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ABSTRACT 
Significant mechanfcal reactions and deflections may be produced when 

electrical eddy currents induced in a conducting structure by transformer-like 
electromotive forces interact with background magnetic fields. Additional 
eddy currents induced by structural motion through the background fields 
modify both the mechanical and electrical dynamic behavior of the system. The 
observed effects of these motional eddy currents are sometimes referred to as 
magnetic damping and magnetic stiffness. This paper addresses the coupled 
structural deformation and eddy currents in flat plates and simple two-
dimensional surfaces in three-space. A coupled system of equations has been 
formulated using finite element techniques for the mechanical aspects and a 
mesh network method for the electrical aspects of the problem. 

INTRODUCTION 
In connection with the design of fusion reactor components, we have 

previously determined that Independent models of the mechanical and electrical 
dynamic responses of a conducting structure in a magnetic field can, in some 
cases, greatly overpredict the actual response of a system. 1 , 2 This situation 
is often found in the internal environment of a tokamak when a relatively 
small, perpendicular, magnetic field induces eddy currents by transformer 
action in a platelike conductor that is subjected to an essentially constant, 
relatively large, parallel, magnetic field. The initial eddy currents 
interact with the parallel field to produce Lorentz forces that move the 
structure, but the motion of the structure through the parallel field induces 
additional eddy currents that will tend to oppose the motion as prescribed by 
Lenr's law. 

We refer to this Intimate coupling of the mechanical and electrical 
behavior of a system as magnetomechanical coupling, however, some authors 
describe the same phenomena as electromagnetomechanical, electromechanical, or 
just magnetic coupling. Depending on the characteristics of a given system, 
magnetomechanical coupling can produce, significant frequency shifts from the 
natural modes of structural vibration and also heavy damping. These effects 
are often referred to as magnetic stiffness and magnetic damping, 
respectively. 
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In order to improve our analytic capability, we have been developing 
models that include the effect of magnetomechanical coupling. Although the 
models can be used for general field orientations, we have been primarily 
interested in investigating structures subjected to a transient, 
perpendicular, magnetic field and a constant, parallel, magnetic field, where 
both external fields are assumed independent of any eddy currents in the 
model. 

Reference 1 presents a coupled model for the rigid-body rotation of a 
loop or plate. Reference 2 presents a coupled model for the elastic 
deflection of a cantilever. For the rigid-body model it was possible to write 
one mechanical and one electrical equation that could be solved 
simultaneously. For the cantilever model t^e mechanical characteristics were 
modeled using a one-dimensional series of finite elements, and the electrical 
characteristics were modeled using a one-dimensional network of meshes. The 
coupling terms were derived so as to be consistent with both representations. 

In this paper we extend our methods to a two-dimensional surface. In 
similarity to the cantilever, the mechanical characteristics are modeled by 
two-dimensional finite elements, and the electrical characteristics are 
modeled by a lumped-parameter mesh network. We will first derive the 
generalized mechanical formulation for a general system and then give specific 
examples of magnetomechanical coupling to an external field for the rigid-body 
loop/plate model, the elastic cantilever model, and an elastic rectangular 
plate. An additional example is given of internal magnetomechanical coupling 
for a model consisting of two small, coaxial loops. 

GENERALIZED MECHANICS FORMULATION 
Along with his many other contributions to electromagnetic science, James 

Clerk Maxwell pioneered the treatment of an electromechanical system with the 
methods of generalized mechanics.^ We will assume that the reader is familiar 
with the fundamentals of thfs subject and not attempt a review here; however, 
References 4 and 5, and many other excellent texts, give detailed developments 
of the basic relationships that we have employed 1n this paper. 

