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ABSTRACT

The fundamental problem in the theory of turbulent transport is to find the flux T'
of a quantity such as heat. Methods based on statistical closures are mired in conceptual
controversies and practical difficulties. However, it is possible to bound I' by employing
constraints derived rigorously from the equations of motion. Brief reviews of the general
theory and its application to passive advection are given. Then, a detailed application is
made to anomalous resistivity generated by self-consistent turbulence in a reversed-field
pinch. A nonlinear variationa! principle for an upper bound on the turbulent electromotive
force for fixed current is formulated from the magnetohydrodynamic equations in cylin-
drical geometry. Numerical solution of a case constrained solely by energy balance leads
to a reasonable bound and nonlinear eigenfunctions that share intriguing features with
experimental data: the dominani mode numbers appear to be correct, and field reversal is
predicted at reasonable values of the pinch parameter. Although open questions remais,
upon considering all bouunding calculations to date one can conclude, remarkably, that
global energy balance constrains transport sufficiently so that bounds derived therefrom
are not unreasonable and that bounding calculations are feasible even for involved practical
problems. The potential of the method has hardly been tapped; it provides a fertile area
for future research.
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I. INTRODUCTION

In this article we discuss applications of the theory of rigorous bounds on transport!=*
due to steadyv-state turbulence. The method provides an intriguing alternative to the more
familiar approaches based on statistical closure approximations.® Fer a closely related but
less mathematical discussion, see Ref. 7.

A. The generic transport problem

Consider for definiteness the prototypical dissipative nonlinear equation
9 -
B—;T(z,t) + Velu(a, )T} — kV2T = 0. (1)

We distinguish two possibilities for the advecting field u, which for definiteness we assume
to be solenonidal (V-u = 0). If u is a functional of T, the problem is called “self-consistent”;
otherwise, © must be specified externally and the problem is called “passive.” In both
cases one assumes that Eq. (1) exhibits statistical behavior, so it is relevant to introduce
ensemble and/or spatial averaging operations, Statistical behavier may arise because of
random initial conditions, intrinsic stochasticity, or, for passive advection, because u is
assumed by fiat {0 be a random variable.

We assume that the statistics are homogeneous in all directions but z. In the z di-
rection we assume that inhomogeneous, statisticallv sharp boundaty conditions such as
T(z=0,t) = To, T(z=L,t) = Ty (T1 # Tp) are imposed such that a nontrivial steady-
state profile (T)(z) is assured. W allow no sources on the right-hand side of Eq. (i).
This precludes the possibility that 9{T)/dx is constant; the fluctuations are intrinsicallv
inhomogeneous, and the fundamental nonlinearity in the theory is the self.consistent ad-
justment of the profile to the fluctuations. Although extensions to homogeneous turbulence
are possible, they are quite difficult and have not vet been developed: we shall not discuss
them here,

For a complete statistical description of Eq. (1) one requires the joint probability dis-
tribution functional P{T,u,t}. However, besides being verv difficult to obtain, P provides
an overabundance of detailed information; one is generally contemt with much less. For
example. the transport problem can be defined from the mean continuity equation;

o]
a’(T) -— V'r(_(n = O.

where we have assumed (u) = 0. The angular brackets denote a spatial average aver the
homogeneous directions (for self-consistent problems) or an ensemble average (for passive
problems). The total flux I, is z-directed because of the symmetry assumptions: Lo, =



#T;.. Let us normalize = to L, u to urms = (a2)"/? [where & = u — (u)], and T to
AT = Ty — T. Then Ty, is the sum of a classical part I'y and an advective part I, where

rd = _R"lg’(ﬂ, (23)
Oz

=D, (2b)
and R = uymeL/k is a generic Reynolds-like number.

In steady state Eq. (1) reduces to 8. /0z = 0, or [, = constant. This constant is a
functional of the fluctuations. To see this, observe that because of the special form (2a) it is
useful to define the barring operation 4 = [,'dz A(z), so that Ty = —R™? [ d2 (T)'(z) =
R~ is entirely known in terms of the {statistically sharp) boundary conditions. Then,
upon barring

Twot = Ta(z) + ['(z) = constant, 3)

we find : _
ot =R'+T, (4)

in which the only unknown is T. Determining T is the principal goal of a transport theory.

