

Magnetic excitations in the $S = \frac{1}{2}$ quasi-one-dimensional magnet

M. Matsuda and K. Katsumata

The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan

S. M. Shapiro and G. Shirane

Physics Department, Brookhaven National Laboratory, Upton, New York 11973

(August 20, 1998)

Abstract

Neutron scattering experiments have been performed on $\text{Sr}_{14-x}\text{Ca}_x\text{Cu}_{24}\text{O}_{41}$ ($x=3$ and 6), which consists of CuO_2 chains and Cu_2O_3 ladders, in order to study the effect of Ca substitution on the dimerized state in the chains. The Ca substitution broadens the excitation peak although the excitation energy is almost unchanged. The effects of Ca and Y substitution on the dimerized state are compared.

RECEIVED

NOV 20 1998

QSTI *JK*

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

Typeset using REVTEX

I. INTRODUCTION

$\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$ consists of both two-leg ladders of copper ions and simple CuO_2 chains [1,2] as shown in Figs. 1(a) and (b). The two-leg ladders show an excitation gap as expected theoretically [3] at ~ 35 meV [4]. An important feature of this compound is that stoichiometric $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$ contains hole carriers. It has been reported that most of the holes are localized in the chain and some exist in the ladder. [5-7] When Sr^{2+} sites are substituted by Ca^{2+} ions, total number of holes in the sample is unchanged but the holes in the chain are transferred to the ladder [6,7] and the system shows an insulator-to-metal transition [5,8]. Superconductivity was observed in $\text{Sr}_{0.4}\text{Ca}_{13.6}\text{Cu}_{24}\text{O}_{41}$ below $T_c=10\text{K}$ under a high pressure of 3 GPa. [9] NMR studies have shown that the excitation gap energy is suppressed with hole doping. [10-12]. These results suggest a close relation between magnetism and transport properties.

The CuO_2 chains show an interesting dimerized state [13]. Figure 1(a) shows the CuO_2 chains in $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$. The copper ions are coupled by almost 90° Cu-O-Cu bond along the c axis. Each chain is well isolated from each other along the a and b axes. As mentioned above, there are localized holes in the chain. It is expected that the holes are localized at oxygen [6] and the hole spin couples with the copper spins to form a Zhang-Rice singlet [14]. These nonmagnetic Cu sites play an important role to form a dimerized state in the chain in $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$. The dimer is formed between next-nearest-neighbor Cu^{2+} spins along the c axis. The exchange interaction (~ 10 meV) is mediated via a nonmagnetic ZR singlet. [15-17] Recently, Matsuda *et al.* [18] showed that the dimerized state can be explained with a model as shown in Fig. 1(c), which is ascribed to a quasi-two-dimensional hole ordering.

We have studied the Ca substitution effect on the dimerized state. The dimerized state in the chain is most stable in pure $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$. This dimerized state depends radically on the number of holes. When Y is substituted for Sr, the number of holes is decreased and the number of Cu^{2+} spins is increased. It is reported that in $\text{Sr}_{14-x}\text{Y}_x\text{Cu}_{24}\text{O}_{41}$ system the magnetic excitation peaks broaden with Y substitution. [15,19] As mentioned above, the Ca

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

substitution for Sr also reduces the number of holes in the chain. [5-7] Therefore, the Ca substitution is expected to affect the dimerized state in the chain. It is important to study the Ca substitution effect in the chain as well as that in the ladder to clarify the magnetic and transport properties.

In this paper, we report the results of neutron scattering experiments on $\text{Sr}_{14-x}\text{Ca}_x\text{Cu}_{24}\text{O}_{41}$ ($x=3$ and 6). It was observed that the magnetic inelastic peaks in the chain become broad with Ca substitution as in the case of Y substituted system. However, the dimerized state in the chain becomes unstable with Ca substitution much more gradually than with Y substitution. An interesting feature is that the excitation energy does not change with Ca substitution although it is decreased with Y substitution.

