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ABSTRACT 

Gas tracer and steam front velocities in addition to flow model 

calculations are used to characterize rubble bed structure in an oil 

shale retort. The gas tracer method is shown to have superior resolu- 

tion to the sLea111 front method in detecting rubble bed variations. The 

tracer method is potentially less expensive. Recommendations for fur- 

ther research are made. 



INTRODUCTION 

V e r t i c a l  modif ied i n  s i t u  (VMIS) r e t o r t i n g  of o i l  s h a l e  has  been 

s t u d i e d  f o r  s e v e r a l  y e a r s  a s  a  p o t e n t i a l  s o u r c e  o f  hydrocarbons .  ( 1 , 2 , 3 )  

I n  t h i s  method a  chimney of  o i l  s h a l e  r u b b l e  i s  c r e a t e d  by mining and 

b l a s t i n g .  The r u b b l e  i s  i g n i t e d  a t  t h e  t o p  and a i r f l o w  i s  e s t a b l i s h e d  

th rough  t h e  chimney. The b u r n  f r o n t  moves down th rough  t h e  r e t o r t  

h e a t i n g  t h e  s h a l e  i n  f r o n t  of it t o  r e t o r t i n g  t e m p e r a t u r e .  O i l  m i s t  

produced,  condenses f a r t h e r  down i n  t h e  r e t o r t  and f lows t o  t h e  c o l l e c -  

t i o n  sys tem a t  t h e  bottom. A t y p i c a l  r u b b l e  chimney i s  twenty t o  f i f t y  

mete r s  on a  s i d e  and one hundred t o  two hundred mete r s  h i g h .  A r e t o r t  

i n  t h i s  s i z e  range c o n t a i n s  f i f t y  m i l l i o n  t o  n i n e  hundred m i l l i o n  k i l o -  

grams of  o i l  s h a l e  and has  a  p o t e n t i a l  y i e l d  of f o u r  m i l l i o n  t o  s e v e n t y  

m i l l i o n  k i lograms  of  s h a l e  o i l .  

One of t h e  problems a s s o c i a t e d  w i t h  t h e  MIS p r o c e s s  i s  t h e  d i f f i -  

c u l t y  o f  forming a  uniform r u b b l e  b e d .  A nonuniform r u b b l e  chimney 

causes  poor  d i s t r i b u t i o n  of a i r f l o w  r e s u l t i n g  i n  low sweep e f f i c i e n c y ,  

which i s  d e f i n e d  a s  t h e  f r a c t i o n  (by weigh t )  o f  s h a l e  h e a t e d  t o  r e t o r t -  

i n g  t e m p e r a t u r e  by t h e  r e t o r t i n g  f r o n t .  The o v e r a l l  p r o d u c t  y i e l d  i s  

r e l a t e d  t o  sweep e f f i c i e n c y  because  c h a n n e l i n g  of t h e  r e t o r t i n g  f r o n t  

causes  p r o d u c t  t o  be burned ,  d e c r e a s i n g  t h e  y i e l d .  

To p r e d i c t  t h e  f low b e h a v i o r  of a  r e t o r t ,  one must f i r s t  measure 

some of t h e  p r o p e r t i e s  o f  t h e  r u b b l e  bed.  Two r u b b l e  bed c h a r a c t e r i z a -  

t i o n  methods w i t h  some h i s t o r y  o f  s u c c e s s  a r e  steam f r o n ~  moni to r ing  and 



g a s  t r a c e r  t e s t i n g .  The s team condensa t ion  f r o n t  which p r e c e d e s  t h e  

r e t o r t i n g  f r o n t  h a s  been found t o  map a c c u r a t e l y  t h e  shape of t h a t  

r e t o r t i n g  f r o n t .  ( 4 )  T h i s  method i s  used i n  two ways. F i r s t ,  t h e  a c t u a l  

shape  o f  t h e  s team f r o n t  can be  determined i f  enough thermocouples  a r e  

p l a c e d  i n  t h e  r u b b l e .  Second, a  sweep e f f i c i e n c y  can be  c a l c u l a t e d  

based  on t h e  LoLal energy  i n p u t  i n t o  t h e  r e t o r t  b e f o r e  steam f r o n t  

b reak- th rough  a t  t h e  bottom of  t h e  r e t o r t .  The o t h e r  method, gas  t r a c e r  

t e s t i n g ,  h a s  been used on most o f  t h e  l a r g e r  MIS r e t o r t s .  ( 1 , 2 3 3 )  n hi^ 

method r e q u i r e s  t h a t  a i r f l o w  be  e s t a b l i s h e d  th rough  t h e  r e t o r t  fo l lowed 

by injection of a p u l s e  of  t r a c e r  gas  i n t o  t h e  r e t o r t  a t  a  p rede te rmined  

l o c a t i o n .  The c o n c e n t r a t i o n  of t h e  t r a c e r  gas  i s  moni tored a t  d e t e c t i o n  

p o i n t s  downstream from t h e  i n j e c t i o n  p o i n t .  Gas t r a c e r  measurements a r e  

r e p e a t e d  a t  d i f f e r e n t  i n j e c t i o n  and d e t e c t i o n  p o i n t s  u n t i l  t h e  a r e a s  of 

i n t e r e s t  i n  t h e  r u b b l e  bed have been swept .  The c o n c e n t r a t i o n  d a t a  

c o l l e c t e d  a t  t h e  d e t e c t i o n  p o i n t s  can be used t o  c a l c u l a t e  p r o p e r t i e s  of 

t h e  r e t o r t  sys tem s u c h  a s  gas  v e l o c i t i e s ,  d i s p e r s i o n  c o n s t a n t s ,  and vo id  

rr H C L  i r .~ l ls  . 
- 

The steam f r o n t  m o n i t o r i n g  method has  two major weaknesses.  F i r s t ,  

t h e  s team c o n d e n s a t i o n  f r o n t  e x i s t s  on ly  a f t e r  t h e  r e t o r t  has  been 

i g n i t e d .  There  i s  l i t t l e  t ime  f o r  a d j u s t i n g  o p e r a t i n g  c o n d i t i o n s  t o  

c o r r e c t  any f low n o n u n i f o r m i t i e s  d i s c o v e r e d  u s i n g  steam f r o n t  measure- 

ments .  Running a  s e p a r a t e  steam t e s t  on a  m1IS r e t o r t  i s  p r o h i b i t i v e l y  

e x p e n s i v e .  Second, u n l e s s  thermocouples  a r e  p l a c e d  th roughout  t h e  

r u b b l e ,  t h e r e  i s  no way of  d e t e r m i n i n g  t h e  l o c a t i o n s  o f  n o n u n i f o r m i t i e s  

s o  t h a t  c o r r e c t i v e  p r o c e d u r e s  can be  implemented.  



