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A B S T R A C T 

The fundamental problem in the theory of turbulent transport is to find the flux T 
of a quantity such as heat. Methods based on statistical closures are mired in conceptual 
controversies and practical difficulties. However, it is possible to bound T by employing 
constraints derived rigorously from the equations of motion. Brief reviews of the general 
theory and its application to passive advection are given. Then, a detailed application is 
made to anomalous resistivity generated by self-consistent turbulence in a re versed-field 
pinch. A nonlinear variational principle for an upper bound on the turbulent electromotive 
force for fixed current is formulated from the magnetohydrodynamic equations in cylin­
drical geometry. Numerical solution of a case constrained solely by energy balance leads 
to a reasonable bound and nonlinear eigenfunctions that share intriguing features with 
experimental data: the dominant mode numbers appear to be correct, and field reversal is 
predicted at reasonable values of the pinch parameter. Although open questions remain, 
upon considering all bounding calculations to date one can conclude, remarkably, that 
global energy balance constrains transport sufficiently so that bounds derived therefrom 
are not unreasonable and that bounding calculations are feasible even for involved practical 
problems. The potential of the method has hardly been tapped; it provides a fertile area 
for future research. 
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I. INTRODUCTION 

In this article we discuss applications of the theory of rigorous bounds on transport 1 - 5 

due to steady-state turbulence. The method provides an intriguing alternative to the more 
familiar approaches based on statistical closure approximations.9 For a closely related but 
less mathematical discussion, see Ref. ?. 

A. The generic transport problem 

Consider for definiteness the prototypical dissipative nonlinear equation 

| r ( * , t ) + V . [ « ( x > < ) T ] - « V 2 T = 0. (1) 

We distinguish two possibilities for the advecting field u, which for definiteness we assume 
to be solenoidal (V-u = 0). I f« is afunctional of T, the problem is called "self-consistent"; 
otherwise, u must be specified externally and the problem is called "passive." In both 
cases one assumes that Eq. ( i ) exhibits statistical behavior, so it is relevant to introduce 
Misembl" and/or spatial averaging operations. Statistical behavior may arise because of 
random initial conditions, intrinsic stochasticity, or, for passive advection, because u is 
assumed by fiat to be a random variable. 

We assume that the statistics are homogeneous in all directions but x. In the z di­
rection we assume that inhomogeneous, statistically sharp boundary conditions such as 
T(x=0,t) = To, T{x=L,t) = Ti [Ti ^ T 0) are imposed such that a nontrivial steady-
state profile {T)(x) is assured. Wc allow no sources on the right-hand side of Eq. (i) . 
This precludes the possibility that d(T)/dx is constant; the fluctuations are intrinsically 
inhomogeneous, and the fundamental nonlinearity in the theory is the self-consistent ad­
justment of the profile to the fluctuations. Although extensions to homogeneous turbulence 
are possible, they are quite difficult and have not yet been developed; we shall not discuss 
them here. 

For a complete statistical description of Eq. (1) one requires the joint probability dis­
tribution functional P{T,u,t}. However, besides being very difficult to obtain, P provides 
an overabundance of detailed information; one is generally content with much less. For 
example, the transport problem can be defined from the mean continuity equation: 

where we have assumed (u) = 0. 'The angular brackets denote a spatial average over the 
homogeneous directions (for self-consistent problems) or an ensemble average (for passive 
problems). The total flux / \ o t is i-directed because of the symmetry assumptions: J \ o t = 
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* r t o t . Let us normalize x to L, u to u„„, = ( u 2 ) 1 ' 2 [where u = « - (ti)], and T to 
AT = To — Ti. Then r t o t is the sum of a classical part Tci and an advective part I \ where 

r ^ - j r 1 ^ , (2a) 

T = (uzf), (2b) 

and R = u^aL/n is a generic Reynolds-like number. 

In steady state Eq. (1) reduces to dTtot/dx = 0, or I\ot = constant. This constant is a 
functional of the fluctuations. To see this, observe that because of the special form (2a) it is 
useful to define the barring operation A = f0dx A(x), so that Ta = - J ? - 1 / 0 dt{T)'(x) = 
R~J is entirely known in terms of the (statistically sharp) boundary conditions. Then, 
upon barring 

Ttot = r c | (x) + r(x) = constant, (3) 

we find 
r t o t = J R- 1 +r, (4) 

in which the only unknown is T. Determining T is the principal goal of a transport theory. 