We will generally use the notation that brackets Indicate a matrix: [M]; 
braces indicate a column vector: {*); a diacritical dot indicates 
differentiation with respect to time: {5}, {x}; and a superscript prime 
indicates a transpose: [H]', tx}'. 
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We will consider a magnetomechanical system that is represented 
mechanically by a node-element model and electrically by a mesh network model 
that is coincident with the mechanical model. This system can be 
characterized by generalized coordinates: 

(r) = r^, i = 1 to r, where each r̂  is a mechanical generalized 
coordinate specifying translation or rotation of the system at a node, 
and I is the total degrees of mechanical freedom in the system, e.g., 
each node has between 1 to 6 degrees of freedom (x,y,z,9 ,8 ,8 ). 

x y z 
tq} * qj. J = 1 to J, where each qj is an electrical generalized 

coordinate specifying the electrical charge of a mesh and J is the total 
meshes in the system. 

Additional parameters are defined in the Nomenclature Section using the same 
convention that i subscripts refer to mechanical coordinates and j subscripts 
refer to electrical coordinates. 

For this system we can write the mechanical kinetic energy, the 
mechanical potential energy, and the magnetic potential energy as: 

T • 1/2 {r}' [M] {r} , (1) 

V = 1/2 {r}' [K] {r} , (2) 

U = W Iq) + 1/2 {q}' HI {q} . (3) 

We can express the Lagranglan function for this system in its most 
general form without capadtlve terms or Internal emf sources as 

A = T - V + 0 . (4) 

If any mechanical dissipative forces or electrical dissipative voltage drops 
exist, they can be expressed in vector form as 

{d} = - [D] {r} (5) 
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and 

let =• - [R] {q} (6) 

and 

We can then write two sets of Lagrange's equations: 

or <-^-> " I F : = di • i - i " i . 
ar. i 

(7) 

aq,- H J 
(8) 

in evaluating derivatives, me assume that [M], [K], [D], and [R] are symmetric 
and invariant and that [L] is symmetric and not an explicit function of 
time. For the moment we will consider that [L] may vary with displacement of 
the system as, for example, in a model consisting of two independent plates 
that are allowed to rotate as rigid bodies mechanically independent of each 
other. We can then rewrite Eqs. (7) and {8) in matrix form as 

CM] {r> + [10 {r} - £C]' lq} - 1/2 [£]' iq> = - [D] {?J (9) 

and 

{•§£} + ccj {p} + a : (q> + CE] {f> =• - m iq> , (10) 

where we have employed the coupling matrices 

r 

CC] 

3* 1 

3r, 

3*. 

an, 

3* 
*T a r - ' •-377 

M 2 

8 r l 

3 « 2 . 

w2 

. 3 » 2 

^ 1 

3r. 

(U) 
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and 

[E] = [ ilp-CUtq}} (fpTLHq}} . . . {fjr-CUfq}} ] . (12} 

We refer to [C] as the external magnetomechanical coupling matrix and to [£ ] 
as the internal raagnetomechanical coupling matrix. Note that the [E] terms in 
Eqs. (9) and (10) are not l inear, because [E] contains {q} . 

Equations (9) and (10) express in par t icu lar ly powerful form the coupling 
relationships that must exist in any model. Although [C] and [E] multiply 
generalized velocity terms, they are not dissipative quantit ies as are [D] and 
[ R ] , but enter into the system matrix in a unique manner that preserves the 
conservative nature of the system. The negative transpose relationship for 
[C] was previously noted in Ref. 2 for the cantilever beam and was also 
mentioned by Miya. 6 Nondlssipative generalized velocity terms such as [C3 are 
sometimes described as gyroscop ic^ and the i r interaction as gyroscopic 
coupl ing. 9 A similar negative transpose relationship with a factor of one 
half is observed for [EJ„ 

I f one extracts [C] and [C] ' Independently for a given model, then the 
matrices can be checked to Insure that they are related as above. 
Al ternat ively, i f one can extract either [C] or I t s transpose for a given 
system, one can immediately write the corresponding coupling term. Similar 
statements can be made for [E] and [ E ] ' . 

