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ABSTRACT

Significant mechanical reactions and deflections may be produced when
electrical eddy currents induced in & conducting structure by transformer-like
electromotive forces interact with background magnetic fields, Additional
eddy currents induced by structural motion through the background fields
modify both the mechanical and electrical dynamic behavior of the system, The
observed effects of these motional eddy currents are sometimes referred to as
magnetic damping and magnetic stiffness. This paper addresses the coupled
structural deformation and eddy currents in flat plates and simple two-
dimensional surfaces in three-space, A coupled system of equations has been
formulated using finite element techniques for the mechanical aspects and a
mesh network method for the electrical aspects of the problem.

INTRODUCTION

In connection with the design of fusion reactor components, we have
previously determined that 1ndependent models of the mechanical and electrical
dynamic responses of 2 conducting structure in a magnetic field can, in some
cases, greatly overpredict the actual response of a sysi:em.l'2 This situation
is often found in the internal environment of a tokamak when a relatively
small, perpendicular, magnetic field induces eddy currents by transformer
action in a platelike conductor that is subjected to an essentially constant,
relatively large, parallel, magnetic fieid. The initial eddy currents
interact with the parallel field to produce Lorentz forces that move the
structure, but the motion of the structure through the paraliel field induces
additional eddy currents that will tend to oppose the motion as prescribed by
Lenz's Taw.

We refer to this intimate coupling of the mechanical and electrical
behavior of a system as magnetomechanical ccupling, howaver, some authors
describe the same phenomena as electromagnetomechanical, electromechanical, or
just magnetic coupling. Depending on the characteristics of a given system,
magnetomechanical coupling can produce. significant frequency shifts from the
natural modes of structural vibration aﬁd alsa heavy damping, These effects
are often referred to as magnetic stiffness and magnetic damping,
respectively,



In order to improve our analytic capability, we nave been developing
models that include the effect of magnetomechanical coupling, Although the
models can be used for general field orientations, we have been primarily
interested 1in  investigating structures suhjected to a transient,
perpendicular, magnetic field and a constant, parallel, magnetic field, where
both external fields are assumed independent of any eddy currents in the
model .

Reference 1 presents a ccupled model for the rigid-bady rotation of a
loop or plate. Reference 2 presents a coupled model for the elastic
deflection of a cantilever. For the rigid-body model it was possible to write
one mechanical and one electrical equation that could be solved
simultaneously. For the cantilever model the mechanical characteristics were
modeled using a2 one-dimensional series of finite elements, and the electrical
characteristics were modeled using a one-dimensional network of meshes, The
coupling terms were derived so as to be consistent with both representations.

In this paper we extend our methods to a two-dimensional surface, In
similarity to the cantilever, the mechanical characteristics are modeled by
two-dimensional finite elements, and the electrical characteristics are
modeled by a lumped-parameter mesh network. We will first derive the
general ized mechanical formulation for a general system and then give specific
examples of magnetomechanrical coupling to an external field for the rigid-body
Toop/plate model, the elastic cantilever model, and an elastic rectangular
plate. An additional example is given of internal magnetomechanical coupling
for a mode! consisting of two small, coaxial loops.

GENERALIZED MECHANICS FORMULATION

Along with his many other contributions to electromagnetic science, James
Clerk Maxwell pioneered the treatment of an electromechanical system with the
methods of generalized mechanics.3 We will assume that the reader is familiar
with the fundamentals of this subject and not attempt a review here; hawever,
References 4 and 5, and many other excellent texts, give detailed developments
of the basic relationships that we have employed In this paper.

We will generally use the notation that brackets indicate a matrix: [M];
braces indicate a column vector: {x}; a diacritical dot indicates
differentiation with respect to time: {X}, {x}: and a superscript prime
indicates a transpose: {M}', {x}'.



We will consider a magnetomechanical system that is5 represented
mechanically by a node-element model and electrically by a mesh network mode!
that is coincident with the mechanical model. This system can be
characterized by generalized coordinates:

{r}=r;, 1 =1 to I, where each r; is a mechanical generalized
coordinate specifying translation or rotation of the system at a node,
and I is the total degrees of mechanical freedom in the system, e.g.,
each node has between 1 to 6 degrees of freedom (x.y.z,ax,ey,az).

{q} = 95 j = 1 to J, where each gj is an electrical generalized
coordinate specifying the electrical charge of a mesh and J is the total
meshes in the system.

