

NUREG/CR-0296
SAND78-0378
RS

MASTER

Safeguards Automated Facility Evaluation (SAFE) Methodology

**Leon D. Chapman, Louann M. Grady, Hal A. Bennett,
Dallas W. Sasser, Dennis Engi**

Printed August 1978

Sandia Laboratories

0 Q(7-73)

Prepared for

U. S. NUCLEAR REGULATORY COMMISSION

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

The views expressed in this report are not necessarily those of the U. S. Nuclear Regulatory Commission

Available from
National Technical Information Service
Springfield, Virginia 22161

SAFEGUARDS AUTOMATED FACILITY EVALUATION (SAFE) METHODOLOGY*

L. D. Chapman, L. M. Grady,
H. A. Bennett, D. W. Sasser, and D. Engi

Date Published: August 1978

Sandia Laboratories
Albuquerque, New Mexico 87185
operated by
Sandia Corporation
for the
U. S. Department of Energy

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Prepared for
Division of Safeguards, Fuel Cycle and Environmental Research
Office of Nuclear Regulatory Research
U. S. Nuclear Regulatory Commission
Washington, D. C. 20555
Under Interagency Agreement DOE 40-550-75
NRC PIN No. A1060-8

*Presented at the 19th Annual Meeting of the Institute of Nuclear Materials Management, Cincinnati, OH, June 27-29, 1978

ABSTRACT

An automated approach to facility safeguards effectiveness evaluation has been developed. This automated process, called Safeguards Automated Facility Evaluation (SAFE), consists of a collection of a continuous stream of operational modules for facility characterization, the selection of critical paths, and the evaluation of safeguards effectiveness along these paths. The technique has been implemented on an interactive computer time-sharing system and makes use of computer graphics for the processing and presentation of information. Using this technique, a comprehensive evaluation of a safeguards system can be provided by systematically varying the parameters that characterize the physical protection components of a facility to reflect the perceived adversary attributes and strategy, environmental conditions, and site operational conditions. The SAFE procedure has broad applications in the nuclear facility safeguards field as well as in the security field in general. Any fixed facility containing valuable materials or components to be protected from theft or sabotage could be analyzed using this same automated evaluation technique.