For future use, note that Eqs. (3) and (4) can be combined to express the mean profile
in terms of the fluctuations:
(T

—E—=1—RAF, (5)

where Al'(z) = I'(z) - T.

B. Difficulties with conventional approaches

One obvious way of determining T is to numerically integrate {many realizations of )
Eq. (1), then to compute explicitly the ensemble and spatial averages. This procedure is
nontrivial because of statistical noise and because the realizations need not be smooth.
These difficulties are demonstrated explicitly in Ref. 8, where a one-dimensional version
of Eq. (1) is studied in detail. A more subtle procedure is to determine analytically an
approximate equation for I'{z}, then solve that equation (probably numerically) and finally
spatially average the solution to compute ', A variety of techniques exist for constructing
such reduced descriptions; their difficulties have been discussed extensively, See Refs. 9
and 6 for reviews with many references. For a discussion oriented specifically to the
transport problem, see Ref. 7.



C. The “optimum” variational method

An alternative approach to the transport problem is suggested by the familiar observa-
tion that Eq. (1) determines an infinite hierarchy relating statistical moments of different
orders. Thus, an infinity of constraints!® must be satisfied in order to uniquely deter-
mine P{T,u,t} and, ultimately, the transport. Note, however, that most of the relations
constrain extremelyv subtle details of P and may be practically unimportant for the quan-
titative prediction of low-order moments such as T. Optimistically, one could hope that
just one or a small number of judiciously chosen constraints would suffice to predict T
reasonably well.

For the specific problem of thermal convection, Malkus speculated®? that the steady-
state flux was the mazimum of all possible solutions of Eq. (1) subject to the boundary
conditions. Such a criterion is difficult to formulate analytically and furthermore turns out
to be false except in certain limiting cases. However, it captures the right intuitive idea and
suggests a possible way of proceeding. Indeed, by somewhat inverting the logic, Howard®
arrived at a nonlinear variational principle that was both rigorous and useful in practice.
He posed the question “What is the maximum T subject to a finite subset of the infinity of
constraints?” Let us denote such a bound by 5. Of course, in the absence of any constraint
at all the function space of all possible fields @(«x) and T(#) subject only to the boundary
conditions is too vast; since such fields can be scaled arbitrarily, the unconstrained bound
is infinity. However, Howard showed that one can demonstrate constrained variational
problems that lead to finite 7, and the rigorous nature of the formulation guarantees that
72T

In principle, further useful information would follow by bounding T from below as
well as from above. Unfortunately, this problem is quite difficult. A Jower bound for T
is 0, and any moment constraint is satisfied by the zero solution. Kraichnan has proposed
sophisticated techniques to overcome this problem,’? but they remain to be fully developed.
In the rest of this discussion we shall consider only bounds from above,

Conventionally, a fundamental constraint is derived from the steady.state balance
of production P, trensfer T, and dissipaticn D. By definition, production is related to
the interaction of the mean fields with the fluctuations, transfer describes conservative
advection of the fluctuations, and dissipation is positive-definite when averaged over space.
Although these quantities can be defined at various orders in the moment hierarchy, it is
simplest and conventional to define them from the evolution equaticn of the variance of
the fluctuations. One begins by multiplying the exact equation for the fluctuations,

8 ~ - . ~
ET(:’ )= V(BT -uaT - (aT)) -~ R'9T = 0.
by T(=. t) (at the same point in space and time); upon ensemble-averaging, one obtains
d
Es(z,t) = P(z,t) ~ T(x,1) - D(z,1), (6)
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where we have defined £ = (T3)/2, P = ~T(2)0:(T), T = —8,{ii.(T/2)), and D =
—R-YT V?T). The troublescne term here is T, a triplet correlation function that dc
scribes mode-mode coupling and advection of fluctuations from point to point. In statisti-
cal closure theory one attempts to approximate 7°(z). By contrast, in the present method
one appeals to the conservative nature of T and the sharp boundary conditions to obtain
rigorously T = 0. Therefore, by barring Eq. (6) one obtains in steady state the constraint
that global dissipation balances global production:

P=D. (7

Krommes and Smith® have called this the “basic” constraint, (It is often thought of as an
energy balance, but £ need not be the physical fluctuation energy; it might, for example,
be more closely related to entropy production.) Note that the unknown, spatially varying
profile can be eliminated from P in favor of the fluctuations by using Eq. {5), so

P = {1 = RAT) =T - RAT% (8)
also, upon integrating by parts and using the boundary conditions one obtains the positive-
definite form —_—

D= R-1(|vj'"|’). 9)

With the aid of Egs. (8) and (9), one can rewrite Eq. (7) in the form

T= R-l(cv:ﬂ’) + RAT?, (10)

demonstrating that T' is non-negative. This requirement is essential for successful use of
the bounding method.

