
ORNL/CDIAC--100

ORNL/CDIAC-100
NDP-063

Carbon Dioxide, Hydrographic, and Chemical
Data Obtained During the R/V *AKADEMIK IOFFE*
Cruise in the South Pacific Ocean
(WOCE Section S4P, February - April 1992)

MASTER
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

ORNL/CDIAC-100
NDP-063

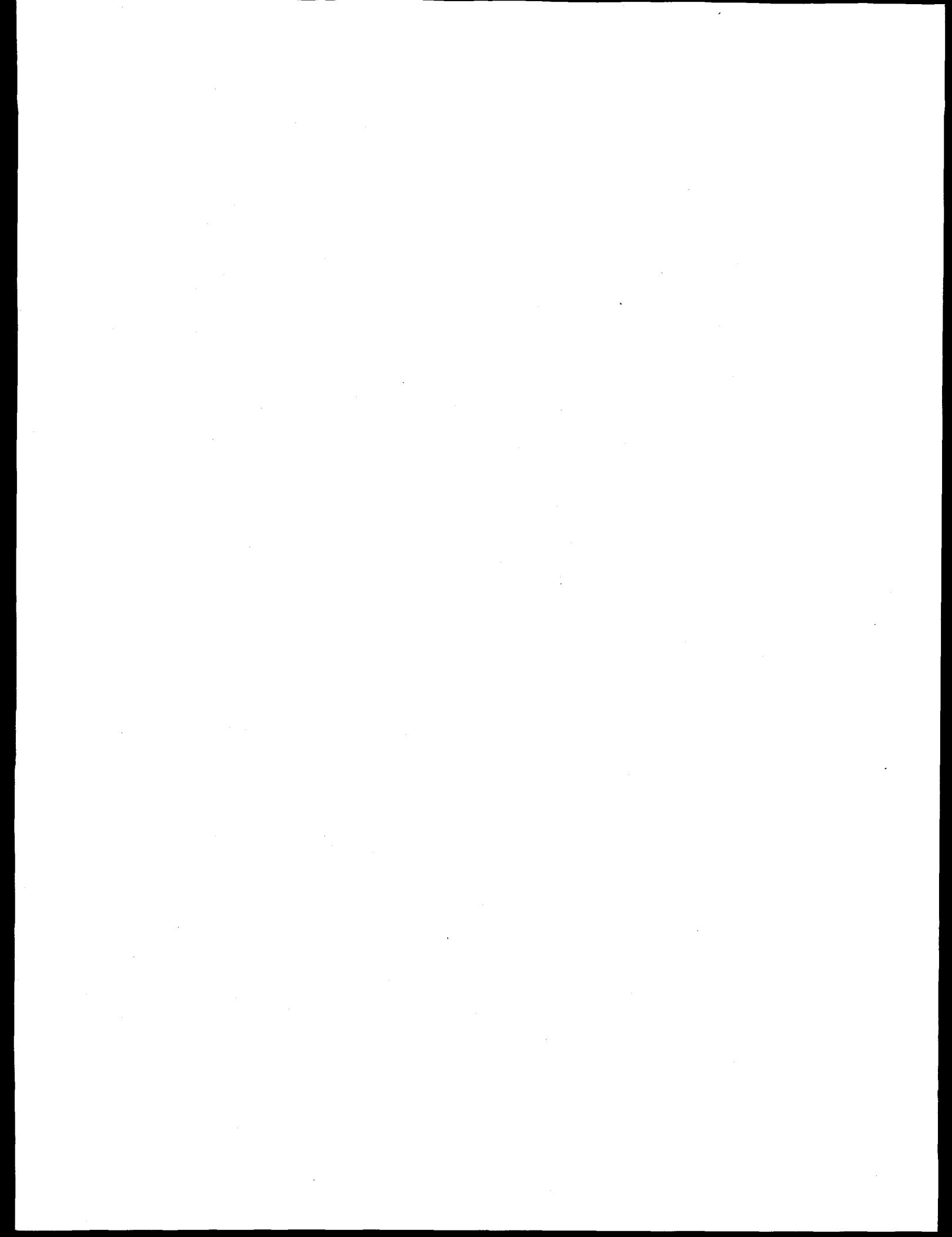
**CARBON DIOXIDE, HYDROGRAPHIC, AND CHEMICAL DATA OBTAINED
DURING THE R/V AKADEMİK IOFFE CRUISE IN THE SOUTH PACIFIC OCEAN
(WOCE SECTION S4P, FEBRUARY-APRIL 1992)**

Contributed by
David W. Chipman,¹ Taro Takahashi,¹
Stephany Rubin,¹ Stewart C. Sutherland,¹ and
Mikhail H. Koshlyakov²

¹Lamont-Doherty Earth Observatory
of Columbia University
Palisades, New York, U.S.A.

²Shirshov Institute of Oceanography
Russian Academy of Sciences
Moscow, Russia

Prepared by Alexander Kozyr³
Carbon Dioxide Information Analysis Center
Oak Ridge National Laboratory
Oak Ridge, Tennessee, U.S.A.

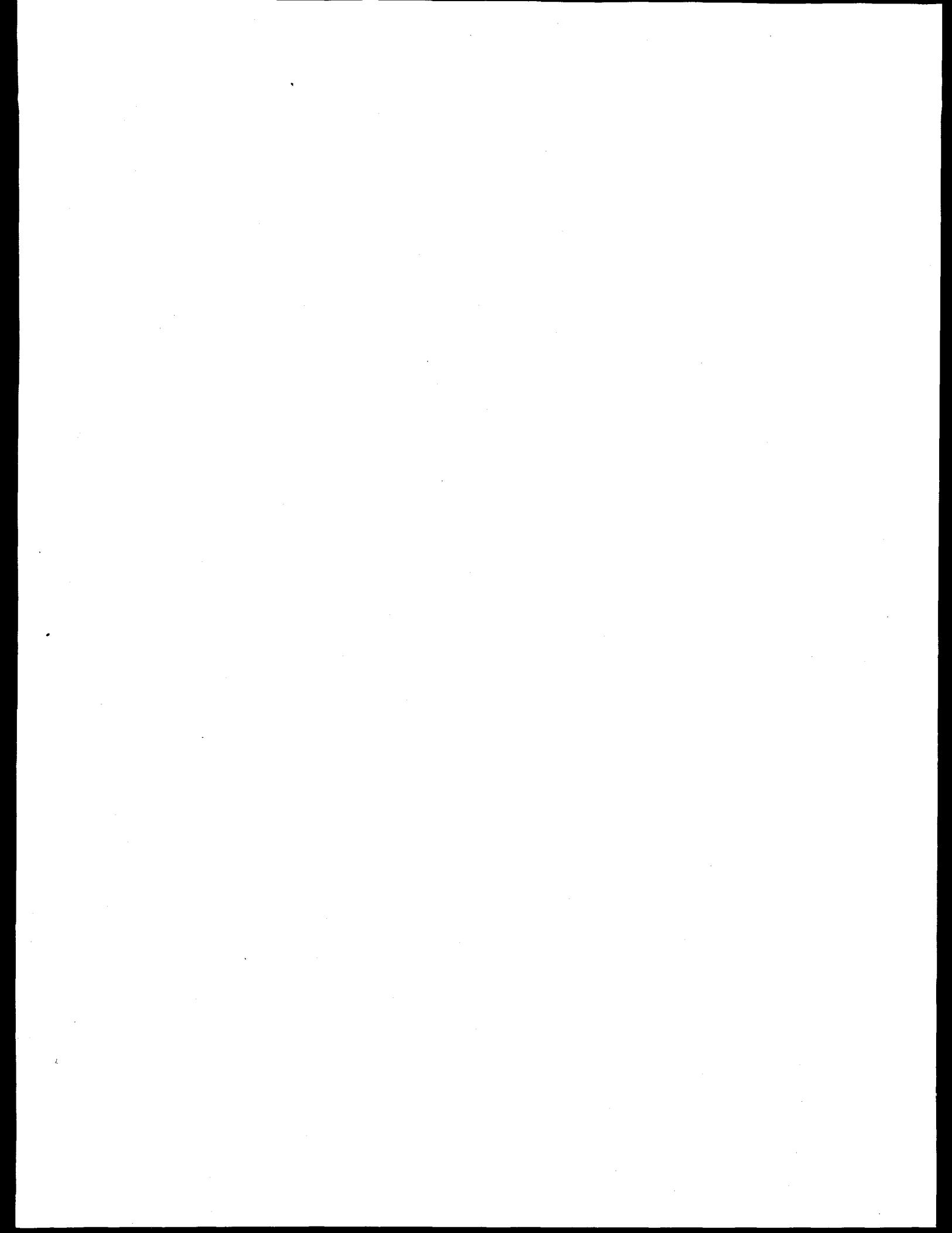

³Energy, Environment, and Resources Center
The University of Tennessee
Knoxville, Tennessee, U.S.A.

Environmental Sciences Division
Publication No. 4669

Date Published: July 1997

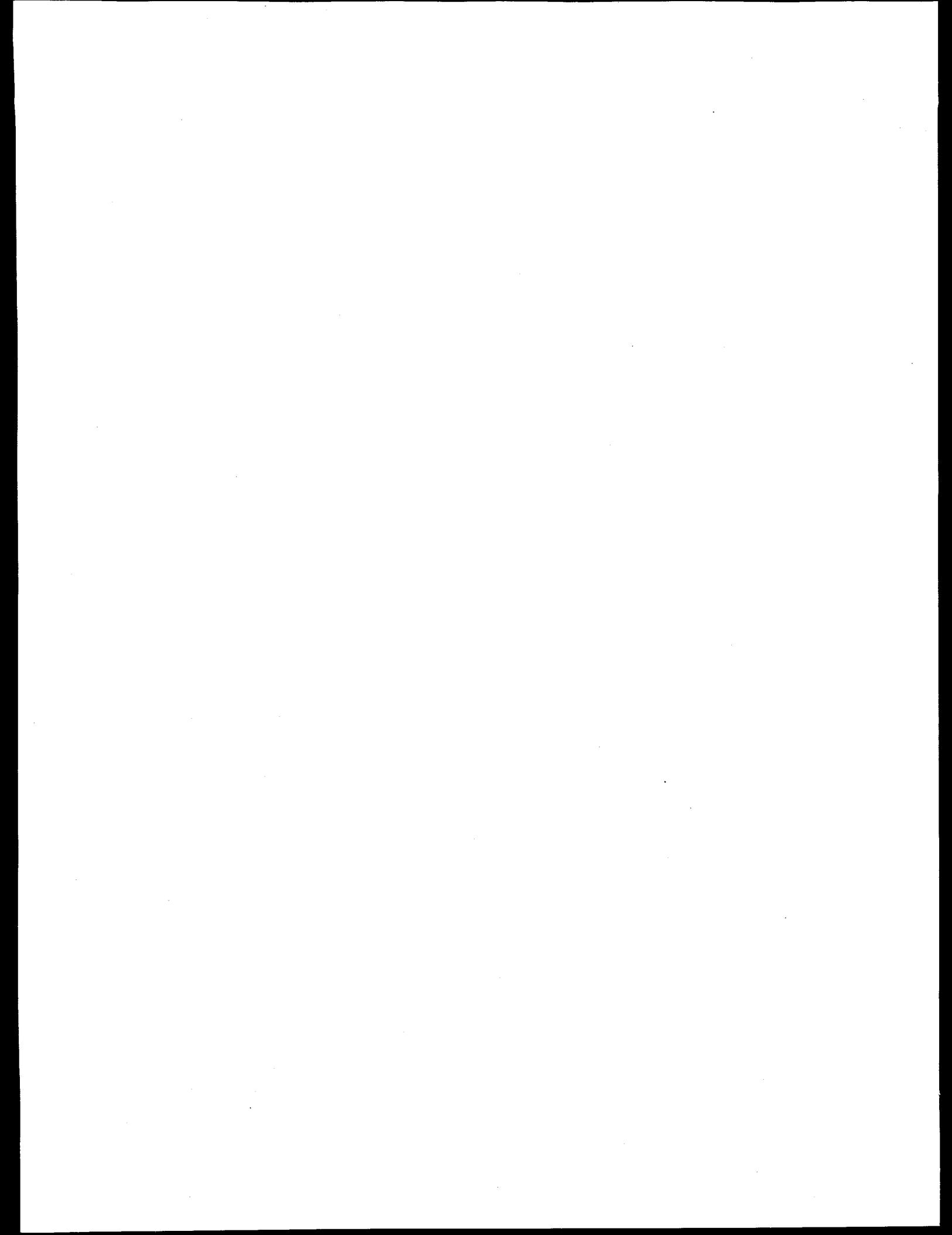
Prepared for the
Environmental Sciences Division
Office of Biological and Environmental Research
U.S. Department of Energy
Budget Activity Numbers KP 12 04 00 0 and KP 12 02 03 0

Prepared by the
Carbon Dioxide Information Analysis Center
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6335
managed by
LOCKHEED MARTIN ENERGY RESEARCH CORP.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-96OR22464


CONTENTS

	<u>Page</u>
LIST OF FIGURES	v
LIST OF TABLES	vii
ABSTRACT	ix
PART 1: OVERVIEW	1
1. BACKGROUND INFORMATION	3
2. DESCRIPTION OF THE EXPEDITION	5
2.1 <i>R/V Akademik Ioffe</i> Expedition Information	5
2.2 Brief Cruise Summary	6
3. DESCRIPTION OF VARIABLES AND METHODS	6
3.1 Hydrographic Measurements	6
3.2 Carbon Measurements	7
4. DATA CHECKS AND PROCESSING PERFORMED BY CDIAC	10
5. HOW TO OBTAIN THE DATA AND DOCUMENTATION	18
6. REFERENCES	19
PART 2: CONTENT AND FORMAT OF DATA FILES	21
7. FILE DESCRIPTIONS	23
ndp063.doc (File 1)	24
stainv.for (File 2)	24
s4pdat.for (File 3)	25

	<u>Page</u>
s4psta.inv (File 4)	26
s4p.dat (File 5)	27
8. VERIFICATION OF DATA TRANSPORT	30
APPENDIX A: STATION INVENTORY	A-1
APPENDIX B: REPRINT OF PERTINENT LITERATURE	<i>Amended</i> B-1
Investigation of carbon dioxide along the WOCE Section S-4P in the Pacific sector of the Southern Ocean, February–April, 1992	B-3