RIGID-BODY LOOP/PLATE EXAMPLE 

Figure 1 shows the basic geometry of the r1g1d-body, rectangular loop or 
plate models that are described In detail in Refs. 1 and 10. The loop or 
p la te, ly ing I n i t i a l l y 1n the x«y plane, is subjected to a uniform, constant 
B„ f i e ld and a uniform, transient B z f i e l d , while restrained by a rotational 
spring. In th is system the matrices [C ] , [D ] , [ K ] , [ L ] , CM], and [R] reduce 
to single, constant values and no [E] terms are present. Standard formulas 
were used for the loop to f ind the mass moment of Inert ia M, self-inductance 
L, and resistance R. Additional formulas were derived empirically for the 
plate using the SPARK eddy current code H » 1 2 with a f inely meshed model to 
match the plate decay time constant, total current, and net torque to 
effect ive loop values of area A, inductance L, and resistance R. 
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We can express Eqs. (9) and (10) for this system, with e x = rotation 
angle about r, axis and q = total current flowing around the loop/plate, as 

M6 X + K8 x - Cq = - D§ x (13) 

and 

f* + C6 x + Lq = - Rq . (14) 

The net magnetic flux passing through a loop of area A is given by 

4 = AB cos 9 - AB sin e . (15) 

Using Eq. (11) we can write for this system 

C = | | = - ABZ sin 9X - ABy cos ©x . (16) 

We can also write 

| | = A§z cos 9X - Aft sin 9 X . (17) 

We can calculate t'ne Lorentz forces on the individual line elements of a 
rectangular loop using the relationship 

F - It x S , (18) 

where F is force in newtons, t is length in meter*, and B is a uniform 
magnetic Held in tesla. Using Eq. (18) we find the net Lorentz torque Cq on 
the loop about the x axis to be 
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Cq = (-ABZ Sin 8 x - AB y cos9 x) q . (19) 

Comparing Eqs. (16) and (19) we see that the coupling relationship checks for 
this system. Alternatively, we could have started with the Lagrangian 
function for this system, 

A = | M e x - { K e 2 + « q t { L q 2 , (20) 

and used Eqs. (7) and (8) to derive the magnetomechanical coupling terms along 
with Eqs. (13) and (14). 

ELASTIC CANTILEVER EXAMPLE 
Figures 2 and 3 illustrate the basic geometry of the cantilever model 

that is presented in detail in Ref. 2. The cantilever, lying initially in the 
x-z plane, is subjected to a uniform, constant B x field and a uniform, 
transient By field. Figure 4 shows a typical displaced position of the 
cantilever. Each node has two degrees of freedom: y translation 
and 8 rotation. The original node at the fixed end has no degrees of freedom 
and is not used in computations. In this system the matrices [C], [D], [K], 
[L], [M], and [R] are constant and no [E] terms are present. 

A general element 1n the system consists of two nodes and one mesh, 
except the element at the fixed end which has only one active node. The 
vector of mechanical generalized coordinates, {r}, is arranged 
a s tyr 9z 1' y 2 : 8z 2' * ' * ̂ r 9z 1^" Similarly, the generalized force 
vector is arranged as: L"F y > 1; ?Zty ?y2\ ? z l \ • • . F y > ] ; r

z > i ^ W e u s e d 

standard, consistent element matrices for the mass matrix [M] and the 
stiffness matrix [K] that are given in Ref. 2. 

The geometry of the electrical network In this example was chosen so that 
the self-inductances would all be Identical and a simple, repetitive pattern 
would exist among the mutual inductances. This geometry also produces a 
similar relationship for the resistance matrix [R], 
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The self-inductance terms of [L] were calculated with he rectangular 
plate formula approximations that were empirically derived in the rigid-body 
loop/plate analysis. Mutual inductances were calculated by using the 
effective area formula to determine an effective dipole moment per unit 
current for each mesh. The mesh centroid-to-centroid distances were then used 
to f ind approximate mesh fluxes with the ideal dipole f i e ld formula. 