Additional parameters are defined in the MNomenciature Section using the same
conventfon that i subscripts refer to mechanical coordinates and j subscripts
refer to electrical coordinates.

Far this system we can write the mechanical kinetic energy, the
mechanical potential energy, and the magnetic potential energy as:

T=1/2 {fF}' [M] {F}, (1)
V=12 {r} [K] {r}, (2)
U= {8} 1Q) + 1/2 (g3 L) {9} . (3)

We can express the Lagrangian function for this system in its most
general form without capacitive terms or internal emf sources as

A=T-V+U, ) (4)

If any mechanical dissipative forces or electrical dissipative voltage drops
exist, they can be expressed in vector form as

{d} = - D] (r} (5)



and
fe} = - [R] {q} . (6)
We can then write two sets of Lagrange's equations:
Ly -2 -g, is1tor, ' (7)
. i
3
and
gf(i{‘—)-—gﬁf=ej, j=1tod. (8)
J

3

In avaluating derivatives, we assume that [M3, [K3, [D], and [R] are symmetric
and invariant and that [L] is symmetric and not an explicit function of
time, For the moment we will consider that [L] may vary with displacement of
the system as, fur example, in a model consisting of two independent plates
that are allowed to rotate as rigid bodies mechanically independent of each
other. We can then rewrite Eqs. (7) and {8) in matrix form as

M) (r} + [KD {r} - [€]' (@) - /2 [E]* {4} = - [D] (P} (9}
and
@1+ [C] 7 + (L] (g} + [E] ) = - [R) (@) , (10)

where we have employed the coupling matrices

[' -
3?{ ary 3Fy
ar ar ar
1= | L2, T (11)
i ar1 arz BrI |




and
(el = | Bt Brd@) - . - By ] (12)

We refer ta [C] as the external magnetomechanical coupling matrix and to [£]
as the internal magnetomechanical coupling matrix. Note that the [E] terms in
Egs. (9) and (10) are not linear, becausa [E] contains {g}.

Equations {9) and {1D) express in particularly powerful form the coupling
relationships that must exist in any model. Although [C] and [EJ multiply
generalized velocity terms, thay are not dissipative quantities as are [0] and
{R], but enter into the system matrix in 2 unique manner that preserves the
conservative nature of the system, The negative traaspase relationship for
[C] was previously noted in Ref. 2 for the cantilever beam and was also
mentioned by Miya.5 Nondissipative genaralized velocity terms such as [C] are
sometimes described as gyroscop1c7-B and their interaction as gyroscopic
coup]ing.9 A similar negative transpose relationship with a factor of one
half is observed for [EJ.

If ane extracts [C] and [C]' independently for a given model, then the
matrices can be checked to insure that they are related as above.
Alternatively, if one can extract either [C] or 1its transpose for a given
system, one can immediately write the corresponding coupling term. Similar
statements can be made for [E] and [E)'.

RIGID-BODY LOCP/PLATE EXAMPLE

Figure 1 shows the basic geometry of the rigid-body, rectangular loop or
plate models that are described in detail in Refs. 1 and 10. The loop or
plate, lying initially fn the x-y plane, is subjected to a uniform, constant
By field and a uniform, transient 8, field, while restrained by a rotationa)
spring. In this system the matpices [C], [P], [K]. [L], [M], and [R] reduce
to single, constant values and no [E] terms are present. Standard formulas
were used for the loop to find the mass moment of inertia M, self-inductance
L, and resistance R, Additional formulas were derived empirically for the
plate using the SPARK eddy current code 1,12 yith a finely meshed model to
match the plate decay time constant, total current, and net torque to
effective 1oop values of area A, inductance L, and resistance R,



We can express Eqs. (9) and (10) for this system, with 6, = rotation
angle about x axis and § = total current flowing around the loop/plate, as

Me, + K8, - Cq = - D& (13)
and

%, ra c ot

3t Cex +Lg=-~-Ry. (14)

The net magnetic flux passing through a loop of area A is given by

o = ABZ cos o - ABy sin o, . (15)

Using Eq. (11) we can write for this system
c=22=_aB sinag - AB, cos 6 (16)
30, F4 X Y X °

We can also write

%

5 AEZ cos 8, - Agy sir 8, . {17)

We can calcuiate the Lorentz forces on the individual line elements of a
ractangular loop using the relationship

FaJex8, (18)
where F i5 force in newtons, 2 is lergth in meters, and B is a uniform

magnetic field in tesla. Using Eq. {18) we find the net Lorentz torque Cg an
the laop about the x axis to be



Cq = (-ABz sin 8, - ABy cosax) q. (19)

Comparing Eqs. {16) and (19) we see that the coupling relationship checks for
this system. Alternatively, we could have started with the Lagrangian
function for this system,

. 1, . .
A=gME ~zkotradedL (20)

and used £9s. (7) and (8) to derive the magnetomechanical coupling terms along
with Eqs. {13) and (14).