CONTENTS

	<u>Page</u>
Introduction	7
SAFE Methodology	8
Summary	14
References	15

FIGURES

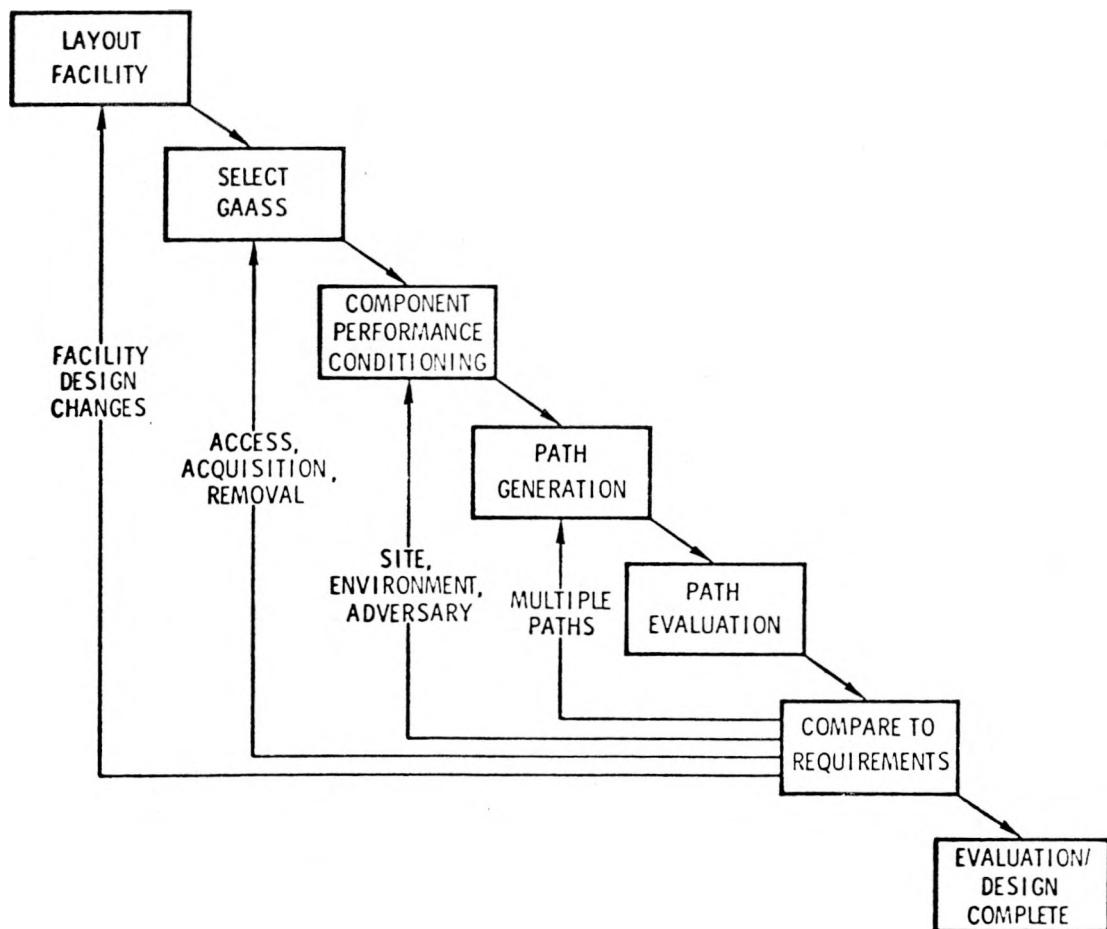
Figure

1	Facility Evaluation/Design Process Using SAFE	9
---	--	---

SAFEGUARDS AUTOMATED FACILITY EVALUATION (SAFE) METHODOLOGY

Introduction

Concern over the security of nuclear facilities has generated the need for a reliable, time efficient, and easily applied method of evaluating the effectiveness of a safeguards system. Such an evaluation technique could be used by the U.S. Nuclear Regulatory Commission (NRC) to evaluate licensee proposals, to assess the security status of a system, or to design and upgrade nuclear facilities.


An objective physical protection system evaluation and design methodology should include the perspective of both the NRC and the licensee. From the NRC perspective, this methodology should provide a basis for decisions related to the development of regulations or policies. In addition, the methodology could supplement the rationale for a particular regulation and provide a systematic method to make and explain decisions related to compliance with regulations. Alternately, from the licensees' perspective, the evaluation methodology could be used to provide a consistent measurement of the performance of their safeguards systems and a design technique which would allow decisions to be made relative to compliance with regulations or for the upgrading of their physical protection systems.

SAFE Methodology

In response to this express need, an automated approach to facility safeguards effectiveness evaluation has been developed. This automated process, called Safeguards Automated Facility Evaluation (SAFE), consists of a collection of functional modules for facility characterization, the selection of critical paths, and the evaluation of safeguards effectiveness along these paths. SAFE combines these modules into a continuous stream of operations. The technique has been implemented on an interactive computer time-sharing system and makes use of computer graphics for the processing and presentation of information. Using this technique, a comprehensive evaluation of a safeguards system can be provided by systematically varying the parameters that characterize the physical protection components of a facility to reflect the perceived adversary attributes and strategy, environmental conditions, and site operational conditions.

As outlined in Figure 1, the SAFE procedure begins with a blueprint or a layout of the facility. The facility layout module consists of two major parts: characterization and digitization of the facility into a computer compatible representation. One phase of facility characterization is the identification of the locations of vital components and sensitive materials that would be attractive targets for an adversary and the identification of reasonable access points to these areas (Target Identification). The analyst uses the facility layout, a detailed fault tree analysis, and personal knowledge of the facility in this phase. The second phase of facility characterization incorporates

the physical characteristics of the facility. This includes such items as barrier locations and access points within the facility (doorways, windows, access shafts, etc.). The third and final phase of the facility characterization process is the identification of physical protection component locations, i.e., the location of alarms, detection systems, guards, roving patrols, etc.

Figure 1. Facility Evaluation/Design Process Using SAFE.

The second part of the facility layout module involves the digitization and organization of the pertinent facility information into a computer usable form. Lines and nodes, which represent facility elements, are identified by X-Y coordinates; nodes are further identified by type, expectation and standard deviation of penetration time, and probability of detection. The final output of the facility characterization module is a graph in which nodes represent access points or targets and arcs represent paths between nodes. This representation is used for input to the path selection module in SAFE.

