.Grossweiner and K.C.Smith, Photochem.Photobiol.' - 33, 317(1981). 

L.I.Grossweiner, In "Oxygen and Oxyradicals in Chemistry and 
Biology" (Ed. M.A.J.Rodgers and E.L.Powers),Academic Press, 
New York, 1981, pp.000-000. 

S.M.Anderson and N.I.Krinsky, Photochem.Photobio1. '18, - 403(1973). 
D.I.Roshchupkin et al., Photochem.Photobiol. - 21, 63(1975). 

K.Suwa, T.Kimura and A.P.Schaap, Photochem.Photobiol. - 28, 
469 (1978). 
R.Muller-Runkel,J.Blais and L.I.Grossweiner, Photochem.Photobiol. 
'33, - 683 (1981). 



Summary of  P r o j e c t  A c t i v i t y  

Pro] e c t  A c t i v i t y  

The expendi ture  of s c i e n t i f i c  e f f o r t  and funds  was c o n s i s t e n t  

wi th  t h e  t e c h n i c a l  program i n  t h e  Renewal Proposal  and t h e  

c u r r e n t  budget. 

S c i e n t i f i c  S a l a r i e s  

D r .  Leonard I. Grossweiner (P ro fe s so r )  

2 months Summer 1981 

D r .  Avrom M. Brendzel (Research Assoc ia te )  

100% t ime October 1, 1980 - May 31, 1982 

Non-Salaried Research S t a f f  

D r .  Renate Muller-Runkel (Graduate A s s i s t a n t )  

1980-81 academic year  

Foreign Trave l  

None 