These approximations introduce complexities into the coupling matrices 
and w i l l not be used here. Instead, we assume that accurate mesh fluxes are 
determined by SPARK or similar code computations. Although the general 
deformed shape between nodes fs not a f l a t surface, because of Gauss's 
divergence theorem, the net flux through an element only depends on the 
perimeter and not the shape of the surface, and we can choose any convenient 
surface for determining the f l ux . Thus, the external mesh flux can be 
expressed using the angle a shown in Fig. 4. For a general element with mesh 
j between node i and f+1, we can wri te 

tan a * (y. + 1 - y , ) / (x , + 1 - x f) . (21) 

Since the x . ' s are constant in th is system, we are only considering small 
deflections and the tan « can be used to approximate the sin a with the 
cos a = 1. Since A. = a ( x . + , - x . ) , the f lux through the general element is 

•j = A A - a 8 x { y i+ i ' y i } ' (22) 

We can also write 

3*, 

Equation (22) shows that the mesh flux in this system is independent of 
the ft rotations of the nodes. Using Eq, (11) we can write row j of [C] as 

CO; . . .; 0; aB x; 0; -afix; 0; . . .; 0] , (24) 

where the first nonzero term occurs in column (21). The complete matrix is 
shown in Table I. 



9 

In a similar manner to the rigid-body example, we can calculate the 
Lorentz forces on the individual l ine elements of a mesh using Eq. ( IS) . For 
the general node i between meshes j - 1 and j , we can write the net force in the 
y direction as 

Fy,i = a V V l J 8x • ( 2 5 ) 

Recalling from Eq. (9) that the force vector is [c]' {q} we can write row (2"i) 
of [CJ' as 

[0; . . .; 0; -aB x; aB x; 0, . . .; 0] , (26) 

where the first nonzero term occurs in column j-1. Since no moments are 
produced on each line element in this uniform field example, each row (2i+I) 
is all zeroes. The complete matrix is shown in Table II. Comparison of 
Tables I and II shows that [C] is consistent with both the mechanical and 
electrical subsystems for this example. 

ELASTIC RECTANGULAR PLATE EXAMPLE 
Figure 5 shows a rectangular plate model that lies initially in the x-y 

plane and a general element j consisting of nodes ij, ij, 13, and i 4. Each 
node has three degrees of freedom: z translation, e rotation, and 8 

x y 
ro tat ion. This system must be constrained at one or more nodes to have a 
well-defined mechanical set of equations. The plate 1s subjected to B x , 8 y , 
and Bz f i e lds . We w i l l allow Bz to be uniform in space, but time-varying, B x 

and B y w i l l be constant in time and they can vary l inear ly with x or y . In 
th is system the matrices [C ] , [D ] , [K ] , [ L ] , [H ] , and [R] are constant and no 
[£} terms are present. 

We arrange the mechanical generalized coordinates as 

{ r } • t z l ' e x , l 5 9 y , l : z 2 : 9 x , 2 ; 9 y , 2 : • ' ' z v \ v 6 y / ( Z 7 } 

and the generalized force vector as 

{ F> " t F z , r r x , l : r y , l : F

Z , 2 : r x , 2 : r y , 2 : • • • F z , r r x , I : I y , l J ' . <M> 



10 

Standard, consistent CM] and [K] representations for this element can be foun-̂  
U* Ref. 13. 

It is possible to modify the method used to calculate the LI.. a id [ftl 
values for the cantilever, if a similar, regular mesh is chosen. Howe, r, for 
a general mesh network, Step 1 of the SPARK cod.' produces [L] and [P] In a 
straightforward manner. Other similar network mesh cedes may aJro ba suitable 
for this purpose. SPARK calculates mutual inductances ay numerically 
integrating the magnetic vector potential around a mesh. This can produce 
slight, artificial asymmetries in [L], but a symmetric matrix can be obtained 
by averaging [L] and [L]'. A symmetric tR] is always produced by SPARK. 

We will consider the submatrix of [CJ for one general element. The 
complete matrix can be generated by the addition of the submatrices for all 
the elements. In general we will have forces and moments at each node of an 
element. We will calculate nodal loads using the work-equivalent load 
method. 1** 1^ We have previously used this technique to produce nodal loads 
with the SPARK code. 