The gas  t r a c e r  method can be  used p r i o r  t o  i g n i t i o n  and can i n d i -  

c a t e  t h e  g e n e r a l  l o c a t i o n s  o f  n o n u n i f o r m i t i e s .  However, t h i s  method h a s  

s e v e r a l  problems.  F i r s t ,  t h e  number of t r a c e r  t e s t s  t h a t  can be  r u n  i s  

l i m i t e d  by economics and,  i n  t h e  c a s e  o f  r a d i o a c t i v e  t r a c e r s ,  by t o t a l  

a l lowed r a d i o a c t i v e  emiss ions  w h i l e  t h e  number of f low channe l s  i n  a  

r e t o r t  i s  e f f e c t i v e l y  i n f i n i t e .  T h i s  means t h a t  a  complete  d e s c r i p t i o n  

o f  a  r e t o r t  i s  i m p o s s i b l e  and t h a t ,  depending on t h e  number o f  t r a c e r  

t e s t s  run  and t h e  r e g i o n s  t h r o u g h  which t h i s  t r a c e r  p a s s e s ,  t h e r e  i s  

p r o b a b l y  a  minimum ' s i z e  o f  channe l  o r  o b s t r u c t i o n  t h a t  can be d e t e c t e d .  

The i n t e r p r e t a t i o n  o f  t r a c e r  t e s t  r e s u l t s  from MIS r e t o r t s  has  been 

l i m i t e d  because  of t h e s e  problems.  The t r a c e r  t e s t i n g  method d o e s ,  

however, o f f e r  t h e  g r e a t e s t  p o t e n t i a l  f o r  improvement i f  some of i t s  

problems a r e  d e f i n e d  and s o l v e d  by a p p r o p r i a t e  r e s e a r c h - p r o g r a m s .  - 

The c u r r e n t  p l a n  i s  t o  i n v e s t i g a t e  t h e  t r a c e r  t e s t i n g  method i n  

nonvni fnrm r e t o r t s  and t o  d e f i n e  and a d d r e s s  some of  t h e  problems w i t h  

t h e  method. T h i s  i n v e s t i g a t i o n  i n c l u d e s  a  comparison o f  steam f r o n t  

measurements w i t h  t r a c e r  t e s t i n g  measurements and i n c o r p o r a t e s  t h e  u s e  

o f  f low models t o  a i d  i n  t h e  i n t e r p r e t a t i o n  o f  t h e  t e s t s .  The l a r g e s t  

a v a i l a b l e  r e t o r t  i s  used t o  minimize s c a l e  up problems.  T h i s  r e p o r t  

d i s c u s s e s  some 03 t h e  problems a s s o c i a t e d  w i t h  t r a c e r  t e s t i n g  and shows 

how t h e  steam f r o n t  and model p r e d i c t i o n s  compare w i t h  t h e  t r a c e r  t e s t  

r e s u l t s .  



EXPERIMENT 

The t e s t s  d e s c r i b e d  have been run  i n  Western Research I n s t i t u t e ' s  

(WRI)  n o m i n a l l y  s i z e d ,  150- ton,  b a t c h  t y p e ,  e x p e r i m e n t a l  o i l  s h a l e  

r e t o r t  l o c a t e d  approx imate ly  one k i l o m e t e r  n o r t h  o f  Laramie,  Wyoming. 

The r e t o r t  h o l d s  a  r u b b l e  bed 3.505 m e t e r s  i n  d iamete r  and t y p i c a l l y  

13.11 m e t e r s  i n  h e i g h t .  A more d e t a i l e d  d e s c r i p t i o n  of t h e  r e t o r t  i s  

found c l3cwhcrc .  (5  1 

The r e t o r t  i s  loaded  w i t h  s h a l e  of a  measured s i z e  d i s t r ? b u t i o n  and 

i s  i n s t r u m e n t e d  a t  f o u r  l e v e l s  w i t h  e l e v e n  gas  t a p s  and thermocouples  on 

e a c h  l e v e l  a s  shown i n  f i g u r e  1. Probe l e v e l  1 i s  l o c a t e d  approx imate ly  

two m e t e r s  from t h e  t o p  o f  t h e  r u b b l e  bed and t h e  o t h e r  l e v e l s  a r e  

spaced a t  2 .74  mete r  i n t e r v a l s  down t h e  r e t o r t .  On each l e v e l  a  sam- 

p l i n g  t a p  and a  thermocouple a r e  p l a c e d  a t  t h e  ce l i t e r l i r l e  of Lhe r e t o r t .  

E i g h t  o t h e r s  a r e  p l a c e d  a t  0 . 3 0  meter  i n t e r v a l s  t o  t h e  n o r t h  and south 

of  t h e  c e n t e r 1  :i.ne. The 1ssL. L.wo t a p s  and thermocouples on each. 1.eve1 

a r e  l o c a t e d  on t h e  same l i n e  1 . 6 8  mete r s  from t h e  c e n t e r l i n e .  S t a r t i n g  

from t h c  n o r t h  s i d e  of t h e  r e t o r t  t h e  t a g s  on each  l e v e l  a r e  d e s i g n a t e d  

A th rough  K ,  where A and K a r e  t h e  t a p s  n e a r  t h e  w a l l s  and F i s  t h e  t a p  

on t h e  c e n t e r l i n e .  The l e v e l  number and t h e  t a p  l e t t e r  a r e  used t o  

d e s c r i b e  each  t a p ;  f o r  example,  1 A  means p robe  l e v e l  1 and t a p  A .  A 

thermocouple and a  gas sampl ing t a p  a r e .  a l s o  l o c a t e d  a t  t h e  o u t l e t  o f  

t h e  r e t o r t .  

The t r a c e r  t e s t i n g  p l a n  f o r  t h e  r e t o r t  c o n s i s t s  o f  two s t a g e s .  I n  

s t a g e  1 t h e  r e t o r t  i s  t e s t e d  a f t e r  it i s  loaded  t o  1 . 4  mete r s  above t h e  

- 
4  
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second probe  l e v e l  ( s e e  f i g u r e  1) .  T h i s  s e r i e s  o f  t e s t s  i s  des igned  t o  

de te rmine  t h e  p r o p e r t i e s  o f  t h e  u n p e r t u r b e d  s h a l e  bed .  A f t e r  s t a g e  1 

t h e  r e t o r t  i s  opened and l o a d i n g  c o n t i n u e s .  A t  t h i s  t ime  a  c y l i n d r i c a l  

o b s t r u c t i o n  i s  p l a c e d  on t h e  c e n t e r  l i n e  o f  t h e  r e t o r t .  The o b s t r u c t i o n  

i s  a  0 . 9 1  mete r  d i a m e t e r ,  0 . 9 1  mete r  h i g h  ca rdboard  t u b e  f i l l e d  w i t h  o i l  

s h a l e  and covered w i t h  a  d i s c  o f  plywood. The t o p  o f  t h i s  o b s t r u c t i o n  

i s  p o s i t i o n e d  0 .38  m e t e r s  below probe l e v e l  1. S h a l e  i s  added u n t i l  t h e  

r e t o r t  i s  f i l l c d  t o  a l c v c l  0 . 8 1  mete r s  below t h e  t o p  opening and 1 . 9 8  

mete r s  above p robe  l e v e l  1. A f t e r  t h e  r e t o r t  i s  c l o s e d ,  t h e  s t a g e  2 

t r a c e r  t e s t s  a r e  begun. 