LIST OF FIGURES

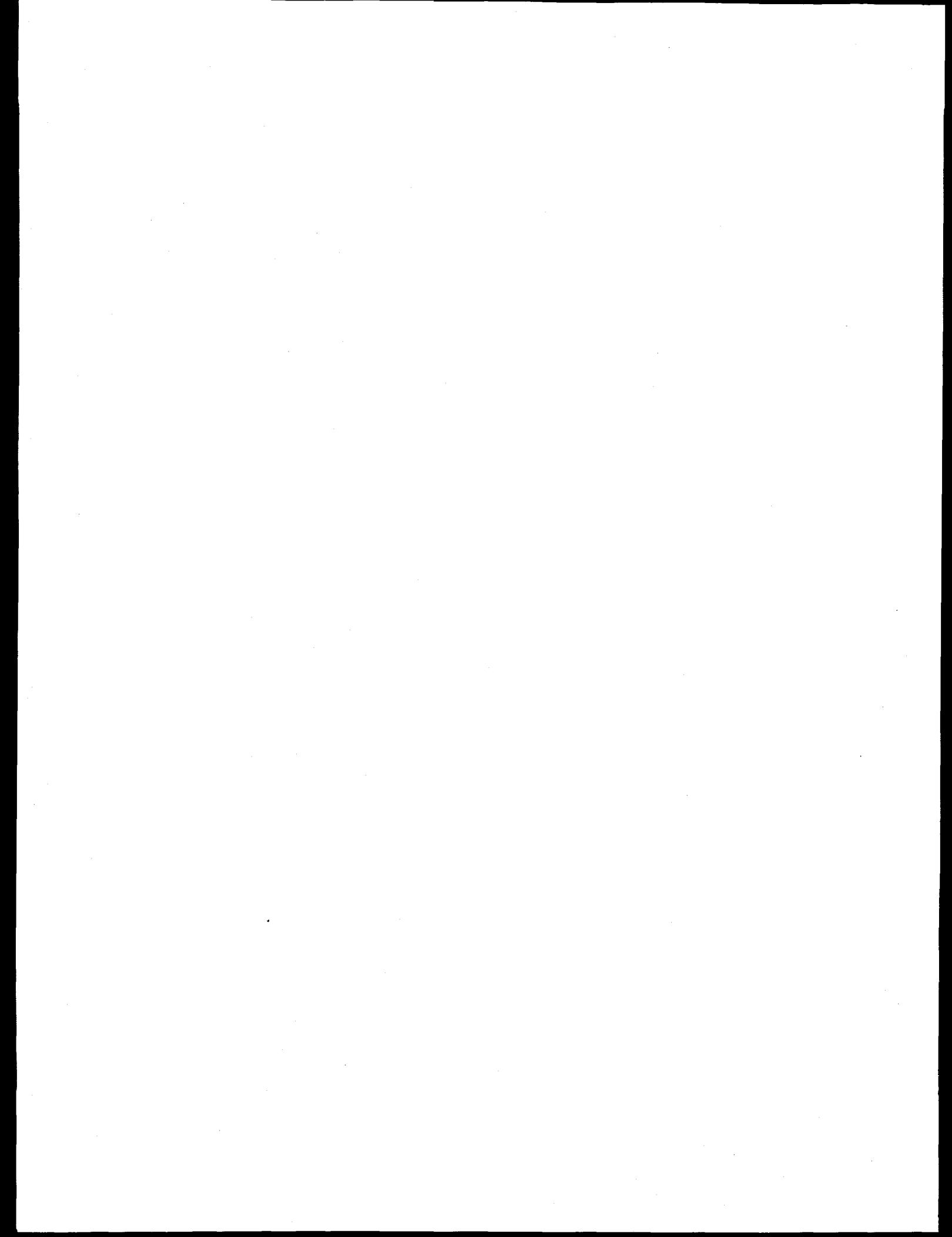
<u>Figure</u>		<u>Page</u>
1	The location of hydrographic stations occupied during R/V <i>Akademik Ioffe</i> Expedition along the WOCE Section S4P	4
2	Comparison between the results of the coulometric determinations of total CO ₂ concentration in the SIO Certified Reference Material (batch no. 7) obtained during the expedition and the manometric determinations obtained by the staff of C. D. Keeling at SIO	8
3	Sampling depths at all hydrographic stations occupied during R/V <i>Akademik Ioffe</i> Expedition in the South Pacific Ocean (WOCE Section S4P)	9
4	Nested profiles: total carbon ($\mu\text{mol/kg}$) vs pressure (dbar) for stations 682-723	11
5	Nested profiles: total carbon ($\mu\text{mol/kg}$) vs pressure (dbar) for stations 724-754	12
6	Nested profiles: total carbon ($\mu\text{mol/kg}$) vs pressure (dbar) for stations 755-794	13
7	Nested profiles: partial pressure of CO ₂ at 4.0°C (μatm) vs pressure (dbar) for stations 682-723	14
8	Nested profiles: partial pressure of CO ₂ at 4.0°C (μatm) vs pressure (dbar) for stations 724-754	15
9	Nested profiles: partial pressure of CO ₂ at 4.0°C (μatm) vs pressure (dbar) for stations 755-794	16
10	Select property-property plots for all stations occupied during R/V <i>Akademik Ioffe</i> Cruise along WOCE Section S4P	17

LIST OF TABLES

<u>Table</u>	<u>Page</u>
1 Content, size, and format of data files	23
2 Partial listing of "s4psta.inv" (File 4)	30
3 Partial listing of "s4p.dat" (File 5)	31
A.1 Station inventory information for the 113 sites occupied during R/V <i>Akademik Ioffe</i> Expedition in the South Pacific Ocean (WOCE Section S4P)	A-5

ABSTRACT

Chipman D. W., T. Takahashi, S. Rubin, S. C. Sutherland, and M. H. Koshlyakov. 1997. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V *Akademik Ioffe* Cruise in the South Pacific Ocean (WOCE Section S4P, February–April 1992). ORNL/CDIAC-100, NDP-063. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. 134 pp.


This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO_2) and partial pressure of CO_2 (pCO_2) in discrete water samples during the Research Vessel (R/V) *Akademik Ioffe* Expedition in the South Pacific Ocean. Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Montevideo, Uruguay, on February 14, 1992, and ended in Wellington, New Zealand, on April 6, 1992. WOCE Section S4P, located along $\sim 67^\circ$ S between 73° W and 172° E, was completed during the 51-day expedition. One hundred and thirteen hydrographic stations were occupied. Hydrographic and chemical measurements made along WOCE Section S4P included pressure, temperature, salinity, and oxygen measured by a conductivity, temperature, and depth sensor; bottle salinity; bottle oxygen; phosphate; nitrate; nitrite; silicate; TCO_2 ; and pCO_2 measured at 4°C .

The TCO_2 concentration in ~ 1290 seawater samples was determined with a coulometric analysis system; the pCO_2 in ~ 1270 water samples was determined with an equilibrator-gas chromatograph system. In addition, 172 coulometric measurements for the Certified Reference Material (batch no. 7) were made at sea for 62 bottles and yielded a mean value of $1927.5 \pm 1.8 \mu\text{mol/kg}$. This mean value agrees within one standard deviation of the $1926.6 \pm 0.7 \mu\text{mol/kg}$ ($N = 6$) value determined with the manometer of C. D. Keeling at Scripps Institution of Oceanography. The TCO_2 values listed in this report have not been corrected to this difference.

The WOCE Section S4P data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two data files, two FORTRAN 77 routines, a readme file, and this printed documentation.

Keywords: carbon dioxide; World Ocean Circulation Experiment; South Pacific Ocean; hydrographic measurements; carbon cycle; carbonate chemistry; coulometer

PART 1:
OVERVIEW

1. BACKGROUND INFORMATION

The World Ocean Circulation Experiment (WOCE) expeditions in the high-latitude South Pacific Ocean surrounding the Antarctic continent were designed to increase knowledge about an area of the World Ocean that has not been investigated extensively due to its remoteness and difficult ice and weather conditions. Acquiring oceanographic information from the South Pacific Ocean is extremely important because the Southern Ocean is known to be an area of formation for deep and intermediate water masses. These water masses provide a direct link between the atmosphere and global deep oceans through water-mass formation and ventilation processes (Chipman et al. 1996).

According to Tans et al. (1990), the Southern Ocean (south of 50° S) should be a moderate net source of carbon dioxide (CO_2) (0.5 Gt of carbon per year) to the atmosphere to account for the observed meridional gradient of the atmospheric CO_2 concentration. However, the available data suggest that the South Pacific Ocean is a net sink, at least during the summer period. To resolve the controversy, more measurements are needed. The DOE Global Ocean CO_2 Survey is taking advantage of the sampling opportunities provided by the WOCE cruises in the South Pacific Ocean.

This report presents hydrographic and CO_2 -related measurements obtained during the 51-day expedition of the Russian Research Vessel (R/V) *Akademik Ioffe* along the WOCE Section S4P, which is located in the Pacific sector of the Southern Ocean along ~67° S, between ~73° W and 172° E (Fig. 1).

The parameters measured during the cruise and listed in this report include the following: total CO_2 (TCO_2) concentration; discrete partial pressure of CO_2 (pCO_2) measured at 4°C; pressure, temperature, salinity, and oxygen measured by the conductivity, temperature, and depth (CTD) sensor; bottle salinity, bottle oxygen, and nutrients.

The CO_2 investigation along WOCE Section S4P was supported by a grant (No. DE-FGO2-92-ER61397) from the U.S. Department of Energy.

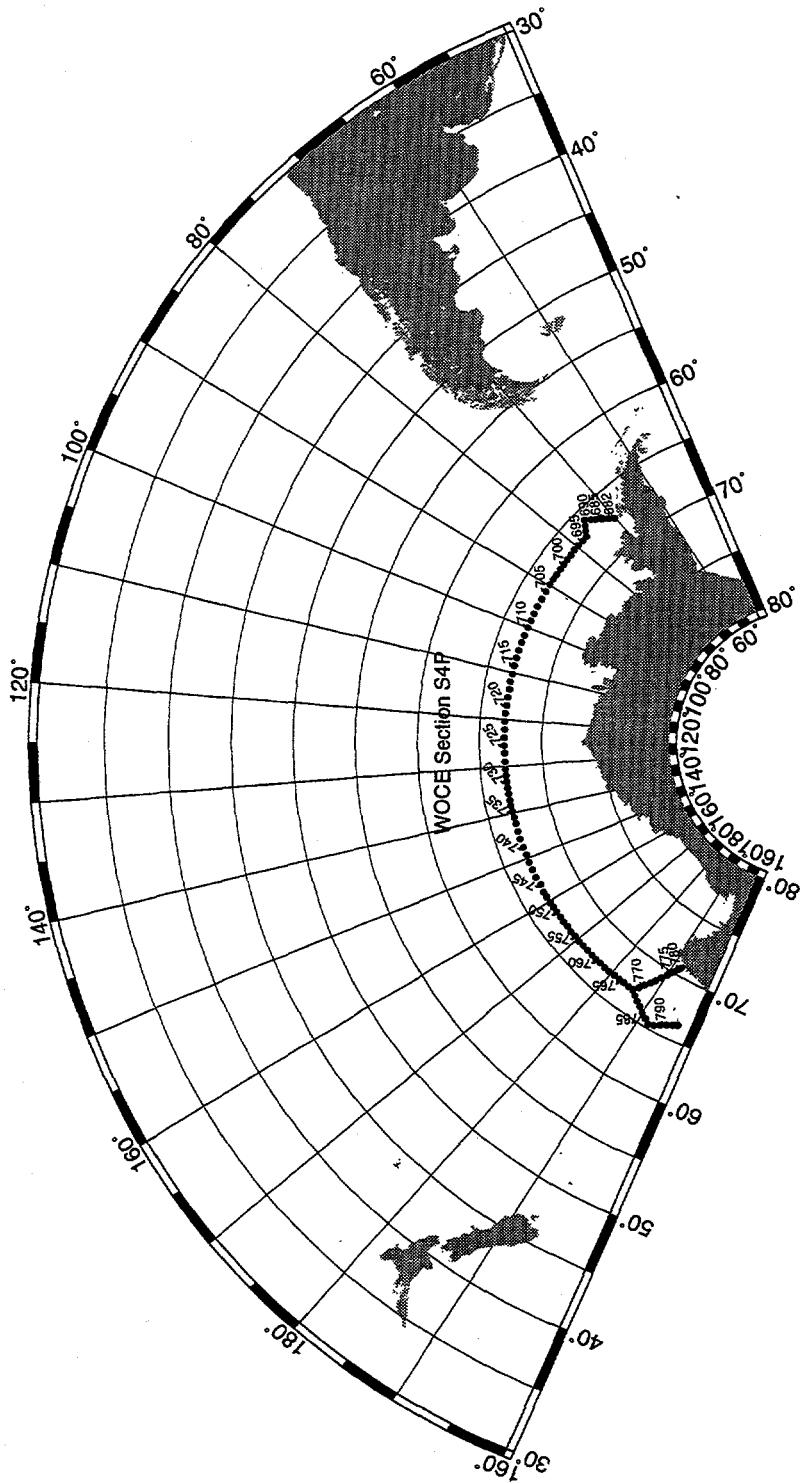


Figure 1. The location of hydrographic stations occupied during RV *Akademik Ioffe* Expedition along the WOCE Section S4P.

2. DESCRIPTION OF THE EXPEDITION

2.1 R/V *Akademik Ioffe* Expedition Information

R/V *Akademik Ioffe* Expedition information is as follows:

Ship name/country	<i>Akademik Ioffe</i> /Russia
Cruise/leg	6/1
Expo code	RUKDIOFFE6/1
WOCE Sections	S4P
Ports of call	Montevideo, Uruguay; Wellington, New Zealand
Dates	February 14–April 6, 1992
Chief Scientist	Mikhail H. Koshlyakov (Shirshov Institute of Oceanography, Russia)

Parameters measured	Institution	Principal investigators
CTD, oxygen, and nutrients	SIO	J. Swift
Tritium and helium	LDEO	P. Schlosser
TCO ₂ and pCO ₂	LDEO	D. Chipman and T. Takahashi
Carbon isotopes	NASA (ARC)	G. Rau
Chlorofluorocarbons (CFCs)	PMEL	J. Bullister
Acoustic Doppler current profiler	ShIO, OSU	A. Berezutski and J. Richman
Multibeam bathymetry	ShIO	A. Berezutski
Radiocarbon	LDEO	P. Schlosser
Biological sampling	ShIO	N. Voronina

Participating Institutions

SIO	Scripps Institution of Oceanography (University of California, San Diego)
LDEO	Lamont-Doherty Earth Observatory (Columbia University)
NASA (ARC)	National Aeronautics and Space Administration (Ames Research Center)
PMEL	Pacific Marine Environmental Laboratory
ShIO	Shirshov Institute of Oceanography (Russian Academy of Sciences, Moscow)
OSU	Oregon State University

2.2 Brief Cruise Summary

The WOCE S4P Expedition aboard the Russian R/V *Akademik Ioffe* started in Montevideo, Uruguay, on February 14, 1992, and ended in Wellington, New Zealand, on April 6, 1992, after 51 days at sea. The cruise track included hydrographic stations that began on the continental shelf of the Antarctic Peninsula at $67^{\circ} 28' S$ and $71^{\circ} 05' W$ on February 22, 1992. Stations continued west along $\sim 67^{\circ} S$ at intervals of 30 nautical miles. The first ten stations were established along a northwesterly line approximately perpendicular to the continental slope, with stations over the shelf break and slope located on depths separated by an 800-m isobath. Over the Bellingshausen Abyssal Plain, between $91^{\circ} 34' W$ and $130^{\circ} 41' W$, and over the Amundsen Abyssal Plain, between $142^{\circ} 11' W$ and $157^{\circ} 41' W$, the station spacing was increased to 40 nautical miles. At $174^{\circ} 15' E$, the track turned southwest to run perpendicular to the Antarctic continental shelf. The section was completed with a 400-m-deep station off Yang Island of the Balleny Islands at $66^{\circ} 25' S$ and $162^{\circ} 41' E$. The last station (no. 795) was the eastern terminus for the continuation of the WOCE Section S4 into the Indian Ocean.

3. DESCRIPTION OF VARIABLES AND METHODS

The data file **s4p.dat** (see description in Part 2) in this numeric data package (NDP) contains the following variables: station numbers; cast numbers; sample numbers; bottle numbers; CTD pressure, temperature, salinity, and oxygen; potential temperature; bottle salinity; concentration of dissolved oxygen, silicate, nitrate, nitrite, phosphate, and TCO₂; pCO₂ measured at 4°C; and data-quality flags. The station inventory file **s4psta.inv** (see Part 2) contains the expocode, section number, station number, cast number, sampling date (i.e., month, day, year), sampling time, latitude, longitude, and bottom depth for each station.

3.1 Hydrographic Measurements

The hydrographic measurements and water sampling were conducted by the staff of the SIO Oceanographic Data Facility (ODF). Water samples were collected through the use of Niskin 10-L sampling bottles mounted on an ODF-constructed 24-bottle rosette sampler. The rosette was equipped with an ODF-modified NBIS Mark IIIb CTD for in situ measurements of conductivity, temperature, pressure, and dissolved oxygen.

Salinity samples were drawn into 200-mL Kimax high-alumina borosilicate glass bottles with custom-made plastic insert thimbles and Nalgene screw caps, which provided low container dissolution and sample evaporation. These bottles were rinsed three times before filling, and measurements were usually made within 8–36 h after collection. Salinity was determined on the basis of electrical conductivity measured by an ODF-modified Guildline Autosal Model 8400A salinometer, and the values were obtained according to the equations of the Practical Salinity Scale of 1978 (UNESCO 1981).