In conformity with ths electrical model, we assume that electrical 
currents only flow in the branch lines between nodes. The branches form the 
boundaries of the mechanical elements and, thus, the Lorentz forces only 
appear on the element boundaries. On the boundaries of the plate element of 
Ref. 13 the shape functions ...reduce to cubic polynomials that are identical to 
the shape functions for a simple beam.* 6*^ we will refer to the beam shape 
functions directly in our following analysis. 

Ignoring in-plane loads, since we only allow z deformation, we will 
determine the concentrated moments and forces that when applied to the nodes 
of a branch produce the same work as the total distributed load along the 
branch. A branch of length i is described using the coordinate s that starts 
at node 1 with the value 0 and ends at node 2 with the value A. The usual 
Hermitian shape functions for a general branch are 



il 

n z l ( s ) 
N 9 1 ( S ) 

N z 2 fs) 

N e 2(s) 

= < 

1 - 3 s 2 / i 2 + 2 s 3 / * 3 

s - 2 s 2 / i + s 3 / * 2 

3 s 2 / i 2 - 2 s 3 / i 3 

- s 2 / * + s 3 / * 2 

(29) 

For a distr ibuted transverse load w(s) along a branch, the equivalent nodal 
loads are given by 

r / J w(s)N z l(s)ds 

'2J 

= < 

J* w(s)N 9 1 (s)ds 

/Jw(s)K z 2{s)ds 

/Jw(s)N e 2{s)ds 

(30) 

In th is system the direct ion of the moments is given by the cross product of 
the vector from node 1 to node 2 into a vector in the direction of posit ive 
loads. For the branch ( i j ; i 2 ) of the, general mesh with i = x 2 - x j , the 
Lorentz distr ibuted load is given by 

w(s) - { [ByOgJ-Byd jJ ls / l + B y (1 j ) } q j . 

Evaluating the integrals in Eq. 30 we get 

U/20) [78^1^+38^(1 2 ) ] 

0 

(-t 2/60)[3B y(i 1)+2B y(i 2)] 

0 

[(t 2 /60) [2By(i1)+3By{i2)] j 

(31) 

w 
W < y v • = q r 

<VV 
W .w. 

(32} 
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Similar expressions to Eq. (3Z) can be derived for the other three 
branches of the general mesh. Summing the branch results and dividing 
by q. gives the nonzero values in column j of [c] 1 in Eq. (9). The net result 
for the general mesh is given in Table III. 

Direct evaluation of [C] in Eq. (10) can be done by recalling Gauss's 
divergence theorem. The original perimeter of the general mesh is deformed as 
its member branches are deflected, but we can describe a general branch 
deflection with the shape functions in Eq. (29) as 

z(s) = [N z l(s), N 9 l ( s ) , N zg(s), N 9 2(s)] ( » : (33) 

V 
Since [C] consists of the spatial derivatives of the mesh fluxes, the original 
perimeter can be neglected and only the variable flux produced by the branch 
deformations evaluated. For a general branch this flux is 

A* = J* B(s)z(s)ds , (34) 

where B(s) is the magnetic field normal to the area mapped out by the beam 
deformation. 

Consideration of Eq. (31) for branch (1j; i 2) of the general mesh shows 
that, In general, 

B(s) = w(s)/q3- . (35) 

Taking the time derivative of Eq. (34) and using Eqs. (30), (33), and (35) we 
get 

(36) 

^.e f l 
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The row vector divided by q. in Eq. (36) corresponds exactly to the 
branch contribution to column j in [C]'. As with Eq. (32) we can derive 
similar expressions to Eq. (36) for each branch of the general mesh. Summing 
the branch results gives us the nonzero elements in row j of [C]. Thus, for 
each branch of every mesh vie get an exact correspondence between a row of [C] 
and a column of [C]'as desired. We note that this result does not depend on 
the particular degrees of freedom or shape functions chosen for this 
example. A similar correspondence can be shown for each degree of freedom of 
a general element. 