The t r a c e r  t e s t i n g  sys tem c o n s i s t s  o f  a  t r a c e r  i n j e c t i o n  system,  a  

t r a c e r  d e t e c t i o n  sys tem,  and a  t r a c e r  r e s p o n s e  a n a l y z e r .  The i n j e c t i o n  

system i s  shown s c h e m a t i c a l l y  i n  f i g u r e  2 .  T h i s  sys tem u s e s  a  f a s t ,  

p r c c i s i o n  s o l e n o i d  t o  r e l e a s e  a  t imed p u l s e  o f  t r a c e r  from a  co l l s t an t  

p r e s s u r e  r e s e r v o i r .  T h i s  p u l s e  t r a v e l s  th rough  t h e  gas  sampl ing t u b e  

i n t o  t h e  r e t o r t .  A c c u r a t e ,  r e p r o d u c i b l e  i n j e c t i o n s  a r e  p o s s i b l e  w i t h  

t h i s  i n j e c t i o n  sys tem.  A t y p i c a l  i n j e c t i o n  c o n s i s t s  of a  two o r  t h r e e  

second wide p u l s e  a t  a  t r a c e r  r e s e r v o i r  p r e s s u r e  of 345 kPa. Krypton-85 . - 

(Kr-85) ,  t h e  r a d i o a c t i v e  t r a c e r  g a s  chosen f o r  t h e s e  t e s t s ,  has  been 

used e x t e n s i v e l y  on b o t h  l a r g e  and s m a l l  o i l  s h a l e  r e t o r t s .  (1 1 

The use  o f  a  r a d i o a c t i v e  t r a c e r  a l l o w s  a  r e l a t i v e l y  s imple  and 

expandable  d e t e c t i o n  system t o  be  used .  T h i s  d e t e c t i o n  system i s  shown 

s c h e m a t i c a l l y  i n  f i g u r e  3 .  The p o s i t i v e  p r e s s u r e  on t h e  r e t o r t  p r o v i d e s  

sample gas  f low th rough  t h e  sample t a p  t u b e s  t o  t h e  d e t e c t i o n  chambers. 



Figure 2. Tracer Injection System 
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Figure 3. T r a c e r  Detection System 



I n  a  d e t e c t i o n  chamber a  Geiger-Muel ler  t u b e  d e t e c t s  Kr-85 d i s i n t e g r a -  

t i o n s .  The s i g n a l  i s  c o n d i t i o n e d  i n  t h e  modi f i ed  Geiger  c o u n t e r  and i s  

s e n t  t o  t h e  c o u n t i n g  system where t h e  c o u n t s  a r e  t o t a l e d  o v e r  a  p r e s e t  

i n t e r v a l .  A computer c a l c u l a t e s  t h e  c h a r a c t e r i s t i c s  o f  t h e  t r a c e r  

response  curve  u s i n g  t h e  count t .o t .a ls .  S tandard  curve  c h a r a c t e r i s t i c s  

c a l c u l a t e d  a r e  t h e  a r e a ,  f i r s t ,  second ,  and t h i r d  moments, and t h e  peak 

a r r i v a l  t ime .  Data p r i n t o u t s  and g r a p h s  a r e  o u t p u t  t o  t h e  u s e r .  

The t r a c e r  t e s t  p l a n  i s  des igned  t o  a l l o w  d e t a i l e d  v e l o c i t y  mea- 

surements  i n  t h e  r e g i o n  o f  t h e  r e t o r t  around t h e  b a r r e l  a t  t h r e e  super -  

f i c i a l  g a s  v e l o c i t i e s  (SGV) .  The s u p e r f i c i a l  gas  v e l o c i t y  i s  t h e  vo lun-  

e t r i c  f low r a t e  d i v i d e d  by t h e  c r o s s - s e c t i o n a l  a r e a  o f  t h e  r e t o r t .  

I n j e c t i o n s  a r e  made a t  t h e  a i r  i n l e t ,  a t  each  sample t a p  on p robe  l e v e l  

1 and a t  f i v e  sample t a p s  A ,  D, F ,  H ,  and K on p robe  l e v e l  2 .  F o r  each  

i n j e c t i o n ,  twe lve  d e t e c t i o n  sample t a p s  a r e  moni to red .  E leven  o f  t h e  

d e t e c t i o n  sample t a p s  a r e  i n  one of t h e  p robe  l e v e l s  below t h e  i n j e c t i o n  

p o i n t  and t h e  t w e l f t h  t a p  i s  a t  t h e  o u t l e t .  For  example,  t o  run  a. 

complete  s e t  o f  t e s t s  a t  one s u p e r f i c i a l  g a s  v e l o c i t y ,  f o u r  i n j e c t i o n s  

a r e  made a t  t h e  a i r  i n l e t  s o  t h a t  a l l  f o u r  p robe  l e v e l s  can be  moni- 

t o r e d .  Three  i n j e c t i o n s  a r e  made i n t o  e a c h  t a p  on p robe  l e v e l  1 and two 

i n j e c t i o n s  a r e  made i n t o  e a c h  of f i v e  t a p s  on probe l e v e l  2 .  The 

r e s u l t i n g  number o f  t e s t s  f o r  each  s u p e r f i c i a l  g a s  v e l o c i t y ,  e x c l u d i n g  

r e p e a t s  and s t a g e  1 t e s t s ,  i s  f o r t y  s e v e n .  The number o f . i n j e c t i o n -  

d e t e c t i o n  p a i r s  o f  t a p s  f o r  each s u p e r f i c i a l  gas  v e l o c i t y  i s  more t h a n  

f i v e  hundred 



F o l l o w i n g  t h e  t r a c e r  t e s t s ,  a  steam f low t e s t  i s  conducted t o  

e s t i m a t e  how a  b u r n  f r o n t  would move th rough  t h e  r e t o r t .  The steam t e s t  

i s  run w i t h  a n  SGV of 0.0117 m j s  of  which 70 p e r c e n t  by volume i s  a i r  

and 30 p e r c e n t  by volume i s  s team.  Both a i r  and steam a r e  hea ted  t o  

112.8OC b e f o r e  e n t e r i n g  t h e  r e t o r t .  Only h e a t e d  a i r  i s  i n t r o d u c e d  i n t o  

t h e  r e t o r t  f o r  t h e  f i r s t  f o u r  hours  of t h e  t e s t  t o  s e e  i f  a  low l e v e l  

f a s t  moving t h e r m a l  wave caused by t h e  h o t  a i r  can b e  d e t e c t e d  (none was 

s e e n ) .  A f t e r  t h e  i n i t i a l  f o u r  hours,  steam i s  added t o  t h e  a i r  i n  t h c  

p r o p o r t i o n  s t a t e d  above and t h e  t e s t  i s  con t inued  w i t h  no f u r t h e r  

changes i n  o p e r a t i n g  c o n d i t i o n s .  

MODELS 

A computer program f o r  model-ing f low i n  porous  media has  bccn 

w r i t t e n  by Bryan T r a v i s  of Los Alamos N a t i o n a l  L a b o r a t o r i e s  (LANL). 