ELASTIC CANTILEVER EXAMPLE

Figures 2 and 3 illustrate the basic geometry of the cantilever model
that is presented in detail in Ref, 2. The cantilever, lying initially in the
x-z plane, is subjected to a uniform, constant B, field and a uniform,
transient qy field. Figure & shows a typical displaced position of the
cantilever, Each node has two degrees of freedom: y translation
and 8, rotation. The original rode at the fixed end has no degrees of freedom
and 35 not used in computations. In this system the matrices [C}, [D], TX],
(L], [M], and [R] are constant and no [E] terms are present.

A general element in the sSystem consists of two nodes and one mesh,
except the element at the fixed end which has only one active node, The
vector of mechanical aeneralized cocrdinates, {r}, is arranged
as [yl; ez.l; Ypi 92,2; SRS I H az.I]' Similarly, the generalized force

vector s arranged as: [Fy.l; rz.l; Fy’z; Fz,z; . e Fy,l; rz,I]' We used
standard, consistent element matrices for the mass matrix [M] and the
stiffress matrix [K] that are given in Ref. 2.

The geometry of the electrical network in this axample was chosen so that
the self-inductances would all be identical and a simple, repetitive pattern
would exist among the mutual inductances. This geometry also produces a
sim{lar relatfonship for the resistance matrix [R].



The self-inductance terms of [L] were calculated with -he rectangular
plate formula approximations that were empirically derived in the rigid-bady
loop/plate analysis. Mutuval inductances were calculated by using the
effective area formula to determine an effective dipole moment per unit
current far each mesh. The mesh centroid-to-centroid distances were then used
to find approximate mesh fluxes with the ideal dipole field formula.

These approximations introduce complexities into the coupling matrices
and will not be used here, Instead, we assume that accurate mesh fluxes are
determined by SPARK or similar code computations. Although the general
deformed shape between nodes is nat a flat surface, becauyse of Gauss's
divergence theorem, the net flux through an element anly depends on the
perimeter and not the shape of the surface, and we can choose any convenient
surface for determining the flux. Thus, the external mesh flux can be
expressed using the angle a shown in Fig. 4. For a general element with mesh
J between node i and i+1, we can write

tan a = [y7+1 - yi)/[xi+1 - xiJ . {21)

Since the xi's are constant in this system, we are only considering small
deflections and the tan a can be used to approximate the sin « with the
cos a=1, Since Aj = a(xi+1-xi) ,» the flux through the general element is

oy = Ajey -8B (Yy4y - ¥5) o (22)

We can also write ,

aej - .
ETl = AjB_Y - de (_V1+1 - y,) . {23)

Equation {22) shows that the mesh flux in this system is independent of
the 62 rotations of the nodes. Using €9, (11) we can write row j of [C] as

[0; « s e 0; an; D: 'an: O; e oy 0] N (24)

where the first nonzero term occurs in column (2i). The ¢omplete matrix is
chown in Table I.



In a similar manner to the rigid-body example, we can calculate the
Lorentz forces on the individual line elements of a mesh using Eq. (18), For
the general node i between meshes j-1 and j, we can write the net force in the
y direction as

Fy,i =@ (qj - qj_l) 8, - (25)
Recalling from Eq. (9) that the force vector is [C]' {q} we can write row (2i]
of {C]' as

[0 .« . .; 0; -aB_; aB,; 0, . ..; 0], {26)

X
where the first nonzero term occurs in column j-1. Since no moments are
produced on each tine element in this uniform fiald example, each row (2i+l)
is all zeroes. The complete matrix is shown in Table II, Comparison of
Tables I and II shows that [C] is consistent with both the mechanical and
electrical subsystems for this example.

ELASTIC RECTANGULAR PLATE EXAMPLE

Figure 5 shows a rectangular plate model that lies initially in the x-y
plane and a general element j consisting of nodes i1, 12, ig, and 14. Each
node has three degrees of freedom: z2 translation, ex rotation, and &
rotation, This system must be constrained at one or more nodes to have a
well-defined mechanical set of equations, The plate is subjected to 8,, 8,
and B, fields. We will allow B, to be uniform in space, but time-varying, By
and By will be constant in time and they can vary linearly with x or y. In
this system the matrices [C], [D3, [K], (L), [M), and [R] are constant and no
[£] terms are present.