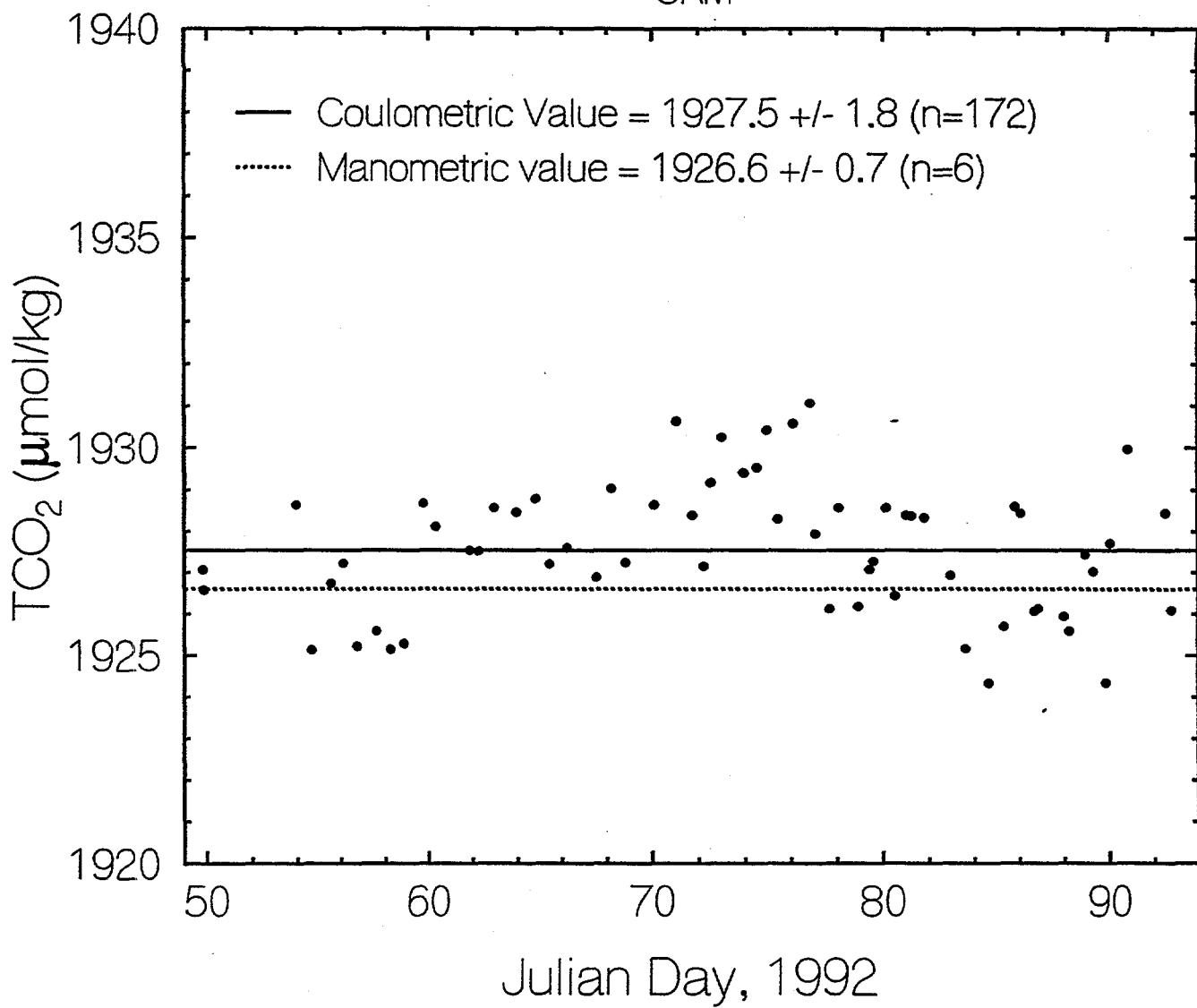
Water samples for oxygen analyses were collected shortly after the rosette sampler was brought on board and after the samples for CFCs and helium were drawn. Sampling flasks (100–125 mL), calibrated before the expedition, were carefully rinsed and then filled using a drawing tube (after being allowed to overflow for at least two flask volumes). Reagents were added to fix the oxygen before the flasks were sealed with stoppers. The flasks were shaken immediately after being sealed and again after 20 min to ensure thorough dispersion of the

manganous hydroxide [$Mn(OH)_2$] precipitate. The oxygen concentration in these solutions was determined within 4–36 h using the Winkler titration methods of Carpenter (1965) with modifications by Culberson and Williams (1991). The titrator was calibrated with 0.01 N potassium iodate standard solutions prepared using preweighed potassium iodate crystals. Oxygen concentrations were converted from milliliters per liter to micromoles per kilogram of seawater using the in situ temperature. A molar volume (at standard temperature and pressure) of 22.3914 L/mol (Kester 1975) was used for this purpose.

Nutrient analyses were performed by analysts from SIO using a Technicon AutoAnalyzer II provided by ODF. The procedures used are described in Gordon et al. (1992). Standardization was performed with solutions prepared aboard the ship from preweighed standards. These solutions were used as working standards before and after each cast (~24 samples) to correct for instrumental drift during analyses. Sets of 4–6 different concentrations of shipboard standards were analyzed periodically to determine the linearity of colorimetric response and the resulting correction factors. Hydrazine reduction of phosphomolybdic acid, as described by Bernhardt and Wilhelms (1967), was used for phosphate analysis, while stannous chloride reduction of silicomolybdic acid was used for silicate analysis. Nitrite was analyzed by use of diazotization and coupling to form dye. Nitrate was reduced by copperized cadmium and then analyzed as nitrite. The last three analyses used the methods of Armstrong et al. (1967).

A full cruise report, which includes details about processing the hydrographic data, and the final CTD data are available from the WOCE Hydrographic Programme (WHP) Office (WHPO) at SIO or the WHP Special Analysis Center in Germany.

3.2 Carbon Measurements


To measure the TCO_2 concentration in seawater, a coulometric analysis system was used during the cruise. This system has been described by Chipman et al. (1993) and consists of a coulometer (Model 5011), manufactured by the UIC, Inc. (Joliet, IL), and a sample introduction/ CO_2 extraction system of the LDEO design. A total of 1290 water samples was analyzed for TCO_2 concentration. In addition, 172 determinations were made at sea for 62 bottles of the Certified Reference Material (batch no. 7) yielding an average value of $1927.5 \pm 1.8 \mu\text{mol/kg}$. This compares with the SIO manometric value of $1926.6 \pm 0.7 \mu\text{mol/kg}$ (6 determinations) (Fig.2). The mean values for each set of measurements agree with each other within respective standard deviations.

To measure the pCO_2 in seawater a fully-automated equilibrator-gas chromatograph system was used during the cruise. This system has been described by Chipman et al. (1993). A total of 1273 water samples was analyzed for pCO_2 . Since pCO_2 is strongly affected by temperature changes, the equilibration flasks were kept in a constant-temperature water bath of 4.0°C throughout the expedition. The precision of the pCO_2 measurements has been estimated to be $\sim \pm 0.12\%$ for a single station based on the reproducibility of replicate equilibrations. However, the station-to-station reproducibility was about $\pm 0.5\%$.

A full description of the methods and instrumentation used to perform the TCO_2 and pCO_2 measurements during the R/V *Akademik Ioffe* cruise in the South Pacific Ocean (WOCE Section S4P) is provided in Appendix B.

Figure 3 shows the sampling density and depth along the WOCE Section S4P.

WOCE S4P
CRM

Figure 2. Comparison between the results of the coulometric determinations of total CO₂ concentration in the SIO Certified Reference Material (batch no. 7) obtained during the expedition and the manometric determinations obtained by the staff of C. D. Keeling at SIO.

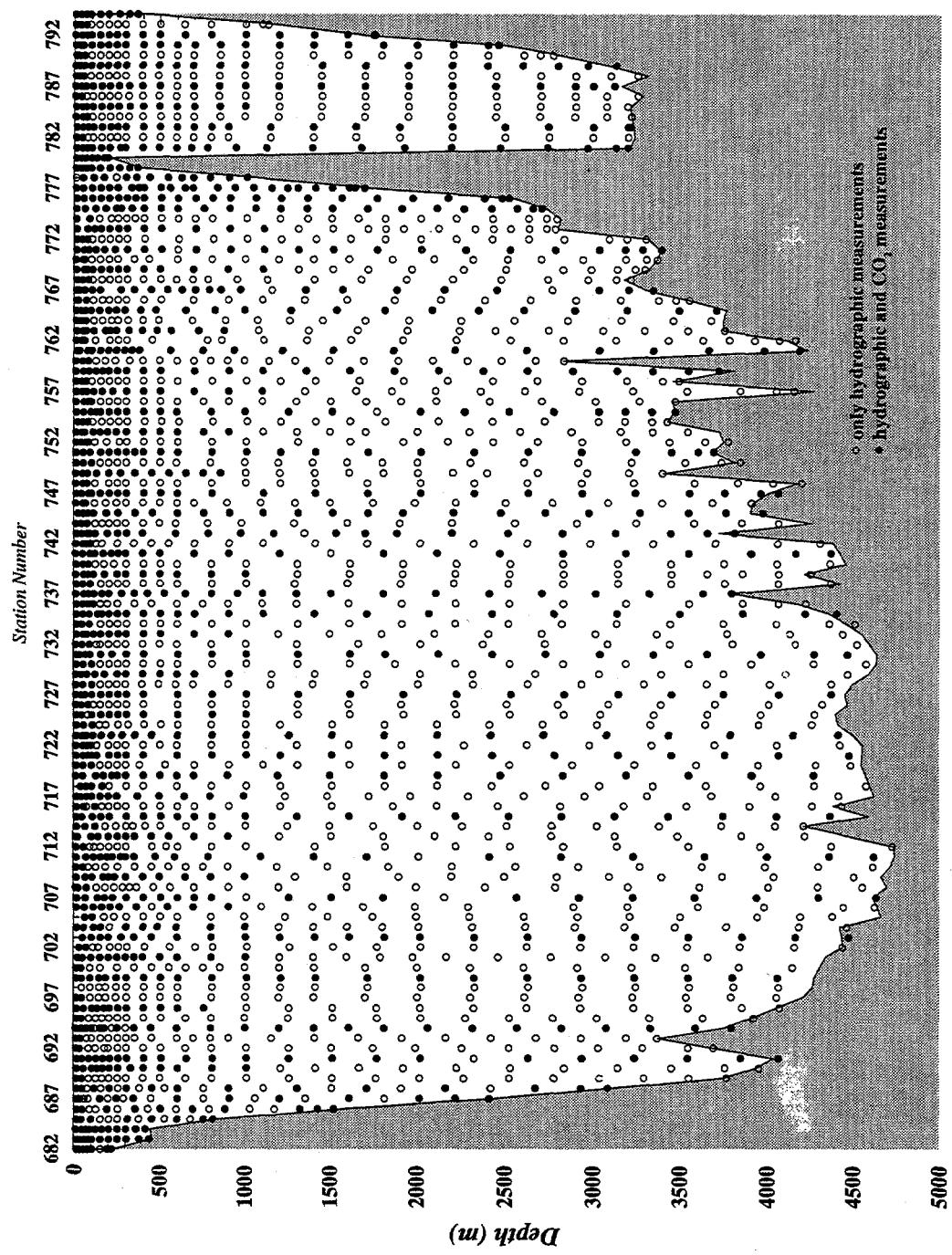


Figure 3. Sampling depths at all hydrographic stations occupied during R/V *Akademik Ioffe* Expedition in the South Pacific Ocean (WOCE Section S4P).

4. DATA CHECKS AND PROCESSING PERFORMED BY CDIAC

An important part of the NDP process at the Carbon Dioxide Information Analysis Center (CDIAC) involves the quality assurance (QA) of data before distribution. Data received at CDIAC are rarely in a condition that would permit immediate distribution, regardless of the source. To guarantee data of the highest possible quality, CDIAC conducts extensive QA reviews that involve examining the data for completeness, reasonableness, and accuracy. Although they have common objectives, these reviews are tailored to each data set and often require extensive programming efforts. In short, the QA process is a critical component in the value-added concept of supplying accurate, usable data for researchers.

The following information summarizes the data-processing and QA checks performed by CDIAC on the data obtained during the R/V *Akademik Ioffe* Expedition in the South Pacific Ocean (WOCE Section S4P).

1. Carbon-related data and preliminary hydrographic measurements were provided to CDIAC by Taro Takahashi of LDEO. The final hydrographic and chemical measurements and the station information files were provided by the WHPO after quality evaluation. A FORTRAN 77 retrieval code was written and used to merge and reformat all data files.
2. The designation for missing values, given as “-9.0” in the original files, was changed to “-999.9.”
3. To check for obvious outliers, all data were plotted with a PLOTNEST.C program written by Stewart C. Sutherland (LDEO). The program plots a series of nested profiles, using the station number as an offset; the first station is defined at the beginning, and subsequent stations are offset by a fixed interval (Figs. 4-9). Several outliers were identified and removed after consultation with the principal investigators.
4. To identify “noisy” data and possible systematic, methodological errors, property-property plots for all parameters were generated (Fig. 10), carefully examined, and compared with plots from previous expeditions in the South Pacific Ocean.
5. All variables were checked for values exceeding physical limits, for example, sampling depth values that are greater than the given bottom depths.
6. Dates and times were checked for bogus values (e.g., values of MONTH <1 or >12, DAY <1 or >31, YEAR ≠1992, TIME <0000 or >2400).
7. Station locations (latitudes and longitudes) and sampling times were examined for consistency with maps and cruise information supplied by Chipman et al. (1996).

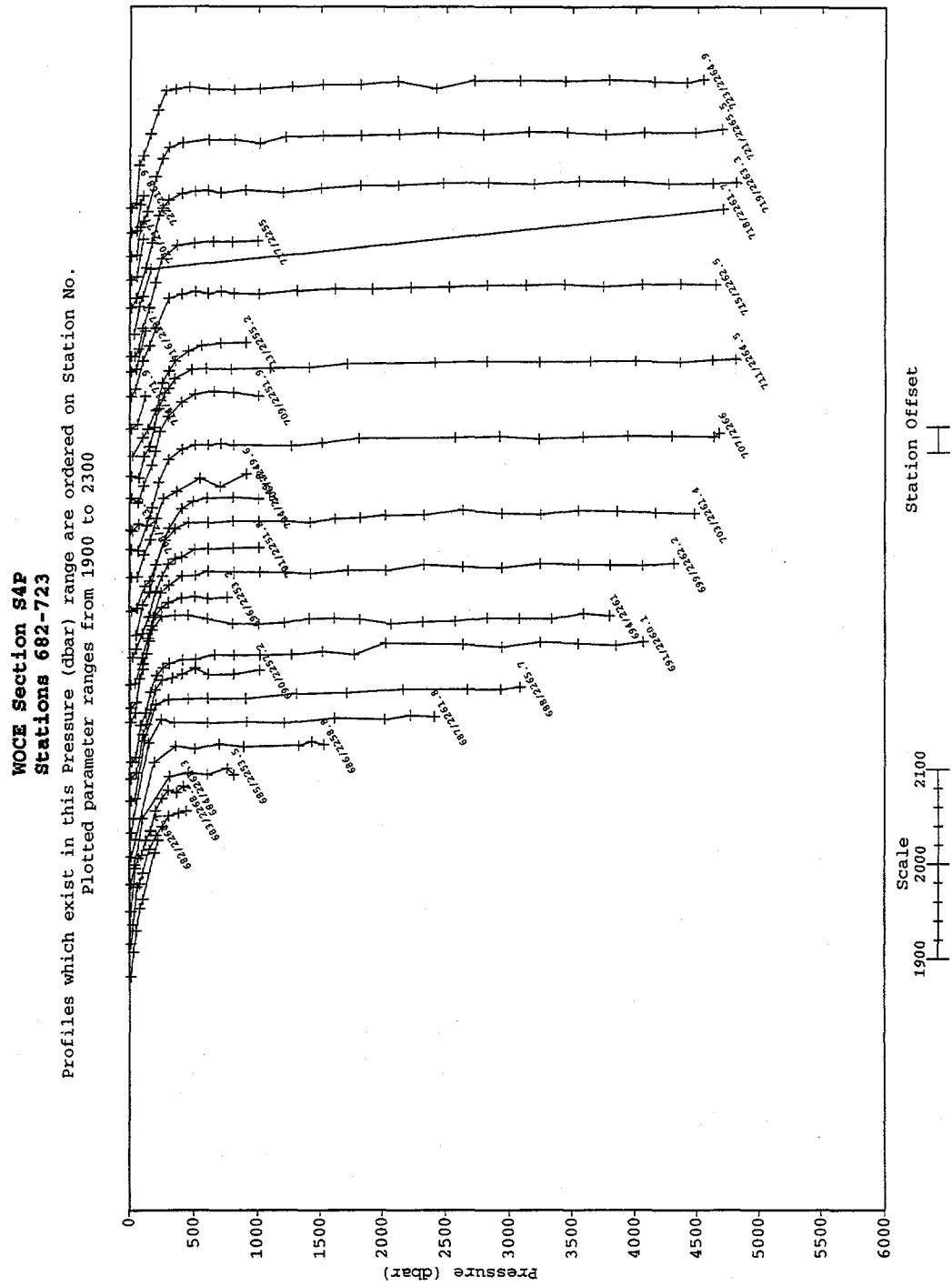


Figure 4. Nested profiles: total carbon ($\mu\text{mol/kg}$) vs pressure (dbar) for stations 682-723.