T h i s  nloclel u s e s  a  f i n i t e  d i f f e r e n c e  scheme t o  s o l v e  n u m c r i c a l l y  equa- 

t i o n s  f o r  mass c o n s c r v a t i o n ,  t r a c e r  co l l ce l l t r a t ion  and c o n s e r v a t i o n  of 

monientum. ( 6 )  An e a r l y  v e r s i o n  of t h e  T r a v i s  model h a s  been a p p l i e d ,  by 

Sand ia  N a ~ i o n a l  L a b o r a t o r i e s  (SNL),  t o  modeling t h e  150 t o n  r e t o r t .  ( 7  

That  v e r s i o n  o f  t h e  T r a v i s  model u s e s  t h e  Darcy f low e q u a t i o n  

u = -(K/p) (\TP - pg) 

where U ,  K ,  p ,  O Y ,  p and g a r e  t h e  SGV, p e r m e a b i l i t y ,  f l u i d  v i s c o s i t y ,  

p r e s s u r e  g r a d i e n t ,  f l u i d  d e n s i t y  and g r a v i t a t i o n a l  a c c e l e r a t i o n  respec-  

t i v e l y .  T h i s  e q u a t i o n  i s  a  good approx imat ion  f o r  low Reynolds number 

( R e ) ,  t h a t  i s ,  f o r  



where D is the effective particle diameter, E is the porosity and the 
P 

other parameters are the same as in equation (1). 

A copy of this version of the Travis model has been obtained from 

SNL and has been modified to include a refinement made by Travis. In 

the improved version of the model equation (1) has been changed to 

Letting 

equation (3) becomes a form of Forchheimer's motion equation called 

Ergun's eq~ation.'~) Ergun's equation is valid for a larger range of 

Reynolds number than is equation (1). Expressed as a function of 

Reynolds number, equation (3) is 

'1.75~ 
( ' + 150 (1-E) Re = -(K/P) 0"P-pg). 

Note that for &<I  (which must be the case) 



which i s  t h e  Darcy f low c a s e  ( e q u a t i o n  ( 1 ) ) .  ~ r ~ u n " )  and M i n s t e r  and 

F a u s e t t  ( l o )  d i s c u s s  t h e  o r i g i n ,  l i m i t a t i o n s  ant: a p p l i c a t i o n  o f  equa- 

t i o n  ( 3 ) .  M i n s t e r  and F a u s e t t  d i s c u s s  t h e  u s e  of a  shape f a c t o r  and 

o t h e r  m o d i f i c a t i o n s  t o  t h e  Ergun e q u a t i o n .  A shape f a c t o r  i s  added t o  

t h e  Ergun e q u a t i o n  by s u b s t i t u t i n g  (I D f o r  D i n  e q u a t i o n s  ( 3 )  and 
S P  P  

( 4 ) .  Based on d a t a  from 22 exper iments  on raw crushed  o i l  s h a l e  M i n s t e r  

and F a u s e t t  have de te rmined  t h a t  (I = 0.47 i s  an  a p p r o p r i a t e  v a l u e .  
S 

T h i s  v a l u e  i s  used w i t h  b o t h  t h e  T r a v i s  model and t h e  Szeke ly  madel to 

be  d i s c u s s e d  below.  

The i n p u t  p a r a m e t e r s  f o r  t h e  T r a v i s  model a r e  p a r t i c l e  s i z e ,  void  

f r a c t i o n ,  p e r m e a b i l i t y  and e i t h e r  t h e  t o p  and bottom p r e s s u r e s  o r  t h e  

v e l o c i t y  a t  t h e  bot tom of  t h e  r e t o r t .  The o u t p u t  o f  t h e  model i s  p r e s -  

s u r e  and v e l o c i t y  a s  a  f u n c t i o n  o f  p o s i t i o n  th roughout  t h e  r e t o r t .  

A f l o w  model h a s  been developed by J u l i a n  Szeke ly  t o  s i m u l a t e  f low 

through b l a s t  f u r n a c e  burdens .  ("I T h i s  model u s e s  a  v e c t o r i a l  v e r s i o n  

o f  t h e  Ergun e q u a t i o n  t o  d e s c r i b e  f low th rough  packed beds w i t h  spa-  

t i a l l y  v a r y i n g  v o i d  f r a c t i o n  and p a r t i c l e  s i z e .  T h i s  model i s  used hy 

Szeke ly  and o r h e r s  t o  s t u d y  a  l a r g e  v a r i e t y  of r u b b l e  bed pack ing  

a r rangements .  1 1 1 2 1 3  The r e s u l t s  i n d i c a t e  t h a t  t h e  model works w e l l ,  

i f  m o d i f i c a t i o n s  a r e  made f o r  v o i d  d e f e c t s  n e a r  w a l l s  and f o r  low p e r -  

m e a b i l i t y  i n t e r f a c e s  between a r e a s  o f  d i f f e r e n t  p a r t i c l e  s i z e s .  (14) 

These m o d i f i c a t i o n s  w i l l  b e  i n c o r p o r a t e d  i f  t h e  b a s i c  model shows q u a l -  

f r a t i v e  agreement  w i t h  experiments. 



The i n p u t  pa ramete rs  f o r  t h i s  model i n c l u d e  gas  f low r a t e ,  and t h e  

s p a t i a l  ar rangement  o f  p a r t i c l e  s i z e s  and v o i d  f r a c t i o n s .  The v a l u e s  

o u t p u t  by t h e  model i n c l u d e  t h e  o v e r a l l  p r e s s u r e  d r o p ,  s t ream f u n c t i o n  

v a l u e s ,  and p r e s s u r e s  and v e l o c i t i e s  i n  a l l  a r e a s  of t h e  ru.bble bed .  

DISCUSSION 

T r a c e r  Data 

The t r a c e r  t e s t  d a t a  a r e  i n  t h e  form of t r a c e r  c o n c e n t r a t i o n  a s  a  

f u n c t i o n  of e l a p s e d  t ime  s i n c e  i n j e c t i o n .  T y p i c a l  t r a c e r  response  

curves  a r e  shown i n  f i g u r e s  4 and 5 .  Note t h a t  b o t h  examples have 

obvious  peaks  and t h a t  t h e  decay t ime  i s  l o n g e r  t h a n  t h e  r i s e  time. 

S i n c e  t h e  response  curve  i n  f i g u r e  4 has  a  lower c o n c e n t r a t i o n  t h a n  t h e  

curve  i n  f i g u r e  5 ,  t h e  random n o i s e  i s  more a p p a r e n t .  . I n  many c a s e s  

t h i s  becomes a n  i m p o r t a n t  f a c t o r .  For  example,  i f  an  a n a l y s i s  based on 

t h e  mean r e s i d e n c e  t i m e ,  v a r i a n c e ,  and skewness ( l s t ,  2nd and 3 r d  

moments r e s p e c t i v e l y )  o f  t h e  response  c u r v e  i s  d e s i r e d ,  t h e  n o i s e  l e v e l  

can s e r i o u s l y  a f f e c t  t h e  v a l u e s  o b t a i n e d  by e x a g g e r a t i n g  t h e  weight  o f  

t h e  t a i l  r e g i o n  of t h e  curve .  The u s e  of curve  f i t t i n g  t e c h n i q u e s  can 

reduce t h e  n o i s e  problem by approx imat ing  t h e  response  curve  w i t h  a n  

a c c e p t a b l e  c u r v e  shape .  However, t h e  v a l i d i t y  k f  t h i s  method of a n a l -  

y s i s  depends on s e l e c t i n g  t h e  p r o p e r  p a r a m e t e r s  t o  r e p r e s e n t  t h e  sys tem.  