For future use, note that Eqs. (3) and (4) can be combined to express the mean profile 
in terms of the fluctuations: 

9{T)=l-RAT, (5) 
dx 

where AT[x) = V(x) - T. 

B. Difficulties with conventional approaches 

One obvious way of determining T is to numerically integrate (many realizations of) 
Eq. (1), then to compute explicitly the ensemble and spatial averages. This procedure is 
nontrivial because of statistical noise and because the realizations need not be smooth. 
These difficulties are demonstrated explicitly in Ref. 8, where a one-dimensional version 
of Eq. (1) is studied in detail. A more subtle procedure is to determine analytically an 
approximate equation for T(x), then solve that equation (probably numerically) and finally 
spatially average the solution to compute I\ A variety of techniques exist for constructing 
such reduced descriptions; their difficulties have been discussed extensively. See Refs. 9 
and 6 for reviews with many references. For a discussion oriented specifically to the 
transport problem, see Ref. 7. 
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C. The "optimum" variational method 

An alternative approach to the transport problem is suggested by the familiar observa­
tion that Eq. (1) determines an infinite hierarchy relating statistical moments of different 
orders. Thus, an infinity of constraints 1 0 must be satisfied in order to uniquely deter­
mine P{T,u,i) and, ultimately, the transport. Note, however, that most of the relations 
constrain extremely subtle details of P and may be practically unimportant for the quan­
titative prediction of low-order moments such as I \ Optimistically, one could hope that 
just one or a small number of judiciously chosen constraints would suffice to predict T 
reasonably well. 

For the specific problem of thermal convection, Malkus speculated 1 1 that the steady-
state flux was the maximum of all possible solutions of Eq. (1) subject to the boundary 
conditions. Such a criterion is difficult to formulate analytically and furthermore turns out 
to be false except in certain limiting cases. However, it captures the right intuitive idea and 
suggests a possible way of proceeding. Indeed, by somewhat inverting the logic, Howard1 

arrived at a nonlinear variational principle that was both rigorous and useful in practice. 
He posed the question "What is the maximum V subject to a finite subset of the infinity of 
constraints?" Let us denote such a bound by 7. Of course, in the absence of any constraint 
at all the function space of all possible fields « ( * ) and T(x) subject only to the boundary 
conditions is too vast; since such fields can be scaled arbitrarily, the unconstrained bound 
is infinity. However, Howard showed that one can demonstrate constrained variational 
problems that lead to finite 7, and the rigorous nature of the formulation guarantees that 
7>r . 

In principle, further useful information would follow by bounding T from below as 
well as from above. Unfortunately, this problem is quite difficult. A lower bound for f 
is 0, and any moment constraint is satisfied by the zero solution. Kraichnan has proposed 
sophisticated techniques to overcome this problem, 1 2 but they remain to be fully developed. 
In the rest of this discussion we shall consider only bounds from above. 

Conventionally, a fundamental constraint is derived from the steady-state balance 
of production V, transfer T, and dissipation "D. By definition, production is related to 
the' interaction of the mean fields with the fluctuations, transfer describes conservative 
advection of the fluctuations, and dissipation is positive-definite when averaged over space. 
Although these quantities can be defined at various orders in the moment hierarchy, it is 
simplest and conventional to define them from the evolution equation of the variance of 
the fluctuations. One begins by multiplying the exact equation for the fluctuations. 

g j f (*,*) - V-(u<T) - « f - {uf)) - R-'VZf = 0. 

by T(x.t) (at the same point in space and time); upon ensemble-averaging, one obtains 

5-£(x, t) = V{x, t) + T{x, t) - V{x, t), (6) 
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where we have denned £ = {f2)/2, V = ~r(x)dt(T), T = -dx(uz(f2/2)), and V = 
-R~1{TV2f). The troublesome term here is T, a triplet correlation function that dc 
scribes mode-mode coupling and advection of fluctuations from point to point. In statisti­
cal closure theory one attempts to approximate T(x). By contrast, in the present method 
one appeals to the conservative nature of 7 and the sharp boundary conditions to obtain 
rigorously T = 0. Therefore, by barring Eq. (6) one obtains in steady state the constraint 
that global dissipation balances global production: 

V = V. (7) 

Krommes and Smith 5 have called this the "basic" constraint. (It is often thought of as an 
energy balance, but E need not be the physical fluctuation energy; it might, for example, 
be more closely related to entropy production.) Note that the unknown, spatially varying 
profile can be eliminated from V in favor of the fluctuations by using Eq. (5), so 

P = T(l - RAT) = T -RAT2; (8) 

also, upon integrating by parts and using the boundary conditions one obtains the positive-
definite form 

V = R-1(\VT\2y (9) 

With the aid of Eqs. (8) and (9), one can rewrite Eq. (7) in the form 

T = R-1(iVf\7) + RAT2.. (10) 

demonstrating that F is non-negative. This requirement is essential for successful use of 
the bounding method. 