The next step in the application of the SAFE process deals with selecting a Generic Adversary Action Sequence Segment (GAASS) from the three generic segments: access, acquisition, or removal. For adversary actions related to theft, the appropriate GAASS's are concerned with access to, acquisition of, and removal of material. Generic Adversary Action Sequence Segments which are of interest are further investigated or evaluated. Once a GAASS has been selected for evaluation, e.g., a removal segment, the required component performance within the facility can be selected based on three primary conditions: the site operational status, the environmental conditions, and the adversary attributes. The digital representation of the facility is then input to the path selection module, conditioned on the GAASS and the component performance that had been selected.

Path selection may be accomplished by several alternative techniques. These techniques are commonly referred to as pathfinding techniques and can be either stochastic or

deterministic. SAFE currently uses one of three deterministic measures for pathfinding: (a) a technique that finds the shortest path from a node exterior to the graph to every node in a facility graph (thus minimizing time or detection probability), (b) a technique that identifies up to the k th shortest paths from an exterior node to every node of the graph, and (c) a pathfinding routine based on the "timely-detection" evaluation method (1). The timely-detection method finds paths that initially minimize detection probability and then minimize time. The approach is to select a guard response time locus about the target (minimum time) and to minimize the probability and then minimize time. The approach is to select a guard response time locus about the target (minimum time) and to minimize the probability of detecting the adversary from the facility boundary up to that locus. The output of the path selection is a collection of ordered sets of node identifiers that represent physical paths in the facility. This information is a portion of the input to a path evaluation module.

Path evaluation can be decomposed into two major parts: interruption and neutralization. The path is "evaluated" by first determining the probability that the adversary will be interrupted and then determining the probability that the adversary will be neutralized or defeated by the security force. These two probabilities can be multiplied together to yield the total probability that the physical protection system will be successful in defending against the adversary along the path under consideration.

The Estimate of Adversary Sequence Interruption (EASI) (2) model is an analytical technique which is used in the path evaluation module to compute the probability that the adversary will be interrupted. EASI focuses on the adversary path and requires information related to the probability of detecting the adversary, the time required for assessing the proper response, the probability of communication with the security forces, the delay along the path and the response time of the security force. The output of EASI is an estimate of the probability of adversary interruption along the specified path, i.e., the probability that the security force arrives at a point along the adversary's path prior to the time that the adversary passes through that point.

The Brief Adversary Threat Loss Estimator (BATLE) (3) model is an analytical technique that is used to estimate the probability that the adversary is neutralized by the security force. In addition to the distance between combatants, the information required by BATLE is the type of weapons, the recency of training, the amount of cover, and the number and timing of arrivals of reinforcements for the adversary as well as the security officers. The output of BATLE is the probability that the adversary is neutralized by the security force. This "neutralization probability" is then multiplied by the "interruption probability" to yield the total probability of success of the physical protection system for the path in question.

Capabilities for path interruption evaluation can be utilized in either a single or multipath mode. During a single path evaluation using EASI, the probability of interruption is calculated and the user may request two- or three-dimensional plots which show the probability of the adversary interruption as a function of one or two of the other

input variables. Based on the probability of interruption, these graphs illustrate sensitivities related to upgrading the facility. The multipath option displays in tabular form the probability of interruption, the traversal time of each path, and the frequency at which nodes appear in the set of critical paths. The multipath evaluation identifies paths that are particularly vulnerable and thus are candidates for study by more elaborate evaluation modules such as the Forcible Entry Safeguards Effectiveness Model (FESEM) (4) and the Insider Safeguards Effectiveness Model (ISEM) (5). Based on the the results of this evaluation the given facility may be judged to be adequately safeguarded, thereby ending the procedure. However, if there were some deficiencies, changes in the original facility characterization data could be made to reflect upgrades in the system and the SAFE procedure could be repeated.

Summary

The SAFE procedure is an efficient method of evaluating the physical protection system of a nuclear facility. Since the algorithms used in SAFE for path generation and evaluation are analytical, many paths can be evaluated with a modest investment in computer time. SAFE is easy to use because the information required is well-defined and the interactive nature of this procedure lends itself to straightforward operation. The modular approach that has been taken allows other functionally equivalent modules to be substituted as they become available. The SAFE procedure has broad applications in the nuclear facility safeguards field as well as in the security field in general. Any fixed facility containing valuable materials or components to be protected from theft or sabotage could be analyzed using this same automated evaluation technique.