The o b j e c t i v e  o f  t h i s  s t u d y  i s  t o  compare t r a c e r  response  d a t a  w i t h  

steam f low d a t a  and model p r e d i c t i o n s .  T r a c e r  v e l o c i t i e s  a r e  used f o r  
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Figure 4. Typical Tracer Response for.  Low Concentration 
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t h e  comparisons .  No e f f o r t  i s  made t o  a n a l y z e  t h e  c u r v e  shapes  r e s u l t -  

i n g  from t h e  t r a c e r  t e s t s  e x c e p t  where m u l t i p l e  peaks  a r e  a p p a r e n t .  

The m u l t i p l e  peak phenomenon i s  s e e n  i n  s e v e r a l  o f  t h e  response  

c u r v e s .  Examples a r e  shown i n  f i g u r e s  6 th rough  9 .  I n  most c a s e s  t h e  

double  peaks  a r e  s e e n  when i n j e c t i o n  a ~ i d  d e t e c L i v r ~  t a p s  a r e  adjacerlL Lo 

t h e  r e t o r t  w a l l s .  Th i s  may be  i n d i c a t i v e  o f  a  h i g h e r  r u b b l e  vo id  f r a c -  

t i o n  n e a r  t h e  w a l l  which c a u s e s  a  r e l a t i v e l y  d i r e c t  f low p a t h  compared 

t o  t o r t u o u s  f low th rough  t h e  r u b b l e  bed .  To i n v e s t i g a t e  t h i s  p o s s i b i l -  

i t y ,  t h e  r e s p o n s e  curve  shown i n  f i g u r e  6 has been ana lyzed  u s i r ~ g  Lhe 

Ergun e q u a t i o n  t o  de te rmine  t h e  r e l a t i o n s h i p  between t h e  v o i d  f r a c t i o n s  

o f  t h e  two r e g i o n s .  The Ergun e q u a t i o n  i s  a p p l i e d  t o  e a c h  o f  t h e  two 

r e g i o n s  u s i n g  t h e  assumpt ion  t h a t  f l u i d  v i s c o s i t y ,  shape f a c t o r ,  p a r t -  

i c l e  s i z e  and f l u i d  d e n s i t y  a r e  t h e  same f o r  e a c h  r e g i o n .  S i n c e  t h e  

p r e s s u r e  d rop  between t h e  i n j e c t i o n  p o i n t  and t h e  d e t e c t i o n  p o i n t  must 

be  t h e  same f o r  e a c h  p a t h ,  t h e  two e q u a t i o n s  can be  combined r e s u l t i n g  

i n  t h e  d e s i r e d  r e l a t i o n s h i p  between t h e  v o i d  f r a c t i o n s  i n  t h e  two 

r e g i o n s .  Obvious ly ,  t h e  two v o i d  f r a c t i o n s  can n o t  be  o b t a i n e d  indepen- 

d e n t l y ,  b u t  a  r e a s o n a b l e  v a l u e  f o r  t h e  r u b b l e  v o i d  f r a c t i o n  can be used 

t o  produce a n  e s t i m a t e  of t h e  v o i d  f r a c t i o n  n e a r  t h e  w a l l .  Using t h e  

average  bed v o i d  f r a c t i o n ,  0 . 4 7 2 ,  f o r  t h e  r u b b l e  bed v o i d  f r a c t i o n  

r e s u l t s  i n  a n  e s t i m a t e  o f  0 .904 f o r  t h e  v o i d  f r a c t i o n  a l o n g  t h e  w a l l .  

I n  some c a s e s  where t e s t s  have been r e p e a t e d ,  two d i s t i n c t  t y p e s  of 

response  c u r v e s  r e s u l t .  F i g u r e  10 shows one example o f  t h i s  e f f e c t .  

One o f  t h e  r e s p o n s e  c u r v e s ,  A ,  has  a  double  peak ,  p r o b a b l y  i n d i c a t i n g  a  

f low c h a r ~ r ~ e l  a l v r ~ g   he w a l l .  The o t h e r  response  c u r v e ,  B ,  s l~ows orlly 
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Figure 8. Multiple Peak Tracer Response 
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Figure 9. Multiple Peak Tracer Response 
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Figure 10. Inconsistent Tracer Response 



one p e a k ,  b u t  t h e  r e s p o n s e  t ime  of t h i s  peak i s  n e a r l y  t h e  same a s  t h e  

r e s p o n s e  t i m e  of  t h e  f i r s t  peak o f  curve  A .  T h i s  e f f e c t  may a l s o  be  due 

t o  t h e  n e a r n e s s  o f  t h e  w a l l .  S l i g h t  v a r i a t i o n s  i n  i n j e c t i o n  p r e s s u r e s  

o r  volumes,  o r  r u b b l e  bed s e t t l i n g  could  d i r e c t  t h e  t r a c e r  towards  o r  

away from t h e  w a l l  c a u s i n g  s i n g l e  o r  double  p e a k s .  S i n c e  t h e  r u b b l e  bed 

geometry below t h e  i n j e c t i o n  t a p s  i s  n o t  lrnown i n  d e t a i l ,  no f u r t h e r  

a n a l y s i s  o f  t h i s  e f f e c t  i s  p o s s i b l e .  

The t r a c e r  response  t imes  a r e  conver ted  i n t o  an  a p p a r e n t  v e l o c i t y  

by d i v i d i n g  t h e  s t r a i g h t  l i n e  d i s t a n c e  betwccn t h e  i n j e c t i o n  and d e t e c -  

t i o n  p o i n t s  by t h e  response  t i m e .  A p l o t  of t h e  a p p a r e n t  t r a c e r  v e l o -  

c i t y  v e r s u s  t h e  s u p e r f i c i a l  g a s  v e l o c i t y  f o r  s t a g e  2 i n l e t  t o  o u t l e t  

t r a c e r  t e s t s  i s  shown i n  f i g u r e  11. The expec ted  SGV/& i s  a l s o  shown. 