TWO SMALL, CIRCULAR, COAXIAL LOOPS EXAMPLE 
Since all the other examples demonstrate the external magnetomechanical 

coupling matrix [C] and have no internal magnetomechanical coupling matrix 
[E], in the interest of completeness, we give an example here that has only an 
[E] and no [C], Figure 6 shows two small, circular, filamentary coils located 
coaxially on the z axis. The symmetry of the system allows us to use the 
cylindrical coordinate p for radial position from the z axis. We assume that 
the coils are located far enough apart to allow the magnetic field from each 
coil to be determined using a dipole field approximation. 

Coil 1 carries current q.,, has a radius of a,, and is allowed to move 
only along z restrained by a linear spring constant k, about equilibrium 
position Zj, Coil 2 carries current q_, has a radius of a 2, and is allowed to 
move only along z restrained by a linear spring constant kj about equilibrium 
position Zp. 

The magnetic flux through coil 1 due to coil 2 is given by 

•(1,2) = 1/2 u 0» a* a| q g (Zg-Zj)" 3 , (37) 

and the magnetic flux through coil 2 due to coil 1 is given by 

•(2,1) = 1/2 n 0n *\ i\ q x (z^Zj)" 3 • (38) 

Using Gauss's divergence theorem we can calculate the radial f ields at 
coi l 1 and coi l 2 as 
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V 1 ' 2 5 •l a*(i.2) 
ZiaT 3z. -3/4 u 0 aj a | q z ( z ? - Z i ; 

and 

(39) 

V 2 ' 1 , a ^ ^ f e r 1 • + 3 ' 4 ^ » i S « i < v z

t 

,-4 (40) 

The forces on coi l 1 and coil 2 are then given by 

fVM.1 ( 
F z (2 , l ) 

2»aj 4 iB p ( l .Z) 

-2na 2 qgB p (2, l) 
= < 

3 / 2 U o , a 2 a | q i q 2 ( Z 2 - Z ] ) - 4 1 ^ 

.2.2 
/ 3 / 2 V a l W 2 ( 2 2 - 2 l > ~ , 

41) 

Similarly, the spatially dependent flux derivative term in Eq. (10) is 
given by 

CE] {;:)= 
a«(l.2) 

a z l 
33(2,1) 

az, 
atfz.D 

ffi. (42) 

Evaluating [E] in Eq. (42) we get 

[E] • 
Z 2 

V a l a 2 '3/2 q 2 - 3 / 2 q 2 ' 

3/2 q. -3/2 q 
U 

(43) 

I t is readily checked that the force term in Eq. (9) agrees with Eq. 

(41): 

IF , (2 , I ) J Lq» J • 

(44) 
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Since the inductance terms are just magnetic flux per unit current and 
the self-inductances are constant values, we could also have found [E] by 
using Eq. (12). 

EXTENSIONS TO MORE COMPLICATED SURFACES 
The basic technique described in the examples of converting distributed 

branch transverse loads to equivalent nodal loads is equally applicable to 
nonrectangular elements and nonflat surfaces or 3-D networks. In fact. Step 5 
of the SPARK code already produces three fluxes and three moments in the 
global coordinate system at each node of an arbitrary surface of triangles 
and/or quadrilaterals. SPARK also generates [L] and [R] for this system, 
however, no magnetomechanical coupling is employed. 

When using an electrical mesh network method some topological 
considerations must be taken Into account that have no mechanical 
counterpart. Surface holes must be included as electrical meshes, and non-
planar topologies, such as a sphere or torus, require special electrical 
loops. Fortunately, these procedures do not effect the mechanical 
equations. Nevertheless, finding an appropriate element for a particular 
surface along with its mass and stiffness matrices can be difficult. 

Even relatively small coupled problems require large amounts of computer 
storage. The CC], [01, [X], [Ml, and [(?! matrices are generally sparse whi7e 
[E] and [L] are generally dense. The most efficient solution techniques for 
large problems are machine dependent. Trade-offs in problem size versus 
solution speed are necessary even on supercomputers. 