WOCE Section S4P
Stations 724-754

Profiles which exist in this Pressure (dbar) range are ordered on Station No.
Plotted parameter ranges from 1900 to 2300

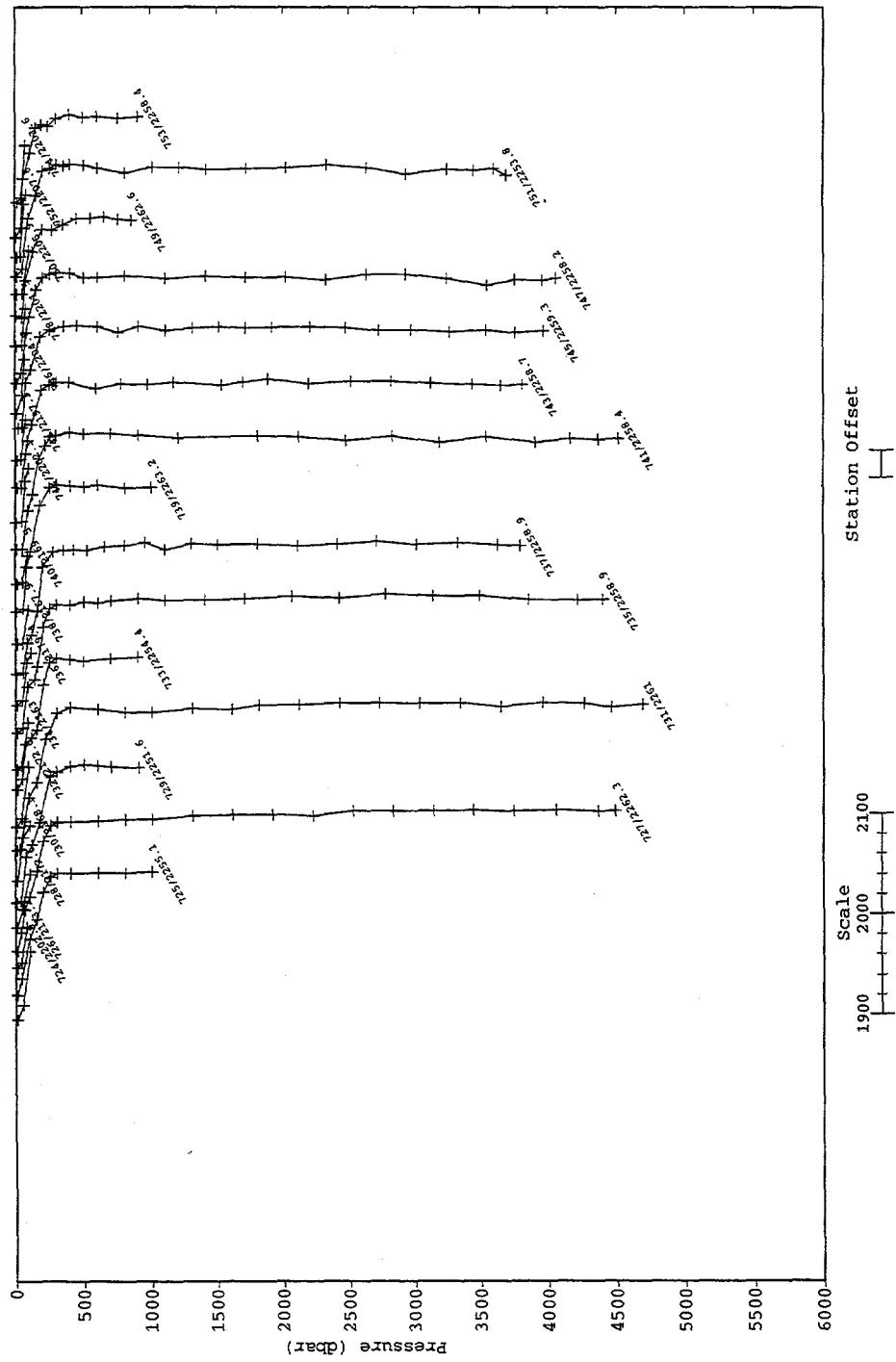


Figure 5. Nested profiles: total carbon ($\mu\text{mol/kg}$) vs pressure (dbar) for stations 724-754.

WOCE Section S4P
Stations 755-794

Profiles which exist in this Pressure (dbar) range are ordered on Station No.
Plotted parameter ranges from 1900 to 2300

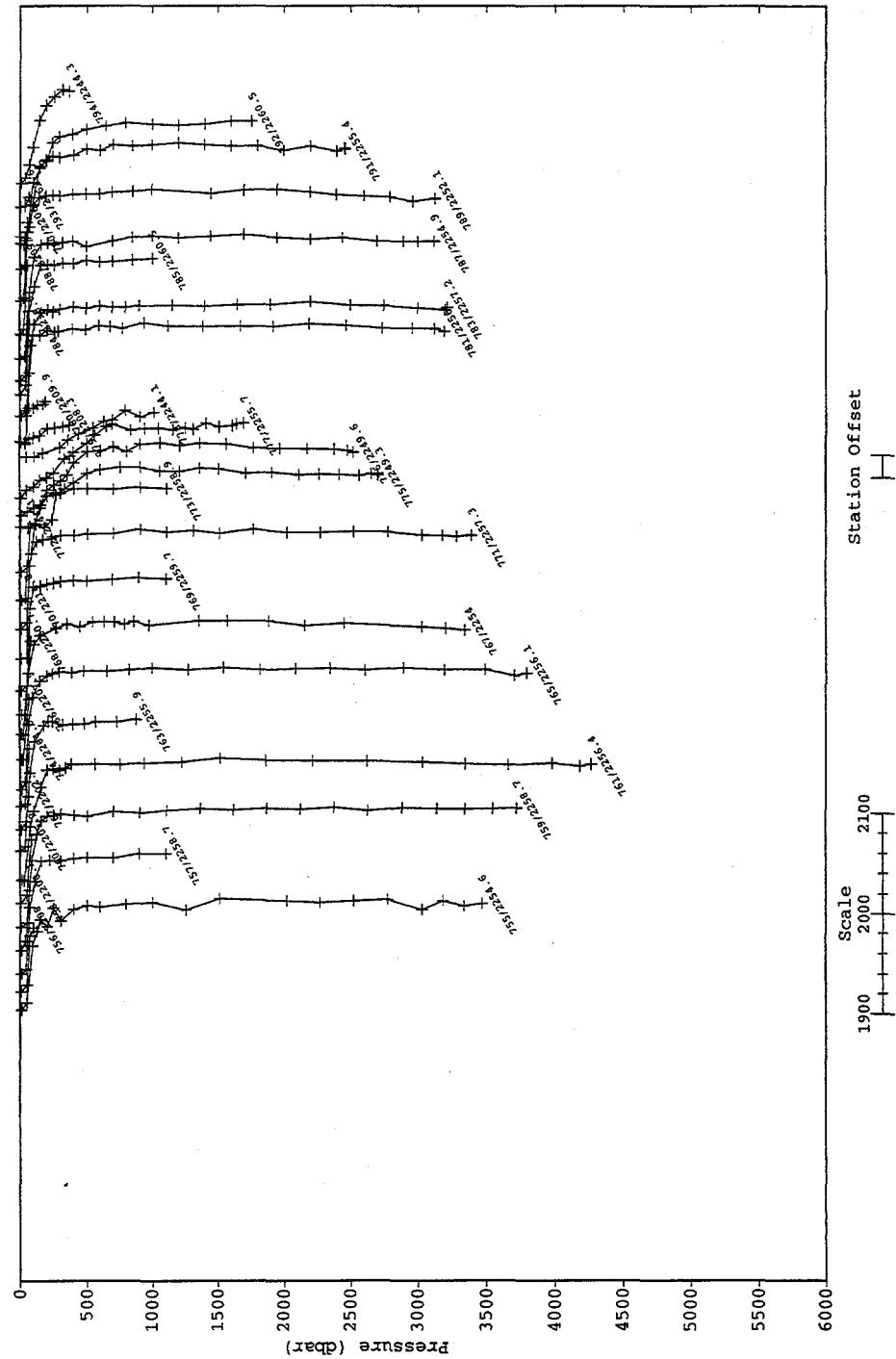


Figure 6. Nested profiles: total carbon ($\mu\text{mol/kg}$) vs pressure (dbar) for stations 755-794.

WOCE Section S4P
Stations 682-723

Profiles which exist in this Pressure (dbar) range are ordered on Station No.
Plotted parameter ranges from 300 to 700

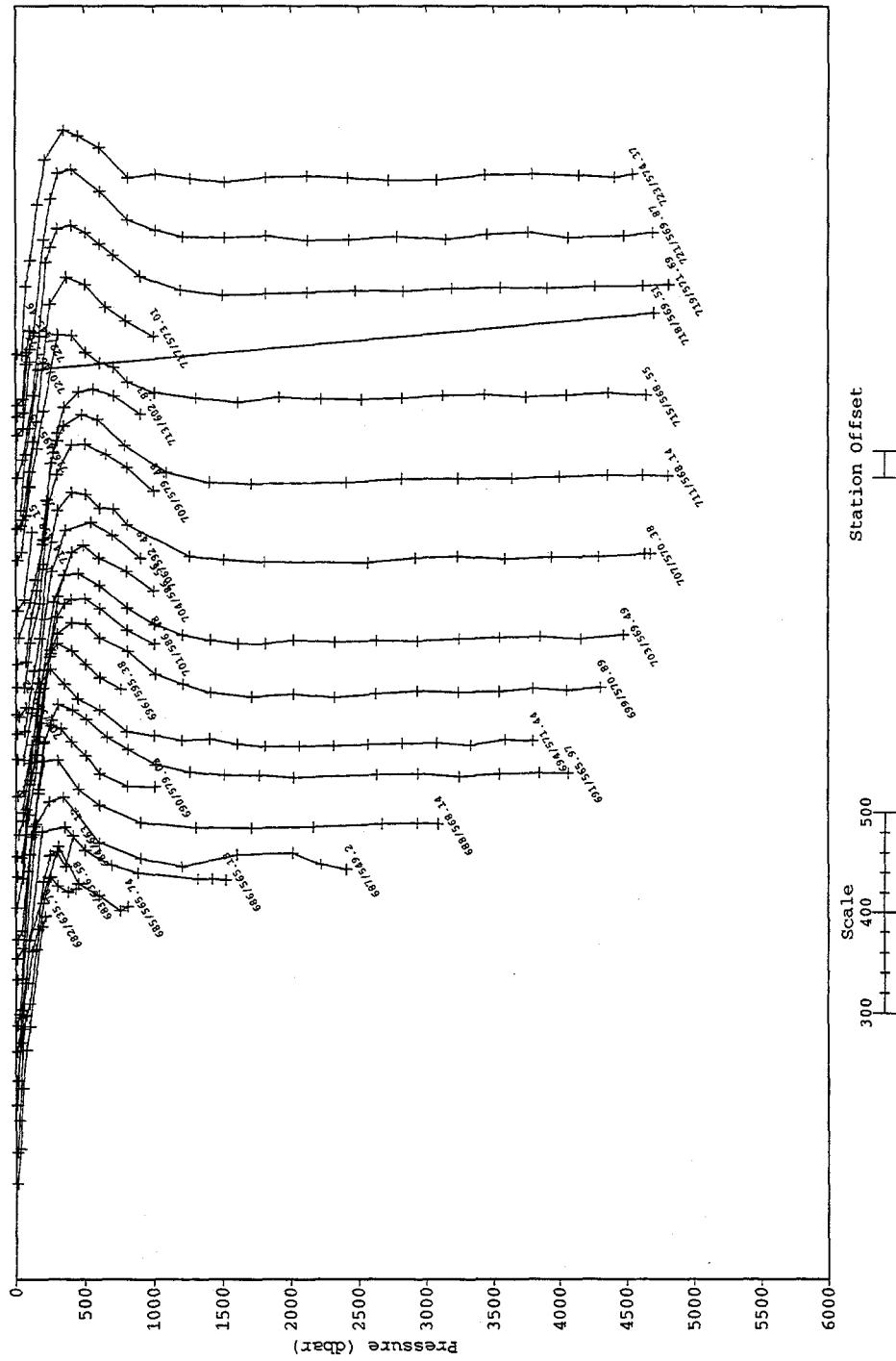


Figure 7. Nested profiles: partial pressure of CO₂ at 4.0°C (μatm) vs pressure (dbar) for stations 682-723.

WOCE Section SAP
Stations 724-754
Plotted parameter ranges from 300 to 700

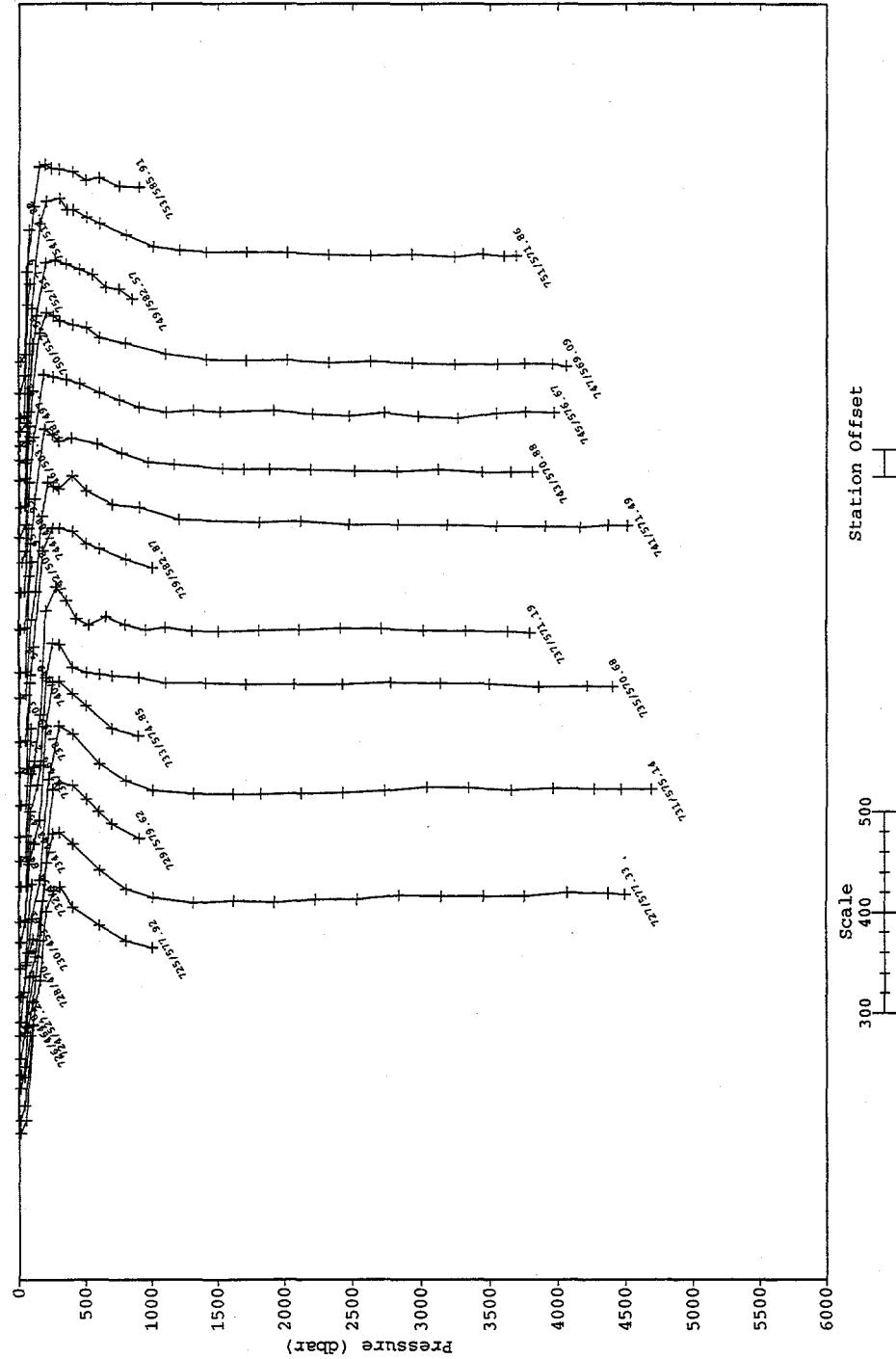


Figure 8. Nested profiles: partial pressure of CO_2 at 4.0°C (μatm) vs pressure (dbar) for stations 724-754.