II. EXPERIMENTAL DETAILS

The single crystals of $\text{Sr}_{14-x}\text{Ca}_x\text{Cu}_{24}\text{O}_{41}$ ($x=3$ and 6) were grown using a traveling solvent floating zone (TSFZ) method at 3 bars oxygen atmosphere. The dimension of the cylindrically shaped crystals is about $5 \times 5 \times 20$ mm 3 . It is expected that Sr and Ca are distributed homogeneously in $\text{Sr}_{14-x}\text{Ca}_x\text{Cu}_{24}\text{O}_{41}$ since the lattice constants systematically change and the linewidth of the nuclear Bragg peaks does not change when the ratio of Sr and Ca is changed. The lattice constants of $\text{Sr}_{11}\text{Ca}_3\text{Cu}_{24}\text{O}_{41}$ and $\text{Sr}_8\text{Ca}_6\text{Cu}_{24}\text{O}_{41}$ at 9 K are $b=13.169$ Å and $c=27.448$ Å and $b=12.951$ Å and $c=27.381$ Å, respectively. These lattice constants are consistent with those obtained with powder samples. [5]

The neutron scattering experiments were carried out on the H8 spectrometer installed at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. The horizontal collimator sequences were 40'-40'-S-40'-80'. The final neutron energy was fixed at $E_f=14.7$ meV. Pyrolytic graphite (002) was used as monochromator and analyzer. Contamination from higher-order beam was effectively eliminated using pyrolytic graphite filters after the sample. The single crystals were mounted in a closed cycle refrigerator and were oriented in the $(0, k, l)$ scattering plane. As described in Ref. [1], there are three different values for

the lattice constant c ($c_{\text{universal}}=10 \times c_{\text{chain}}=7 \times c_{\text{ladder}}$). Since we will show the magnetic properties in the chain, c_{chain} will be used to express Miller indices.

III. RESULTS AND DISCUSSION

Figure 2 shows typical inelastic neutron spectra at $(0,3,L)$ measured at 9 K in $\text{Sr}_{14-x}\text{Ca}_x\text{Cu}_{24}\text{O}_{41}$ ($x=3$ and 6). The magnetic excitation peaks become broad with Ca substitution, which is similar to the case of Y substitution. [15,19] It is noted that the two excitation branches (acoustic and optic), which are observed in pure $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$ are hardly resolved. The peak width in the $x=6$ sample is broader than that in the $x=3$ sample, suggesting that the dimerized state become more unstable with Ca substitution. However, the excitation energies in the two samples are similar to those in pure $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$. The solid lines at $(3, 0, -0.07)$ and $(3, 0, -0.21)$ are fits to a single Gaussian and that at $(3, 0, -0.35)$ is a fit to two Gaussians by assuming that the dispersion relation is the same as that in $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$ [18] as show in Fig. 1(d). A single Gaussian was used to fit the data at $(3, 0, -0.07)$ and $(3, 0, -0.21)$ because the intensities from the optic mode excitation are expected to be very small. [18] The spectra are reasonably described with the simple model. The averaged excitation energy, the band width of each excitation mode, and the energy difference between the acoustic and optic modes are related with J , J_c , and J_a , respectively. [18] Here, J , J_c , and J_a represent intradimer coupling, interdimer coupling in the same chain, and interdimer coupling between the adjacent chains, respectively, as shown in Fig. 1(c). This indicates that the coupling constants J , J_c , and J_a are almost unchanged with Ca substitution although the dimerized state becomes unstable. This behavior would be explained as follows. The hole ordering sensitively depends on the hole number. Accordingly, the long-range dimer formation becomes disturbed with Ca or Y substitution.

Figure 3 shows energy-integrated intensities as a function of L in the $x=3$ and 6 samples. The intensities of both samples show similar L dependence. There is a broad maximum around $L=0.25$, indicating that the dimers are formed between Cu spins which are separated

by two times the distance between the nearest-neighbor Cu ions in the chain. Thus, the dimerized state in the Ca substituted system is considered to be similar to that in pure $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$ although the dimerized state becomes unstable.

In order to compare the results of the Ca substituted system with those of the Y substituted system, an inelastic neutron spectrum in $\text{Sr}_{13.5}\text{Y}_{0.5}\text{Cu}_{24}\text{O}_{41}$ is shown in Fig. 4. The width of the excitation peak is similar to that in the $x=3$ or 6 sample. However, the excitation energy is decreased to ~ 9 meV in the Y substituted sample while it is not affected (~ 10 meV) with Ca substitution. This result suggests that J is almost unchanged with Ca substitution but it is decreased with Y substitution. A puzzling feature is that J is decreased in $\text{Sr}_{13.5}\text{Y}_{0.5}\text{Cu}_{24}\text{O}_{41}$ although the lattice constant c , which affects the exchange constant, is almost independent of Y concentration. [20] On the other hand, the lattice constant c is slightly decreased with Ca concentration, [5] which is expected to increase J .