The simplest variational principle is, therefore, to maximize T subject to the basic 
constraint (7). If one employs the method of Lagrange multipliers, this amounts to max­
imizing the functional 7 { T , « } == T — \("P - T>). In this form the result is more general 
than its derivation from the specific equation (1). 

One must inquire whether this single constraint is sufficient. First, note that the cru­
cial term in Eq. (10) is &T2, which unlike the other two terms is of fourth order in the 
fluctuations. This is the fundamental nonlinearity mentioned above. It turns out that for 
self-consistent problems the competition between second- and fourth-order terms is essen­
tial for obtaining a finite bound: when (7")' is taken to be constant (= —1). AI" vanishes 
and there is sufficient freedom that the bound is infinity. Kraichnan has pointed o u t 1 ? 

that far this case, which includes homogeneous turbulence, one must consider higher-order 
moments, but this is very difficult and has not yet been carried out. For passive problems, 
one can still obtain a finite bound 5 for constant (T) . but it is not very useful. 

The basic constraint is not necessarily sufficient, even for inhomogeneous problems. In 
general, when u is passive the basic constraint is enough to produce a well-posed variational 
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problem with a finite bound. 5 Self-consistent problems are more involved. Depending on 
the particular form of the dynamical equations and the chosen definition of £, often a 
second constraint is necessary in order to adequately pin down the relation between u 
and T. However, in Sec. Ill we describe an example for which the basic constraint is 
sufficient. 

Note that the basic theory produces time-independent Euler-Lagrange equations. This 
is a qualitative difference from the true physics. It means that the solutions of the Euler-
Lagrange equations are at best suggestive of reality; however, one expects that they cor­
rectly capture aspects of the spatial dependence of an instantaneous snapshot of the true 
solution. One might find it remarkable that a time-independent theory can make rigorous 
predictions about equations that fluctuate randomly in time. 

Since Howard's original work, the optimum approach has been applied to a variety 
of problems of interest in fluid dynamics; these were reviewed by Bussed All of the 
calculations described by Busse were self-consistent and led to rather difficult problems in 
applied mathematics. (We shall see an example of such a calculation in Sec. Ill below.) 
However, the problem of passive advection is also of interest. It arises in a number of 
physical contexts, including the important problem of transport in specified stochastic 
magnetic fields, and it illustrates the method with a minimum of mathematical complexity. 
We shall briefly review results on the passive problem. 

II. BOUNDS FOR PASSIVE ADVECTION 

The general theory of bounds for passive advection was given by Krommes and 
Smith 5 (KS). Although passive problems are in general simpler than self-consistent ones, in 
one sense they are more difficult: Whereas for self-consistent problems the autocorrelation 
time and/or length of C can be computed self-consistently in terms of solely Reynolds' 
number, for passive problems the correlation function of u can be specified, thereby in­
troducing extra parameters. As an example, KS considered a reference model a version 
of Eq. (1) in which the velocity field is taken to be a one-dimensional, centered Gaussian 
random variable u(t) with (in suitable dimensionless units) unit variance and autocorre­
lation time K (Kubo number). This model can be solved exactly, either analytically5 for 
K = oo or numerically.* For K = cc, the basic bound 7 M is about 25% too high in the 
worst case R —• oc. This is considered to be excellent agreement in view of the simplicity 
of the calculation. (The direct-interaction approximation ieads to a somewhat more pre­
cise resuit.5 but at the cost of considerably more labor.) For finite K the basic bound is 
qualitatively deficient: since it is constructed from equal-time and equal-space moments, it 
cannot contain information about the dynamical effects of finite correlation times and/or 
lengths related to the advecting velocity. Krommes and Smith pointed out that in this 
situation it was essential to invoke a two-timt constraint: they implemented a simple one. 
Upon solving an unusual integral equation, they found 7 _ 1 = 7^'] — 7 ^ , where 7 q is the 
quasilinear flux that is the true answer for K —> 0. This result is intuitively reasonable; it 
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reduces naturally to both limits K —* oc and K —• 0. However, it must be stressed that 
this is much more than just a plausible interpolation formula: it is the rigorous bound on 
the flux predicted by Eq. (1) (under the particular two-time constraint that was employed). 