The simplest variational principle is, therefore, to maximize T subject to the basic
constraint (7). If one employs the method of Lagrange multipliers, this amounts to max-
imizing the functional ¥{T,@%} = T + MP — D). In this form the result is more general
than its derivation from the specific equation (1).

One must inquire whether this single constraint is sufficient. First, note that the cru-
cial term in Eg. (10) is ATZ2, which unlike the other two terms is of fourth order in the
fluctuations. This is the fundamental nonlinearity mentioned above. It turns out that for
self-consistent problems the competition between second- and fourth-order terms is essen-
tial for obtaining a finite bound; when (T)' is taken to be constant (= —1). AT vanishes
and there is sufficient freedom that the bound is infinity. Kraichnan has pointed out!?
that for this case, which includes homogeneous turbulence. one must consider higher-order
moments, but this is very difficult and has not vet been carried out. For passive problems,
one can still obtain a finite bound® for constant (T}'. but it is not very useful.

The basic constraint is not necessarily sufficient, even {or inhomogeneous problems. In
general, when u is passive the basic constraint is enough to produce a well-posed variational
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problem with a finite bound.® Self-consistent problems are more involved. Depending on
the particular form of the dynamical equations and the chosen definition of £, often a
second constraint is necessary in order to adequately pin down the relation between 4
and T. However, in Sec. III we describe an example for which the basic constraint is

sufficient.

Note that the basic theory produces time-independent Euler-Lagrange equations. This
is a qualitative difference from the true physics. It means that the solutions of the Euler-
Lagrange equations are at best suggestive of reality; however, one expects that they cor-
rectly capture aspects of the spatial dependence of an instantaneous snapshot of the true
solution. One might find it remarkable that a time-independent theory can make rigorous
predictions about equations that fluctuate randomly in time.

Since Howard’s original work, the optimum approach has been applied to a variety
of problems of interest in fluid dynamics; these were reviewed by Busse.? All of the
calculations described by Busse were seif-consistent and Jed to rather difficult problems in
applied mathematics. (We shall see an example of such a calculation in Sec. III below.)
However, the problem of passive advection is also of interest. It arises in a number of
physical contexts, including the important problem of transport in specified stochastic
magnetic fields, and it illustrates the method with a minimum of mathematical complexity.
We shall briefly review results on the passive problem.

1. BOUNDS FOR PASSIVE ADVECTION

The general theory of bounds for passive advection was given by Krommes and
Smith® (KS). Although passive problems are in general simpler than self-consistent ones, in
one sense they are more difficult: Whereas for self-consistent problems the autocorretation
time and/or length of % can be computed self-consistently in terms of solely Reynolds’
number, for passive problems the correlation function of & can be specified, thereby in-
troducing extra parameters. As an example, KS considered a reference model, a version
of Eq. (1) in which the velocity field is taken to be a one-dimensional, centered Gaussian
random variable %(¢) with (in suitable dimensionless units) unit variance and autocorre-
lation time XK (Kubo uumber). This model can be solved exactly, either analyticallv® for
K = 00 or numericallv.® For K = o<, the basic bound F, is about 25% tco high in the
werst case B — oc. This is considered to be excellent agreement in view of the simplicity
of the calculation. {The direct-interaction approximation ieads to a somewhal more pre-
cise resuit.® but at the cost of considerably more labor.) For finite K the basic bound is
qualitatively deficient: since it is constructed from equal-time and equal-space moments, it
cannot contain information about the dynamical eflects of finite correlation times and/or
lengths related to the advecting velocity. Krommes and Smith pointed out that in this
situation it was essential to invoke a fwo-time constraint: they implemented a simple one.
Upon solving an unusual integral equation, they found 37! = 77! + 7. where 7, is the
quasilinear flux that is the true answer for K — 0. This result is intuitively reasonable; it

-6 -



reduces naturally to both limits X — oc and K — 0. However, it must be stressed that
this is much more than just a plausible interpolation formula; it is the rigorous bound on
the flux predicted by Eq. (1) (under the particular two-time constraint that was employed).