The dimerized state sensitively depends on the hole concentration in the chain. Since the hole concentration in $\text{Sr}_{14-x}\text{Y}_x\text{Cu}_{24}\text{O}_{41}$ can be controlled, it is possible to estimate how much holes are transferred from the chains to the ladders in $\text{Sr}_{14-x}\text{Ca}_x\text{Cu}_{24}\text{O}_{41}$ by comparing the magnetic properties of the two systems. The width of the excitation peak would be one of the parameters which change with Y or Ca substitution. It was concluded that the number of holes in the chain in $\text{Sr}_{14-x}\text{Ca}_x\text{Cu}_{24}\text{O}_{41}$ ($x \sim 4.5$) is almost equal to that in $\text{Sr}_{13.5}\text{Y}_{0.5}\text{Cu}_{24}\text{O}_{41}$, in which 0.5 hole is removed from the chain compared with the number of the holes ~ 6 per 10 Cu ions in the chain in pure $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$. This is consistent with the results of the optical conductivity measurements. [7]

ACKNOWLEDGMENTS

This study was supported in part by the U.S.-Japan Cooperative Program on Neutron Scattering operated by the United States Department of Energy and the Japanese Ministry of Education, Science, Sports and Culture (Monbusho) and by a Grant-in-Aid for Scientific Research from Monbusho. Work at Brookhaven National Laboratory was carried out un-

der Contract No. DE-AC02-98CH10886, Division of Material Science, U.S. Department of Energy.

REFERENCES

- [1] E. M. McCarron, III, M. A. Subramanian, J. C. Calabrese, and R. L. Harlow, *Mat. Res. Bull.* **23**, 1355 (1988).
- [2] T. Siegrist, L. F. Schneemeyer, S. A. Sunshine, J. V. Waszczak, and R. S. Roth, *Mat. Res. Bull.* **23**, 1429 (1988).
- [3] E. Dagotto and T. M. Rice, *Science* **271**, 618 (1996).
- [4] R. S. Eccleston, M. Azuma, and M. Takano, *Phys. Rev. B* **53**, R14721 (1996).
- [5] M. Kato, K. Shiota, and Y. Koike, *Physica C* **258**, 284 (1996).
- [6] Y. Mizuno, T. Tohyama, and S. Maekawa, *J. Phys. Soc. Jpn.* **66**, 937 (1997).
- [7] T. Osafune, N. Motoyama, H. Eisaki, and S. Uchida, *Phys. Rev. Lett.* **78**, 1980 (1997).
- [8] N. Motoyama, T. Osafune, T. Kakeshita, H. Eisaki, and S. Uchida, *Phys. Rev. B* **55**, 3386 (1997).
- [9] M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Mori, and K. Kinoshita, *J. Phys. Soc. Jpn.* **65**, 2764 (1996).
- [10] K. Kumagai, S. Tsuji, M. Kato, and Y. Koike, *Phys. Rev. Lett.* **78**, 1992 (1997).
- [11] K. Magishi, S. Matsumoto, Y. Kitaoka, K. Ishida, K. Asayama, M. Uehara, T. Nagata, and J. Akimitsu, *Phys. Rev. B* **57**, 11533 (1998).
- [12] T. Imai, K. R. Thurber, K. M. Shen, A. W. Hunt, and F. C. Chou, *Phys. Rev. Lett.* **81**, 220 (1998).
- [13] M. Matsuda and K. Katsumata, *Phys. Rev. B* **53**, 12201 (1996).
- [14] F. C. Zhang and T. M. Rice, *Phys. Rev. B* **37**, 3759 (1988).
- [15] M. Matsuda, K. Katsumata, H. Eisaki, N. Motoyama, S. Uchida, S. M. Shapiro, and G. Shirane, *Phys. Rev. B* **54**, 12199 (1996).