WOCE Section S4P
stations 755-794

Profiles which exist in this Pressure (dbar) range are ordered on Station No.
Plotted parameter ranges from 300 to 700

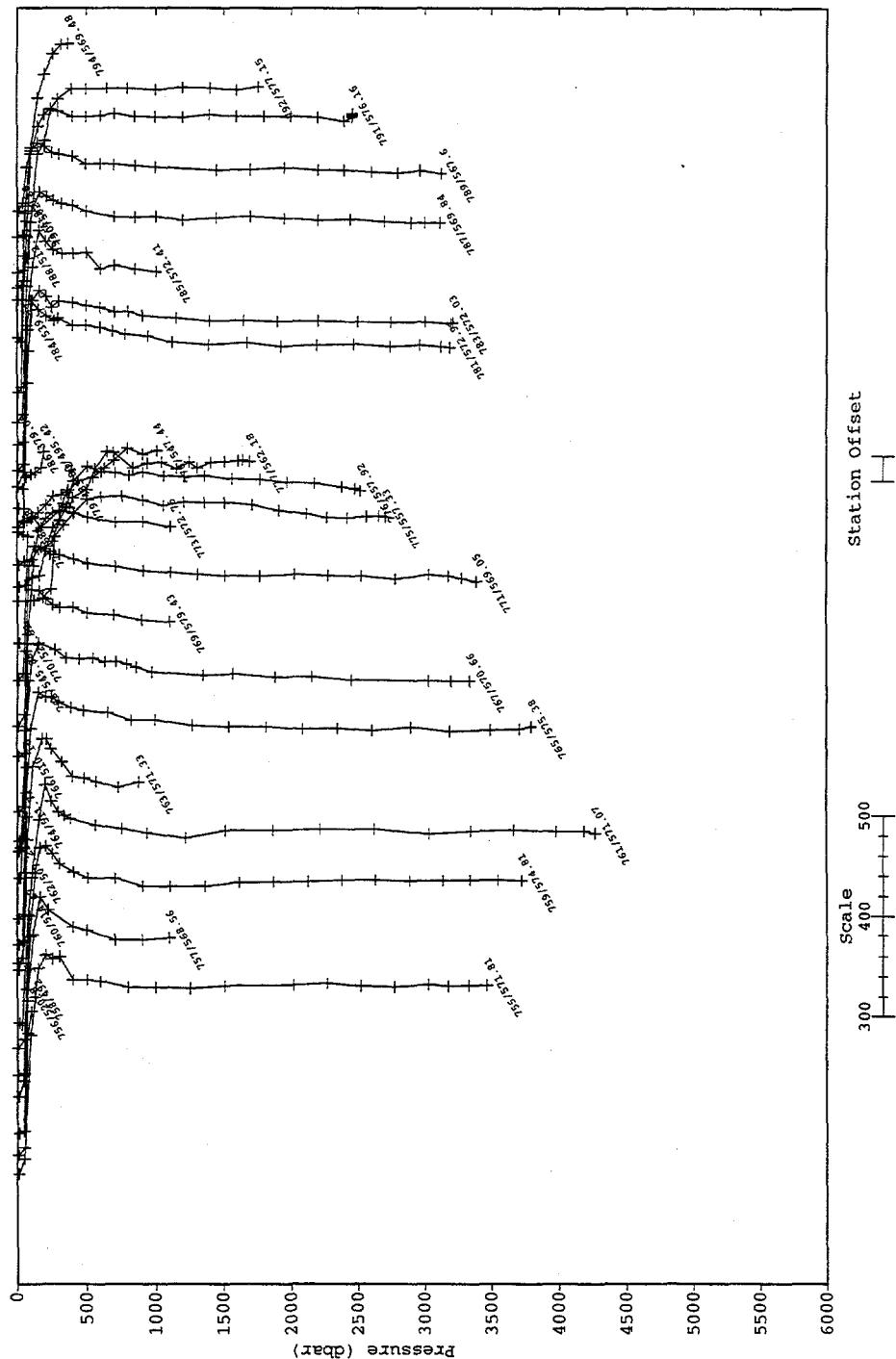


Figure 9. Nested profiles: partial pressure of CO_2 at 4.0°C (μatm) vs pressure (dbar) for stations 755-794.

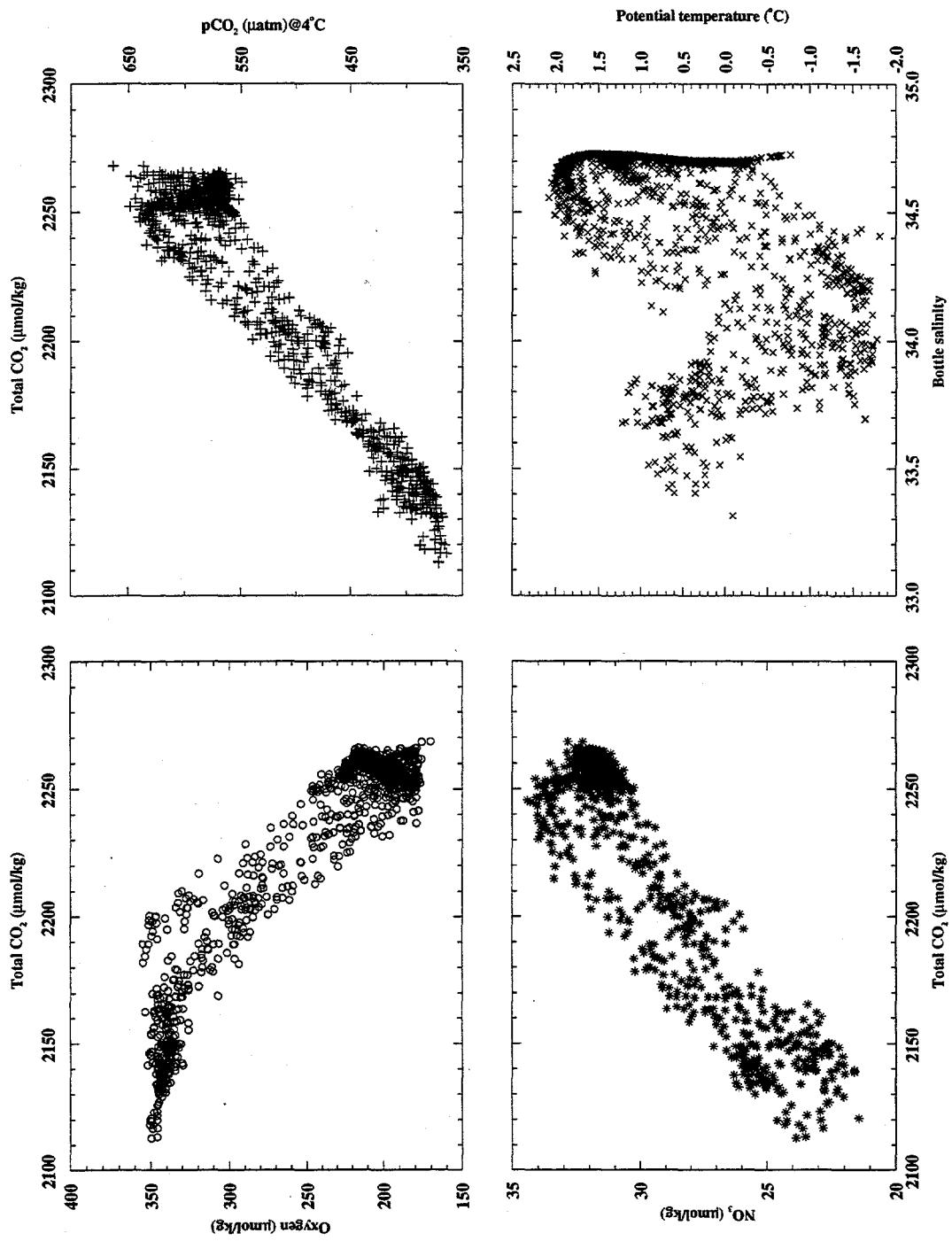


Figure 10. Select property-property plots for all stations occupied during R/V *Akademik Ioffe* Cruise along WOCE Section S4P.

5. HOW TO OBTAIN THE DATA AND DOCUMENTATION

This database is available on request in machine-readable form, without charge, from CDIAC. CDIAC will also distribute subsets of the database as needed. It can be acquired on 9-track magnetic tape; 8-mm tape; 150-MB, 0.25-in. tape cartridge; MAC- or IBM-formatted floppy diskettes; or from CDIAC's anonymous file transfer protocol (FTP) area via the Internet (see FTP address below). Requests should include any specific media instructions required by the user to access the data (e.g., 1600 or 6250 BPI, labeled or nonlabeled, ASCII or EBCDIC characters, and variable- or fixed-length records; 3.5- or 5.25-in. floppy diskettes, high or low density; and 8200 or 8500 format, 8-mm tape). Magnetic tape requests not accompanied by specific instructions will be filled on 9-track, 6250-BPI, nonlabeled tapes with ASCII characters. Requests should be addressed to

Carbon Dioxide Information Analysis Center
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, Tennessee 37831-6335
U.S.A.

Telephone: 423-574-0390 or 423-574-3645
Fax: 423-574-2232

Electronic mail: cdiac@ornl.gov

The data files may also be acquired from CDIAC's anonymous FTP area via the Internet:

- FTP to [cdiac.esd.ornl.gov](ftp://cdiac.esd.ornl.gov) (128.219.24.36),
- enter "ftp" or "anonymous" as the user ID,
- enter your electronic mail address as the password (e.g., alex@alex.esd.ornl.gov),¹
- change to the directory "/pub/ndp063," and
- acquire the files using the FTP "get" or "mget" command.

As an alternative, one can access the following World Wide Web URL
<http://cdiac.esd.ornl.gov/oceans/home.html>

¹Please enter your correct address. This address is used by CDIAC to inform data recipients of revisions and updates.

6. REFERENCES

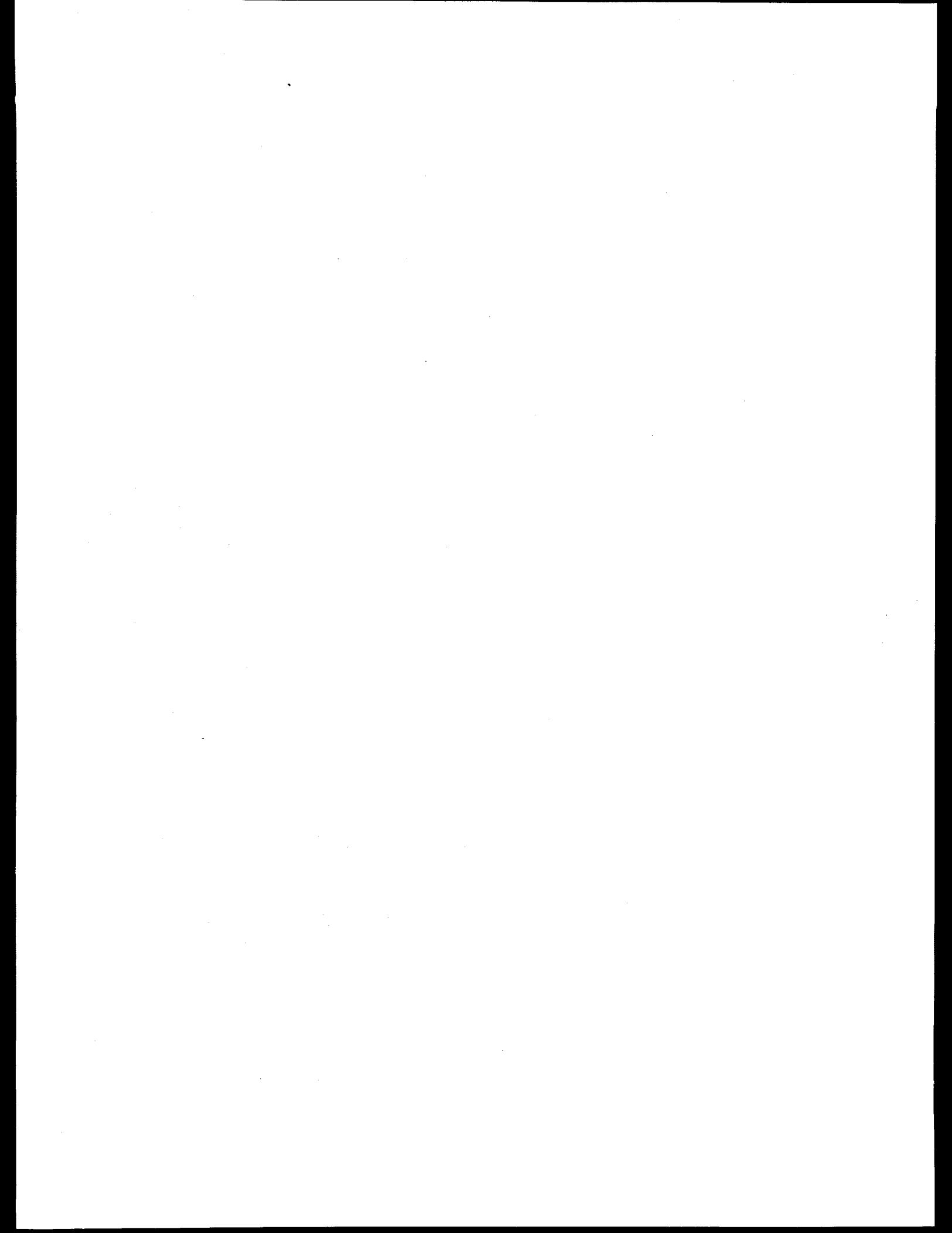
Armstrong, F. A. J., C. R. Stearns, and J. D. H. Strickland. 1967. The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment. *Deep-Sea Res.* 14:381-89.

Bernhardt, H., and A. Wilhelms. 1967. The continuous determination of low level iron, soluble phosphate and total phosphate with the AutoAnalyzer. *Technicon Symp.* 1:385-89.

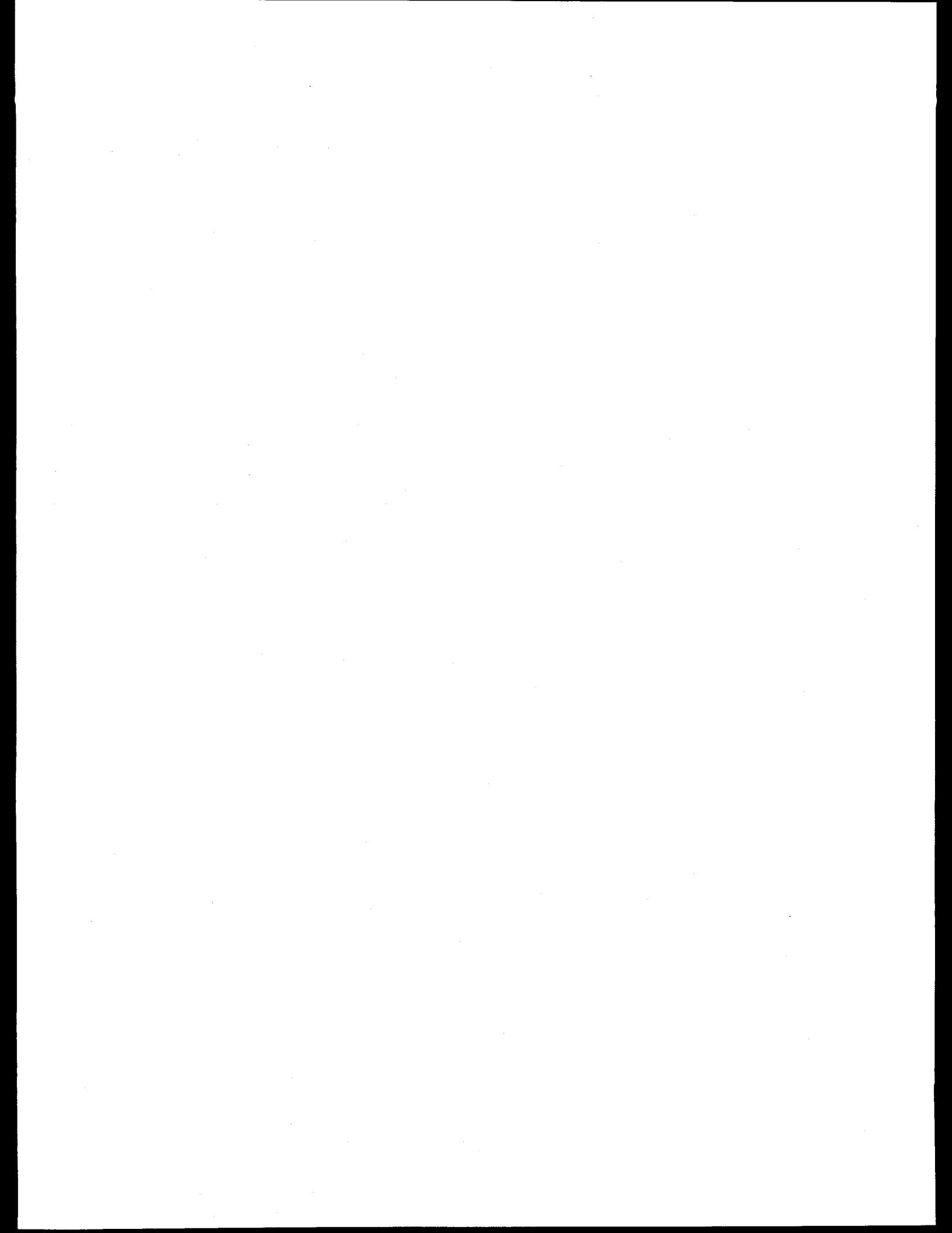
Carpenter, J. H. 1965. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. *Limnol. Oceanogr.* 10:141-43.

Chipman, D. W., J. Marra, and T. Takahashi. 1993. Primary production at 47° N and 20° W in the North Atlantic Ocean: A comparison between the ^{14}C incubation method and the mixed layer carbon budget. *Deep-Sea Res.* 40:151-69.

Chipman, D. W., S. Rubin, and T. Takahashi. 1996. *Investigation of Carbon Dioxide Along the WOCE Section S-4P in the Pacific Sector of the Southern Ocean, February-April, 1992.* Final Technical Report for grant DE-FGO2-92-ER61397, Lamont-Doherty Earth Observatory of Columbia University, Palisades, N.Y.


Culberson, C. H., and R. T. Williams. 1991. A Comparison of Methods for the Determination of Dissolved Oxygen in Seawater. Report No. WHPO 91-2. WOCE Hydrographic Programme Office. Woods Hole Oceanographic Institution, Woods Hole, Mass.