We arrange the mechanical generalized coordinates as

r} = [21;81,1;ey,l;ZZ;ex,Z;ey,Z; “ v zl;ex,l;ey,l] (27}
and the generalized force vector as
(F} = [Fz,l‘rx,l‘ry,l‘Fz,z‘rx,2°ry,2‘ C e . FZ’I;rX’I;ry,I] ) {28)
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Standard, consistent [M] and (K] representations far this element can be foun.
in Ref, 13.

It is possible to modify the method used to calculata the [L! ayd (R
values for the cantilever, if a similar, regular mesh is chosen., Howe..r, for
a general mesh network, Step 1 of the SPARK cod. produces [L] and [R] in a
straightforward manner, Other similar network mesh ccdes may alca be suitable
for this purpose. SPARK calculates mutual indictances oy numerically
integrating the magnetic vector potential around & mesh, This can produce
stight, artificial asymmetries in [L], but a symmetric matrix can be obtained
by averaging (L} and [L]'. A symmetric [R] 1s always produced by SPARK,

We will consider the submatrix of [C] for one general element. The
complete matrix can be generated by the addition of the submatrices for all
the elements. 1In general we will have forces and moments at each node of an
efement, We will calculate nodal loads using the work-equivalent 1load
method. 1415 e have previously used this technique to produce nodal loads
with the SPARK code.

In conformity with tha electrical model, we assume that electrical
currents only flow in the branch lines between nodes. The branches form the
boundaries of the mechanical elements and, thus, the Lorentz forces only
appear on the element boundaries. {Jn the boundaries of the plate element of
Ref. 13 the shape functions reduce to cubic poiynomials that are identical to
the shape functions for.Q simpte beam.}8:17 e wiil refer to the beam shape
functions directly in our following analysis,

Ignoring in-plane loads, since we only allow z deformation, we will
determine the concentrated moments and forces that when applied to the nodes
of a branch produce the same work as the total distributed l0ad along the
branch. A branch of length % is described using the coordinate s that starts
at node 1 with the value 0 and ends at node 2 with the value %, The usual
Hermitian shape functions faor a general branch are



i1

erl(s) 1 - 352742 + 263743
Nel(s) 5 - 252/9. + s"’/u2
4 = 3
Nyy(s) 352742 - 253753 (29)
2 3,2 -

For a distributed transverse load w(s) along a branch, the equivalent nodal
loads are given by

~

fFl ] (fg W(SIN, (5)ds

r J [5 w(s)Ng, (s)ds (30]

2 fgw(s)sz(s)ds

) | JEn(5)Ng,(s)ds

In this system the direction of the moments is given by the cross product of
the vector from node 1 to node 2 into a vector in the direction of positive
loads. For the branch (11; iz) of the general mesh with £ = x, + x;, the
Lorentz distributed load is given by

w(s) = {[B,(i,)-8,(1)}]s/2 + B (1,)} §; . (31

Evaluating the integrals in Eq. 30 we get

'Fz(il) ] ( (t/20)[78y(1‘1)+38y(1'2)] 1
r (i) 0

T riip) b= g (-!.2/60)[SBy(il)+ZBy(iz)] b (32)
Falig) (4720) (38, (1,)+78, (1,}]
r iy 0

| 1,015 | L(LZIGO) (28, (1,438, 01,)] |
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Similar expressions to Eg. (32) can be derived for the other three
branches of the general mesh.  Summing the branch results and dividing
by &j gives the nonzero values in column j of [C]* in Eq. (9). The net result
for the general mesh is given in Table IlI.

Direct evaluation of [C] in Eq. (10) can be done by recalling Gauss's
divergence theorem. The original perimeter of the general mesh is deformed as
its member branches are deflected, but we can describe a general branch
deflaction with the shape functions in Eq, (29} as

z{s) = [Nzl(s), Ngp(s)s Noo(s), Ngo(s)] 1 (33)

Since [€] consists of the spatial derivatives of the mesh fluxes, the origina)
perimeter can be neglected and only the variable flux produced by the branch
deformations evaluated., For a general branch this flux is

se = [2 B(s)z(s)ds , g (34)
where B(s) is the magnetic field normal to the area mapped out by the beam
deformation,