As a practical example, when the one-point basic bound is applied to the generic 
problem of particle transport in specified stochastic magnetic fields13 one obtains5 the 
scaling correct for the strong turbulence regime. To do better and recover the familiar 
quasilinear result 1 4 ' 1 3 in the usual approximation of static fields one must employ a two-
space-point constraint. Kim and Krommes have shown how to do this. 8 

III. SELF-CONSISTENT BOUND FOR THE TURBULENT ELEC­
TROMOTIVE FORCE IN REVERSED-FIELD PINCHES 

We would now like to gain experience with a self-consistent calculation relevant to 
plasma physics. As we have emphasized, the version of the bounding theory we describe 
here applies to problems in which the mean profile is imposed by inhoroogeneous bound­
ary conditions and is self-consistent with the fluctuations. This precludes its direct use 
for studies of turbulence in a region whose dimensions are small compared to macroscopic 
system size. 5 For example, models of homogeneous turbulence with constant background 
gradient and periodic boundary conditions cannot be treated with the present method. 
Rather, what is needed is a macroscopic system with statistically sharp boundary con­
ditions at the walls and describable uniformly in space by one "simple" set of partial 
differential equations. Such a model is furnished by the reversed-field pinch 1 5 (RFP) in 
the resistive m&gnetohydrodynamic (MHD) description. This problem is of considerable 
theoretical and practical interest. Taylor's theory of relaxation in the presence of global 
helicity conservation1* has had considerable success in predicting features of the RFP such 
as field reversal. Montgomery and Phillips have explored related principles.1 7 However, it 
must be noted that none of these principles is rigorous, and they have little to say about 
the details of the underlying turbulence. The optimum theory offers intriguing possibilities 
for going beyond such work. First, it is entirely rigorous. Second, to the extent that the 
optimum variational principle reflects physical reality it makes definite statements about 
the nonlinear fluctuations. Unfortunately, the extent to which this is true is difficult to 
predict a priori, so experience and, ultimately, much deeper insights are desirable. We 
shall now explore the'predictions of the basic bound. However, since the calculation is 
quite involved we can only present the highlights here. An initial account of this work can 
be found in Ref. 18. For more details, see Ref. 19. 

A. The MHD description and turbulent electromotive force 

Consider a cylindrical pinch described by resistive, viscous, incompressible MHD. 
Ohm's law is 

£ « „ - £ - C " I B X B = 7 J , (11) 



where Etxt = z EQ is an external driving field and E is the internal field produced by the 
plasma. The resistivity r\ is (unrealistically) assumed to be constant. We shall assume that 
V-u = 0, so the mass density p is constant. We also model the dissipative stress tensor as 
isotropic, assuming the kinematic viscosity v to be constant. The momentum equation is 
then 

(~ +wVS)u = -V(P/p) + (pcy'jxB ^ uV2u. (12a) 

(Although it has been argued that compressibility may be important for a precise de­
scription of field reversal,3 0 reversal is still possible in the incompressible model, which 
leads to major analytic simplifications.) We consider cylindrical geometry {r,9,z) with 
constant toroidal field BQ. It is convenient to introduce as units of time, space, and 
magnetic field the resistive-diffusion time T, = Ana?/TIC*, the minor radius a, and B0-
If we also introduce the viscous-diffusion time rv = a2/v and an Alfven transit time 
r A = a/cA, where e\ = B$/4irp, then it is natural to introduce as dimensionless param­
eters the magnetic Prandtl number Pm = TV/TV = 47TI//TJC2 and the Hartmann number 
H = ( T - , T „ / T | ) 1 / 2 = {a2Bl/(?r)vpY12. Then in terms of the vorticity w i V x « one can 
write Eq. (12a) as 

P*1 ^T = ~ v p ' + ^ _ 1 « x w + H*jxB - V x w , (12b) 

where P' = P/p -t- P^L

1u2/2. We also have the (pre-)Maxwell equations 

VxE=-^, (13a) 

VxB=j, (13b) 
VB = 0. (13c) 

In addition to the assumption of steady state, we assume statistical homogeneity in 
the 6 and z directions. This, together with regularity at r = 0, significantly constrains 
the form of the mean fields. For example, since d(.,.)/d$ = d{...)/dz = 0.. Eq. (13c) 
reduces to r~1d{r{BT))/&r = 0. the regular solution of which is (i? r) = 0. Similarly, we 
find (uT) = (jr. = (uir) = 0. Since in steady state Vx(J5) = 0 from Eq. (13a), we must 
have {£?> = -V(i^) « f. From these results we deduce that {E) + \u)X{B) oc f. Because 
of the presence of viscosity, we assume that (u) vanishes at the wali. 