Gordon, L. I., J. C. Jennings, Jr., A. A. Ross, and J. M. Krest. 1992. *A Suggested Protocol for Continuous Flow Automated Analysis of Seawater Nutrients in the WOCE Hydrographic Programme and the Joint Global Ocean Fluxes Study.* Technical Report No. 92-1. College of Oceanography, Oregon State University, Corvallis, Oreg.


Kester, D. R. 1975. Dissolved gases other than CO_2 . pp. 498-556. In J. P. Riley and G. Skirrow (eds.), *Chemical Oceanography*, Vol. 1. Academic Press, London.

Tans, P. P., I. Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric CO_2 budget. *Science* 247:1431-38.

UNESCO. 1981. *Background Papers and Supporting Data on the Practical Salinity Scale, 1978.* UNESCO Technical Papers in Marine Science, No. 37.

PART 2:
CONTENT AND FORMAT OF DATA FILES

7. FILE DESCRIPTIONS

This section describes the content and format of each of the five files that make up this NDP (see Table 1). Because CDIAC distributes the data set in several ways (e.g., via anonymous FTP, on floppy diskette, and on 9-track magnetic tape), each of the five files is referenced by both an ASCII file name, which is given in lowercase, boldfaced type (e.g., **ndp063.doc**), and a file number. The remainder of this section describes (or lists, where appropriate) the contents of each file. The files are discussed in the order in which they appear on the magnetic tape.

Table 1. Content, size, and format of data files

File number, name, and description	Logical records	File size in bytes	Block size	Record length
1. ndp063.doc: a detailed description of the cruise network, the two FORTRAN 77 data- retrieval routines, and the two oceanographic data files	836	42,114	8,000	80
2. stainv.for: a FORTRAN 77 data-retrieval routine to read and print s4psta.inv (File 4)	43	1,335	8,000	80
3. s4pdat.for: a FORTRAN 77 data-retrieval routine to read and print s4p.dat (File 5)	51	2,067	8,000	80
4. s4psta.inv: a listing of the station locations, sampling dates, and sounding bottom depths for each of the 113 stations	123	9,132	4,100	41
5. s4p.dat: hydrographic, carbon dioxide, and chemical data from 113 stations	2,599	428,122	8,000	80
Total	3,652	482,770		

ndp063.doc (File 1)

This file contains a detailed description of the data set, the two FORTRAN 77 data retrieval routines, and the two oceanographic data files. It exists primarily for the benefit of individuals who acquire this database as machine-readable data files from CDIAC.

stainv.for (File 2)

This file contains a FORTRAN 77 data-retrieval routine to read and print s4psta.inv (File 4). The following is a listing of this program. For additional information regarding variable definitions, variable lengths, variable types, units, and codes, please see the description for s4psta.inv.

```
c*****  
c* This is a Fortran retrieval code to read and print the  
c* station inventory R/V Akademik Ioffe Cruise, WOCE S4P Line  
c*****  
  
c*Defines variables*  
  
      INTEGER stat, cast, depth  
      REAL latdcm, londcm  
      CHARACTER expo*12, sect*3, date*6, time*4  
      OPEN (unit=1, file='s4psta.inv')  
      OPEN (unit=2, file='s4pstat.inv')  
      write (2, 5)  
  
c*Writes out column labels and sets up a loop to read and format all  
c*data in the file*  
  
      5      format (3X, 'STATION INVENTORY: R/V AKADEMIK IOFFE',//,  
      1 4X, 'EXPOCODE', 1X, 'SECT', 1X, 'STNBR', 2X, 'CAST',  
      2 5X, 'DATE', 2X, 'TIME', 3X, 'LATITUDE', 3X, 'LONGITUDE', 2X,  
      3 'DEPTH', /)  
  
      6      read (1, 6)  
      6      format (/////////)  
  
      7      CONTINUE  
      read (1, 10, end=999) expo, sect, stat, cast, date, time,  
      1 latdcm, londcm, depth  
  
      10     format (A12, 2X, A3, 3X, I3, 5X, I1, 3X, A6, 2X, A4, 4X,  
      1 F7.3, 4X, F8.3, 3X, I4)  
  
      write (2, 20) expo, sect, stat, cast, date, time,  
      1 latdcm, londcm, depth  
  
      20     format (A12, 2X, A3, 3X, I3, 5X, I1, 3X, A6, 2X, A4, 4X,  
      1 F7.3, 4X, F8.3, 3X, I4)  
  
      GOTO 7  
999     close(unit=5)  
      close(unit=2)  
      stop  
      end
```

s4pdat.for (File 3)

This file contains a FORTRAN 77 data-retrieval routine to read and print s4p.dat (File 5). The following is a listing of this program. For additional information regarding variable definitions, variable lengths, variable types, units, and codes, please see the description for s4p.dat.

```
c*****  
c* FORTRAN 77 data retrieval routine to read and print the  
c* file named "s4p.dat" (File 5).  
c*****  
CHARACTER qual*11  
INTEGER sta, cast, samp, bot  
REAL pre, ctdtmp, ctdsal, ctdoxy, theta, sal, oxy, silca  
REAL nitrat, nitrit, phspht, tcarb, pco2, pco2tmp  
OPEN (unit=1, file='s4p.dat')  
OPEN (unit=2, file='s4p.data')  
write (2, 5)  
  
c*Writes out column labels*  
  
5 format (2X, 'STNNBR', 2X, 'CASTNO', 2X, 'SAMPNO', 2X, 'BTLNBR', 2X,  
1 'CTDPRS', 4X, 'CTDTMP', 4X, 'CTDSAL', 2X, 'CTDOXY', 5X, 'THETA', 4X,  
2 'SALNTY', 2X, 'OXYGEN', 2X, 'SILCAT', 2X, 'NITRAT', 2X, 'NITRIT', 2X,  
3 'PHSPHT', 2X, 'TCARBON', 4X, 'PCO2', 1X, 'PCO2TMP', 6X, 'QUALT1', //,  
5 36X, 'DBAR', 4X, 'ITS-90', 4X, 'PSS-78', 1X, 'UMOL/KG', 4X, 'ITS-90',  
6 4X, 'PSS-78', 1X, 6('UMOL/KG', 1X, ), 3X, 'UATM', 3X, 'DEG C',  
7 11X, '**', //, 25X, '*****', 21X, 2('*****', 1X, ),  
8 12X, 8('*****', 1X, ), 18X, '**', )  
  
c*Sets up a loop to read and format all the data in the file*  
  
read (1, 6)  
6 format (/////////)  
  
7 CONTINUE  
read (1, 10, end=999) sta, cast, samp, bot, pre, ctdtmp,  
1 ctdsal, ctdoxy, theta, sal, oxy, silca, nitrat, nitrit,  
2 phspht, tcarb, pco2, pco2tmp, qual  
  
10 format (5X, I3, 7X, I1, 6X, I2, 6X, I2, 1X, F7.1, 1X, F9.4,  
1 1X, F9.4, 1X, F7.2, 1X, F9.4, 1X, F9.4, 1X, F7.1, 1X, F7.2,  
2 1X, F7.2, 1X, F7.2, 1X, F7.2, 1X, F7.1, 1X, F7.2, 1X, F7.2,  
3 1X, A11)  
  
write (2, 20) sta, cast, samp, bot, pre, ctdtmp,  
1 ctdsal, ctdoxy, theta, sal, oxy, silca, nitrat, nitrit,  
2 phspht, tcarb, pco2, pco2tmp, qual  
  
20 format (5X, I3, 7X, I1, 6X, I2, 6X, I2, 1X, F7.1, 1X, F9.4,  
1 1X, F9.4, 1X, F7.2, 1X, F9.4, 1X, F9.4, 1X, F7.1, 1X, F7.2,  
2 1X, F7.2, 1X, F7.2, 1X, F7.2, 1X, F7.1, 1X, F7.2, 1X, F7.2,  
3 1X, A11)  
  
GOTO 7  
999 close(unit=1)  
close(unit=2)  
stop  
end
```

s4psta.inv (File 4)

This file provides station inventory information for each of the 113 stations occupied during the R/V *Akademik Ioffe* Expedition along the WOCE Section S4P. Each record of the file contains an expocode, section number, station number, cast, sampling date, sampling time, coordinates, and sounding depth. The file is sorted by station number and can be read by using the following FORTRAN 77 code (contained in *stainv.for*, File 2):

```
INTEGER stat, cast, depth
REAL latdcm, londcm
CHARACTER expo*12, sect*3, date*6, time*4

read (1, 10, end=999) expo, sect, stat, cast, date, time,
1 latdcm, londcm, depth

10  format (A12, 2X, A3, 3X, I3, 5X, I1, 3X, A6, 2X, A4, 4X,
1 F7.3, 4X, F8.3, 3X, I4)
```

Stated in tabular form, the contents include the following:

Variable	Variable type	Variable width	Starting column	Ending column
expo	Character	12	1	12
sect	Character	3	15	17
stat	Numeric	3	21	23
cast	Numeric	1	29	29
date	Character	6	33	38
time	Character	4	41	44
latdcm	Numeric	7	49	55
londcm	Numeric	8	60	67
depth	Numeric	4	71	74

where

expo is the expocode of the cruise (always RUKDIOFFE6/1);

sect is the WOCE section number (always S4P);

stat is the station number (values range from 682 to 795);

cast is the cast number;

date is the sampling date (month/day/year);

time is the sampling time (Greenwich mean time);

latdcm is the latitude of the station (in decimal degrees; negative values indicate the Southern Hemisphere);

londcm is the longitude of the station (in decimal degrees; negative values indicate the Western Hemisphere);

depth is the sounding depth of the station (in meters).

s4p.dat (File 5)

This file provides hydrographic, CO₂, and chemical data for the 113 stations occupied during the R/V *Akademik Ioffe* Expedition along the WOCE Section S4P. Each record contains a station number; cast number; sample number; bottle number; CTD pressure, temperature, salinity, and oxygen; potential temperature; bottle salinity; concentrations of oxygen, silicate, nitrate, nitrite, phosphate, and TCO₂; pCO₂; pCO₂ temperature; and data-quality flags. The file is sorted by station number and pressure and can be read by using the following FORTRAN 77 code (contained in **s4pdat.for**, File 3):

```

CHARACTER qual*11
INTEGER sta, cast, samp, bot
REAL pre, ctdtmp, ctdsal, ctdoxy, theta, sal, oxy, silca
REAL nitrat, nitrit, phspht, tcarb, pco2, pco2tmp

read (1, 10, end=999) sta, cast, samp, bot, pre, ctdtmp,
1 ctdsal, ctdoxy, theta, sal, oxy, silca, nitrat, nitrit,
2 phspht, tcarb, pco2, pco2tmp, qual

10 format (5X, I3, 7X, I1, 6X, I2, 6X, I2, 1X, F7.1, 1X, F9.4,
1 1X, F9.4, 1X, F7.2, 1X, F9.4, 1X, F9.4, 1X, F7.1, 1X, F7.2,
2 1X, F7.2, 1X, F7.2, 1X, F7.2, 1X, F7.1, 1X, F7.2, 1X, F7.2,
3 1X, A11)

```

Stated in tabular form, the contents include the following:

Variable	Variable type	Variable width	Starting column	Ending column
sta	Numeric	3	6	8
cast	Numeric	1	16	16
samp	Numeric	2	23	24
bot	Numeric	2	31	32
pre	Numeric	7	35	40
ctdtmp	Numeric	9	42	50
ctdsal	Numeric	9	52	60

ctd oxy	Numeric	7	62	68
theta	Numeric	9	70	78
sal	Numeric	9	80	88
oxy	Numeric	7	90	96
silca	Numeric	7	98	104
nitrat	Numeric	7	106	112
nitrit	Numeric	7	114	120
phspht	Numeric	7	122	128
tcarb	Numeric	7	130	136
pco2	Numeric	7	138	144
pco2tmp	Numeric	7	146	152
qualt	Character	11	154	164

where

sta is the station number;

cast is the cast number;

samp is the sample number;

bot^a is the bottle number;

pre is the CTD pressure (in dbar);

ctdtmp is the CTD temperature (in °C);

ctdsal^a is the CTD salinity [on the Practical Salinity Scale (PSS)];

ctd oxy^a is the CTD oxygen concentration (in $\mu\text{mol/kg}$);

theta is the potential temperature (in °C);

sal^a is the bottle salinity (PSS);

oxy^a is the bottle oxygen concentration (in $\mu\text{mol/kg}$);

silca^a is the silicate concentration (in $\mu\text{mol/kg}$);

nitrat^a is the nitrate concentration (in $\mu\text{mol/kg}$);

nitrit^a is the nitrite concentration (in $\mu\text{mol/kg}$);

phspht^a is the phosphate concentration (in $\mu\text{mol/kg}$);

tcarb^a is the total carbon dioxide concentration (in $\mu\text{mol/kg}$);

pco2^a is the partial pressure of CO₂ (in μ atm and measured at **pco2tmp**);

pco2tmp is the temperature of equilibration of the pCO₂ samples in the equilibrator (in °C);

qualt is an 11-digit character that contains the data-quality flag codes for each of the eleven parameters underlined with asterisks (*) in the output file.

^aVariables that are underlined with asterisks in the data file to indicate they have a data-quality flag. Data-quality flags are defined as follows:

- 1 = sample for this measurement was drawn from water bottle but results of analyses were not received;
- 2 = acceptable measurement;
- 3 = questionable measurement;
- 4 = bad measurement;
- 5 = not reported;
- 6 = mean of replicate measurements;
- 7 = manual chromatographic peak measurement;
- 8 = irregular digital chromatographic peak integration;
- 9 = sample was not drawn for this measurement from this bottle.

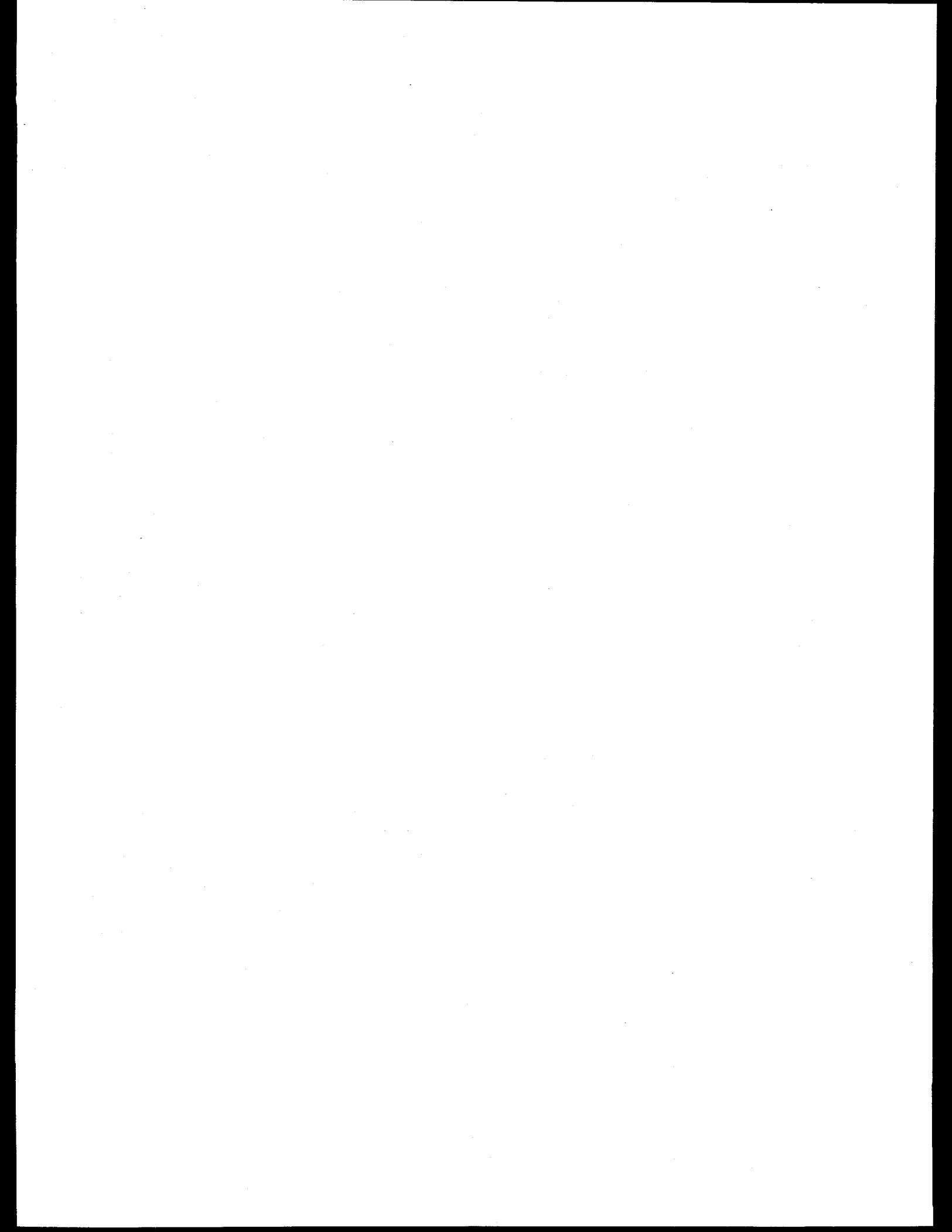
8. VERIFICATION OF DATA TRANSPORT

The data files contained in this numeric data package can be read by using the FORTRAN 77 data-retrieval programs provided. Users should visually examine each data file to verify that the data were correctly transported to their systems. To facilitate the visual inspection process, partial listings of each data file are provided in Tables 2 and 3. Each of these tables contains the first and last five lines of a data file.