As a practical example, when the one-point basic bound is applied to the generic
problem of particle transport in specified stochastic magnetic fields!® one obtains® the
scaling correct for the strong turbulence regime. To do better and recover the familiar
quasilinear result'4*? in the usual approximation of static fields one must employ a two-
space-point constraint. Kim and Krommes have shown how to do this.?

. SELF-CONSISTENT BOUND FOR THE TURBULENT ELEC-
TROMOTIVE FORCE IN REVERSED-FIELD PINCHES

We would now like to gain experience with a self-consistent calculation relevant to
plasma physics. As we have emphasized, the version of the bounding theory we dascribe
here applies to problems in which the mean profile is imposed by inhomogeneous bound-
arv conditions and js self-consistent with the fluctuations. This precludes its direct use
for studies of turbulence in a region whose dimensions are small compared to macroscopic
svstem size.® For example, models of homogeneous turbulence with constant background
gradient and periodic boundary conditions cannot be treated with the present method.
Rather, what is needed is a macroscopic system with statistically sharp boundary con-
ditions at the walls and describable uniformly in space by one “simpie” set of partial
diflerential equations. Such a model is furnished by the reversed-field pinch!® (RFP) in
the resistive magnetohydrodynamic {MHD) description. This problem is of considerable
theoretical and practical interest. Taylor’s theory of relaxation in the presence of global
helicity conservation'® has had considerable success in predicting features of the RFP such
as field reversal. Montgomery and Phillips have explored related principles.!” However. it
must be noted that none of these principles is rigorous, and they have little to say about
the details of the underlving turbulence. The optimum theory offers intriguing possibilities
for going bevond such work. First, it is entirely rigorous, Second, to the extent that the
optimum variational principle reflects phvsical reality it makes definite statements about
the nonlinear fluctuations. Unfortunately, the extent to which this is true is difficult to
predict a priori. so experience and, ultimately, much deeper insights are desirable. We
shall now explore the:predictions of the basic bound. However, since the calculation is
quite involved we can only present the highlights here. An initial account of this work can
be found in Ref. 18. For more details, see Ref. 19.

A. The MHD description and turbulent electromotive force

Consider a cylindrical pinch described by resistive, viscous. incompressible MHD.
Ohm’s law is
Eey — E—-c'uxB =17j, {11}



where E.x: = z Eq is an external driving field and E is the internal field produced by the
plasma. The resistivity 7 is (unrealistically) assumed to be constant. We shall assume that
V-u = 0, so the mass density p is constant. We also model the dissipative siress tensor as
isotropic, assuming the kinematic viscosity v to be constant. The momentum equation is
then

(31(2 + u-V)u = -V(P/p) + (pc) '§ xB + vV?u. (32a)

(Although it has been argued that compressibility may be important for a precise de-
scription of field reversal,?® reversal is still possible in the incompressible model, which
leads to major analytic simplifications.) We consider cylindrica) geometry {r,8,z) with
constant toroidal field By. It is convenient to introduce as units of time, space, and
magnetic field the resistive-diffusion time 7, = 4ma?/nc?, the minor radius ¢, and Bp.
If we also introduce the viscous-diffusion time 7, = a?/v and an Alfvén transit time
Ta = a/ca, where ci = B§/41rp, then it is natural to introduce as dimensionless param-
eters the magnetic Prandtl number P, = Tn/7 /7 = 4mv/nc® and the Ha.rtma.nn number
= (my7/T3)Y2 = (a®B3/2nvp)*/2. Then in terms of the vorticity w = ¥ X1 one can
wnte Eq. (12a) as ‘

8
P,;‘EH = -VP + P;'uxw + H2j XxB ~ VXw, (12b)

where P' = P/p + P7*u?/2. We also have the (pre-)Maxwell equations
oB

V E = ——at—, (138.)
VxB=j, (13b)
V-B =0. {13¢)