- [16] M. Takigawa, N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. B **57**, 1124 (1998).
- [17] R. S. Eccleston, M. Uehara, J. Akimitsu, H. Eisaki, N. Motoyama, and S. Uchida, cond-mat/9711053.
- [18] M. Matsuda, T. Yoshihama, K. Kakurai, and G. Shirane, Phys. Rev. B (submitted).
- [19] M. Matsuda, K. Katsumata, H. Eisaki, N. Motoyama, S. Uchida, T. Yokoo, S. M. Shapiro, G. Shirane, and J. L. Zarestky, Phys. Rev. B **56**, 14499 (1997).
- [20] M. Kato, T. Adachi, and Y. Koike, Physica C **265**, 107 (1996).

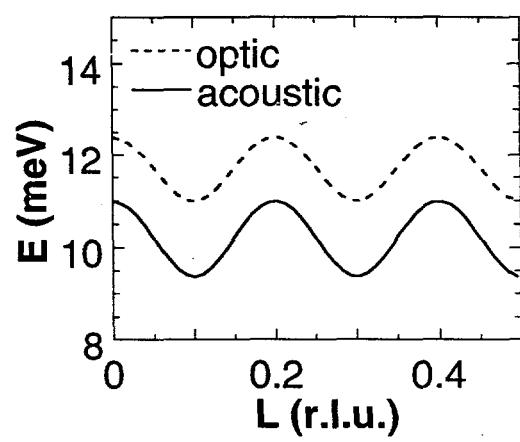
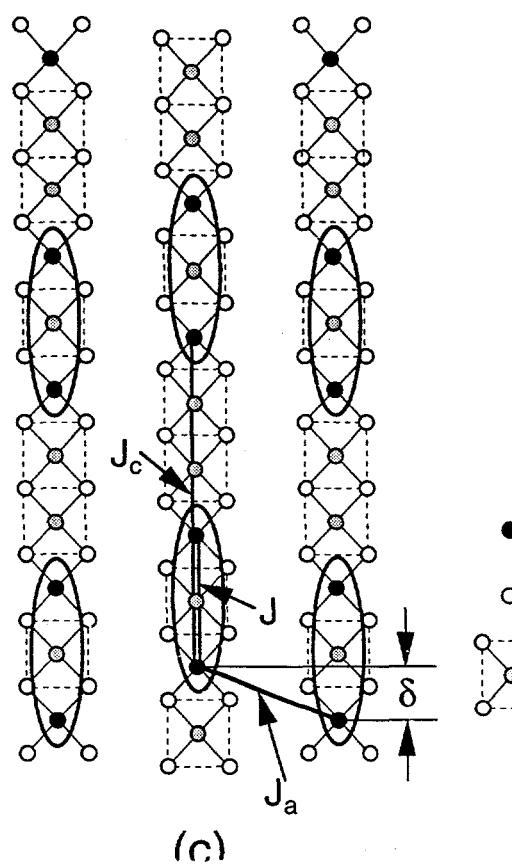
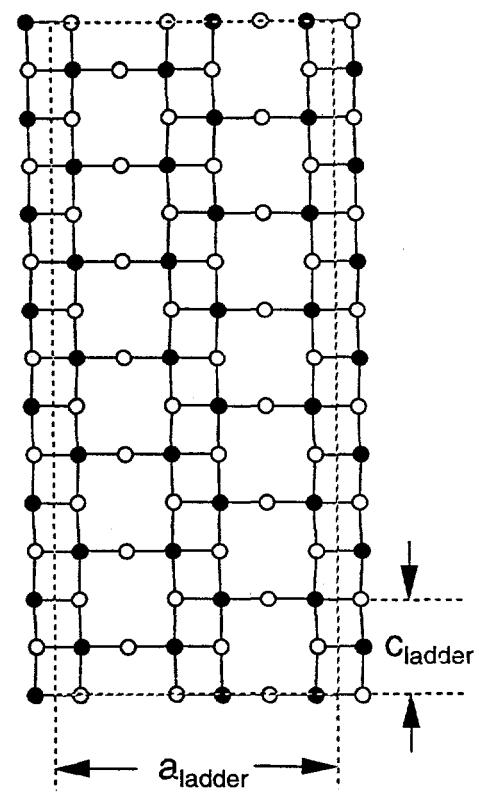
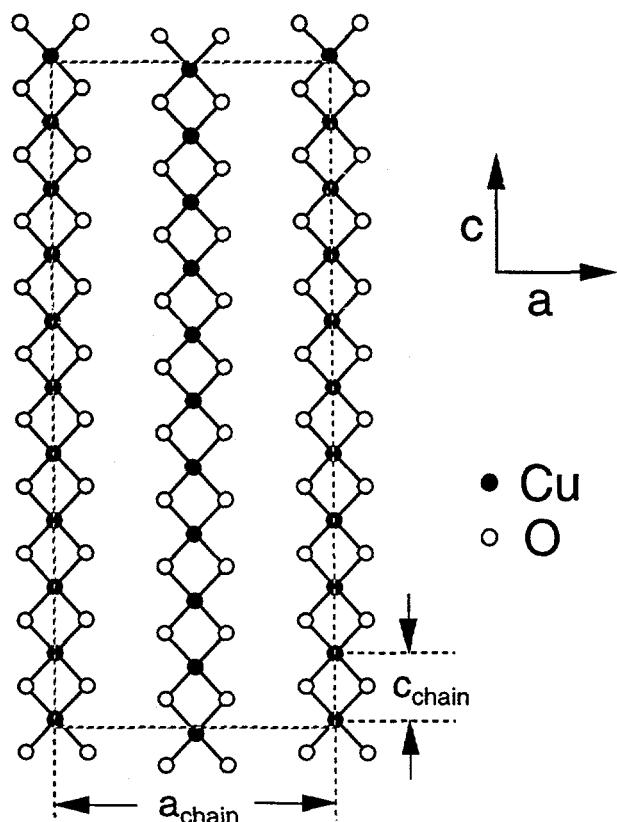