Consideration of Eq. (31) for bramch (i;; i,) of the general mesh shows
that, in general,

B(s) = w(s)/&j . (35)

Taking the time derivative of Eq. (34) and using Eqs. {30), (33}, and (35) we
get

N

Lis

e,

N @
N N =

l»—-

Pe
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The row vector divided by &j in Eq. (38) corresponds exactly to the
branch contribution to column j in {C]'., As with Eg., (32) we can derive
similar expressions to Eq. (36) for each branch of the general mesh. Summing
the branch results gives us the nonzero elements in row j of [C). Thus, for
each branch of every mesh we get an exact correspondence between 3 row of [T}
and a column of [C]'as desired, We note that this result dees not depend on
the particular degrees of freedom or shape functions chosen for this
exampie, A similar correspondence can be shown for each degree of freedom of
a general element, '

TWO SMALL, CIRCULAR, COAXIAL LOOPS EXAMPLE

Since all the other examples demonstrate the external magnetomechanical
coupling matrix [C] and have no interpal magnetomechanical coupling matrix
[E], in the interest of completeness, we give an example here that has only an
[E] and na [C]. Figure 6 shows two small, circular, filamentary coils located
coaxially on the z axis. The symmetry of the system allows us to use the
cylindrical coordinate p for radial position from the z axis. We assume that
the coils are located far enough apart to allow the magnetic field from each
coil to be determined using a dipole field approximation,

Coil 1 carries current &1, has a radius of ay, and is allawed to move
onty along z restrained by a linear spring constant kl about 2quilibrium

pasition zZy. Coil 2 carries current ﬁz, has a radius of a,, and is allowed to
move only along z restrained by a Tlinear spring constant kz about eguiiibrium

position Zg.

The magnetic flux through coil 1 due ta coil 2 is given by
= 2,2 ¢ -3
"(1,2) = 1/2 IJO"T al ae q2 (22‘21) ’ (37)
and the magnetic flux through coil 2 due to cofl 1 is given by
0(2,1) = 172 uyr a a2 &) (2p-2)73 . (38)

Using Gauss's divergence theorem we can calculate the radial fields at
coil 1 and coil 2 as
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. ol a1,2) 2 s -4
30(1.2) ?EEI 37, I8y, 8y 2, dp fz?-zl) {39)
and
- =1 23¢#(2,1) . 2 . . -4
Bp(Z,I) -Z“_‘I’E—JEE—— +3/4 by 3] 2 93 (7.2 ZI) . {40)
The forces aon coil 1 and cofl 2 are then given by
(F.(1,2) -2ma, 4,8 (1,2) 32y a2l 8,(2,-2,) "
PARE 1 Q1% M3 229 98 27Ty (31)
F.(2,1) 2na, 4,8 (2,1) 324 nalad, 4, (2,-2,)" "
AL 2 2%\ 0" 1%291% 274 .
Similarly, the spatially dependent flux derivative term in £q, (10) fis
given by
21 3¢(1,2) 38(1,2) 21
[E] { } = 9z, 3z, .
2, 2, J . (42)
38(2,1) 3{2,1)
iz, 3z, .

Evaluating [E] in Eq. (42) we get

2.2 . »
[E] - HyTaja; C3r2 q; -3/2 qz—.] (e3)

7z . .
(zy-2;) 3249, -329q

1t is readiiy checked that the force term in Eq. (9) agrees with Eq.
{41):

F.{1,2) q (44)
{ 2! }:1/2 [E]‘{,l}
Fz(znl) q2 .
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Since the inductance terms are just magnetic flux per unit current and
the self-inductances are constant values, we could also have found [E] by
using Eq. (12).

EXTENSIONS TO MORE COMPLICATED SURFACES

The basic technique described in the exampies of converting distributed
branch transverse loads to equivalent nodal Toads is equally applicable to
nonrectangular elements and nonflat surfaces or 3-D networks. In fact, Step 5
of the SPARK code already produces three fluxes and three moments fin the
global coordinate system at each node of an arbitrary surface of triangles
and/or quadrilaterals. SPARK also generates [L] and [R] for this system,
however, no magnetomechanical coupling is employed.

When wusing an electrical mesh network method some topological
cansiderations must be taken into account that have no mechanical
counterpart. Surface holes must be included as electrical meshes, and non-
planar topologies, such as a sphere or torus, require special electrical
loops, Fortunately, these procedures do not effect the mechanical
equations,  Nevertheless, finding an appropriate element for a particular
surface along with its mass and stiffness matrizes can be difficult,

Even relatively small coupled problems require large amounts of computer
storage, The [C], [0], [K1, [M}, and [R] matrices are generally sparse while
[£] and [L) are generally dense. The most efficient solution techniques for
targe problems are machine dependent., Trade-offs in problem size versus
solution speed are necessary even on supercomputers.