In addition to the assumnption of steady state, we assume statistical homogeneity in
the # and z directions. This, together with regularity at r = 0, significantly constrains
the form of the mean fields. For example. since &(...)/88 = 8(...)/8z = 0. Eq. (13c)
reduces to r~!8(r{B,))/8r = 0. the regular solution of which is (H,) = 0. Similariv, we
find (u,; = (Jr. = {wr) = 0. Since in steady state VX (E) = 0 from Eq. (13a), we must
have (E; = ~V{y) ox #. From these results we deduce that {E) + (u)X{B) « 7. Because
of the presence of viscosity. we assume that (u) vanishes at the wali.

As bounaary conditions on the fluctuations we shall assume that all fields are regular
at r = 0 and that at the wall &i = B, = 1-)(_1 = 0. Other choices are possible and the issue
is a difficult one.’9:1% The present choice allows us to demonstrate the use of the optimum
principle with a minimum of complications.



We are now prepared to recognize the analogies to tts generic transport problem
sketched in Sec. 1.A. Indeed, the curl of Eq. {11),

&9‘13 - Ux(uxB)-nV2B =0,

is analogous to Eq. (1). We shall assume that the total axial current is fixed and treat Eg
as a derived quantity. In this way one may treat the current as the driving force, analogous
to AT in the generic problem; E, is analogous to the total flux I'y,;. More quantitatively,
consider the mean Ohms’ law

Eex + (E) + (u)X(B) = (3) + Q, (14)

-~

where Q(r) = (BXxii)(r). The z component of Eq. (14) leads to
By = (o)) + £(r), (15)

where £(r) = Q.(r) [¢f. Eq. (2b)]; Eq. (15) should be compared with Eqgs. (3) and {2). In
cylindrical geometry the natural barring operation is 4 = 2 f(: drr A(r). The driving force
is then the mean axial current density J = (j;). Upon barring Eq. (15), we obtain the

alternative form of Ohm’s law
Ev=T+5 (16)

cf. Eq. (4). Upon combining Egs. (15) and (16}, we obtain
(#z) = T - Ag;

cf. Eq. (5). For future use, we can use this result and (j.) = 0 to deduce

Q=J:- (32 + ). (17)

B. Energy constraint

For the basic constraint we use the energy functional {(#? + B?)/2) and seek an upper
bound on £ constraired by global energy balance. To determine the energy constraint we
begin with the fluctuating parts of the curls of Egs. (11) and (12):

8 ~ . ~ ~ ~.
EB=inux(B)—(u)xB—(BXu.—Q)—JJ‘, (18)
o . —~ . a ga L m ga sy
Pglau=—VP’—_P,;I:_u.X{w)—Lu‘,fo-(uXU-(uXw));

+ H*GFx!By+ (j)xB + (FxB - GxB)) - Vxa. (19)
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Upon adding the scalar products of Eq. (18) with B and Eq. (19) with & and barring the
result, we are led to the steady-state condition

> [é (#2(1B7) + P.;‘()ﬁr’))} =0=0e = WG + H°GNQ - (B2(iiF) + (15F) ).
where G = H*(Bx3) + P;l(@xu), The mean of Eq. (12) can be used to show t(,lfgz

(in steady state) ~(u)-G = |{w)]® = 22. This result and Eq. {17) can then be used to
demonstrate that £ > 0, analogous to Eq. (10). After considerable algebra an explicit
formula for £2 in terms of the fluctuations can be obtained.!® Analogous manipulations
lead one to & helicity balance constraint i, Although we shall not deal with the helicity
constraint in this work, it may be helpful 1o show in the equations to follow where the
effects of that constraint would enter [terms of ©((y)]. For more discussion, see Ref. 19.

C. Variational principle

We consider then the variational p‘roblemz Maximize

A(it, B) = £ + AgCg + MuCh = Au(2){ T 8) + Ag(2)(V-B)
for fixed 7. After some algebra, the Euler-Lagrange equaticns can be cast into the form

0=Vxj+(j—iixL - H 20y + Vg, (21a)

0= *Ox&+BxL-H %0y + Vi, (21b)
where A x A, .

L= ["Qﬂ + O(Ch)\e - 'lj‘.CJ ~ 205+ O'Ch)“:'!