FIGURES

FIG. 1. Structure of the CuO_2 chains (a) and the Cu_2O_3 ladders (b) in $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$. Lower figures show a two-dimensional hole ordering model (c) and the dispersion relation in $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$ (d) obtained in Ref. 17.

FIG. 2. Typical inelastic neutron spectra at $(0,3,L)$ at 9 K in $\text{Sr}_{14-x}\text{Ca}_x\text{Cu}_{24}\text{O}_{41}$ ($x=3$ and 6). The solid lines are the results of fits to a single Gaussian or two Gaussians.

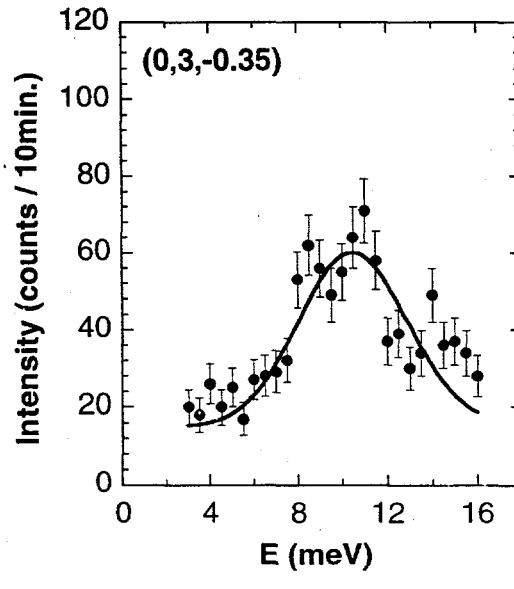