CONCLUSION

Conducting structures 1{in magnetic fields have been modeled with
generalized coordinaies as systems of equations that include the
magnetomechanical coupling terms. For a given model, '‘mechanical aspects have
been formulated using a finite element method, and electrical aspects have
been formulated using a mesh network method, Coupling terms have been derived
using techniques consistert with both methods. The matrix of mechanical
coupling terms has been shown to be readily derivable from the matrix of
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electrical coupling terms and vice versa, For external field coupling, a
negative transpose relationship exists between the matrices. For internal
field coupling an additional factor of one half is required,
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NOMENCLATURE

A = area (m?),

{¢l = external magnetomechanical coupling matrix (J x I): (Wb/m).
[o] = mechanical damping matrix {I x I) (N-s/m or N-m-s/rad).
d; = mechanical dissipative force (N or N-m),

[E] = internal magnetomechanical coupling matrix (J x 1): (Wb/m).
gy = electrical dissipative voltage drop (V)

F = mechanical farce (N).

1 = total degrees of mechanical freedom in system,

J = total meshes in system.

[x] = mechanical stiffness matrix (I x I}; (N/m ;r N-m/rad}.
[L] = mesh inductance matrix (J x J); (H).

z = branch length {m),

[M] = mass matrix (I = I); (kg or kg-mé/rad).

N = shape function (dimensionless).

qj = electrical generalized coordinate (C).

[R] = mesh resistance matrix (J x J): ().

3 = mechanical generalized coordinate {m or rad).

H = local branch coordinate (m).

t = time (s).

T = mechanical kinetic energy (J).

v = magnetic potential energy (J).

v = mechanical potential energy (J).

w(s) = local distributed transverse loading function (N/m).
XY = rectangular coordinates (m).

r = mechanical moment (N-m).

6,0 ,8_ = angle of rotation about x,y,z axes, respectively (rad).
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Lagrangian function (J).

external magnetic flux thraugh mesh (Wb).
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TABLE 1

MATRIX [C] FOR CANTILEVER EXAMPLE

-1 00 0 O

+1 0 -1 0 0

0 0 +1 0 -1

(aB,) 0 0 0 0 #1
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TABLE 11

MATRIX [C]' FOR CANTILEVER EXAMPLE,

-1 +1 0 0
0 ¢ 0 ¢
0 -1 +1 0
(aBy) g 9 0 0

0 -1 +1 ©
c 0 0 o
0 0 -1 +]
o 0o 0o 0
o 0 0 -1
00 0 6 |



(1/dj)

where .

[Fo(i))]
rx(il)
ry(ill
Fylin)
ry{ip)
Iy(iz)
Fplia)
(13}
ry(i3)
Faliy)
reliyg)

Tylia) )

1o
o
i

Ly

"

TABLE III

NONZERQ ELEMENTS OF COLUMN j OF [CJ' FOR THE RECTANGULAR PLATE EXAMPLE

= {1/20)

78y 72,
2
Ly
2
-ﬂ,l
k17
2
280/3
34y
2
-2%4/3
L

x(iz) - x(i,)

ylig) - y(i3)

23 = x(i3) - x(i4)

x
&
|

= y(iy)

y(i;)

3Ry
2
-2r,/3
~TL2 TR
2
M
2
£y
~3%;
2
243/3

-322

2
~282/3

-T3p

-723

_23

~323

2
2R3/3

gy,

2
28,/3

T2y

-%y

~323

2
-203/3

7R3

(6, (1))
By (1)
Bx(iz)
By(iz)
B{ig)
B, (i3)
B, (i)

UBy(iq)J
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Fig. 1. Rigid-body, rotating
loop/plate example.
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Fig. 2.

Rasic cantilever beam model,
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Fig., 3.

IMlustrative problem characterizations:

overlapping electrical

meshes (top)}, electrical branch network (middle), and mechanical

heam series (bhottom).
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Example of a deflected beam with detail of typical mesh/panel
element.
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Fig. 5.

Rectangular plate example with typical mesh j consisting of nodes:
'i], l?, 13, and 14.
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Fig. 6. Two small, coaxial, circular loops example.
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