Table 2. Partial listing of "s4psta.inv" (File 4)

First five lines of the file:

RUKDIOFFE6/1	S4P	682	1	022292	2033	-67.468	-70.089	236
RUKDIOFFE6/1	S4P	683	1	022292	2344	-67.166	-71.121	453
RUKDIOFFE6/1	S4P	684	1	022392	1054	-66.895	-71.998	445
RUKDIOFFE6/1	S4P	685	1	022392	1912	-66.814	-72.261	831
RUKDIOFFE6/1	S4P	686	1	022392	2206	-66.782	-72.264	1571


Last five lines of the file:

RUKDIOFFE6/1	S4P	790	1	032992	0022	-66.022	164.803	2814
RUKDIOFFE6/1	S4P	791	1	032992	0715	-66.250	163.724	2489
RUKDIOFFE6/1	S4P	792	1	032992	1407	-66.395	162.897	1680
RUKDIOFFE6/1	S4P	793	1	032992	2022	-66.400	162.742	-999
RUKDIOFFE6/1	S4P	794	1	032992	2327	-66.419	162.686	421

Table 3. Partial listing of “s4p.dat” (File 5)

First five lines of the file:									
682	1	8	13.2	-0.0900	33.3128	331.30	-0.0904	33.3142	349.8
0.15	1.55	2120.5	369.04	7.399222222222	33.6090	307.80	-0.0092	33.6110	336.9
0.13	682	1	2147.1	403.93	3.992222222222	33.7673	308.60	-1.1132	33.7587
0.19	1.86	2169.1	464.16	6.53.2	-1.1119	33.9073	289.00	-1.4732	33.9139
0.23	1.94	2192.7	502.15	5.78.7	-1.4715	34.0166	288.20	-1.5347	34.0250
0.09	682	1	4	103.2	-1.5324	34.4879	254.00	-0.7023	34.4859
Last five lines of the file:									
794	1	29	196.2	-0.6962	34.6158	224.70	0.2879	34.6136	224.3
0.13	2.18	2231.0	539.07	4.002222222222	34.6166	223.90	-0.0487	34.5663	237.8
0.07	794	1	28	260.7	-0.0390	34.6166	223.90	-0.0487	34.5663
0.02	2.21	2238.9	559.08	4.002222222222	34.6166	223.90	0.2879	34.6136	224.3
794	1	3	318.3	0.3007	34.6158	224.70	0.2879	34.6136	224.3
0.02	2.23	2246.2	568.23	4.002222222222	34.6166	223.90	0.2964	34.6166	223.90
794	1	2	364.6	0.3113	34.6166	223.90	-999.9000	-999.90	-999.90
-999.90	-999.90	-999.9	-999.90	-999.90	222999999999	34.6166	224.60	0.2990	34.6155
794	1	1	368.7	0.3141	34.6166	224.60	0.2990	34.6155	223.7
0.02	2.24	2244.3	569.48	4.002222222222	34.6166	224.60	0.2990	34.6155	223.7

APPENDIX A:
STATION INVENTORY

APPENDIX A: STATION INVENTORY

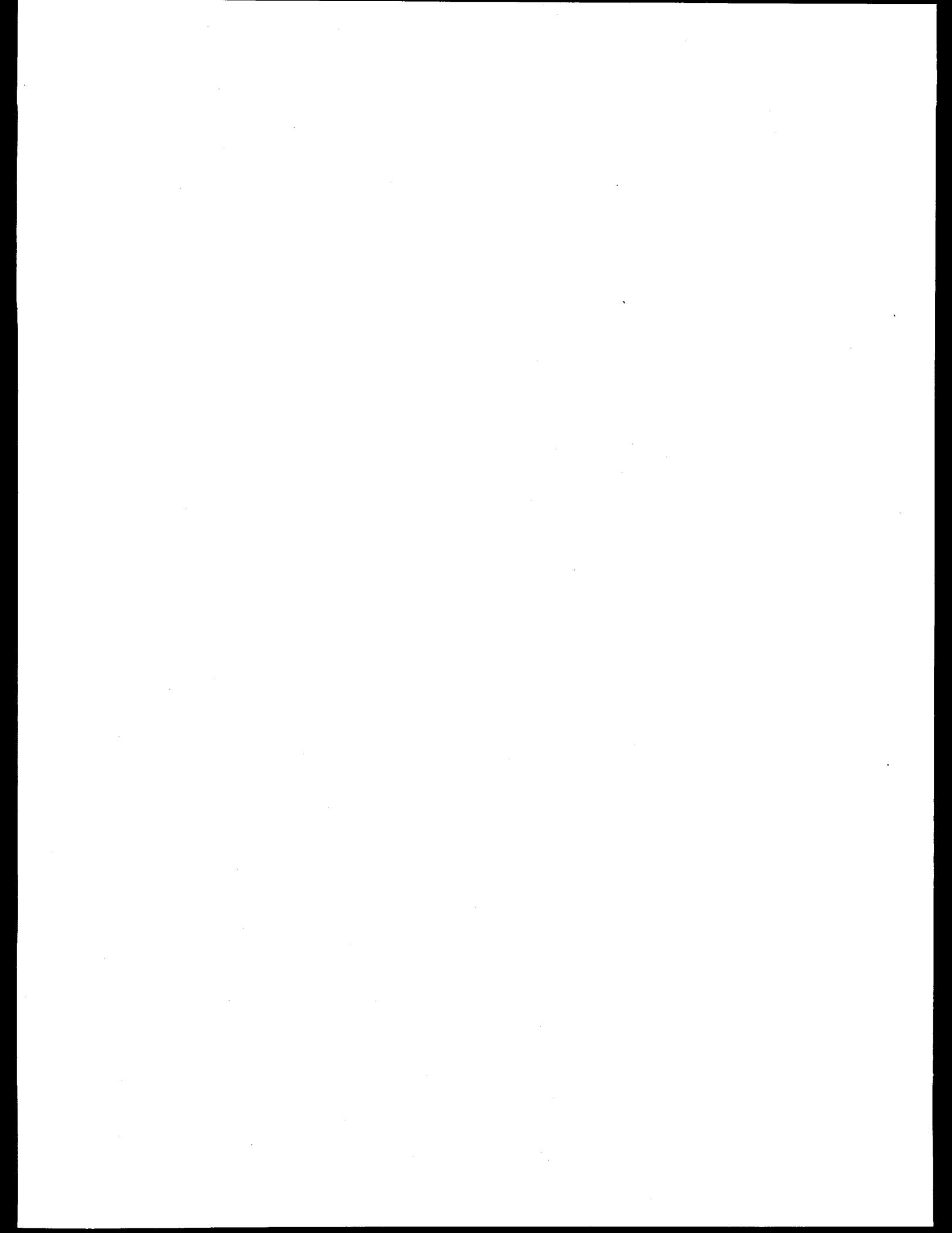
This appendix lists station inventory information for the 113 stations occupied during the R/V *Akademik Ioffe* Expedition in the South Pacific Ocean (WOCE Section S4P). The meanings of the column headings in Table A.1 are as follows.

EXPOCODE is the expocode of the cruise;

SECT is the WOCE section number;

STNBR is the station number;

CAST is the cast number;


DATE is the sampling date (month/day/year);

TIME is the sampling time (Greenwich mean time);

LATITUDE is the latitude of the station (in decimal degrees) (stations in the Southern Hemisphere have negative latitudes);

LONGITUDE is the longitude of the station (in decimal degrees) (stations in the Western Hemisphere have negative longitudes); and

DEPTH is the sounding bottom depth of each station (in meters).

**Table A.1 Station inventory information for the 113 sites occupied during
R/V *Akademik Ioffe* Expedition in the South Pacific Ocean (WOCE Section S4P)**

EXPOCODE	SECT	STNBR	CAST	DATE	TIME	LATITUDE	LONGITUDE	DEPTH
RUKDIOFFE6/1	S4P	682	1	022292	2033	-67.468	-70.089	236
RUKDIOFFE6/1	S4P	683	1	022292	2344	-67.166	-71.121	453
RUKDIOFFE6/1	S4P	684	1	022392	1054	-66.895	-71.998	445
RUKDIOFFE6/1	S4P	685	1	022392	1912	-66.814	-72.261	831
RUKDIOFFE6/1	S4P	686	1	022392	2206	-66.782	-72.264	1571
RUKDIOFFE6/1	S4P	687	2	022492	0247	-66.732	-72.238	2430
RUKDIOFFE6/1	S4P	688	1	022492	0711	-66.685	-72.265	3098
RUKDIOFFE6/1	S4P	689	1	022492	1225	-66.503	-73.243	3748
RUKDIOFFE6/1	S4P	690	1	022492	1713	-66.270	-73.996	3932
RUKDIOFFE6/1	S4P	691	1	022492	2241	-65.906	-75.013	4037
RUKDIOFFE6/1	S4P	692	1	022592	0336	-66.284	-75.661	3685
RUKDIOFFE6/1	S4P	693	1	022592	0821	-66.633	-76.405	3381
RUKDIOFFE6/1	S4P	694	1	022592	1319	-67.006	-77.029	3755
RUKDIOFFE6/1	S4P	695	1	022692	0244	-66.999	-78.313	3906
RUKDIOFFE6/1	S4P	696	1	022692	0810	-67.009	-79.607	4048
RUKDIOFFE6/1	S4P	697	1	022692	1329	-66.981	-80.864	4208
RUKDIOFFE6/1	S4P	698	1	022692	1908	-66.998	-82.233	4262
RUKDIOFFE6/1	S4P	699	1	022792	0014	-66.997	-83.437	4273
RUKDIOFFE6/1	S4P	700	1	022792	0544	-67.010	-84.704	4367
RUKDIOFFE6/1	S4P	701	1	022792	1224	-67.013	-85.882	4339
RUKDIOFFE6/1	S4P	702	2	022892	0405	-66.991	-87.291	4444
RUKDIOFFE6/1	S4P	703	1	022892	1416	-67.001	-88.534	4437
RUKDIOFFE6/1	S4P	704	1	022992	0107	-67.005	-89.787	4423
RUKDIOFFE6/1	S4P	705	1	022992	0806	-67.026	-91.486	4663
RUKDIOFFE6/1	S4P	706	1	022992	1559	-67.036	-93.211	4640
RUKDIOFFE6/1	S4P	707	1	030192	0518	-66.993	-94.919	4617
RUKDIOFFE6/1	S4P	708	1	030192	1410	-67.034	-96.702	4697
RUKDIOFFE6/1	S4P	709	1	030292	0131	-67.010	-98.365	4666
RUKDIOFFE6/1	S4P	710	1	030292	1011	-66.987	-99.980	4718
RUKDIOFFE6/1	S4P	711	1	030292	1744	-66.989	-101.839	4744
RUKDIOFFE6/1	S4P	712	1	030392	0048	-66.996	-103.453	4740
RUKDIOFFE6/1	S4P	713	1	030392	0804	-66.986	-105.168	4725
RUKDIOFFE6/1	S4P	714	1	030392	1529	-67.018	-106.856	4212
RUKDIOFFE6/1	S4P	715	1	030492	0148	-67.007	-108.546	4589
RUKDIOFFE6/1	S4P	716	1	030492	0819	-67.003	-110.248	4388
RUKDIOFFE6/1	S4P	717	1	030492	1524	-66.989	-111.907	4623
RUKDIOFFE6/1	S4P	718	1	030492	2203	-67.007	-113.638	4644
RUKDIOFFE6/1	S4P	719	1	030592	0455	-67.000	-115.366	4751
RUKDIOFFE6/1	S4P	720	1	030592	1233	-67.006	-117.085	4548
RUKDIOFFE6/1	S4P	721	1	030692	0035	-66.996	-118.767	4634
RUKDIOFFE6/1	S4P	722	1	030692	0752	-67.002	-120.460	4555
RUKDIOFFE6/1	S4P	723	1	030692	1516	-67.008	-122.177	4501
RUKDIOFFE6/1	S4P	724	1	030692	2217	-66.985	-123.836	4407
RUKDIOFFE6/1	S4P	725	1	030792	0441	-67.007	-125.579	4395
RUKDIOFFE6/1	S4P	726	1	030792	1342	-66.982	-127.236	4465
RUKDIOFFE6/1	S4P	727	1	030892	0008	-66.998	-128.972	4452
RUKDIOFFE6/1	S4P	728	1	030892	0629	-66.996	-130.678	4493
RUKDIOFFE6/1	S4P	729	1	030892	1348	-66.997	-131.961	4589
RUKDIOFFE6/1	S4P	730	1	030892	2018	-67.001	-133.224	4636
RUKDIOFFE6/1	S4P	731	1	030992	0215	-67.000	-134.508	4640
RUKDIOFFE6/1	S4P	732	1	030992	0920	-67.000	-135.834	4661
RUKDIOFFE6/1	S4P	733	1	030992	1705	-66.991	-137.137	4551
RUKDIOFFE6/1	S4P	734	1	031092	0252	-67.007	-138.398	4460
RUKDIOFFE6/1	S4P	735	1	031092	0925	-67.007	-139.654	4360
RUKDIOFFE6/1	S4P	736	1	031092	1556	-66.991	-140.951	4175
RUKDIOFFE6/1	S4P	737	1	031092	2201	-67.005	-142.195	3788
RUKDIOFFE6/1	S4P	738	1	031192	0510	-67.002	-143.889	4421
RUKDIOFFE6/1	S4P	739	1	031192	1410	-66.988	-145.615	4218
RUKDIOFFE6/1	S4P	740	1	031292	0105	-67.007	-147.483	4457
RUKDIOFFE6/1	S4P	741	1	031292	0850	-67.012	-149.212	4470
RUKDIOFFE6/1	S4P	742	1	031292	1718	-66.978	-150.964	4386
RUKDIOFFE6/1	S4P	743	1	031392	0013	-66.994	-152.548	3734

Table A.1 (continued)

RUKDIOFFE6/1	S4P	744	1	031392	0738	-66.967	-154.328	4251
RUKDIOFFE6/1	S4P	745	1	031392	1628	-67.026	-156.084	3902
RUKDIOFFE6/1	S4P	746	1	031492	1835	-66.954	-157.694	3914
RUKDIOFFE6/1	S4P	747	1	031592	0455	-66.984	-158.979	4005
RUKDIOFFE6/1	S4P	748	1	031592	1059	-66.983	-160.290	4172
RUKDIOFFE6/1	S4P	749	1	031592	1800	-66.972	-161.541	3410
RUKDIOFFE6/1	S4P	750	1	031692	0006	-66.996	-162.775	3812
RUKDIOFFE6/1	S4P	751	1	031692	0615	-67.010	-164.082	3689
RUKDIOFFE6/1	S4P	752	1	031692	1246	-67.010	-165.340	3748
RUKDIOFFE6/1	S4P	753	1	031692	1900	-67.012	-166.595	3722
RUKDIOFFE6/1	S4P	754	1	031792	0440	-66.993	-167.907	3427
RUKDIOFFE6/1	S4P	755	1	031792	1029	-67.024	-169.250	3463
RUKDIOFFE6/1	S4P	756	1	031792	1809	-66.998	-170.577	3458
RUKDIOFFE6/1	S4P	757	1	031892	0003	-67.003	-171.861	4264
RUKDIOFFE6/1	S4P	758	1	031892	0549	-67.005	-173.124	3468
RUKDIOFFE6/1	S4P	759	1	031892	1134	-66.992	-174.397	3804
RUKDIOFFE6/1	S4P	760	1	031892	1809	-66.973	-175.628	2831
RUKDIOFFE6/1	S4P	761	1	031992	0443	-66.984	-176.913	4227
RUKDIOFFE6/1	S4P	762	1	031992	1102	-66.975	-178.163	4113
RUKDIOFFE6/1	S4P	763	1	031992	1836	-66.983	-179.427	3748
RUKDIOFFE6/1	S4P	764	1	032092	0052	-67.037	179.231	3747
RUKDIOFFE6/1	S4P	765	1	032092	0652	-67.027	177.870	3763
RUKDIOFFE6/1	S4P	766	1	032092	1335	-67.025	176.673	3550
RUKDIOFFE6/1	S4P	767	1	032092	2022	-67.035	175.385	3302
RUKDIOFFE6/1	S4P	768	1	032192	0206	-67.049	174.319	3179
RUKDIOFFE6/1	S4P	769	1	032192	0824	-67.469	173.573	3319
RUKDIOFFE6/1	S4P	770	1	032192	1406	-67.895	172.914	3364
RUKDIOFFE6/1	S4P	771	1	032192	1939	-68.295	172.093	3382
RUKDIOFFE6/1	S4P	772	1	032292	0413	-68.703	171.441	3312
RUKDIOFFE6/1	S4P	773	1	032292	0917	-69.138	170.768	2800
RUKDIOFFE6/1	S4P	774	1	032292	1450	-69.582	169.977	2816
RUKDIOFFE6/1	S4P	775	1	032292	1944	-69.933	169.344	2731
RUKDIOFFE6/1	S4P	776	1	032392	0246	-70.172	168.915	2544
RUKDIOFFE6/1	S4P	777	1	032392	1031	-70.411	168.496	1722
RUKDIOFFE6/1	S4P	778	1	032392	1615	-70.451	168.414	1058
RUKDIOFFE6/1	S4P	779	1	032392	1935	-70.493	168.308	386
RUKDIOFFE6/1	S4P	780	1	032392	2241	-70.648	168.066	209
RUKDIOFFE6/1	S4P	781	1	032592	1851	-67.004	174.225	3205
RUKDIOFFE6/1	S4P	782	1	032692	0401	-66.714	173.177	3234
RUKDIOFFE6/1	S4P	783	1	032692	0947	-66.450	172.113	3229
RUKDIOFFE6/1	S4P	784	1	032692	1535	-66.162	171.048	3215
RUKDIOFFE6/1	S4P	785	1	032692	2111	-65.880	169.988	3210
RUKDIOFFE6/1	S4P	786	1	032792	0310	-65.590	168.979	3285
RUKDIOFFE6/1	S4P	787	1	032792	0851	-65.327	167.987	3164
RUKDIOFFE6/1	S4P	788	1	032792	2300	-65.483	166.903	3310
RUKDIOFFE6/1	S4P	789	1	032892	1838	-65.771	165.883	3084
RUKDIOFFE6/1	S4P	790	1	032992	0022	-66.022	164.803	2814
RUKDIOFFE6/1	S4P	791	1	032992	0715	-66.250	163.724	2489
RUKDIOFFE6/1	S4P	792	1	032992	1407	-66.395	162.897	1680
RUKDIOFFE6/1	S4P	793	1	032992	2022	-66.400	162.742	-999
RUKDIOFFE6/1	S4P	794	1	032992	2327	-66.419	162.686	421