As boundary conditions on the fluctuations we shall assume that all fields are regular 
at r = 0 and thai at the wall ti = BT = r Xj = 0. Other choices are possible and the issue 
is a difficult one . 1 9 - 1 8 The present choice allows us to demonstrate the use of the optimum 
principle with a minimum of complications. 
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We are now prepared to recognize the analogies to ths generic transport problem 
sketched in Sec. LA. Indeed, the curl of Eq. (11), 

%-B - T x ( u X B ) - T J V 2 B = 0, 
tit 

is analogous to Eq. (1). We shall assume that the total axial current is fixed and treat E0 

as a derived quantity. In this way one may treat the current as the driving force, analogous 
to AT in the generic problem; EQ is analogous to the total flux Ttot- More quantitatively, 
consider the mean Ohms' law 

Eext+(E) + (u)X(B) = (j) + Q, (14) 

where Q(r) = ( B x S ) ( r ) . The z component of Eq. (14) leads to 

£o = 0*Xr) + £ ( r ) , (15) 

where e(r) = Qt{r) [ef. Eq. (2b)]; Eq. (15) should be compared with Eqs. (3) and (2). In 
cylindrical geometry the natural barring operation is A = 2 / 0 dr r A(r). The driving force 
is then the mean axial current density 3 = (j*)- Upon barring Eq. (15), we obtain the 
alternative form of Ohm's law 

£o = J + e; (16) 
cf. Eq. (4). Upon combining Eqs. (15) and (16), we obtain 

cf. Eq. (5). For future use, we can use this result and (jr) = 0 to deduce 

WQ = Jz-(tei + Ql)' (17) 

B. Energy constraint 

For the basic constraint we use the energy functional ( (u 2 + B2)/2) and seek an upper 
bound on £ constrained by global energy balance. To determine the energy constraint we 
begin with the fluctuating parts of the curls of Eqs. (11) and (12): 

d ~ . . . 
^ B = VX;UX(B} - ( « ) x B - ( B x S - Q) - j), (18) 

a 
Pm1^ = -VP' -P'^UXiU) - {u)XU-(uXV- (UX«)); 

- H2\jx[B) - ( j ' )xB -r (jxB - QxB))} - V x w . (19) 
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Upon adding the scalar products of Eq. (18) with B and Eq. (19) with u and barring the 
result, we are led to the steady-state condition 

| h (H*(\B?) + J £ l ( | S | 2 ) ) ] = 0 = CE = < ^ G + H*WQ - (ir*(tf |») + ( | 5 | 2 ) ) , 

< 2°) 
where G i H3(Bxj) + P^juXu). The mean of Eq. (12) can be used to show that 
(in steady state) ~{u)'G = \{u}f = 2f?. This result and Eq. (17) can then be used to 
demonstrate that e > 0, analogous to Eq. (10). After considerable algebra an explicit 
formula for O in terms of the fluctuations can be obtained.14 Analogous manipulations 
lead one to a helicity balance constraint CH- Although we shall not deal with the helicity 
constraint in this work, it may be helpful to show in the equations to follow where the 
effects of that constraint would enter (terms of 0((h)]- For more discussion, see Ref. 19. 

C. Variational principle 

We consider then the variational problem: Maximize 

AfaB) ~ l + AECE + AHCH -!- Au(a)(V>u) + \B{*)(V.B) 

for fixed J'. After some algebra, the Euler-Lagrange equations can be cast into the form 

0= Vxj + <&j-uxL-H-3aB + VXB, (21a) 
0 = S-*Vxv + BxL-H-atht + VXU, (21b) 

where A ac A, 
L = [-Q, + O{^))0 - i]C J - 2AE + &&)]** 

Qv ~ SH/bv for v e {B,u}, Ch = I7(AH/AE) (in the absence of the helicity constraint, 
(h = 0), and £ = 1 + Ag1 + 0(0, )• A relation between £ and the fluctuations can be 
obtained18 by manipulating the expressions for B-SA./6B and u«6A/fi,5. For &, = 0. one 
is eventualh- led to 