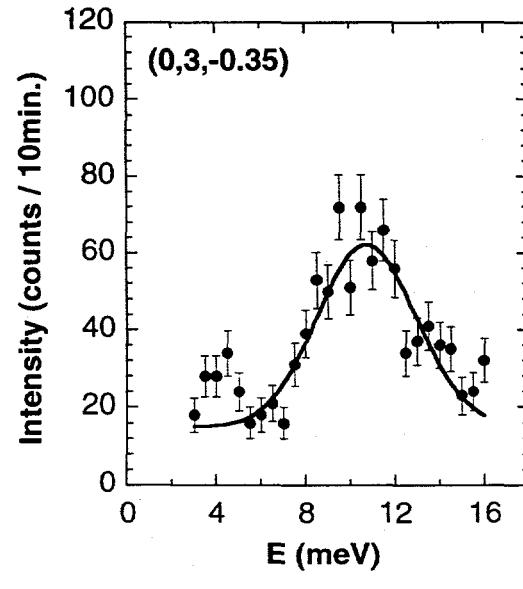
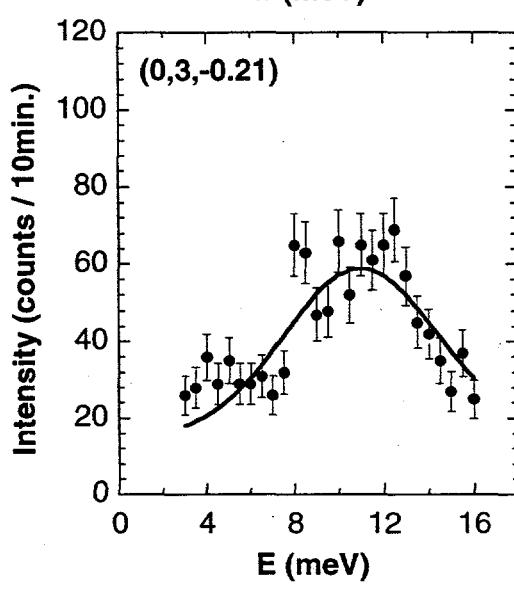
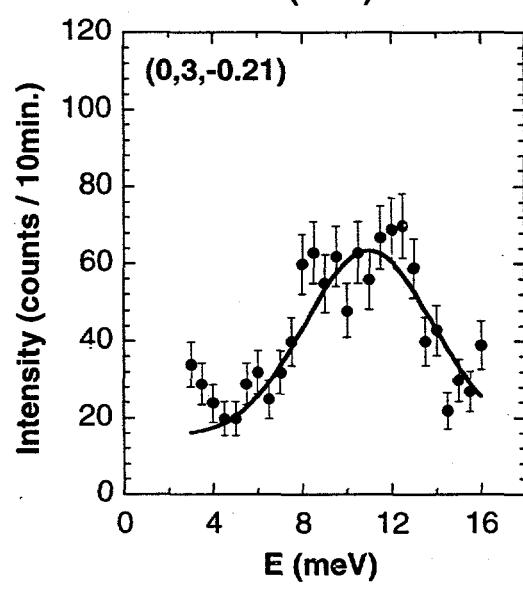
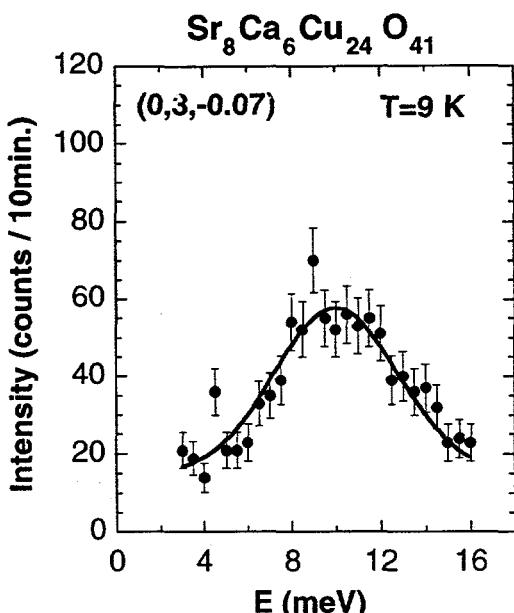





FIG. 3. Energy-integrated intensities at $(0,3,L)$ measured at 9 K in $\text{Sr}_{14-x}\text{Ca}_x\text{Cu}_{24}\text{O}_{41}$ ($x=3$ and 6).

FIG. 4. An inelastic neutron spectra at $(0,3,-0.35)$ at 11 K in $\text{Sr}_{13.5}\text{Y}_{0.5}\text{Cu}_{24}\text{O}_{41}$. The solid lines are the results of fits to a single Gaussian.

• Cu^{2+}
 ○ O
 ZR singlet

(d)