2, = 682/8v for v € {ﬁ,ﬁ}, ¢h = J(An/Ae) (in the absence of the helicity constraint,
(o =0),and { =1+ Ag' + O(¢). A relation between ¢ and the fluctuations can be

obtained'® by manipulating the expressions for é-ﬁi;’ 6B and -§A/64. For ¢, = 0, one

is eventually led to
(=2 [( 3%y - H"(W’)] :

It is convenient to eliminate Ag and Ay by applying the operators #(VX)" (n = |
ar 2} to Eqs. (21). However, we must still ensure that the associated solenoidal constraints
V-B and V-u remain satisfied. Therefore. we adopt the representation

B = VUx(f,p)~VXVx(Fr5)

-10 -



and similarly for ti. (For ¥ and x, the subscripis B or u 2:e just labels; they do not denote
differentiation.) We decompose L into linszr and nonlinear parts, L = Ly + Ly, where

Ly = 33¢ + 9(¢n)b,
Lo = (~Qy + O((n))0 + [—Ae - O(¢n))2.

Then we ahiain the coniiteas, time-independent boundarv-value problem

FVXY XJ + (F VXS - L), =Cyp, (222)

H % OxVxs+ L-VB, =0, (22b)
FUXVXTX] + P TXVX] ~ L1 Vi, = Cyp, (22¢)
H % UXVXVXT + LV, =Gy, (22d)

where

Cya = LoV, - H™2%-Ux 02,

Cy, = —Ln'VB, - H-%#.V %y,

e = PRV X(UXL,) - H 25 UXVX2p,
Cy. = —*VXVX(BXL,) - H 24 VX VXY

The highest order of the derivatives in each of FEqs. (22c) and (22d) is 6 [since, e.g.,
3=VxB ~ VXVXVx{fxg)); therefore, the sysiem is of twelfth order. Determining
the explicit expressions of the various curls requires tedicus algebra; the results may be

found in Ref. 19.

0. Energv stability and the critical current

The solution of th: Euler-Lagrange problem determines the bounding curve £(J) or,
equivalently, J(%). The latter form is often more ccnvenient because the point # = Q has a
special status. Namely, since £ > 0, the guantity J. = J(0) determines the critical current
telow which no solution exists to the Euler-Lagrange equations. It can be shown'® {hat
J- is identical io the energy stability criterion®?!: for currents below J.. perturbations
of arbitrary size decav monotenirally, so finite-amplitude steady-staie turbulence cannot
exist for J < J.. Since energy stability is a very strong requirement. it is not surprising
that J. is very small. Nevertheless, because J, is the first point on the bounding curve, it
is important to compute jt: The shape of the critical eigenfunctions provides the natural
first guess for iterative numerical solution for siaall but finite &.

For # = 0 the right-hand sides of Egs. (22) vanich and we are led to a linear eigenvalue

problem. To solve this, we first Fourier transform in the homogeneous directions # and z:
¢ = 35 Ph(r,2xpli(mb+k,z)) where ¢ & {v.x}. k = (m,k;), and k, = 2wn/L. The
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operator Ay = —iL1+V = k,J /2 + O(({n) plays the role of eigenvalue for fixed k. From Aj
we then obtain Jj; the desirad eritical current is J. = infg Jp-

For {, = 0 the Hartmann rumber can be removed by the rescaling B=H"H,
Ay = H™1A},. The resulting system is somewhat analogous to Bessel's equation and must
be solved numerically. Looking ahead to the nonlinear problem we choose the procedure
of Lentini and Pereyra,2? a variable-order, variable-step-size finite-difference meihod with
deferred corrections.?® To ensure that the variables remain regular at the origin, we follow
the analysis of Lentini and Keller,?* Keller,?® and de Hoog and Weiss.?® In this procedure
the system is written in the form y' = r~1A(r)y + B(r,y)y, where A and B are regular
as r — 0. To determine the behavior near the origin we may ignore B; then, in the
special cace that A can be diagonalized the variables z in the diagonal representation obey
z; & rA+, where A; is an eigenvalue of A. Regularity requires that all z’s with negative A be
set to 0. These conditions constrain linear combinations of the y's to vanish. In practice,
we apply these conditions at r = ¢, where ¢ €« 1. In the present problem A cannot be
diagonalized for most m’s; however, it can be brought to Jordan canonical form and an
analogous procedure applied. The details are quite involved.!?