APPENDIX B:
REPRINT OF PERTINENT LITERATURE

removed

INTERNAL DISTRIBUTION

1. T. A. Boden
2. M. D. Burtis
3. R. M. Cushman
4. S. V. Jennings
5. S. B. Jones
6. D. P. Kaiser
7. P. Kanciruk
8. T. E. Myrick
9. D. E. Shepherd
10. D. S. Shriner
11. L. D. Voorhees
12. Central Research Library
- 13-16. ESD Library
- 17-18. Laboratory Records Department
19. Laboratory Records Department ORNL- RC
20. Y-12 Technical Library

EXTERNAL DISTRIBUTION

21. William E. Asher, University of Washington, Joint Institute for the Study of the Atmosphere and the Ocean, Box 354235, Seattle, WA 98195
22. Jeff Banasek, UIC, Inc., P.O. Box 83, 1225 Channahon Road, Joliet, IL 60434
23. Robert Bidigare, University of Hawaii, Department of Oceanography, 1000 Pope Road, Honolulu, HI 96822
24. Peter G. Brewer, Monterey Bay Aquarium Research Institute, P.O. Box 628, 7700 Sandholt Road, Moss Landing, CA 95039
25. Michelle Broido, Department of Energy, Office of Health and Environmental Research, Environmental Sciences Division, ER-74, 19901 Germantown Road, Germantown, MD 20874
26. O. B. Brown, University of Miami, 4500 Rickenbacker Causeway, Miami, FL 33149
27. L. Brugmann, Stockholm University, Department of Geology and Geochemistry, S-106 91 Stockholm, Sweden
28. Robert H. Byrne, University of South Florida, Department of Marine Science, 140 Seventh Avenue S., St. Petersburg, FL 33701
- 29-33. David W. Chipman, Columbia University, Lamont-Doherty Earth Observatory, Route 9W, P. O. Box 1000, Palisades, NY 10964
34. E. G. Cumesty, ORNL Site Manager, Department of Energy, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6269
35. G. Cutter, Old Dominion University, Department of Oceanography, Norfolk, VA 23529

36. Giovanni Daneri, CEA Universidad del Mar, Dept. de Oceanografia y Biologia Pesquera, Amunaategui 1838, Vina Del Mar, Chile
37. Andrew G. Dickson, Scripps Institute of Oceanography, University of California, San Diego, Marine Physical Laboratory, 9500 Gilman Drive, La Jolla, CA 92093
38. Scott Doney, National Center for Atmospheric Research, Oceanography Section, P.O. Box 3000, Boulder, CO 80307
39. Hugh W. Ducklow, College of William and Mary, Virginia Institute of Marine Sciences, P. O. Box 1346, Gloucester Point, VA 23062
40. Jerry W. Elwood, Department of Energy, Office of Health and Environmental Research, Environmental Sciences Division, ER-74, 19901 Germantown Road, Germantown, MD 20874
41. Gerd Esser, Justus-Liebig-University, Institute for Plant Ecology, Heinrich-Buff-Ring 38, D-35392 Giessen Germany
42. Wanda Ferrell, Department of Energy, Office of Health and Environmental Research, Environmental Sciences Division, ER-74, 19901 Germantown Road, Germantown, MD 20874
43. Richard H. Gammon, University of Washington, Chemistry Department, Box 351700, Seattle, WA 98195
44. Jean-Pierre Gattuso, Observatoire Oceanologique Europeen, Avenue Saint-Martin, MC-98000, Monaco
45. Catherine M. Goyet, Woods Hole Oceanographic Institute, Marine Chemistry and Geochemistry Department, 360 Woods Hole Road, MS #25, Woods Hole, MA 02543
46. Nicolas Gruber, University of Bern, Physics Institute, Sidlerstrasse 5, 3012 Bern Switzerland
47. Peter Guenther, Geosciences Research Division 0220, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0220
48. David O. Hall, University of London, Division of Biosphere Sciences, King's College London, Campden Hill Road, London W8 7AH, United Kingdom
49. Akira Harashima, Japan Environment Agency, Global Environmental Research Division, 16-2 Onogawa, Tsukuba, Ibaraki 305 Japan
50. Mark Hein, Freshwater Biological Laboratory, Helsingørsgade 51, DK-3400 Hilleroed, Denmark

51. A. Hittelman, WDC-A for Solid Earth Geophysics, NOAA Code E/GC1, 325 Broadway, Boulder, CO 80303
52. H. Hodgson, British Library, Boston Spa, DSC, Special Acquisitions, Wetherby, West Yorkshire, LS23 7BQ, United Kingdom
53. Huasheng Hong, Xiamen University, Environmental Science Research Center, Post Code 361005, Mail Box 1085, Xiamen, Fujian, Peoples Republic China
54. Carroll A. Hood, GCRIO, 2250 Pierce Road, Bay City, MI 48710
55. John C. Houghton, Department of Energy, Office of Health and Environmental Research, Environmental Sciences Division, ER-74, 19901 Germantown Road, Germantown, MD 20874
56. Kenneth M. Johnson, Brookhaven National Laboratory, Oceanographic and Atmospheric Sciences Division, Department of Applied Science, Building 318, Upton, NY 11973
57. Fortunat Joos, University of Bern, Physics Institute, KUP, Sidlerstr. 5, Bern CH-3012 Switzerland
58. David M. Karl, University of Hawaii, Department of Oceanography, 1000 Pope Road, Honolulu, HI 96822
59. Thomas R. Karl, National Climatic Data Center, 151 Patton Avenue, Federal Building, Room 516E, Asheville, NC 28801
60. Stephan Kempe, Schnittspahnstr. 9, D-64287 Darmstadt, Germany
61. R. M. Key, Princeton University, Geology Department, Princeton, NJ 08544
62. K.-R. Kim, Seoul National University, Dept. of Oceanology, Seoul 151-7442, Korea
63. Takashi Kimoto, Research Institute of Oceano-Chemistry, Osaka Office, 3-1 Fumahashi-cho, Tennoji-ku, Osaka 543 Japan
64. Bert Klein, University Laval, GIROQ, Pav. Vachon, Quebec, PQ, G1K 7P4, Canada
65. John C. Klink, Miami University, Department of Geography, 217 Shideler Hall, Oxford, OH 45056
66. J. Val Klump, University of Wisconsin, Center for Great Lakes Studies, 600 E. Greenfield Avenue, Milwaukee, WI 53204
- 67-71. Mikhail H. Koshlyakov, Shirshov Institute of Oceanography, Russian Academy of Sciences, Moscow, Russia

72. A. Kozyr, The University of Tennessee, Pellissippi Research Facility, 10521 Research Drive, Suite 100, Knoxville, TN 37923
73. Sydney Levitus, National Ocean Data Center, National Oceanic and Atmospheric Administration, E / OC5, 1315 East West Highway, Room 4362, Silver Spring, MD 20910
74. E. Lewis, Brookhaven National Laboratory, Oceanographic Sciences Division, Upton, NY 11973
75. Peter Lunn, Department of Energy, Office of Health and Environmental Research, Environmental Sciences Division, ER-74, 19901 Germantown Road, Germantown, MD 20874
76. Thomas H. Mace, U.S. Environmental Protection Agency, National Data Processing Division, 79 TW Alexander Drive, Bldg. 4201, MD-34, Durham, NC 27711
77. James J. McCarthy, Harvard University, Museum of Comparative Zoology, 26 Oxford Street, Cambridge, MA 02138
78. Michael C. McCracken, Director, Office of the U.S. Global Change Research Program, Code YS-1, 300 E. Street, SW, Washington, DC 20546
79. Nicolas Metzl, Universite Pierre et Marie Curie, Laboratory de Physique et Chimie Marines, T 24-25-Case 134, 4, place Jussieu, 75252 Paris Cedex 05, France
80. Frank J. Millero, University of Miami, RSMAS, 4600 Rickenbacker Causeway, Miami, FL 33149
81. L. Mintrop, Institute for Marine Research, Marine Chemistry Department, Duesternbrooker Weg 20, D-214105 Kiel Germany
82. J. W. Morse, Texas A & M University, Department of Oceanography, College Station, TX 77843
83. R. E. Munn, University of Toronto, Institute for Environmental Studies, Haultain Building, 170 College Street, Toronto, Ontario M5S 1A4, Canada
84. Shohei Murayama, National Institute for Resources and Environment, Environmental Assessment Department, 16-3 Onogawa, Tsukuba, Ibaraki 305 Japan
85. Paulette P. Murphy, National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Building 3, 7600 Sand Point Way NE, Seattle, WA 98115
86. Shuzo Nishioka, National Institute for Environmental Studies, Global Environment Research Division, 16-2 Onogawa, Tsukuba, Ibaraki 305 Japan

87. Jao Ryoung Oh, Korea Ocean Research and Development Institute, Chemical Oceanography Division, An San P.O. Box 29, Seoul 4325-600 Korea
88. J. Olafsson, Marine Research Institute, P.O. Box 1390, Skulagata 4, 121 Reykjavik, Iceland
89. C. Oudot, Centre ORSTOM de Cayenne, B.P. 165-97323, Cayene Cedex, Guyana
90. Bobbi Parra, Department of Energy, Office of Health and Environmental Research, Environmental Sciences Division, ER-74, 19901 Germantown Road, Germantown, MD 20874
91. Anna Palmisano, Office of Health and Environmental Research, Environmental Sciences Division, ER-74, Department of Energy, 19901 Germantown Road, Germantown, MD 20874
92. Ari Patrinos, Department of Energy, Office of Health and Environmental Research, Environmental Sciences Division, ER-74, 19901 Germantown Road, Germantown, MD 20874
93. Tsung-Hung Peng, NOAA/AOML, Ocean Chemistry Division, 4301 Rickenbacker Causeway, Miami, FL 33149
94. B. Preselin, University of California, Department of Biological Sciences, Santa Barbara, CA 93106
95. Paul D. Quay, University of Washington, School of Oceanography, Box 357940, Seattle, WA 98195
96. Roberta Y. Rand, USDA, Global Change Data and Information Management, 10301 Baltimore Boulevard, Beltsville, MD 20705
97. Joachim Ribbe, University of Washington, Joint Institute for the Study of the Atmosphere and Oceans, Box # 35425, Seattle, WA 98195
98. Michael R. Riches, Department of Energy, Office of Health and Environmental Research, Environmental Sciences Division, ER-74, 19901 Germantown Road, Germantown, MD 20874
99. Marilyn F. Roberts, Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115
- 100-104. Stephany Rubin, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964
105. C. L. Sabine, Princeton University, Geology Department, Guyot Hall, Princeton, NJ 08544
106. M. M. Sarin, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India

107. Jorge L. Sarmiento, Princeton University, Atmospheric and Oceanic Sciences Program, P.O. Box CN710, Sayre Hall, Princeton, NJ 08544
108. Gary S. Sayler, The University of Tennessee, Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996-1605
109. Kiminori Shitashima, Central Research Institute of Electric Power Industry, Marine Science Group, 1646, Abiko, Abiko-city, Chiba, 270-11 Japan
110. Nelson Silva, Universidad Catolica de Valparaiso, Escuela de Ciencias de Mar, Casilla 1020, Valparaiso, Chile
111. Michel H. C. Stoll, Netherlands Institute for Sea Research, Dept. MCG, P. O. Box 59, 1790 Ab den Burg-Texel Netherlands
112. Eric T. Sundquist, U.S. Geological Survey, Quissett Campus, Branch of Atlantic Marine Geology, Woods Hole, MA 02543
- 113-117. Stuart C. Sutherland, Columbia University, Lamont-Doherty Earth Observatory, P.O. Box 1000, U.S. Route 9W, Palisades, NY 10964
118. James H. Swift, Scripps Institution of Oceanography, University of California, San Diego Oceanographic Data Facility, 9500 Gilman Drive, La Jolla, CA 92093-0124
- 119-123. Taro Takahashi, Columbia University, Lamont-Doherty Earth Observatory, Climate/Environment/ Ocean Division, Rt. 9W, Palisades, NY 10964
124. John A. Taylor, Australian National University, CRES, GPO Box 4, Canberra, ACT 0200 Australia
125. John R. G. Townshend, University of Maryland, Dept. of Geography, 1113 Lefrak Hall College Park, MD 20742
126. J. Tucker, Marine Biological Laboratory, Woods Hole, MA 02543
127. D. Turner, University of Goteborg, Department of Analytical and Marine Chemistry, S-41296 Goteborg, Sweden
128. Douglas W. R. Wallace, Brookhaven National Laboratory, Oceanographic and Atmosphere Sciences Division, P.O. Box 5000, Upton, NY 11973
129. Carol Watts, National Oceanic and Atmoshperic Administration, Central Library, 1315 East-West Highway, 2nd Floor, SSMC 3, Silver Spring, MD 20910
130. Ferris Webster, University of Delaware, College of Marine Studies, Lewes, DE 19958

131. Ray F. Weiss, Scripps Institute of Oceanography, University of California, Mail Code A-020, Room 2271, Ritter Hall, La Jolla, CA 92093
132. Christopher Winn, Scripps Institution of Oceanography, Marine Physical Laboratory, 9500 Gilman Drive, La Jolla, CA 92093-0230
133. Chi Shing Wong, Government of Canada, Institute of Ocean Sciences, P.O. Box 6000, 9860 West Saanich Road, Sidney, BC V8L 4B2, Canada
134. L. Xu, Xiamen University, Environmental Science Research Center, Xiamen, Fujian, Peoples Republic of China
135. Evgeniy Yakushev, Shirshov Institute of Oceanology, 23 Krasikova, Moscow 117218, Russia
136. Yoshifumi Yosuoka, National Institute for Environmental Studies, Center Global Environment Research, 16-2 Onogawa, Tsukuba, Ibaraki 305 Japan
137. Database Section, National Institute for Environmental Studies, Center for Global Environmental Research, 16-2 Onogawa, Tsukuba, Ibaraki 305, Japan
138. Energy Library (HR-832.2/WAS), Department of Energy, Office of Administration and Management, GA-138 Forrestal Building, Washington, DC 20585
139. Energy Library (HR-832.1/GTN), Department of Energy, Office of Administration and Management, G-034, Washington, DC 20585
140. Office of Assistant Manager for Energy Research and Development, Department of Energy, Oak Ridge Operations, P. O. Box 2001, Oak Ridge, TN 37831-8600
- 141-142. Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831
- 143-192. Carbon Dioxide Information Analysis Center, Attn: Timothy Stamm, The University of Tennessee, Pellissippi Research Facility, 10521 Research Drive, Suite 100, Knoxville, TN 37923