CONCLUSION 
Conducting structures in magnetic fields have been modeled with 

generalized coordinates as systems of equations that include the 
magnetomechanical coupling terms. For a given model, mechanical aspects have 
been formulated using a finite element method, and electrical aspects have 
been formulated using a mesh network method. Coupling terms have been derived 
using techniques consistent with both methods. The matrix of mechanical 
coupling terms has been shown to be readily derivable from the matrix of 
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electrical coupling terms and vice versa. For external field coupling, a 
negative transpose relationship exists between the matrices. For internal 
field coupling an additional factor of one half is required. 
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NOMENCLATURE 
A = area (m^). 
[C] = external magnetomechanical coupling matrix (J x I): (Wb/m). 
[D] = mechanical damping matrix (I x I) (N-s/m or N-m-s/rad). 
df = mechanical dissipative force (N or N-m). 
[E] = internal magnetomechanical coupling matrix (J * I); (Wb/m). 
ej = electrical dissipative voltage drop (V) 
F = mechanical force (N). 
I = total degrees of mechanical freedom in system. 
J = total meshes in system. 
[K] = mechanical stiffness matrix (I * I); (N/m or N-m/rad). 
[L] = mesh inductance matrix (J x J); (H). 
t - branch length (m). 
[M] = mass matrix (I x I); (kg or kg-m 2/rad). 
N = shape function (dimensionless). 
q̂  = electrical generalized coordinate (C). 
[R] = mesh resistance matrix (J x J); (a). 
r^ = mechanical generalized coordinate (m or rad). 
s = local branch coordinate (m). 
t = time (s). 
T =• mechanical kinetic energy (J). 
U = magnetic potential energy (J). 
V = mechanical potential energy (J). 
w(s) = local distributed transverse loading function (N/m). 
x,y,z = rectangular coordinates (m). 
r = mechanical moment (N-m). 
9 ,9 ,8 = angle of rotation about x,y,z axes, respectively (rad). 
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lagrangian function {J). 
external magnetic flux through mesh (Wb). 
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TABLE I 

MATRIX [C] FOR CANTILEVER EXAMPLE 

(aBJ 

-1 0 0 0 0 
+1 0 -1 0 Q 

0 0 +1 0 -1 
0 +1 

- I 0 0 0 0 0 
+ 1 0 - 1 0 0 0 

0 0 + 1 0 - 1 0 
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TABLE I I 

MATRIX [ C ] 1 FOR CANTILEVER EXAMPLE. 

(aBJ 

- 1 + 1 0 0 
O O O O 
0 - 1 + 1 0 
0 0 0 0 

0 -1 +1 0 
0 0 0 0 
0 0 -1 +1 
0 0 0 0 
0 0 0 -1 
0 0 0 0 



TABLE III 
NONZERO ELEMENTS OF COLUMN j OF [C]' FOR THE RECTANGULAR PLATE EXAMPLE 

(1/qV) 

where: 

F z d 2 ) 
r*<i2> 
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F 2(i 3) 
rxd3) 
r y(i 3) 
F Z(T 4) 

r y(i 4) 

*i = x(i2) 
^2 = yd 3) 

*3 = x(i 3) 
*.. = y(i-) 

(1/20) 
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Fig. 1 . Rigid-body, rotat ing 
loop/plate example. 
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Fig. 2. Basic canti lever beam model. 
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Fig. 3. I l l us t ra t i ve problem characterizations: overlapping e lect r ica l 
meshes ( top) , e lectr ica l branch network (middle), and mechanical 
beam series (bottom). 
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Fig. 4. Example of a deflected beam with detail of typical mesh/panel 
element. 
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Fig. 5. Rectangular plate example with typical mesh j consisting of nodes: 
i], ''?» 13, and i^. 
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#86EOI06 
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Fig. 6. Two small, coaxial, circular loops example. 
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