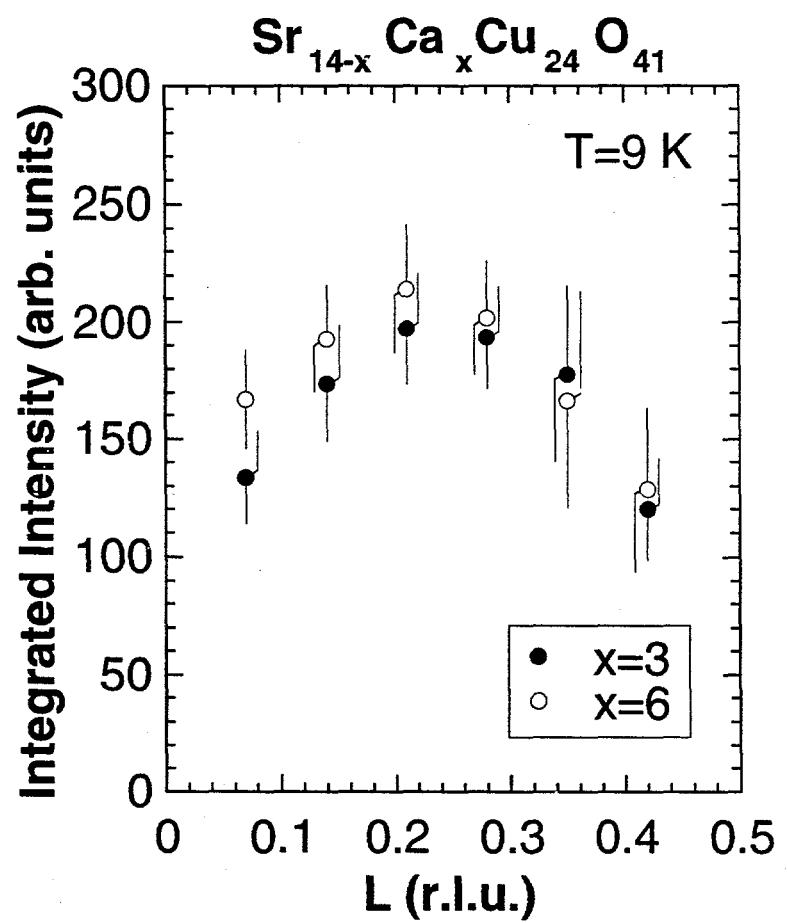


Fig. 3. Matsuda *et al.*

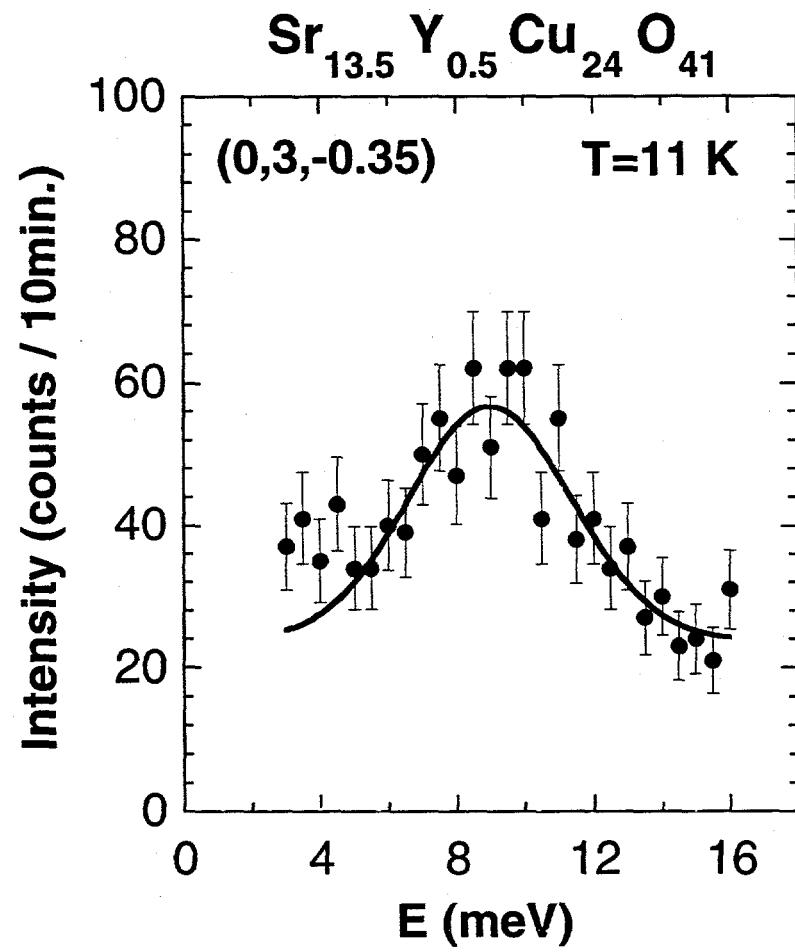


Fig. 4. Matsuda *et al.*