The r e a s o n  f o r  t h e  low t r a c e r  v e l o c i t y  a t  t h e  h i g h e r  s u p e r f i c i a l  gas  

v e l o c i t y  i s  n o t  known. I n  a n  e f f o r t  t o  see if t h i s  e f f ~ r t .  i s  g ~ n ~ r a l . ,  

s i m i l a r  p l o t s  have 'been p r e p a r e d  f o r  t r a c e r  v e l o c i t i e s  between a d j a c e n t  

v e r t i c a l  t a p s  i n  t h e  r u b b l e  bed .  T l ~ r  p l o t s  f o r  t h e  s t a g e  1 t e s t s  a r e  

shown in fj.g~.lre 12 and t h e  p l o t s  f o r  t h e  s t a g e  2 t e s t s  a r e  shown i n  

f i g u r e s  13 t h r o u g h  15. Most o f  t h e  c u r v e s  show t h e  same e f f e c t  a t  t h e  

h i g h e r  s u p e r f i c i a l  gas  v e l o c i t y .  

Model Data 

Comparing t h e  f low model p r e d i c t i o n s  w i t h  t h e  t r a c e r  t e s t  r e s u l t s  

i s  compl ica ted  by u n c e r t a i n t y  abou t  t h e  r u b b l e  bed c o n f i g u r a t i o n .  Both 

t h e  T r a v i s  and Szeke ly  models u s e  t h e  Ergun e q u a t i o n  ( 3 )  Lo r e l a t e  t h e  
r, 
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Figure 11. Inlet to Outlet Velocity, Stage 2 
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Figure 12. Level 2 to Level 3 Velocity, Stage 1 
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Figure 13. Level 1 to Level 2 Velocity, Taps A through F, Stage 2 
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Figure 14. Level 1 to Level 2 Velocity, Taps F through K, Stage 2 
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Figure 15. Level 2 to Level 3 Velocity, Stage 2 



velocity with the pressure gradient. This equation requires that the 

bed parameters E and D be spatially uniform (4). Ergun's equation in 
P 

differential form can be used for cases where these parameters vary in a 

known manner, but random variation can be treated only in a statistical 

sense. Since the rubble bed configuration is (to some deg;ee) uncer- 

tain, the effect of spatial variation of E and D should be considered. 
P 

A se~lsiLivity analysis has been made in order to demonstrate the effect 

of  this uncertainty on the validity of the model calculations. 

Specifically the sensitjvity of K (equation (4)) with respect to & 

and D is of interest. By definition these sensitivities are respec- 
P 

t ivc ly 

K lim LSKAK = E a K  
Sc A E + O  A&/& F 5.& 

and 

Equation (7) says that the sensitivity of K with respect to E is the 

fractional (or percent.) change in K divided by Li~e fractional ('or per- 

ce11L) change in E for vanishing small changes in & with D constant. A 
P 

corresponding statement can be made for equation (8). Applying these 

definitions to equation ( 4 )  yields 



and 

The change AK can be approximated using the total differential of K. 

The approximation is 

Substituting sensitivities into equation (11) and dividing by K we have, 

for small changes in E and D the fractional change in K 
P ' 

In particular, if the fractional change' in D and E is 0.1 and if .the 
P I :, . . .. , 

nominal E = 0.472 the effect on K is a fractional change of approxl- 

mately 0.68 or 68%. 

To illustrate the presence of spatial nonuniformities tracer and 

model calculation results have been converted to. apparent velocities and 

normalized by dividing the velocities by SGV/&. The normalized data from 

the stage 1 tracer tests are plotted as a function of radial position in 

figures 16 through 18. Note that the velocities near the center of the 

retort are lower than the velocities near the retort walls. The model 

predictions correspond to a normalized velocity of 1.0 for all radial 

positions. Figure 16 shows that, for the sample point orientation being 

used, there is not a material balance. Both sides of the retort have 
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Figure 16. Level 2 to Level 3 Normalized Apparent Velocity, Stage 1 
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Figure 17. Level 2 to Level 3 Normalized Apparent Velocity, Stage 1 
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Figure 18. Level 2 to Level 3 Normal ized Apparent Velocity, Stage 1 



lower velocities than are necessary to account for all the air moving 

through the retort. Since there is no obstruction in the retort during 

the stage 1 tests, the nonuniform velocity distribution and the lack of 

mass balance must be the result of bed nonuniformities. 

Normalized apparent velocities calculated from the stage 2 tracer 

tests are plotted as a function of radial position in figures 19 through 

24. In figures 21 through 24 values calculated from the two flow models 

are also plotted. Because of the different interpolation techniques 

necessary for the two flow models, some end effects appear when velocity 

calculations are made near the walls or the centerline of the retort. 

However, for velocities away from the walls and the centerline, the two 

models are in good agreement. For velocities between probe level 1 and 

probe level 2 the models predict uniform velocities at radii greater 

than 0.61  meters and lower velocities nearer the center of the retort. 

The tracer tests show a more pronounced difference in velocities, with 

very low velocities near the center of the retort and high velocities 

near the wall. Tests at all superficial gas velocities show the same 

general characteristics. For velocities between probe levels 2 and 3, 

the ii~odels predict uniform velocities across the bed and the tracer 

tests show nearly uniform velocities for the 0.0117 SGV. At SGV's of 

0.0056 and 0.0154 m/s, however, there are again the low velocities at 

the center of the retort and high velocities at the walls. 

To compare stage 1 data with stage 2 data, the stage 2 velocities 

between probe levels 2 and 3 have been divided by the stage 1 velocities 

aL  the same positions. The plot of t h ~  res111,ting values at an SGV of 
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Figure 19. Level 1 to Level 2 Normal ized  Apparent Velocity, Stage 2 
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Figure 20. Level 2 to Level 3 Normalized Apparent Velocity, Stage 2 
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Figure 21. Level 1 to Level 2 Normalized Apparent Velocity, Stage 2 



T Uniform Bed and Travis Model  
a 

I - a 

I - a 

I - 
Taps A-F 

Taps F-K 
Szekely Model 

0.5 1 .O 1.5 

Distance from Center (m) 

Figure 22. Level 2 to Level 3 Normalized Apparent Velocity, Stage 2 
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Figure 23. Level 1 to Level 2 Normal ized Apparent Velocity, Stage 2 
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Figure 24. Level 2 to Level 3 Normalized Apparent Velocity, Stage 2 



0.0117 m / s  is  shown i n  f i g u r e  25. T h i s  p l o t  shows t h a t  t h e  a d d i t i o n  of 

t h e  b a r r e l  i n c r e a s e s  t h e  gas  v e l o c i t y  n e a r  t h e  c e n t e r  o f  t h e  r e t o r t  

below t h e  b a r r e l  w h i l e  t h e  v e l o c i t i e s  i n  s t a g e  2 n e a r  t h e  w a l l  a r e  l e s s  

t h a n  o r  e q u a l  t o  t h e  s t a g e  1 v e l o c i t i e s .  