C=2-(*J)-i ($?)TB-*{&*) 

It is convenient to eliminate A^ and Au by applying the operators r-(Vx)n [n = i 
or 2) to Eqs. (21). However, we must still ensure that the associated solenoidal constraints 
V*.B and V-u remain satisfied. Therefore, we adopt the representation 

B = Vx(r-jB) - VxVx(r\B) 
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and similarly for u. (For i/> and x, the subscripts B or u aw just labels; they do not denote 
differentiation.) We decompose L into linear and nonlinear parts, L = L\ + Ln, where 

L D = f-g,+o(Ch)]e + i-t* -, o(Ch)]*. 

Then we ohiain tL\e. coniinear, time-independent boundary-value problem 

r - V x T X j + Ch* V x j - £ ] - V S P = C*. , (22a) 
/ / - 2 r - V x V x w + X , - V B r = C V . , (22b) 

f - V x V x V x j + Chr-VxVxj - Ti-Vw,- = C „ , (22c) 
ff-2f-VxVxVx5 + . t r V j P = C x - 1 (22d) 

where 

C*« = in'Tttp ~ H~3f-Vxt}B, 
«V. = - £ n - V 2 ? r - fl-2f.Vx«„, 
T x , = f - V x V x ( t i x J L n ) - H~2r-VxVxflB> 
C X u = - * V x V x ( B x £ n ) •- H~ar-VxVx(2u, 

The highest order of the derivatives in each of Eqs. (22c) and (22d) is 6 [since, e.g., 
j = VxB ^ VxVxVx[rxg)]; therefore, the system is of twelfth order. Determining 
the explicit expressions of the various curls requires tedious algebra; the results may be 
found in Ref. 19. 

O. Energy stability and the critical current 

The solution of th: Euler-Lagrange problem determines the bounding curve i{3) or, 
equivalently, J{e). The latter form is often more convenient because the point I = 0 has a 
special status. Namely, since c > 0, the quantity J^ = .7(0) determines the critical current 
below which no solution exists to the Euler-Lagrange equations. It can be shown 1 9 that 
Jc is identical io the energy stability criterion 3 , 2 1: for currents below Jt. perturbations 
of arbitrary size deray monotonirally, so finite-amplitude steady-state turbulence cannot 
exist for J < 3c- Since energy stability is a very strong requirement, it is not surprising 
that 3 is very small. Nevertheless, because Jc is the first point on the bounding curve, it 
is important to compute it: The shape of the critical eigenfunctions provides the natural 
first guess for iterative numerical solution for si.iall but nnite e. 

For 5 = 0 the right-hand sides of Eqs. (22) vanish and we are led to a linear eigenvalue 
problem. To solve this, we first Fourier transform ;n the homogeneous directions 9 and z: 
<? = £frir

,fc(7Vexp(t(TO0-t-A:Iz)) where if e { v . \ } , k = (m,kz), and kc = 2irn/L. The 
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operator A^ = — tXpV = ktJ/2 + O(Ch) plays the role of eigenvalue for fixed Jfc. From Afc 
we then obtain Jfc; the uesired critical current is Jc = inffc Jf,. 

For &, = 0 the Hartmann number can be removed by the rescaling B = H~yB', 
Af, = H_1Afc. The resulting system is somewhat analogous to Bessel's equation and must 
be solved numerically. Looking ahead to the nonlinear problem we choose the procedure 
of Lentini and Pereyra, 2 2 a variable-order, variable-step-size finite-difference method with 
deferred corrections.2 3 To ensure that the variables remain regular at the origin, we follow 
the analysis of Lentini and Keller, 2 4 Keller, 2 5 and de Hoog and Weiss.2* In this procedure 
the system is written in the form y' = r - 1 A ( r ) y -f B(r, y )y , where A and B are regular 
as r —> 0. To determine the behavior near the origin we may ignore B; then, in the 
special case that A can be diagonalized the variables z in the diagonal representation obey 
2i <x r A \ where A, is an eigenvalue of A. Regularity requires that all z's with negative A be 
set to 0. These conditions constrain linear combinations of the y's to vanish. In practice, 
we apply these conditions at r = e, where e <K 1. In the present problem A cannot be 
diagonalized for most m's; however, it can be brought to Jordan canonical form and an 
analogous procedure applied. The details are quite involved. 1 9 