References

1. B. L. Hulme, MINDPT: A Code for Minimizing Detection Probability Up to a Given Time Away From a Sabotage Target, SAND77-2039, Sandia Laboratories, Albuquerque, New Mexico, December 1977.
2. H. A. Bennett, User's Guide for Evaluating Physical Protection Security Capabilities of Nuclear Facilities by the EASI Method, SAND77-0082, Sandia Laboratories, Albuquerque, New Mexico.
3. D. Engi and J. A. Shanken, Brief Adversary Threat Loss Estimator (BATLE) User's Guide, SAND78-1136, Sandia Laboratories, Albuquerque, New Mexico, to be published.
4. L. D. Chapman, G. A. Kinemond, and D. W. Sasser, User's Guide for Evaluating Fixed-Site Physical Protection Systems, SAND77-1367, Sandia Laboratories, Albuquerque, New Mexico, November 1977.
5. D. D. Boozer and D. Engi, Insider Safeguards Effectiveness Model (ISEM) User's Guide, SAND77-0043, Sandia Laboratories, Albuquerque, New Mexico, November 1977.

DISTRIBUTION:

U.S. Nuclear Regulatory Commission 197 copies for RS
Division of Document Control
Distribution Services Branch
7920 Norfolk Branch
Bethesda, MD 20014

Los Alamos Scientific Laboratory (4)
Attn: G. R. Keepin, R. A. Gore, E. P. Schlonka, D. G. Rose
Los Alamos, NM 87544

Allied-General Nuclear Services (3)
Attn: Gary Molen
P.O. Box 847
Barnwell, SC 29812

Applied Psychological Services Science Center
Attn: A. I. Siegel
Wayne, PA 19807

Headquarters
USAMPS/TC & Ft. McClellan
Attn: ATZN-TDE-PS (Capt. G. N. James)
Fort McClellan, AL 36205

Lawrence Livermore Laboratory
University of California
P.O. Box 808
Attn: A. Maimoni
Livermore, CA 94550

Pritsker and Associates, Inc.
P.O. Box 2413
Attn: F. H. Grant
Menlo Park, CA 94025

Union Carbide Corp. (3)
Nuclear Division
Bldg. 7601
Attn: D. Swindle
Oak Ridge, TN 37830

Vector Research, Inc.
P.O. Box 1506
Attn: R. Blum
Ann Arbor, MI 68106

Westwood Systems Engineering, Inc.
1609 Westwood Blvd., Suite 203
Attn: S. Jacobsen
Los Angeles, CA 90024

SRI International
Attn: S. Scala
Menlo Park, CA 94025

1000 G. A. Fowler
1230 W. L. Stevens
1233 R. E. Smith

1310	A. A. Lieber
1311	W. F. Roherty
1700	W. C. Myre
1710	V. E. Blake
1711	M. R. Madsen
1712	J. W. Kane
1716	B. D. Link
1716	R. L. Wilde
1730	C. H. Mauney
1739	J. D. Williams
1739	D. L. Mangan
1750	J. E. Stiegler
1754	J. F. Ney
1754	J. L. Todd
1758	C. E. Olson
1758	D. D. Boozer
1758	G. A. Kinemond
1760	J. Jacobs
1760A	M. N. Cravens
1760A	J. M. de Montmollin
1761	T. A. Sellers
1761	A. E. Winblad
1761	J. L. Darby
1762	H. E. Hansen
1765	D. S. Miyoshi
4010	C. Winter
5100	J. K. Galt
5120	G. J. Simmons
5122	L. F. Shampine
5122	B. L. Hulme
5122	J. A. Wisniewski
5300	O. E. Jones
5400	A. W. Snyder
5410	D. J. McCloskey
5411	S. L. Daniel
5412	J. W. Hickman
5412	M. S. Hill
5414	D. E. Bennett
5414	G. B. Varnado
5700	J. H. Scott
5720	V. L. Dugan (2)
5721	J. A. Leonard
5722	J. F. Banas
5723	W. P. Schimmel
5724	L. D. Chapman (15)
5724	K. G. Adams
5724	J. A. Allensworth
5724	H. A. Bennett (15)
5724	D. Engi (15)
5724	L. M. Grady (15)
5724	C. P. Harlan
5724	R. D. Jones
5724	M. T. Olascoaga
5724	D. W. Sasser (15)
5724	A. A. Trujillo
8000	T. B. Cook, Jr.
8266	E. A. Aas
8300	B. F. Murphey
8320	T. S. Gold
8321	R. L. Rinne
8321	S. C. Keeton

8321 R. J. Gallagher
8360 J. F. Barham
3141 C. A. Pepmueller (Actg) (5)
3151 W. L. Garner (3)
For: DOE/TIC (Unlimited Release)
DOE/TIC (25)
(R. P. Campbell, 3172-3)