Steam Data 

The t h e r m a l  p r o f i l e s  from t h e  steam f low t e s t  a r e  shown i n  f i g u r e s  

26 t h r o u g h  3 7 .  The t o t a l  t ime  s p a n  of t h c  t e s t  i s  48 hours  i n c l u d i l ~ g  

t h e  f o u r  hour  h o t  a i r f l o w  p e r i o d .  A t  probe l e v e l s  1 and 2 t h e  s h a l e  

near '  t h e  n o r t h  w a l l  h e a t s  f i r s t ,  w h i l e  a t  p robe  l e v e l  4 t h e  s h a l e  n e a r  

t h e  s o u t h  w a l l  h e a t  f i r s t .  Temperatures  toward t h e  c e n t e r  of t h e  r e t o r t  

t e n d  t o  l a g  t h e  o u t e r  t e m p e r a t u r e s .  The l e v e l  2 t e m p e r a t u r e  r i s e  i s  t h e  

most uniform d u r i n g  t h e  h e a t u p  p e r i o d ,  fo l lowed  by 1.~1~~11 s rj a n d  4 ,  w i t h  

l e v e l  1 showing t h e  l e a s t  uniform r a t e  o f  h e a t u p .  

Heat. l o s s  from t h e  r e t o r t  w a l l s  i s  shown i n  t e m p e r a t u r e  p r o f i l e s  

beh ind  t h e  s team f r o n t .  Temperatures  a t  t h e  o u t s i d e  thermocouples  l e v e l  

o f f  1 t o  6 d e g r e e s  C e l s i u s  below t h e  second thermocouple i n  from t h e  

w a l l .  Near t h e  end o f  t h e  t e s t ,  when t h e  e n t i r e  bed i s  h o t ,  t h e  temper- 

a t u r e  d e c l i n e  a t  t h e  o u t s i d e  thermocouple i s  g r e a t e r  a t  t h e  s o u t h  w a l l  

t h a n  a t  t h e  n o r t h  w a l l  f o r  a l l  p robe  l e v e l s .  

P i g u ~ e  38 slluws Llle Lemyeraturc p r o f i l e s  a t  different t i m e s  a s  t h e  

s team f r o n t  moves down t h e  r e t o r t .  The 3S°C p r o f i l e s  a r e  p l o t s  of t h e  

t e m p e r a t u r e s  on a  g i v e n  l e v e l  t h c  f i r s t  t i m e  any thermocouple a t  LhaL 
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Figure 25.. Level 2 to Level 3 Stage 2 Velocity Divided by Stage 1 Velocity 
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Figure 28. Steam Test Thermocouple D a t a  
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Figure 29. S t e a m  Test Thermocouple D a t a  
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Figure 31. Steam Test Thermocouple Data 
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Figure 32. Steam Test Thermocouple D a t a  
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Figure 33. Steam Test Thermocouple Data  
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Figure 34. Steam Test Thermocouple D a t a  
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F igure 35. Steam Test Thermocouple D a t a  
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Figure 36. Steam Test Thermoc:ouple D a t a  
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l e v e l  r e a c h e s  o r  exceeds  38OC. S i m i l a r  c r i t e r i a  have been used t o  

s e l e c t  d a t a  f o r  t h e  66 ,  71,  and 77OC p r o f i l e s .  Probe l e v e l  2 has  o n l y  

t h r e e  p r o f i l e s  because  t h e  maximum t e m p e r a t u r e  a t  t h a t  l e v e l  goes from 

l e s s  t h a n  67OC t o  more t h a n  71°C i n  a  s i n g l e  measurement p e r i o d ,  r e s u l t -  

i n g  i n  i d e n t i c a l  p r o f i l e s  f o r  t h e  67 and 71°C c r i t e r i a .  

The p r o f i l e s  a t  l e v e l  1 a r e  c o n s i s t a n t  w i t h  a  f low p a t t e r n  t h a t  i s  

n o t  p a r a l l e l  t o  t h e  l o n g  a x i s  of t h e  r e t o r t .  The asymmetric f low may 

have been caused by f i n e s  i n  t h e  s h a l e  bed o r  by end e f f e c t s  from f low 

e n t r y  i n t o  t h e  t o p  o f  t h e  s h a l e  bed.  The b a r r e l  b e i n g  used a s  a  f low 

o b s t r u c t i o n  may a l s o  c o n t r i b u t e  t o  t h e  f low p a t t e r n  a t  l e v e l  1. 

Level  2 shows a  uniform s e t  o f  t e r r ~ p e r a t u r e  p r o f i l e s  i n d i c a t i n g  a  

f low p a r a l l e l  t o  t h e  long  a x i s  o f  t h e  r e t o r t  and uniform i n  v e l o c i t y  

a c r o s s  t h e  r e t o r t .  Level  3 shows a  l a g  i n  steam f r o n t  approach n e a r  t h e  

c e n t e r  o f  t h e  r e t o r t ,  which i s  p robab ly  due t o  a  pack ing  nonuni fo rmi ty .  

Level  4 a l s o  shows a  l a g  i n  t h e  steam f r o n t  approach ,  t h i s  t ime  t h e  l a g  

i s  j u s t  l e f t  ( n o r t h )  o f  t h e  c e n t e r  of t h e  r e t o r t .  

F i g u r e s  39 and 40 show t h e  normalized steam f r o n t  v e I . n c i t i e s  

between probe l e v e l s  1 and 2 ,  and between 2 and 3 ,  r e s p e c t i v e l y .  The 

v e l o c i t i e s  a r e  normal ized by t h e  weighted a v e r a g e  v e l o c i t y  a t  each  

l e v e l .  I n  f i g u r e  39 t h e  v e l o c i t y  n e a r  t h e  c e n t e r l i n e  o f  t h e  r e t o r t  i s  

h i g h e r  t h a n  t h e  v e l o c i t y  n e a r  t h e  w a l l s  i n d i c a t i n g  t h a t  l e s s  energy  i s  

b e i n g  used t o  h e a t  s h a l e  i n  t h a t  r e g i o n  because  t h e  s h a l e  i n  t h e  b a r r e l  

i s  bypassed .  Below t h e  b a r r e l ,  f i g u r e  40 shows t h a t  t h e  steam v e l o -  

c i t i e s  a r e  n e a r l y  t h e  same a c r o s s  t h e  r e t o r t .  
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Figure 39. Level 1 to Level 2 Normalized Steam Front Velocity 
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Figure 40. Level 2 to Level 3 Normalized Steam Front Velocity 



S i n c e  it i s  n o t  known t o  what e x t e n t  t h e  r e f r a c t o r y  i s  h e a t e d  by 

t h e  s team,  t h e  sweep e f f i c i e n c y  o f  t h e  steam f r o n t  can n o t  be a c c u r a t e l y  

e s t i m a t e d .  Depending upon t h e  f r a c t i o n  o f  t h e  r e f r a c t o r y  assumed t o  be 

h e a t e d ,  t h e  c a l c u l a t e d  sweep e f f i c i e n c y  ranges  from 78% t o  114%. The 

t r u e  sweep e f f i c i e n c y  can n o t  be  g r e a t e r  t h a n  100%. 