The results of the critical current calculation are 1 9 that the maximizing modes arc -
m = ± 1 . n = ±2 for unit aspect ratio .4, and that Je a: 40H~1. (To date, we have 
studied only .4 = 1, which is an interesting exemplary case.) Since H may be very large 
[H ~ {jtv)~*l7), the critical current is far below the actual value observed in the RFP 
experiments \J — 0(1} in the present units:. However, the dominance of m = 1 modes is 
in agreement with both numerical simulations and experiments. Also, it is in accord with 
the speculation of Caramana 2 7 that \n\ ~ 2R/a. 

E. Single-mode bounding curve 

We now turn to the solution of the nonlinear system (22). Again, for arbitrary H 
this must be done numerically. For very large H (as in many experiments), an analytic 
calculation using singular perturbation theory is suggested'4; however, this has not been 
attempted yet. 

It is characteristic that the Euler-Lagrange equations derived from the optimum prin­
ciple have nonlineariues of special form.4 Specifically, the coefficients of Ln depend only 
on T. as do the coefficients of u or B in f ? u or i?p. Thus. Fourier transformation in 8 
and ; is still appropriate. Unlike the linear problem, however, the Fourier modes are now 
coupled through the values of the nonlinear terms, which are determined by sums over all 
modes, and it is not guaranteed that solutions with single k maximize f. Presumably such 
solutions are appropriate for I sufficiently close to 0 {J close to Jc). (This does not neces­
sarily imply that perturbation theory is adequate.) Motivated by experience with simpler 
problem?..4 it is presumed that as J is increased bifurcations eventually occur such that at 
3 = «7n n-mode solutions replace (n—l)-mode solutions as the maximizing ones. For our 
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initial analysis of this extremely complicated problem we shall consider only single-mode 
solutions. In particular, we retain only the (m,n) = (1, —2) mode, for which the rational 
surface falls inside the plasma. Furthermore, for reasons of computational simplicity we 
shall neglect in our preliminary calculations the terms describing the effects of the mean 
velocity. The resulting system is undetermined in the sense that RcBj, = CfclmBfc for 
arbitrary real <7fc. However, for the single-mode solution it can be shown that e is indepen­
dent of Cfr. It is expected that this approximation affects the final bound by an amount 
of Q{\). 

In the absence of the helicity constraint the bounding curve satisfies the similarity 
law HJ = f{Hs). The function / has been determined numerically for HJ S 2 x 10 3; 
see Ref. 18 for a graph. At the largest values of Be boundary layers are evident; this 
is consistent with the observation that the bounding curve appears to have tntered its 
asymptotic regime, being essentially linear on a log-log plot for HJ 2 5 x 10 2 . In that 
regime we obtain 

E 5 s 0 . 4 f f ° ' J 1 1 . 

Near the critical point e <xj - Jc, as can be demonstrated analytically. 

Examples of the nonlinear eigenfunctions are displayed in Ref. 19, The optimum 
profiles display field reversal for sufficiently large currents1 8; extrapolating a few data 
points obtained at modest H leads to a prediction of field reversal at a pinch parameter 
of as 1.5 for H ~ 10 s , which is quite reasonable. The optimum states are not Taylor-like 
both near the wall (as would be expected) and near the center. 

Further work must be done to explore in more detail the predictions and properties 
of the optimum states and to understand their relation to physical reality. However, we 
conclude that the energy upper bound on the turbulent emf is not unreasonable. This is 
in accord with previous experience4 with self-consistent fluid problems. An obvious but 
technically quite difficult1 9 extension of this calculation would be to include the helicity 
constraint. 

IV. DISCUSSION 

In summary, the theory of bounds is a "new" approach to the theory of plasma 
turbulence: though its history spans more than thirty years, to our knowledge the first 
discussion of it in the plasma physics literature is given in Ref. 21. Our calculations merely 
scratch the surface of possible plasma applications. Furthermore, there is renewed interest 
in the Hounding technique in general because of its possible marriage with other approaches 
such a& constrained decimation. 2 8 , 2 9 Although space does not permit a description of the 
techniques that have been proposed 1 2 for obtaining nontrivial lower bounds and extending 
the method to homogeneous turbulence, it is clear that such calculations would be highly 
desirable. In general, the theory of bounds on turbulent transport present-; a fertile and 
challenging area for further research. 
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