The results of the critical current calculation are’® that the maximizing modes are
m = +1. n = %2 for unit aspect ratio 4, and that J. = 40H~!. {To date, we have
studied only 4 = 1, which is an interesting exemplary case.) Since H may be very large
[H ~ (mqv)~1/2), the critical current is far below the actual value observed in the RFP
experiments {J = (1) in the present units!. However, the dominance of m = 1 modes is
in agreement with both numerical simulations and experiments. Also, it is in accord with
the speculation of Caramana?®’ that [n! ~ 2R/a.

E. Single-mode bounding curve

We now turn to the solution of the nonlinear system (22). Again, for arbitrary H
this must be done numerically. For very large K (as in many experiruents), an analytic
calculation using singular perturbation theory is suggested®; however, this has not been
attempted yet.

It is characteristic that the Euler-Lagrange equations derived from the optimum prin-
ciple have nonlinearities of special fozm." Specifically, the coefficients of L, depend only
on 7, as do the coeflicients of 4 or B in 2y, or 2. Thus, Fourier transformation in 6
and :z is still appropriate. Unlike the linear problem. however. the Fourier modes are now
coupled through the values of the nonlinear terms, which are determined by sums over all
modes, and it is not guaranteed that solutions with single k maximize . Presumably such
solutions are appropriate for £ sufficiently close to 0 (J close to J.). {This does not neces-
sarily imply that perturbation theory is adequate.) Motivated by experience with simpler
problems.? it is presumed that as J is increased bifurcations eventually occur such that at
J = J. n-mode solutions replace (n—1)-mode solutions as the maximizing ones. For our
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initial analysis of this extremely complicated problem we shall consider only single-mode
solutions. In particular, we retain only the {m,n) = (1, —2) mode, for which the rational
surface falls inside the plasma. Furthermore, for reasons of computational simplicity we
shall neglect in our preliminary calculations the terms describing the effects of the mean
velocity. The resulting system is undetermined in the sense that Re By, = Cilm By, for
arbitrary real Cp,. However, for the single-mode solution it can be shown that £ is indepen-
dent of Cg. It is expected that this approximation affects the final bound by an amount

of O(1).

In the absence of the helicity constraint the boundiag curve satisfies the similarity
law HJ = f(HE). The function f has been determined numerically for HJ < 2 x 105%;
see Ref. 18 for a graph. At the largest values of HE boundary layers are evident; this
is consisient with the observation that the bounding curve appears to have catered its
asymptotic regime, being essentially linear on a log-log plot for H7 = 5 x 102, In that

regime we obtain
Ex 0.4HO g,

Near the critical point € < J — J¢, a5 can be demonstrated analytically.

Examples of the nonlinear eigenfunctions are displayed in Ref. 19. The optimum
profiles display field reversal for sufficiently large currents'®; extrapolating a few data
points obtained at modest H leads to a prediction of field reversal at a pinch parameter
of = 1.5 for H ~ 10°%, which is quite reasonable. The optimum states are not Taylor-like
both near the wall (as would be expected) and near the center.

Further work must be done to explore in more detail the predictions and properties
of the optimum states and to understand their relation to physical reality. However, we
conclade that the energy upper bound on the turbulent emf is not unreasonable. This is
in accord with previcus experience? with self-consistent fluid problems. An obvious but
technically quite difficult?? extension of this caiculation would be to include the helicity
constraint.

IV. DISCUSSION

In summary, the theory of bounds is a “new” approach to the theory of plasma
turbulence: though its history spans more than thirty vears, to our knowledge the first
discussion of it in the plasma physics literature is given in Ref. 21. Qur calculations merely
scratch the surface of possible plasma applications. Furthermore, there is renewed interest
in the hounding technique in general because of its possible marriage with other approaches
such as constrained decimation.?®?® Although space does not permit a description of the
techniques that have been proposed’? for obtaining nontrivial lower bounds and extending
the method to homogeneous turbulence, it is clear that such calculations would be highly
desirable. In general, the theory of bounds on turbulent transport present- a fertile and
challenging area for further research.
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