CONCLUSIONS 

The i n t e n t  of this exper iment  has  been have a uni torm r u h h l e  hed 

e x c e p t  f o r  t h e  b a r r e l .  Problems a s s o c i a t e d  w i t h  s c r e e n i n g  and l o a d i n g  

t h e  s h a l e  have r e s u l t e d  i n  a nonuniform bed .  T h i s  i s  evidenced by t h e  

r a d i a l  v a r i a t i o n  i n  t r a c e r  v e l o c i t i e s  d u r i n g  t h e  s t a g e  1 t r a c e r  t e s t s  

( f i g u r e s  16-18) .  The v e l o c i t i e s  n e a r  t h e  c e n t e r  o f  t h e  r e t o r t  a r e  much 

lower  t h a n  t h o s e  n e a r  t h e  w a l l s .  A uniform r u b b l e  bed shou ld  have no 

v e l o c i t y  v a r i a t i o n  e x c e p t  v e r y  n e a r  t h e  w a l l s .  The s team t e s t  and t h e  

s t a g e  2 t r a c e r  t c s t s  a l s o  show lowcr  v e l o c i t i e s  below t h e  b a r r e l  t h a n  

n e a r  t h e  w a l l s  a l t h o u g h  t h e  e f f e c t  i.s n o t  a s  d r a m a t i . ~  a s  w i t h  t h e  s t a g e  

1 t r a c e r  t e s t s .  

The d e c r e a s e  i n  t r a c e r  v e l o c i t i e s  a t  t h e  h i g h e s t  s u p e r f i c i a l  gas 

v e l o c i t y ,  a s  shown i n  f i g u r e s  11 th rough  15,  may be  caused by e i t h e r  of 

two t h i n g s .  The f i r s t  p o s s i b i l i t y  i s  t h a t  a t  t h e  h i g h e r  f low r a t e  niuch 

o f  t h e  t r a c e r  i s  h e l d  i n  s t a g n a n t  a r e a s  of t h e  r e t o r t  c a u s i n g  t h e  t r a c e r  

peaks  t o  have anomolously l o n g  r e s i d e 6 c e  t i m e s .  The second p o s s i b i l i t y  

i s  t h a t  t h e  a i r  f low measur ing d e v i c e s  have l o s t  c a l i b r a t i o n  e i t h e r  

d u r i n g  o r  j u s t  b e f o r e  t h e  t e s t s .  The f low models do n o t  p r e d i c t .  t h i s  

f low b e h a v i o r .  
L 



The e f f e c t  o f  t h e  b a r r e l  on t h e  s team f r o n t  i s  s m a l l .  There  i s  

some agreement between steam and t r a c e r  v e l o c i t i e s  between probe l e v e l s  

2  and 3 .  Both s e t s  o f  d a t a  show lower  v e l o c i t i e s  i n  t h e  c e n t e r  o f  t h e  

r e t o r t  t h a n  a t  t h e  w a l l s .  The t r a c e r  and steam t e s t s  between probe  

l e v e l s  1 and 2 ,  however, do n o t  show t h e  same e f f e c t .  The steam f r o n t  

p e r t u r b a t i o n s  were n o t  s u f f i c i e n t l y  l a r g e  t o  a l l o w  f u l l  charac te r i . za t . ion  

of t h e  r e l a t i o n s h i p  between t h e  t r a c e r  v e l o c i t i e s  and t h e  steam f r o n t  

v e l o c i t y .  

I t  has  been shown by t h e  s e n s i t i v i t y  a n a l y s i s  t h a t  s m a l l  r u b b l e  bed 

n o n u n i f o r m i t i e s  cause  measurable  f low p e r t u r b a t i o n s .  Fur the rmore ,  t h e  

t r a c e r  t e s t  r e s u l t s  i n d i c a t e  t h e  p r e s e n c e  o f  n o n u n i f o r m i t i e s  t h a t  a r e  

n o t  observed i n  t h e  steam t e s t  r e s u l t s .  T h i s  demons t ra tes  t h a t  t h e  

t r a c e r  method has  s u p e r i o r  r e s o l u t i o n  t o  t h e  s team f r o n t  method f o r  

r u b b l e  bed c h a r a c t e r i z a t i o n ,  however, t h e  method h a s  c e r t a i n  problems 

which shou ld  be  a d d r e s s e d .  

RECOMMENDATIONS 

I n  o r d e r  t o  s o l v e  some of  t h e  problems d e s c r i b e d  i n  t h i s  r e p o r t  

s e v e r a l  a r e a s  need f u r t h e r  s t u d y .  A l a r g e r  o b s t r u c t i o n  i s  needed t o  

cause  a  g r e a t e r  p e r t u r b a t i o n  o f  t h e  steam f r o n t  shape .  T h i s  would a l l o w  

a more ~ ~ i i ~ p ~ . t t l ~ e ~ l s i v  comparison o f  steam d a t a  w i t h  t r a c e r  d a t a  t o  be 

made. As p a r t  of t h i s  s t u d y  t h e  r e t o r t  shou ld  be b e t t e r  ins t rumented  t o  

de te rmine  h e a t  l o s s e s  s o  t h a t  a n  a c c u r a t e  steam f r o n t  sweep e f f i c i e n c y  

can be c a l c u l a t e d .  



I n  c o n j u n c t i o n  w i t h  WRIts t r a c e r  t e s t i n g  program on t h e  l a r g e  

r e t o r t s  a  l a r g e  number o f  s m a l l  s c a l e  t e s t s  a r e  needed t o  de te rmine  

s e v e r a l  b a s i c  r e l a t i o n s h i p s .  T h i s  r e p o r t  shows one i n s t a n c e  where 

r e p e a t e d  i n j e c t i o n s  a t  t h e  same t a p  do n o t  always produce t h e  same 

response  c u r v e .  A s t u d y  needs  t o  be  made t o  de te rmine  t h e  r e l a t i o n s h i p  

of t r a c e r  r e s p o n s e  c u r v e  s h a p c s  t o  i n j e c t i o n  v a r i a b l e s  such  a s  i n j e c t i o n  

p o i n t  geometry ,  i n j e c t i o n  p r e s s u r e  and i n j e c t i o n  volume. 

The f low p e r t u r b a t i o n  "shadowtt caused by t h e  b a r r e l  i n  t h i s  r e p o r t  

was n o t  v e r y  l a r g e .  Thc e f f e c t  o f  o b s t r u c t i o n  s i z e  and the d i s t a n c e  o t  

t h e  o b s t r u c t i o n  from t h e  i n j e c t i o n  and d e t e c t i o n  t a p s  needs t o  be  

s t u d i e d .  The r e s u l t s  of such  a  s t u d y  may a l l o w  r e s e a r c h e r s  t o  de te rmine  

whether  a  t r a c e r  t e s t  can  r e s o l v e  t h e  d i f f e r e n c e  between a  s m a l l  

o b s t r u c t i o n  n e a r  t h e  i n j e c t i o n  p o i n t  and a  l a r g e r  o b s t r u c t i o n  f a r t h e r  

away.  

S e v e f a l  examples uf 111u1Liyle pedks sit shown i n  t h i s  r c p o r t .  

Techniques  of s c p a r a t i n g  and c h a r a c t e r i z i n g  t h e  m u l t i p l e  pathways i.ndi- 

c a t e d  by t h e s e  peaks  must be deve loped .  S i g n a l  p r o c e s s i n g  methods may 

be of use  i n  d e t e r m i n i n g  rhe e x a c t  s p a c i n g  u1 u v e r l a p p i n g  p e a k s .  
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